wo 2013/022582 A2 || N0F V0RO 0 A0 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/022582 A2

14 February 2013 (14.02.2013) WIPO | PCT
(51) International Patent Classification: AITHAL, Jaivir K.; ¢/o Microsoft Corporation, LCA - In-
GO6F 15/16 (2006.01) ternational Patents, One Microsoft Way, Redmond, Wash-
(21) International Application Number: inglon 98052-6399 (US).
PCT/US2012/047261 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Aéj, BA, BB, BG, B}{, BR. BW, BY, BZ.
19 July 2012 (19.07.2012) CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/207,014 10 August 2011 (10.08.2011) Us OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(71) Applicant (for all designated States except US): MI- TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
CROSOFT CORPORATION [US/US]; One Microsoft . L
Way, Redmond, Washington 98052-6399 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: CHRISTIANSEN, Neal R.; ¢/0 Microsoft Cor- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). GREEN,
Dustin L.; ¢/o Microsott Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). PINKERTON, James T.; c/o Microsott
Corporation, LCA - International Patents, One Microsott
Way, Redmond, Washington 98052-6399 (US). NAGAR,
Rajeev; c¢/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). MATTHEW, Bryan Stephen; c/o0 Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(34

Title: TOKEN BASED FILE OPERATIONS

FIG. 1

(57) Abstract: Described are embodiments which allow token-based file operations. The client may request a special offload file op -
eration that is formatted according to a file access protocol. The file operation may be an oftload read operation or an offload write
operation. In an offload read operation, the client requests that data be logically read from a stored file, or a portion thereof. In re-
sponse, the file server provides a response that includes a token that represents the logically read data. In some embodiments, the file
server may return a response with a token that represents less than all of the requested data if for some reason it cannot provide a
token that represents all of the data. The token can then be used by the client in a subsequent offload write operation. In embodi -
ments, the tokens represent immutable data that can be safely and securely used across servers and clients.

WO 2013/022582 A2 |00V VAT 0NN AU A

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
1

TOKEN BASED FILE OPERATIONS

Background
[0001] In traditional ways of copying large amounts of data, data is read into local RAM

from a source file, and then the same bytes are written from RAM back to a destination
file. This process requires the data to travel a route that includes local RAM, even though
completion of the copy does not inherently require the data to ever be in local RAM.
When there is a trusted faster route that the data could take between ultimate source and
ultimate destination, the detour through local RAM is unnecessary. This problem is more
acute when the difference in speed is large between the trusted faster route vs. the route
via local RAM. Currently, some file servers, such as Server Message Block (SMB) file
servers, allow a client to copy ranges of a source file to ranges of a destination file.
However, there are a number of limitations such as limits on copying data among files
open on the same file server. Also, SMB file servers only allow the client to issue a single
command which specifies both the source and destination ranges. Often client code
structure will be set up to use read and write separately to achieve a copy, which is not
consistent with the current way SMB file servers provide for copying ranges of data.
[0002] It is with respect to these and other considerations that embodiments have been
made. Also, although relatively specific problems have been discussed, it should be
understood that the embodiments should not be limited to solving the specific problems
identified in the background.

Summary
[0003] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detail Description section. This summary 1s
not intended to identify key features or essential features of the claimed subject matter, nor
is it intended to be used as an aid in determining the scope of the claimed subject matter.
[0004] Described are embodiments which allow token-based file operations. The
embodiments provide for a client to establish a session with a file server. The session may
be established using any file access protocol, one example including the Server Message
Block (SMB) protocol. After the session is established, the client may request a special
offload file operation that is formatted according to the file access protocol. The file
operation may be a read operation or a write operation. In an offload read operation, the
client requests that file data be read from a file stored in a file storage system accessible to

the file server. In return, the file server will provide a response that includes a token that

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
2

represents the file data. In some embodiments, the file server may return a response with a
token that represents less than all of the file data if for some reason it cannot provide a
token that represents all of the file data. The token can then be used by the client in a
subsequent offload write operation, or other related operations (e.g., subsequently
obtaining the data represented by the token should that become necessary). In
embodiments, the tokens represent immutable data that can be safely and securely used
across servers and clients.

[0005] Embodiments may be implemented as a computer process, a computing system
or as an article of manufacture such as a computer program product or computer readable
media. The computer program product may be a computer storage media readable by a
computer system and encoding a computer program of instructions for executing a
computer process. The computer program product may also be a propagated signal on a
carrier readable by a computing system and encoding a computer program of instructions
for executing a computer process.

Brief Description of the Drawings

[0006] Non-limiting and non-exhaustive embodiments are described with reference to
the following figures.

[0007] FIG. I illustrates a system that may be used to implement embodiments.

[0008] FIG. 2 illustrates a block diagram of clients and servers engaged in token based
file operations using a file access protocol consistent with some embodiments.

[0009] FIG. 3 illustrates an operational flow for processing offload file operations
consistent with some embodiments.

[0010] FIG. 4 illustrates an operational flow for processing an offload read request
consistent with some embodiments.

[0011] FIG. 5 illustrates an operational flow for processing an offload write request
consistent with some embodiments.

[0012] FIG. 6 illustrates an operational flow for requesting offload file operations
consistent with some embodiments.

[0013] FIG. 7 illustrates a block diagram of a computing environment suitable for
implementing embodiments.

Detailed Description

[0014] Various embodiments are described more fully below with reference to the
accompanying drawings, which form a part hereof, and which show specific exemplary

embodiments. However, embodiments may be implemented in many different forms and

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
3

should not be construed as limited to the embodiments sct forth herein; rather, these
embodiments are provided so that this disclosure will be thorough and complete, and will
fully convey the scope of the embodiments to those skilled in the art. Embodiments may
be practiced as methods, systems or devices. Accordingly, embodiments may take the
form of a hardware implementation, an entirely software implementation or an
implementation combining software and hardware aspects. The following detailed
description is, therefore, not to be taken in a limiting sense.

[0015] FIG. I illustrates a system 100 that may be used to implement some
embodiments. System 100 includes clients 102 and 104 and a server 106. Clients 102 and
104 communicate with server 106 through network 108. Server 106 stores information
that is accessed by applications on clients 102 and 104. Clients 102 and 104 establish
sessions with server 106 to access the information on server 106. Although in FIG. 1 only
clients 102 and 104 are shown as communicating with server 106, in other embodiments
there may be more than two clients accessing information from server 106.

[0016] In embodiments, applications on clients 102 and 104 request file information
from a file system, transparent to the application. The file information is retrieved from a
file system on server 106. In an embodiment, such file system on server 106 is a remote
file system. In another embodiment, the file system on server 106 is a distributed file
system. Numerous types of file systems may be used in accordance with embodiments
disclosed herein without departing from the spirit and scope of the present disclosure.
Further, although not shown, in some embodiments instead of a single server 106, the
server may be one of a number of servers that is part of a server cluster, for example. In
other embodiments, the server may be one of a number of servers that is not part of a
server cluster. The plurality of file servers in such embodiments provides redundancy and
high availability of information, e.g., file information, to clients 102 and 104.

