wo 2013/043350 A1 I 0N R A0 AR A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/043350 A1

28 March 2013 (28.03.2013) WIPO | PCT

(51) International Patent Classification: (72) Inventors; and
GO6F 1/32 (2006.01) (75) Inventors/Applicants (for US only): VICK, Christopher
. .) A. [US/US]; 5775 Morehouse Drive, San Diego, California
(21) International Application Number: PCTIUS2012/053341 92121 (US). WRIGHT, Gregory M. [GB/US]; 5775

Morehouse Drive, San Diego, California 92121 (US).
(22) International Filing Date: 31 A 2012 (31.08.2012 (74) Agent: COLE, Nicholas Albert; 5775 Morehouse Drive,
ugus (31.08.2012) San Diego, California 92121 (US).

(25) Filing Language: English (81) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
L. AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
13/303,871 23 November 2011 (23.11.2011) US HN. HR. HU. ID. IL. IN. IS. JP. KE. KG. KM. KN. KP.
(71) Applicant (for all designated States except US): QUAL- KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

COMM INCORPORATED [US/US]; Attn: International
IP Administration, 5775 Morchouse Drive, San Diego,

ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

California 92121 (US).

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

[Continued on next page]

(54) Title: DYNAMIC POWER OPTIMIZATION FOR COMPUTING DEVICES

High Level Language Code / Source Code

202

!

Compiler Front End

!

Bytecode / Intermediate Code

204

}

Compiler Back End

A 4

Binary Code / Object Code
(e.g., ARM executable)

206

Distribution

Loader

}

Memory Image

[~ 208

FIG. 2A

yo

(57) Abstract: In the various aspects, virtualization techniques may be
used to reduce the amount of power consumed by execution of applica-
tions by power-optimizing the code prior to execution. A dynamic bin-
ary translator operating at the machine layer may use a power consump-
tion model to identify code segments that can benefit from optimization
and to perform an instruction-sequence to instruction-sequence transla-
tion of object code to generate power-optimized object code. Execution
hardware may be instrumented with additional circuitry to measure the
power consumption characteristics of executing code. The power con-
sumption models may be updated and object code may be regenerated
based on the measured the power consumption characteristics of previ-
ously executed code. In an aspect, power optimization may be accom-
plished when the computing device is connected to a battery charger.

WO 2013/043350 A1 |IIWAT 00N AV 0 A AR

(84) Designated States (unless otherwise indicated, for every Declarations under Rule 4.17:
kind of regional protection available): ARIPO (BW, GH, __ . , .
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Zsp ;Ote‘,’f;p(%‘l’:;s I%Zjemem to apply for and be granted
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, ’
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — as to the applicant’s entitlement to claim the priority of
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, the earlier application (Rule 4.17(iii))
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ’
GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2013/043350 PCT/US2012/053341

DYNAMIC POWER OPTIMIZATION FOR COMPUTING DEVICES
RELATED APPLICATIONS

[0001] This application claims the benefit of priority to U.S. Provisional Application
No. 61/536,684, entitled “Dynamic Power Optimization For Computing Devices”
filed September 20, 2011, the entire contents of which are hereby incorporated by

reference.
BACKGROUND

[0002] Cellular and wireless communication technologies have seen explosive growth
over the past several years. This growth has been fueled by better communications,
hardware, larger networks, and more reliable protocols. Wireless service providers
are now able to offer their customers an ever-expanding array of features and services,
and provide users with unprecedented levels of access to information, resources, and
communications. To keep pace with these service enhancements, mobile electronic
devices (e.g., cellular phones, tablets, laptops, etc.) have become more powerful than
ever. Mobile device users now routinely execute multiple complex and power
intensive software applications and services on their mobile devices, all without a
wired connection to a power source. As a result, a mobile device’s battery life and
power consumption characteristics are becoming ever more important considerations

for consumers of mobile devices.

[0003] Increased battery life maximizes the user’s experience by allowing users to do
more with a wireless device for longer periods of time. To maximize battery life,
mobile devices typically attempt to optimize mobile device power consumption using
dynamic voltage and frequency scaling techniques. These techniques allow
programmable device pipelines to run in a lower power and/or lower performance
mode when non-critical applications or low load conditions are detected. For
example, a mobile device may be configured to place one or more processors and/or

resources in a low power state when idle. While these techniques may improve the

WO 2013/043350 PCT/US2012/053341

overall battery performance, they require that device processors and/or resources be
placed in an idle state and cannot improve the power consumption characteristics of
individual applications or processes executing on the device. Thus, existing
techniques attempt to tailor the behavior of the mobile device to the software
applications running on the device, instead of tailoring the applications to consume
less energy on the device. Since many modern software applications require power
intensive processing, reducing the power consumption of the processes executing on
the device, without altering the performance of the processes, will greatly enhance the

user experience.
SUMMARY

[0004] The various aspects include methods of optimizing object code for power
savings during execution on a computing device, including receiving compiled binary
object code in system software, analyzing the received object code in a dynamic
binary translator process operating at the machine layer to identify code segments that
can be optimized for power savings, performing in the dynamic binary translator
process an instruction-sequence to instruction-sequence translation of the received
object code to generate power optimized object code, and executing the power
optimized object code on a processor of the computing device. In an aspect, the
system software which receives the compiled binary object code is one of a system
virtual machine or a hypervisor. In an aspect, the system software which receives the
compiled binary object code is an operating system. In an aspect, performing in the
dynamic binary translator process an instruction-sequence to instruction-sequence
translation of the received object code to generate power optimized object code
includes translating a first instruction set architecture into a second instruction set
architecture. In an aspect, the first instruction set architecture is the same as the
second instruction set architecture. In an aspect, analyzing the received object code in
a dynamic binary translator process operating at the machine layer to identify code
segments that can be optimized for power savings includes determining whether there
are alternative operations that achieve the same results as the identified object code

operations, and performing in the dynamic binary translator process an instruction-

WO 2013/043350 PCT/US2012/053341

sequence to instruction-sequence translation of the received object code to generate
power optimized object code includes replacing, during translation, the identified
object code operations with the alternative operations. In an aspect, the method further
includes sensing a connection to a new power source. In an aspect, performing in the
dynamic binary translator process an instruction-sequence to instruction-sequence
translation of the received object code to generate power optimized object code is
performed when connection to the new power source is detected. In an aspect,
analyzing the received object code includes using a power consumption model to
identify segments of object code that can be optimized for power efficiency. In an
aspect, the method further includes measuring an amount of power consumed in the
execution of segments of power optimized object code, comparing the measured
amount of power consumed to predictions of the power consumption model, and

modifying the power consumption model based on a result of the comparison.

[0005] Further aspects include a computing device configured to optimize object code
during execution for improved power savings, including means for receiving in an
compiled binary object code in system software, means for analyzing the received
object code in a dynamic binary translator process operating at the machine layer to
identify code segments that can be optimized for power savings, means for performing
in the dynamic binary translator process an instruction-sequence to instruction-
sequence translation of the received object code to generate power optimized object
code, and means for executing the power optimized object code on a processor of the
computing device. In an aspect, means for performing in the dynamic binary
translator process an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code includes means for
translating a first instruction set architecture into a second instruction set architecture.
In an aspect, means for translating a first instruction set architecture into a second
instruction set architecture includes means for translating the first instruction set
architecture into an instruction set architecture that is the same as the second
instruction set architecture. In an aspect, means for analyzing the received object code

in a dynamic binary translator process operating at the machine layer to identify code

WO 2013/043350 PCT/US2012/053341

segments that can be optimized for power savings includes means for determining
whether there are alternative operations that achieve the same results as the identified
object code operations. In an aspect, means for performing in the dynamic binary
translator process an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code includes means for
replacing, during translation, the identified object code operations with the alternative
operations. In an aspect, the computing device further includes means for sensing a
connection to a new power source. In an aspect, means for performing in the dynamic
binary translator process an instruction-sequence to instruction-sequence translation of
the received object code to generate power optimized object code includes means for
translating the received code to generate power optimized object code when
connection to the new power source is sensed. In an aspect, means for analyzing the
received object code includes means for using a power consumption model to identify
segments of object code that can be optimized for power efficiency. In an aspect, the
computing device further includes means for measuring an amount of power
consumed in the execution of segments of power optimized object code, means for
comparing the measured amount of power consumed to predictions of the power
consumption model, and means for modifying the power consumption model based on

a result of the comparison.

