US 20090055622A1

a9 United States

a2y Patent Application Publication (o) Pub. No.: US 2009/0055622 A1l

Matsuzaki (43) Pub. Date: Feb. 26, 2009
’
(54) PROCESSOR, VIRTUAL MEMORY SYSTEM, 30) Foreign Application Priority Data
AND VIRTUAL STORING METHOD
Jul. 1,2005 (IP) eoeeveeceiccrcceenee 2005-194086
(75) Inventor: Hidenori Matsuzaki, Kanagawa
P Publication Classification
51) Imt.CL
Correspondence Address: (
FINNEGAN, HENDERSON, FARABOW, GAR- GO6F 12/08 (2006.01)
EE;T & DUNNER (52) US.CL oo, 711/203; 711/E12.016
901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413 (US) 7 ABSTRACT
) . . A processor includes an address specifying unit that specifies
(73) Assignee: Kabushiki Kaisha Toshiba, Tokyo an address range on a virtual storage area; an instruction code
(pP) setting unit that sets an instruction code for a process of
) deciding data corresponding to the specified address range; a
(21) Appl. No.: 12/232,454 calculating unit that calculates the data corresponding to the
- address range, according to the instruction code set for the
(22) Filed: Sep. 17,2008 address range; a load instruction obtaining unit that obtains a
s load instruction for the specified address range; and a data
Related U.S. Application Data output unit that supplies the data calculated by the calculating
(63) Continuation of application No. 11/326,194, filed on unit corresponding to the address range indicated by the load

Jan. 6, 2006, now Pat. No. 7,444,492,

System Memory :

Virtual Memory

instruction, as data for the load instruction.

=(1/sqrt($offset>>2))*4. IDO
=fractal($offset>>2) D1
ID2

ID3

Patent Application Publication Feb. 26, 2009 Sheet 1 of 12 US 2009/0055622 A1
1
§20 |
MASTER —— _(1)STORE
PROCESSOR T~
\(B)DATA (2)LOAD \ |
¢50
¢30 \ l | l.§10
MEMORY ”
I/F
<40 REACTIVE PROCESSOR

MEMORY

US 2009/0055622 Al

Feb. 26,2009 Sheet 2 of 12

Patent Application Publication

£Q3LSIOTY
£Q13000 LS £aIod
- 2A13000 erzy €oz) viva+ mm_
ZAIMILSIOTY aravol
R 1QI3a0D) o | CARBLSIO: zand Lal
0d13000 HOL3d | =1 0z e od!
LQIELSIOTY av0T H344N8 avoT
¥344N8 NOILdINOS3A 1aI0d
SSI¥AAV-¥O4 NOISH3A ocl®
-3007 NOILDNYLSNI Tz o0zr
S X
oLl 0QNN3LSIOTY
NOISHIA 0aiod
orze G021
) ozL—1 LINN ONISS300Yd
h A
3INA
arss3yaavvniin| | 3AWA
901 ~H HOLVHYANOD SSIMAaY .
T : ovLavol
eal el |
zal zal vivad
Lal Lal
oal oal
, dnoud ¥3ISPa8, dNO¥o Y31SI5TY
NOILVOI4103dS NOILVOIZI 4300030
avor | O T e rob Tove o0 dor SS3udav
/3¥0LS :
a— . — L 4
4 051SN8 7 : r
o_.w . ['2
05

Z9ol4d

Patent Application Publication Feb. 26, 2009 Sheet 3 of 12 US 2009/0055622 A1

FIG.3

(START ’

SET STARTING ADDRESS S100

SET MASK VALUE - 5102

S104

SET INSTRUCTION CODE

END

Patent Application Publication Feb. 26, 2009 Sheet 4 of 12 US 2009/0055622 A1

FIG.4

(START)
o OBTAIN LOAD INSTRUCTION l»szoo

SPECIFY VIRTUAL ADDRESS ID I‘\f 5202
DELIVER VIRTUAL ADDRESS ID AND OFFSET S204
VALUE TO PROCESSING UNIT

A 4

REGISTER INTO LOAD BUFFER I»-szos
| DELIVER LOAD IDn TO PROCESSING UNIT I\ $210
E

Y.

TURN LOAD iDn OF LOAD BUFFER ACTIVE S212

- CORE IDn

y

. EXECUTE CALCULATION I\ S216

RETURN DATA AND LOAD IDn 5218

OUTPUT DATA l\— 5220

Y

SET INSTRUCTION CODE IDn IN PROCESSOR II_\ S214 |

Patent Application Publication Feb. 26, 2009 Sheet 5 of 12 US 2009/0055622 A1

F =(lsqri($ofiset>>2)*4. | IDO

System Memory ;

’ ' =fractal($offset>>2) 1 1D1

Virtual Memory

ID2

ID3

US 2009/0055622 Al

Feb. 26,2009 Sheet 6 of 12

Patent Application Publication

ot —|_AHONaN |

A

£aI¥31SI93Y
£0/13000 VR £Q10d
u U N
ZAI3000 Izl £0Z1 oo mm“
R 1LQ13A0D P [€Q1¥3LSIO3y zaind. || aravol Lal
> < > NOISHIA
0aI3000 HOL34 | o oz < od
1QIN3LSIDTY omn_v._ ¥344nd avon
¥344N8 NOILdIN0S3a 11 raod
SS3¥AAV-404 NOISH3A ogr> 4
-3009 NOILONYLSNI TZ0 oz
R
oLl 0QI¥31SID3Y
NOISHIN 0diod
o1z 00213
0L 1INN ONISS3D0NG
A A
anvAa L3s440| |arss3saav vaLaia
o0, ~U HOLVYHVYJWNOD SSI¥AQY
T ; OVL avot
eal eal
zal zal viva
Lai val
oql oal
n_mwmw w_mw%momm %wmo ¥3151939 4300534
4193d NOILYOI3103dS
avon | 00k~ YUl ol Y Z0L SsS3amaay
/38018
— r
05,54 5 _ 3
) v
Vol ¥y