[0017] In one embodiment, clients 102 and 104 may send a number of file operations to
be performed on files stored in the remote file system on server 106. The clients 102 and
104 use a file access protocol to format requests for file operations to be performed on the
files. The file access protocol may be any appropriate protocol such as a version of the
Network File System (NFS), or the Server Message Block (SMB) protocol. In accordance
with some embodiments, the clients may, in addition to sending regular read and write file
operations, request offload read and offload write operations, which are token-based

operations. As described in greater detail below, the offload file operations allow large

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
4

amounts of data to be moved by clients 102 and 104 without the need to transfer the actual
data across the network to local RAM on either of clients 102 or 104.

[0018] To illustrate one embodiment, client 102 may send a request to establish a
session with server 106. For example, client 102 may establish a session with server 106
to access a file system stored on server 106 using a version of the Server Message Block
(SMB) protocol. The establishment of a session may involve the exchange of a number of
negotiate requests and responses transmitted between client 102 and server 106. In
versions of the SMB protocol, there are specifically defined negotiate packets that are used
to negotiate the exact version of the protocol that will be used during the session, as well
as advertise the capabilities of both the client, e.g., 102, and server, e.g., 106, to each
other. In one embodiment, the negotiate packets may include an indication that the server
106 can handle token-based file operations, namely offload read and offload write
commands. This allows the client to know that it may request the offload file operations
from the server if desired.

[0019] Continuing with the example above, after the session is established, client 102
can send a message formatted according to the SMB protocol to server 106 to open a file
in the file system on server 106. The server can respond with a handle for the file open.
Client 102 may then request an offload read operation formatted according to the SMB
protocol, requesting file data from the file. In an embodiment, the client requests data
from a portion of the file in the offload read operation. The offload read operation request
is a token based read operation.

[0020] In response to the request from client 102, the server 106 sends a response
formatted according to the SMB protocol with a token that represents the file data
requested by client 102. In some embodiments, server 106 may be responsible for
generating the token and ensuring that the token consistently represents the file data across
any requests from other clients, such as client 104 that may request the same file data. In
other embodiments, the file server may pass through any requests from clients to an
underlying file storage system. In these embodiments, the underlying file storage system
is responsible for generating the token that represents the file data requested by client 102.
In either embodiment, server 106 will send a response to client 102 with a token. In
generating tokens, embodiments provide that a token may be created even where ranges of
the source file used to create the token are not contiguous, for example. In such
embodiments, the data from such source ranges is logically concatenated into a single

logical range of data represented by the token. In some embodiments, implementations

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
5

may internally associate a token with specific source ranges, in which such source ranges
may not be contiguous with each other.

[0021] The token represents immutable data, namely the file data requested by the client
102. Accordingly, client 102 may perform other file operations using the token returned
by server 106. For example, at a later point in time, client 102 may use the token to write
data into another file. In this example, client 102 may request an offload write operation
formatted according to the SMB protocol, in which the offload write operation is also a
token based file operation. The offload write operation may include the token previously
provided to client 102. The offload write operation may request that the file data
represented by the token be written into another file on server 106. In response to
receiving the request, server 106 will, in an embodiment, then process the request by
writing the file data represented by the token into the other file on server 106. In another
embodiment, in response to receiving the request, server 106 will first validate the
received token, and, if the token is valid, will then write the file data represented by the
token into the other file on server 106. As noted above, in those embodiments in which
the tokens are generated by the underlying file storage system or lower layer(s), server 106
will merely pass the offload write request through to the underlying file storage system,
which will then process the request and write the file data into the other file. Server 106
will then send a response to client 102 indicating whether the offload write was successful.
While “file” data is referred to, other embodiments provide for the token to represent any
type of data. For example, embodiments provide for a token to have been obtained from
any storage container, such as a file, volume, disk, volume snapshot, disk snapshot, blob
store, etc. The term “file data” is used herein for purposes of illustration and is not
intended to be limiting. Further, while the embodiment discussed above provides for the
offload write operation to request that the file data represented by the token be written into
another file on server 106, another embodiment provides for the offload write operation to
request that a portion of the file data represented by the token be written into another file
on server 106.

[0022] In addition, while the embodiments discussed above provide for the offload write
operation to include the token previously provided to client 102, other embodiments
provide for client 102 to use a well-known token as the token with the offload write
operation. For example, a well-known token such as the zero token may be used to write

data (such as zeros) without any previous corresponding offload read.

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
6

[0023] In some embodiments, file server 106 may not be able to create a token for all of
the file data requested by the client. This may occur, for example, if another client such as
client 104 has a lock on some portion of the range of file data requested by the client 102.
In these embodiments, server 106 may send a truncated response. That is, a response that
includes a token that represents only a portion of the file data requested by client 102. The
response, in embodiments, thus indicates that the token represents less than all of the first
data requested in the offload read request. In some embodiments, this token may represent
a discontinuous data range. However, in other embodiments, the token may represent a
continuous range of data, however, it may be less than the file data requested by client 102
in the offload read request. In these embodiments, the server response will include an
indication of the portion of the file data that is represented by the token sent in the
truncated response.

[0024] While some embodiments provide for a truncated offload read response,
embodiments of the present disclosure also provide for a truncated offload write. As
discussed above, an offload write operation may request that the data represented by the
associated token be written into another file on the server, e.g., server 106. In response to
receiving the request, server 106 will then process the request by writing the file data
represented by the token into the other file on server 106. In embodiments, server 106 is
not able to write all of the data represented by the token into the other file. As a result, the
offload write may be truncated in embodiments, in which “LengthWritten,” for example,
18 less than the requested length to write. For example, size restrictions may limit the
ability to write all of the data represented by the token into the other file. In another
embodiment, a lock on a portion of the file to be written to may prevent the portion of the
file from being written to. Processing errors, or other types of errors, may also cause
portions of the data represented by the token to not be written into the other file. Further,
the token may be partially corrupted or partially invalid, in which server 106 is not able to
successfully write the corrupted/invalid portion of the data into the other file. Other
reasons may prevent all of the data represented by the token from being written into the
other file in accordance with embodiments disclosed herein without departing from the
spirit and scope of the present disclosure. In embodiments involving a truncated offload
write, a truncated offload write response may be sent from server 106 to client 102, for
example, indicating that a portion of the data was not written into the other file. Such

indication may occur, in embodiments, through the use of a flag or other indicator, for

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
7

example. Further, in embodiments, the truncated offload write response indicates how
much data was actually written.

[0025] The foregoing description is merely one example of how the embodiment shown
in FIG. 1 may operate. As described in greater detail below, embodiments may involve
different steps or operations. These may be implemented using any appropriate software
or hardware component.

