发明名称 制备表板儿茶素没食子酸酯的方法

摘要

通过下述方法制备表板儿茶素没食子酸酯（EGCC）；用大孔极性树脂将绿茶提取物进行色谱处理；用极性洗脱溶剂将EGCC洗脱；任选通过将剩余儿茶素解吸来再生树脂；任选将解吸的儿茶素浓缩。
1. 一种制备表麴儿茶素没食子酸酯（EGCG）的方法，所述方法包括下述步骤：
 a）提供绿茶提取物；
 b）在约10°C-约80°C，用吸附或色谱法中常用的大孔极性树脂将绿茶提取物进行色谱处理；
 c）在约10°C-约80°C以及约0.1巴-约50巴压力下，用极性洗脱溶剂从所述大孔极性树脂上洗脱EGCG；
 d）任选浓缩步骤c）的洗脱液；
 e）任选通过解吸剩余儿茶素来再生所述大孔极性树脂；和
 f）任选浓缩步骤c）的解吸的儿茶素。

2. 根据权利要求1的方法，其中所述大孔极性树脂选自聚丙烯酸酯、聚甲基丙烯酸酯、聚酰胺和聚酯。

3. 根据权利要求2的方法，其中所述聚丙烯酸酯树脂是AMBERLITE® XAD-7。

4. 根据权利要求2的方法，其中所述聚甲基丙烯酸酯树脂是AMBERCHROM® CG-71。

5. 根据权利要求2的方法，其中所述聚酰胺是Polyamide 11。

6. 根据权利要求1-4任一项的方法，其中步骤b）和c）在约20°C-约60°C的温度范围内进行。

7. 根据权利要求1-5任一项的方法，其中步骤c）在约0.1巴-约20巴、优选约0.1巴-约10巴压力下进行。

8. 根据权利要求1-6任一项的方法，其中所述极性洗脱溶剂是水与有机溶剂的混合物。

9. 根据权利要求7的方法，其中所述洗脱溶剂是约70%-约95%体积，优选约90%体积的水与约5%-约35%体积、优选约10%体积有机溶剂的混合物。

10. 根据权利要求7或8的方法，其中所述有机溶剂是乙醇、异丙
醇、乙酸乙酯或丙酮。

11. 根据权利要求 1-9 任一项的方法，其中所述洗脱溶剂的流速为约 0.5-约 20 柱床体积/小时、优选为约 0.5-约 10 柱床体积/小时、更优选为约 0.8-约 5 柱床体积/小时。

12. 根据权利要求 1-10 任一项的方法，其中步骤 d）通过加入柠檬酸、抗坏血酸或异抗坏血酸而进行。

13. 根据权利要求 11 的方法，其中相对于 EGCG 而言，所述酸的加入量为约 0.1%-约 2.5%。

14. 根据权利要求 1-12 任一项的方法，其中步骤 e）通过使用纯有机溶剂，或者约 10%-约 60% 体积水与约 40%-约 90% 体积有机溶剂的混合物，优选约 40% 体积水和约 60% 体积有机溶剂的混合物进行。

15. 与上述方法基本上相同、尤其是参照实施例的新方法。
制备表屈儿茶素没食子酸酯的方法

本发明涉及制备（-）-表屈儿茶素没食子酸酯（EGCG）的方法。本发明尤其涉及从茶叶儿茶素中分离到制备 EGCG 的方法，其中所述分离包括用大孔极性树脂处理。

按干燥重量计，绿茶植物茶（camellia sinensis）的叶子中含
有高达 36％的多元酚，然而，其组成随气候、季节、品种以及成熟状态变化而变化。绿茶儿茶素是主要的绿茶多元酚。儿茶素的实例有（-）-表儿茶素（EC）、（-）-表屈儿茶素没食子酸酯（EGCG）、表屈儿茶素（EGC）和表儿茶素没食子酸酯（ECG）。

在上述儿茶素中，EGCG 是人们最感兴趣的化合物，因为其具有强的抗氧化作用。此外，已经证实，EGCG 具有抗诱变作用、抗菌作用以及对血液中胆固醇水平有有益作用。茶叶中存在的其它儿茶素的作用很弱。绿茶还含有其它组分，例如咖啡因、蛋白、果胶和/或可能不需要的金属离子。

因此需要通过简单且经济的方法以高产率分离纯的 EGCG。然而，各种茶叶儿茶素所具有的类似结构使得难以把各个单独的儿茶素分离开。此外，茶叶中的儿茶素通常伴随咖啡因一起存在，其中咖啡因的含量占干燥绿茶茶叶干重高达 4％。已知咖啡因常与儿茶素混在一起，并且不易于除去。

绿茶提取物的生产是本领域众所周知的。US 5879733 描述了生产具有改善的澄清度和颜色的绿茶提取物。该茶叶提取物是通过用食品级阳离子交换树脂把绿茶提取物在 25℃ - 60℃温度下处理制得的，其中所述阳离子交换树脂的用量是能有效地将提取物中的金属离子除去的量。然后将处理的提取物与纳米过滤膜接触。然而，在 US 5879733 中描述的方法不适合于从茶叶儿茶素中分离 EGCG。

US 4613672 描述了一种制备纯 EGCG 的方法，该方法包括下述步骤
骤：用热水或用 40-75% 甲醇水溶液、40-75% 乙醇水溶液或 30-80%
丙酮水溶液提取茶叶。将所得提取物用氯仿洗涤，并把该洗涤过的
提取物溶于有机溶剂中。将有机溶剂蒸馏掉，并用逆相分配柱将该浓
缩的萃取组份进行高速液相色谱处理，用丙酮/四氢呋喃/水（0-25:0-
35:65-85, % 体积）作为展开剂，从而将（-）表儿茶素、（-）表棓儿茶
素、（-）表儿茶素没食子酸酯、和（-）表棓儿茶素没食子酸酯彼此分离开。
在工业规模上，US 4613672 中描述的方法并不能经济地制备 EGCG，
因为其使用了昂贵的填柱物。此外，US 4613672 中描述的方法不能用于
制备可加到食品中的 EGCG，因为其使用的溶剂混合物（丙酮/四氢
呋喃/氯仿）不能通过食品许可。

