The present invention relates to improvements in containers for liquids, and the primary object of the invention is to provide a container especially well adapted for receiving gasoline and oils for use in automobile engines, marine engines or any other desired use, and embodying novel dispensing means normally retained in a concealed position within the body of the container.

A further object of the invention is to provide a container for liquids of various descriptions and provided with detachable dispensing means adapted to so fit within the compartment of the container as to not increase the over-all external dimensions of the container when the dispensing means is disposed in the compartment.

A further object of the invention is to provide a gasoline container having a relatively large spout which may be used for dispensing the supply of gasoline from the container into a larger tank or container thru a large filler opening, and means whereby a portion or all of the contents of the container may be dispensed into a receptacle such as a vacuum tank having a relatively small filler opening.

A still further object of the invention is to provide an improved container for liquids of various characters embodying a dispensing nozzle adapted to be disposed within a compartment projecting into the container, with means for ejecting the nozzle from the compartment to permit of ready withdrawal of the nozzle for attachment to the discharge opening of the container.

Other objects and advantages of the invention will be apparent during the course of the following detailed description, taken in connection with the accompanying drawing forming a part of this specification and in which drawing:

Figure 1 is a central longitudinal section thru the improved container and showing the dispensing means in position within the chamber provided therefor.

Figure 2 is a side elevation of one end of the container and showing the manner in which the dispensing means is removed from the container.

Figure 3 is a longitudinal section thru the container and showing the spout or nozzle connected to the discharge opening for dispensing the supply of liquid into a filler opening of a receptacle.

Figure 4 is a longitudinal section showing the manner in which the liquids may be poured into a relatively small filler opening of a tank or other suitable receptacle.

Referring to the drawing in detail, and wherein similar reference characters designate corresponding parts throughout the several views, the improved container or receptacle includes a tubular body portion 5 being closed at one end by an end wall 6 and at its opposite end by an end wall 7. The container may be formed from sheet metal of any preferred type, and the end walls or plates 6 and 7 may be provided with annular flanges secured to the end of the body portion 5 in any preferred manner.

A handle 8 is secured to extend longitudinally of the body portion 5 at a point midway the ends of the container, and the handle is preferably provided with rolled edges for preventing the handle from cutting one's hand when carrying the container.

The end wall 6 at the forward or discharge end of the container is provided with an axially projecting tubular threaded portion 9 for threaded reception of a closure cap 10 preferably provided with a sealing washer for engaging the end edge of the threaded portion 9. Carried by the wall 6 is a coupling member including a threaded sleeve portion 11 provided at its inner end with an out-turned flange 12 which is secured inwardly of the end wall 6 to provide a leak-proof connection. As will be observed, the sleeve 11 is of
less diameter than the internal diameter of the threaded portion 9 and provides a discharge opening for the container. The sleeve portion 11 is also of such length as to be engaged at its outer end by the packing washer of the closure 10 so that a double seal is provided for preventing escape of the liquid from the container.

The wall 7 at the rear end of the tank or container is provided with a tubular threaded extension 14 for threaded reception of a retaining cap 15. Secured to the inner side of the end wall 7 to extend about the inner end of the tubular extension 14 is a flange ring 16 for supporting a tubular compartment or chamber forming member 17 being closed at its inner end by the end wall 18. The ring 16 supports the tubular member 17 so that the member projects axially into the tubular body portion 5 co-axial of the tubular threaded extension 14.

Adapted for removable positioning within the pocket or compartment 19 is an elongated tubular spout or nozzle 20 having an enlarged internally threaded head portion 21 provided at its rear end. This internally threaded head portion 21 is adapted for threaded connection with the sleeve 11 after removal of the closure cap 10 from its position over the discharge opening of the container. The outer or forward end of the spout 20 is externally threaded as at 22 for threaded reception of a funnel head 23. The funnel head 23 includes a relatively small hollow conical portion 24 provided at its larger end with an internally threaded head portion 25. The funnel head 23 when removed from the end of the spout 20 is threaded upon an externally threaded projection 26 projecting inwardly of the retaining cap 15. The threaded projection 26 is carried axially of the cap 15 so that when the funnel head is attached to the retaining cap and the retaining cap applied to the extension 14, the funnel head will project axially into the compartment 19.

