[54] 发明名称 铁基无定形合金薄带及用它做的铁心

[57] 摘要

本发明的目的是提供一种用于交流电应用场合的具有良好软磁性的，即使在高铁含量的情况下也可保持高磁通量密度的铁基无定形合金薄带。用这种薄带甚至在退火期间由于铁心的不同部位间存在着温度差异的条件下，仍可制成具有良好软磁性的铁心。本发明的 Fe 基无定形合金薄带具有高磁通量密度，主要成分中含有 Fe，Si，B，C 和 P 元素及不可能避免的杂质，其特征在于：它的组成以原子百分数计：82 < Fe ≤ 90，2 ≤ Si < 4，5 < B ≤ 16，0.02 ≤ C ≤ 4，0.2 ≤ P ≤ 12，退火后 Bτ 值为 1.74T，B90 值超过 1.5T，铁损值为 0.12W/Kg 或更低。
1. 一种由 Fe, Si, B, C 和 P 主要元素及不可避免的杂质组成的 Fe 基无定形合金薄带，其特征在于组成是：以原子百分数计，78 ≤ Fe ≤ 90, 2 ≤ Si ≤ 4, 5 ≤ B ≤ 16, 0.02 ≤ C ≤ 4, 0.2 ≤ P ≤ 12.

2. 一种根据权利要求 1 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于组成是：以原子百分数计，78 ≤ Fe ≤ 86, 2 ≤ Si ≤ 4, 5 ≤ B ≤ 16, 0.02 ≤ C ≤ 4, 0.2 ≤ P ≤ 12.

3. 一种根据权利要求 2 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于 Fe 含量以原子百分数计为 80 ≤ Fe ≤ 82.

4. 一种根据权利要求 2 或 3 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于 P 含量是：以原子百分数计，1 ≤ P ≤ 12.

5. 一种根据权利要求 1 或 2 的用于交流电软磁性良好的 Fe 基无定形合金薄带，其特征在于 B 含量是：以原子百分数计，5 ≤ B ≤ 14.

6. 一种根据权利要求 1 或 2 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于：退火后具有 Bm 值为 1.35T 或更高的软磁性而且 Bm 的标准偏差低于 0.1.

7. 一种根据权利要求 6 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于：退火后具有铁损值为 0.12W/Kg 或更低的铁损性.

8. 一种根据权利要求 1 或 2 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：具有退火温度范围 AT 至少为 80℃ 的特性，保障 Bm 值为 1.35T 或更高的软磁性且 Bm 的标准偏差小于 0.1 的薄带最高退火温度是 Tmax，保障同样效果的薄带最低退火温度是 Tmin，而且 AT = Tmax - Tmin.

9. 一种根据权利要求 8 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：除软磁性外，具有退火温度范围 AT 至少为 60℃ 的特性，其中保障铁损值为 0.12W/Kg 或更低铁损值的薄带最高退火温度是 Tmax，保障同样效果的薄带最低退火温度是 Tmin，而且 AT = Tmax - Tmin.

10. 一种根据权利要求 1 或 2 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：退火后同时具有 Bm 值为 1.35T 或更高的优良的软磁性且弯曲断裂应变 εc 为 0.01 或更高的优良的抗脆性(这里的 εc = t/(Dc - t), ...
t 是薄带的厚度，D 是薄带断裂时的弯曲直径)。

11. 一种根据权利要求 10 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：退火后具有铁损值为 0.12W/Kg 或更低的软磁性。

12. 一种根据权利要求 11 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征在于铁损是以原子百分数计，86<Fe<90，2<Si<4，5<B<16，0.02<C<4，0.2<P<12。

13. 一种根据权利要求 12 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征在于 Fe 含量以原子百分数计，86<Fe<88。

14. 一种根据权利要求 12 或 13 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征是：退火后薄带的 B 为 1.74T 或更高。

15. 一种根据权利要求 12 或 13 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征是：退火后薄带的 B 为 1.5T。

16. 一种根据权利要求 12 或 13 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征是：退火后薄带的铁损值为 0.12W/Kg 或更低。

17. 一种根据权利要求 11 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征在于铁损是以原子百分数计，82<Fe<90，2<Si<4，5<B<16，0.02<C<4，0.2<P<12，退火后，薄带的 B 为 1.74T 或更高。

18. 一种用于交流电应用场合具有良好软磁性的缠绕铁心，其特征在于是通过将权利要求 1-17 中任何一项的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带进行退火而制成的。

19. 一种用于交流电应用场合的具有良好软磁性的层压铁心，其特征在于通过将权利要求 1-17 中任何一项的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带冲压成规定形状的小片，将小片层压后进行退火而制成。
铁基无定形合金薄带及用它做的铁心

发明背景

1． 发明所属领域

本发明涉及到一种用于电源变压器、高频变压器等缠绕铁心的无定形合金薄带。

2． 有关技术的说明

通过迅速冷却熔化状态的合金连续生产薄金属带材和线材的方法包括离心快速冷却法、单辊法、双辊法等等。这些方法是将熔化状态的金属由小孔注入到高速旋转的金属辊（鼓）的里或外的表面上，使它被快速固化成薄金属带或线材。而且，通过严格地控制合金的成分，有可能生产出类似液态金属的无定形合金并得到有良好磁性和力学性质的材料。

由于无定形合金良好的性能，所以它作为工业材料用途很多。在无定形合金中，Fe 基无定形合金薄带如 Fe-Si-B 无定形合金薄带由于其具有低铁损、高饱和磁通量密度、高磁导率及其它优点而用作电源变压器、高频变压器的铁心。

尽管 Fe-Si-B 无定形合金薄带和硅钢片相比具有较低的铁损，但它的饱和磁通量密度 Bs 还是较差的。这是因为，为提高饱和磁通量密度，增加 Fe 的含量，使得形成无定形状态的能力降低，而且使得无定形合金薄带的稳定生产变得困难。如果有可能在增加饱和磁通量密度的同时仍保持着形成无定形状态的能力，它将使缩小铁心尺寸变的可行，且在设计用于变压器铁心中的自由度提高，这样会带来很大的好处。针对上述的需要，下面的技术已被提出。

例如，日本未经审查的专利申请说明书，公开号为 No. 平 5-140703，披露了一种由式 (FeₐSiₘBₙCₜ)₁₀⁻Snₓ 表示的无定形合金薄带的组成。其原子百分数为：
ap=0.80-0.86，b=0.01-0.12，c=0.06-0.16，d=0.001-0.04，a+b+c+d=1，x=0.05-1.0。这种技术通过加入 Sn，在 Fe 的加入量大时也能改善形成无定形状态的能力，但实际上是获得的合金饱和磁通量密度至多为 1.73T。

日本未经审查的专利申请说明书，公开号为 No. 平 6-220592，披露了一种由式 FeₐCoₘSiₙBₚMₓ 表示的无定形合金薄带的组成。其原子百分数为：60 < a < 83，3
< b < 20, 80 < a + b < 86, 1 < c < 10, 11 < d < 16, 当 M 是 Sn 时, 0.1 < x < 1.0, 当 M 是 Cu 时, 0.1 < x < 2.0 当 M 是 S 时 0.01 < x < 0.07, a + b + c + d + x = 100. 这种技术中由于加入了 Co 使合金具有大的饱和磁通量密度。然而 Co 是非常贵的元素，虽然该 Co 的基体无定形合金薄膜可用在一些要求质量较高的场合，但成本高仍是这项技术的不足之处。

除了这些之外，日本未经审查的专利申请说明书，公开号为 No. 平 6-264197 披露了一种由式 Fe,B,_,Si,Mn 表示的无定形合金薄膜的组成，其原子百分数为 80 < x < 83, y = 6-11, z = 8-13, a = 0.5-3. 在这项技术中，由于加入 Mn，使得材料绝缘膜处理性能由了提高，但合金的磁通量密度没有达到 1.7T。

因此，采用传统技术不能够生产出实际可用的、成本低且具有高饱和磁通量密度的铁基无定形合金薄膜。

如上所述，在铸造状态或退火条件下，稳定地获得无定形合金薄膜是困难的，因为当为提高合金的饱和磁通量密度而增加铁基无定形合金薄膜中 Fe 的含量时，形成无定形状合金的能力就会降低而且还会在局部生成结晶。

在用无定形合金薄膜装架缠绕铁心变压器或层压铁心变压器时，通常的方法是用许多的薄膜相互叠成在一起，形成磁芯，并在它的磁路方向上通入直流电磁场，使铁心退火。退火的目的是降低薄膜的应变形成在所加磁场方向上产生的磁各向异性，但是，当退火的温度太低时，会使降低应变和产生磁各向异性变得困难。