虽然现有技术公开了制备儿茶素混合物的方法，但是仍然需要简
单、安全且经济的制备可用作加到补品和食品中的组分的纯 EGCG 的方
法。

现在已经发现，当用大孔极性树脂和合适的极性洗脱溶剂进行分
离时，可从茶叶儿茶素和/或咖啡因混合物中以改善的选择性分离到
EGCG。

因此，本发明涉及制备表棓儿茶素没食子酸酯（EGCG）的方法，
所述方法包括：
a）提供绿茶提取物；
b）于约 10℃ - 约 80℃，用大孔极性树脂将绿茶提取物进行色谱处理；
c）于约 10℃ - 约 80℃ 以及约 0.1 巴 - 约 50 巴压力下，用极性洗脱溶
剂从所述大孔极性树脂洗脱 EGCG；
d）任选浓缩步骤 c）的洗脱液；
e）任选通过解吸剩余儿茶素来再生所述大孔极性树脂；和
f）任选浓缩步骤 e）的解吸的儿茶素。

用作原料的绿茶提取物的生产是本领域众所周知的。例如，一般
用热水或冷水提取绿茶叶，以形成含有儿茶素和咖啡因的溶液。可将
该绿茶溶液进一步浓缩以形成浓缩提取溶液或干粉末。该提取溶液或
粉末可含有稳定剂，例如食品可接受酸，例如柠檬酸、抗坏血酸、异
抗坏血酸等。

茶叶提取物粉末也可从商业途径获得，例如可从贵州海音（音译）生物制品公司，贵阳，中国（贵州海音（音译）生物制品公司，Guiyang, P. R. China），或浙江中科（音译）植物技术有限公司，杭州，浙江，中国（Zhejiang Zhongke Plant Technical Co. Ltd., Hangzhou, Zhejiang, P. R. China）购得。

一般是用填充有大孔极性树脂的柱子将绿茶提取物柱层析来分离EGCG的。

优选将树脂脱气并用洗脱溶剂平衡。

在约 10℃－约 80℃，优选约 40℃－约 60℃的温度下进行本发明方法。可以例如将分离柱置于恒温控制区例如加热夹套中来进行恒温控制。

流动相流过分离柱的液压可在宽范围内变化。以约 0.1 巴－约 50 巴、优选 0.1 巴－约 20 巴、更优选 0.1 巴－约 10 巴的压力优选泵送流动相流过分离柱。

流动相包含极性洗脱溶剂，所述极性洗脱溶剂是水和有机溶剂的混合物。本说明书所用术语“有机溶剂”是指醇，例如甲醇、乙醇、异丙醇等，和酮例如丙酮，或酯例如乙酸乙酯，或者它们的混合物。优选使用食品级醇，例如乙醇和异丙醇。当使用包含约 70%－约 95% 体积、优选约 90% 体积的水和约 5%－约 30% 体积、优选约 10% 体积
有机溶剂的混合物的流动相时，可获得特别好的结果。将流动相脱气并将流动相保持在惰性气氛下例如氮气或氩气气氛下是有利的。

使用流动相稳定分离柱。流动相流过分离柱的流速可在宽的范围内改变。流速为约 0.5 - 20 柱床体积/小时，优选为约 0.5 - 10 柱床体积/小时，更优选为约 0.8 - 5 柱床体积/小时（1柱床体积相当于 1 m³溶液或溶剂/m³树脂）。

在固定相与流动相之间建立起平衡后，将茶叶提取溶液导入流动相中，从而用大孔极性树脂对绿茶提取物进行色谱分离。如果使用绿茶提取物粉末作为原料，可将粉末溶于流动相内。如果使用含水绿茶提取物，通过加入有机溶剂将提取物中水与有机溶剂的比例调节到流动相中的比例是有利的。

本发明的关键方面是，在约 10℃ - 80℃、优选约 40℃ - 60℃的温度下用大孔极性树脂处理绿茶提取物，并用极性溶剂洗脱 EGCG。树脂、洗脱剂和温度三个特征的这种特别互相作用是本发明的重要方面，并导致从儿茶素和/或咖啡因混合物中特定分离出 EGCG，由此洗脱后获得了含有至少 75%、优选 85% 以上、更优选约 90% - 97% EGCG 的 EGCG 级分，其中所述百分比是基于提取物或浓缩物中存在的儿茶素总量而计的。

根据所用洗脱剂和温度的不同，所述大孔极性树脂吸附咖啡因、EGCG 和其余儿茶素的能力是不同的。其对咖啡因的亲和力小于对 EGCG 的亲和力，因此，如果存在咖啡因的话，咖啡因首先被洗脱掉并可被分离出来。如果合适的话，也可借此回收纯的咖啡因，从经济方面考虑这也是有利的。分离出的第二级分是含有 EGCG 的级分。剩余儿茶素的亲和力比 EGCG 强，因此，通过用能将剩余儿茶素解吸的溶剂洗脱，可把吸附的剩余儿茶素解吸直至树脂再生为止。例如，可通过用纯有机溶剂洗脱或者通过改变流动相中水与有机溶剂的比例来把剩余儿茶素解吸。适当的再生溶剂是例如纯有机溶剂，或者约 10% - 60% 体积水与约 40% - 90% 体积有机溶剂的混合物，优选约 40% 体积水和约 60% 体积有机溶剂的混合物。
可通过本领域众所周知的方法，例如通过蒸馏将洗脱液中的 EGCG 浓缩。可将 EGCG 洗脱液蒸发至干，从而形成含有高纯度 EGCG 的粉末，或者将 EGCG 洗脱液浓缩至结晶。可通过向洗脱液中加入稳定剂例如食品可接受酸如柠檬酸、抗坏血酸等来进行浓缩。所述酸的优选加入量相对于 EGCG 为约 0.1 - 约 2.5%。