9'0ld

US 2009/0055622 Al

Feb. 26,2009 Sheet 7 of 12

Patent Application Publication

£Q13000 mopwm__mm%/mm £ai0d
R 3 3 >
Q13002 ErZD. €021 TG £a)
> 1013009 — || QRO || zapg ||aIQvOT Lal
0Q13002 HOL3d | ==y T DT o
“lamalsosy | avol ¥344n8 avor
¥343N8 NOILdINOS3a : 1a10d
SSI¥AQY-¥O4 NOISY3A oci> 1
-3009 NOILONYLSNI AFAY TR
T 7 Y
i 0QI¥3LSIOTY
~ NOISYIA 0QIod
orzp 00zP <
0zL—] LINN ONISSID0d
: N A
3NTVA 135440 |Q1 SSTWAAY WALHIA
oo1 —~ HOLYNYANOD SS3¥AaV
T ; ovL avol
eal el
> zal zal viva
Lail 1al
odl : oal
dNOYS Y3ISHIT~, dNO¥O WALSI53Y :
. ¥30003a
~] NOILVOIHID3dS NOILYDI103dS
avor | oo YK oL vOu ZoL Ss3¥aav
/340LS |
o . \
. 051SN8 7 ¥
) L2
a0l 05

L Old

Patent Application Publication Feb. 26, 2009 Sheet 8 of 12 US 2009/0055622 A1

1C
<20 7
MASTER |
PROCESSOR
< 50
MEMORY
VE FIRST REACTIVE RSEEfCOTT\?E
PROCESSOR PROCESSOR
< 40

MEMORY

US 2009/0055622 Al

Feb. 26,2009 Sheet 9 of 12

Patent Application Publication

tarss g
£013000 NoSuah tarod
T¥4L) £oz13
Q13002 e[} ERES DED) —
L Q3300 NOISHIA
> A_._o_.m“_v ZhZh zoz
0Q1I3000 Hdled1STo3y 1QI19d
NOISHIA IV
¥344N8 NOILdINOS3a Lz LoZ)S aiovon
SS3YAAY-HOA e RENS PER] 0a10d
-3002 NOILONYLSNI b_,_o_mmm_> .
. y . ol 00z 1 5
oz . LINN ONISSID0Nd avol
A h
al SS3HAAV IVNLYIA INVA 138440]
- ¥3TNAIHOS IHOVO Y1va
L e OvovL
LINA NOILND3X3 IAILYINDTLS
A A - S y
ovL viva +
al SS3NAAV IVNLYIA INTVA 13S440 aravol | aiavor
g0, ~H HOLYHVdNOD SS3¥aavY >
¥ v Qvol zal
N eql eql Lal
mm“ zal oql
Lal
&di oai opy A ¥344n9 avol
004 ~{ dNOYS ¥ILSIOIY dNOYD HILSIOTH
: NOWYQIAIO3dS ;o NOILYOIHIOAdS 5, ¥30003Q
avon MSYIN 3Svg ss3daav viva
/3¥0LS 4
L e I — A
orisSng M
S . v
b @ mV_H_ 0S Z

Patent Application Publication Feb. 26, 2009 Sheet 10 of 12 US 2009/0055622 A1

FIG.10

(START)

SET STARTING ADDRESS |~ $100
- SET MASK VALUE - 8102

SET INSTRUCTION CODE [~ S104

PER.F(‘.'JRM SPECULATIVE S110

CALCULATION

END

Patent Application Publication Feb. 26, 2009 Sheet 11 of 12 US 2009/0055622 A1

FIG.11

(S110START ’

 'DECIDE ADDRESS TO BE CALCULATED !\ s112
SPECIFY VIRTUAL ADDRESS ID. I\ S114

DELIVER VIRTUAL ADDRESS ID AND S116
OFFSET VALUE TO PROCESSING UNIT

CREATE SPECULATIVE LOAD TAG I\ 81 18

DELIVER SPECULATIVE LOAD TAG TO S120
PROCESSING UNIT

SET INSTRUCTION CODE IDn IN PROCESSOR

CORE IDn S122
EXECUTE CALCULATION l\- S124
STORE DATA $126

(-~ S110END)

Patent Application Publication

Feb. 26,

2009 Sheet120f12 US 2009/0055622 A1

FIG.12

(START ’