相反，当退火温度过高时，薄带会形成结晶而且作为无定形材料的良好的软磁性质会消失。根据这个理由铁心退火是有一个最佳的温度。

对于越重和越大的铁心，将它装入热处理炉中后，加热期间在它的不同部位的温度分布就越不均匀。当对它进行足够长的时间加热或冷却后，不同部位的温度不均才会减到最小程度，但这样会使生产率降低。

已提出了不同的改进退火工艺的方法，如：一种将磁热材料附着在铁心的内外表面，在退火期间将铁心各部分上的温差减小到最小的方法（日本未经审查专利申请说明书，公开号 No. 昭 63-45318）；一种将铁心浸入到保持在退火温度下的装有耐热绝缘油槽中的退火方法（日本未经审查专利申请说明书，公开号为 No. 昭 60-255934）；一种将铁心浸入到保持在适当的但不超过玻璃转化温度的熔融锡槽中，然后在液体冷却槽中冷却的退火方法（日本未经审查专利申请
说明书，公开号为 No. 昭 62-294154); 等等。

以上这些方法改进了退火工艺。但是，这些方法并没有改善合金薄带的质
量，不仅在磁性上没有提高，甚至铁心的不同部分之间仍然存在着温度不均匀性。

另一方面，作为改善薄带性能的一项技术，日本未经审查专利申请说明书，
公开号为 NO. S57-185957 提出了一种用原子百分数为 1-10% 的 P 替代无定形合金
薄带中价格高的 B 的方法。在原配方中 B 的原子百分数为 1-5%， Si 的原子百分数
为 4-14%。在这个专利公开中 P 的作用是一种提高形成无定形状态的能力的元素，
就象 B、Si 和 C 那样。

再者，日本未经审查专利申请说明书，公开号为平 8-193252 揭露出一种减
少组成中价格高的 B 的用量的配方。在该配方中，以原子百分数计，B 为 6-10%， Si
为 10-17%， P 为 0.02-5%， 其余为 Fe。在这个专利公开的组成中，P 的作用是改
善薄带表面的粗糙度。

日本未经审查专利申请说明书，公开号为 No. 平 9-202951 中揭露另一个
合金组成，其组成是：按原子百分数含量计：Fe 为 76-80%， B 为 6-10%， Si 为
8-17%， P 为 0.02-2%， Mn 为 0.2-1.0%，目的在于在高 Si 含量及 B 原子百分数
含量为 10% 或低于 10% 条件下提高磁性和可加工性能。在这个专利公开中的合金
组成中，P 的作用在于在改善形成无定形状态的能力，加入 Mn 是抑制由于多元
素组合物所导致的结晶化所必不可少的。

日本未经审查专利申请说明书，公开号为 No. 平 9-268354 揭露出一种合金
组成。目的在于即使在 B 含量低于原子百分数 10% 的情况下，通过适当地控制薄
带表面粗糙度来提高合金的磁性，其组成是（原子百分数）B 为 6-10%， Si 为 10-17%
作为优选范围，C 为 0.1-2%， Mn 为 0.2-1.0%， P 为 0.02-2%。在这个专利公开中
的合金组成中 P 的作用局限在改善形成无定形状态能力的表面粗糙度。

另一个例子是日本未经审查的专利申请说明书，公开号为 平 11-293427 揭
露了一个合金的组成。其原子百分含量为 Fe75.0-77.0%，C2.5-3.5%，B0.5-
6.5%， P 是 B 含量的 0-12.0%，其余的为 Si。目的是在低 B 含量情况下有效地扼制
软磁性能的下降。在这种合金组成中 P 的作用局限于改善形成无定形状态的能力

如上所描述的按照上面的任何一项专利申请说明书公开中的技术，通过加
入 P 都可以改善薄带形成无定形状态的能力和（或）表面的粗糙度。

但是，对于由 Fe 基无定形合金薄带被缠绕形成的绕制铁心或由层压合金薄
带形成的层压铁心，在退火期间如何将由铁心的不同部位由于加热过程产生的温
度不均匀性所造成的铁心性能下降问题减至最小，上述公开文献中没有一个方法提到。

然而，日本未经审查的专利申请说明书，公开号为 No. 昭 62-93339 披露了一
项技术能改善材料的脆性，同时也能保持铁损在一个低的水平上。在这个专利
公开中披露了一种以 Fe$_x$B$_y$Si$_{(100-x-y)}$ 式表达的组成。式中，原子百分含量为：76 <
x < 81, 97 < 2x - 5y < 112。合金的成分被限定在靠近 Fe-Si-B 三元系统的共晶
线附近。因为用这种配方制成的合金薄带，按规定的温度曲线退火时，脆性产生
之前就已经完成退火过程，所以上述专利公开中的合金薄带能够保持低铁损和不
脆裂的特征。

但是，日本未经审查的专利说明书，公开号为 No. 昭 62-93339 没有提到任
何关于合金薄带脆性的定量评价。关于磁通量密度，该专利公开说明书中有过描
述，在实施例中：即使在退火不充分的情况下加到 Fe-Si-B 无定形薄带上的磁
场为 1000A/m 时，得到的磁通量密度值 B_{10} 接近饱和的磁通量密度。但是，退火
不充分磁滞回线升高变小，B_{80}（在磁场为 80A/m 下的磁通量密度）变低。因而，
激发功率增加。

除上述的专利公开之外，日本未经审查的专利说明书，公开号为 No. 平 7-
33139 中披露了一种具有改善铁损性能及不脆裂的薄带材料，制造方法与上面的
相同。该专利公开说明书中公开的无定形薄带具有极好的磁性和耐脆性，该材料的
平均粗糙度 Ra 在中心线 0.6μm 或 0.6μm 以下。组成表达式为 Fe$_x$B$_y$Si$_z$Mn$_a$，按原
子百分数计 75 < x < 82, 7 < y < 15, 7 < z < 17, 0.2 < a < 0.5。

虽然 Mn 对改善铁损有效，但增加它的含量会降低磁通量密度并使材料发
脆。基于这种考虑，该专利公开的技术中采用减少抗磁场的方法以提高磁通量密
度，采用减少裂隙点的方法以抑制脆裂。采用在含有 1-4% H$_2$ 的 CO$_2$ 的气氛中，
将上述的合金组分迅速固化的的方法以减少片材表面的不均匀度。

但是，日本未经审查的专利申请说明书，公开号为 No. 平 7-331396 为改进
合金薄带的软磁性能，在合金薄带迅速硬化后立即进行退火，仍能改进材料的
脆性。

而且，日本未经审查的专利说明书，公开号为 No. 平 8-144079 中披露出一
种合金薄带，其生产方法与上述的日本未经审查的专利说明书，公开号为 No. 平
7-331396的相同。该合金带的表面粗糙度Ra为0.8μm或0.8μm以下。但是，为改良合金带的软磁性能，在合金组分迅速硬化后立即进行退火。还是没有改变材料的脆性。

如所所述，为获得如磁通量密度、铁损等良好的软磁性，在磁场下退火后具有抗裂性的Fe基无定形合金带，采用常规的方法是不能得到的。

发明概要

在许多不同的磁性质中，本发明首先是致力于获得高饱和磁通量密度，研究了多种Fe基无定形合金带的组成后，找到了一种即使是在Fe含量高的情况下，经冷后后也能很容易地形成无定形状态的组成。本发明在研究了各种组成后得到了一个确定的结果，即在一定组成范围内，无定形态能够稳定地保持着，甚至在退火至能充分地消除薄带中的应变之后。本发明的这一结果，是通过将一定量的P加入到由一定量Fe，Si，B和C组成的合金中而得到的。

本发明发现了当Fe基无定形合金带的成分被限定在一定的范围内，即使在很宽的温度范围内退火，也能获得良好的磁性。基于上述研究，发明了一种铁基无定形合金带，其在退火期间铁心不同部位出现温度的差异，也具有良好的磁性，本发明是将一定量的P加入到含有一定量的Fe，Si，B和C的合金中去而实现的。值得注意的是，在先前技术的描述中，尽管提到合金中加入P对形成无定形状态的能力和（或）对表面粗糙度有改善作用，但本发明人发现的“P对于扩大最佳退火范围的作用”这一点，在上述的未经审查的专利申请，公开号为昭57-185957，平9-193252，平9-202951，平9-268354和平01-293427中都没有谈到。