可如上所述将含有儿茶素的前级分和含有剩余儿茶素的骤 e）级分浓缩。

可用单个色谱柱或多色谱柱系统来实施本发明方法。还可用在本领域内称为 “模拟移动床色谱法” 或 “环形色谱法” 的技术实施本发明方法。

可用简单且经济的操作实施本发明方法，因此本发明方法在产率和操作方面适于大规模生产。

如上所述制得的 EGCG 具有强抗氧化活性，因此可用作各种食品、化妆品、油品等的抗氧化剂。此外，EGCG 还具有抗诱变作用、抗菌作用、以及对血液中胆固醇水平具有有益作用。因此，EGCG 提取物或纯 EGCG 可用于保健品。

用下述实施例更详细地说明本发明。

实施例 1：分离 EGCG

使用含有不同儿茶素和咖啡因的绿茶提取物（贵州海音生物制品公司，贵阳，中国出产，“绿茶提取物，最少含有 95% 的多元酚”）作为原料。通过使用 UV 吸收的 HPLC 来测定萃取分的浓度，以重量%表示。EGCG、咖啡因、其它儿茶酚以及没食子酸的含量如表 1 所示。
表 1: 原料中茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>实施例 1 茶叶提取物 HPLC/wt. %</th>
<th>实施例 1 茶叶提取物相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>儿茶素</td>
<td>2.3</td>
<td>3.11</td>
</tr>
<tr>
<td>咖啡因</td>
<td>11.0</td>
<td>15.10</td>
</tr>
<tr>
<td>EGCG</td>
<td>38.1</td>
<td>52.34</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>5.2</td>
<td>7.11</td>
</tr>
<tr>
<td>GCG</td>
<td>6.6</td>
<td>8.99</td>
</tr>
<tr>
<td>ECG</td>
<td>9.7</td>
<td>13.35</td>
</tr>
<tr>
<td>总共</td>
<td>72.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

将 33.51 (26 kg) 粒径为 0.3 - 1.2 mm 的 Amberlite® XAD-7 树脂填充到内直径为 150 mm、长 2 m 且容为 35.41 的试验规模柱中。给该柱装上加热套。将树脂用水充分洗涤，并用水/异丙醇（体积比为 9:1）混合物平衡。在使用前，将所用装置和溶剂脱气，并保持在氮气气氛下。

将该填充柱在 60℃ 恒温。把含有 152.5 g 纯 EGCG 的 0.4 kg 上述绿茶提取物（表 1）溶于 1.8 kg 水/异丙醇（体积比为 9:1）混合物，并加载到该柱顶部。在 60℃、0.5 巴压力下通过泵用水/异丙醇（体积比为 9:1）混合物以 50 kg/小时的恒定流速将 EGCG 从柱中洗脱。144 kg 的起始洗脱液（前级分）之后，收集含有 112 g EGCG 作为主要多元酚组分的 174 kg 主要洗脱液。EGCG 在主要洗脱液中的浓度为 0.064%。从茶叶提取物中 152.5 g EGCG 分离出的 EGCG 的产率为 73.5%。

为了将树脂再生，通过用 78.3 kg 水/异丙醇（体积比为 4:6）混合物洗脱将剩余儿茶素解吸。在下一分离前，以逆流方式用 86 kg 水/异丙醇（体积比为 9:1）混合物以 120 kg/小时的流速稳定该柱。

表 2 通过 EGCG 的相对百分比表明了分离效果。通过使用 UV 吸收的 HPLC 来测定主要洗脱液中各茶组分的浓度，以重量%或 ppm 表示。
表 2: 主要洗脱液中茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>实施例 1 主要级分</th>
<th>相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPLC/ppm</td>
<td></td>
</tr>
<tr>
<td>没食子酸</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>儿茶素</td>
<td>21</td>
<td>3.1</td>
</tr>
<tr>
<td>咖啡因</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>EGCG</td>
<td>644</td>
<td>92.1</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>29</td>
<td>4.2</td>
</tr>
<tr>
<td>GCG</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>ECG</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>总共</td>
<td>699</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 2

用其组成如表 3 所示的购自贵州海音生物制品公司的另一批“绿茶提取物, 最少含有 95%多元酚”重复实施例 1。

表 3: 原料中各茶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>实施例 2 茶叶提取物</th>
<th>实施例 2 茶叶提取物</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPLC/wt. %</td>
<td>相对百分比/%</td>
</tr>
<tr>
<td>没食子酸</td>
<td><0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>儿茶素</td>
<td>1.4</td>
<td>1.94</td>
</tr>
<tr>
<td>咖啡因</td>
<td>13.8</td>
<td>18.89</td>
</tr>
<tr>
<td>EGCG</td>
<td>35.1</td>
<td>47.95</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>3.3</td>
<td>4.47</td>
</tr>
<tr>
<td>GCG</td>
<td>8.2</td>
<td>11.20</td>
</tr>
<tr>
<td>ECG</td>
<td>11.4</td>
<td>15.49</td>
</tr>
<tr>
<td>总共</td>
<td>73.2</td>
<td>100.00</td>
</tr>
</tbody>
</table>