[0026] Turning now to FIG. 2, it shows a block diagram of a software environment 200
with client 202, client 204, a server 206, and a server 208. Also shown is file storage 210
where the file information is stored.

[0027] Asis shown in FIG. 2, client 202 and client 204 each include an application
which may request file information. The application may be, for example, a word
processing application, a spreadsheet application, a browser application or any other
application which requests access to files. In the embodiment shown in FIG. 2, the files
are located in a file system stored within file storage 210. While FIG. 2 shows file storage
210 providing shared storage capabilities for servers 206 and 208, according to an
embodiment disclosed herein, other embodiments have other storage means. For example,
server 206 and server 208 may each have their own storage means, whether detached or
attached according to embodiments. In yet further embodiments, server 206 and server
208 may each have their own storage means and have shared storage capabilities through
the use of file storage 210. Numerous types of storage may be used in accordance with
embodiments disclosed herein without departing from the spirit and scope of the present
disclosure. Client 202 and client 204 each further include a redirector which redirects
requests for files from the applications to a file server, which provides access to the remote
file system. The redirectors communicate with file servers using a file access protocol. In
some embodiments, the file access protocol may be a version of the NFS or SMB protocol.
For purposes of illustration, FIG. 2 will be described assuming that the redirectors in client
202 and client 204 communicate with file servers using a version of the SMB protocol,
such as SMB 2. Embodiments are, however, not limited to the use of an SMB protocol.
[0028] Servers 206 and 208 are shown in FIG. 2 as each including a file server. As
noted above, the file servers may use a version of the SMB protocol to communicate with
the redirectors on client 202 and client 204. Each of servers 206 and 208 also include a
token generator module which generates tokens that represent file data. In addition, file
storage 210 also includes a token generator module to generate tokens that represent file

data.

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
8

[0029] The use of the SMB protocol to establish a session between a client and a server
begins with a redirector, such as the redirector on client 202, sending a negotiate request to
a file server such as server 206. The redirector and file server exchange negotiate packets
to negotiate the version of SMB that will be used for the session. Additionally, during the
negotiation, capabilities may also be exchanged. In one embodiment, server 206 may
include a capability flag in a negotiate response packet sent from the file server to the
client to indicate to the client that the file server supports the use of offload file operations.
In other embodiments, client 202 and server 206 may simply negotiate the version of the
SMB protocol understanding that the version includes support for the use of offload file
operations. In yet other embodiments, a determination that a version of the protocol
supports offload file operations occurs when an offload file operation is attempted. For
example, client 202 may request an offload read (or offload write) operation. If server 206
supports offload file operations, server 206 will proceed with processing the request. If
server 206 does not support offload file operations, server 206 will send a response to
client 202 indicating that the requested offload file operation cannot be performed. For
example, in an embodiment, if server 206 does not support offload file operations, server
206 responds to client 202 with an error message and/or flag indicating such.
[0030] Once the negotiation is completed, the redirector on the client 202 and the file
server 206 establish a session. The client redirector can then send file access requests to
the file server. In one embodiment, the redirector on client 202 requests an open on a file.
The server 206 provides a response with a handle for the open. Client 202 can then
request an offload read operation using the handle. In embodiments, the offload read
operation is formatted according to the SMB protocol. In some embodiments, the offload
read and offload write operations are sent using the SMB protocol connection by
encapsulating the commands within a SMB2 input/output control (IOCTL) request, in the
same manner as other file system control commands (FSCTLs). Below is an example of a
structure that can be used to request an offload read operation in some embodiments.
typedef struct FSCTL OFFLOAD READ INPUT {

ULONG Size;

ULONG Flags;

ULONG TokenTimeToLive; // In milliseconds

ULONG Reserved;

ULONGLONG FileOffset;

ULONGLONG CopyLength;

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
9

+ FSCTL_OFFLOAD_READ INPUT, *PFSCTL_OFFLOAD READ INPUT;
[0031] As indicated above, the structure used by the client to request an offload read
operation may include a number of fields. In embodiments, it may include a time to live
suggestion for the server. In other words, the field may indicate a suggested lifetime for
the token that the server will send. It also includes the file offset and copy length of the
file data requested by the client.

[0032] Inresponse to the request, the server 206 will send back a response. Below is an
example of a structure that can be used to respond to an offload read operation.

typedef struct FSCTL_OFFLOAD READ OUTPUT {

ULONG Size;

ULONG Flags;

ULONGLONG TransferLength;
UCHAR Token[512];

}FSCTL_OFFLOAD READ OUTPUT, *PFSCTL_OFFLOAD READ OUTPUT;
[0033] As shown above, the response will in embodiments include the token that
represents the file data requested by the client 202. The token will also include in
embodiments the length of the file data represented by the token.

[0034] In some embodiments, the server 206 may respond to the offload read request
with a failure or an indication that the read request was processed to a lesser extent.
Below are three flags that can be set by the server in an offload read response to indicate

additional information to the client.

#define OFFLOAD READ FLAG ALL ZERO BEYOND CURRENT RANGE

(D

#define OFFLOAD READ FLAG FILE TOO SMALL (2)

#define OFFLOAD READ FLAG CANNOT OFFLOAD BEYOND CURRENT

RANGE (4)
[0035] The second flag listed above indicates that the request failed because the file was
too small. There may be situations in which the file data payload for a small file is stored
directly in a file record rather than stored in separate clusters. For such files, there is little
efficiency to be gained from a correspondingly small offload read, and so rather than
handling a small offload read to such a file, the source file system can fail the offload read
and the response may include the second flag defined above that indicates that the request
failed because the file data is too small. The first flag defined above indicates that the

remaining data beyond the transfer length indicated by the offload read response includes

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
10

all zeros. Finally, the third flag may be used in those situations in which the server
determines that offload read requests beyond the transfer length indicated by the offload
read response will not succeed. The third flag indicates that the server will be unable to
provide a token for data requested by the client beyond the range indicated by the current
offload read response. Although not shown, the offload read response may also provide
information such as an indication that the returned sub-portion represents non-contiguous
data (instead of just a contiguous byte count from offset 0). The offload read response
may also contain, in embodiments, a hint as to the next subsequent source offset for which
an offload read may succeed. While the three flags provided above include numeric
values for the flags, these numeric values are offered for purposes of illustration. Other
numeric values or values in general may be used according to embodiments without
departing from the spirit and scope of the present disclosure.
[0036] Once the client 202 has received a token, either by a previous offload read
request or by some other means, the client 202 may issue an offload write request to server
206. Below is an example of a structure that may be used in embodiments for a client to
send an offload write request.
typedef struct FSCTL_OFFLOAD WRITE INPUT {
ULONG Size;
ULONG Flags;
ULONGLONG FileOffset;
ULONGLONG CopyLength;
ULONGLONG TransferOffset;
UCHAR Token[512];
tFSCTL_OFFLOAD WRITE INPUT, *PFSCTL_OFFLOAD WRITE INPUT;
[0037] As indicated in the example above, the structure of the offload write includes the
offset of the destination file to copy to, the length of the data to copy, as well as an offset
into the data represented by the token of where to copy from. Also included is the token,
which may have been received from the server or by other means.
[0038] In response to the offload write request, server 206 issues an offload write
response. An example of a structure for use by server 206 in an offload write response is
provided below.
typedef struct FSCTL_OFFLOAD WRITE OUTPUT {
ULONG Size;
ULONG Flags;

