Title: CLONAL EXPANSION OF B CELLS

Abstract: The present invention provides recombinant proteins comprising the amino acid sequence of an intracellular segment of CD40 and an amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain. The recombinant proteins according to the present invention are - useful for inducing clonal expansion of a B cell having a predetermined antigen-specificity without the need for T cell or CD40L mediated co-stimulation. Thus, the present invention provides tools for clonal expansion of B cells specific for an antigen of interest and the production of B cells secreting antibodies specific for an antigen of interest. The recombinant proteins of the present invention may also be used for generating fully human monoclonal antibodies with a predetermined antigen-specificity from the B cell repertoire of a human subject.
CLONAL EXPANSION OF B CELLS

TECHNICAL FIELD OF THE INVENTION

The present invention is in the field of antibody production, preferably human antibody production. The present invention provides recombinant proteins that are useful for inducing clonal expansion of B cells and allow for the generation of antibody secreting B cells specific for a predetermined antigen without the need for T cell or CD40 ligand (CD40L) mediated co-stimulation. Using the recombinant proteins of the present invention it is, for example, possible to induce proliferation and differentiation to Ig secretion of B cells having a desired antigen-specificity from the B cell repertoire of a subject, preferably a human subject. Thus, the present invention provides tools for the generation of fully human monoclonal antibodies with predetermined antigen-specificity which are useful, for example, in immunotherapy such as in tumor-immunotherapy.

BACKGROUND OF THE INVENTION

Antibody-based therapies have gained importance in a variety of medical fields and have emerged as the most promising therapeutic approach in oncology. Antibodies against extracellular, cell surface associated, or secreted antigens associated with specific disease conditions are potentially of diagnostic, prognostic, and or therapeutic value. It has been shown that the therapeutic administration of monoclonal antibodies (mAb) directed against proteins associated with diseases is an effective therapy method of acute and chronic diseases such as cancers or rheumatoid arthritis. Examples for mAb targeted structures are the soluble protein tumor necrosis factor alpha (TNF-a) for rheumatoid arthritis, Crohn's disease and psoriasis (mAb preparation: Infliximab and Adalimumab), as well as the cell surface proteins CD20 for non-Hodgkin lymphoma (mAb preparation: e.g., Rituximab) and HER2/neu receptor (mAb preparation: Trastuzumab [Herceptin]) for breast cancer.

The development of the monoclonal antibody (mAb) technology represented a considerable achievement and resulted in numerous applications. However, in the field of immunotherapy, rodent mAbs have proved to be of limited use because of their strong immunogenicity in humans. Due to their low immunogenicity in patients, fully human mAbs are becoming increasingly important for the treatment of a growing number of diseases, including cancer, infectious disease, and immune disorders such as autoimmune diseases. The generation of
monoclonal immunotherapeutically effective antibodies (using hybridoma or phage display
techniques and subsequent chimerization and humanization, respectively), however, is time
consuming and cost intensive which has prevented a broad clinical application so far.

Thus, there is a need for tools in the field of antibody-based immunotherapy which allow for
the generation of fully human antibodies, preferably monoclonal antibodies, recognizing an
antigen of interest in an easy, time and cost saving manner.

For full activation, B cells require two independent signals (Fig. 1). The first signal is antigen-
specific and is mediated by the B cell receptor (BCR) recognizing its antigen. The BCR
specifically binds the antigen and induces by receptor-clustering a signal-transduction cascade
which leads to the transcriptional activation of genes associated with B cell activation. Upon
BCR internalization, the antigen is processed and presented on MHC class II molecules. T
cells which recognize the antigen in the context of the MHC class II molecule express CD40L
on their surface and thus provide the second signal required for B cell activation, the
stimulation of CD40 localized at the plasma membrane of B cells with its ligand CD40L.
Activation of B cells results in the proliferation, differentiation, and antibody secretion.

The present invention provides tools for the isolation of antigen-specific B lymphocytes
which is based on the antigen-specific expansion of a certain population of B lymphocytes.
The present invention provides the possibility to imitate the two activation signals in vitro
without the need for T cell co-stimulation. By transfection of a large number of B cells with
the recombinant protein of the present invention and contacting the B cells with an antigen of
interest, the B cell repertoire of a subject, for example, of a patient, can be screened for B
cells having a defined antigen-specificity. The present invention allows for screening of a
polyclonal B cell population and activation of monoclonal B cells and thus for the generation
of antibodies, preferably human antibodies, which are specific for an antigen of interest.

SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a recombinant protein comprising:
(a) the amino acid sequence of an intracellular segment of CD40 or of a variant thereof
which is capable of mediating the intracellular CD40 signal transduction and
(b) an amino acid sequence mediating the association of the recombinant protein with the
constant region of an immunoglobulin heavy chain,
wherein the amino acid sequences under (a) and (b) are linked via
(c) an amino acid sequence comprising the amino acid sequence of a transmembrane domain.

In a preferred embodiment, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain comprises the amino acid sequence of a segment of an immunoglobulin constant region or a variant thereof, preferably the CH2 region or the CH2 and the CH3 region of an immunoglobulin, preferably of IgG1.

In a preferred embodiment, the transmembrane domain is selected from the group consisting of the transmembrane domain of a B cell receptor (BCR) and the transmembrane domain of CD40.

In a further aspect, the present invention provides a polynucleotide comprising a nucleic acid sequence encoding the recombinant protein of the first aspect of the present invention. Preferably, the polynucleotide is RNA, preferably in vitro transcribed RNA (IVT RNA).

In further aspects, the present invention provides a vector comprising the polynucleotide of the present invention and a host cell comprising the polynucleotide or the vector of the present invention. In a preferred embodiment, the host cell of the present invention is a B cell, preferably a CD19+ B cell, preferably a human B cell.

In further aspects, the present invention provides methods using the recombinant proteins of the present invention. In particular, the present invention provides a method for inducing clonal expansion of a B cell specific for an antigen of interest and a method for producing B cells secreting antibodies specific for an antigen of interest, said methods comprising the steps of:

(i) expressing in B cells the recombinant protein of the present invention, and

(ii) contacting the B cells of (i) with the antigen of interest,

In preferred embodiments of the methods of the present invention, the B cells carry a B cell receptor (BCR) on their surface. Preferably, the B cells are CD19+ B cells. It is particularly preferred that the B cells in step (i) are a mixture of B cells comprising a multitude of antigen-
specificities, preferably comprising the B cell repertoire of a subject or a portion thereof. In a preferred embodiment, the B cells are harvested from a subject prior to step (i), preferably from a human subject. It is preferred that the B cells are harvested from peripheral blood of the subject, preferably by density gradient centrifugation and magnetic cell sorting.

In preferred embodiment of the methods of the present invention, the B cells are transfected with a polynucleotide comprising a nucleic acid encoding the recombinant protein of the present invention to express said protein. It is particularly preferred that the polynucleotide used for transfection of the B cells is RNA, preferably in vitro transcribed RNA (IVT RNA).

In particularly preferred embodiments of the methods of the present invention, the B cells are further contacted with cytokines, preferably with interleukin 4 (IL4) and/or interleukin 21 (IL21) in step (ii).

In preferred embodiments of the methods of the present invention, the B cells are not contacted with T cells or CD40 ligand (CD40L).

In a further aspect, the present invention provides a method for generation and clonal expansion of autoreactive B cells, i.e., B cells generating autoreactive antibodies, comprising the step of inducing clonal expansion of B cells according to the methods of the present invention, preferably using antigens for vanquishing self tolerance.

In a further aspect, the present invention provides a method for producing antibodies specific to an antigen of interest, said method comprising the steps of:

(i) inducing clonal expansion of B cells or producing B cells secreting antibodies according to the methods of the present invention, and

(ii) obtaining antibodies produced by the B cells.

In a preferred embodiment, the method of this aspect of the present invention further comprises the steps of selecting proliferating B cells, preferably selecting a clone of the proliferating B cells, and culturing said selected proliferating B cells prior to step (ii).
For full activation, B cells (1) require two independent signals. The first signal is antigen-specific and is mediated by the B cell receptor (BCR) (2) recognizing its antigen (3). The BCR specifically binds the antigen (A) and induces by receptor-clustering a signal-transduction cascade (B), which leads to the transcriptional activation of genes associated with B cell activation. The BCR is internalized (C) and traffics to an intracellular compartment called the MIIC (D), where complexes comprising newly synthesized major histocompatibility complex class II (MHC) molecules and peptides derived from antigen bound to the BCR are formed. The peptide:MHC-II complexes are transported to the cell surface, where T cells (4) recognize the antigen which is presented on MHC-II molecules (E). The recognition of the peptide:MHC-II complexes by the T cell receptor leads to T cell activation (F). The activation of T cells results in the secretion of cytokines (e.g.: IL4 and IL21) and the surface expression of CD40 ligand (CD 154) thereby providing "help" to B cells (G). The CD40 ligand on T cells interacts with the CD40 receptor on the surface of B cells and induces a second, antigen-unspecific signal leading to proliferation of monoclonal B cells and production of antibodies directed to the antigen.

Both constructs (A) and (B) comprise a C-terminal domain which is derived from the cytoplasmic domain of CD40 (1). While the construct depicted in panel (A), i.e., BZ1, carries the transmembrane (TM) domain of CD40 (2), the TM domain of the construct depicted in panel (B), i.e., BZ2, is derived from a BCR (3). The capture domain is a domain derived from human IgGl (4) which comprises the ch2 (4.1) and ch3 (4.2) segments of the IgGl heavy chain. The N-terminal part of both constructs comprises a marker domain, in particular, two c-myc epitope tags (5+7) separated by an HA-tag (6).

Panel (A) depicts a normal BCR on a B cell. Panel (B) illustrates the recombinant protein of the present invention in association with a partial immunoglobulin, which is located to the plasma membrane of a B cell. The immunoglobulin heavy chain consists of a variable domain (1) and three constant domains (2+3+4) and is normally associated with a light chain (5)
which consists of a variable domain (6) and a constant domain (7). A heavy chain of an immunoglobulin which is associated with an immunoglobulin light chain (8) is associated with the extracellular portion of the recombinant protein of the present invention (9). The proteins interact with each other via the immunoglobulin derived constant regions (10). The domain derived from an intracellular segment of CD40 or from a variant thereof (11) is localized intracellularly (12). An optional marker domain (13) is located within the extracellular part of the recombinant protein of the present invention and may be recognized by an antibody.

Fig. 4: Schematic representation of B cell activation using the recombinant protein of the present invention.

B cells transfected with a polynucleotide comprising a nucleic acid encoding the recombinant protein of the present invention can be antigen-specifically activated. The transfected B cells are contacted with an antigen which is recognized by the BCR (4) and the complex (6) comprising the recombinant protein of the present invention and a part of an immunoglobulin consisting of an immunoglobulin heavy and an immunoglobulin light chain. The antigen (3.1+3.2) can be applied in soluble form (10+11) or can be immobilized (7+9), for example, by directly binding to the surface of a plate or indirectly by binding to plate-bound (1) antibodies (2).

Fig. 5: Flow chart illustrating an example procedure for B cell activation using a recombinant protein of the present invention.

The left panel illustrates the preparation of the culture dish. The right panel shows the procedures for obtaining and treating B cells. BZ stands for the recombinant protein or the polynucleotide of the present invention.

Fig. 6: Expression of a recombinant protein of the invention in primary B cells.

Panel (A) shows a Western blot analysis of a cell extract of primary B cells transfected with IVT RNA encoding a recombinant protein of the present invention. Immunostaining was performed using anti-c-myc (9E10) specific antibodies (1 μg/mL). Panel (B) shows the corresponding Coomassie staining demonstrating that an equal amount of protein was loaded for both cell extracts (1+2). 1: B cells transfected with IVT RNA encoding a recombinant protein of the present invention (SEQ ID NO: 5, BZ1); 2: non transfected B cells. Panel (C) shows the kinetics of the expression of a recombinant protein of the present invention in
primary B cells. The specific embodiments of the recombinant protein of the present invention BZI (SEQ ID NO: 5) and BZ2 (SEQ ID NO: 6) (cf. Figure 2) are detectable on the surface of transfected B cells over a time period of 120 hours.

Fig. 7: Induction of proliferation in B cells expressing a recombinant protein of the present invention.
Mock transfected B cells and B cells transfected with IVT RNA encoding the recombinant proteins BZI and BZ2, respectively, were incubated with anti-CD40 (MAB89) (1), anti-c-myc (9E10) (2), irrelevant antibody (anti-CD3) (3), or pure medium (4). Proliferation was determined for viable (7-AAD−, 7-Aminoactinomycin−) CD20+ B cells by measuring the reduction of CFSE staining intensity using flow cytometric analysis. ND = Not done.