将实施例 1 洗过的柱在 60℃下恒温，并使用其进行分离。把含有 140.5 g 纯 EGCG 的 0.4 kg 上述绿茶提取物（表 3）溶于 1.8 kg 水/ 异丙醇（体积比为 9:1）混合物，并加载到该柱顶部。如实施例 1 所述洗涤该柱。200 kg 的起始洗脱液（前级分）之后，收集含有 72.8 g EGCG
作为主要多元酚组分的 177 kg 主要洗脱液。EGCG 在主要洗脱液中的浓度为 0.062%。从茶叶提取物中 140.5 g EGCG 分离出的 EGCG 的产率为 51.8%。

为了将树脂再生，通过用 100.0 kg 水/异丙醇（体积比为 4:6）混合物洗脱将剩余儿茶素解吸。在下一次分离前，以逆流方式用 100 kg 水/异丙醇（体积比为 9:1）混合物以 120 kg/小时的流速稳定该柱。

表 4 通过 EGCG 的相对百分比表明了分离效果。通过使用 UV 吸收的 HPLC 来测定主要洗脱液中各茶组分的浓度，以 ppm 表示。与实施例 1 相比，以更高的百分比获得了 EGCG。

表 4：主要洗脱液中各茶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>实施例 2 主要级分</th>
<th>相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>< 0.1 ppm</td>
<td>0.01</td>
</tr>
<tr>
<td>儿茶素</td>
<td>10 ppm</td>
<td>1.49</td>
</tr>
<tr>
<td>咖啡因</td>
<td>1 ppm</td>
<td>0.17</td>
</tr>
<tr>
<td>EGCG</td>
<td>622 ppm</td>
<td>96.53</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>2 ppm</td>
<td>0.27</td>
</tr>
<tr>
<td>GCG</td>
<td>6 ppm</td>
<td>0.95</td>
</tr>
<tr>
<td>ECG</td>
<td>4 ppm</td>
<td>0.57</td>
</tr>
<tr>
<td>总共</td>
<td>645 ppm</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 3：洗脱液的浓缩

加入 2% 柠檬酸，将通过如实施例 2 所述重复操作制得的吸附/解吸柱的 9.008 kg 洗脱液稳定，其中所述百分比是按照 EGCG 的量计算的。在 40°C、55 毫巴压力下，用由不锈钢制成的、热交换面积为 1.1 m² 的降膜蒸发器将该洗脱液浓缩。加到蒸发器内的进料溶液中儿茶素和咖啡因的量如表 5 所示。
表 5：进行蒸发的纯 EGCG 溶液中茶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>降膜蒸发器进料溶液HPLC/ppm</th>
<th>相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>儿茶素</td>
<td>10</td>
<td>1.30</td>
</tr>
<tr>
<td>咖啡因</td>
<td>1</td>
<td>0.14</td>
</tr>
<tr>
<td>EGCG</td>
<td>712</td>
<td>96.20</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>7</td>
<td>0.96</td>
</tr>
<tr>
<td>GCG</td>
<td>7</td>
<td>0.97</td>
</tr>
<tr>
<td>ECG</td>
<td>3</td>
<td>0.41</td>
</tr>
<tr>
<td>总共</td>
<td>740</td>
<td>100.00</td>
</tr>
</tbody>
</table>

在 300 kg/小时的循环流速下，将进入蒸发器的进料调控在 120 kg/小时 - 130 kg/小时的流速范围内。因此，在 0.52 kg/小时的底部产物移出速率下，馏出液的流速为 123.5Kg/小时。在浓缩过程中，将第一级分取样并分析，然后将第二级分也取样并分析。这两部分 EGCG 浓缩物的总重为 63.5 kg。

表 6 表示了底部产物中各茶叶组分的浓度。EGCG 的回收率为 95.9 %。分析结果清楚地表明，在该溶液的浓缩过程中，可保持分离得到的 EGCG 的高纯度。

可通过喷雾干燥或结晶从浓缩溶液中以固体形式分离到 EGCG。
表 6: 由降膜蒸发器获得的 EGCG 浓缩物中各茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>降膜蒸发器底部产物</th>
<th></th>
<th>降膜蒸发器底部产物</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>组成</td>
<td>组成</td>
<td>第一级分</td>
<td>第二级分</td>
</tr>
<tr>
<td></td>
<td>HPLC/wt.-%</td>
<td>相对百分比</td>
<td>HPLC/wt.-%</td>
<td>相对百分比</td>
</tr>
<tr>
<td>没食子酸</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.17</td>
<td>1.55</td>
<td>0.14</td>
<td>1.59</td>
</tr>
<tr>
<td>咖啡因</td>
<td>0.01</td>
<td>0.12</td>
<td>0.02</td>
<td>0.28</td>
</tr>
<tr>
<td>EGCG</td>
<td>10.70</td>
<td>95.36</td>
<td>8.07</td>
<td>94.93</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>0.16</td>
<td>1.39</td>
<td>0.11</td>
<td>1.24</td>
</tr>
<tr>
<td>GCG</td>
<td>0.13</td>
<td>1.14</td>
<td>0.13</td>
<td>1.52</td>
</tr>
<tr>
<td>ECG</td>
<td>0.05</td>
<td>0.44</td>
<td>0.04</td>
<td>0.44</td>
</tr>
<tr>
<td>总计</td>
<td>11.23</td>
<td>100.00</td>
<td>8.50</td>
<td>100.00</td>
</tr>
<tr>
<td>溶液总重量</td>
<td>39.0 kg</td>
<td>24.5 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

实施例 4

将 450 ml 平均粒径为 120 微米的 AMBERCHROM® CG-71c 填充到由不锈钢制成的、内直径为 2.2 cm 且长 103 cm 的实验室用色谱柱中。给该柱装上加热夹套。洗涤树脂，并用水/乙醇（体积比为 9:1）混合物平衡。