本发明将一定量的P加入到含有一定量的Fe，Si，B和C的Fe基无定形合金带带中，得到了一种在一个宽的退火温度范围下T至少为80°C和交流的情况下，具有良好软磁性能的Fe基无定形合金带，这里T=T_{\text{max}}-T_{\text{min}}，其中T_{\text{max}}为薄带退火的最高温度，T_{\text{min}}是薄带退火的最低温度。

T_{\text{max}}是Fe基无定形合金带在交流电50Hz且保持最大磁场80A/m条件下退火，而不引起带晶化且最大磁通量密度B_{\infty}为1.35T或更高时的最高退火温度。换句话说，当Fe基无定形合金带退火温度超过T_{\text{max}}时，薄带就要晶化，磁性下降而且最大磁通量密度B_{\infty}低于1.35T。

T_{\text{min}}是Fe基无定形合金带为减少薄带应变，在退火期间在施加磁场方向
上产生磁各向异性，并且在退火后最大磁通量密度 B_{α} 在 1.35T 或更高时的最低退火温度。

在本发明中，将一定量的 P 加入到含有 Fe, Si, B 和 C 的无定形合金薄带中，就可以制造出在用于交流电应用场合具有突出软磁性的无定形合金薄带，退火后它的磁通量密度值 B_{α} 为 1.35T 或更高，它抗脆性的程度即弯曲断裂应变 ε_f 为 0.01 或更高的良好脆性。

这里的 $\varepsilon_f = t/(D_f-t)$, 式中 t 是带的厚度，D_f 是带断裂时的弯曲直径。

本发明具有上述特征的要点，叙述如下：

（1）一种由 Fe, Si, B, C 和 P 主要元素及不可避免的杂质组成的 Fe 基无定形合金薄带，其特征在于组成是：以原子百分数计，78<Fe<90, 2<Si<4, 5<B<16, 0.02<C<4, 0.2<P<12。

（2）一种根据（1）的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于组成是：以原子百分数计，78<Fe<86, 2<Si<4, 5<B<16, 0.02<C<4, 0.2<P<12。

（3）一种根据（2）的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于 Fe 含量以原子百分数计，80<Fe<82。

（4）一种根据（2）或（3）的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于 P 含量是：以原子百分数计，1<P<12。

（5）一种根据（2）-（4）中任何一个的用于交流电软磁性良好 Fe 基无定形合金薄带，其特征在于 B 含量是：以原子百分数计，5<B<14。

（6）一种根据（2）-（5）中任何一个的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征在于：退火后具有 B_{α} 值为 1.35T 或更高的软磁性而且 B_{α} 的标准偏差低于 0.1。

（7）一种根据（6）的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其更进一步的特征是：退火后具有铁损值为 0.12W/Kg 或更低的铁损性。

（8）一种根据（2）-（7）中的任何一个的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：具有退火温度范围 ΔT 至少为 80℃ 的特性，保证 B_{α} 值为 1.35T 或更高的软磁性且 B_{α} 的标准偏差小于 0.1 的薄带最高退火温度是 T_{max}，达到同样效果的薄带最低退火温度是 T_{min}，而且 $\Delta T = T_{max}$-
T_{\text{min}}.

(9) 一种根据 (8) 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：除软磁性外，具有退火温度范围 \(\Delta T \) 至少为 60°C 的特性，其中保障铁损值为 0.12W/Kg 或更低铁损值的薄带最高退火温度是 \(T_{\text{max}} \)，达到同样效果的薄带最低退火温度是 \(T_{\text{min}} \)，而且 \(\Delta T = T_{\text{max}} - T_{\text{min}} \).

(10) 一种根据 (2) - (5) 中任何一个的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：退火后实时具有 \(B_{\text{sat}} \) 值为 1.35T 或更高的优良的软磁性和弯曲断裂应变 \(\varepsilon_f \) 为 0.01 或更高的优良的抗脆性 (这里的 \(\varepsilon_f = t/(D - t) \)， \(t \) 是薄带的厚度， \(D \) 是薄带断裂时的弯曲直径).

(11) 一种根据 (10) 的用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带，其特征是：退火后具有铁损值为 0.12W/Kg 或更低的铁损性.

(12) 一种根据 (1) 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征在于组成是：以原子百分数计，86≤Fe≤90，2≤Si≤4，5≤B≤16，0.02≤C≤4，0.2≤P≤12.

(13) 一种根据 (12) 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征在于 Fe 含量以原子百分数计，86≤Fe≤88.

(14) 一种根据 (12) 或 (13) 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征是：退火后薄带的 \(B_{\text{sat}} \) 值为 1.74T 或更高.

(15) 一种根据 (12) - (14) 中任何一个的具有高磁通量密度的 Fe 基无定形合金薄带，其特征是：退火后薄带的 \(B_{\text{sat}} \) 值超过 1.5T.

(16) 一种根据 (15) 的具有高磁通量密度的 Fe 基无定形合金薄带，其进一步特征是：退火后薄带的铁损值为 0.12W/Kg 或更低.

(17) 一种根据 (1) 的具有高磁通量密度的 Fe 基无定形合金薄带，其特征在于组成是：以原子百分数计，82≤Fe≤90，2≤Si≤4，5≤B≤16，0.02≤C≤4，0.2≤P≤12，退火后，薄带的 \(B_{\text{sat}} \) 值为 1.74T 或更高.

(18) 一种用于交流电应用场合具有良好软磁性的缠绕铁芯，其特征在于是通过将 (1) - (17) 中任何一个用于交流电应用场合具有良好软磁性的 Fe 基无定形合金薄带环形缠绕并进行退火而制成的.

(19) 一种用于交流电应用场合的具有良好软磁性的层压铁芯，其特征在于通过将 (1) - (17) 中任何一个用于交流电应用场合具有良好软磁性的 Fe 基无
定形合金薄带冲压成规定形状的小片，将小片层压后进行退火而制成。

最佳实施方案的描述

如上述所述，本发明通过将一定量的 P 加入到含有 Fe, Si, B 和 C 的合金中去，大大地提高了 Fe 的加入量，使得在 80A/m 的磁场条件下的饱和磁通量密度和磁通量密度 B_{so} 提高到前所未有的水平。同时，本发明还同时获得了高的磁通量密度和优良的软磁性。这里所说的优良的软磁性指的是：在交流电 50Hz，磁通量密度为 1.3T 的情况下，测定的单片铁损值为 0.12W/Kg 或更低。

一种饱和磁通量密度值 B_s 为至少 1.74T 或更高的无定形合金薄带，可用来设计和制造具有高磁通量密度的变压器。这样，就使表现出高 Bs 性能无定形合金薄带变压器的出现成为了可能。B_{so} 与 B_{s} 相似，与材料的磁化难易程度有着本质关系，由于 B_{s} 增大的影响，使得当 B_{so} 超过 1.5T，升高的 B_s 的作用反映在变压器的性能上。当在交流电 50HZ，磁通量密度为 1.3T 的情况下，测定的单片铁损值为 0.12W/Kg 或更低。因此，获得了性能优良的无定形合金薄带。

在进行变压器设计时需预先确定或者要求磁通量密度，或者要求铁损，这取决于设计的需要。因此，对于变压器的材料并不需要同时满足高的磁通量密度和低的铁损两个条件。如果要同时达到这两个条件，它就意味着无定形合金薄带的性能能使得变压器的效能够达到最完美的程度。

本发明限定合金薄带组成的理由将在下面说明。本发明的主要特征是将 P 加入到低 Si 含量的组分中去（以原子百分数计 2 ≤ Si ≤ 4），每种成分被限定的理由如下。

以原子百分数计，Fe 含量必须在 82<Fe<90 之间。因为，当 Fe 含量是 82% 或更小时，就不能得到足够的磁通量密度和结构密实的铁心设计，当 Fe 含量大于 90% 时，会使形成无定形状态变得困难，因此不能得到好的磁性产品。较好的是控制 Fe 含量为 86<Fe<90%。因为，在此情况下可以稳定地获 B_s 值为 1.74T 或更高的产品。更好的是控制 Fe 含量为 86<Fe<88，因为，在此情况下，可形成更稳定的无定形状态，稳定地获得 B_s 值为 1.74T 或更高。当 Fe 含量控制在上述范围之内时，B_{so} 值可稳定地保持在 1.5T 以上。

