发明名称

胶纸粘贴方法和利用该方法粘贴形成的主板

摘要

一种胶纸粘贴方法，用于将胶纸粘贴在主板上，防止主板上的元器件与屏蔽盖直接接触。屏蔽盖包括屏蔽盖上盖和屏蔽盖下盖。该屏蔽盖下盖将该主板分割成若干个区域。该胶纸粘贴方法包括以下步骤：吸附工序；将胶纸吸附在 PET 离型膜上；冲裁工序；将 PET 离型膜和吸附在 PET 离型膜上的胶纸冲裁；贴装工序；将 PET 离型膜对准屏蔽盖上盖后将胶纸粘附于屏蔽盖上盖上；剥离工序；将 PET 离型膜从屏蔽盖上盖上剥离；安装工序；将屏蔽盖上盖扣住屏蔽盖下盖。本发明还提供一种利用胶纸粘贴方法粘贴形成的主板。通过该方法和主板，提高胶纸粘贴精度。
1. 一种胶纸粘贴方法，用于将胶纸粘贴在主板上，防止主板上的元器件与屏蔽盖直接接触，屏蔽盖包括屏蔽盖上盖和屏蔽盖下盖，该屏蔽盖下盖将该主板分割成若干个区域，其特征在于，该胶纸粘贴方法包括以下步骤：
   吸附工序：将胶纸吸附在 PET 离型膜上；
   冲裁工序：将 PET 离型膜和吸附在 PET 离型膜上的胶纸冲裁；
   贴装工序：将 PET 离型膜对准屏蔽盖上盖后将胶纸粘附于屏蔽盖上盖上；
   剥离工序：将 PET 离型膜从屏蔽盖上盖上剥离；
   安装工序：将屏蔽盖上盖扣住屏蔽盖下盖。

2. 如权利要求 1 所述的胶纸粘贴方法，其特征在于：该冲裁工序后，PET 离型膜的外形与屏蔽盖上盖的内框大致相同，同时胶纸精密的分布在 PET 离型膜上，胶纸的形状与个数与该屏蔽盖下盖将该主板分割的若干个区域的形状和个数一一匹配。

3. 如权利要求 2 所述的胶纸粘贴方法，其特征在于：该胶纸在 PET 离型膜上的分布公差为 +/−0.1MM。

4. 如权利要求 1 所述的胶纸粘贴方法，其特征在于：该胶纸一面有背胶，一面无背胶，其中无背胶的一面用于吸附在 PET 离型膜上，有背胶的一面粘附于屏蔽盖上盖上。

5. 一种主板，该主板上覆盖有屏蔽盖，屏蔽盖包括屏蔽盖上盖和屏蔽盖下盖，该主板被屏蔽盖下盖分割成若干个区域，其特征在于：
   该若干个区域与屏蔽盖上盖之间包括对应个数的胶纸，该胶纸有背胶的一面粘贴在屏蔽盖上盖上。

6. 如权利要求 5 所述的主板，其特征在于：该对应个数的胶纸的形状与主板被屏蔽盖分割的若干个区域的形状一一匹配。

7. 如权利要求 5 所述的主板，其特征在于：该胶纸无背胶的一面与主板上的若干个区域接触。

8. 如权利要求 5 所述的主板，其特征在于：该胶纸由绝缘材料制成。
胶纸粘贴方法和利用该方法粘贴形成的主板

技术领域
[0001] 本发明涉及一种粘贴方法和利用该方法粘贴形成的主板，特别涉及一种胶纸粘贴方法和利用该方法粘贴胶纸而形成的主板。

背景技术
[0002] 目前电路主板在制造过程中，需要加上屏蔽盖来防止高频部分的元件向外辐射能量和避免环境中的高频辐射影响电路正常工作。一般来说，屏蔽盖包括上盖与下盖，其中，下盖为一框架结构，用于将主板上的电子元件分成若干个区域，上盖与下盖卡合，并可与元件表面接触。这种直接盖上盖会容易损伤主板上的电子元件，则需在电子元件上覆盖一层胶纸防止上盖与元件直接接触。一般通过直接将胶纸贴在主板上，当主板被分成的区域较多时，需要一一将胶纸贴在该些区域，浪费大量的时间和人力，且贴装精度不高。