把购自贵州海音生物制品公司的 20 g 浓缩儿茶素粉末 “绿茶提取物，最少含有 95% 多元酚” (原料) 溶于 20 ml 水/乙醇（体积比为 9:1）混合物。然后将 14 g 该溶液 (相当于 2.99 g EGCG) 加载到该柱顶部。在 60℃、2—3 巴压力下通过色谱泵用水/乙醇（体积比为 9:1）混合物以 16 毫升/分钟的恒定流速洗脱 EGCG。在使用前，将洗脱剂脱气并保持在氮气气氛下。2.48 1 的起始洗脱液（前级分）之后，将流速变为 25.5 毫升/分钟，并收集含有浓度为 0.627 g/l 的 EGCG 的 5.40 1 主要洗脱液。对于其它儿茶素和咖啡因而言，通过 HPLC 测定 EGCG 在主要洗脱液中的纯度，以相对百分比表示，其纯度为 97.13%。在实验
期间，根据所采用的流速，系统的压力在 2–3 巴之间变化。表 7 比较了在洗脱液和原料中的各茶叶组分的浓度，由此表明了通过 EGCG 相对百分比表示的分离效果。原料和主要组分中茶叶组分的浓度是通过使用 UV 吸收的 HPLC 测定的，并以重量％或 ppm 表示。

表 7：在 AMBERCHROM CG-71c 上的分离，60℃，溶剂体系：水/乙醇

<table>
<thead>
<tr>
<th>化合物</th>
<th>茶叶浓缩物(原料)</th>
<th>主要组分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPLC/wt.-%</td>
<td>相对百分比/%</td>
</tr>
<tr>
<td>没食子酸</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.50</td>
<td>0.61</td>
</tr>
<tr>
<td>咖啡因</td>
<td>9.29</td>
<td>11.31</td>
</tr>
<tr>
<td>EGCG</td>
<td>42.23</td>
<td>51.41</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>4.24</td>
<td>5.17</td>
</tr>
<tr>
<td>GCG</td>
<td>8.09</td>
<td>9.85</td>
</tr>
<tr>
<td>ECG</td>
<td>17.70</td>
<td>21.55</td>
</tr>
<tr>
<td>总共</td>
<td>82.15</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 5

将 450 ml 平均粒径为 0.3–1.2 mm 的 Amberlite®XAD-7 填充到由玻璃制成的、内直径为 2.4 cm 且长 100 cm 的实验室用色谱柱中。给该柱装上加热夹套，并在底部装上玻璃烧结玻璃料 P3。在使用前，将树脂充分洗涤，并用水/乙醇（体积比为 9:1）混合物平衡。

把购自贵州海洋生物制品公司的 20 g 浓缩儿茶素粉末“绿茶提取物，最少含有 95％多元酚”（原料）溶于 20 ml 水/乙醇（体积比为 9:1）混合物。然后将 14 g 该溶液（相当于 2.91 g EGCG）加载到该柱顶部。在 60℃、0.5–1 巴压力下用水/乙醇（体积比为 9:1）混合物以 16.9 毫升/分钟的恒定流速洗脱 EGCG。在使用前，将洗脱液脱气并保持在氮气气氛下。2.48 l 的起始洗脱液（前级分）之后，将流速变为 23.6 毫升/分钟，并收集含有浓度为 0.470 g/l 的 EGCG 的 4.95 l 主要洗脱
液。相对于其它主要儿茶素和咖啡因而言，通过 HPLC 测定 EGCG 在主要洗脱液中的纯度为 86.22%（见表 8）。基于 EGCG 的产率为 79.8%。在实验期间，根据所采用的流速，系统的压力在 0.5–1 巴之间变化。

为了再生树脂，通过用 1.35L 水/乙醇（体积比为 4:6）的混合物以 22.5 毫升/分钟的流速洗脱，把剩余儿茶素解吸。得到的这种级分还可用于解吸的儿茶素的进一步纯化或分离。表 8 比较了在洗脱液和原料中的各茶叶组分的浓度，由此表明了通过 EGCG 相对百分比表示的分离效果。原料和主要级分中各茶叶组分的浓度是通过使用 UV 吸收的 HPLC 测定的，并以重量%或 ppm 表示。

表 8：在 Amberlite XAD-7 上的分离，60℃，溶剂体系：水/乙醇

<table>
<thead>
<tr>
<th>化合物</th>
<th>茶叶浓缩物(原料)</th>
<th>主要级分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>实施例 5</td>
<td>实施例 5</td>
</tr>
<tr>
<td></td>
<td>HPLC/wt.-%</td>
<td>相对百分比/%</td>
</tr>
<tr>
<td>没食子酸</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.50</td>
<td>0.62</td>
</tr>
<tr>
<td>咖啡因</td>
<td>9.17</td>
<td>11.47</td>
</tr>
<tr>
<td>EGCG</td>
<td>41.16</td>
<td>51.46</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>4.16</td>
<td>5.20</td>
</tr>
<tr>
<td>GCG</td>
<td>7.75</td>
<td>9.69</td>
</tr>
<tr>
<td>ECG</td>
<td>17.16</td>
<td>21.46</td>
</tr>
<tr>
<td>总计</td>
<td>79.99</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 6