以原子百分数计，78<Fe<86 是必须的。因为，Fe 含量低于 78% 时，铁心不能保证得到足够的磁通量密度，当含量超过 86% 时，会使形成无定形状态变得困难，因此不能得到好的磁性产品。较好的是控制 Fe 含量为 80<Fe<82。因为，在此情况下，可形成更稳定的无定形状态，稳定地获得 B_s 值为 1.74T 或更高。当 Fe 含量控制在上述范围之内时，B_{so} 值可稳定地保持在 1.5T 以上。
难，其结果，是不能获得良好的磁性。为在较宽的退火温度范围内获得 B_m 值为 1.35T 或更高的目的，必须增加 Fe 的含量，使它超过 80%。为了使得到无定形材料更稳定，其含量又不应超过 82%。这样，控制 Fe 含量在 80-82%之间就可以获得较好性能的无定形合金薄膜。

以原子百分数计，Si 的含量应局限在 2≤Si≤4 之间，因为，当 Si 的含量小于 2%时，会使其稳定地形成无定形材料变得困难。当 Si 含量等于或大于 4%时它就不可能在高 Fe 含量的条件下，通过加入 P 的方法而获得优良的磁性能。也不可能使增加的退火温度范围得到扩大，而增加退火温度范围的扩大正是本发明特征的重要体现。

以原子百分数计，B 的含量应局限在 5≤B≤16 之间。因为，当 B 含量低于和等于 5%时，会使其稳定形成无定形材料变得困难，而超过 16%时，不会使形成无定形状态的能力进一步增加。为了有效地发挥添加物 P 的作用，以便在高 Fe 含量条件下获得优良的磁性和扩大最佳的退火温度范围，B 的含量应降低至 14%以下。这样，以原子百分数计，5≤B≤14 的情况下，可以获得磁性更均匀的、性能更优良的无定形薄膜。

C 对于增加薄膜的可铸性是有效的。当合金中含有 C 时，可提高熔融合金与冷却基片之间的润湿性，因此可生成更好质量的薄膜。以原子百分数计，当 C 的含量低于 0.02%时，不会出现这种作用，但是当 C 的含量高于 4%时，这种作用也不会增强。因此，C 的含量应限制在 0.02%≤C≤4%之间。

P 是本发明中最重要的元素。本发明人已经发现并且公开在日本未经审查专利申请说明书，公开号为 No.202946 中公开了 P 含量的重量百分数为：0.008≤P≤0.1%（相当于原子百分数 0.16%），它提高了 Mn 和 S 的容许含量，增加了使用廉价材料的可能性。

本发明经过将一定量的 P 加入，并改变 Fe, Si, B 和 C 的含量的一系列实验，证明了在高 Fe 含量的情况下可以得到在交流下具有优良软磁性的薄膜，而同时仍然保持高的磁通量密度。以原子百分数计，P 的含量应是在：0.2≤P≤12 范围内。理由是当 P 含量小于 0.2%时，不可能在退火条件下获得磁性优良且保持高的磁通量密度的薄膜，而当 P 的含量超过 12%时，P 所起的作用不会再提高，而且薄膜的磁通量密度还会下降。当 1≤P≤12 时，由于 P 的作用，在整个薄膜中的磁通量密度更均匀；更优选当 1≤P≤10 时，在此情况下不仅能阻止磁通量
密度降低，因而更能有效的发挥 P 的作用。因此，可采用弯曲断裂应变 ε 为 0.01
或更高薄膜制造出一般的变压器，几乎没有出现薄膜断裂现象。当薄膜的 ε 为
0.015 或更高时，质量仍然很好，因此，使变压器的制造变得更加容易。

如果薄膜中有不可避免的杂质如：Mn, S 等存在，其含量如日本未经审查专利申请说明书，公号为 NO. 平 9-202946 中所示的那样，薄膜的质量也将不会出现什么问题。

本发明中，将一定量的 P 加入到含有一定量 Fe, Si, B 和 C 的合金中去，特
特别是合金中 Si 的低含量以原子百分数计 2 ≤ Si ≤ 4 时，才能发挥出 P 的作用。因
此，限制合金组分为一定的量是重要的。

本发明通过将一定量的 P 加入到如上所述的含有一定量的 Fe, Si, B 和 C 的
Fe 基无定形合金薄膜中，在一个宽的温度范围 ∆T 至少为 80°C 的条件下退火，
就可以制造出在交流电下使用的具有优良软磁性的 Fe 基无定形合金薄膜。这里，
∆T 表示薄膜最高退火温度 T_{max} 和最低退火温度 T_{min} 之差，即 Δ T = T_{max} - T_{min}。

这里，“优良的软磁性” 指的是：最大磁通量密度 B_{0} 为 1.35T 或更高，它
是在最大交流磁场 80A/m，交流频率 50Hz，退火温度范围 ∆T 至少为 80°C 的条件
下退火得到的，其 B_{0} 的标准偏差 “小于 0.1” ，上面用于确定 ∆T 的方法，也同样对
确定铁损值具有意义。铁损值为 “0.12W/Kg 或更小”，它是在交流频率 50Hz，
磁通量密度为 1.3T，退火温度范围用 ∆T 至少为 60°C 的条件下退火得到的薄膜，
经测定其中的单片而得到的。

当经过环形缠绕 Fe 基无定形合金薄膜而形成的缠绕铁心或经过冲压 Fe 基
无定形合金薄膜成小片，然后压小片而形成扁平压铁心等，要经过退火以减小
薄膜的应变和产生磁各向异性时，加热期间铁心不同部位之间的温度将会不同。
当无定形合金薄膜的 B_{0} 至少在 1.35T 或更高时，无定形合金薄膜的性能同样也会
反映到变压器的性能中去，但是，由退火温度不均匀而产生的 B_{0} 值不均匀，会
使铁心软磁性局部下降，同时也会导致变压器性能出现问题。

当本发明合金薄膜的 B_{0} 的标准偏差低于 0.1 时，工作铁心的磁通量密度变得
更加均匀，不仅 Fe 基无定形合金薄膜保持着优良的磁性而且也使变压器的设
计变得更加容易。

同时，在 T_{max} 到 T_{min} 温度范围用 ∆T 至少为 60°C 条件下退火，铁损为 0.12W/Kg
时，也能获得优良性能的 Fe 基无定形合金薄膜。由于在较宽的温度范围 ∆T 至少
为 60°c 情况下可获得优良的铁损性能，因此，即使铁芯的不同部位有温度差异出现，作为铁芯整体的软磁性也不会降低。

根据不同的使用情况，在设计一个变压器时，首先确定的不是要求磁通量密度就是要求铁损性能。因此，保证得到 B_{so} 为 1.35T 或更高的退火温度范围和保证得到铁损为 0.12W/Kg 或更低的退火温度范围就不需要一定相同。但是，如果两个退火温度范围相同的话，Fe 基无定形合金薄带的性能会在变压器的性能上得到最高程度的体现。

本发明的薄带除了具有上述优良软磁性，还具有弯曲断裂应变 ε_{f} 为 0.01 或更高的抗弯薄带。这里 ε_{f}=t/(D-t)，式中 t 是薄带厚度，D 是薄带断面时的弯曲直径。

通过将薄带弯曲成 180°，逐步加力压它，使其两个端之间的距离不断减小，直到薄带断裂时的外表面之间的距离 D 就作为评价薄带脆性的指标。（距离 D 和断裂处弯曲直径相对应）。当薄带断裂时，薄带外表面之间的距离被定义为弯曲断裂直径 D_{f}。被弯曲薄带的外侧表面的应变 ε_{f}=t/(D_{f}-t)，式中 t 是薄带厚度。因此，薄带断裂时的应变，被定义为 ε_{f}=t/(D_{f}-t)。

传统的 Fe-Si-B 无定形合金薄带为获得软磁性要经过退火，退火后薄带不可避免地产生脆性。但是，依照本发明所限定的合金组分范围，薄带经退火后可获得优良的软磁性，同时薄带的脆性也可大部分被消除。按照本发明的 Fe 基无定型合金薄带用作变压器的铁心材料时，能设计出高磁通量密度的变压器，可同时实现提高其使用性能并能减少薄带尺寸。

本发明的 Fe 基无定形合金薄带，用作变压器的铁心材料时也可防止在铁心退火过程中，由于不同部位的温度不均匀而产生的铁心性能的降低。

按照本发明 Fe 基无定形合金薄带可以通过将规定组分的合金熔融后经过狭喷嘴被注入到如单根法、双根法或类似方法的正在移动的冷却衬底上而被迅速冷却熔融合金的方法来制造的。用在单根法中的设备包括一个使用转鼓内表面的快速离心冷却器、使用环形皮带的设备带有备用根的改进型设备和一个在低压、真空或惰性气体条件下使用的炼铁机。本发明对薄带的尺寸不做特殊规定（如厚度、宽度等等），但最好的是厚为大于等于 10μm 到小于 100μm 之间，宽为 20mm 或更多一些。
用铁矿石作原料炼钢生产出的一些牌号的合金钢可以作为本发明的材料。这些牌号的合金钢的组成包括如：Fe_{63.5}Si_{12.1}B_{12}C_{1}P_{0.5}，Fe_{64.1}Si_{2.5}B_{11.4}C_{1}P_{0.5}，Fe_{86.5}Si_{2.2}B_{6.8}C_{0.3}P_{0.2}，Fe_{90}Si_{2.1}B_{6.5}C_{0.3}P_{0.2}，Fe_{87.3}Si_{2.1}B_{6.5}C_{0.3}P_{4.8}等等。