OBTAIN LOAD INSTRUCTION

L

S200

v

-SPECIFY VIRTUAL ADDRESS ID

v

5202

DELIVER VIRTUAL ADDRESS ID
AND OFFSET VALUE TO
SPECULATIVE EXECUTION UNIT

v

REGISTER INTO LOAD BUFFER

v

DELIVER LOAD IDn TO
SPECULATIVE EXECUTION UNIT

v

DELIVER LOAD IDn TO
PROCESSING UNIT

v

S210

RETURN DATA AND LOAD IDn TO
LOAD- BUFFER

TURN LOAD IDn OF LOAD

BUFFER ACTIVE 5212

v

SET INSTRUCTION CODE IDn
IN PROCESSOR CORE IDn

v
'EXECUTE CALCULATION }82.1 6

v
]»szjs

S214

T
I
¥

RETURN DATA AND’
LOAD IDn

.
<

y

OUTPUT DATA

J\- S220

v
(END)

US 2009/0055622 Al

PROCESSOR, VIRTUAL MEMORY SYSTEM,
AND VIRTUAL STORING METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is based upon and claims the ben-
efit of priority from the prior Japanese Patent Application No.
2005-194086, filed on Jul. 1, 2005; the entire contents of
which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention relates to a processor for computing
(operation), a virtual memory system, and a virtual-storing
method.

[0004] 2. Description of the Related Art

[0005] Multiprocessor systems have been heretofore pro-
posed as means for improving computing power of a system.
In addition, in recent years, further miniaturization of the
process realizes a chip multiprocessor system in which a
plurality of processor cores is mounted on one chip.

[0006] The chip multiprocessor system generally adopts a
structure of connecting a plurality of processors, a memory
interface with an external memory, and an external device
interface, to a system bus within the chip. The respective
processors within the chip perform the processing while
referring to and updating the data in the external memory
through the memory interface.

[0007] It is known that the respective processors perform
the processing in cooperation with each other while transfer-
ring data among the processors directly toward each local
memory built in each of the processors through the system
bus (for example, see “10.2 The Design and Implementation
of a First-Generation CELL Processor” D. Pham et al., 2005

IEEE International Solid-State Circuits Conference
(ISSCC)).
[0008] As mentioned above, the computing power of the

chip can be enhanced according to the miniaturization of the
process with a plurality of processor cores mounted on the
chip.

[0009] Physically and in view of a cost, however, it is not
easy to improve the capacity and the bandwidth of each
external memory which supplies data to each of the processor
cores in proportion to the number of the processors.

[0010] When plural processor cores request access to the
external memory at the same time, they will scramble for the
limited memory bandwidth. This results in a dissatisfactory
performance which falls short of expectations.

[0011] Further, the memory capacity usable by the respec-
tive processor cores is relatively decreased. The shortage of
the memory capacity often hampers full utilization of the
enhanced computing power.

[0012] These problems can occur not only in the multipro-
cessor system but also in a single processor system. The
number of the transistors increases according to the miniatur-
ization. The additional transistors can be utilized for the
speed-up of the single processor core. The capacity and the
bandwidth of the data, however, are difficult to increase
accordingly.

SUMMARY OF THE INVENTION

[0013] According to one aspect of the present invention, a
processor includes an address specifying unit that specifies an

Feb. 26, 2009

address range on a virtual storage area; an instruction code
setting unit that sets an instruction code for a process of
deciding data corresponding to the specified address range; a
calculating unit that calculates the data corresponding to the
address range, according to the instruction code set for the
address range; a load instruction obtaining unit that obtains a
load instruction for the specified address range; and a data
output unit that supplies the data calculated by the calculating
unit corresponding to the address range indicated by the load
instruction, as data for the load instruction.

[0014] According to another aspect of the present inven-
tion, a virtual memory system has a first processor and a
second processor, and each of the first processor and the
second processor includes an address specifying unit that
specifies an address range on a virtual storage area, an instruc-
tion code setting unit that sets an instruction code for a pro-
cess of deciding data corresponding to the specified address
range; a calculating unit that calculates the data correspond-
ing to the address range, according to the instruction code set
for the address range, a load instruction obtaining unit that
obtains a load instruction for the specified address range; and
a data output unit that supplies the data calculated by the
calculating unit corresponding to the address range indicated
by the load instruction, as the data for the load instruction, and
the calculating unit of the first processor issues a load instruc-
tion to the second processor, the load instruction obtaining
unit of the second processor obtains the load instruction from
the first processor, the calculating unit of the second processor
calculates the data for the load instruction obtained from the
first processor, the data output unit of the second processor
supplies the data obtained through the calculating unit of the
second processor to the first processor, and the calculating
unit of the first processor calculates the data, using the data
obtained from the second processor.

[0015] According to still another aspect of the present
invention, a virtual storing method using a processor, includes
specifying an address range on a virtual storage area; setting
an instruction code for a process of deciding data correspond-
ing to the specified address range; calculating the data corre-
sponding to the address range, according to the instruction
code set for the address range; obtaining a load instruction for
the specified address range; and supplying the data calculated
corresponding to the address range indicated by the load
instruction, as data for the load instruction.

[0016] According to still another aspect of the present
invention, a virtual storing method using a first processor and
a second processor, includes specifying an address range on a
virtual storage area in the first processor; setting an instruc-
tion code for a process of deciding data corresponding to the
specified address range in the first processor; specifying an
address range on a virtual storage area in the second proces-
sor; setting an instruction code for a process of deciding the
data corresponding to the specified address range in the sec-
ond processor; issuing a load instruction from the first pro-
cessor to the second processor; specifying the address range
indicated by the load instruction in the second processor;
calculating the data for the address range according to the
instruction code set for the address range, in the second pro-
cessor; supplying the calculated data from the second proces-
sor to the first processor; calculating the data for the address
range by using the supplied data in the first processor; obtain-
ing the load instruction for the specified address range in the
first processor; and supplying the data calculated for the

US 2009/0055622 Al

address range indicated by the load instruction as the data for
the obtained load instruction in the first processor.