通过泵送水/乙醇（体积比为 9:1）混合物流过树脂，使在实施例 5 所述实验室用柱中的再生树脂平衡。

把购自贵州海音生物制品公司的 20 g 浓缩儿茶素粉末“绿茶提取物，最少含有 95% 多酚”（原料）溶于 20 ml 水/乙醇（体积比为 9:1）混合物。然后将 14 g 该溶液（相当于 3.04 g EGCG）加载到该柱顶部。在 40℃柱温、1–2 巴压力下用水/乙醇（体积比为 9:1）混合物以 22.5
毫升/分钟的恒定流速洗脱 EGCG。在使用前，将洗脱液脱气并保持在氮气氛下。3.60 1 的起始洗脱液（前分级）之后，将流速变为 26.3 毫升/分钟，并收集 4.73 1 主要洗脱液。EGCG 在主要洗脱液中的浓度为 0.278 g/l。相对于其它主要儿茶素和咖啡因而言，通过 HPLC 测定的表椈儿茶素没食子酸酯在主要洗脱液中的纯度为 93.2%。基于 EGCG 而计的产率为 42.8%。在实验期间，根据所采用的流速，系统的压力在 1－2 巴之间变化。

为了再生树脂，通过在 40℃下用水/乙醇（体积比为 4:6）混合物以 26.3 毫升/分钟的流速洗脱，将剩余儿茶素解吸。这种级分还可用于解吸的儿茶素的进一步纯化或分离。表 9 比较了在洗脱液和原料中的各茶叶组分的浓度，由此表明了通过 EGCG 相对百分比表示的分离效果。原料和主要级分中各茶叶组分的浓度是通过使用 UV 吸收的 HPLC 测定的，并以重量％或 ppm 表示。

表 9：在 Amberlite XAD-7 上的分离，40℃，溶剂体系：水/乙醇

<table>
<thead>
<tr>
<th>化合物</th>
<th>茶叶浓缩物(原料)</th>
<th>主要级分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>实施例 6</td>
<td>实施例 6</td>
</tr>
<tr>
<td>共计</td>
<td>83.68</td>
<td>100.00</td>
</tr>
<tr>
<td>EGCG</td>
<td>43.01</td>
<td>51.40</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>4.34</td>
<td>5.18</td>
</tr>
<tr>
<td>GCG</td>
<td>8.23</td>
<td>9.83</td>
</tr>
<tr>
<td>ECG</td>
<td>18.03</td>
<td>21.54</td>
</tr>
<tr>
<td>没食子酸 酸酯</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.51</td>
<td>0.61</td>
</tr>
<tr>
<td>咖啡因</td>
<td>9.48</td>
<td>11.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

实施例 7

用水/异丙醇（体积比为 9:1）混合物平衡实施例 6 中的再生树脂。

把购自贵州海音生物制品公司的 20 g 浓缩儿茶素粉末“绿茶提取物，最少含有 95％多酚”（原料）溶于 20 ml 水/异丙醇（体积比为
9:1）混合物。然后将 14 g 该溶液（相当于 3.21 g EGCG）加载到该柱顶部，在 60°C柱温用水/异丙醇（体积比为 9:1）混合物以 18 毫升/分钟的恒定流速洗脱。在使用前，将洗脱液脱气并保持在氮气氛围下。1.35 1 的起始洗脱液（前级分）之后，将流速变为 16.5 毫升/分钟，并收集 2.03 1 主要洗脱液。EGCG 在主要洗脱液中的浓度为 0.998 g/l。相对于其它主要儿茶素和咖啡因而言，通过 HPLC 测定的表棓儿茶素没食子酸盐在该主要洗脱液中的纯度为 85.7%。基于 EGCG 而计的产率为 62.8%。在实验期间，根据所采用的流速，系统的压力在 1-2 巴之间变化。

为了再生树脂，通过在 40°C 用水/异丙醇（体积比为 4:6）混合物以 16.5 毫升/分钟的流速洗脱，把剩余儿茶素解吸。这种级分还可用于解吸的儿茶素的进一步纯化或分离。表 10 比较了在洗脱液和原料中的各茶叶组分的浓度，由此表明了通过 EGCG 相对百分比表示的分离效果。原料和主要级分中各茶叶组分的浓度是通过使用 UV 吸收的 HPLC 测定的，并以重量%或 ppm 表示。

表 10：在 Amberlite XAD-7 上的分离，60°C,溶剂体系：水/异丙醇

<table>
<thead>
<tr>
<th>化合物</th>
<th>茶叶浓缩物（原料）</th>
<th>主要级分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPLC/wt.-%</td>
<td>相对百分比/%</td>
</tr>
<tr>
<td>没食子酸</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.38</td>
<td>0.44</td>
</tr>
<tr>
<td>咖啡因</td>
<td>9.48</td>
<td>10.82</td>
</tr>
<tr>
<td>EGCG</td>
<td>45.42</td>
<td>51.83</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>4.38</td>
<td>5.00</td>
</tr>
<tr>
<td>GCG</td>
<td>8.80</td>
<td>10.04</td>
</tr>
<tr>
<td>ECG</td>
<td>19.12</td>
<td>21.81</td>
</tr>
<tr>
<td>总计</td>
<td>87.63</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 8

用水/异丙醇（体积比为 9:1）混合物平衡实施例 7 中的再生树脂。
把购自贵州海音生物制品公司的 20 g 浓缩儿茶素粉末 "绿茶提取物" (原料) 溶于 20 ml 水/异丙醇 (体积比为 9:1) 混合物。然后将 14 g 该溶液 (相当于 3.10 g EGCG) 加载到该柱顶部。在 40℃柱温用水/异丙醇 (体积比为 9:1) 混合物以 16.9 毫升/分钟的恒定流速洗脱 EGCG。在使用前，将洗脱液脱气并保持在氮气氛下。2.48 l 的洗脱液 (前级分) 之后，将流速变为 23.66 毫升/分钟，并收集 4.95 l 主要洗脱液。EGCG 在主要洗脱液中的浓度为 0.370 g/l。相对于其它主要儿茶素和咖啡因而言，通过 HPLC 测定的 EGCG 在该主要洗脱液中的纯度为 86.6%。基于 EGCG 而计的产率为 59.2 %。在实验期间，根据所采用的流速，系统的压力在 1 - 2 巴之间变化。