本发明的Fe基无定形合金薄带成分包括，如：Fe_{80.5}Si_{16}B_{15}C_{0.6}P_{0.5}，Fe_{70}Si_{3}B_{12}C_{1}P_{1}，Fe_{80}Si_{12}B_{12}C_{0.5}P_{0.5}，Fe_{75}Si_{12}B_{10}C_{0.5}P_{6}，Fe_{61.5}Si_{2.2}B_{6.3}C_{0.9}等等。但是，本发明的合金成分并不局限在这些例子中。

实施例1：

用Fe_{a}Si_{b}B_{c}C_{d}P_{e}表示的以原子百分数组计的合金组成中含有0.2%的杂质，如Mn，S等（式中 a+b+c+d+e=99.8）。该合金组成通过单轴法铸造而成。铸片经检验确认是否为无定形状态，其结果列于表1。

首先将不同组分的合金放在石英坩埚中，用高频感应加热法熔融，接着将熔体经过装在坩埚顶部的开有0.4×25mm矩形狭缝注入到以每分钟转数为800转，直径为580mm的铜合金冷却水，制造出厚大25μm，宽大约25mm的薄带。然后，采用X-射线衍射法测定铸件的自由表面（浇铸时不与钢接触的表面）和贴钢表面（浇铸时与钢接触的表面）的衍射图。测定结果列于表1。衍射图中面积较大的证明材料是无定形态，用黑号0表示。衍射图中有尖锐结晶峰的用×表示，而介于中间的用Δ表示。
表 1

<table>
<thead>
<tr>
<th>样品号</th>
<th>a(Fe)</th>
<th>b(Si)</th>
<th>c(B)</th>
<th>d(C)</th>
<th>e(P)</th>
<th>生成的无定形状态</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 比较样品</td>
<td>80.9</td>
<td>2.2</td>
<td>10.5</td>
<td>0.7</td>
<td>5.5</td>
<td>0</td>
</tr>
<tr>
<td>2 发明样品</td>
<td>82.4</td>
<td>2.3</td>
<td>8.8</td>
<td>0.5</td>
<td>5.8</td>
<td>0</td>
</tr>
<tr>
<td>3 发明样品</td>
<td>83.6</td>
<td>2.3</td>
<td>8.1</td>
<td>0.6</td>
<td>5.2</td>
<td>0</td>
</tr>
<tr>
<td>4 发明样品</td>
<td>84.5</td>
<td>2.1</td>
<td>7.7</td>
<td>0.4</td>
<td>5.1</td>
<td>0</td>
</tr>
<tr>
<td>5 发明样品</td>
<td>86.7</td>
<td>2.2</td>
<td>5.8</td>
<td>0.5</td>
<td>4.6</td>
<td>0</td>
</tr>
<tr>
<td>6 发明样品</td>
<td>87.1</td>
<td>2.1</td>
<td>6.0</td>
<td>0.5</td>
<td>4.1</td>
<td>0</td>
</tr>
<tr>
<td>7 发明样品</td>
<td>88.4</td>
<td>2.2</td>
<td>5.1</td>
<td>0.3</td>
<td>3.8</td>
<td>0(Δ)</td>
</tr>
<tr>
<td>8 发明样品</td>
<td>89.1</td>
<td>2.1</td>
<td>5.1</td>
<td>0.3</td>
<td>3.4</td>
<td>0(Δ)</td>
</tr>
<tr>
<td>9 比较样品</td>
<td>91.1</td>
<td>2.1</td>
<td>3.3</td>
<td>0.3</td>
<td>3.0</td>
<td>×</td>
</tr>
<tr>
<td>10 比较样品</td>
<td>84.5</td>
<td>2.3</td>
<td>12.3</td>
<td>0.7</td>
<td>0</td>
<td>×</td>
</tr>
<tr>
<td>11 比较样品</td>
<td>86.7</td>
<td>2.4</td>
<td>9.9</td>
<td>0.8</td>
<td>0</td>
<td>×</td>
</tr>
<tr>
<td>12 比较样品</td>
<td>88.4</td>
<td>2.3</td>
<td>8.3</td>
<td>0.8</td>
<td>0</td>
<td>很难形成薄带</td>
</tr>
<tr>
<td>13 发明样品</td>
<td>86.7</td>
<td>2.3</td>
<td>8.9</td>
<td>0.8</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td>14 发明样品</td>
<td>86.5</td>
<td>2.2</td>
<td>7.2</td>
<td>0.7</td>
<td>3.2</td>
<td>0</td>
</tr>
<tr>
<td>15 比较样品</td>
<td>86.6</td>
<td>2.1</td>
<td>3.5</td>
<td>0.9</td>
<td>6.7</td>
<td>×</td>
</tr>
<tr>
<td>16 比较样品</td>
<td>86.4</td>
<td>2.4</td>
<td>2</td>
<td>0.8</td>
<td>8.2</td>
<td>×</td>
</tr>
<tr>
<td>17 比较样品</td>
<td>86.7</td>
<td>2.3</td>
<td>0.2</td>
<td>0.7</td>
<td>9.9</td>
<td>×</td>
</tr>
<tr>
<td>18 比较样品</td>
<td>86.5</td>
<td>1.5</td>
<td>6.1</td>
<td>0.6</td>
<td>5.1</td>
<td>0(Δ)</td>
</tr>
<tr>
<td>19 发明样品</td>
<td>86.4</td>
<td>2.4</td>
<td>6.2</td>
<td>0.6</td>
<td>4.2</td>
<td>0</td>
</tr>
<tr>
<td>20 发明样品</td>
<td>86.5</td>
<td>3.5</td>
<td>5.6</td>
<td>0.4</td>
<td>3.8</td>
<td>0</td>
</tr>
<tr>
<td>21 比较样品</td>
<td>84.1</td>
<td>4.5</td>
<td>5.3</td>
<td>0.6</td>
<td>5.3</td>
<td>0</td>
</tr>
</tbody>
</table>

正如表 1 所见到的那样，尽管样品 1-8 是无定形状态，可是样品 7 和 8 中仍包括很少量的结晶相，含有超过 90 原子百分数 Fe 的样品 9 很难生成无定形状态。需要指出的是，样品 1 的磁通量密度并没有落入如实施例 2 所示的本发明的范围内。样品 10-12 不含有 P，很难形成无定形状态，而样品 12 则不能制成连续的薄带。

样品 13-17 中含 Fe 量都高，只不过 B 和 P 的含量有差异。其中在 13 号和
14 号样品中含本发明范围内的 B 和 P 可形成无定形态，而比较样品 15-17 中含
B 量以原子百分数计为 5%或低于 5%，不能形成无定形态。

在样品 18-20 中 Si 的含量不同，Si 含量低于 2%（原子百分数）的样品
18，虽然形成无定形态，但局部是不稳定形态。样品 19-21 形成无定形态，需
要指出的样品 21 的铁损没有落入在本发明如实施例 2 中所限定的范围内。

由上面的实施例子可以了解到，按照本发明的合金组成的范围，在高 Fe
含量的情况下，可以制造出无定形状态的合金薄带，而在通常的高 Fe 含量情况
下是不可能制造出无定形状态的合金薄带。

实施例 2

将实施例 1 中制成的无定形薄带切成 120mm 长的单片，加入磁场，在氩气
氛围中，由 260℃-400℃ 之间，每个间隔为 20℃，退火一小时，然后采用单片
测试仪（SST）测试单片在交流电情况下的磁性。用在测试期间所加的最大磁场
80A/m 的条件下，最大的磁通量密度 B_{0} 以及在最大磁通量密度为 1.3T 时的铁损
来评价磁性。实验所用的频率是 50Hz。另外，饱和磁通量密度 B_s 是用 VSM 法来
测定的。

表 2 显示出测试结果。表 2 显示出在 260-400℃ 温度下退火所得到的最好
软磁性的数值。需要指出的是，样品 7、8 和 18 中，有的部分并没有完全形成
无定形态。测试时只采用其中完全是无定形态部分。
表2