发明内容
[0003] 有鉴于此，有必要提供一种粘贴方法，通过该粘贴方法可得到一具有较高的贴装精度的主板。
[0004] 另外，还有必要提供一种利用该方法粘贴的主板，能增加贴装精度。
[0005] 一种胶纸粘贴方法，用于将胶纸粘贴在主板上，防止主板上的元器件与屏蔽盖直接接触，屏蔽盖包括屏蔽盖上盖和屏蔽盖下盖，该屏蔽盖下盖将该主板分割成若干个区域，该胶纸粘贴方法包括以下步骤：吸附工序：将胶纸吸附在 PET 离型膜上；冲裁工序：将 PET 离型膜和吸附在 PET 离型膜上的胶纸冲裁；贴装工序：将 PET 离型膜对准屏蔽盖上盖后将胶纸粘附于屏蔽盖上盖上；剥离工序：将 PET 离型膜从屏蔽盖上盖上剥离；安装工序：将屏蔽盖上盖扣住屏蔽盖下盖。
[0006] 一种主板，该主板上覆盖有屏蔽盖，屏蔽盖包括屏蔽盖上盖和屏蔽盖下盖，该主板被屏蔽盖下盖分割成若干个区域，该若干个区域与屏蔽盖上盖之间包括对应个数的胶纸，该胶纸有背胶的一面粘贴在屏蔽盖上盖上。
[0007] 将胶纸吸附在 PET 离型膜上后，冲裁 PET 离型膜和胶纸，将 PET 离型膜贴装在屏蔽盖上盖后，将 PET 离型膜剥离，从而胶纸粘贴在屏蔽盖上盖，将屏蔽盖上盖扣住屏蔽盖下盖。从而胶纸较精确的贴在主板上。

附图说明
[0008] 图 1 是本发明主板的爆炸示意图。
[0009] 图 2 是本发明实施方式中主板在贴装过程的分解示意图。
[0010] 图 3 是本发明胶纸贴装方法流程图。
[0011] 主要元件符号说明
[0012]
## 具体实施方式

[0013] 请参考图1及图2。该主板100包括一主体1及一屏蔽盖2。该主体1上设置有元器件。该屏蔽盖2包括有屏蔽盖下盖3及屏蔽盖上盖4。屏蔽盖下盖3为一框架结构，该屏蔽盖下盖3将主体1上的元器件分割成若干个独立区域。在本实施方式中，该独立区域的个数为9个。屏蔽盖上盖4通过胶纸5粘贴于该屏蔽盖下盖3。

[0014] 在本实施方式中，该胶纸5一面有背胶，一面无背胶，胶纸5有背胶的一面粘贴于屏蔽盖上盖4上，且胶纸5在屏蔽盖上盖4上的分布与屏蔽盖下盖3分割的若干个区域一一对应。当屏蔽盖上盖4覆盖在屏蔽盖下盖3上时，主体1被屏蔽盖下盖3分成的若干个区域与屏蔽盖上盖4之间均有粘贴于屏蔽盖上盖4上的胶纸5分隔开，从而避免主体1上的元器件与屏蔽盖上盖4直接接触而损坏。其中，该胶纸5由绝缘材料制成，该屏蔽盖上盖4和该屏蔽盖下盖3形成一个密封的空间，用于防止高频部分的元件向外辐射能量和避免环境中的高频辐射影响电路正常工作。

[0015] 请同时参考图3。该粘贴方法包括以下步骤：

- 附器工序：将胶纸5无背胶的一面吸附于PET离型膜6上，其中，PET离型膜6具有良好的附着性和粘合性，可通过静电将胶纸5吸附于PET离型膜6上（S201）。

- 冲裁工序：对PET离型膜6以及吸附于PET离型膜6上的胶纸5进行冲裁，使得PET离型膜6外形与屏蔽盖上盖4内框大致相同，同时胶纸5精密分布在PET离型膜6上，胶纸5的形状与个数与该屏蔽盖下盖3将该主体1分割的若干个区域的形状和个数一一匹配（S202）。

- 贴装工序：将PET离型膜6与屏蔽盖上盖4进行比对，在PET离型膜6与屏蔽盖上盖4完全重合时，通过胶纸5的背胶，将胶纸5粘贴在屏蔽盖上盖4的下表面，从而胶纸5在屏蔽盖上盖4上的分布与主体1被分成的区域的分布相同（S203）。

- 剥离工序：将PET离型膜6从屏蔽盖上盖4上剥离（S204）。

- 安装工序：将屏蔽盖上盖4扣住屏蔽盖下盖3（S205）。

- 在步骤S202中，该胶纸5以+/-0.1MM的公差精密分布在PET离型膜6上。

[0022] 尽管对本发明的优选实施方式进行了说明和描述，但是本领域的技术人员将领悟到该粘贴方法可能产生的其他步骤，这些都不超出本发明的真正范围。因此期望，本发明并
不局限于所公开的作为实现本发明所设想的最佳模式的具体实施方式，本发明包括的所有实施方式都有所附权利要求书的保护范围内。
图 2
吸附工序

冲裁工序

贴装工序

剥离工序

安装工序

完成

图3