为了再生树脂，通过在 40℃ 用水/异丙醇 (体积比为 4:6) 混合物以 16.5 毫升/分钟的流速洗脱，把剩余儿茶素解吸。这种分级还可用于解吸的儿茶素的进一步纯化或分离。

表 11 比较了在洗脱液和原料中的各茶叶组分的浓度，由此表明了通过 EGCG 相对百分比表示的分离效果。原料和主要级分中各茶叶组分的浓度是通过使用 UV 吸收的 HPLC 测定的，并以重量% 或 ppm 表示。

表 11: 在 Amberlite XAD-7 上的分离，40℃,溶剂体系: 水/异丙醇

<table>
<thead>
<tr>
<th>化合物</th>
<th>茶叶浓缩物 (原料)</th>
<th>主要级分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>实施例 8</td>
<td>实施例 8</td>
</tr>
<tr>
<td></td>
<td>HPLC/wt.-%</td>
<td>相对百分比/%</td>
</tr>
<tr>
<td>汽食子酸</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.49</td>
<td>0.58</td>
</tr>
<tr>
<td>咖啡因</td>
<td>9.21</td>
<td>10.85</td>
</tr>
<tr>
<td>EGCG</td>
<td>43.74</td>
<td>51.52</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>4.23</td>
<td>4.99</td>
</tr>
<tr>
<td>GCG</td>
<td>8.50</td>
<td>10.02</td>
</tr>
<tr>
<td>ECG</td>
<td>18.52</td>
<td>21.82</td>
</tr>
<tr>
<td>总共</td>
<td>84.91</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 9: 使用有机溶剂通过 Polyamide 11 分离 EGCG
使用含有如表 12 所示量的儿茶素和咖啡因的市售绿茶提取物（“绿茶提取物，最少含有 95% 多酚”），批号#960328，贵州海普生物制品公司，贵阳，中国出产）作为原料。通过使用 UV 吸收的 HPLC 来测定各茶叶组分的浓度。

表 12：原料中各茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>茶叶提取物 HPLC/wt.%</th>
<th>茶叶提取物相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>EGC</td>
<td>2.02</td>
<td>2.99</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.78</td>
<td>1.15</td>
</tr>
<tr>
<td>咖啡因</td>
<td>8.48</td>
<td>12.54</td>
</tr>
<tr>
<td>EGCG</td>
<td>36.87</td>
<td>54.52</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>4.48</td>
<td>6.62</td>
</tr>
<tr>
<td>GCG</td>
<td>4.77</td>
<td>7.05</td>
</tr>
<tr>
<td>ECG</td>
<td>10.22</td>
<td>15.11</td>
</tr>
<tr>
<td>总共</td>
<td>67.63</td>
<td>100.00</td>
</tr>
</tbody>
</table>

将 250 g 粒径为 5-40 微米的市售 Polyamide 11（商品目录号（Cat. No.）：1.07435.0100，Merck，Darmstadt，德国）悬浮在 300 ml 乙酸乙酯中，并转移到内直径为 5 cm、长 36 cm 的柱中。给该柱装配上加热夹套，并在 40°C 恒温。将特征如表 12 所述的含有 1.11 g 纯 EGCG 的 3 g 上述绿茶提取物溶于 153 ml 乙酸乙酯，并加载到该柱顶部。在 0.3 巴压力下用乙酸乙酯/乙醇梯度洗脱液（500 ml 乙酸乙酯，1000 ml 乙酸乙酯/乙醇（体积比为 8.5:1.5），1000 ml 乙酸乙酯/乙醇（体积比为 7:3），2000 ml 乙酸乙酯/乙醇（体积比为 1:1））进行洗脱，获得了 550 ml 主要组分，将溶剂蒸发后获得了含有 0.87 g EGCG 作为主要儿茶素组分的 1.12 g 固体。EGCG 在主要洗脱液中的浓度为 0.186%。基于茶叶提取物原料中存在的 1.106 g EGCG 计算的 EGCG 的分离产率为 76%。

为了再生树脂，用 500 ml 乙醇进行洗脱将剩余儿茶素解吸。在下
一分钟前，用 500 ml 乙酸乙酯平衡该柱。

表 13 说明了分离效果。主要洗脱液中各茶叶组分的浓度是通过使用 UV 吸收的 HPLC 来测定的。

表 13：主要洗脱液残余物（溶剂蒸发后）中各茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>主要级分的残余物 HPLC/wt. %</th>
<th>主要级分的残余物相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EGC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>咖啡因</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EGCG</td>
<td>77.4</td>
<td>96.50</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>GCG</td>
<td>0.74</td>
<td>0.92</td>
</tr>
<tr>
<td>ECG</td>
<td>2.07</td>
<td>2.58</td>
</tr>
<tr>
<td>总共</td>
<td>80.21</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 10：使用含水溶剂混合物通过 Polyamide 11 分离 EGCG

使用含有如表 14 所示量的儿茶素和咖啡因的绿茶提取物水溶液作为原料。通过使用 UV 吸收的 HPLC 来测定各茶叶组分的浓度，并以重量%表示。
表 14: 用作原料的茶叶提取物溶液的残余物（将溶剂蒸发后）中各茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>茶叶提取物 HPLC/wt. %</th>
<th>茶叶提取物相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>1.36</td>
<td>4.77</td>
</tr>
<tr>
<td>EGC</td>
<td>3.61</td>
<td>12.65</td>
</tr>
<tr>
<td>儿茶素</td>
<td>1.45</td>
<td>5.08</td>
</tr>
<tr>
<td>咖啡因</td>
<td>6.89</td>
<td>24.14</td>
</tr>
<tr>
<td>EGCG</td>
<td>10.14</td>
<td>35.53</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>1.59</td>
<td>5.57</td>
</tr>
<tr>
<td>GCG</td>
<td>0.99</td>
<td>3.47</td>
</tr>
<tr>
<td>ECG</td>
<td>2.51</td>
<td>8.79</td>
</tr>
<tr>
<td>总共</td>
<td>28.54</td>
<td>100.00</td>
</tr>
</tbody>
</table>