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
11

ULONGLONG LengthWritten;

tFSCTL_OFFLOAD_ WRITE OUTPUT,

*PFSCTL_OFFLOAD_ WRITE OUTPUT;
[0039] In some embodiments, the server 206 may respond to the offload write request
with a failure. For example, an offload write operation may fail where the requested file is
a small file, e.g., below a defined size threshold. Below is an example of a flag that can be
set by the server in an offload write response to indicate that the request was failed
because the file information was too small. As previously noted, small files may store
their data differently than larger files, and it can be more appropriate to fail an offload
request issued to such a small file since there is very little efficiency gained from using a
token instead of the actual file data. In another embodiment, an offload write operation
may fail where the link between the recipient of the offload write and the data source is
slow. In such an embodiment, the file system may perform a link status check in
determining whether to respond to an offload write operation. In such example cases, the
server 206 may fail the offload write request. In yet other embodiments, the server 206
may fail the request due to an invalid token. For example, a token may be invalid where it
is expired. Where the server fails the request due to an invalid/expired token, the server
206 may respond to the offload write request with a failure, in which a flag (as shown
below as an example flag) may be set by the server in the offload write response to
indicate that the request was failed because the token was invalid or expired, for example.
This type of flag may act as a hint to the client that a simple retry of the write operation
will not work and that it must re-read to generate a new token (i.e., the failure was not due
to a temporary slowness of the link but, rather, because the token was invalid, for
example). In an alternative embodiment, a specific status may be returned to indicate that
the given token is no longer valid. Thus, embodiments provide for a return status to be
used to indicate that the token is no longer valid, while other embodiments provide for a
flag to be used to provide such indication. Yet other embodiments provide for both a flag
and a return status to be used to provide such indication. For example, on truncations due
to token expiration, for example, instead of an error code, an operation may return success
with the truncated value to the caller of the FSCTL along with the flag, e.g.,
OFFLOAD WRITE FLAG TOKEN INVALID, to indicate that there is no use in
retrying the rest of the offload write using the same token(s). Numerous other types of
conditions may lead to offload write failure in accordance with embodiments disclosed

herein without departing from the spirit and scope of the present disclosure.

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
12

#define OFFLOAD_ WRITE FLAG FILE TOO _SMALL (1)

#define OFFLOAD_ WRITE FLAG TOKEN INVALID (2)
[0040] While the flags provided above include numeric values for the flags, these
numeric values are offered for purposes of illustration. Other numeric values or values in
general may be used according to embodiments without departing from the spirit and
scope of the present disclosure.
[0041] Further, some embodiments provide for the offload write to be truncated, as
discussed above, in which LengthWritten, for example, is less than the requested length to
write. In such embodiments, the server responds to the offload write request with a
truncated offload write response, indicating that only a portion of the data requested to be
written was actually written.
[0042] In embodiments, the tokens used in the offload read and write operations are
formatted consistent with a standard. For example, the Small Computer System Interface
(SCSI) standard may provide some definition of token formats that may be used,
according to an embodiment. Numerous types of standards, including high-speed
computer interface specifications and/or standards, among others, may be used in
accordance with embodiments disclosed herein without departing from the spirit and scope
of the present disclosure. The SCSI standard is offered by way of example. The use of a
standard format allows the tokens to be interoperable with other servers using different
data access protocols.
[0043] Server 206 may in embodiments recognize and use well-known token values
specified in an offload write command, even when there was no prior offload read (from
the server or from any source). For example, server 206 may return a well-known token
representing a range containing zeroes. Client 202 will interpret this as indicating that the
underlying ranges of the source file are zero, and that the data associated with the token
are all zeroes. In another embodiment, a zero token may be returned in response to an
offload read request, such as where the file system would return zeros if read normally.
Such a situation may arise where a sparse range of a file is read, for example. In further
embodiments, the server 206 may also accept other well-known tokens such as the
deallocated token.
[0044] In those embodiments in which the token generator on server 206 is used to
generate tokens, the token returned from the offload read request is usable by any client
which requests information from server 206. Thus, client 204 may receive a token from

client 202 and can use that token for requesting offload write operations from server 206.

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
13

In embodiments where tokens are passed between clients, the clients may pass such tokens
via any protocol or transport of their choice. The mode of passing the tokens amongst
clients has no bearing on the tokens themselves. The tokens are therefore usable across
different connections with server 206 which may be established by different clients. In
this manner, the server 206 can service offload read requests and some offload write
requests regardless of whether file storage 210 supports offload read and write operations.
The token provided by the client in an offload write to the server 206 need not have been
obtained from a file to which the client has a currently-open handle, and need not have
been obtained from a file to which the client has access. The client may obtain the token
indirectly via another client which did have access to the file(s) from which the token was
obtained at least at the time at which the token was obtained. A token obtained by the
client via offload read from one share, e.g., file share, via one connection may be
successfully used in an offload write issued by the client to a different share or different
connection.

[0045] In embodiments, the tokens may be usable across a number of servers. That is, a
token may be used on a server even if it did not come from that server originally. In other
words, where a token is generated at server 206, server 208, or file storage 210, such token
can be used on any server that decides to honor the token. For example, in the
embodiment above, the offload read request sent by client 202 may be passed to file
storage 210, which generates the token for the offload read request. If, at a later time,
client 202 connects to server 208 it can use the token previously provided by its
connection to server 206 to perform other operations such as an offload write operation.

In this example, server 208 will pass through any offload write operation to file storage
210, which originally created the token. In this way, tokens can be usable across a number
of servers. This embodiment may be used in situations, for example, in which a server
cluster using shared storage is used to provide file services to clients.

[0046] As may be appreciated, the above description of environment 200 is not intended
to limit the embodiments described herein. FIG. 2 and its description are merely intended
to illustrate implementation of some embodiments. In other embodiments, the offload
operations may involve one or more files and one or more tokens. Thus, embodiments are
not limited to what is shown and described in FIG. 2. For example, the offload read may
provide for reading multiple segments of a single file or multiple files with the offload

read response including a single token or multiple tokens. Similarly, in some

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
14

embodiments, offload write operations may identify one or more tokens associated with
one or more files.