[0006] Further aspects include a computing device that includes a memory and a
processor coupled to the memory, in which the processor is configured with
processor-executable instructions to perform operations including receiving compiled
binary object code in system software, analyzing the received object code in a
dynamic binary translator process operating at the machine layer to identify code
segments that can be optimized for power savings, performing in the dynamic binary
translator process an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code, and executing the
power optimized object code on a processor of the computing device. In an aspect,
the stored processor-executable software instructions are configured to cause a

processor to perform operations such that performing in the dynamic binary translator

WO 2013/043350 PCT/US2012/053341

process an instruction-sequence to instruction-sequence translation of the received
object code to generate power optimized object code includes translating a first
instruction set architecture into a second instruction set architecture. In an aspect, the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that the first instruction set architecture is the same

instruction set architecture as the second instruction set architecture.

[0007] In an aspect the stored processor-executable software instructions are
configured to cause a processor to perform operations such that analyzing the received
object code in a dynamic binary translator process operating at the machine layer to
identify code segments that can be optimized for power savings includes determining
whether there are alternative operations that achieve the same results as the identified
object code operations, and performing in the dynamic binary translator process an
instruction-sequence to instruction-sequence translation of the received object code to
generate power optimized object code includes replacing, during translation, the
identified object code operations with the alternative operations. In an aspect the
stored processor-executable software instructions are configured to cause a processor
to perform operations including sensing a connection to a new power source. In an
aspect the stored processor-executable software instructions are configured to cause a
processor to perform operations such that performing in the dynamic binary translator
process an instruction-sequence to instruction-sequence translation of the received
object code to generate power optimized object code is performed when connection to
the new power source is sensed. In an aspect, the stored processor-executable
software instructions are configured to cause a processor to perform operations such
that analyzing the received object code includes using a power consumption model to
identify segments of object code that can be optimized for power efficiency. In an
aspect, the stored processor-executable software instructions are configured to cause a
processor to perform operations further includes measuring an amount of power
consumed in the execution of segments of power optimized object code, comparing

the measured amount of power consumed to predictions of the power consumption

WO 2013/043350 PCT/US2012/053341

model, and moditying the power consumption model based on a result of the

comparison.

[0008] Further aspects include a non-transitory processor-readable storage medium
having stored thereon processor-executable software instructions configured to cause
a processor to perform operations for optimizing object code for power savings during
execution on a computing device, the operations including receiving compiled binary
object code in system software, analyzing the received object code in a dynamic
binary translator process operating at the machine layer to identify code segments that
can be optimized for power savings, performing in the dynamic binary translator
process an instruction-sequence to instruction-sequence translation of the received
object code to generate power optimized object code, and executing the power
optimized object code on a processor of the computing device. In an aspect, the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that performing in the dynamic binary translator process an
instruction-sequence to instruction-sequence translation of the received object code to
generate power optimized object code includes translating a first instruction set
architecture into a second instruction set architecture. In an aspect, the stored
processor-executable software instructions are configured to cause a processor to
perform operations such that the first instruction set architecture is the same
instruction set architecture as the second instruction set architecture. In an aspect, the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that analyzing the received object code in a dynamic
binary translator process operating at the machine layer to identify code segments that
can be optimized for power savings includes determining whether there are alternative
operations that achieve the same results as the identified object code operations. In an
aspect, the stored processor-executable software instructions are further configured to
cause a processor to perform operations such that performing in the dynamic binary
translator process an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code includes replacing,

during translation, the identified object code operations with the alternative

WO 2013/043350 PCT/US2012/053341

operations. In an aspect, the stored processor-executable software instructions are
configured to cause a processor to perform operations including sensing a connection
to a new power source, In an aspect, the stored processor-executable software
instructions are further configured to cause a processor to perform operations such that
performing in the dynamic binary translator process an instruction-sequence to
instruction-sequence translation of the received object code to generate power
optimized object code is performed when connection to the new power source is
sensed. In an aspect, the stored processor-executable software instructions are
configured to cause a processor to perform operations such that analyzing the received
object code includes using a power consumption model to identify segments of object
code that can be optimized for power efficiency. In an aspect, the stored processor-
executable software instructions are configured to cause a processor to perform
operations further including measuring an amount of power consumed in the
execution of segments of power optimized object code, comparing the measured
amount of power consumed to predictions of the power consumption model, and

modifying the power consumption model based on a result of the comparison.
BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings, which are incorporated herein and constitute part
of this specification, illustrate exemplary embodiments of the invention, and together
with the general description given above and the detailed description given below,

serve to explain the features of the invention.

[0010] FIG. 1 is a layered computer architectural diagram illustrating logical
components and interfaces in a computing system suitable for implementing the

various aspects.

[0011] FIGs. 2A and 2B are process flow diagrams illustrating logical components
and code transformations for distributing code in a format suitable for implementing

the various aspects.

WO 2013/043350 PCT/US2012/053341

[0012] FIGs. 3A and 3B are layered computer architectural diagrams illustrating

logical components in virtual machines suitable for implementing the various aspects.

[0013] FIG. 4 is a component block diagram illustrating logical components and data

flows of system virtual machine in accordance with an aspect.

[0014] FIG. 5 is a process flow diagram illustrating an aspect method for generating

optimized object code.

[0015] FIG. 6 is a component flow diagram illustrating logical components and data
flows for measuring the power consumption characteristics of executing code to
continuously re-optimize the generated object code in accordance with an aspect

method.

[0016] FIG. 7 is a process flow diagram illustrating an aspect method for measuring
the power consumption characteristics of executing code and continuously re-optimize

the object code.

[0017] FIG. 8 is a process flow diagram illustrating an aspect method for performing

object code optimizations after a connected power source has been detected.

[0018] FIG. 9 is a component block diagram illustrating a mobile device suitable for

implementing the various aspects.

[0019] FIG. 10 is a component block diagram illustrating another mobile device

suitable for implementing the various aspects.
DETAILED DESCRIPTION

[0020] The various aspects will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made to
particular examples and implementations are for illustrative purposes, and are not

intended to limit the scope of the invention or the claims.

WO 2013/043350 PCT/US2012/053341

[0021] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any implementation described herein as “exemplary” is not

necessarily to be construed as preferred or advantageous over other implementations.

[0022] The terms “mobile device” and “computing device” are used interchangeably
herein to refer to any one or all of cellular telephones, personal data assistants
(PDA’s), palm-top computers, wireless electronic mail receivers (e.g., the
Blackberry® and Treo® devices), multimedia Internet enabled cellular telephones
(e.g., the Blackberry Storm®), Global Positioning System (GPS) receivers, wireless
gaming controllers, and similar personal electronic devices which include a
programmable processor and operate under battery power such that power

conservation methods are of benefit.

[0023] The term “resource” is used herein to refer to any of a wide variety of circuits
(e.g., ports, clocks, buses, oscillators, etc.), components (e.g., memory), signals (e.g.,
clock signals), functions, and voltage sources (e.g., voltage rails), which may be used

to support processors and clients running on a computing device.

[0024] As discussed above, existing techniques for increasing battery life generally
place one or more processors and/or resources in a low power state. These techniques
require the device processors/resources to be placed in an idle or low frequency state,

and do not change the code executed by the applications/processes.

[0025] The various aspects provide methods, systems, and devices that use
virtualization techniques that may be implemented within a hypervisor layer to reduce
the amount of power consumed by active processors/resources. In a first aspect, a
virtual machine receives object code for execution, analyzes the object code to
recognize operations and parameters characterizing the operations to be performed by
the device processors, and performs binary to binary translations to transform or
translate the object code into new object code that can function more efficiently on the
hardware of the specific mobile device. This recognition and transformation of object
code may be accomplished according to a device specific model. Using a model that

is associated with the processor architecture of a given mobile device, the virtual

WO 2013/043350 PCT/US2012/053341
10

machine may determine that executing the object code on a particular hardware device
may be power intensive. The virtual machine may then translate the binary object
code to a different second object binary code having different operators (e.g., shift and
add operations vs. multiplication operations) in order to save power. Thus, using a
direct binary to binary translation, the information of the code may be preserved while

the total amount of energy expended to process the object code may be reduced.

[0026] In a second aspect, the model of energy consumption by object code and the
translations made to optimize code are updated based upon measurements of the
actual power consumed by previously optimized object code. In this manner, the
actual performance of the mobile device processors can be used to optimize the object
code rather than relying upon a fixed model that may not reflect lot-to-lot variability
in processor performance. In this aspect, the various processors on the computing
device, such as the central processor unit, modem processors, and a GPS receiver
processor (to name a few), may be instrumented to measure the power consumed
during execution of object code. To enable tracking power consumption to particular
object code optimization transformations, chunks or related pieces of object code are
tagged when they are optimized and transformed. When the code is run by a
processor, the measured power consumption associated with the code tag, and the
measurement is compared to a performance prediction model as shown in the
following figure. The comparison between the actual power consumption and the
predicted performance is then fed back to the optimization process so that better
optimization methods can be identified or used for subsequent object code
optimizations. Object code then may be re-optimized by the virtual machine as
described above, such as the next time the application is executed on the mobile

device.

[0027] Generally, virtualization techniques are implemented in a virtual machine
(VM), which is a software application that executes application programs like a
physical hardware machine. Specifically, a virtual machine provides an interface
between application programs and the physical hardware, potentially allowing

application programs tied to a specific instruction set architecture (ISA) to execute on

WO 2013/043350 PCT/US2012/053341
11

hardware implementing a different instruction set architecture. Virtualization is
beneficial in the various aspects because application programs are typically distributed
as compiled binary files that are tied to a specific instruction set architecture and
depend upon a specific operating system interface (OSI). Without the assistance of
virtual machines, compiled binary files may only be executed on systems that support
the specific instruction set architecture (e.g., Intel IA-32, etc.) and operating system
interface for which the binary code was compiled. Virtual machines can be leveraged
to circumvent these limitations by adding a layer of software that supports the
architectural requirements of the application program and/or translates the application
program’s instruction set architecture into the instruction set architecture supported by

the hardware.

[0028] FIG. 1 illustrates a layered architectural diagram of a processor showing
logical components and interfaces in a typical computer system suitable for
implementing the various aspects. The illustrated computer system architecture 100
includes both hardware components and software components. The hardware
components may include execution hardware (e.g., an application processor, digital
signal processor, etc.) 102, input/output devices 106, and one or more memories 104.
The software components may include an operating system 108, a library module 110,

and one or more application programs 112.

[0029] The application programs 112 use an application program interface (API) to
issue high-level language (HLL) library calls to the library module 110. The library
module 110 uses an application binary interface (ABI) to invoke services (e.g., via
operating system calls) on the operating system 108. The operating system 108
communicates with the hardware components using a specific instruction set
architecture (ISA), which is a listing of specific operation codes (opcode) and native

commands implemented by the execution hardware 102.

[0030] The application binary interface defines the machine as seen by the application

program processes, whereas the application program interface specifies the machine’s

WO 2013/043350 PCT/US2012/053341
12

characteristics as seen by a high-level language program. The ISA defines the

machine as seen by the operating system.

[0031] FIGs. 2A and 2B are process flow diagrams illustrating the conversion of the
software applications written in a high level language (e.g., Java, C++, etc.) into
distributable code. As mentioned above, mobile device application programs are
typically distributed as compiled binary files (referred to as “object code”) that are

tied to a specific ISA and operating system interface (OSI).

[0032] FIG. 2A illustrates a method 200 for converting code from a high level
language 202 to the distributable object code 206 for delivery to a mobile device.
Application developers may write source code 202 using a high level language (Java,
C++, etc.), which may be converted into object code 206 by a compiler. The compiler
may be logically organized into a front-end component, a middle-end component, and
a back-end component. The compiler front-end may receive the source code 202 and
perform type checking operations, check the source code’s syntax and semantics, and
generate an intermediate representation 204 of the source code. The compiler middle-
end may perform operations for optimizing the intermediate code 204, such as
removing useless or unreachable code, relocating computations, etc. The compiler
back-end may translate the optimized intermediate code 204 into binary/object code
206, which encodes the specific machine instructions that will be executed by a
specific combination of hardware and OSI. The binary/object code 206 may then be
distributed to devices supporting the specific combination of ISA and OSI for which
the binary was generated, and may be stored in a physical memory and retrieved by a

loader as a memory image 208.

[0033] FIG. 2B illustrates an aspect method 250 for converting code from a high level
language 252 to the distributable code 256 for delivery to a mobile device having
virtualization software. A compiler module may receive source code 252 written in a
high level language and generate abstract machine code in a virtual instruction set
architecture (Virtual ISA code) and/or bytecode 254 that specifies a virtual machine

interface. The compiler module may generate the Virtual ISA code/bytecode 254

WO 2013/043350 PCT/US2012/053341
13

without performing any complex middle-end and back-end compiler processing that
ties the code to a specific architecture or operating system. The generated virtual ISA
code/bytecode 254 may be distributed to mobile devices having a wide variety of
platforms and execution environments, so long as the mobile devices include
virtualization software that supports the virtual ISA used to generate the Virtual ISA

code/bytecode 254.

[0034] A computing device having virtualization software installed may receive the
distribution code 254 and store the received code in memory. The virtualization
software may include an interpreter/compiler for translating the virtual ISA
instructions into the actual ISA instructions used by the underlying hardware. A
virtual machine loader may load a virtual memory image 254 of the received code and
pass the received code on to the virtual machine interpreter/compiler, which may
interpret the virtual memory image and/or compile the virtual ISA code contained

thereon, to generate host machine code 258 for direct execution on the host platform.

[0035] The compilation of the code may be performed in two steps, one before
distribution and one after distribution. This allows the software applications to be
easily ported to any computing device having virtualization software that supports the
virtual ISA used by the first compiler, regardless of the device’s underlying hardware
and operating system interface. Moreover, the virtual machine compiler may be
configured to process the code considerably faster than the full compiler, because the
virtual machine compiler needs only to convert the virtual ISA to the host machine

instructions.

[0036] Thus, in method 200 illustrated in FIG. 2A the code is distributed as
machine/object code (e.g., ARM executable), whereas in the aspect method 250
illustrated in FIG. 2B, the code is distributed as abstract machine code/bytecode (e.g.,
Dalvik bytecode). In either case, a static optimizer may optimize the code before
distribution (e.g., during compilation). However, the specific characteristics of the
hardware on which the code is to be executed is not available to the static optimizer,

and generally cannot be known until runtime. For this reason, static optimizers

WO 2013/043350 PCT/US2012/053341
14

generally use generic optimization routines that optimize the code to run more
efficiently (i.e., faster) on a wide variety of platforms and execution environments.
These generic optimization routines cannot take into consideration the specific
characteristics of the individual hardware on which the code is executed, such as the
power consumption characteristics of a specific processor. The various aspects use
virtualization techniques to optimize the code at runtime, using the specific
characteristics of the hardware on which the code is to be executed to reduce the

amount of energy required to execute the code.

[0037] FIGs. 3A and 3B illustrate the logical components in a typical computer
system implementing a virtual machine. As discussed above, virtual machines allow
application programs tied to a specific ISA to execute on hardware implementing a
different instruction set architecture. These virtual machines may be categorized into
two general categories: system virtual machines and process virtual machines.
System virtual machines allow the sharing of the underlying physical hardware
between different processes or applications, whereas process virtual machines support

a single process or application.

[0038] FIG. 3A is a layered architectural diagram illustrating logical layers of a
computing device 300 implementing a process virtual machine 310. The computer
system 300 may include hardware 308 components (e.g., execution hardware,
memory, I/O devices, etc.), and software components that include a virtualization

module 304, an operating system 306, and an application module 302.

[0039] As discussed above with reference to FIG. 1, hardware components are only
visible to the application programs through the operating system, and the ABI and API
effectively define the hardware features available to the application program. The
virtualization software module 304 performs logical operations at the ABI/API level
and emulates operating system calls and/or library calls, such that the application
process 302 communicates with the virtualization software module 304 in the same
manner it would otherwise communicate with hardware components (i.e., via

system/library calls). In this manner, the application process 302 views the

WO 2013/043350 PCT/US2012/053341
15

combination of the virtualization module 304, operating system 306 and hardware 308

as a single machine, such as the process virtual machine 310 illustrated in FIG. 3A.

[0040] As mentioned above, the process virtual machine 310 exists solely to support a
single application process 302. The process virtual machine 310 is created with the
process 302 and terminated when the process 302 finishes execution. The process 302
that runs on the virtual machine 310 is called “guest” and the underlying platform is
called “host.” Virtualization software 304 that implements the process virtual

machine is typically called runtime software (or simply “runtime”).

[0041] As an example, Dalvik is a process virtual machine (VM) on the Google™
Android operating system. The Android operating system converts Dalvik bytecode
to ARM executable object code prior to execution. However, the power consumption
characteristics of the hardware are not taken into consideration when generating the
ARM object code. Moreover, since the process virtual machine 310 is created with
the process 302 and terminated when the process 302 finishes, information about the

execution of the process 302 cannot be used to optimize other concurrent processes.

[0042] FIG. 3B is a layered architectural diagram illustrating the logical layers in a
computing device 350 implementing a system virtual machine 360. The computer
system may include hardware 358 components (e.g., execution hardware, memory,
I/O devices, etc.) and software components that include a virtualization module 356,
an operating system 354, and an application programs module 352. Software that runs
on top of the virtualization module 356 is referred to as “guest” software and the
underlying platform that supports the virtualization module is referred to as “host”

hardware.

[0043] The virtualization software module 356 may be logically situated between the
host hardware and the guest software. The virtualization software may run on the
actual hardware (native) or on top of an operating system (hosted), and is typically
referred to as a “hypervisor” or virtual machine monitor (VMM). The hypervisor

provides the guest software with virtualized hardware resources and/or emulates the

WO 2013/043350 PCT/US2012/053341
16

hardware ISA, such that the guest software can execute a different ISA than the ISA

implemented on the host hardware.

[0044] Unlike process virtual machines, a system virtual machine 360 provides a
complete environment on which the multiple operating systems can coexist.
Likewise, the host hardware platform may be configured to simultaneously support
multiple, isolated guest operating system environments. The isolation between the
concurrently executing operating systems adds a level of security to the system. For
example, if security on one guest operating system is breached, or if one guest
operating system suffers a failure, the software running on other guest systems is not
affected by the breach/failure. Moreover, the system virtual machine may use
information gained from the execution of one process to optimize other concurrent

processes.

[0045] As mentioned above, virtualization software may run on the actual hardware
(native) or on top of an operating system (hosted). In native configurations, the
virtualization software runs in the highest privilege mode available, and the guest
operating systems runs with reduced privileges, such that the virtualization software
can intercept and emulate all guest operating system actions that would normally
access or manipulate the hardware resources. In hosted configurations, the
virtualization software runs on top of an existing host operating system, and may rely
on the host operating system to provide device drivers and other lower-level services.
In either case, each of the guest operating systems (e.g., operating system 354)
communicates with the virtualization software module 356 in the same manner they
would communicate with the physical hardware 358. This allows each guest
operating system (e.g., operating system 354) to view the combination of the
virtualization module 356 and hardware 358 as a single, virtual machine, such as the

system virtual machine 360 illustrated in FIG. 3B.

[0046] The guest hardware may be emulated through interpretation, dynamic binary
translation (DBT), or a combination thereof. In interpretation configurations, the

virtual machine includes an interpreter that fetches, decodes, and emulates the

WO 2013/043350 PCT/US2012/053341
17

execution of individual guest instructions. In dynamic binary translation
configurations, the virtual machine includes a dynamic binary translator that converts
guest instructions written in a first ISA into host instructions written in a second ISA.
The dynamic binary translator may translate the guest instructions in groups or blocks
(as opposed to instruction-by-instruction), which may be saved in a software cache
and reused. This allows repeated executions of previously translated instructions to be
performed without retranslating the code, which improves efficiency and reduces

processing overhead.

[0047] As discussed above, dynamic binary translators convert guest instructions
written in a first ISA (e.g., virtual ISA, SPARC, etc) into host instructions written in a
second ISA (e.g., ARM, etc.). In the various aspects, the dynamic binary translator
414 may be configured to convert guest instructions written in a first ISA (e.g., ARM)
into host instructions written in the same ISA (e.g., ARM). In the various aspects, as
part of this translation process, the dynamic binary translator 414 may perform one or
more code optimization procedures to optimize the performance of the binary code
based on a model of the amount of power consumed at runtime by a specific piece of
hardware in performing a particular segment or sequence of code. In this processing,
the dynamic binary translator 414 may determine those machine operations which
consume the most power (e.g., multiply operations), determine if there are alternative
machine operations that achieve the same results (e.g., shift-and-add), and perform the
translation operations such that the translated code is optimized for power
consumption (e.g., replacing all multiply operations with shift-and-add operations,
etc.). In an aspect, the dynamic binary translator 414 may optimize the code by
performing an instruction-sequence to instruction-sequence translation of object code
written in a first ISA (e.g., ARM) into object code written in the same ISA (e.g.,
ARM).

[0048] FIG. 4 is a component diagram illustrating the logical components in a
computer device 400 implementing a system virtual machine 402 configured to
optimize the power behavior of applications 404 at runtime in accordance with the

various aspects. The system virtual machine 402 may operate at the hypervisor level,

WO 2013/043350 PCT/US2012/053341
18

beneath the operating system 406, and include one or more models of the energy
consumption 410. The system virtual machine 402 may also include a dynamic code
generator/runtime compiler 412 configured to generate and/or select one or more
optimization procedures specifically tailored to the execution characteristics of a
specific application program. The system virtual machine may also include a dynamic
binary translator 414 configured to translate the object code into power optimized
object code, tailoring application programs to the exact hardware on which the
applications execute. In an aspect, the code generator/runtime compiler 412 and the
dynamic binary translator 414 may be implemented as a single compiler unit 416. In
an aspect, the system virtual machine may be configured such that the compiler unit
416 operates on object code (as opposed to source code) and generates new object

code optimized for power efficiency (versus for performance/speed).

[0049] The power consumption characteristics of processors may depend both on the
type of hardware and on how the hardware processes the specific object code. For
example, the amount of power consumed to accomplish a given processing task may
vary from one type of device to another, depending upon their architectures.
Moreover, the power consumption characteristics of the same type of processor can
vary from lot-to-lot and chip-to-chip, in some cases up to thirty percent. Due to these
variances, application developers cannot write source code optimized to a particular
device or a particular set of devices, as such information is generally not available

until runtime.

[0050] In an aspect, the system virtual machine 402 compiler may be configured to
optimize the code at runtime, based on the actual power consumption characteristics
of the hardware. The virtual machine 402 may operate at the machine layer (as
opposed to the language layer), further enabling the dynamic binary translator 414 to
perform optimization procedures that optimize for power efficiency, rather than or in
addition to optimizing for processing speed. In an aspect, the compiler unit 416 may
use one or more compiler optimization routines to improve energy utilization based on

the runtime performance of executing code.

WO 2013/043350 PCT/US2012/053341
19

[0051] In an aspect, the dynamic binary translator 414 may use profile information
collected during interpretation and/or translation to optimize the binary code during
execution. In addition, the dynamic binary translator 414 may use power consumption
information collected at runtime to modify the optimization procedures, which may be
used by the dynamic binary translator 414 and/or code generator 412 to optimize
future translations and/or generate re-optimized versions of the current translation. As
the dynamic binary translator 414 pulls profiling data, the code generator 412 may
generate tags that allow the virtual machine to associate the profiling data with a
particular chunk of code. In an aspect, the dynamic binary translator 414 may use
profiling parameters and generated tags to measure the amount of energy required to
execute a specific chunk of code on a specific piece of hardware, and adjust the
optimization procedures based on the actual power characteristics of the specific

hardware.

[0052] The virtual machine 402 may maintain an inventory of available processor
cores and/or processors, which may include one or more systems on chips (SOCs).
The term “system on chip” (SOC) is used to refer to a single integrated circuit (IC)
chip that contains multiple resources and processors integrated on a single substrate.
The energy consumption models 410 may include a data-structure (e.g., list, array,
table, map, etc.) used to store information for monitoring each unit of object code
being processed on the different cores/processors, and the amount of power necessary
to process each unit of object code on a specific core/processor or identify alternative,
more energy efficient processors. The code generator may perform binary-to-binary
translation operations based on the energy consumption models to generate power

optimized code.

[0053] In various aspects energy consumption models 410 may be supplied by the
virtual machine authors, the authors of the application programs, and/or constructed
by the virtual machine 402 at runtime using a machine learning procedure. The
machine learning procedure may be generated and/or updated as the mobile device
runs and executes object code. For example, the virtual machine 402 may be

configured to construct the energy consumption models 410 based on information

WO 2013/043350 PCT/US2012/053341
20

collected from previous executions of similar code, by using machine learning

techniques and empirical data.

[0054] FIG. 5 illustrates an aspect method 500 of optimizing object code at runtime
for improved power consumption. As mentioned above, mobile device application
programs are typically distributed as compiled binary files that are tied to a specific
instruction set architecture (ISA) and depend on a specific operating system interface
(OSI). In block 502, the mobile device may receive a compiled binary code file, in a
virtual ISA/bytecode (e.g., Dalvik), or as object code (e.g., ARM executable). The
compiled binary file may be received by a mobile device operating system and
provided to a system virtual machine operating at the mobile device’s machine layer.
In block 504, the virtual machine may compile/translate the code and/or generate
optimized object code by applying one or more energy consumption models to the
code, which may be used by the virtual machine to determine how the object code will
be executed by the hardware and/or to recognize patterns or segments within the
object code that should be translated into a power-optimized alternative sequence of
operations. For example, the virtual machine may use the energy consumption models
to identify operators in the code (e.g., multiply operations) that consume an excessive
amount of energy, identify suitable alternative operations (e.g., shift-and-add
operations) to the identified operators, and perform a binary-to-binary translation of
the object code to generate optimized object code. The translated code may be saved
as it is generated so that the next execution of the application does not require
repeating the processes of analyzing and optimizing the code. In block 506, the

optimized code may be loaded onto the hardware and executed on a processor/core.

[0055] In an aspect, the virtual machine may continuously update the energy
consumption models and regenerate the object code based upon measurements of the
actual power consumed by previous executions of optimized object code. In this
manner, the actual performance of the mobile device processors may be used to
optimize the object code, rather than relying upon a fixed model that may not reflect

lot-to-lot variability in processor performance.

WO 2013/043350 PCT/US2012/053341
21

[0056] FIG. 6 is a component/process flow diagram illustrating example logical
components and data flows in a computing device configured to perform an aspect
method 600 of continuously updating the energy consumption models and
regenerating the object code. As mentioned above, the virtual machine may be
implemented on a mobile computing device having multiple cores and/or processors,
which may include one or more system on chips (SOCs). In the example illustrated in
FIG. 6, the mobile computing device includes a central processor unit 602, a Hexagon
QDSP core 604, and a graphics processing unit (GPU) 606. Each of these processors
may be instrumented to measure the power consumed during execution of the

generated object code.

[0057] A compilation unit 618 may generate compiler intermediate representation
chunks and send the code chunks to a target selector 616. The target selector 616 may
monitor the availability of the processors and select the most suitable processor for
executing a segment of code (e.g., least-utilized processor, processor requiring the
least amount of power, etc.). The target selector 616 may send a code chunk to a code
generator module 608, 610, 612, which may receive the code chunk, and perform an
instruction-sequence to instruction-sequence translation of the code to optimize the
code for the selected core/processor 602, 604, 606. The optimized code may then be

loaded onto the selected core/processor 602, 604, 606 for execution.

[0058] During execution, information may be collected on the amount of power
consumed by each processor in processing each code chunk. The executed code
chunks may be tagged and/or annotated with the collected power consumption
information. The measured power consumption information may be sent to a
performance prediction module 614, which compares the measured consumption
information with a performance prediction model. Results of the comparison between
the actual power consumption model and the predicted performance model may be fed
back to the target selector 616. The target selector 616 may use the comparison
results to update the power consumption models and optimization procedures, such
that the power consumption characteristics of subsequently generated object code

chunks are improved.

WO 2013/043350 PCT/US2012/053341
22

[0059] Various aspects may use the sum of the power savings and the energy cost of
performing the compile/translate and optimization operations to determine a power
function. The power function may be used to determine the net power savings
associated with each power model and/or to determine whether the optimizations
should be performed. For example, the power function may be used to determine if
the amount of energy required to perform an optimization exceeds the amount of
energy saved by the optimization, in which case the performance of the optimization

may be cancelled or delayed.

[0060] In an aspect, the system virtual machine may calculate power savings based on
power consumption values collected at runtime. The system virtual machine may
periodically update the power consumptions models and re-generate the code chunks
based on a combination of measured power consumption characteristics and
calculated power savings. Power savings may be calculated using a linear polynomial
function, or as the amount of power saved over a calculated time frame, offset by the
amount of work required to perform the compile/translate, and optimization

operations.

[0061] In an aspect, the hardware may be instrumented with additional circuitry to
measure the power consumption characteristics of executing code. The system virtual
machine may be configured to read the measurements made by the additional
circuitry, and to use the measured power consumption characteristics to perform

optimization procedures.

[0062] FIG. 7 illustrates an aspect method 700 for updating the energy consumption
models and continuously re-optimizing the object code at runtime. In block 702, the
virtual machine compilation unit may generate native object code units for execution
on one or more processors. The object code units may be tagged and/or annotated
when they are optimized and/or transformed. The tags/annotations may be used by
the virtual machine to track the amount of power consumed by each code unit. In
block 704, the virtual machine may execute one or more of the generated code units

on a processor instrumented with additional circuitry to measure the power

WO 2013/043350 PCT/US2012/053341
23

consumption characteristics of executing the code units. In block 706, power
consumption information may be collected from the processor. In block 708, the
measured power consumption information may be compared with a performance
prediction model, and the results of the comparison between the actual power
consumption and the predicted performance may be stored in a memory. In block
710, the stored results may be used to update the performance models and/or power
models used by the virtual machine compilation unit to generate native object code
units. In block 712, the virtual machine compilation unit may re-generate previously
optimized object code or code segments that have not yet been executed, and execute
the regenerated code in block 704. In this manner, comparisons between the actual
power consumption and the predicted performance may be fed back to the compilation
unit so that better optimization methods can be identified and used for subsequent

object code optimizations.

[0063] The comparisons may also be used to identify previous optimization
procedures that resulted in higher, rather than lower, power consumption. For
example, the virtual machine may execute an optimized code unit on a processor
instrumented with the additional circuitry to measure the power consumption, measure
the actual amount of power consumed by the optimized code, and if the actual amount
of power consumed exceeds the amount of power consumed by the original code,
back off on performing similar transforms on other units of code. In this manner, the
virtual machine may be configured to learn over time which binary transforms are
effective on a specific unit of hardware and which transforms are not, and make

adjustments to the models as necessary.

[0064] In the various aspects, a variety of feedback and machine learning techniques
may be used. Code optimization rule sets may be changed or updated when the
measured results depart from the predicted model. Machine perturb and test method
experiments may be performed, such as by changing an optimization rule, comparing
the measured power consumption of the optimized code before and after the change to
the optimization rule, and selecting for use the optimization rule that renders the best

results. In an aspect, the power performance of different lengths of optimized code

WO 2013/043350 PCT/US2012/053341
24

may be compared to one another to recognize patterns to enable better optimization to

occur.

[0065] The feedback and learning mechanisms present a number of advantages. For
example, the mobile device developer is not required to generate the device-specific
model of power consumption because the models are automatically generated by the
mobile device itself through machine learning, which simplifies device development.
As another example, the feedback and learning mechanisms allow the various aspects
to accommodate for changes in hardware that occur after the initial design is set (e.g.,
addition of new memory, substitution of a processor, etc.) after the model is designed.
The feedback and learning mechanisms also allows the various aspects to better
account for lot-to-lot and line-to-line variability in processor power consumption
characteristics, which can vary by up to twenty percent. For example, while some of
the chips made in a particular die may benefit from optimizing object code in a
particular manner (e.g., using shift and add operations instead of multiplication
operations), a few may actually experience higher power consumption from the same
optimization due to the lot-to-lot and line-to-line variability. The various aspects may
account for such variability by optimizing code based on the individual characteristics

of the chip/hardware.

[0066] As mentioned above, various aspects may use the sum of the power savings
and the energy cost of performing the compile/translate and optimization operations to
determine a power function, which may be used to determine whether the
optimizations should be performed. For example, the power function may be used to
determine if the amount of energy required to perform the optimization exceeds the
amount of energy saved by the optimization. In an aspect, models associated with
optimization procedures that require more energy to perform than the amount of
energy conserved by the optimized code may be stored in a memory, and performed

when the computing device is not running on battery power.

[0067] FIG. 8 is a process flow diagram illustrating an aspect method 800 for

performing the object code optimizations when the mobile device is plugged into a

WO 2013/043350 PCT/US2012/053341
25

power source and is not running on battery power. In block 802, the virtual machine
may generate the optimized object code units and begin execution, in accordance with
any of the aspects discussed above. In block 804, the virtual machine may determine
that further optimizations are available and store information pertaining to the
available optimizations in a memory. In block 806, the virtual machine may continue
the execution of the code without performing any of the identified optimizations. In
determination block 808, the computing device may perform operations to determine
if a new power source (e.g., a wired power connection) is available to the device. If a
new power source is not available (determination block 808 = “No”), in block 806 the
virtual machine may continue executing the code without performing any of the
identified optimizations. If, on the other hand, the processor determines that a new
power source is available (determination block 808 = “Yes”), in block 810 the virtual
machine may retrieve the stored optimization information from memory and perform
the optimizations (update the power models, re-generate object code, etc.) and store
the optimized code in memory. In this manner, the optimization procedures may be
performed only if the energy costs associated with performing the optimizations do

not exceed the energy gains resulting from the optimizations.

[0068] In an aspect, the optimized object code resulting from the optimizations may
be saved in memory and used for subsequent executions of the code. The
optimizations may be performed in conjunction with a model of energy consumption
that is specific to the particular hardware, which may be provided by the manufacture
and/or learned by the mobile device during execution. In this manner, the various
optimization procedures discussed above may be performed at runtime, before
runtime, when the code is loaded, or the first time the process is executed. The
various optimization procedures may be part of the runtime code generation process or

part of the static code generation process.

[0069] It should be understood that, in the various aspects, performing optimizations
when connected to power is not exclusive to performing optimizing at runtime. For
example, the system virtual machine may perform optimizations as needed (e.g.,

during execution) or ahead of time (e.g., when connected to power and idle).

WO 2013/043350 PCT/US2012/053341
26

[0070] It should also be understood that the decisions regarding when to apply the
optimization may be independent of the decisions regarding when to gather
performance data. The various aspects may gather power consumption data during
execution of the code and not act on the collected data until a condition is met (e.g.,

device is connected to power).

[0071] Typical mobile devices 900 suitable for use with the various aspects will have
in common the components illustrated in FIG. 9. For example, an exemplary mobile
device 900 may include a processor 902 coupled to internal memory 901, a display
904, and to a speaker 964. Additionally, the mobile device may have an antenna 924
for sending and receiving electromagnetic radiation coupled to the processor 902. In
some aspects, the mobile device 900 may include one or more specialized or general
purpose processors 905, 924 which may include systems on chips. Mobile devices
typically also include a key pad or miniature keyboard and menu selection buttons or

rocker switches for receiving user inputs.

[0072] FIG. 10 illustrates another exemplary mobile device 1000 suitable for use with
the various aspects. For example, the mobile device 1000 may include a processor
1002 coupled to internal memory 1001, and a display 1009. Additionally, the mobile
device may have a communication port 1005 for sending and receiving information.
The mobile device 1000 may also include a keyboard 1008 and selection buttons 1007

for receiving user inputs.

[0073] The processors 902, 905, 924, 1002 may be any programmable
microprocessor, microcomputer, or multiple processor chip or chips that can be
configured by processor-executable software instructions (applications) to perform a
variety of functions, including the functions of the various aspects described herein.
Typically, software applications and processor-executable instructions may be stored
in the internal memory 901, 1001 before they are accessed and loaded into the
processors 902, 905, 924, 1002. In some mobile devices, the processors 902, 903,
924, 1002 may include internal memory sufficient to store the application software

instructions. In some mobile devices, the secure memory may be in a separate

WO 2013/043350 PCT/US2012/053341
27

memory chip coupled to the processor 902, 905, 924, 1002. In many mobile devices,
the internal memory 901, 1001 may be a volatile or nonvolatile memory, such as flash
memory, or a mixture of both. For the purposes of this description, a general
reference to memory refers to all memory accessible by the processors 902, 905, 924,
1002 including internal memory, removable memory plugged into the mobile device,

and memory within the processors.

[0074] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples and are not intended to require or imply that
the steps of the various aspects must be performed in the order presented. As will be
appreciated by one of skill in the art the order of steps in the foregoing aspects may be

29 L&

performed in any order. Words such as “thereafter,” “then,” “next,” etc. are not
intended to limit the order of the steps; these words are simply used to guide the
reader through the description of the methods. Further, any reference to claim

2% <C

elements in the singular, for example, using the articles “a,” “an” or “the” is not to be

construed as limiting the element to the singular.

[0075] The various illustrative logical blocks, modules, circuits, and algorithm steps
described in connection with the aspects disclosed herein may be implemented as
electronic hardware, computer software, or combinations of both. To clearly illustrate
this interchangeability of hardware and software, various illustrative components,
blocks, modules, circuits, and steps have been described above generally in terms of
their functionality. Whether such functionality is implemented as hardware or
software depends upon the particular application and design constraints imposed on
the overall system. Skilled artisans may implement the described functionality in
varying ways for each particular application, but such implementation decisions
should not be interpreted as causing a departure from the scope of the present

invention.

[0076] The hardware used to implement the various illustrative logics, logical blocks,
modules, and circuits described in connection with the aspects disclosed herein may

be implemented or performed with a general purpose processor, a digital signal

WO 2013/043350 PCT/US2012/053341
28

processor (DSP), a DSP within a multimedia broadcast receiver chip, an application
specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other
programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions described
herein. A general-purpose processor may be a microprocessor, but, in the alternative,
the processor may be any conventional processor, controller, microcontroller, or state
machine. A processor may also be implemented as a combination of computing
devices, e.g., a combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more microprocessors in conjunction with a DSP core, or any
other such configuration. Alternatively, some steps or methods may be performed by

circuitry that is specific to a given function.

[0077] In one or more exemplary aspects, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored on or transmitted over as one or
more instructions or code on a computer-readable medium. The steps of a method or
algorithm disclosed herein may be embodied in a processor-executable software
module executed which may reside on a computer-readable medium. Computer-
readable media includes both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place
to another. A storage media may be any available media that may be accessed by a
computer. By way of example, and not limitation, such computer-readable media may
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that may be used
to carry or store desired program code in the form of instructions or data structures
and that may be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio,
and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or

wireless technologies such as infrared, radio, and microwave are included in the

WO 2013/043350 PCT/US2012/053341
29

definition of medium. Disk and disc, as used herein, includes compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc.
Combinations of the above should also be included within the scope of computer-
readable media. Additionally, the operations of a method or algorithm may reside as
one or any combination or set of codes and/or instructions on a machine readable
medium and/or computer-readable medium, which may be incorporated into a

computer program product.

[0078] The preceding description of the disclosed embodiments is provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these embodiments will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other embodiments
without departing from the spirit or scope of the invention. Thus, the present
invention is not intended to be limited to the embodiments shown herein but is to be
accorded the widest scope consistent with the following claims and the principles and

novel features disclosed herein.

WO 2013/043350 PCT/US2012/053341
30

CLAIMS
What is claimed is:

1. A method for optimizing object code for power savings during execution on a
computing device, comprising:

receiving compiled binary object code in a computing device’s system
software;

analyzing the received object code in a dynamic binary translator operating at
the machine layer to identify code segments that can be optimized for power savings;

performing in the dynamic binary translator an instruction-sequence to
instruction-sequence translation of the received object code to generate power
optimized object code; and

executing the power optimized object code on a processor of the computing

device.

2. The method of claim 1, wherein the system software which receives the compiled

binary object code is one of a system virtual machine or a hypervisor.

3. The method of claim 1, wherein the system software which receives the compiled

binary object code is an operating system.

4. The method of claim 1, wherein performing in the dynamic binary translator an
instruction-sequence to instruction-sequence translation of the received object code to
generate power optimized object code comprises translating a first instruction set

architecture into a second instruction set architecture.

5. The method of claim 4, wherein the first instruction set architecture is the same

instruction set architecture as the second instruction set architecture.

6. The method of claim 1, wherein analyzing the received object code in a dynamic

binary translator operating at the machine layer to identify code segments that can be

WO 2013/043350 PCT/US2012/053341
31

optimized for power savings comprises determining whether there are alternative
operations that achieve the same results as the identified object code operations, and
wherein performing in the dynamic binary translator an instruction-sequence
to instruction-sequence translation of the received object code to generate power
optimized object code comprises replacing, during translation, the identified object

code operations with the alternative operations.

7. The method of claim 1, further comprising sensing a connection to a new power
source, wherein performing in the dynamic binary translator an instruction-sequence
to instruction-sequence translation of the received object code to generate power
optimized object code is performed when connection to the new power source is

sensed.

8. The method of claim 1, wherein analyzing the received object code comprises
using a power consumption model to identify segments of object code that can be

optimized for power efficiency.

9. The method of claim 8, further comprising:

measuring an amount of power consumed in the execution of segments of
power optimized object code;

comparing the measured amount of power consumed to predictions of the
power consumption model; and

modifying the power consumption model based on a result of the comparison.

10. A computing device configured to optimize object code during execution for
improved power savings, comprising:
means for receiving compiled binary object code in system software;
means for analyzing the received object code in a dynamic binary translator
operating at the machine layer to identify code segments that can be optimized for

power savings;

WO 2013/043350 PCT/US2012/053341
32

means for performing in the dynamic binary translator an instruction-
sequence to instruction-sequence translation of the received object code to generate
power optimized object code; and

means for executing the power optimized object code on a processor of the

computing device.

11. The computing device of claim 10, wherein means for receiving compiled binary
object code in system software comprises means receiving the compiled binary object

code in one of a system virtual machine or a hypervisor.

12. The computing device of claim 10, wherein means for receiving compiled binary
object code in system software comprises means receiving the compiled binary object

code in an operating system.

13. The computing device of claim 10, wherein means for performing in the dynamic
binary translator an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code comprises means for

translating a first instruction set architecture into a second instruction set architecture.

14. The computing device of claim 13, wherein means for translating a first
instruction set architecture into a second instruction set architecture comprises means
for translating the first instruction set architecture into an instruction set architecture

that is the same as the second instruction set architecture.

15. The computing device of claim 10, wherein:
means for analyzing the received object code in a dynamic binary translator
operating at the machine layer to identify code segments that can be optimized for
power savings comprises means for determining whether there are alternative
operations that achieve the same results as the identified object code operations; and
means for performing in the dynamic binary translator an instruction-

sequence to instruction-sequence translation of the received object code to generate

WO 2013/043350 PCT/US2012/053341
33

power optimized object code comprises means for replacing, during translation, the

identified object code operations with the alternative operations.

16. The computing device of claim 10, further comprising means for sensing a
connection to a new power source, wherein means for performing in the dynamic
binary translator an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code comprises means for
translating the received code to generate power optimized object code when

connection to the new power source is sensed.

17. The computing device of claim 10, wherein means for analyzing the received
object code comprises means for using a power consumption model to identify

segments of object code that can be optimized for power efficiency.

18. The computing device of claim 10, further comprising:

means for measuring an amount of power consumed in the execution of
segments of power optimized object code;

means for comparing the measured amount of power consumed to predictions
of the power consumption model; and

means for modifying the power consumption model based on a result of the

comparison.

19. A computing device, comprising:
a memory; and
one or more processors coupled to the memory, wherein the one or more
processors are configured with processor-executable instructions so the computing
device performs operations comprising:
receiving compiled binary object code in system software;
analyzing the received object code in a dynamic binary translator
operating at the machine layer to identify code segments that can be

optimized for power savings;

WO 2013/043350 PCT/US2012/053341
34

performing in the dynamic binary translator an instruction-sequence
to instruction-sequence translation of the received object code to generate
power optimized object code; and

executing the power optimized object code.

20. The computing device of claim 19, wherein the one or more processors are
configured with processor-executable instructions so the computing device performs
operations such that receiving compiled binary object code in system software
comprises receiving the compiled binary object code in one of a system virtual

machine or a hypervisor.

21. The computing device of claim 19, wherein the one or more processors are
configured with processor-executable instructions so the computing device performs
operations such that receiving compiled binary object code in system software

comprises receiving the compiled binary object code in an operating system.

22. The computing device of claim 19, wherein the one or more processors are
configured with processor-executable instructions so the computing device performs
operations such that performing in the dynamic binary translator process an
instruction-sequence to instruction-sequence translation of the received object code to
generate power optimized object code comprises translating a first instruction set

architecture into a second instruction set architecture.

23. The computing device of claim 22, wherein the one or more processors are
configured with processor-executable instructions so the computing device performs
operations such that the first instruction set architecture is the same as the second

instruction set architecture.

WO 2013/043350 PCT/US2012/053341
35

24. The computing device of claim 19, wherein the one or more processors are
configured with processor-executable instructions so the computing device performs
operations such that:

analyzing the received object code in a dynamic binary translator operating at
the machine layer to identify code segments that can be optimized for power savings
comprises determining whether there are alternative operations that achieve the same
results as the identified object code operations; and

performing in the dynamic binary translator an instruction-sequence to
instruction-sequence translation of the received object code to generate power
optimized object code comprises replacing, during translation, the identified object

code operations with the alternative operations.

25. The computing device of claim 19, wherein:

the one or more processors are configured with processor-executable
instructions so the computing device performs operations further comprising sensing a
connection to a new power source; and

the one or more processors are configured with processor-executable
instructions so the computing device performs operations such that performing in the
dynamic binary translator an instruction-sequence to instruction-sequence translation
of the received object code to generate power optimized object code is performed

when connection to the new power source is sensed.

26. The computing device of claim 19, wherein the one or more processors are
configured with processor-executable instructions so the computing device performs
operations such that analyzing the received object code comprises using a power
consumption model to identify segments of object code that can be optimized for

power efficiency.

WO 2013/043350 PCT/US2012/053341
36

27. The computing device of claim 26, wherein the one or more processors are
configured with processor-executable instructions so the computing device performs
operations further comprising:

measuring an amount of power consumed in the execution of segments of
power optimized object code;

comparing the measured amount of power consumed to predictions of the
power consumption model; and

modifying the power consumption model based on a result of the comparison.

28. A non-transitory processor-readable storage medium having stored thereon
processor-executable software instructions configured to cause a processor to perform
operations for optimizing object code for power savings during execution on a
computing device, the operations comprising:

receiving compiled binary object code in system software;

analyzing the received object code in a dynamic binary translator operating at
the machine layer to identify code segments that can be optimized for power savings;

performing in the dynamic binary translator an instruction-sequence to
instruction-sequence translation of the received object code to generate power
optimized object code; and

executing the power optimized object code on a processor of the computing

device.

29. The non-transitory processor-readable storage medium of claim 28, wherein the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that receiving compiled binary object code in system
software comprises receiving the compiled binary object code in one of a system

virtual machine or a hypervisor.

30. The non-transitory processor-readable storage medium of claim 28, wherein the

stored processor-executable software instructions are configured to cause a processor

WO 2013/043350 PCT/US2012/053341
37

to perform operations such that receiving compiled binary object code in system

software comprises receiving the compiled binary object code in an operating system.

31. The non-transitory processor-readable storage medium of claim 28, wherein the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that performing in the dynamic binary translator an
instruction-sequence to instruction-sequence translation of the received object code to
generate power optimized object code comprises translating a first instruction set

architecture into a second instruction set architecture.

32. The non-transitory processor-readable storage medium of claim 31, wherein the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that the first instruction set architecture is the same as the

second instruction set architecture.

33. The non-transitory processor-readable storage medium of claim 28, wherein the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that:

analyzing the received object code in a dynamic binary translator process
operating at the machine layer to identify code segments that can be optimized for
power savings comprises determining whether there are alternative operations that
achieve the same results as the identified object code operations; and

performing in the dynamic binary translator process an instruction-sequence
to instruction-sequence translation of the received object code to generate power
optimized object code comprises replacing, during translation, the identified object

code operations with the alternative operations.

34. The non-transitory processor-readable storage medium of claim 28, wherein:
the stored processor-executable software instructions are configured to cause
a processor to perform operations comprising sensing a connection to a new power

source; and

WO 2013/043350 PCT/US2012/053341
38

the stored processor-executable software instructions are further configured to
cause a processor to perform operations such that performing in the dynamic binary
translator process an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code is performed when

connection to the new power source is sensed.

35. The non-transitory processor-readable storage medium of claim 28, wherein the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that analyzing the received object code comprises using a
power consumption model to identify segments of object code that can be optimized

for power efficiency.

36. The non-transitory processor-readable storage medium of claim 35, wherein the
stored processor-executable software instructions are configured to cause a processor
to perform operations further comprising:

measuring an amount of power consumed in the execution of segments of
power optimized object code;

comparing the measured amount of power consumed to predictions of the
power consumption model; and

modifying the power consumption model based on a result of the comparison.

37. A system on chip, comprising:
a memory; and
one or more cores coupled to the memory, wherein the one or more cores are
configured with processor-executable instructions so the system on chip performs
operations comprising:
receiving in an operating system compiled binary object code;
analyzing the received object code in a dynamic binary translator
process operating at the machine layer to identify code segments that can be

optimized for power savings;

WO 2013/043350 PCT/US2012/053341
39

performing in the dynamic binary translator process an instruction-
sequence to instruction-sequence translation of the received object code to
generate power optimized object code; and

executing the power optimized object code.

38. The system on chip of claim 37, wherein the one or more cores are configured
with processor-executable instructions so the system on chip performs operations such
that performing in the dynamic binary translator process an instruction-sequence to
instruction-sequence translation of the received object code to generate power
optimized object code comprises translating a first instruction set architecture into a

second instruction set architecture.

39. The system on chip of claim 38, wherein the one or more cores are configured
with processor-executable instructions so the system on chip performs operations such
that the first instruction set architecture is the same as the second instruction set

architecture.

40. The system on chip of claim 37, wherein the one or more cores are configured
with processor-executable instructions so the system on chip performs operations such
that:

analyzing the received object code in a dynamic binary translator process
operating at the machine layer to identify code segments that can be optimized for
power savings comprises determining whether there are alternative operations that
achieve the same results as the identified object code operations; and

performing in the dynamic binary translator process an instruction-sequence
to instruction-sequence translation of the received object code to generate power
optimized object code comprises replacing, during translation, the identified object

code operations with the alternative operations.

WO 2013/043350 PCT/US2012/053341
40

41. The system on chip of claim 37, wherein:

the one or more cores are configured with processor-executable instructions
so the system on chip performs operations further comprising sensing a connection to
a new power source; and

the one or more cores are configured with processor-executable instructions
so the system on chip performs operations such that performing in the dynamic binary
translator process an instruction-sequence to instruction-sequence translation of the
received object code to generate power optimized object code is performed when

connection to the new power source is sensed.

42. The system on chip of claim 37, wherein the one or more cores are configured
with processor-executable instructions so the system on chip performs operations such
that analyzing the received object code comprises using a power consumption model

to identify segments of object code that can be optimized for power efficiency.

43. The system on chip of claim 42, wherein the one or more cores are configured
with processor-executable instructions so the system on chip performs operations
comprising:

measuring an amount of power consumed in the execution of segments of
power optimized object code;

comparing the measured amount of power consumed to predictions of the
power consumption model; and

modifying the power consumption model based on a result of the comparison.

WO 2013/043350 PCT/US2012/053341

1/12
100
Application Programs ~ 112
API
Libraries 110
ABI
Operating System ~108
Software
—— — ISA ———
Hardware
Execution Hardware ~102
~ 104
106 ~
I/O Devices Memory

FIG. 1

WO 2013/043350 PCT/US2012/053341

2/12

High Level Language Code / Source Code

~ 202

!

Compiler Front End

I

Bytecode / Intermediate Code

~— 204

I

Compiler Back End

'

Binary Code / Object Code
(e.g., ARM executable)

~ 206

Distribution

Loader

I

Memory Image

~ 208

FIG. 2A

200

WO 2013/043350 PCT/US2012/053341
3/12 250

High Level Language Code / Source Code |~ 252

I

A 4

Compiler

~ 254
Virtual ISA / Bytecode

Distribution

Virtual Machine Loader

I

Virtual Memory Image ~ 256

;

Virtual Machine Interpreter/Compiler

I

Host Machine Code

~ 258

FIG. 2B

WO 2013/043350 PCT/US2012/053341

4/12
300
Application }—302 302— Application
Guest <4 Process Process
St
Runtime Virtualization ~ [~304 310
Software Module
Operating
Process
System L 1 306 Virtual
Machine
Host <
~ 308
Hardware

FIG. 3A

WO 2013/043350 PCT/US2012/053341

5/12
350
~ 352 352
Applications Applications
Guest <
Operating [—1—3% 3%~ Operating
System System
Virtualization }_356 System
Hypervisor < Module 360— Virtual
Machine
~ 358
Host < Hardware

FIG. 3B

WO 2013/043350 PCT/US2012/053341

6/12
400
404 L
Applications
406 N\
Operating System
402 — (1 410
\
Energy Consumption Models)
416
System o
Virtual
Machine Code Generator/Runtime Compile)
< 414
Dynamic Binary Translator)
408
Processors/System On Chips (SOCs)
\.

FIG. 4

WO 2013/043350 PCT/US2012/053341
7/12

500

502—| Receive program code as Virtual ISA, Bytecode, or Object Code

'

Translate Program Code into Object Code and/or Optimize the

504 — Program Code using Power Models
506 ~— Execute Optimized Code on Processor

FIG. 5

WO 2013/043350 PCT/US2012/053341

8/12
600
618
616 674
I : Target I Performance
Compilation Unit Selector Predication Module
A
(4 1
Reoptimize
; , Monitor
AL
XNy 60y 612y r)
Code Code Code
Generator] | Generator] | Generator
602 604 606
_ _ _
Snapdragon Hexagon Adreno
CPU QDSP GPU

—

FIG. 6

WO 2013/043350 PCT/US2012/053341
9/12

700

702~ Generate Native Code

l

704 Execute Code on Processor Instrumented with Additional
Hardware Circuitry for Measuring Power Consumption)

Y

Measure Power Consumption Of Executing Code Using the
Additional Hardware Circuitry

.

Compare Measured Power Consumption Information to Model and
Store Results of Comparison

.

Update Power Models and/or Compilation Unit Parameters Using
the Power Consumption Information

l

712~ Re-Generate Code Using Power Consumption Information

L Y,

706 —

708 —

710~

FIG. 7

WO 2013/043350

PCT/US2012/053341
10/12
¥,
802~— Generate Optimized Code and Begin Execution D
804 — Determine Further Code Optimizations are Available
806— Continue Execution Without Re-optimizing the Code
808
Power Source
810w Perform Operations to Update Models and

Re-optimize the Object Code

L

FIG. 8

0

WO 2013/043350 PCT/US2012/053341
11/12

FIG. 9

PCT/US2012/053341

WO 2013/043350

12/12

>’I 000

006

1

FIG. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/053341

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F1/32
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, PAJ

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figures 1-4

figures 1-15b

AL) 4 May 2006 (2006-05-04)

figures 1-9

A US 2006/095902 Al (NAKAIKE TAKUYA [JP] ET

paragraph [0025] - paragraph [0089]

X US 2005/229149 Al (MUNTER JOEL D [US] ET 1-43
AL) 13 October 2005 (2005-10-13)
paragraph [0014] - paragraph [0035]

X EP 0 926 596 A2 (TEXAS INSTRUMENTS INC 1-43
[US]) 30 June 1999 (1999-06-30)
paragraph [0031] - paragraph [0084]

9,18,27,
36

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

21 December 2012

Date of mailing of the international search report

10/01/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Baldan, Marco

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/053341
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005229149 Al 13-10-2005 NONE
EP 0926596 A2 30-06-1999 DE 69838374 T2 29-05-2008
EP 0926596 A2 30-06-1999
JP 3959194 B2 15-08-2007
JP 11249896 A 17-09-1999
US 6195756 Bl 27-02-2001
US 2006095902 Al 04-05-2006 JP 2006127302 A 18-05-2006
US 2006095902 Al 04-05-2006
US 2009077351 Al 19-03-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - wo-search-report
	Page 56 - wo-search-report