<table>
<thead>
<tr>
<th>样品号</th>
<th>a (Fe)</th>
<th>b (Si)</th>
<th>c (B)</th>
<th>d (C)</th>
<th>e (P)</th>
<th>B_s (T)</th>
<th>B_H (T)</th>
<th>铁损 (W/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (比较样品)</td>
<td>80.9</td>
<td>2.2</td>
<td>10.5</td>
<td>0.7</td>
<td>5.5</td>
<td>1.60</td>
<td>1.49</td>
<td>0.082</td>
</tr>
<tr>
<td>2 (发明样品)</td>
<td>82.4</td>
<td>2.3</td>
<td>8.8</td>
<td>0.5</td>
<td>5.8</td>
<td>1.74</td>
<td>1.51</td>
<td>0.091</td>
</tr>
<tr>
<td>3 (发明样品)</td>
<td>83.6</td>
<td>2.3</td>
<td>8.1</td>
<td>0.6</td>
<td>5.2</td>
<td>1.75</td>
<td>1.52</td>
<td>0.098</td>
</tr>
<tr>
<td>4 (发明样品)</td>
<td>84.5</td>
<td>2.1</td>
<td>7.7</td>
<td>0.4</td>
<td>5.1</td>
<td>1.75</td>
<td>1.53</td>
<td>0.105</td>
</tr>
<tr>
<td>5 (发明样品)</td>
<td>86.7</td>
<td>2.2</td>
<td>5.8</td>
<td>0.5</td>
<td>4.6</td>
<td>1.76</td>
<td>1.53</td>
<td>0.104</td>
</tr>
<tr>
<td>6 (发明样品)</td>
<td>87.1</td>
<td>2.1</td>
<td>6.0</td>
<td>0.5</td>
<td>4.1</td>
<td>1.77</td>
<td>1.53</td>
<td>0.109</td>
</tr>
<tr>
<td>7 (发明样品)</td>
<td>88.4</td>
<td>2.2</td>
<td>5.1</td>
<td>0.3</td>
<td>3.8</td>
<td>1.75</td>
<td>1.52</td>
<td>0.112</td>
</tr>
<tr>
<td>8 (发明样品)</td>
<td>89.1</td>
<td>2.1</td>
<td>5.1</td>
<td>0.3</td>
<td>3.4</td>
<td>1.76</td>
<td>1.51</td>
<td>0.118</td>
</tr>
<tr>
<td>13 (发明样品)</td>
<td>86.7</td>
<td>2.3</td>
<td>8.9</td>
<td>0.8</td>
<td>1.1</td>
<td>1.77</td>
<td>1.52</td>
<td>0.093</td>
</tr>
<tr>
<td>14 (发明样品)</td>
<td>86.5</td>
<td>2.2</td>
<td>7.2</td>
<td>0.7</td>
<td>3.2</td>
<td>1.76</td>
<td>1.51</td>
<td>0.101</td>
</tr>
<tr>
<td>18 (比较样品)</td>
<td>86.5</td>
<td>1.5</td>
<td>6.1</td>
<td>0.6</td>
<td>5.1</td>
<td>1.65</td>
<td>1.48</td>
<td>0.119</td>
</tr>
<tr>
<td>19 (发明样品)</td>
<td>86.4</td>
<td>2.4</td>
<td>6.2</td>
<td>0.6</td>
<td>4.2</td>
<td>1.76</td>
<td>1.52</td>
<td>0.092</td>
</tr>
<tr>
<td>20 (发明样品)</td>
<td>86.5</td>
<td>3.5</td>
<td>5.6</td>
<td>0.4</td>
<td>3.8</td>
<td>1.75</td>
<td>1.51</td>
<td>0.094</td>
</tr>
<tr>
<td>21 (比较样品)</td>
<td>84.1</td>
<td>4.5</td>
<td>5.3</td>
<td>0.6</td>
<td>5.3</td>
<td>1.74</td>
<td>1.51</td>
<td>0.135</td>
</tr>
</tbody>
</table>

正如表2中所见到的测试结果，样品2-14中含Fe量超过82%（原子百分数），最高达90%（原子百分数），B_s为1.74T或更高，B_H为1.5T或更高。从表2中也可以看出，获得的良好铁损值为0.12W/Kg或更低。Fe含量为82%（原子百分数）或更低的样品1，没有获得较高的B_s值。

观察含有不同量Si的样品18-21，Si含量低于2%（原子百分数）的样品18，其磁通量密度没有达到本发明的范围，Si含量为4%（原子百分数）或更高一些的样品21，其铁损也没有低于本发明样品的范围。

由上述实施例可以得知，使用本发明合金组成可以在高Fe含量情况下生成无定形态，而这些常规的情况是不可行的，同时合金薄带具有优良的软磁性。

实施例3

以原子百分数计，用Fe_{0.3}Si_{1.5}B_{1.6}+P_{0.1}C_{1}表示的合金组成（式中：X=0.5, 1.1, 3.2, 6.4, 或9.5）中含有0.2%（原子百分数）的杂质，如Mn, S等。其它作为比较样品合金是通过将X值变成0, 0.05, 13.5和16制成的。
首先，将上述所说的合金熔化到石英坩埚中，用高频感应法将其熔融。然后将熔体经过装在坩埚顶部的开有 0.4×25mm 的矩形狭缝注入到每分钟转数为 800 转的、直径为 580mm 铜合金的冷却辊上，生产出厚大约 27μm，宽大约 25mm 的薄带。

浇铸成的薄带被切成长 120mm 的小片，于氢气氛围和磁场条件中，在 320, 340, 360, 380 和 400℃ 下退火一小时，然后，采用单片测试仪（SST）测试交流电情况下的磁性能。

磁性能的评价是以测定时所加的最大磁场 80A/m 时最大磁通量密度 B_{0} 和最大磁通量密度为 1.3T 时的铁损值作为标准。测试所用的交流电频率为 50Hz。表 3 和表 4 显示出了测试结果。

<table>
<thead>
<tr>
<th>样品号</th>
<th>P 的不同含量</th>
<th>B 含量</th>
<th>退火温度</th>
<th>标准偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>(16-x)</td>
<td>320℃</td>
<td>340℃</td>
</tr>
<tr>
<td>22(比较样品)</td>
<td>0</td>
<td>16</td>
<td>1.33</td>
<td>1.48</td>
</tr>
<tr>
<td>23(比较样品)</td>
<td>0.05</td>
<td>15.95</td>
<td>1.19</td>
<td>1.43</td>
</tr>
<tr>
<td>24(发明样品)</td>
<td>0.5</td>
<td>15.5</td>
<td>1.35</td>
<td>1.44</td>
</tr>
<tr>
<td>25(发明样品)</td>
<td>1.1</td>
<td>14.9</td>
<td>1.36</td>
<td>1.47</td>
</tr>
<tr>
<td>26(发明样品)</td>
<td>3.2</td>
<td>12.8</td>
<td>1.41</td>
<td>1.50</td>
</tr>
<tr>
<td>27(发明样品)</td>
<td>6.4</td>
<td>9.6</td>
<td>1.41</td>
<td>1.46</td>
</tr>
<tr>
<td>28(发明样品)</td>
<td>9.5</td>
<td>8.5</td>
<td>1.39</td>
<td>1.43</td>
</tr>
<tr>
<td>29(发明样品)</td>
<td>10.8</td>
<td>5.2</td>
<td>1.35</td>
<td>1.41</td>
</tr>
<tr>
<td>30(比较样品)</td>
<td>13.5</td>
<td>2.5</td>
<td>1.32</td>
<td>1.36</td>
</tr>
<tr>
<td>31(比较样品)</td>
<td>16</td>
<td>0</td>
<td>1.30</td>
<td>1.32</td>
</tr>
</tbody>
</table>
表 4 铁损的测试结果 (单位: W/Kg)