[0047] FIGS. 3, 4, 5, and 6 illustrate operational flows 300 and 400 according to
embodiments. Operational flows 300 and 400 may be performed in any suitable
computing environment. For example, the operational flows may be executed by systems
and environments such as illustrated in FIGS. 1 and 2. Therefore, the description of
operational flows 300 and 400 may refer to at least one of the components of FIGS. 1 and
2. However, any such reference to components of FIGS. 1 and 2 is for descriptive
purposes only, and it is to be understood that the implementations of FIGS. 1 and 2 are
non-limiting environments for operational flows 300 and 400.

[0048] Furthermore, although operational flows 300 and 400 are illustrated and
described sequentially in a particular order, in other embodiments, the operations may be
performed in different orders, multiple times, and/or in parallel. Further, one or more
operations may be omitted or combined in some embodiments.

[0049] In embodiments, flow 300 illustrated in FIG. 3 may be performed, at least in part,
by a file server that is running on a server, e.g., server 206 (FIG. 2). Flow 300 begins at
operation 302 where a request to connect to a file server is received. The request received
at operation 302 is a request to establish a session with the file server in order to access
file information stored on a remote file system accessible through the file server. The
request may be sent by a client, e.g., clients 202 and 204 (FIG. 2). After operation 302,
flow 300 passes to operation 304 where a response is sent indicating that a session has
been established. In some embodiments, the request and response sent at operations 302
and 304 may be part of a number of messages that are exchanged between a client and a
server to negotiate a session. The exchange of messages may include an exchange of
capabilities, including the capability of the file server to service offload file operations.
[0050] Operational flow 300 passes from operation 304 to operation 306 where a second
request is received to open a file. The request is sent by the client in order to access
information within a file. From operation 306, flow passes to operation 308 where a
response is sent to the client granting access to the file. The response may include a file
identifier that is provided by the file server in the response.

[0051] Flow 300 then passes to operation 310, where a request is received for an offload
operation. The offload operation may be an offload read operation which requests file

data which is represented by a token or an offload write operation which includes a token

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
15

representing file data to be written to a destination file. If the operation is an offload read
operation, flow passes to A, which is continued in FIG. 4.

[0052] As shown in FIG. 4, flow 300 passes to decision 312 where a determination is
made whether the data requested in the offload read operation can all be represented by a
token. This decision 312 may involve, in embodiments, a number of different
determinations. For example, a determination may be made as to whether any portion of
the data being requested in the offload read operation is locked for exclusive use by
another client. In these situations, the server may be unable to provide a token that
represents all of the requested data. If at decision 312 a determination is made that it is not
possible for all of the requested data to be represented by a token, flow passes NO to
operation 314, where a truncated response with a token is sent. The truncated response
indicates that the token that is being provided in the response does not represent all of the
data requested in the offload read request. The response may also indicate what range of
data is represented by the token in the response. After operation 314, flow ends at 316.
[0053] If a determination is made at decision 312 that all of the requested data can be
represented by a token, a response is sent at operation 318 that includes a token that
represents all of the file data requested in the offload read request. Flow 300 then ends at
31e.

[0054] In some embodiments, the server may not be the provider of tokens. In these
embodiments, the alternative operations shown in dashed lines may be performed instead
of decision 312, operation 314, and/or operation 318. The operations in dashed lines are
performed in those embodiments in which the generation of tokens occurs at a lower layer,
e.g., the underlying file storage level(s). In these embodiments, flow 300 will pass to
query 320 instead of decision 312. At query 320, it is determined whether the offload read
operation will be truncated. If the offload read will be truncated, in which an adjustment
to the length of the data requested will be performed, for example, process 300 proceeds
YES to adjust or truncate 322. If the server will not make any adjustments, process 300
proceeds NO to leave the request un-modified 321. Next, process 300 proceeds to
operation 323 where the offload read request is passed from the server to a lower layer,
such as the file storage component or other module that is responsible for generating the
tokens.

[0055] After operation 323, flow 300 passes to query 324 where it is determined
whether the file storage (or other component responsible for generating the tokens) will

perform a truncated read operation. If no truncation occurs, process 300 proceeds NO to

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
16

process request 325 by the lower layer. The response with a token is then received 326 by
the server, in which the response received at operation 326 includes a token(s) that
represents at least a portion of the file data requested in the offload read operation. The
tokens may be formatted according to any appropriate format used by the file storage. In
one embodiment, the tokens are formatted according to a predefined SCSI format. The
response with a token(s) is then sent by the server to the client 329, according to an
embodiment. In another embodiment, the response with a token(s) is sent directly from
the file storage, or other lower layer, to the client, for example.

[0056] Returning to query 324, as discussed above, it is determined whether the file
storage or other component responsible for generating the tokens will provide a response
including all of the data requested. For example, in an embodiment, the file storage may
not be able to provide all of the data requested in the offload read request. As discussed
above, numerous reasons may lead to a truncated offload read response, including a lock
on the storage container preventing a full read, etc. If the file storage provides only a
portion of the data requested, process 300 proceeds YES to operation 327, in which the
request is processed and a truncated response is provided by the lower layer, e.g., file
storage. In an embodiment, a truncated response with token is then received 328 at the
server to send 329 to the client. In other embodiments, the response with token is passed
directly from the file storage or other component responsible for generating the tokens to
the client. In embodiments, the received truncated response 328 indicates that the request
was truncated by one or more layers. For example, the response indicates that the token
represents less than all of the data requested in the offload read request. In other
embodiments, the truncated response 328 provides no indication that the request was
truncated. Flow 300 then ends at operation 316. In another embodiment (not shown), the
server may determine to further truncate the data in the response upon receiving it from
the file storage and even if it determines that the data has already been truncated by the file
storage. In such embodiment, such truncation may occur after operations 326 and 328 and
before passing the truncated response with token to the client operation 329. As can be
appreciated, the operations 320-329 are performed when the server is merely acting as a
pass-through to a lower-level token provider. In the embodiment shown in FIG. 4, the
token provider is the file storage system. In some embodiments, the file storage system
may in turn pass through the offload request to a further lower-level token provider. In
embodiments, any layer can truncate, before or after sending the request down to the layer

below. For example, embodiments provide for the server to pass the request through to

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
17

the lower layer, e.g., file storage, receive a response from the lower layer, and then
determine whether the server will perform further truncation before sending the response
with a token(s) to the client. However, it may be more efficient in some embodiments to
truncate the request prior to sending it to the layer(s) below. As discussed, flow 300 is
merely an example of an operational flow that may be performed in accordance with
embodiments. Embodiments are not limited to the specific description provided with
respect to FIGS. 3-5 and may include additional operations. For example, operational
steps depicted may be combined into other steps and/or rearranged. Further, fewer or
additional steps may be used, for example.