When the spout or nozzle 20 is positioned in the pocket 19 the enlarged head portion 21 will be disposed in the extension 14 since the extension is of greater diameter than that of the head 21.

An ejection means is provided for partially ejectiong the nozzle 20 from the pocket 19, and this ejection means includes an expansion coil spring 30 having one end bearing against the inner end wall 18 of the tubular member 17 and having its opposite end acting upon a disc-shaped slide plate 32 which is engaged by the inner end of the spout 20 when inserted into the pocket.

In assembling the dispensing means including the spout 20 and the head 23 into the compartment 19, the head 23 is first connect- ed to the inner side of the retaining cap 15 and then the spout inserted into the tubular member 17 into engagement with the presser plate 32. The spring 30 will normally retain the head portion 21 in a position partially projecting from the threaded extension 14 as shown in Figure 2. The retaining cap 15 may then be applied over the head 21 as in Figure 2 and the spout forced into the pocket 19 until the cap 15 may be threaded upon the extension 14. Upon removal of the cap 15 the spring 30 will partially eject the spout 20 so that the head 21 may be readily grasped for withdrawing the spout from the receiving pocket. The spring 30 will also prevent any movement of the nozzle within the pocket when the retaining cap is applied over the outer end thereof.

With removal of the nozzle from the pocket 19, the closure cap 10 may be removed from the threaded extension 19 and the nozzle head 21 threaded upon the sleeve 11 so that the contents of the container may be dispensed thru the spout into any suitable receptacle desired. The relatively long spout will also permit of the contents of the container being easily and readily poured into a filler opening which could not ordinarily be reached when pouring the contents directly thru the sleeve 11. Should it be desirable to dispense the contents of the container into a relatively small filler opening such as illustrated in Figure 4, the funnel head 23 may be detached from the cap 15 and threaded upon the forward end of the spout 20 so that the liquid will be dispensed thru the relatively small tapering portion 24 of the funnel head.

The spout or nozzle 20 while shown formed from sheet metal, may either be formed from flexible metal tubing or rubber tubing if so desired, and the length of the spout may readily be increased by increasing the length of the tubular pocket forming member 17. The container may be formed of any capacity, and owing to the like formation of each end of the container it is preferred that the closure cap 10 be marked in some suitable manner for readily determining the discharge or outlet end of the container. It will also be apparent that the container may be of other configurations and not necessarily of cylindrical shape as shown.

From the foregoing description it will be apparent that a novel and improved construction for dispensing containers has been provided which will be found especially well adapted for containing gasoline for use around internal combustion engines in that the relatively large nozzle may be used for pouring the supply of gasoline into a relatively larger tank such as the fuel supply tank for the engine thru the usual tank opening, or a portion or all of the contents poured into a relatively small opening such as for priming a vacuum tank, thru the relatively small funnel head. It will also be apparent that a novel arrangement has been provided.
wherein the dispensing means for the container is concealed in a novel manner within the container proper.

Changes in detail may be made to the form of invention herein shown and described, without departing from the spirit of the invention or the scope of the following claims.

I claim:

1. A dispensing container comprising a receptacle including a body portion having end walls, a tubular threaded extension provided at each end wall with one tubular extension providing an outlet opening for the receptacle, a threaded closure cap for the outlet opening, a pocket forming member supported in the receptacle body portion and opening thru the tubular threaded portion of the opposite end wall, a spout slidably fitting in the pocket and having a threaded end portion for threaded connection with the extension forming the outlet opening for the receptacle, and a retaining cap for threaded connection with the extension provided at the outer end of the pocket forming member for removably retaining the spout within the pocket.