<table>
<thead>
<tr>
<th>样品号</th>
<th>P 的不同含量(x)</th>
<th>B 的含量(16-x)</th>
<th>退火温度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>320°C</td>
</tr>
<tr>
<td>22(比较样品)</td>
<td>0</td>
<td>16</td>
<td>0.148</td>
</tr>
<tr>
<td>23(比较样品)</td>
<td>0.05</td>
<td>15.95</td>
<td>0.146</td>
</tr>
<tr>
<td>24(发明样品)</td>
<td>0.5</td>
<td>15.5</td>
<td>0.120</td>
</tr>
<tr>
<td>25(发明样品)</td>
<td>1.1</td>
<td>14.9</td>
<td>0.119</td>
</tr>
<tr>
<td>26(发明样品)</td>
<td>3.2</td>
<td>12.8</td>
<td>0.110</td>
</tr>
<tr>
<td>27(发明样品)</td>
<td>6.4</td>
<td>9.6</td>
<td>0.103</td>
</tr>
<tr>
<td>28(发明样品)</td>
<td>9.5</td>
<td>6.5</td>
<td>0.097</td>
</tr>
<tr>
<td>29(发明样品)</td>
<td>10.8</td>
<td>5.2</td>
<td>0.103</td>
</tr>
<tr>
<td>30(比较样品)</td>
<td>13.5</td>
<td>2.5</td>
<td>0.105</td>
</tr>
<tr>
<td>31(比较样品)</td>
<td>16</td>
<td>0</td>
<td>0.110</td>
</tr>
</tbody>
</table>

样品 23 在 420°C 退火退火后，B_{80} 为 1.29T。从这个结果和表 3 的样品 24-29（发明样品）中 P 含量在大于等于 2%（原子百分数）和小于等于 12%（原子百分数）之间，退火温度范围从 T_{min}=320°C 到 T_{max}=400°C，即一个宽的退火温度范围△T=80°C 时显示出高的磁通量密度 B_{80} 值为 1.35T 或更高。在上述退火温度范围内 B_{80} 的标准偏差小于 0.01 的事实，说明减少磁通量密度的不均匀性是不可能的。

样品 25-29 中，P 含量的范围是 1%（原子百分数）或更高些到 12%（原子百分数）或更小些之间，它的 B_{80} 的标准偏差为 0.07 或更小，这个事实表明，所获得的薄带，其磁通量密度的不均匀性是较小的。而且，样品 26-29 中，B 的含量范围超过 5%（原子百分数）小于 14%（原子百分数），它的 B_{80} 的标准偏差为 0.05 或更小，这个事实表明，所获得的薄带其磁通量密度的不均匀性，仍然是比较小的。

表 4 表明具有本发明组成的样品 24-29（发明样品），在退火温度范围从 T_{min}=320°C 到 T_{max}=380°C，即一个宽的退火宽度范围△T=60°C 时，显示出低的铁损值为 0.12W/Kg 或更低。虽然作为比较样品 30 的铁损值在宽的退火温度范围 60°C 下没有超过 0.12W/Kg，但它的 B_{80} 值水平仍是在比较样品的程度范围内，在 400°C 下退火的样品 31 没有激励到磁通量密度达到 1.3T。
实施例 4

以原子百分数计，用 Fe_{80.3}Si_{7}B_{15.2}P_{3.3}C_{1} 表示的合金组成（式中：Y=1.7, 2.2, 2.9, 3.4, 3.8, 4.3, 或 5.5）中含有 0.2%（原子百分数）的杂质，如 Mn, S 等。采用实施例 3 的方法将合金组成铸成薄膜，同时用实施例 3 相同的方式对薄膜进行磁性测试。表 5 和表 6 显示出测试结果。

表 5

<table>
<thead>
<tr>
<th>样品号</th>
<th>Si 含量 (Y)</th>
<th>B 含量 (15.2-Y)</th>
<th>退火温度</th>
<th>标准偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>32(比较样品)</td>
<td>1.7</td>
<td>13.5</td>
<td>320℃</td>
<td>1.22</td>
</tr>
<tr>
<td>33(发明样品)</td>
<td>2.2</td>
<td>13.0</td>
<td>340℃</td>
<td>1.42</td>
</tr>
<tr>
<td>34(发明样品)</td>
<td>2.9</td>
<td>12.3</td>
<td>360℃</td>
<td>1.41</td>
</tr>
<tr>
<td>35(发明样品)</td>
<td>3.4</td>
<td>11.8</td>
<td>380℃</td>
<td>1.40</td>
</tr>
<tr>
<td>36(发明样品)</td>
<td>3.8</td>
<td>11.4</td>
<td>400℃</td>
<td>1.39</td>
</tr>
<tr>
<td>37(比较样品)</td>
<td>4.3</td>
<td>10.9</td>
<td>1.29</td>
<td>1.43</td>
</tr>
<tr>
<td>38(比较样品)</td>
<td>5.5</td>
<td>9.7</td>
<td>1.21</td>
<td>1.47</td>
</tr>
</tbody>
</table>

表 6

<table>
<thead>
<tr>
<th>样品号</th>
<th>Si 含量 (Y)</th>
<th>B 含量 (15.2-Y)</th>
<th>退火温度</th>
<th>(单位: W/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32(比较样品)</td>
<td>1.7</td>
<td>13.5</td>
<td>0.112</td>
<td>0.109</td>
</tr>
<tr>
<td>33(发明样品)</td>
<td>2.2</td>
<td>13.0</td>
<td>0.109</td>
<td>0.086</td>
</tr>
<tr>
<td>34(发明样品)</td>
<td>2.9</td>
<td>12.3</td>
<td>0.109</td>
<td>0.087</td>
</tr>
<tr>
<td>35(发明样品)</td>
<td>3.4</td>
<td>11.8</td>
<td>0.110</td>
<td>0.089</td>
</tr>
<tr>
<td>36(发明样品)</td>
<td>3.8</td>
<td>11.4</td>
<td>0.110</td>
<td>0.088</td>
</tr>
<tr>
<td>37(比较样品)</td>
<td>4.3</td>
<td>10.9</td>
<td>0.128</td>
<td>0.092</td>
</tr>
<tr>
<td>38(比较样品)</td>
<td>5.5</td>
<td>9.7</td>
<td>0.138</td>
<td>0.093</td>
</tr>
</tbody>
</table>

样品 32, 37 和 38 在追加 420℃退火后的 B_{0.8} 值分别是 1.34, 1.31 和 1.27T。从这些结果和表 5 的样品 33-36（发明样品）中，Si 含量在 2%（原子百分数）或更高些到低于 4%（原子百分数）之间，退火温度范围从 T_{min}=320℃ 到 T_{max}=400℃,
即一个宽的退火温度范围Δ T=80°C 时, 显示出高的磁通量密度 B₈₀ 值为 1.35T 或更高。在上述退火温度范围内 B₈₀ 的标准偏差低于 0.1 的事实, 说明减少磁通量密度的不均匀性是可能的。

虽然样品 37（比较样品）B₈₀ 的标准偏差低于 0.1, 但在退火温度范围Δ T 至少为 80°C 的情况下, B₈₀ 值并不都是 1.35T 或更高。

而且从表 6 中能看到样品 33-36（发明样品）在退火温度范围从 Tₘᵢ𝑛=320°C 到 Tₘᵃₓ=380°C, 即一个宽的温度范围Δ T=60°C 时, 显示出低的铁损值为 0.12W/Kg 或更低。虽然作为比较样品 32 的在退火温度范围Δ T=60°C 范围的铁损值低于 0.12W/Kg, 但它的 B₈₀ 的水平在比较样品的范围内。由上面表可以看出, 当 Si 含量为 4%（原子百分数）或更高时, 本发明中 P 添加物的作用就没有出现。

实施例 5

采用与实施例 3 相同的方法, 由含有不同量的 Fe, B 和 C, 但是 P 和 Si 的量始终分别保持在 3.4%和 2.5%（原子百分数）的合金组成熔铸而成的薄带。合金组成中含有 0.2%（原子百分数）的杂质, 如 Mn, S 等。

除了退火温度范围从 280°C-400°C 之外, 薄带的磁性的测试采用与实施例 3 相同的方式。

表 7 和表 8 显示出测试结果。

<table>
<thead>
<tr>
<th>表 7</th>
<th></th>
<th>B₈₀ 的测试结果</th>
<th>(单位 : T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>39</td>
<td>87</td>
<td>6.7</td>
<td>0.2</td>
</tr>
<tr>
<td>40</td>
<td>85</td>
<td>8.7</td>
<td>0.2</td>
</tr>
<tr>
<td>41</td>
<td>83.5</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>42</td>
<td>81.2</td>
<td>12</td>
<td>0.7</td>
</tr>
<tr>
<td>43</td>
<td>80.2</td>
<td>12.7</td>
<td>1.0</td>
</tr>
<tr>
<td>44</td>
<td>79.5</td>
<td>12.9</td>
<td>1.5</td>
</tr>
<tr>
<td>45</td>
<td>78.2</td>
<td>13.7</td>
<td>2.0</td>
</tr>
<tr>
<td>46</td>
<td>77.2</td>
<td>15.0</td>
<td>1.7</td>
</tr>
<tr>
<td>47</td>
<td>76.1</td>
<td>17.5</td>
<td>0.3</td>
</tr>
<tr>
<td>样品号</td>
<td>Fe</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>280℃</td>
<td>300℃</td>
<td>320℃</td>
</tr>
<tr>
<td>39 比较样品</td>
<td>87</td>
<td>6.7</td>
<td>0.2</td>
</tr>
<tr>
<td>40 发明样品</td>
<td>85</td>
<td>8.7</td>
<td>0.2</td>
</tr>
<tr>
<td>41 发明样品</td>
<td>83.5</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>42 发明样品</td>
<td>81.2</td>
<td>12</td>
<td>0.7</td>
</tr>
<tr>
<td>43 发明样品</td>
<td>80.2</td>
<td>12.7</td>
<td>1.0</td>
</tr>
<tr>
<td>44 发明样品</td>
<td>79.5</td>
<td>12.9</td>
<td>1.5</td>
</tr>
<tr>
<td>45 发明样品</td>
<td>78.2</td>
<td>13.7</td>
<td>2.0</td>
</tr>
<tr>
<td>46 比较样品</td>
<td>77.2</td>
<td>15.0</td>
<td>1.7</td>
</tr>
<tr>
<td>47 比较样品</td>
<td>76.1</td>
<td>17.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

用退火温度带宽为 80℃（表 7 中用粗线围出的区域）所得到的数值计算出的标准偏差值是最小的。

样品 46 在追加的 420℃下退火后，B_{so} 值为 1.33T。由这个结果和表 7 的样品 40-45（发明样品）中含 Fe 量为 78%（原子百分数）或更高一些到 86%（原子百分数）或更少一些。在一个宽的退火温度范围△T 至少为 80℃时，显现出高的磁通量密度，B_{so} 值为 1.35T 或更高，同时在上述的退火温度范围内 B_{so} 的标准偏差低于 0.1 的事实，说明磁通量密度的不均匀性被减少了。

Fe 含量超过 86%（原子百分数）的样品 39（比较样品），虽然它的磁通量密度的标准偏差低于 0.1，但不能形成无定型状态而且它的 B_{so} 值低于 1T 或更小。在比较样品 46 和 47 中，象上面的情况一样，虽然磁通量密度的标准偏差低于 0.1，但在一个宽的退火温度范围△T 至少为 80℃或更高温度时，它的 B_{so} 值没有达到 1.35T 或更高些。

Fe 含量在大于 80%（原子百分数）而小于等于 82%（原子百分数）之间的样品 42 和 43 在一个宽的退火温度范围从 T_{min}=280℃到 T_{max}=400℃时，它们 B_{so} 的标准偏差是小的，而且 B_{so} 值为 1.35T 或更高，这个事实说明，得到的是性能优良的薄膜。

从表 8 中的结果中可以看到，样品 40-45（发明样品），46 和 47（比较样品）在一个宽的退火温度范围△至少为 60℃或更高时得到铁损值为 0.12W/Kg 或
更少，这些结果是用常规技术所不能得到的。因为样品 46-47 在一个宽的退火温度范围 \(\Delta T \) 至少为 80°C 时，\(B_0 \) 值达不到 1.35T 或更高，它被归为比较类样品。由于样品 39（比较类样品）不能形成无定形态，所以它的铁损是很大的。

实施例 6

宽 50mm 无定型合金薄带是由样品 27 合金组成熔铸而成。它的浇铸方法除了矩形铁板尺寸为 0.4 \(\times \) 50mm 之外，其余的都与实施例 3 相同，薄带铸件厚度是 26\(\mu \)m。

薄带被缠绕成厚度为缠绕厚度 50mm 的环形铁心，然后以不同的加热速率将铁心从室温加热到 400°C，在 400°C 保温 2 个小时后，在炉内冷却。加热期间在以圆周方向上向铁心加入磁场。加热温度由炉内气氛来控制，铁心的实际温度用放在铁心不同部位的热电偶来测量。

测量结果表明加热速率越大，炉内气氛和铁心之间的温度差异就越大而且铁心不同部位之间的温度差异也越大，铁心的温度没有超过炉内气氛温度。

退火后将铁心缠上初级线圈和次级线圈，再测量铁心的 \(B_0 \) 值。

结果表明当铁心不同部位之间的温度差异为 80-100°C 时铁心的 \(B_0 \) 值保持为 1.43T 或更高。

出于相互比较的目的，同样的实验用样品 37 进行，当铁心不同部位之间的温度差异为 80-100°C 时，样品 37 的 \(B_0 \) 值明显下降为 1.32T 或更低。

实施例 7

以原子百分数计，用 \(Fe_{0.3}Si_{2.7}B_{16-x}P_xC_{0.8} \) 表示的合金组成（式中：X=1.3, 3.5, 6.2, 或 9.4,）中含有 0.2%（原子百分数）的杂质，如 Mn, S 等。其它作为比较样品合金是通过将 X 变成 0 和 14.5 制成的。

首先将上面所说的组成合金放到石英坩埚中，用高频感应加热法将其熔融，然后将熔体经过装在坩埚顶部的开有 0.4 \(\times \) 25mm 的矩形铁板注入到每分钟转速为 800 转、直径为 580mm 的铜合金的冷却棍上，生产出厚大约 26\(\mu \)m，宽大约 25mm 的薄带。

浇注成的薄带被切成长 120mm 的小片，加入磁场，于氮气氛围和磁场中，在 320, 340, 360, 380 和 400°C 下退火一小时，然后采用单片测试仪（SST）测试交流电情况下的磁性能。

磁性能的评价是以测定时所加的最大磁场 80A/m 时，最大磁通量密度 \(B_0 \) 和
最大磁通量密度为 1.3T (W33/50) 时的铁损值作为标准，测试所采用的交流电
频率为 50Hz。

上面每一温度下退火的薄带弯曲断裂应变 ε_f 也经过测试。薄带弯曲使
表面（浇铸时与辊接触的表面）朝外。表 9 显示出测试结果。

表 9 $B_{50}(T)$, $(W_{13/50})$ (W/kg) 和 ε_f 的测试结果

<table>
<thead>
<tr>
<th>样品号</th>
<th>P 含量 (x)</th>
<th>测试项目</th>
<th>退火温度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>320°C</td>
</tr>
<tr>
<td>48(样品)</td>
<td>0</td>
<td>B_{50}</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$W_{13/50}$</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ε_f</td>
<td>0.025</td>
</tr>
<tr>
<td>49(样品)</td>
<td>1.3</td>
<td>B_{50}</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$W_{13/50}$</td>
<td>0.116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ε_f</td>
<td>0.020</td>
</tr>
<tr>
<td>50(样品)</td>
<td>3.5</td>
<td>B_{50}</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$W_{13/50}$</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ε_f</td>
<td>0.019</td>
</tr>
<tr>
<td>51(样品)</td>
<td>6.2</td>
<td>B_{50}</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$W_{13/50}$</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ε_f</td>
<td>0.016</td>
</tr>
<tr>
<td>52(样品)</td>
<td>9.4</td>
<td>B_{50}</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$W_{13/50}$</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ε_f</td>
<td>0.014</td>
</tr>
<tr>
<td>53(样品)</td>
<td>14.5</td>
<td>B_{50}</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$W_{13/50}$</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ε_f</td>
<td>0.012</td>
</tr>
</tbody>
</table>

表 9 中被粗线包围的区域是薄带同时具有弯曲断裂应变为 ε_f 为 0.01 或更
高的抗脆性及 B_{50} 为 1.35T 或更高及 $W_{13/50}$ 为 0.12W/Kg 的优良软磁性能的区域。

尽管在样品 48-51 中提高 ε_f 值到 0.01 或更高的退火温度是 360°C 或更低
些，但样品 48（样品）的 B_{50} 在 320°C 下退火后却下降到 1.35T 以下。
而且，样品 48（比较样品）的 $W_{13/50}$ 在任何退火温度下都不能降到 0.12W/Kg 以下。相反，样品 49-51（发明样品）保持了 B_{50} 值为 1.35T 或更高和 $W_{13/50}$ 值为 0.12W/Kg 或更低的优良的软磁性。即使是为提高 ε_f 在 360℃ 或更低的温度下退火后仍能使脆性得到改善的情况下，样品 52（发明样品）在 340℃ 或更低的温度下退火显示出优良的抗脆性和软磁性。样品 53（比较样品）在 320℃ 或更低的温度下退火后，虽然它的 ε_f 值呈现出 0.01 或更高些，但它的 B_{50} 值却下降到 1.35T 或更低。