[0057] Referring again to FIG. 3, if at operation 310 the operation is an offload write
operation, flow passes to B, which is continued in FIG. 5. As can be appreciated, the
offload write operation will include a token that represents data. A token may be obtained
from numerous types of storage containers in accordance with embodiments disclosed
herein without departing from the spirit and scope of the present disclosure. For example,
a token may be obtained from a file, volume, disk, volume snapshot, disk snapshot, blob
store, etc. In an embodiment, a token is created by copying data from the source file into
the token. In a further embodiment, a token is created by copying data from the source file
into a holding area associated with the token. The created token is thus independent from
the source file and is logically its own read-only container of data. As shown in FIG. 5,
flow passes from operation 310 to operation 330 where the data associated with the token
in the offload write operation is identified.

[0058] After the data is identified at operation 330, flow 300 passes to query 331 where
it is determined whether all requested data can be written to the destination file, for
example, by the server. If all requested data can be written, process 300 proceeds YES to
write the data represented by the token to the destination file 332. That is, the requested
portion of the data represented by the token is written to the specific location requested in
the offload write request. A response indicating success or failure and, in some
embodiments, the amount of data written to the destination file, is sent to the client at
operation 334. Flow 300 then ends at 316. On the other hand, if all of the requested data
cannot be written to the destination file, for example, process 300 proceeds NO to write
truncated data operation 336, in which a portion of the requested data is written. A
truncated write response indicating that a portion of the requested data was written is then

sent to the client in operation 338. Flow 300 then ends at 316.

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
18

[0059] As noted above, in some embodiments, the server may not be the provider of
tokens. In these embodiments, the alternative operations shown in dashed lines in FIG. 5
may be performed instead of operations 330-338. The operations in dashed lines are
performed in those embodiments in which the generation of tokens occurs at a lower layer,
e.g., the file storage level or below. In these embodiments, flow 300 will pass to query
340 instead of operation 330. At query 340, it is determined whether the offload write will
be truncated at the server before passing to the lower layer, e.g., underlying file storage. If
the offload write will be truncated, process 300 proceeds YES to adjust or truncate 344. If
the server will not make any adjustments, flow 300 proceeds NO to leave the offload write
request unmodified 342. Next, process 300 proceeds to operation 346 where the offload
write request (with token) is passed from the server to a lower layer, such as the file
storage component or other module that is responsible for handling the offload write
request.

[0060] After passing the offload write request to the lower layer(s) 346, flow 300
proceeds to query 348 where it is determined whether the lower layer, e.g., file storage,
will perform a truncated write operation. If no truncation occurs, process 300 passes NO
to operation 350, in which the lower layer processes the write request, including, for
example, identifying the data associated with the token in the request and writing the data
represented by the token to the destination file. If the lower layer performs a truncated
write, process 300 proceeds YES to lower layer truncate and process operation 352, in
which a portion of the data requested is written to the destination file, for example.
Following the processing of the offload write request by the lower layer(s), the offload
write response is received 354 at the server from the lower layer indicating, in
embodiments, whether the data represented by the token was successfully written to the
destination file as well as how much data was written. In other embodiments, the offload
write response is passed directly from the file storage or other component responsible for
handling the offload write request to the client.

[0061] Returning to FIG. 5 where the offload write response is received 354 at the
server in accordance with embodiments of the present disclosure, query 356 next
determines whether all of the data was written to the destination or if the write was
truncated. If the write was truncated, in which a portion of the requested data was written
to the destination, process 300 proceeds YES to pass truncated write response 358 to the
client. Flow 300 then ends at 316. Returning to query 356, if it is determined at query
356 that all of the requested data was written to the destination, process 300 proceeds NO

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
19

to operation 360, in which the response from the underlying file storage system is passed
to the client. Flow 300 then ends at 316.

[0062] Thus, in embodiments, the server itself may truncate the write even where the
request is passed through to the lower layer, such as the file storage. For example, the
server may truncate the write where the time for processing the write request exceeds a
predetermined threshold, according to embodiments. In embodiments, the server truncates
the write before passing the request through to the lower layer. For example, the
truncation can happen before sending the offload write request to file storage. In other
embodiments, the server truncates the write after processing by the lower layer, e.g., file
storage. As discussed, flow 300 is merely an example of an operational flow that may be
performed in accordance with embodiments. Embodiments are not limited to the specific
description provided above with respect to FIGS. 3-5 and may include additional
operations. For example, operational steps depicted may be combined into other steps
and/or rearranged. Further, fewer or additional steps may be used, for example.

[0063] Turning to FIG. 6, operational flow 400 illustrates steps for requesting offload
file operations. In embodiments, flow 400 may be performed by redirectors on clients,
such as clients 202 and 204 (FIG. 2), that are communicating with a file server to access
files in a file system. The client communicates, in embodiments, with the file server using
a file access protocol, such as a version of the SMB protocol or a version of NFS.

[0064] Flow 400 begins at operation 402 where a request to connect to the file server is
sent. The request sent at operation 402 is a request to establish a session with the file
server in order to access file information stored on a file system accessible through the file
server. The request may be sent to a file server on a server, e.g., server 206 (FIG. 2). The
request is formatted according to a file access protocol such as a version of SMB or NFS.
[0065] After operation 402, flow 400 passes to operation 404 where a response is
received indicating that a session has been established. In some embodiments, operations
402 and 404 may be part of a number of messages that are exchanged between a client and
a server to negotiate a session. The exchange of messages may include an exchange of
capabilities including the capability of the file server to service offload operations.

[0066] Operational flow passes from operation 404 to operation 406 where a request is
sent to open a file. Flow 400 passes from operation 406 to operation 408 where a response
is received granting access to the file. From operation 408, flow passes to operation 410
where the client will send an offload read request. The offload read request indicates a

portion of file data being requested. The offload read request also inherently requests that

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
20

the data be represented by a token that is sent in response to the offload read request. At
operation 412, an offload read response with a token is received.

[0067] In embodiments, the client that sends the offload read request at operation 410
may have some limits as to what data it may ask for in the read request. For example, in
embodiments, if the client has cached some data locally it will flush any cached “dirty”
data before sending its read request. Failure to flush the cached dirty data to the server
prior to sending the offload read can lead to the offload read providing a token which
represents stale data. In some embodiments, the client may truncate the offload read itself.
In other words, it may not request the full range of file data and thereby exclude dirty
cached data.

[0068] Following operation 412, the client may send an offload write request at
operation 414. Although flow 400 shows that operation 414 immediately follows
operation 412, it can be understood that this is merely for illustrative purposes. In other
embodiments, if the client performing flow 400 receives a token representing data from
some other means, then the offload write request sent at operation 414 may be performed
before any offload read requests such as the request sent at operation 410.

[0069] In embodiments, the client that sends the offload write request at operation 414
may also have some limits as to what data it may send in the offload write request. If an
offload write were allowed to write token data to a destination offset which has cached
dirty data, the cached dirty data would later erroneously overwrite the data written by the
offload write when the cached dirty data is written back to storage. A client sending an
offload write may avoid sending the write request for any offset for which the client is
holding cached dirty data. The client may truncate the offload write itself, or the client
may discard the cached dirty data which overlaps the offload write destination offsets, or
the client may fail the offload write, according to embodiments.