将25 g粒径为5-40微米的Polyamide 11（商品目录号（Cat. No.）1.07435.0100，Merck，Darmstadt，德国）悬浮在100 ml水中，并将pH调节至6.5。将该悬浮液转移到内直径为3 cm、长8 cm的柱中。把含有0.078 g纯EGCG的10 ml上述绿茶提取物（表14）加载到该柱顶部。用水/乙醇梯度洗脱液（500 ml水，600 ml水/乙醇（体积比为7:3），350 ml水/乙醇（体积比为6:4），500 ml水/乙醇（体积比为1:1））以5毫升/分钟的流速进行洗脱，获得了110 ml（0.072g）含有0.046 g EGCG的主要级分。EGCG在主要洗脱液中的浓度为0.06%。基于茶叶提取物中的0.078 g EGCG计算的EGCG的分离产率为59%。

为了再生树脂，用500 ml乙醇进行洗脱将剩余儿茶素解吸。在下一分离前，用500 ml水平衡该柱。

表15说明了分离效果。主要洗脱液中各茶叶组分的浓度是通过使用UV吸收的HPLC来测定的。
表 15: 主要级分的残余物（将溶剂蒸发后）中各茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>主要级分残余物 HPLC/wt.%</th>
<th>主要级分残余物相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>1.10</td>
<td>1.59</td>
</tr>
<tr>
<td>EGC</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>儿茶素</td>
<td>1.29</td>
<td>1.86</td>
</tr>
<tr>
<td>咖啡因</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>EGCG</td>
<td>63.53</td>
<td>91.70</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GCG</td>
<td>0.16</td>
<td>0.23</td>
</tr>
<tr>
<td>ECG</td>
<td>3.20</td>
<td>4.62</td>
</tr>
<tr>
<td>总共</td>
<td>69.28</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 11: 用 Amberlite XAD-7 分离 EGCG，溶剂体系: 水/乙醇

将 416 ml 平均粒径为 0.3-1.2 mm 的 Amberlite XAD-7 填充到由玻璃制成的、内直径为 2.5 cm 且长为 100 cm 的实验室用色谱柱中（ECO 25/999 M3V-K，来自 Stagroma AG，Wallisellen，Switzerland）。将该色谱柱装配上加热套，并在 60℃恒温。洗涤树脂，并用水/乙醇混合物（体积比为 9:1）平衡。

使用含有如表 16 所示量的儿茶素和咖啡因的市售绿茶提取物（"茶多酚 TP-80"，浙江中科植物技术有限公司（Zhejiang Zhongke Plant Technical Co. Ltd.），杭州，浙江，中国生产）作为原料。

通过使用 UV 吸收的 HPLC 来测定各茶叶组分的浓度，并以重量%表示。
表 16：原料中各茶叶组分的浓度

<table>
<thead>
<tr>
<th>化合物</th>
<th>实施例 13 的茶叶提取物 HPLC/wt.%</th>
<th>实施例 13 的茶叶提取物相对百分比/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>没食子酸</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>EGC</td>
<td>8.6</td>
<td>10.1</td>
</tr>
<tr>
<td>儿茶素</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>咖啡因</td>
<td>6.2</td>
<td>7.3</td>
</tr>
<tr>
<td>EGCG</td>
<td>40.3</td>
<td>47.4</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>10.4</td>
<td>12.2</td>
</tr>
<tr>
<td>GCG</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>ECG</td>
<td>16.6</td>
<td>19.5</td>
</tr>
<tr>
<td>总共</td>
<td>85.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

将 11.2 g 如表 16 所示的含有 4.5 g 纯 EGCG 的绿茶提取物原料溶于 112.5 ml 去离子水中，并加载到色谱柱顶部。在 60°C 柱温下，用水/乙醇 (体积比为 9:1) 混合物以 0.6 升/小时的恒定流速将儿茶素洗脱。在使用前，将洗脱液脱气并保持在氮气气氛下。

1.2 1 的起始洗脱液之后，将洗脱液组分变为体积比为 8:2 的水/乙醇。用总共 1.5 l 洗脱液洗脱后，获得了含有 2.115 g EGCG 的 900 ml 主要级分。EGCG 在主要级分中的浓度为 0.245%。从茶叶提取物中 4.5gEGCG 开始分离 EGCG 的产率为 47%。在实验期间，系统的压力在 0.8 - 1.5 巴之间变化。

为了再生树脂，用体积比为 4:6 的水/乙醇混合物继续进行洗脱，由此乙醇将剩余儿茶素吸附。在下分离前，将该色谱柱用体积比为 9:1 的水/乙醇平衡。

表 17 说明了分离效果。主要级分的残留物（将溶剂蒸发后）中各茶叶组分的浓度是通过使用 UV 吸收的 HPLC 来测定的，并以重量%表示。
表 17：主要级分的残余物（将溶剂蒸发后）中各茶叶组分的浓度

| 化合物 | 实施例 13 的主要级分的残余物 | 实施例 13 的主要级分的残余物
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPLC/wt.%</td>
<td>相对百分比/%</td>
</tr>
<tr>
<td>没食子酸</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>EGC</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>儿茶素</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>咖啡因</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>EGCG</td>
<td>81.4</td>
<td>94.5</td>
</tr>
<tr>
<td>表儿茶素</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>GCG</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>ECG</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>总共</td>
<td>86.1</td>
<td>100.0</td>
</tr>
</tbody>
</table>