Fig. 8: Association of the recombinant protein of the present invention with immunoglobulin chains on the surface of cells analyzed by flow cytometry.
CHO-pC15 cells recombinantly expressing and secreting the light and heavy chain of a human monoclonal antibody and CHO-KI -WT cells have been transfected with IVT RNA encoding the recombinant proteins of the invention BZI and BZ2, respectively. As shown in panel (A), there is no anti-kappa detectable in CHO KI-WT cells under all conditions analyzed. Anti-kappa binds to the immunoglobulin light chain. However, a high expression of BZI and BZ2 is observed in BZI- and BZ2-transfected CHO KI-WT cells, respectively, demonstrated by a strong c-myc staining. By contrast, IgG producing CHO-pC15 cells expressing BZI or BZ2 show a high percentage of kappa and c-myc double positive cells that is not detectable in untransfected cells (B). This population results from the interaction of the BZ proteins with IgG molecules on the surface of CHO-pC15 cells and shows the potential of the BZI and BZ2 constructs to form a heterodimer with an immunoglobulin chain derived from IgG.

Fig. 9: Association of the recombinant protein of the present invention with immunoglobulin chains analyzed by Western blotting.
CHO-pC15 cells, which are CHO-KI cells, genetically modified to constitutively produce the heavy and light chain of an immunoglobulin, were transfected with IVT RNA encoding the recombinant proteins of the present invention BZI and BZ2. (A) Cell lysates of untransfected (control), BZI and BZ2 transfected cells were loaded onto a gradient gel and separated via electrophoresis under non reducing conditions. 1: non transfected CHO-pC15; 2: BZI

transfected CHO-pC15; 3: BZ2 transfected CHO-pC15; 1: detected with anti-kappa antibody, II: representative Coomassie staining of PVDF membrane; III: detected with anti-c-myc antibodies, IV: representative Coomassie staining of PVDF membrane. The protein band of 119 kDa, which is not detectable in untransfected CHO cells, can be detected with anti-kappa and anti-c-myc antibodies. (B and C) The 119 kDa band obtained by electrophoresis under non reducing conditions was excised from the membranes, the proteins were eluted and separated again by SDS-PAGE under reducing conditions (C). The separated proteins have been detected with anti-CD40, anti-c-myc (both part of BZ proteins) and anti-kappa (immunoglobulin expressed by the CHO-pC15 cells) antibodies. It is demonstrated by the experiment depicted in Figure 9 that BZ proteins are able to heterodimerize with endogenous immunoglobulin chains. (B) 1: BZ1 transfected CHO-pC15; 2: BZ2 transfected CHO-pC15; 3: non transfected CHO-pC15; 1: detected with anti-kappa antibody, II: representative Coomassie stained and cut PVDF membranes. (C) 1: non transfected CHO-pC15; BZ1 transfected CHO-pC15; 3: BZ2 transfected CHO-pC15; 1: detected with anti-CD40 antibody, II: detected with anti-c-myc antibody; III: detected with anti-kappa antibody.

Fig. 10: NF-KB signaling in cells expressing a recombinant protein of the present invention.
HEK293 reporter cells stably transfected with a reporter plasmid including the luciferase gene under the control of an NF-KB -inducible ELAM1 composite promoter following transfection with RNA encoding the recombinant proteins BZ1 and BZ2, respectively, and incubation with an anti-cMyc antibody show activation of the NF-KB -inducible promoter demonstrating the functionality of the CD40 domain contained in the recombinant proteins BZ1 and BZ2, respectively.

Fig. 11: Induction of proliferation of peripheral CD19+ B cells expressing a recombinant protein of the present invention.
Proliferation of B cells transfected with RNA encoding the recombinant proteins BZ1 and BZ2, respectively, can be induced by a monoclonal antibody against cMyc (i) presented by a CD32 (Fc-gamma receptor) expressing cell line, (ii) in soluble form, (ii) cross-linked with a secondary anti-Fc antibody or (iii) coated on a culture dish.

Fig. 12: Crosslinking of recombinant proteins of the present invention on the surface of CD19+ B cells induces proliferation of class switched memory B cells.
CD19+ B cells transfected with RNA encoding the recombinant protein BZ1 where activated using an anti-cMyc antibody. Non-transfected B cells were stimulated using an anti-CD40 MAB89 antibody. BZ stimulation predominantly activates IgG+ B cells.

Fig. 13: Transient activation of B cells expressing a recombinant protein of the present invention.
Activation of peripheral B cells transfected with RNA encoding the recombinant protein BZ1 is reversible.

Fig. 14: Tetanus specific activation of IgG+ memory B cells expressing a recombinant protein of the present invention
The overlay of tetanus stimulated cells (red) and tetanus non-stimulated cells (blue) shows that tetanus specific IgG+ memory B cells transfected with RNA encoding the recombinant protein BZ1 and stimulated with plate-coated tetanus toxoid show a higher proliferation rate compared to non-stimulated cells.

Fig. 15: CMV specific activation of IgG+ memory B cells expressing a recombinant protein of the present invention
CMV specific IgG+ memory B cells from CMV infected patients transfected with RNA encoding the recombinant protein BZ1 and stimulated with plate-coated CMV protein ppl50 or glycoprotein B (gB) show a higher proliferation rate compared to non-stimulated cells.

DETAILED DESCRIPTION OF THE INVENTION
Although the present invention is described in detail below, it is to be understood that this invention is not limited to the particular methodologies, protocols and reagents described herein as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art.

In the following, the elements of the present invention will be described. These elements are listed with specific embodiments, however, it should be understood that they may be combined in any manner and in any number to create additional embodiments. The variously
described examples and preferred embodiments should not be construed to limit the present invention to only the explicitly described embodiments. This description should be understood to support and encompass embodiments which combine the explicitly described embodiments with any number of the disclosed and/or preferred elements. Furthermore, any permutations and combinations of all described elements in this application should be considered disclosed by the description of the present application unless the context indicates otherwise. For example, if in a preferred embodiment of the recombinant protein of the present invention, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain comprises the CH2 and the CH3 region of an immunoglobulin and in another preferred embodiment, the transmembrane domain is the transmembrane domain of a BCR, it is a contemplated preferred embodiment of the recombinant protein of the present invention that the protein comprises the CH2 and the CH3 region of an immunoglobulin and the transmembrane domain of a BCR.

Preferably, the terms used herein are defined as described in "A multilingual glossary of biotechnological terms: (RJPAC Recommendations)", H.G.W. Leuenberger, B. Nagel, and H. Kolbl, Eds., Helvetica Chimica Acta, CH-4010 Basel, Switzerland, (1995).

The practice of the present invention will employ, unless otherwise indicated, conventional methods of biochemistry, cell biology, immunology, and recombinant DNA techniques which are explained in the literature in the field (cf., e.g., Molecular Cloning: A Laboratory Manual, 2nd Edition, J. Sambrook et al. eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989).

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated member, integer or step or group of members, integers or steps but not the exclusion of any other member, integer or step or group of members, integers or steps. The terms "a" and "an" and "the" and similar reference used in the context of describing the invention (especially in the context of the claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the
specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as"), provided herein is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.

Several documents are cited throughout the text of this specification. Each of the documents cited herein (including all patents, patent applications, scientific publications, manufacturer's specifications, instructions, etc.), whether supra or infra, are hereby incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

In the following, definitions will be provided which apply to all aspects of the present invention.

The term "recombinant" in the context of the present invention means "made through genetic engineering". Preferably, a "recombinant entity" such as a recombinant protein in the context of the present invention is not occurring naturally, and preferably is a result of a combination of entities such as amino acid or nucleic acid sequences which are not combined in nature. For example, a recombinant protein in the context of the present invention may contain several amino acid sequences derived from different proteins fused together, e.g., by peptide bonds.

The term "CD40" refers to any, preferably naturally occurring, CD40 protein. CD40 is a transmembrane glycoprotein cell surface receptor that shares sequence homology with the tumor necrosis factor a (TNF-a) receptor family and was initially identified as a B cell surface molecule that induced B cell growth upon ligation with monoclonal antibodies. In the context of the present invention, CD40 may be derived from any species and is preferably human CD40. Preferably, human CD40 is a 277 amino acid protein that consists of a 193 amino acid extracellular domain including a 21 amino acid signal sequence, a 22 amino acid transmembrane domain, and a 62 amino acid cytoplasmic domain (van Kooten C. and
Apart from B cells, CD40 expression has been shown for dendritic cells, macrophages, epithelial cells, hematopoietic progenitors, and activated T cells. Its ligand CD40L, also termed CD154, is a 34-39 kDa type II integral membrane protein belonging to the TNF gene superfamily and is mainly expressed on activated T cells. Engagement of CD40 by its ligand leads to trimeric clustering of CD40 and the recruitment of adaptor proteins known as TNF receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40. Binding of TRAFs results in formation of a signaling complex that includes multiple kinases and eventually leads to B cell clonal expansion, germinal center formation, isotype switching, affinity maturation, and generation of long-lived plasma cells (Quezeda S.A. et al., 2004, Annu. Rev. Immunol. 22:307-328).

The term "immunoglobulins" relates to proteins of the immunoglobulin superfamily, preferably to antigen receptors such as antibodies or the B cell receptor (BCR). The immunoglobulins are characterized by a structural domain, i.e., the immunoglobulin domain, having a characteristic immunoglobulin (Ig) fold. The term encompasses membrane bound immunoglobulins as well as soluble immunoglobulins. Membrane bound immunoglobulins are also termed surface immunoglobulins or membrane immunoglobulins, which are generally part of the BCR. Soluble immunoglobulins are generally termed antibodies. Immunoglobulins generally comprise several chains, typically two identical heavy chains and two identical light chains which are linked via disulfide bonds. These chains are primarily composed of immunoglobulin domains, such as the \(V_L \) (variable light chain) domain, \(C_L \) (constant light chain) domain, and the \(C_H \) (constant heavy chain) domains \(C_{H1} \), \(C_{H2} \), \(C_{H3} \), and \(C_{H4} \). There are five types of mammalian immunoglobulin heavy chains, i.e., \(\alpha \), \(\delta \), \(\varepsilon \), \(\gamma \), and \(\mu \) which account for the different classes of antibodies, i.e., IgA, IgD, IgE, IgG, and IgM. As opposed to the heavy chains of soluble immunoglobulins, the heavy chains of membrane or surface immunoglobulins comprise a transmembrane domain and a short cytoplasmic domain at their carboxy-terminus. In mammals there are two types of light chains, i.e., lambda and kappa. The immunoglobulin chains comprise a variable region and a constant region. The constant region is essentially conserved within the different isotypes of the immunoglobulins, wherein the variable part is highly diverse and accounts for antigen recognition.

The term "constant region of an immunoglobulin heavy chain" preferably refers to the region of the immunoglobulin heavy chain composed of the \(C_{H1} \), \(C_{H2} \), \(C_{H3} \), and optionally the \(C_{H4} \) domain, preferably comprising one or more, preferably all, potential linker and/or hinge
regions. It is particularly preferred that the constant region of an immunoglobulin heavy chain comprises one or more cysteine residues which are capable of mediating the association with another constant region of an immunoglobulin heavy chain by disulfide-bonding.

The term "antibody" refers to a soluble immunoglobulin comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen binding portion thereof. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as V_H) and a heavy chain constant region. Each light chain is comprised of a light chain variable region (abbreviated herein as V_L) and a light chain constant region. The V_H and V_L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each V_H and V_L is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.

The term "amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain" preferably refers to any amino acid sequence that when folded in its proper three dimensional structure in the context of the recombinant protein of the present invention is capable of associating with any part of the constant region of an immunoglobulin heavy chain, for example with a part comprising one or more Ig domains, such as the C_{H1}, C_{H2}, C_{H3}, and the C_{H4} domain. Thus, an amino acid sequence that when properly folded in the context of the recombinant protein of the present invention associates with the C_{H1}, C_{H2}, C_{H3}, and/or the C_{H4} domain of an immunoglobulin heavy chain is encompassed by the above term. In this context, "association" means binding, wherein the binding may be covalent or non covalent. Preferably, association is covalent, for example, by the generation of disulfide bonds. In the context of the present invention, an amino acid sequence mediating the association of the recombinant protein of the present invention with the constant region of an immunoglobulin heavy chain is preferably a segment of an immunoglobulin constant region, preferably an immunoglobulin domain of an immunoglobulin constant region.
The term "B cell receptor" or "BCR" refers to the antigen receptor at the plasma membrane of B cells. The B cell receptor is generally composed of a surface bound IgM or IgD antibody associated with Ig-a and Ig-β heterodimers which are capable of signal transduction. The term "transmembrane domain of a B cell receptor" preferably refers to the transmembrane domain of the antibody part of the B cell receptor, i.e., the transmembrane domain of the IgM or IgD heavy chain. In the context of the present invention, the term "B cell receptor" or "BCR" preferably refers to a mature BCR and preferably excludes the pre-BCR which comprises a surrogate light chain.

The term "segment" refers to a part, preferably to a substantial part. The term "intracellular segment of CD40" refers to any intracellular part of a plasma membrane localized CD40, which is preferably capable of mediating the intracellular CD40 signal transduction. Said term may refer to the entire intracellular tail or intracellular domain of CD40 or to a portion thereof, wherein preferably said portion is capable of mediating the intracellular CD40 signal transduction. Preferably, said term refers to the entire intracellular tail of CD40.

The term "segment of an immunoglobulin constant region" refers to any part of an immunoglobulin constant region, preferably a part which is capable of folding into a three-dimensional structure, such as a domain. For example, a segment of an immunoglobulin constant region may be composed of one or more immunoglobulin domains of the constant region of an immunoglobulin chain, such as a CH₃ domain of an immunoglobulin light chain or a CH₁, CH₂, CH₃, or CH₄ domain of the constant region of an immunoglobulin heavy chain, or a functionally equivalent part thereof. The term may also refer to more than one domain, for example, a segment of an immunoglobulin constant region may comprise, preferably consist of a CH₁ and a CH₂ domain, a CH₂ and a CH₃ domain, or a CH₃ and a CH₄ domain of an immunoglobulin heavy chain, such as an α, δ, ε, γ, or μ immunoglobulin heavy chain. It may also comprise, preferably consist of three or four domains or two or more domains that are not normally connected in an immunoglobulin chain, such as a CH₁ and a CH₃ domain. In the context of the present invention, a "segment of an immunoglobulin constant region" preferably comprises at least one cysteine that is capable of generating a disulfide bond with a cysteine located within the constant region of an immunoglobulin heavy chain, for example, within the CH₁, CH₂, CH₃, or CH₄ domain or any linker region or hinge region within the constant region of an immunoglobulin heavy chain. In the context of the present invention, a
segment of an immunoglobulin constant region which comprises, preferably consisting of a CH2 and a CH3 domain also comprises an optional linker or hinge region which may be normally present between a CH1 and a CH2 domain.

The term "part" refers to a continuous element. For example, a part of a structure such as an amino acid sequence or protein refers to a continuous element of said structure. A portion or a part of a structure preferably comprises one or more functional properties of said structure. For example, a portion or a part of a protein or peptide is preferably functionally equivalent to the protein or peptide it is derived from. In the context of the present invention, a "part" of a structure such as an amino acid sequence preferably comprises, preferably consists of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 96%, at least 98%, at least 99% of the entire structure or amino acid sequence.

The term "capable of mediating the intracellular CD40 signal transduction" means capable of initiating signaling events that are usually initiated by the intracellular region of CD40 if the extracellular region of CD40 is engaged with its ligand, i.e., CD40L. Such signaling events include, for example, the recruitment of signaling and/or adaptor proteins or molecules such as the TNF receptor-associated factors (TRAFs) to the CD40 cytoplasmic tail and the formation of a signaling complex that includes multiple kinases such as the NF-κB inducing kinase (NIK), receptor-interacting protein (RIP), and members of the mitogen-activated protein kinase (MAPK) family. Clustering of these kinases then initiates a downstream cascade of signaling events, finally resulting in the transcription of target genes (cf., e.g., Quezeda S.A. et al., 2004, supra). CD40 signaling in a B cell in the presence of cytokines can induce proliferation, clonal expansion, and differentiation to Ig secretion. In the context of the present invention, an entity such as an intracellular segment of CD40 or a variant thereof is capable of mediating the intracellular CD40 signal transduction, if in the context of a CD40 molecule said intracellular segment or variant thereof results in the same signal transduction events as the wild type CD40 molecule when exposed to the appropriate stimuli, such as CD40L binding to the CD40 extracellular domain.

For the purposes of the present invention, "variants" of a protein or peptide or of an amino acid sequence comprise amino acid insertion variants, amino acid addition variants, amino acid deletion variants and/or amino acid substitution variants. Amino acid deletion variants
that comprise the deletion at the N-terminal and/or C-terminal end of the protein are also called N-terminal and/or C-terminal truncation variants.

Amino acid insertion variants comprise insertions of single or two or more amino acids in a particular amino acid sequence. In the case of amino acid sequence variants having an insertion, one or more amino acid residues are inserted into a particular site in an amino acid sequence, although random insertion with appropriate screening of the resulting product is also possible.

Amino acid addition variants comprise amino- and/or carboxy-terminal fusions of one or more amino acids, such as 1, 2, 3, 5, 10, 20, 30, 50, or more amino acids.

Amino acid deletion variants are characterized by the removal of one or more amino acids from the sequence, such as by removal of 1, 2, 3, 5, 10, 20, 30, 50, or more amino acids. The deletions may be in any position of the protein.

Amino acid substitution variants are characterized by at least one residue in the sequence being removed and another residue being inserted in its place. Preference is given to the modifications being in positions in the amino acid sequence which are not conserved between homologous proteins or peptides and/or to replacing amino acids with other ones having similar properties. Preferably, amino acid changes in protein variants are conservative amino acid changes, i.e., substitutions of similarly charged or uncharged amino acids. A conservative amino acid change involves substitution of one of a family of amino acids which are related in their side chains. Naturally occurring amino acids are generally divided into four families: acidic (aspartate, glutamate), basic (lysine, arginine, histidine), non-polar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine) amino acids. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids.

Preferably the degree of similarity, preferably identity between a given amino acid sequence and an amino acid sequence which is a variant of said given amino acid sequence, e.g., between the preferred intracellular segment of CD40 set forth in SEQ ID NO: 1 and the variant the intracellular segment of CD40, will be at least about 60%, 65%, 70%, 80%, 81%,
82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%. The degree of similarity or identity is given preferably for an amino acid region which is at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90% or about 100% of the entire length of the reference amino acid sequence. For example, if the reference amino acid sequence consists of 200 amino acids, the degree of similarity or identity is given preferably for at least about 20, at least about 40, at least about 60, at least about 80, at least about 100, at least about 120, at least about 140, at least about 160, at least about 180, or about 200 amino acids, preferably continuous amino acids. In preferred embodiments, the degree of similarity or identity is given for the entire length of the reference amino acid sequence. The alignment for determining sequence similarity, preferably sequence identity can be done with art known tools, preferably using the best sequence alignment, for example, using Align, using standard settings, preferably EMBOSS ::needle, Matrix: Blosum62, Gap Open 10.0, Gap Extend 0.5.

The above definition for protein variants, i.e., amino acid sequence variants, also applies correspondingly to nucleic acid sequence variants.

The protein and nucleic acid sequence variants described herein may readily be prepared by the skilled person, for example, by recombinant DNA manipulation. The manipulation of DNA sequences for preparing proteins and peptides having substitutions, additions, insertions or deletions, is described in detail in Sambrook et al. (1989), for example. Furthermore, the peptides and amino acid variants described herein may be readily prepared with the aid of known peptide synthesis techniques such as, for example, by solid phase synthesis and similar methods.

According to the invention, a variant, portion, or part of a peptide or protein or of a nucleic acid or amino acid sequence preferably has a functional property of the peptide or protein or the nucleic acid or amino acid sequence, respectively, from which it has been derived. Such functional properties comprise the interaction with other peptides or proteins or the capability of exerting signaling function. In other words, a variant, portion, or part of a peptide or protein or of a nucleic acid or amino acid sequence preferably is functionally equivalent to the peptide or protein or the nucleic acid or amino acid sequence, respectively, from which it has been derived.
The term "functionally equivalent" means being capable of exerting the same or essentially the same function with respect to one or more functional properties such as signal transduction properties or binding to other proteins or peptides. In the context of the recombinant protein of the present invention "functionally equivalent" preferably means that the functionally equivalent protein is capable of mediating the intracellular CD40 signal transduction and is capable of associating with the constant region of an immunoglobulin chain. Preferably, said functionally equivalent protein is capable of forming a complex with an immunoglobulin chain when expressed in a cell that also expresses immunoglobulin chains, and preferably said complex is able to localize to the plasma membrane of said cell.

Residues in two or more polypeptides are said to "correspond" to each other if the residues occupy an analogous position in the polypeptide structures. As is well known in the art, analogous positions in two or more polypeptides can be determined by aligning the polypeptide sequences based on amino acid sequence or structural similarities. Such alignment tools are well known to the person skilled in the art and can be, for example, obtained on the World Wide Web, e.g., ClustalW (www.ebi.ac.uk/clustalw) or Align (http://www.ebi.ac.uk/emboss/align/index.html) using standard settings, preferably for Align EMBOSS::needle, Matrix: Blosum62, Gap Open 10.0, Gap Extend 0.5. Those skilled in the art understand that it may be necessary to introduce gaps in either sequence to produce a satisfactory alignment. Residues in two or more polypeptide sequences are said to "correspond" if the residues are aligned in the best sequence alignment. The "best sequence alignment" between two polypeptides is defined as the alignment that produces the largest number of aligned identical residues. The "region of best sequence alignment" ends and, thus, determines the metes and bounds of the length of the comparison sequence for the purpose of the determination of the similarity score, if the sequence similarity, preferably identity, between two aligned sequences drops to less than 30%, preferably less than 20%, more preferably less than 10% over a length of 10, 20, or 30 amino acids.

In the context of the present invention, amino acid sequences are meant to be "linked" if they are coupled to each other, preferably via peptide bonds. Amino acid sequences are meant to be linked via another amino acid if the latter couples said amino acids, preferably via peptide bonds.
The terms "domain" or "region" relate to a particular part of an amino acid sequence which can preferably be connected to a specific function or structure. Preferably, a "domain" of a protein refers to a part of the protein which can fold into a stable three-dimensional structure and which is preferably stable and folded even when separated from the entire protein it is derived from. For example, the immunoglobulin heavy chains contain a constant region and a variable region. The constant region comprises several domains, for example, the CH1, CH2, CH3, and optionally the CH4 domain.

The term "transmembrane domain" or "transmembrane region" relates to the part of a protein which essentially accounts for the portion present in a cellular membrane and preferably serves to anchor the protein in the membrane. A transmembrane domain is preferably according to the invention an amino acid sequence which spans the membrane once. However, it is also possible in certain embodiments to use a transmembrane domain which spans the membrane more than once. The transmembrane domain will generally have 15-25 preferably hydrophobic uncharged amino acids which assume for example an a-helical conformation (cf., e.g., Singer S.J., 1990, Annu. Rev. Cell Biol. 6:247-296). Typical transmembrane domains that can be used in the context of the present invention may be selected, e.g., from the Protein Data Bank of Transmembrane Proteins (http://pdbtm.enzim.hu/). The transmembrane domain in the context of the present invention is preferably derived from a protein selected from the group consisting of a B cell receptor and CD40. In preferred embodiments, the transmembrane domain is derived from the CD40 transmembrane domain (ALVVPIIFGILFAILLVLF; SEQ ID NO: 4) or is derived from a transmembrane domain of a BCR (for example, ITIFITLFLSSVCYSATVTFF; SEQ ID NO: 3, preferably GELDGLWTTITIFITLFLSSVCYSATVTFF; SEQ ID NO: 9). The transmembrane domain allows the recombinant protein of the present invention to span the membrane.

The term "derived" means according to the invention that a particular entity, in particular a particular sequence, is present in the object from which it is derived, in particular an organism or molecule. In the case of nucleic acid and amino acid sequences, especially particular sequence regions, "derived" additionally means that the relevant nucleic acid or amino acid sequence is derived from a nucleic acid or amino acid sequence which is present in the object. Thus, the expression "a transmembrane domain derived from a BCR" means that said transmembrane domain is present in the BCR. A sequence derived from an amino acid or a
nucleic acid sequence may relate according to the invention to homologous sequences and
derivatives of the former sequence.

Homologous amino acid sequences exhibit according to the invention at least 40%, in
particular at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and preferably at
least 95%, at least 98 or at least 99% identity of the amino acid or nucleic acid residues.

"Derivatives" of a protein or polypeptide or of an amino acid sequence in the sense of this
invention include amino acid insertion variants, amino acid deletion variants and/or amino
acid substitution variants. "Derivatives" of proteins or polypeptides also include according to
the invention single or multiple substitutions, deletions and/or additions of any molecules
which are associated with the protein or polypeptide, such as carbohydrates, lipids and/or
proteins or polypeptides. In one embodiment, "derivatives" of proteins or polypeptides
include those modified analogs resulting from glycosylation, acetylation, phosphorylation,
amidation, palmitoylation, myristoylation, isoprenylation, lipidation, alkylation,
derivatization, introduction of protective/blocking groups, proteolytic cleavage or binding to
an antibody or to another cellular ligand. Derivatives of proteins or polypeptides may also be
prepared by other methods such as, for example, by chemical cleavage with cyanogen
bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH₂, acetylation, formylation,
oxidation, reduction or by metabolic synthesis in the presence of tunicamycin. The term
"derivative" also extends to all functional chemical equivalents of proteins or polypeptides.
The derivatives, described above, of proteins and polypeptides are encompassed according to
the invention by the term "fusion molecule", even if no express reference is made thereto.

The term "marker region" refers to a region which contains a label. Preferably, said label is
useful for identifying or detecting the entity which comprises the marker region. The label
may be any entity that is useful for being detected, such as a fluorescent label, a radioactive
label, or an epitope tag. Preferably the marker region comprises one or more epitope tags. An
amino acid sequence comprising a marker region preferably means an amino acid sequence
comprising one or more peptide or protein tags, e.g., epitope tags such as myc-tags, HA-tags,
FLAG-tags, T7-tags, S-tags, GST-tag, and/or His-tags, or fluorescent protein tags, such as
GFP-, EGFP-, YFP-, EYFP-, CFP-, ECFP-, DsRed-, or mRFP-tags. A peptide or protein tag
may be detected by antibodies directed to said tag. An amino acid sequence comprising a
marker region may also refer to an amino acid sequence which comprises one or more labeled
amino acids such as radioactive amino acids, biotin labeled amino acids, or fluorescently labeled amino acids.

A nucleic acid is according to the invention preferably deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), more preferably RNA, most preferably in vitro transcribed RNA (IVT RNA). Nucleic acids include according to the invention genomic DNA, cDNA, mRNA, recombinantly prepared and chemically synthesized molecules. A nucleic acid may according to the invention be in the form of a molecule which is single stranded or double stranded and linear or closed covalently to form a circle. A polynucleotide according to the invention preferably comprises a nucleic acid sequence encoding the recombinant protein of the present invention. The polynucleotide of the invention can be employed for transfection of host cells, for example, in the form of RNA which can be prepared by in vitro transcription from a DNA template. The RNA can moreover be modified before application by stabilizing sequences, capping, and polyadenylation.

In the context of the present invention, the term "transcription" relates to a process, wherein the genetic code in a DNA sequence is transcribed into RNA. Subsequently, the RNA may be translated into protein. According to the present invention, the term "transcription" comprises "in vitro transcription", wherein the term "in vitro transcription" relates to a process wherein RNA, in particular mRNA, is in vitro synthesized in a cell-free system, preferably using appropriate cell extracts. Preferably, cloning vectors are applied for the generation of transcripts. These cloning vectors are generally designated as transcription vectors and are according to the present invention encompassed by the term "vector". According to the present invention, the RNA used in the present invention may be obtained by in vitro transcription of an appropriate DNA template. The promoter for controlling transcription can be any promoter for any RNA polymerase. Particular examples of RNA polymerases are the T7, T3, and SP6 RNA polymerases. A DNA template for in vitro transcription may be obtained by cloning of a nucleic acid, in particular cDNA, and introducing it into an appropriate vector for in vitro transcription. The cDNA may be obtained by reverse transcription of RNA.

The term "expression" is used herein in its broadest meaning and comprises the production of RNA or of RNA and protein. With respect to RNA, the term "expression" or "translation"
relates in particular to the production of peptides or proteins. Expression may be transient or may be stable.

The term "vector" as used herein includes any vectors known to the skilled person including plasmid vectors, cosmid vectors, phage vectors such as lambda phage, viral vectors such as adenoviral or baculoviral vectors, or artificial chromosome vectors such as bacterial artificial chromosomes (BAC), yeast artificial chromosomes (YAC), or PI artificial chromosomes (PAC). Said vectors include expression as well as cloning vectors. Expression vectors comprise plasmids as well as viral vectors and generally contain a desired coding sequence and appropriate DNA sequences necessary for the expression of the operably linked coding sequence in a particular host organism (e.g., bacteria, yeast, plant, insect, or mammal) or in in vitro expression systems. Cloning vectors are generally used to engineer and amplify a certain desired DNA fragment and may lack functional sequences needed for expression of the desired DNA fragments.

The term "host cell" relates according to the invention to any cell which can be transformed or transfected with an exogenous nucleic acid, e.g., with a polynucleotide comprising a nucleic acid sequence encoding the recombinant protein of the present invention. The term "host cells" includes according to the invention prokaryotic (e.g., E. coli) or eukaryotic (e.g., dendritic cells, B cells, CHO cells, COS cells, K562 cells, HEK293 cells, HELA cells, yeast cells, and insect cells). The exogenous nucleic acid may be found inside the host cell (i) freely dispersed as such, (ii) incorporated in a recombinant vector, or (iii) integrated into the host cell genome or mitochondrial DNA. The recombinant cell can be used for expression of a polynucleotide of interest or for amplification of the polynucleotide or a vector of the invention. The term "host cell" includes the progeny of the original cell which has been transformed, transfected, or infected with exogenous nucleic acids, e.g., the polynucleotide or the vector of the invention. Mammalian cells are particularly preferred, such as cells from humans, mice, hamsters, pigs, goats, and primates. The cells may be derived from a large number of tissue types and include primary cells and cell lines. Specific examples include keratinocytes, peripheral blood leukocytes, bone marrow stem cells, and embryonic stem cells. In further embodiments, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte, or macrophage. A nucleic acid sequence encoding the recombinant protein of the present invention may be present in the host cell in a single or in multiple copies and is, in one embodiment, expressed in the host cell. In particular preferred
embodiments, the host cells according to the present invention are B cells, preferably human B cells.

The term "transfection" relates to the introduction of nucleic acids such as the polynucleotide of the invention into a host cell. The person skilled in the art is well aware of methods for introducing polynucleotides or vectors into host cell. Cells can be transfected, for example, using commercially available liposome-based transfection kits such as Lipofectamine™ (Invitrogen), commercially available lipid-based transfection kits such as Fugene (Roche Diagnostics), polyethylene glycol-based transfection, calcium phosphate precipitation, gene gun...(biolistic), protein-mediated transfection, magnet-assisted transfection, optical transfection, electroporation, or viral infection. In the context of the present invention, a particularly preferred transfection method is electroporation, preferably electroporation of RNA, preferably IVT RNA.

The term "B cell" refers to a B lymphocyte. B cell precursors reside in the bone marrow where immature B cells are produced. B cell development occurs through several stages, each stage representing a change in the genome content at the antibody loci. In the genomic heavy chain variable region there are three segments, V, D, and J, which recombine randomly, in a process called VDJ rearrangement to produce a unique variable region in the immunoglobulin of each B cell. Similar rearrangements occur for the light chain variable region except that there are only two segments involved, V and J. After complete rearrangement, the B cell reaches the IgM+ immature stage in the bone marrow. These immature B cells present a membrane bound IgM, i.e., BCR, on their surface and migrate to the spleen, where they are called transitional B cells. Some of these cells differentiate into mature B lymphocytes.

Mature B cells expressing the BCR on their surface circulate the blood and lymphatic system performing the role of immune surveillance. They do not produce soluble antibodies until they become fully activated. Each B cell has a unique receptor protein that will bind to one particular antigen. Once a B cell encounters its antigen and receives an additional signal from a T helper cell, it can further differentiate into either a plasma B cell expressing and secreting soluble antibodies or a memory B cell.

In the context of the present invention, the term "B cell" preferably refers to any B lymphocyte which presents a fully rearranged, i.e., a mature, BCR on its surface. For example, a B cell in the context of the present invention may be an immature or a mature B
cell and is preferably a naive B cell, i.e., a B cell that has not been exposed to the antigen specifically recognized by the BCR on the surface of said B cell. In preferred embodiments, the B cells are CD19+ B-cells, i.e., express CD19 on their surface. It is particularly preferred that the B cells in the context of the present invention are CD19+ B cells and express a fully rearranged BCR on their surface. The B cells may also be CD20+ or CD21+ B cells which preferably carry a BCR on their surface. In preferred embodiments, the B cells are memory B cells, preferably IgG+ memory B cells. The term "B cells" in the context of the present invention preferably refers to a mixture of B cells. A mixture of B cells preferably means that the B cells in the mixture have different antigen-specificities, i.e., produce antibodies or fully rearranged BCRs which recognize a variety of antigens. The antibodies or BCRs of a single B cell are usually identical, also with respect to antigen-specificity.

The term "B cells secreting antibodies" preferably refers to plasma B cells. The term "B cells carrying a BCR on their surface" preferably refers to B cells expressing a BCR, preferably a fully rearranged BCR, at their plasma membrane. In this context, "a BCR" preferably does not mean a single BCR but preferably means a multitude of BCRs having the same antigen-specificity. The term "proliferating B cells" preferably refers to dividing B cells. Proliferating B cells may, for example, be identified by labeling with CFSE and measuring the CFSE fluorescence intensity, for example, using flow cytometry as described herein in the Examples section.

The term "B cell repertoire of a subject" as used herein refers to the entirety of the B cell population in a subject. Preferably, said term is used with respect to antigen-specificity. Thus, preferably, the term "B cell repertoire of a subject" in the context of the present invention refers to a mixture of B cells of said subject comprising at least one B cell of each B cell antigen-specificity present in said subject. The term "B cell antigen-specificity" refers to the antigen-specificity of the antibodies or fully rearranged BCR expressed by said B cell.

The term "portion" refers to a fraction. A portion preferably means at least 20%, at least 30%, preferably at least 40%, preferably at least 50%, more preferably at least 60%, more preferably at least 70%, even more preferably at least 80%, and most preferably at least 90% of the entire entity. The term "substantial portion" preferably refers to at least 50%, more preferably at least 60%, more preferably at least 70%, even more preferably at least 80%,
even more preferably at least 90%, even more preferably at least 95%, and most preferably at least 99% of the entire entity.

The terms "subject" and "individual" are used interchangeably and preferably relate to mammals. For example, mammals in the context of the present invention are humans, non-human primates, domesticated animals such as dogs, cats, sheep, cattle, goats, pigs, horses etc., laboratory animals such as mice, rats, rabbits, guinea pigs, etc. as well as animals in captivity such as animals of zoos. The term "animal" as used herein also includes humans. The term "subject" may also include a patient, i.e., an animal, preferably a human having a disease.

The term "clonal expansion" refers to a process wherein a specific entity is multiplied. In the context of the present invention, the term is preferably used in the context of an immunological response in which lymphocytes, preferably B lymphocytes, are stimulated by an antigen, proliferate, and the specific lymphocyte recognizing said antigen is amplified. Preferably, clonal expansion leads to differentiation of the lymphocytes, preferably into lymphocytes producing and secreting antibodies. B lymphocytes secreting antibodies are, for example, plasma B cells.

The term "antigen" relates to an agent comprising an epitope against which an immune response is to be generated. The term "antigen" includes in particular proteins, peptides, polysaccharides, nucleic acids, especially RNA and DNA, and nucleotides. The term "antigen" also includes derivatized antigens as secondary substance which becomes antigenic - and sensitizing - only through transformation (e.g., intermediately in the molecule, by completion with body protein), and conjugated antigens which, through artificial incorporation of atomic groups (e.g., isocyanates, diazonium salts), display a new constitutive specificity. In a preferred embodiment, the antigen is a tumor antigen, i.e., a constituent of cancer cells which may be derived from the cytoplasm, the cell surface and the cell nucleus, in particular those antigens which are produced, preferably in large quantity, intracellularly or as surface antigens on tumor cells. Examples are carcinoembryonic antigen, a 1-fetoprotein, isoferritin and fetal sulpoglycoprotein, a2-H-ferroprotein and γ-fetoprotein and various viral tumor antigens. In a further embodiment, the antigen is a viral antigen such as viral ribonucleoproteins or envelope proteins. In particular, the antigen or peptides thereof should be recognizable by a B cell receptor or an immunoglobulin molecule such as an antibody.
Preferably, the antigen if recognized by a B cell receptor is able to induce in presence of appropriate co-stimulatory signals, clonal expansion of the B cell carrying the BCR specifically recognizing the antigen and the differentiation of such B cells into antibody secreting B cells. In preferred embodiments of the present invention, an antigen is present in a repetitive organization, i.e., the antigen comprises more than one, preferably at least 2, at least 3, at least 4, up to 6, 10, 12 or more agents or epitopes against which an immune response is to be generated or against which the antibodies which are to be produced according to the present invention are to be directed. Such repetitive antigen preferably is capable of binding to more than one antibody of the same specificity. In other words, such repetitive antigen comprises more than one epitope, preferably identical epitope, and thus is capable of "crosslinking" antibodies directed to said epitope. The more than one agents or epitopes may be covalently or non-covalently linked, wherein a covalent linkage may be by any chemical grouping such as by peptide linkages. In one preferred embodiment, an antigen is a fusion molecule comprising a repetition of an antigen peptide or comprising different antigen peptides having a common epitope. In one preferred embodiment, said antigen peptides are linked by peptide linkers.

The term "self tolerance" designates a mechanism, where the body does not mount an immune response to self proteins. Normally, self-tolerance is developed early by developmental events within the immune system that prevent, in particular, the organism's own T cells and B cells from reacting with the organism's own tissues.

An "autoantibody" is an antibody that reacts with the cells, tissues, or native proteins of the individual in which it is produced, i.e., which reacts with self-proteins of said individual.

DETAILED DESCRIPTION

In a first aspect, the present invention provides a recombinant protein comprising:
(a) the amino acid sequence of an intracellular segment of CD40 or of a variant thereof which is capable of mediating the intracellular CD40 signal transduction and
(b) an amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain, wherein the amino acid sequences under (a) and (b) are linked via
(c) an amino acid sequence comprising the amino acid sequence of a transmembrane domain.
The amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain may mediate the association with any immunoglobulin heavy chain, such as an immunoglobulin α, δ, ε, γ, or µ heavy chain or any possible subtypes thereof, such as α1, a2, γ1, γ2, γ3, γ4 etc.

In a preferred embodiment, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain comprises the amino acid sequence of a segment of an immunoglobulin constant region. For example, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain may comprise a segment of an immunoglobulin constant region derived from an immunoglobulin α, δ, ε, γ, or µ heavy chain, such as an immunoglobulin al, a2, γ1, γ2, γ3, or γ4 chain, or from an immunoglobulin lambda or kappa light chain, preferably from an immunoglobulin α, δ, ε, γ, or µ heavy chain.

Preferably, said segment of an immunoglobulin constant region comprises a cysteine residue that is capable of forming a disulfide bond with a cysteine residue within the constant region of an immunoglobulin heavy chain, for example, of an immunoglobulin α, δ, ε, γ, or µ heavy chain.

In preferred embodiments, the segment of an immunoglobulin constant region preferably comprised by the recombinant protein of the present invention and the constant region of an immunoglobulin heavy chain with which the association is mediated are matched. This means that if the immunoglobulin heavy chain with which the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is an immunoglobulin γ heavy chain, the segment of an immunoglobulin constant region is preferably derived from an immunoglobulin γ heavy chain, if the immunoglobulin heavy chain with which the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is an immunoglobulin a heavy chain, the segment of an immunoglobulin constant region is preferably derived from an immunoglobulin a heavy chain, if the immunoglobulin heavy chain with which the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is an immunoglobulin δ heavy chain, the segment of an immunoglobulin constant region is preferably derived from an immunoglobulin δ heavy chain, if the immunoglobulin heavy chain with which the amino
acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is an immunoglobulin ε heavy chain, the segment of an immunoglobulin constant region is preferably derived from an immunoglobulin ε heavy chain, and if the immunoglobulin heavy chain with which the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is an immunoglobulin μ heavy chain, the segment of an immunoglobulin constant region is preferably derived from an immunoglobulin μ heavy chain. Preferably, also the subtypes are matched. Preferably, also the particular C_H domains are matched. It is particularly preferred, that the segment of an immunoglobulin constant region is chosen such that it is essentially identical to a part of the constant region of the immunoglobulin heavy chain with which the association is mediated, preferably such that the association is comparable to the association between two normally associating heavy chains.

Preferably, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain comprises one or more immunoglobulin domains of the constant region of an immunoglobulin chain, such as one or more of the CH₁, C_H², C_H³, or the CH₄ domain, for example, the CH₁ and the CH₂ domain, the CH₂ and the CH₃ domain, the CH₃ and the CH₄ domain, preferably the CH₂ region or the CH₂ and the CH₃ region of an immunoglobulin heavy chain, for example, of an immunoglobulin α, δ, ε, γ, or μ heavy chain, preferably of an immunoglobulin γ heavy chain, more preferably of the immunoglobulin γ'I heavy chain, i.e., of IgGl. For example, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain, preferably the segment of an immunoglobulin constant region, preferably the one or more CH domains may be derived from an IgM antibody heavy chain such as the IgM antibody heavy chain set forth in the GenBank data base entry under accession number AAS01770.1 (SEQ ID NO: 12), from an IgD antibody heavy chain such as the IgD antibody heavy chain set forth in the GenBank data base entry under accession number AAB21246.1 (SEQ ID NO: 13), from an IgG2 antibody heavy chain such as the IgG2 antibody heavy chain set forth in the GenBank data base entry under accession number AAR26706.1 (SEQ ID NO: 14), from an IgG3 antibody heavy chain such as the IgG3 antibody heavy chain set forth in the GenBank data base entry under accession number AAG0091 1.1 (SEQ ID NO: 15), from an IgG4 antibody heavy chain such as the IgG4 antibody heavy chain set forth in the GenBank data base entry under accession number AAG00912.1 (SEQ ID NO: 16), from an IgE antibody heavy chain such as the IgE antibody.
heavy chain set forth in the GenBank data base entry under accession number AAB59424.1 (SEQ ID NO: 17), or from an IgA antibody heavy chain such as the IgA antibody heavy chain set forth in the GenBank data base entry under accession number AAT74070.1 (SEQ ID NO: 18).

Preferably, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is derived from, preferably comprises, preferably essentially consists of, preferably consists of an amino acid sequence selected from the group consisting of:

(I) the amino acid sequence set forth in SEQ ID NO: 2 and 19 or a part thereof, and

(II) an amino acid sequence which is at least 60%, 65%, 70%, 80%, 81%, 82%, 83%, 84%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, preferably at least 80%, identical to the amino acid sequence or the part thereof under (I), preferably over the entire length of the amino acid sequence or the part thereof.

In a preferred embodiment, the amino acid sequence of an intracellular segment of CD40 or of a variant thereof is derived from, preferably comprises, preferably essentially consists of, preferably consists of an amino acid sequence selected from the group consisting of:

(I) the amino acid sequence set forth in SEQ ID NO: 1 or a part thereof which is capable of mediating the intracellular CD40 signal transduction, and

(II) an amino acid sequence that is at least 60%, 65%, 70%, 80%, 81%, 82%, 83%, 84%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, preferably at least 80%, identical to the amino acid sequence or the part thereof under (I), preferably over the entire length of the amino acid sequence or the part thereof, and is capable of mediating the intracellular CD40 signal transduction.

In a preferred embodiment, the order of the elements comprised by the recombinant protein of the present invention is, from the amino-terminus to the carboxy-terminus, the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain, the amino acid sequence comprising the amino acid sequence of a transmembrane domain, and the amino acid sequence of an intracellular segment of CD40 or of a variant thereof which is capable of mediating the intracellular CD40 signal transduction. Preferably, the carboxy-terminal end of (b) the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin
heavy chain is linked to the amino-terminal end of (a) the amino acid sequence of an intracellular segment of CD40 or of a variant thereof which is capable of mediating the intracellular CD40 signal transduction. Preferably, said amino acid sequences are linked through an amino acid sequence comprising the amino acid sequence of a transmembrane domain.

In one embodiment, the recombinant protein of the present invention further comprises an amino acid sequence comprising a marker region. The amino acid sequence comprising a marker region may be located anywhere within the recombinant protein of the present application, for example, it may be localized N-terminally or C-terminally, preferably directly N-terminally or C-terminally, of any of the elements comprised by the recombinant protein of the present invention, e.g., N-terminally or C-terminally of the intracellular segment of CD40 or a variant thereof, N-terminally or C-terminally of the transmembrane domain, or N-terminally or C-terminally of the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain. The amino acid sequence comprising a marker region may also be localized within each of the elements comprised by the recombinant protein of the invention. Preferably, the amino acid sequence comprising a marker region is fused to the amino-terminal end of (b) the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain. The marker region may comprise any label as described above, such as a fluorescent label, a radioactive label, or an epitope tag, and preferably comprises one or more amino acid sequences of an epitope tag selected from the group consisting of HA-tag, myc-tag, FLAG-tag, His-tag. A preferred combination of epitope tags within the marker region in the context of the present invention is the combination of a myc-tag, such as a c-myc-tag, and a hemagglutinin tag (HA-tag), preferably in the combination myc-HA-myc. However, it is to be understood that any combination of epitope tags is contemplated. The marker region may serve to detect the recombinant protein of interest. For example, if a polynucleotide comprising a nucleic acid sequence encoding the recombinant protein of the present invention which comprises a marker region is transfected into cells, the expression of said polynucleotide can be monitored by detecting, for example, the epitope-tag within the marker region. Preferably, the marker region is not essential for the function of the recombinant protein with respect to induction of clonal expansion of B cells or the production of B cells secreting antigen-specific antibodies.
The transmembrane domain in the context of the present invention may be any transmembrane domain as described above, preferably the transmembrane domain spans the membrane an odd number of times, such as once, three times, five times, or seven times, preferably only once. Thus, it is preferred that two amino acid sequences attached to the amino-terminal and the carboxy-terminal end of the transmembrane domain, respectively, are positioned on opposite sides of the membrane which is crossed by the transmembrane domain. In a preferred embodiment, the transmembrane domain is derived from a member of the immunoglobulin superfamily, like B cell receptor (BCR), IgM, semaphorine 4D, selectine, integrine, or ICAM (inter-cellular adhesion molecule), or from a member of the tumor necrosis factor receptor (TNFR) superfamily, like CD40, CD120, Lymphotoxin β receptor, CD134, FAS, TNFRSF6B, CD27, CD30, CD137, RANK, Osteoprotegerin, TNFRSF25, or Ectodysplasin A2 receptor. Preferably, the transmembrane domain is derived from a transmembrane domain selected from the group consisting of the transmembrane domain of a B cell receptor (BCR) and the transmembrane domain of CD40, preferably the transmembrane domain is selected from the group consisting of the transmembrane domain of a B cell receptor (BCR) and the transmembrane domain of CD40. Preferably, the amino acid sequence of a transmembrane domain is derived from, preferably comprises, preferably essentially consists of, preferably consists of an amino acid sequence selected from the group consisting of:

(I) the amino acid sequences set forth in SEQ ID NOs: 3, 4, and 9 or a part thereof, and

(II) an amino acid sequence which is at least 60%, 65%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, preferably at least 80%, identical to the amino acid sequence or the part thereof under (I), preferably over the entire length of the amino acid sequence or the part thereof.

In a preferred embodiment, the recombinant protein of the present invention is derived from, preferably comprises, preferably essentially consists of, preferably consists of an amino acid sequence selected from the group consisting of:

(I) the amino acid sequences set forth in SEQ ID NOs: 5 and 6, or a functionally equivalent part thereof, and

(II) an amino acid sequence which is at least 60%, 65%, 70%, 80%, 81%, 82%, 83%, 84%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, preferably at least 80%, identical to the amino acid sequence or the part thereof under
(I), preferably over the entire length of the amino acid sequence or the part thereof, and is functionally equivalent to the amino acid sequence or the part thereof under (I).

In a preferred embodiment, the recombinant protein of the present invention does not comprise a signal sequence at the amino-terminal end. For example, in a preferred embodiment, the recombinant protein of the present invention is derived from, preferably comprises, preferably essentially consists of, preferably consists of an amino acid sequence set forth in SEQ ID NO: 5 or 6 lacking the amino-terminal signal sequence, e.g., lacking the amino-terminal 23 amino acids, or a functionally equivalent part or variant thereof.

In a further aspect, the present invention provides a polynucleotide comprising a nucleic acid sequence encoding the recombinant protein of the present invention. The polynucleotide of the present invention may further comprise a nucleic acid sequence encoding a leader or signal sequence. Such sequence may, for example, mediate the transport of a protein into or through a membrane, for example, into or through the membrane of the endoplasmatic reticulum. Preferably, the polynucleotide is RNA, preferably in vitro transcribed RNA (IVT RNA).

In a preferred embodiment, the nucleic acid sequence encoding the recombinant protein of the present invention is derived from, preferably comprises, preferably essentially consists of, preferably consists of a nucleic acid sequence selected from the group consisting of:

(I) the nucleic acid sequences set forth in SEQ ID NOs: 10 and 11, or a part thereof which encodes a protein that is functionally equivalent to the protein encoded by the nucleic acid sequence set forth in SEQ ID NOs: 10 or 11, and

(II) an nucleic acid sequence which is at least 60%, 65%, 70%, 80%, 81%, 82%, 83%, 84%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, preferably at least 80%, identical to the nucleic acid sequence or the part thereof under (I), preferably over the entire length of the nucleic acid sequence or the part thereof, and is functionally equivalent to the protein encoded by the nucleic acid sequence set forth in SEQ ID NOs: 10 or 11.

Preferably, the polynucleotide of the present invention comprises the nucleic acid sequence encoding the recombinant protein of the present invention as specified above and is RNA, preferably IVT RNA.
In a further aspect, the present invention provides a vector comprising the polynucleotide of the present invention. The vector may be any vector known in the art, for example, as described above. In a particular preferred embodiment, the vector is suitable as template for in vitro transcription, i.e., for the generation of IVT RNA, for example, using an RNA polymerase such as the T7, T3, or SP6 RNA polymerase.

In another aspect, the present invention provides a host cell comprising the polynucleotide or the vector of the present invention. In a preferred embodiment, the recombinant protein of the present invention encoded by the polynucleotide or the vector of the present invention is expressed in said host cell. In another embodiment, the recombinant protein of the present invention encoded by the polynucleotide or the vector of the present invention is not expressed in said host cell. In this case, the host cell, such as an E. coli cell, may, for example, be used for amplification of the vector or the polynucleotide of the present invention.

Preferably, the recombinant protein of the present invention is located to the plasma membrane of the host cell. In the context of a host cell, the recombinant protein of the present invention preferably comprises an extracellular region, a transmembrane region, and an intracellular or cytoplasmic region. Preferably, the amino acid sequence of an intracellular segment of CD40 is located within the cytoplasmic region and the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is located within the extracellular region of the recombinant protein of the present invention.

In a preferred embodiment, the host cell expresses immunoglobulin chains, such as an immunoglobulin heavy chain and an immunoglobulin light chain. Thus, preferably the host cell is able of generating immunoglobulins, e.g., an antibody or a surface or membrane immunoglobulin, depending on whether the immunoglobulin heavy chain comprises a transmembrane domain. For example, the host cell may endogenously express immunoglobulin chains or the host cell may be transfected, preferably stably transfected, with a polynucleotide encoding immunoglobulin chains.

In a preferred embodiment, the host cell is a B cell, preferably a B cell carrying a BCR on its surface. Preferably, the host cell is a CD19⁺ B cell, and preferably the host cell is human. Thus, in a preferred embodiment, the host cell is a human B cell.
In further aspects, the present invention provides methods using the recombinant protein, the polynucleotide, the vector, and/or the host cells of the present invention. The recombinant protein, the polynucleotide, the vector, and/or the host cells of the present invention allow for a completely new approach for activating B cells, i.e., for inducing proliferation, in particular clonal expansion, and differentiation of B cells into antibody secreting B cells. Without being bound by any theory, it is assumed that the recombinant protein of the present invention transforms the antigen-independent co-stimulatory CD40/CD40L signal which is needed for full B cell activation into an antigen-dependent signal. The recombinant protein of the present invention associates with immunoglobulin chains, in particular with one immunoglobulin heavy chain which is associated with an immunoglobulin light chain, at the plasma membrane of a host cell, preferably a B cell. This hetero-complex comprises an immunoglobulin variable region, in particular a hypervariable region, which is specific for a certain antigen, within the extracellular region of the hetero-complex, and a cytoplasmic region derived from the intracellular segment of CD40. Thus, binding of the respective antigen to the immunoglobulin variable region triggers the intracellular CD40 signaling cascade resulting in proliferation and differentiation of the B cell into an antibody secreting B cell.

Thus, the present invention allows for the specific activation of B cells having a predetermined antigen-specificity. In particular, the present invention provides tools for the selective expansion of a specific, preferably clonal, population of B cells and their differentiation into antibody secreting B cells. The selective expansion of specific B cells, i.e., the selective induction of proliferation of specific B cells, allows for the identification and isolation of B cells having a particular antigen-specificity from a mixture of B cells such as from the B cell repertoire of a subject. The identified and isolated B cells having a particular antigen-specificity may be further expanded, and antibodies, preferably secreted antibodies, may be obtained from said B cells and/or from the culture medium of said B cells. If the B cells are of human origin the antibodies generated by said B cells are fully human and are thus excellently suited for human immunotherapy. Thus, the recombinant protein, the polynucleotide, and/or the vector of the present invention may be used for the generation of fully human antibodies specific for a particular antigen, for example, specific for a tumor-associated antigen. It is particularly preferred that the antibodies are monoclonal, i.e., derived from a single B cell clone.
The present invention provides a completely new strategy for generating antibodies, preferably fully human monoclonal antibodies, which are useful for immunotherapy. This new strategy comprises the steps of expressing the recombinant protein of the present invention in B cells and contacting said B cells with an antigen of interest.

Thus, in one aspect, the present invention provides a method for inducing clonal expansion of a B cell specific for an antigen of interest, comprising the steps of:

(i) expressing in B cells the recombinant protein of the present invention, and
(ii) contacting the B cells of (i) with the antigen of interest.

In another aspect, the present invention provides a method for producing B cells secreting antibodies specific for an antigen of interest, comprising the steps of:

(i) expressing in B cells the recombinant protein of the present invention, and
(ii) contacting the B cells of (i) with the antigen of interest.

In this context, term "expressing in B cells the recombinant protein" preferably means that a polynucleotide encoding said protein, e.g., a polynucleotide or a vector of the present invention, is transcribed, in particular the nucleic acid sequence encoding the recombinant protein of the invention, and that the transcribed nucleic acid sequence is translated into the recombinant protein of the present invention. In case the polynucleotide encoding said protein is RNA, preferably IVT RNA, this term means that said RNA is translated into the recombinant protein of the present invention. Preferably, the recombinant protein of the present invention is expressed on the surface of the B cells, i.e., is localized to the plasma membrane of the B cells.

In preferred embodiments of the methods of the present invention, the B cells carry a BCR on their surface. Preferably, the B cells are CD19+ B cells, and preferably the B cells are human. Thus, in a preferred embodiment, the B cells are human CD19+ B cells which preferably carry a BCR on their surface. It is particularly preferred that the B cells in step (i) are a mixture of B cells comprising a multitude of antigen-specificities, preferably comprising the B cell repertoire of a subject or a portion thereof, preferably a substantial portion thereof.

In preferred embodiments, prior to step (i) the B cells are harvested from a subject, preferably a human subject. Preferably, the B cells are harvested from peripheral blood of the subject,
preferably by density gradient centrifugation and magnetic cell sorting, preferably using antibodies specific for B cell surface protein such as antibodies directed to the BCR, CD19, CD20, or CD21. Such antibodies may be coupled to magnetic beads.

For example, peripheral blood mononuclear cells (PBMCs) may be isolated from buffy coats by density gradient centrifugation, e.g., using Ficoll Hypaque separation. B cells may then be purified by magnetic cell sorting using antibodies specific for B cell surface proteins such as anti-CD19 antibodies coupled to magnetic beads. Preferably, the isolated B cell population has a purity of at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98%. In this context, a purity of at least 60% means that at least 60% of the isolated cell population are B cells, preferably CD19+ B cells.

In preferred embodiments of the methods of the present invention, the B cells are transfected with a polynucleotide comprising a nucleic acid encoding the recombinant protein of the present invention to express said protein. For example, the transfection may be performed by a transfection method selected from the group consisting of electroporation, liposome-based transfection, calcium phosphate-based transfection, nucleofection, virus- or virus particle-based transfection, cationic polymer-based transfection (DEAE-dextran or polyethylenimine), protein-mediated transfection, magnet-assisted transfection, gene gun, and optical transfection. Preferably, the transfection method is electroporation. Preferably, the polynucleotide which is transfected is RNA, preferably in vitro transcribed RNA (IVT RNA). For example, electroporation may be performed using between 1 µg and 50 µg, preferably between 5 µg and 40 µg, more preferably between 10 µg and 30 µg, preferably about 20µg IVT RNA per 1x10⁶ - 2x10⁷ cells. Preferably, the electroporation parameters are 500 V and 100 µF.

Thus, in a preferred embodiment of the methods of the present invention, B cells, preferably human B cells, are transfected with RNA, preferably in vitro transcribed RNA, using electroporation. In a particularly preferred embodiment, B cells are harvested from a subject, preferably a human subject, preferably as described above, and said B cells are transfected with the polynucleotide or the vector of the present invention, preferably as described above.

The antigen in step (ii) of the methods of the present invention may be in solution or may be immobilized or may be both in solution and immobilized. For example, the antigen may be
immobilized on a culture plate, such as a tissue culture plate. Preferably, the antigen is immobilized by antigen-specific antibodies which are immobilized on the culture plate. For example, for contacting the B cells with the antigen of interest in step (ii), the B cells may be cultured in a culture plate in which the antigen of interest has been immobilized. For example, the B cells may be cultured, preferably under conventional culture conditions, for a time period between 1 to 20 days, preferably between 2 to 15 days, more preferably between 3 to 10 days, such as for 3, 4, 5, 6, 7, 8, 9, or 10 days, preferably for 5 days.

In a preferred embodiment, the B cells are further contacted with cytokines in step (ii), preferably with cytokines promoting B cell activation, such as interleukin 4 (IL4) and/or interleukin 21 (IL21). Preferably, IL4 is added to the medium, preferably in an concentration ranging from 200 U/ml to 2000 U/ml, preferably 500 U/ml to 1500 U/ml, such as 500 U/ml, 600 U/ml, 700 U/ml, 800 U/ml, 900 U/ml, 1000 U/ml, 1100 U/ml, 1200 U/ml, 1300 U/ml, 1400 U/ml, or 1500 U/ml, preferably 1000 U/ml. Preferably, IL21 is added to the medium in an concentration ranging from 5 ng/ml to 500 ng/ml, from 10 to 200 ng/ml, from 20 to 100 ng/ml, such as 20 ng/ml, 30 ng/ml, 40 ng/ml, 50 ng/ml, 60 ng/ml, 70 ng/ml, 80 ng/ml, 90 ng/ml, or 100 ng/ml, preferably 50 ng/ml. Thus, in a preferred embodiment, the B cells are contacted with the antigen of interest and cytokines in step (ii), e.g., the B cells are cultured in presence of the antigen of interest and cytokines in step (ii).

In particularly preferred embodiments of the methods of the present invention, the B cells are not contacted with T cells or CD40 ligand (CD40L).

In preferred embodiments, the methods of the present invention further comprise the step of (iii) isolating proliferating B cells. The skilled person is well aware of how to identify proliferating cells such as proliferating B cells. For example, the B cells may be labeled with a fluorescent dye which changes its fluorescence intensity upon cell division, i.e., proliferation, such as with carboxyfluorescein succinimidyl ester (CFSE). CFSE can be used to monitor cell proliferation, in particular lymphocyte proliferation due to the progressive halving of CFSE fluorescence within daughter cells following each cell division. Approximately seven to eight cell divisions can be identified using CFSE before its fluorescence is too low. The fluorescence intensity of CFSE may be detected using flow cytometric analyses.
In particularly preferred embodiments, the methods of the present invention comprise the steps of harvesting B cells, preferably CD19+ B cells, from a subject, preferably a human subject, wherein preferably the B cells are a mixture of B cells comprising the entire B cell repertoire of said subject or a substantial portion thereof, transfecting said B cells with a polynucleotide comprising a nucleic acid encoding the recombinant protein of the present invention, wherein preferably the transfection is performed by electroporation, preferably using rVT RNA, expressing the recombinant protein of the present invention in the B cells, contacting the B cells with an antigen of interest, and preferably isolating proliferating B cells.

Preferably, the methods further comprise the step of cloning proliferating B cells, for example, by limiting dilution. The single proliferating B cell clones may then be further expanded and antibodies produced from said B cell clones may be obtained.

Thus, in a further aspect, the present invention provides a method for producing antibodies specific to an antigen of interest, said method comprising the steps of:

(i) inducing clonal expansion of B cells or producing B cells secreting antibodies according to the above methods of the present invention, and

(ii) obtaining antibodies produced by the B cells.

In a preferred embodiment, the method for producing antibodies further comprises the steps of selecting proliferating B cells, preferably selecting a clone of the proliferating B cells, and culturing said selected proliferating B cells prior to step (ii). The step of selecting proliferating B cells may be performed as explained above for the step of isolating proliferating B cells, for example, using CFSE for identification of proliferating B cells.

The step of obtaining antibodies produced by the B cells may be performed by any art known technique for antibody isolation and/or purification. It is particularly preferred that the antibody produced by the B cells is secreted and is thus found in the culture medium of the B cells. Thus, in a preferred embodiment, the antibodies specific for an antigen of interest are isolated and/or purified from the culture medium of the B cells. For example, the culture medium may be applied to chromatography column comprising protein A or protein G coupled chromatography beads. According to a protocol for the purification of antibodies from serum or cell culture medium using the synthetic protein A absorbent MAbsorbent A2P
(ProMetic Biosciences, Isle of Man), clarified serum or cell culture medium is loaded directly onto the affinity column without prior adjustment and albumin and unwanted debris are washed from the column with phosphate buffered saline (PBS), pH 7.5 before elution of bound antibodies with PBS at lowered pH or by using PEG. Other suitable protocols can be found in Antibodies: A Laboratory Manual, Eds. Edward Harlow and David Lane, Cold Spring Harbor Press (1988) which is incorporated herein by reference.

In a preferred embodiment, the B cells are of human origin and the B cells from which the antibodies are obtained are derived from a single B cell clone. Thus, in a preferred embodiment, the method of this aspect of the present invention is for producing human monoclonal antibodies specific for an antigen of interest, for example, for a tumor-associated antigen.

In one embodiment, the selected or isolated B cell clone, preferably secreting antibodies specific for an antigen of interest, may be fused, for example, with a myeloma cell for immortalization of the specific B cell clone. In this context, conventional hybridoma techniques known to somebody skilled in the art may be used.

The antibodies produced using the method of this aspect of the present invention may be used for immunotherapy, for example, for tumor immunotherapy, immunotherapy of infectious diseases such as for passive immunization, or for immunotherapy of immune disorders such as autoimmune diseases, e.g., rheumatoid arthritis. In one embodiment, the B cells are harvested from a patient and the antibodies produced using the method of the present invention are used for the immunotherapy of the patient the B cells were derived from.

Furthermore, the methods of the present invention may be used for further analysis, for example, for obtaining sequence data of the antigen-specific antibodies produced by the B cells. This information may be useful for the generation of recombinant antigen-producing cells.

Thus, the present invention provides the tools for a completely new approach for the generation of antigen-specific antibodies, preferably for the generation of human, preferably monoclonal antibodies.
The present invention is described in detail by the figures and examples below, which are used only for illustration purposes and are not meant to be limiting. Owing to the description and the examples, further embodiments which are likewise included in the invention are accessible to the skilled worker.

EXAMPLES

Example 1: Recombinant proteins of the present invention

To reproduce the CD40 signal we have generated novel fusion proteins, termed BZ1 (SEQ ID NOs: 5 and 10) and BZ2 (SEQ ID NOs: 6 and 11). These proteins have an extracellular fragment derived from the constant region of human IgGl comprising the CH2 and CH3 domains (SEQ ID NO: 2 or 19) and an N-terminal marker domain composed of two c-myc epitope-tags (EQKLISEEDL; SEQ ID NO: 7) separated by a hemagglutinin (HA) sequence (YPYDVPDYA; SEQ ID NO: 8), as well as a transmembrane (TM) domain, which differs between the two constructs. While the BZ1 construct carries the TM domain of CD40 (SEQ ID NO: 4), the TM domain of the BZ2 construct is derived from a B cell receptor (BCR) (SEQ ID NO: 3). The C-terminus of the constructs comprises the cytoplasmic domain of human CD40 responsible for intracellular signal transduction (SEQ ID NO: 1) (Fig. 2).

Thus, the amino acid sequence set forth in SEQ ID NO: 5 comprises the following elements: aa 1-23 = IL-2 secretion signal, aa 26-54 = Myc-HA-Myc tag, aa 55-295 = IgGl CH2+CH3, aa 303-324 = CD40 TM domain, aa 325-386 = CD40 intracellular domain. The amino acid sequence set forth in SEQ ID NO: 6 comprises the following elements: aa 1-23 = IL-2 secretion signal, aa 26-54 = Myc-HA-Myc tag, aa 55-312 = IgGl CH2+CH3, aa 313-333 = sequence comprising the IgG TM domain, and aa 334-395 = CD40 intracellular domain.

The BZ constructs work as capture proteins. In the endoplasmic reticulum, the BZ proteins associate with immunoglobulin chains and the protein complexes are transported to the cell surface. This complex is able to bind a specific antigen via the variable region of the immunoglobulin chains and mimics a CD40 induced signal via the recombinant proteins of the invention. Therefore, after transfection of B cells with a polynucleotide comprising an amino acid sequence encoding the recombinant proteins of the present invention, e.g., the BZ1 or BZ2 construct, the CD40 signal is transformed from a natural antigen-independent to an artificial antigen-dependent signal (Fig. 3).
Example 2: In vitro system for B cell activation

To reproduce the two step model of full B cell activation a novel in vitro system has been generated (Fig. 4). While the CD40 mediated signal is provided by the BZ constructs described above, the BCR mediated signal is based on the recognition of antigen which is preferably immobilized. The antigen is bound by a capture antibody that adheres to the culture dish. To further increase the similarities of the in vitro system with the in vivo B cell activation by T helper cells we also add the cytokines IL4 and IL21 to the medium.

CD19+ B cells are isolated from peripheral blood of healthy donors or patients by Ficoll density gradient centrifugation and followed by magnetic cell sorting (MACS, Miltenyi, Bergisch Gladbach, Germany). A purity of more than 98 % may be achieved by said procedure. The isolated B cells are transfected preferably by electroporation with in vitro transcribed RNA (IVT-RNA). The CD19+ B cells are labeled with CFSE (carboxyfluorescein succinimidyl ester; Invitrogen, Karlsruhe, Germany) and added to cell culture dishes in which specific antibodies for CD40, cmyc, irrelevant targets (control), or specific antigens are coated. The CFSE irreversibly binds to the cellular proteins and will distribute equally when the cells divide. The B cell proliferation is analyzed on day 5 by flow cytometry (Fig. 5).

This procedure represents a completely new strategy to expand antigen-specific B cells. By transfection of a large number of B cells the B cell repertoire e.g. of a patient or a pooled B cell fraction can be screened for B cells of defined reactivity. Through association of immunoglobulin chains with BZ protein the antigen-independent CD40 signal is transformed into an antigen-dependent signal. Thus, it is possible to screen a polyclonal B cell population and activate monoclonal B cells. Antigen-specific B cells, their B cell receptors and the antibodies produced by such B cells can be isolated. Such antibodies are highly useful for immunotherapy applications, e.g., for tumor immunotherapy.

Example 3: Expression of recombinant proteins of the present invention in primary B cells

B cells have been isolated from healthy donors. PBMC were isolated from buffy coats by Ficoll Hypaque (GE Healthcare, Munchen, Germany) separation (780 x g, 25 min, room temperature). B cells were purified by magnetic cell sorting (Miltenyi Biotec, Bergisch Gladbach, Germany) using anti-CD19-coupled magnetic beads (Miltenyi Biotec, Bergisch-Gladbach, Germany). Briefly, 5x10^8 PBMC in 4 mL PBS, 5 mM EDTA and 5% v/v human
albumin (MACS buffer) were incubated for 10 min on ice with 600 µL anti-CD19-beads. After incubation, the cells were washed twice with MACS buffer and resuspended in 3 mL MACS buffer. CD19+ B cells were separated by magnetic positive selection with LS+ columns (Miltenyi Biotec Bergisch-Gladbach, Germany). The isolated B cell population had a purity of more than 98% (Internal experimental quality control).

Purified B cells were washed and diluted in X-Vivo 15 (BioWhittaker/Cambrex, East Rutherford, USA). The electroporation was performed with 20 µg in-vitro transcribed RNA (IVT RNA) per 1x10⁶ - 2x10⁷ cells. The electroporation parameters were optimized in a previous experiment (optimization data not shown). All B cells were electroporated with 500 V and 100 µF. The cells were resuspended in complete medium and rested for 1 h at 37°C in medium.

The expression of the recombinant proteins in primary B cells was verified by Western blot analysis of the cell extract of transfected B cells (Fig. 6).

Example 4: Induction of proliferation of primary B cells expressine recombinant proteins of the present invention

Purified and transfected CD19+ B cells as described above were washed in RPMI medium and centrifuged (10 min; 450 x g, RT). The pellet was resuspended in 0.1 % BSA/PBS at room temperature and the cell number was adjusted to 5x10⁷ cells/ml. The cell suspension was transferred to 50 ml reaction tubes and CFSE solution (Invitrogen, Karlsruhe, Germany) was added to a final concentration of 10 µM. The cell suspension was incubated for 10 min at 37°C with gentle agitation and the reaction was stopped by adding ice cold RPMI medium.

The cells were washed twice with pure FCS and twice with RPMI medium.

The succinimidyl ester of carboxyfluorescein diacetate (CFSE) irreversibly binds to both, intracellular and cell surface proteins by reacting with lysine side chains and other amine groups. When the cells divide, CFSE labeling is distributed equally between the daughter cells, thus the fluorescence intensity of the daughter cells is reduced by 50% compared to the parent generation. As a result, the cellular fluorescence intensity is indicative for number of cell divisions such that each successive generation in a population of proliferating cells is easily followed by flow cytometry.
The B cells were stimulated and expanded by cultivation with plate-bound antibodies and by the addition of the cytokines IL4 (1000 U/ml) (Miltenyi, Bergisch Gladbach, Germany) and IL21 (50 ng/ml) (Promokine, Heidelberg, Germany). The plates were coated with anti-CD40 (MAB89), anti-c-myc (9E10), irrelevant antibody (anti-CD3), or pure medium. Unbound antibodies were removed by washing. The BZ-transfected CFSE-labeled B cells were added to the antibody coated culture dishes and incubated for 5 days. The read out was performed by flow cytometric analyses (Fig. 7).

Example 5: Association of recombinant proteins of the present invention with endogenous immunoglobulin chains in CHO-pC15 cells analyzed by Western blot analysis.

To analyze the ability of the recombinant proteins of the present invention to heterodimerize with immunoglobulin chains we used the CHO-pC15 cell line. This cell line is derived from the CHO-K1 WT cell line (ATCC No. CCL-61) and is stably transfected with the light and heavy chains of a human monoclonal antibody. This antibody is continuously produced and secreted.

CHO-K1 WT and CHO-pC15 cells were transfected with ΔVT RNAs encoding the BZ1 and the BZ2 proteins, respectively, using electroporation. Cells were harvested 24 h post transfection with 2 mM EDTA/PBS, washed with PBS, and stored as pellets at -80°C. The pellets were resuspended in Roti-reducing buffer or Roti-non-reducing buffer (both Carl Roth GmbH, Karlsruhe, Germany). The cell lysates were incubated for 15 min at 95°C for reducing or at 65°C for non-reducing conditions. For DNA digestion, 2% to 5% (v/v) Benzonase (Novagen (Merck), Darmstadt, Germany) were added and incubated for 15 min at room temperature.

Samples were separated on a polyacrylamide gel (4-12% gradient gel, Invitrogen). Samples were separated by electrophoresis (130 V, 100 mA, ca. 1.5-2.5 h) and subsequently blotted under semi-dry conditions (23 V, 300 mA, 45 min) onto a PVDF membrane (PALL, Port Washington, USA). The membranes were blocked with 10% nonfat dry milk in PBS including 0.1% Tween at 4°C overnight. The membranes were incubated with the indicated primary antibodies (concentration according to manufacturer’s instructions) followed by horseradish peroxidase-conjugated goat-anti-mouse IgG Fc specific secondary antibody (Sigma, concentration according to manufacturer’s instructions). Both antibody incubation
steps were carried out at room temperature for 1 h. The membranes were washed between both antibody incubation steps and after the secondary antibody incubation. The blots were developed using ECL-reagent (Amersham Biotech, Cardiff, UK) (Fig. 9).

The Western blot experiments under non reducing conditions resulted in a distinct protein band of 119 kDa which was detectable both using the anti-kappa (endogenous immunoglobulin chain) as well as the anti-c-myc (recombinant protein of the present invention) antibodies, but which was not detectable in untransfected CHO cells. This result indicates that the recombinant protein of the present invention indeed associates with endogenous immunoglobulin chains in cells.

To demonstrate that this distinct protein band of 119 kDa indeed represents the heterodimer of BZ protein and endogenous immunoglobulin chain, recovery experiments have been performed. To this end, a gel was loaded under non-reducing conditions with transfected and untransfected CHO-pC15 cell lysates and the separated proteins were blotted on a membrane. The 119 kDa band was excised and the proteins were eluted from the membrane. For the elution of the proteins, the dissected PVDF membrane parts were treated with 0.2 - 0.5 mL of elution buffer/cm² of PVDF strip. The elution buffer consisted of 2 % SDS / 1% Triton-X100 in 50 mM Tris-HCl, pH 9.5. The soaked membrane was mixed vigorously by vortexing for 10 min and centrifuged (5 min, 16000xg). The supernatant was mixed with Roti-reducing buffer, boiled (15 min, 95 °C), and directly used for SDS-PAGE under reducing conditions. The gel was blotted and subjected to Western blot analysis. The 119 kDa protein band obtained under non reducing conditions resulted in distinct protein bands that were detectable with anti-CD40, anti-c-myc (both part of BZ) and anti-kappa (endogenous immunoglobulin chain) antibodies under reducing conditions (Fig. 9C). This result shows that BZ constructs are indeed able to heterodimerize with endogenous immunoglobulin chains.

Example 6: Association of recombinant proteins of the present invention with endogenous immunoglobulin chains in CHO-pC15 cells analyzed by flow cytometric analysis

For determining whether the complexes comprising a recombinant protein of the present invention in association with an immunoglobulin chain are located to the surface of cells, flow cytometric analyses on BZ1- or BZ2-transfected CHO-pC15 cells stably expressing immunoglobulin heavy and light chains were performed.
As a negative control, wild type CHO cells which do not express immunoglobulin chains have been transfected with BZ1- or BZ2-encoding polynucleotides. Strong expression of BZ1 and BZ2, respectively, was observed for the transfected wild type CHO cells analyzed by anti-c-myc staining, and no immunoglobulin light chain staining was detected on the surface said cells. By contrast, immunoglobulin chain (IgG) producing CHO-pC15 cells transfected with BZ1- or BZ2-encoding polynucleotides show a high percentage of cells with double positive staining for the BZ protein (anti-c-myc antibody) and the immunoglobulin chain (anti-kappa antibody), whereas immunoglobulin chain staining is not detectable for untransfected CHO-pC15 cells (Fig. 8B). This experiment shows that the BZ proteins are indeed capable of associating with immunoglobulin chains on the surface of cells.

Example 7: NF-κB signaling in cells expressing a recombinant protein of the present invention

A hallmark of CD40 induced signal transduction is the activation of the transcription factor NF-KB. This activation requires the clustering of the internal CD40 domain. To prove the functionality of the CD40 domain and thus, the signal transduction capability of the recombinant BZ proteins, the induction of BZ signaling in response to BZ clustering was monitored. To this end, the HEK293 cell line stably transfected with the lucNifty vector and miRNA81 was used. The lucNifty vector is a reporter plasmid including the luciferase gene under the control of an NF-κB-inducible ELAM1 composite promter. The firefly luciferase from *Photinus pyralis* is a 61 kDa monomer which is functional after translation and catalyzes the oxidative enzymatic reaction from luciferin to oxyluciferin. This reaction requires ATP and O₂ as a substrate and produces light and AMP as a by-product. The produced light (550 - 570 nm) can be measured with a luminometer and corresponds to the activation level of NF-κB.

To perform the NFkB luciferase assays, HEK 293 reporter cells were transiently transfected with BZ constructs (20 µg/lx10⁶ cells) and incubated in anti-cMyc or control antibody (anti-CD3) coated 96-well plates in 100 µl over night. 6 hours before analysis, PMA and lonomycin were added as positive control. A mixture of D-luciferin (1 µg/µl) and 5 mM ATP - 10mM Tris base solution were added to each well and bioluminescence flux was measured using a microplate luminescence reader with 1 sec integration time/well.
Non-transfected HEK293 reporter cells show no bioluminescence. BZ1- and BZ2-transfected HEK293 reporter cells display a background signal (anti-CD3 and medium, both are negative controls) presumably resulting from homodimerized BZ constructs. The cross-linked BZ constructs induce a significant signal (Fig. 10).

These experiments demonstrate the functionality of the intracellular CD40 domain and the ability of the recombinant proteins of the present invention to recruit signaling factors.

Example 8: Induction of proliferation of peripheral CD19+ B cells expressing a recombinant protein of the present invention

For the activation and expansion of peripheral B cells transfected with BZ constructs, a monoclonal antibody against cMyc was coated on a plate or supplemented to the medium. Furthermore, the CD32 (Fc-gamma receptor) expressing cell line CHO-K1-CD32 and the cell line CHO-K1 WT, respectively, following treatment with Mitomycin C to inhibit proliferation were exposed to the antibody.

The B cells were transfected with RNA encoding either BZ1 (I) or BZ2 (II) (2g) or mock-transfected (III). 10 µg antibody in 100 µL PBS per well were incubated in a 96-well format for 2 hours at 37°C. After coating each well was washed with 200 µL medium to remove unbound antibodies. B cells labeled with CFSE to detect proliferation were added in a cell concentration of 2 x 10^6 cells/well and incubated for 5 days in complete culture medium supplemented with 5% human AB serum, IL4, and IL21. Subsequently the cells were harvested and analyzed by flow cytometry.

No proliferation was detected in the non-transfected B cells or BZ-transfected B cells cultivated with CHO-K1 cells (neg. contr.). The highest rate of proliferation was detected in anti-cMyc stimulations applied by antibody presented on CHO-K1-CD32 cells or coated to the dish (Fig. 11).

Example 9: Crosslinking of recombinant proteins of the present invention on the surface of CD19+ B cells induces proliferation of class switched memory B cells

CD19+ B cells show the complete spectrum of B cell subpopulations. The main subpopulation consists of naive B cells which are IgD+IgM+CD27TgG+. Most of the antigen experienced B
cells are memory B cells, which are mainly IgD* IgM* CD27* IgG+. Most of the peripheral plasma cells secrete IgG antibodies and have a IgD+ IgM+ CD27+ phenotype.

For the activation and expansion of peripheral B cells transfected with BZ constructs an anti-cMyc antibody was used. Non-transfected B cells were stimulated using an anti-CD40 MAB89 antibody. Both antibodies were coated on plates. 10 μg antibody in 100 μL PBS per well were incubated in a 96-well format for 2 hours at 37°C. After coating each well was washed with 200 μL, medium to remove unbound antibodies. B cells were added in a cell concentration of 2 x 10^6 cells/well and incubated for 5 days in complete culture medium supplemented with 5 % human AB serum, IL4, and IL21.

The stimulation with anti-CD40 antibody results in an activation of all subpopulations. IgM+ and IgG+ B cells proliferate to a similar extent. In contrast, BZ stimulation results in proliferation of IgD*IgM- cells and only few naive IgM+ B cells proliferate. The main population of memory B cells which proliferate are IgD−. This data demonstrates that BZ constructs predominantly activate IgG+ B cells (Fig. 12). Accordingly, one preferred B cell subpopulation according to the invention is IgG+ B cells.

Example 10: Transient activation of B cells expressing a recombinant protein of the present invention

Peripheral B cells transfected with BZ constructs and non-transfected B cells were stimulated as described in Example 9. To analyze the activation pattern over the time and/or with increasing proliferation activated B cells were stained with an anti-CD25 antibody (activation marker).

The stimulation with anti-CD40 antibody results in a stable activation (constant CD25 expression over time). In contrast, BZ stimulation results in a transient activation. CD25 expression decreased with increasing proliferation (Fig. 13). This demonstrates that in the case of B cells isolated according to the present invention, activation is reversible and cells, e.g. following isolation, can regain their normal or inactive characteristics. This property of cells expressing a recombinant protein of the present invention is in particular beneficial for therapeutic strategies.
Example 11: Tetanus specific activation of IgG+ memory B cells expressing a recombinant protein of the present invention

Tetanus specific IgG+ memory B cells transfected with BZ1 construct were stimulated with plate-coated tetanus toxoid (Calbiochem) or mock-stimulated. To this end, 10 µg tetanus toxoid in 100 µL PBS per well were incubated in a 96-well format for 2 hours at 37°C. After coating, each well was washed with 200 µL medium to remove unbound protein. CFSE labeled B cells were added in a cell concentration of 2 x 10⁶ cells/well, incubated for 5 days in complete culture medium supplemented with 5 % human AB serum, IL4, and IL21 and analyzed by flow cytometry.

BZ-transfected tetanus stimulated B cells show a higher proliferation rate compared to non-stimulated cells (Fig. 14).

Example 12: CMV specific activation of IgG+ memory B cells expressing a recombinant protein of the present invention

CMV specific IgG+ memory B cells from CMV infected patients transfected with BZ1 construct were stimulated with plate-coated CMV protein ppl50 or glycoprotein B (gB) (Abeam) or mock-stimulated. CMV proteins were coated on the plates as described in Example 11. CFSE labeled B cells were added in a cell concentration of 2 x 10⁶ cells/well, incubated for 5 days in complete culture medium supplemented with 5 % human AB serum, IL4, and IL21 and analyzed by flow cytometry.

BZ-transfected CMV stimulated B cells show a higher proliferation rate compared to non-stimulated cells (Fig. 15).
1. A recombinant protein comprising:
 (a) the amino acid sequence of an intracellular segment of CD40 or of a variant thereof which is capable of mediating the intracellular CD40 signal transduction and
 (b) an amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain, wherein the amino acid sequences under (a) and (b) are linked via
 (c) an amino acid sequence comprising the amino acid sequence of a transmembrane domain.

2. The recombinant protein of claim 1, wherein the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain comprises the amino acid sequence of a segment of an immunoglobulin constant region or a variant thereof, preferably comprises the CH2 region or the CH2 and the CH3 region of an immunoglobulin, preferably of IgGl, preferably comprises an amino acid sequence selected from the group consisting of:
 (I) the amino acid sequence set forth in SEQ ID NO: 2 or a part thereof, and
 (II) an amino acid sequence which is at least 80% identical to the amino acid sequence or the part thereof under (I).

3. The recombinant protein of claim 1 or 2, wherein the amino acid sequence of an intracellular segment of CD40 or of a variant thereof comprises an amino acid sequence selected from the group consisting of:
 (I) the amino acid sequence set forth in SEQ ID NO: 1 or a part thereof which is capable of mediating the intracellular CD40 signal transduction, and
 (II) an amino acid sequence that is at least 80% identical to the amino acid sequence or the part thereof under (I) and is capable of mediating the intracellular CD40 signal transduction.

4. The recombinant protein of any one of claims 1 to 3, wherein the carboxy-terminal end of (b) the amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain is linked to the amino-terminal end of
(a) the amino acid sequence of an intracellular segment of CD40 or of a variant thereof which is capable of mediating the intracellular CD40 signal transduction.

5. The recombinant protein of any one of claims 1 to 4, wherein the transmembrane domain is selected from the group consisting of the transmembrane domain of a B cell receptor (BCR) and the transmembrane domain of CD40, preferably the amino acid sequence of a transmembrane domain comprises an amino acid sequence selected from the group consisting of:
 (I) the amino acid sequences set forth in SEQ ID NOs: 3 and 4 or a part thereof,
 and
 (II) an amino acid sequence which is at least 80% identical to the amino acid sequence or the part thereof under (I).

6. The recombinant protein of any one of claims 1 to 5, which comprises an amino acid sequence selected from the group consisting of
 (I) the amino acid sequences set forth in SEQ ID NOs: 5 and 6, or a functionally equivalent part thereof, and
 (II) an amino acid sequence which is at least 80% identical and functionally equivalent to the amino acid sequence or the part thereof under (I).

7. A polynucleotide comprising a nucleic acid sequence encoding the recombinant protein of any one of claims 1 to 6, the polynucleotide preferably being RNA, preferably in vitro transcribed RNA (IVT RNA).

8. A vector comprising the polynucleotide of claim 7.

9. A host cell comprising the polynucleotide of claim 7 or the vector of claim 8, which is preferably a B cell, preferably a CD19+ B cell, preferably a human B cell, preferably a human CD19+ B cell.

10. A method for inducing clonal expansion of a B cell specific for an antigen of interest, comprising the steps of:
 (i) expressing in B cells the recombinant protein of any one of claims 1 to 6, and
 (ii) contacting the B cells of (i) with the antigen of interest.
11. A method for producing B cells secreting antibodies specific for an antigen of interest, comprising the steps of:
 (i) expressing in B cells the recombinant protein of any one of claims 1 to 6, and
 (ii) contacting the B cells of (i) with the antigen of interest.

12. The method of claim 10 or 11, wherein the B cells carry a BCR on their surface.

13. The method of any one of claims 10 to 12, wherein the B cells in step (i) are a mixture of B cells comprising a multitude of antigen-specificities, preferably comprising the B cell repertoire of a subject or a portion thereof.

14. The method of any one of claims 10 to 13, wherein prior to step (i) the B cells are harvested from a subject, preferably a human subject, preferably are harvested from peripheral blood of the subject, preferably by density gradient centrifugation and magnetic cell sorting.

15. The method of any one of claims 10 to 14, wherein the B cells are transfected with a polynucleotide comprising a nucleic acid encoding the recombinant protein of any one of claims 1 to 6 to express said protein, wherein the polynucleotide preferably is RNA, preferably in vitro transcribed RNA (IVT RNA).

16. The method of any one of claims 10 to 15, wherein in step (ii) the antigen is in solution or is immobilized, preferably is immobilized on a culture plate, preferably by antigen-specific antibodies which are immobilized on the culture plate.

17. A method for producing antibodies specific to an antigen of interest, said method comprising the steps of:
 (i) inducing clonal expansion of B cells or producing B cells secreting antibodies according to the method of any one of claims 10 to 16, and
 (ii) obtaining antibodies produced by the B cells, and preferably further comprising the steps of selecting proliferating B cells, preferably selecting a clone of the proliferating B cells, and culturing said selected proliferating B cells prior to step (ii).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- INV. C12N5/0781
- C07K14/705
- C07K16/00
- C07K16/46
- C12N15/62

ADD.

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- C07K
- C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal , BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "A" document member of the same patent family

Date of the actual completion of the international search

- 18 January 2011

Date of mailing of the international search report

- 27/01/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:

Van der Schaal, C

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BANCHEREAU J ET AL: "LONG-TERM HUMAN B CELL LINES DEPENDENT ON INTERLEUKIN-4 AND ANTIBODY TO CD40", SCIENCE (WASHINGTON D C), vol. 251, no. 4989, 1991, pages 70-72, XP002576462, ISSN: 0036-8075, the whole document</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 434 879 A (LABORAT0I RES UNICEF) 3 July 1991 (1991-07-03), the whole document</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 655759 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2071886 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69025772 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69025772 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0505397 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2084146 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 904498 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7089910 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5503214 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 922332 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 236425 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA 9701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9009778 A</td>
</tr>
</tbody>
</table>