[0070] After the offload write request is sent at operation 414, flow 400 passes to
operation 416 where a response to the offload write request is received. The response may
indicate whether the data associated with the token sent in the offload write request was
successfully written to a destination file. In those embodiments in which the data may
have been partially written, the response received at operation 416 will note the portion of
the data that was successfully written and indicate that not all of the data was written into
the destination file.

[0071] Operation 418 shown in dashed lines is performed in some embodiments at any

time during execution of flow 400. In the embodiment shown in FIG. 6, operation 418 is

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
21

shown after operation 416 but embodiments are not necessarily limited to this order.
Operation 418 is sent in those embodiments in which a client performing flow 400
requires the actual data associated with the token. That is, the client may be in possession
of a token that it received by sending an offload read request or by some other means.
However, the client may need the actual data associated with the token to, for example,
provide the data to an application that is requesting the actual data. In these embodiments,
operation 418 may send a request to retrieve a portion of the data associated with the
token. The client will send the request to retrieve data to a server that can provide the
actual data. In response, the client will receive the actual data and can provide that data to
the application requesting the actual data. This is merely one additional operation that
may be performed by some clients in some embodiments. Flow 400 ends at 420.

[0072] As noted above, flows 300 and 400 are merely some examples of operational
flows that may be performed in accordance with embodiments. Embodiments are not
limited to the specific description provided above with respect to FIGS. 3-6 and may
include additional operations. Further, operational steps depicted may be combined into
other steps and/or rearranged. Further, fewer or additional steps may be used, for
example.

[0073] FIG. 7 illustrates a general computer system 700, which can be used to
implement the embodiments described herein. The computer system 700 is only one
example of a computing environment and is not intended to suggest any limitation as to
the scope of use or functionality of the computer and network architectures. Neither
should the computer system 700 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated in the example computer
system 700. In embodiments, system 700 may be used as a client and/or server described
above with respect to FIG. 1.

[0074] In its most basic configuration, system 700 typically includes at least one
processing unit 702 and memory 704. Depending on the exact configuration and type of
computing device, memory 704 may be volatile (such as RAM), non-volatile (such as
ROM, flash memory, etc.) or some combination. This most basic configuration is
illustrated in FIG. 7 by dashed line 706. System memory 704 stores data such as tokens
723, which represent data 720 that may be stored in a file storage system with storage such
as storage 708.

[0075] The term computer readable media as used herein may include computer storage

media. Computer storage media may include volatile and nonvolatile, removable and non-

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
22

removable media implemented in any method or technology for storage of information,
such as computer readable instructions, data structures, program modules, or other data.
System memory 704, removable storage, and non-removable storage 708 are all computer
storage media examples (i.e. memory storage.) Computer storage media may include, but
is not limited to, RAM, ROM, electrically erasable read-only memory (EEPROM), flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store information and which
can be accessed by computing device 700. Any such computer storage media may be part
of device 700. Computing device 700 may also have input device(s) 714 such as a
keyboard, a mouse, a pen, a sound input device, a touch input device, etc. Output
device(s) 716 such as a display, speakers, a printer, etc. may also be included. The
aforementioned devices are examples and others may be used.

[0076] The term computer readable media as used herein may also include
communication media. Communication media may be embodied by computer readable
instructions, data structures, program modules, or other data in a modulated data signal,
such as a carrier wave or other transport mechanism, and includes any information
delivery media. The term “modulated data signal” may describe a signal that has one or
more characteristics set or changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communication media may include wired
media such as a wired network or direct-wired connection, and wireless media such as
acoustic, radio frequency (RF), infrared, and other wireless media.

[0077] Reference has been made throughout this specification to “one embodiment” or
“an embodiment,” meaning that a particular described feature, structure, or characteristic
is included in at least one embodiment. Thus, usage of such phrases may refer to more
than just one embodiment. Furthermore, the described features, structures, or
characteristics may be combined in any suitable manner in one or more embodiments.
[0078] One skilled in the relevant art may recognize, however, that the embodiments
may be practiced without one or more of the specific details, or with other methods,
resources, materials, etc. In other instances, well known structures, resources, or
operations have not been shown or described in detail merely to avoid obscuring aspects
of the embodiments.

[0079] While example embodiments and applications have been illustrated and

described, it is to be understood that the embodiments are not limited to the precise

WO 2013/022582 PCT/US2012/047261
23

configuration and resources described above. Various modifications, changes, and
variations apparent to those skilled in the art may be made in the arrangement, operation,
and details of the methods and systems disclosed herein without departing from the scope

of the claimed embodiments.

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
24

Claims
1. A computer implemented method of providing token based file operations, the
method comprising:

receiving at a file server a first request to connect to the file server to access
information in a file system;

sending a first response from the file server, the response establishing a session
with a client for allowing access to the information in the file system;

receiving at the file server a second request to open a file in the file system to
access file information from the file;

in response to receiving the second request, the file server sending a second
response to the client granting access to the file;

receiving at the file server a third request for an offload read of first data from a
portion of the file, the third request being formatted according to a file access protocol;
and

in response to receiving the third request, the file server sending a third response
with a token representing the first data, wherein the first data is logically read from the
portion of the file, and wherein the third response is formatted according to the file access
protocol.
2. The method of claim 1, wherein the third request indicates first data to be read
from the file and second data to be read from the file, and the third response includes the
token representing the first data and a second token representing the second data.
3. The method of claim 1, wherein the third request indicates a first portion of a first
file and a second portion of a second file and the third response includes the token
representing first data logically read from the first portion of the first file and a second
token representing second data logically read from the second portion of the second file.
4. The method of claim 1, further comprising:

receiving at the file server a fourth request for an offload write of a requested
portion of the first data to a second file, the fourth request including the token and being
formatted according to the file access protocol; and

in response to receiving the fourth request, the file server:

writing the requested portion of the first data to the second file; and
sending a fourth response indicating the requested portion of the first data
was written to the second file, the fourth response being formatted according to the

file access protocol.