[0017] The processor according to the invention works as a
virtual memory, which improves the memory capacity and
the bandwidth of the whole system in which the processor is
mounted. The enhanced memory capacity -effectively
resolves a gap between the computing power and the data

supply ability.
BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG.1is ablock diagram of an overall structure of a
memory system according to a first embodiment;

[0019] FIG.2isablock diagram of a functional structure of
a reactive processor in the memory system;

[0020] FIG. 3 is a flowchart of a virtual address setting
process;

[0021] FIG. 4is a flowchart of a loading process to a virtual
address;

[0022] FIG. 5 is a diagram of one example of a memory
map;

[0023] FIG. 6is ablock diagram of a functional structure of

a reactive processor according to a first modification;

[0024] FIG.7is ablock diagram of a functional structure of
a reactive processor according to a second modification;
[0025] FIG. 8 is a block diagram of an overall structure of a
memory system according to a third modification;

[0026] FIG.9isablock diagram of a functional structure of
a reactive processor in a memory system according to a sec-
ond embodiment;

[0027] FIG. 10 is a flowchart of a virtual address setting
process according to the second embodiment;

[0028] FIG. 11 is a flowchart of a detailed processing in
speculative calculation; and

[0029] FIG. 12 is a flowchart of a loading process to a
virtual address according to the second embodiment.

DETAILED DESCRIPTION OF THE INVENTION

[0030] Hereinafter, preferred embodiments of a processor,
a virtual memory system, and a virtual storing method
according to the present invention will be described in detail
according to the accompanying drawings. Here, the embodi-
ments are not to limit the invention.

[0031] FIG.1is ablock diagram of an overall structure of a
memory system 1. The memory system 1 includes a reactive
processor 10, a master processor 20, a memory interface (I/F)
30, and a memory 40. They are connected to a system bus 50.
[0032] The memory 40 stores data or the like which is
utilized by the reactive processor 10 in the actual memory
space. The reactive processor 10 has a virtual memory space.
The reactive processor 10 acquires data corresponding to a
load instruction through calculation on the virtual address in
the virtual memory space.

[0033] The master processor 20 performs the processing
while loading and storing data into the reactive processor 10
and the memory I/F 30. The master processor 20 registers an
instruction code corresponding to each virtual address and an
address range where the instruction code is assigned, previ-
ously into an internal register of the reactive processor 10
(STORE) when the virtual memory of the reactive processor
10 is used as the data area. Here, the instruction code means
a program for calculating the data of the respective virtual
addresses. The address range means a predetermined range in
a virtual storage area. The master processor 20 issues a load

Feb. 26, 2009

instruction for a desired virtual address as necessary (LOAD)
and acquires data corresponding to the load instruction
(DATA).

[0034] FIG. 2is ablock diagram of a functional structure of
the reactive processor 10. The reactive processor 10 includes
an address decoder 100, an instruction code-for-address
description buffer 110, a processing unit 120, and a load
buffer 130. They are connected to a bus 150.

[0035] The address decoder 100 of the reactive processor
10 shown in FIG. 2 has a base specification register group 102
including four base specification registers of virtual addresses
1D0 to ID3, a mask specification register group 104 including
four mask specification registers of virtual addresses ID0 to
1D3, and an address comparator 106.

[0036] In the embodiment, the base specification register
group 102 includes the four base specification registers of the
virtual address IDO0 to the virtual address ID3. The mask
specification register group 104 includes the four mask speci-
fication registers of the virtual address IDO0 to the virtual
address ID3. It means that four kinds of address ranges can be
held at the same time.

[0037] The address comparator 106 compares an address
range shown in the load instruction with a value held in the
base specification register group 102 and the mask specifica-
tion register group 104 to specify the virtual address ID cor-
responding to the address range shown in the load instruction.
A load tag attached to the load instruction is registered into
load ID0 to load ID3 of the load buffer 130. Here, the load tag
means load instruction identification information for the
identification of the load instruction over the bus.

[0038] The load buffer 130 stores the load tags for the
respective load instructions. When the process corresponding
to the load instruction is performed, the load buffer 130 deliv-
ers load IDn, in which the load tag is registered, to the pro-
cessing unit 120. The load buffer 130 further renders the load
ID corresponding to the load instruction in execution in the
processing unit 120 active, to identify the load instruction
being executed in the processing unit 120.

[0039] The instruction code-for-address description buffer
110 has four entries of the virtual addresses ID0 to ID3. The
respective entries hold the instruction codes to be executed in
the respective address ranges corresponding to the respective
identical virtual address IDn (n=0 to 3).

[0040] The processing unit 120 has four processor cores
(PCIDn) 1200 to 1203. Further, the processing unit 120 has
four version registers 1210 to 1213 corresponding to the
respective PCIDn 1200 to 1203.

[0041] Each ofthe processor cores 1200 to 1203 executes a
predetermined instruction code of the instruction codes
stored in the instruction code-for-address description buffer
110. Each of the version registers 1210 to 1213 holds the load
IDn corresponding to the instruction code being executed by
the corresponding processor core.

[0042] In the embodiment, since the four processor cores
and the four load buffers are provided, four processes of the
identical instruction code as for a plurality of addresses can be
performed at the same time.

[0043] The number of various registers is not limited to that
of the embodiment. In order to make it possible to keep the
number P of addresses simultaneously, there has to be pro-
vided at least the number P of the base specification registers,

US 2009/0055622 Al

the number P of the mask specification registers, and the
number P of the instruction code for address description
buffers.

[0044] Inorderto make it possible to process the number Q
of the load instructions simultaneously, the load bufter 130
has to be provided with the number Q of the entries and the
processing unit 120 has to be provided with the number Q of
the processor cores and the number Q of the version registers.

[0045] In order to allow for the simultaneous execution of
plural processes, the processing unit 120 may be provided
with the number Q of the multiprocessor elements. A re-
configurable logic may be used for the processing unit 120.
Alternatively, the processing unit may be one processor ele-
ment having a function of performing a plurality of tasks
simultaneously and identifying the respective processes.

[0046] A virtual address setting process and a loading pro-
cess to the virtual address are performed so that the master
processor 20 may refer to the data of the virtual memory of the
reactive processor 10. FIG. 3 is a flowchart of the virtual
address setting process. First, a starting address of a virtual
memory-address desired to set is written into the base speci-
fication register group 102 (Step S100). A mask value corre-
sponding to the size of the virtual memory is written into the
mask specification register group 104 (Step S102). At this
time, the starting address and the mask value are respectively
written into the base register and the mask register identified
by the identical virtual address IDn (n=0 to 3).

[0047] The instruction code is written into the code IDn
(n=01to 3)thatis the entry corresponding to the virtual address
ID set in Step S100 and Step S102 in the instruction code-
for-address description buffer 110 (Step S104). The virtual
address setting process is thus completed.

[0048] For example, when the starting address is written
into the virtual address ID0 of the base specification register
group 102, the mask value is written into the virtual address
1D0 of the mask specification register group 104. Then, the
instruction code is written into the code ID0 that is the entry
corresponding to the virtual address ID0 in the instruction
code-for-address description buffer 110. Thus, when the
respective address ranges and the instruction codes are stored
in association with the respective identical virtual addresses
1D, an address range and its corresponding instruction code
can be specified based on the virtual address ID.

[0049] FIG. 4 is a flowchart of the loading process to the
virtual address. The address decoder 100 obtains the load
instruction issued by the master processor 20 (Step S200).
[0050] The address comparator 106 compares the address
range indicated by the load instruction, and the starting
address written into the base specification register group 102
and the mask value written into the mask specification regis-
ter group 104, to specify the virtual address ID where the
corresponding address is written (Step S202).

[0051] The address comparator 106 delivers the specified-
virtual address ID and the offset value to the processing unit
120 (Step S204). The load tag is registered into the load buffer
130 (Step S208). The load IDn that is the entry number of the
load buffer 130 where the load tag is registered is delivered to
a predetermined processor core IDn of the processing unit
120 (Step S210). The load IDn is set in the corresponding
version register [Dn.

[0052] The load IDn registered in the load buffer 130 is
turned active (Step S212). The starting address of the code

Feb. 26, 2009

IDn corresponding to the processor core IDn in the instruc-
tion code-for-address description buffer 110 is set (Step
S214).

[0053] The processor core IDn performs the calculation
according to the instruction code (Step S216).

[0054] Upon completion of the calculation, the processor
core IDn associates the data resultant from calculation with
the load IDn registered in the version register and returns the
data to the load buffer 130 (Step S218). The load buffer 130
returns the received data, together with the load tag, to the
master processor 20 as the data for the load instruction iden-
tified by the load IDn (Step S220). The load process to the
virtual address is thus completed.

[0055] It is preferable that the instruction code registered
into the instruction code-for-address description buffer 110
can refer to the offset value ($offset) of the load-accessed
address. Then, one code can define consecutive sequence
data. In this case, the value written into a special register for
data output ($result) is supplied as the data for the load
instruction.

[0056] As mentioned above, the master processor 20
obtains the calculated data from the memory I/F 30, whereas
the master processor 20 obtains the data calculated at the load
time from the reactive processor 10. Since the memory I/F 30
and the reactive processor 10 are mapped flat on the same
memory space, the master processor 20 can perform the same
processing regardless of distinction between actual memory
and virtual memory.

[0057] FIG. 5 is a diagram of one example of the memory
map. In the memory map shown in FI1G. 5, the actual memory
and the virtual memory are allocated. Further, the instruction
code (1/sqrt(Soffset>>2) 4) is assigned to the virtual address
IDO of the virtual memory and the formula “fractal($off-
set>>2)" is assigned to the virtual address ID1.

[0058] Here, the “Soffset” is the byte address offset from
the starting address of each virtual area, and indicates that the
data is defined by the unit of 4 bytes. No assignment is
performed on the virtual address ID2 and the virtual address
1D3 yet.

[0059] The existing system can gain access only to the
already calculated data. On the contrary, once an instruction
code for a virtual address is registered, the reactive processor
10 in the embodiment can gain access to any of the assigned
virtual addresses at any timing.

[0060] Therefore, in the calculation of high data parallel-
ism, amemory system incorporating a plurality of the reactive
processors 10 can perform more suitable parallel processing
than the existing multiprocessor system. Further, the synchro-
nization is not required.

[0061] Sincethebase specification register, the mask speci-
fication register, and the instruction code-for-address descrip-
tion buffer are mapped flat on the system bus 50, the master
processor 20 can set the parameters using a normal store
instruction.

[0062] Though the invention is described according to the
above embodiment, various modifications or improvements
can be made to the above embodiment.

[0063] As a first modification, the reactive processor 10A
may have access to the memory 40 directly. FIG. 6 is a block
diagram of the functional structure of the reactive processor
10A according to the first modification. As shown in FIG. 6,
the processing unit 120 has a memory I/F function and is
capable of direct access to the memory 40. In the first modi-

US 2009/0055622 Al

fication, each processor core issues the load instruction to the
memory 40 to calculate while loading and storing.

[0064] As a second modification, the reactive processor
10B may have access to the memory I/F 30 or the reactive
processor 10B through the system bus 50. FIG. 7 is a block
diagram of the functional structure of the reactive processor
10B according to the second modification. As shown in FIG.
7, the processing unit 120 can gain access to the memory I/F
30 or the reactive processor 10B through the system bus 50. In
the second modification, similarly to the first modification,
each processor core calculates while loading and storing into
the memory 40. Alternatively, each processor core can per-
form computing in a multiplex way within the virtual memory
while loading and storing into the reactive processor 10B.
[0065] FIG. 8is ablock diagram of an overall structure of a
memory system 1C according to a third modification. The
memory system 1C according to the third modification may
have a plurality of reactive processors 10Ca and 10Cb. Then,
one of the reactive processors 10Ca and 10Cb issues the load
instruction to the virtual memory of the other reactive pro-
cessor and calculates while loading and storing. Thus, the
computing in the virtual memory can be realized in a recur-
sive or a continuous manner.

[0066] FIG.9isablock diagram of the functional structure
of'a reactive processor 11 in a memory system 2 according to
the second embodiment. The reactive processor 11 of the
memory system 2 according to the second embodiment fur-
ther includes a speculative execution unit 140. The specula-
tive execution unit 140 includes a scheduler 142 and a data
cache 144.

[0067] The scheduler 142 predicts the load instruction
issued from the master processor 20 while confirming the
update condition of the address and instruction code regis-
tered into the address decoder 100 and the instruction code-
for-address description buffer 110. The scheduler 142 then
directs the processing unit 120 to calculate the data for the
load instruction. The data cache 144 stores the data obtained
by the instruction of the scheduler 142.

[0068] FIG. 10 is a flowchart of the virtual address setting
process according to the second embodiment. The process
from Step S100 to Step S104 is the same as the process from
Step S100 to Step S104 described with reference to FIG. 3
according to the first embodiment. After the instruction code
is set, the speculative calculation is performed (Step s110).
[0069] FIG. 11 is a flowchart of the detailed processing in
the speculative calculation (Step S110). The scheduler 142
determines an address to be calculated by the instruction
code-for-address description buffer 110 (Step S112). The
scheduler 142 specifically determines the address to be cal-
culated, according to the update condition of the address
registered in the address decoder 100 and the update condi-
tion of the instruction code stored in the instruction code-for-
address description buffer 110. More specifically, an address,
which is newly registered into the address decoder 100 and
the instruction code-for-address description buffer 110, is
determined as the address to be calculated.

[0070] The virtual address ID corresponding to the deter-
mined address is specified (Step S114). The specified virtual
address ID and offset value are delivered to one of the pro-
cessor cores IDn (n=0 to 3) 1200 to 1203 of the processing
unit 120 (Step S116). The scheduler 142 creates the specula-
tive load ID (Step S118). Here, the speculative load ID is the
identification information different from the load ID of the
load buffer 130 and inherent to the scheduler 142. Thus, the

Feb. 26, 2009

load ID and the speculative load ID are identified. Thus, the
processing unit 120 can judge whether the instruction is the
load instruction from the master processor 20 or the instruc-
tion of speculative execution from the scheduler 142.

[0071] The speculative load ID is delivered to a predeter-
mined processor core IDn of the processor cores IDn (n=0 to
3) 1200 to 1203 in the processing unit 120 (Step S120). The
corresponding instruction code is set in a predetermined pro-
cessor core IDn (Step S122). The processor core IDn per-
forms the calculation (Step S124). The obtained data is stored
into the data cache 144 in association with the virtual address
1D and the offset value (Step S126). As mentioned above, the
speculative calculation (Step S110) is completed.

[0072] The processor core IDn delivers the obtained data to
the data cache 144 in association with the speculative load ID.
The data cache 144 can recognize the data to be the data for
the instruction of the scheduler 142.

[0073] FIG. 12 is a flowchart of the loading process to the
virtual address according to the second embodiment. The
process in Step S200 and Step S202 is the same as the process
in Step S200 and Step S202 described with reference to FIG.
4 according to the first embodiment. The virtual address ID
and the offset value are delivered to the speculative execution
unit 140 (Step S230). The load tag is registered into the load
buffer 130 (Step S208).

[0074] The load IDn where the load tag is registered is
delivered to the speculative execution unit 140 (Step S232).
The scheduler 142 compares the virtual address ID and the
offset value obtained in Step S230 with the address range
indicated by the load instruction and confirms whether this
address range is already calculated or not. When the address
range is already calculated (Yes in Step S234), the data stored
in the data cache 144 is returned to the load buffer 130
together with the load IDn (Step S236). The load buffer 130
returns the received data together with the load tag to the
master processor 20 as the data for the load instruction iden-
tified by the load IDn (Step S220).

[0075] When it is determined in Step S234 that the address
range indicated by the load instruction is not calculated (No in
Step S234), the processing proceeds to Step S210. The pro-
cess from Step S210 to Step S218 is the same as the process
from Step 210 to Step S218 described with reference to FIG.
4 according to the first embodiment. The loading process to
the virtual address is thus completed.

[0076] As mentioned above, in the second embodiment, the
data in the corresponding address range is previously calcu-
lated at a timing prior to the timing of acquisition of a load
instruction, based on a prediction that the load instruction will
be obtained. Therefore, it is possible to return the data already
obtained through calculation without calculating data after
obtaining the load instruction. Thus, the data can be returned
to the master processor 20 more instantly.

[0077] The other components of the memory system 2 and
the processing according to the second embodiment are the
same as the components of the memory system 1 and the
processing according to the first embodiment.

[0078] As mentioned above, according to the embodiment,
the memory area viewed from the master processor 20 can be
easily expanded when a virtual memory area is mounted into
a system. Further, since data can be retrieved from a different
port from the actual memory, to improve the bandwidth of the
memory can be significantly improved in the whole system.
[0079] The computing power (data supply ability as a sys-
tem) of the virtual memory is expected to be improved as

US 2009/0055622 Al

much as the improvement in computing power according to
the process miniaturization. Therefore, a gap can be elimi-
nated between the computing power and the data supply
ability created by the process miniaturization.

[0080] Further, the present invention can be applied to the
storage of static data, such as texture data in a 3D graphic
system other than the data calculated dynamically within a
program.

[0081] Specifically, the static data is described as a program
of the virtual memory. The data can be read out and used as
necessary. Accordingly, the texture data that can be described
as a program of the virtual memory can be read out from the
virtual memory and the other texture data can be stored into
the conventional real memory. Thus, the capacity of graphic
memory, which tends to be scarce as the image quality
enhances, can be readily increased.

[0082] When viewed from the processor which issues the
load request to the virtual memory, the processor on the
virtual memory can be regarded as one of the processors
operating in cooperation with the processor, and the whole
system can be regarded as a multiprocessor system. In other
words, the memory systems 1 and 2 according to the embodi-
ments can be regarded as means for new cooperative opera-
tion among the processors in a multiprocessor system.
[0083] Additional advantages and modifications will
readily occur to those skilled in the art. Therefore, the inven-
tion in its broader aspects is not limited to the specific details
and representative embodiments shown and described herein.
Accordingly, various modifications may be made without
departing from the spirit or scope of the general inventive
concept as defined by the appended claims and their equiva-
lents.

1.-14. (canceled)
15. A virtual memory system comprising a first processor
and a second processor, wherein:
each of the first processor and the second processor
includes

anaddress specifying unit that specifies an address range
on a virtual storage area,

an instruction code setting unit that sets an instruction
code for a process of deciding data corresponding to
the specified address range,

a calculating unit that calculates the data corresponding
to the specified address range, according to the
instruction code set for the specified address range,

a load instruction obtaining unit that obtains a load
instruction for the specified address range,

a data output unit that supplies the data calculated by the
calculating unit corresponding to the specified
address range indicated by the load instruction, as the
data for the load instruction,

a data storing unit that stores the data calculated by the
calculating unit in association with the address range,
and

a data managing unit that, when the load instruction is
obtained, supplies the data stored into the data storing
unit to the data output unit when the data correspond-
ing to the address range indicated by the load instruc-
tion is stored in the data storing unit;

the calculating unit of the first processor issues a load
instruction to the second processor;

the load instruction obtaining unit of the second processor
obtains the load instruction from the first processor;

Feb. 26, 2009

the calculating unit of the second processor calculates the
data for the load instruction obtained from the first pro-
cessor;

the data output unit of the second processor supplies the

data obtained through the calculating unit of the second
processor to the first processor;

the calculating unit of the first processor calculates the

data, using the data obtained from the second processor;
and

the data managing unit of the second processor, when the

load instruction is obtained, makes the calculating unit
calculate the data corresponding to the address range
when the data corresponding to the address range indi-
cated by the load instruction is not stored in the data
storing unit.

16. The system according to claim 15, wherein the calcu-
lating unit of the second processor starts calculating the data
corresponding to the specified address range according to the
instruction code under condition that the specified address
range is specified and the instruction code is set.

17. The system according to claim 15, wherein the instruc-
tion code setting unit of the first processor sets the instruction
code in which a value which is uniquely decided based on the
respective addresses within the specified address range can be
used as an argument.

18. The system according to claim 15, wherein each of the
first processor and the second processor further comprises:

an instruction code storing unit that stores address range

identification information, which is employed for iden-
tifying the specified address range, and the instruction
code, which is set for the specified address range, in
association with each other;

wherein the calculating unit of the second processor cal-

culates the data for the specified address range, accord-
ing to the specified address range indicated by the load
instruction and the instruction code stored in the instruc-
tion code storing unit in association with the address
range identification information.

19. The system according to claim 18, wherein each of the
first processor and the second processor further comprises a
register which stores a starting address and a length of the
specified address range in association with the address range
identification information which is employed for identifying
the starting address and the length;

wherein the second processor further comprises an address

comparing unit that compares the specified address
range indicated by the load instruction obtained by the
load instruction obtaining unit with the starting address
and the length stored in the register, to specify the
address range identification information corresponding
to the specified address range indicated by the load
instruction;

wherein the address specifying unit of the first processor

specifies the starting address of the specified address
range and the length of the address range; and

wherein the calculating unit of the second processor cal-

culates the data for the address according to the instruc-
tion code stored in the instruction code storing unit in
association with the address range identification infor-
mation.

20. The system according to claim 15, wherein each of the
first processor and the second processor further comprises:

a plurality of the calculating units; and

US 2009/0055622 Al

a load instruction identification information storing unit
that stores load instruction identification information
which is employed for identifying the load instruction;

wherein the calculating unit of the second processor further
obtains the load instruction identification information
which is employed for identifying the load instruction;
and

wherein the data output unit of the second processor
obtains the load instruction identification information
and the data from the calculating unit and outputs the
data as the data for the load instruction identified by the
load instruction identification information.

21. The system according to claim 15, wherein each of the
first processor and the second processor further comprises a
system memory interface which gains access to a system
memory which is directly connected to each of the first and
second processors through the calculating unit;

wherein the calculating unit gains access to the system
memory through the system memory interface, and per-
forms loading and storing to the system memory, to
obtain the data for the load instruction.

22. The system according to claim 21, wherein the calcu-
lating unit of the second processor gains access via a bus to the
system memory which is connected to each of the first and
second processors through the bus, and performs loading and
storing to the system memory, to obtain the data for the load
instruction.

23. A virtual storing method using a first processor and a
second processor, comprising:

specifying an address range on a virtual storage area in the
first processor;

setting an instruction code for a process of deciding data
corresponding to the specified address range in the first
processor;

specifying an address range on a virtual storage area in the
second processor;

setting an instruction code for a process of deciding the
data corresponding to the specified address range in the
second processor;

issuing a load instruction from the first processor to the
second processor;

specifying the address range indicated by the load instruc-
tion in the second processor;

calculating the data for the address range according to the
instruction code set for the address range, in the second
processor by a calculating unit;

supplying the calculated data from the second processor to
the first processor;

calculating the data for the address range by using the
supplied data in the first processor;

obtaining the load instruction for the specified address
range in the first processor;

supplying the data calculated for the address range indi-
cated by the load instruction as the data for the obtained
load instruction in the first processor;

storing the data calculated in association with the address
range into a data storing unit, in the second processor;

supplying the data stored into the data storing unit to a data
output unit when the data corresponding to the address
range indicated by the load instruction is stored in the
data storing unit, when the load instruction is obtained,
in the second processor; and

making the calculating unit calculate the data correspond-
ing to the address range when the data corresponding to

Feb. 26, 2009

the address range indicated by the load instruction is not
stored in the data storing unit, when the load instruction
is obtained, in the second processor.

24. The method according to claim 23, wherein the calcu-
lating in the second processor includes starting calculating
the data corresponding to the specified address range accord-
ing to the instruction code under condition that the specified
address range is specified and the instruction code is set.

25. The method according to claim 23, wherein the setting
in the first processor that sets in which a value which is
uniquely decided based on the respective addresses within the
specified address range can be used as an argument.

26. The method according to claim 23, wherein each of the
first processor and the second processor further comprises:

an instruction code storing unit that stores address range

identification information, which is employed for iden-
tify the specified address range, and the instruction code,
which is set for the specified address range, in associa-
tion with each other;

wherein the calculating in the second processor includes

calculating the data for the specified address range,
according to the specified address range indicated by the
load instruction and the instruction code stored in the
instruction code storing unit in association with the
address range identification information.

27. The method according to claim 26, further comprising:

storing a starting address and a length of the specified

address range in association with the address range iden-
tification information which is employed for identifying
the starting address and the length, into a register in the
second process;

comparing the specified address range indicated by the

load instruction obtained with the starting address and
the length stored in the register, to specify the address
range identification information corresponding to the
specified address range indicated by the load instruction,
in the second processor;

wherein the specifying in the first processor includes speci-

fying the starting address of the specified address range
and the length of the address range; and
wherein the calculating in the second processor includes
calculating the data for the address according to the
instruction code stored in the instruction code storing
unit in association with the address range identification
information.
28. The method according to claim 23, further comprising:
storing load instruction identification information which is
employed for identifying the load instruction;

obtaining the load instruction identification information
which is employed for identifying the load instruction,
in the second processor; and

obtaining the load instruction identification information

and the data from the calculating unit and outputting the
data as the data for the load instruction identified by the
load instruction identification information, in the second
processor.

29. The method according to claim 23, wherein each of the
first processor and the second processor further includes a
system memory interface which gains access to a system
memory which is directly connected to each of the first and
second processors through the calculating unit;

the method further comprising gaining access to the system

memory through the system memory interface which
gains access to a system memory which is directly con-
nected to each of the first and second processors, and
performs loading and storing to the system memory, to

US 2009/0055622 Al

obtain the data for the load instruction, in the second
processor.

30. The method according to claim 29, wherein:

the gaining in the second processor includes gaining access
via a bus to the system memory which is connected to

Feb. 26, 2009

each of the first and second processors through the bus,
and performing loading and storing to the system
memory, to obtain the data for the load instruction.

sk sk sk sk sk