2. A dispensing container including a body portion having front and rear end walls, said front end wall being provided with a tubular threaded portion providing an outlet opening for the receptacle and the rear end wall provided with a threaded tubular extension, a closure cap threaded upon the tubular threaded portion for closing the outlet opening, a chamber forming member carried by the rear end wall inwardly of the body portion and opening thru the tubular threaded extension, a spout slidably fitting in the chamber and having a threaded end portion for threaded connection at the outlet opening of the receptacle, a retaining cap for threaded connection with the tubular extension for retaining the spout in the chamber, and spring means for partially ejecting the spout upon removal of the retaining cap.

3. A dispensing container including a body portion having front and rear end walls, said front end wall being provided with a tubular threaded portion providing an outlet opening for the receptacle and said rear end wall being provided with a tubular threaded extension, a closure cap threaded upon the tubular portion for closing the outlet opening, a tubular threaded sleeve arranged concentrically within the tubular portion, a chamber forming member carried by the rear end wall to project inwardly of the body portion and opening thru the tubular threaded extension, a spout slidably fitting in the chamber forming member and having a threaded end portion for threaded connection with the tubular threaded sleeve provided in the discharge opening, and a retaining cap threaded upon the tubular extension for removably retaining the spout within the chamber.

4. A dispensing container including front and rear end walls each provided with a tubular threaded extension, a closure cap for the threaded extension of the front wall, a tubular threaded sleeve supported in spaced relation inwardly of the tubular extension at the front wall and providing an outlet opening for the container, a tubular chamber forming member supported inwardly of the container and opening axially thru the tubular extension of the rear wall, a spout slidably fitting in the chamber forming member and including a threaded head portion for threaded connection with the sleeve providing the discharge opening, a retaining cap threaded upon the extension of the rear wall, and spring means arranged in the chamber forming member and acting upon the spout to normally urge the spout outwardly of the container upon removal of the retaining cap.

5. In a liquid container including a tubular threaded sleeve forming an outlet opening for the container, a tubular member projecting into the container and forming a pocket closed to the container and having an open outer end surrounded by a threaded extension, a nozzle slidably fitting in the pocket and having a threaded end portion for threaded connection with said tubular sleeve, a retaining cap threaded upon the extension for removably retaining the spout within the pocket, and spring means acting upon the inner end of the spout for partially ejecting the spout upon removal of the retaining cap.

6. In a dispensing container including a threaded sleeve providing an outlet opening, and a threaded tubular extension, a tubular chamber forming member supported co-axially of the extension and projecting into the chamber, a spout including a tubular portion being externally threaded at one end and having an enlarged threaded head portion at its opposite end, said spout adapted to slidably fit in the tubular chamber forming member and having its threaded head portion adapted for threaded connection with the outlet forming sleeve, a retaining cap threaded upon the extension for securing the spout in position within the chamber and having a threaded projection at its inner side, and a funnel head carried by the threaded projection for removal therefrom for connection with the externally threaded end of the tubular portion of said spout.

7. In a dispensing container including an externally threaded sleeve providing an outlet opening for the container, and said container being provided with an externally threaded extension, a tubular chamber forming member mounted co-axially of the threaded extension and projecting into the container, a nozzle including a tubular portion being externally threaded at one end and having an enlarged threaded head portion at its
opposite end, said nozzle slidably fitting in the chamber forming member, a retaining cap threaded upon the threaded extension and having an axially disposed threaded projection at its inner side, a funnel head for removable threaded connection with the externally threaded nozzle end and adapted for threaded connection with the retaining cap projection to extend axially within the nozzle when positioned in said chamber, said retaining cap adapted to engage the nozzle head portion for retaining the nozzle in the chamber, and an expansion spring acting upon the inner end of the nozzle for partially ejecting the nozzle upon removal of the retaining cap.

OSCAR WILLUMSEN.