10

15

20

25

30

WO 2013/022582 PCT/US2012/047261
25

5. The method of claim 1, further comprising;:

receiving at the file server a fourth request for an offload write of a requested
portion of the first data to a second file, the fourth request including the token and being
formatted according to the file access protocol; and

in response to receiving the fourth request, the file server:

writing a first portion of the requested portion of the first data to the second
file, wherein the first portion of the requested portion is less than all of the
requested portion of the first data; and
sending a fourth response indicating the first portion of the requested

portion of the first data was written to the second file, the fourth response being

formatted according to the file access protocol.
6. A computer readable storage medium comprising computer executable instructions
that when executed by a processor perform a method of requesting token based file
operations, the method comprising:

sending by a client a first request to connect to a file server to access information
in a file system;

receiving a first response, the response establishing a session with the client for
allowing access to the file information;

sending a second request to open a file in the file system;

receiving a second response granting access to the file;

sending a third request for an offload write of a first portion of data represented by
a token to a file, the third request being formatted according to a version of the Server
Message Block (SMB) protocol and including the token representing the data; and

receiving a response.
7. The computer readable storage medium of claim 6, wherein the response indicates
that a second portion of the data was successfully written to the file, and wherein the
second portion represents less than all of the data in the first portion.
8. The computer readable storage medium of claim 6, further comprising:

sending a fourth request for an offload read of second data from a portion of a
second file, the fourth request being formatted according to the version of the SMB
protocol; and

receiving a fourth response with a token representing the second data, the fourth

response being formatted according to the version of the SMB protocol.

WO 2013/022582 PCT/US2012/047261
26

9. A system for allowing token based file operations, the system comprising:
at least one server comprising:
at least one processor configured to execute computer executable
mstructions;
5 at least one computer readable storage media storing the computer
executable instructions that when executed by the at least one processor provide:
a file server configured to:
receive a request for an offload read of data from a portion of a file, the
request being formatted according to a version of the Server Message Block
10 (SMB) protocol; and
in response to receiving the request, the file server sending a response with
a token representing the data, the response being formatted according to the
version of the SMB protocol.
10. The system of claim 9, wherein the system further comprises:
15 at least one client, comprising;:
at least one processor configured to execute computer executable
mstructions;
at least one computer readable storage media storing the computer
executable instructions that when executed by the at least one processor:
20 sends the request for the offload read of data from the portion of the
file; and

receives the response with the token representing the data.

WO 2013/022582 PCT/US2012/047261

117

106

108
NETWORK

FIG. 1

102
104

100‘&

PCT/US2012/047261

WO 2013/022582

27

N

HOLYYINID
NIMO L

JOVHOLS 311

<o

0Le

¢ 9Old

NIMO |

JO103dIa3y

NOILYOIlddY

INTND

YOLYHINID
NIMO |

Y3AY3S
3114

HOLYHINID
NIMO L

HIAYAS

Y¥3AY3S
3114

v0Z D

LT

NIMO |

HOLO3AId3Y

HIAYAS

NOILYOIlddY

80Z 2

20z D

INTND

202 D

4M| 00¢

WO 2013/022582 PCT/US2012/047261

37

)‘ 300

302 Kl RECEIVE A REQUEST TO CONNECT

:

304 3| SEND A RESPONSE ESTABLISHING A
SESSION

l

306 Kd RECEIVE A REQUEST TO OPEN A FILE

l

308 K SEND RESPONSE GRANTING ACCESS

I

310 RECEIVE A REQUEST FOR AN
OFFLOAD OPERATION

OFFLOAD OFFLOAD
READ WRITE

®

FIG. 3

WO 2013/022582 PCT/US2012/047261

4/7
; 300
[—————————
|
- J\ ~—
- ~
<7 “TRuncATE? 5 320
S~ -~ — -
\I/
NO | YES
|_ ________ | 322 DETERMINE WHETHER
-—X _ | A | ALL REQUESTED DATA
| LEAVE | CAN BE PROVIDED
YES
| UN- I——S_ 321 | ADJUST :
IIVIODIFIEDI | I
| I — e— —
. __ . __ZZr
l'PASS REQUEST THROUGH TO :j 323
LOWER LAYER v
-{ v SEND
_ PN 318 _| SEND A RESPONSE 314 _< TRUNCATED
~
324 ‘L< ~LOWER LAYER WITH A TOKEN RESPONSE
~ IRUNCATE?/ s WITH A
No >y~ Yes TOKEN
'- — — — — — — — —
-y _ —_—— e —
| LOWER | ' LOWER |
LAYER 2 LAYER | §~ 327
| process 592 | TRUNCATE,
| | | PROCESS
l—R—EQ-lLiES—T 4 |_REQUEST JI 316
-— yY_ _I -— I_ _I END
| Recenve | § 326 | _RECEIVE | 5328 I
IRESPONSE |TRUNCATED|)_ |
T | RESPONSE
| W/ 1OKEN | | W/ TOKEN | 329 I
.__.I__J .__.I__J __.Z‘_ |
Y v I SEND TO I |
————————— +»>———= ceny F=————-

WO 2013/022582 PCT/US2012/047261

57

[300

340> _ =" "~

?/\ - TRUNCATE? \,\/

No YES 330 2| IDENTIFY DATA ASSOCIATED
_______ WITH TOKEN IN REQUEST

| LeavE UN- LS~ 342 |

I_IVIODIFIED | |

WRITE ALL

I LOWER LAYER | 331 A
ATA

348 LOWER LAYER
TRUNCATE? -
v__ —Y_ 332
™ ower ! M "LowerR ™ |
| | LAYER | WRITE DATA
LAYER WRITE
| Process | | TRUNCATE, | REPRESENTED BY TRUNCATED
L C— J | PROCESS ; | TOKEN TO DESTINATION DATA
——— == FILE
| ReGeve Reseonse Frow Lower | ! s |
LAYER
b ————— Y S —| SEND RESPONSE SEND
7N INDICATING SUCCESS
P N 354 TRUNCATED
356 g - TF\{/L\J/NCAT)ED > OR FAILURE WRITE
SR~ / RESPONSE
YES ¢ No 334
y— —— L= Do
r— o — r————
Pass 338
| TRuNCATED PASS 360
Il wrme | | RESPONSE
| RESPONSE | | 7O CLIENT I
NESPONSE . 316
] e
L — — — Yy _
358 END

FIG. 5

WO 2013/022582

6/7

402 2

SEND A REQUEST TO CONNECT

y

404 2|

RECEIVE A RESPONSE ESTABLISHING
A SESSION

v

406 R

SEND A REQUEST To OPEN A FILE

|

408 2|

RECEIVE A RESPONSE GRANTING
ACCESS

:

410

SEND AN OFFLOAD READ REQUEST

I

412 2

RECEIVE AN OFFLOAD READ
RESPONSE WITH TOKEN

v

414

SEND AN OFFLOAD WRITE REQUEST
WITH A TOKEN

y

416

RECEIVE AN OFFLOAD WRITE
RESPONSE

418 7_"- SEND REQUEST TO RETRIEVE FILE_i

______ I

DATA ASSOCIATED WITH TOKEN

e e s e e e e — -

420

FIG. 6

PCT/US2012/047261

; 400

WO 2013/022582 PCT/US2012/047261
717
¢ 706 S 700 708
I]
r STORAGE
g 704
(svystem)
S 702
MEMORY 5 720
PROCESSING DATA
§ 723 UNIT
TOKENS
5~ 716
OuTPUT DEVICE(S)
INPUT DEVICE(S) | /14
- _/

FIG. 7

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings

