Innovation, Sciences et
I*I Développement économique Canada

Office de la Propriété Intellectuelle du Canada

Innovation, Science and CA 2859500 C 2021/01/12
Economic Development Canada

Canadian Intellectual Property Office (11)(21) 2 859 500

12 BREVET CANADIEN

CANADIAN PATENT

13 C

(86) Date de dépo6t PCT/PCT Filing Date: 2012/12/19

(51) CLInt./Int.Cl. GO6F 15/16(2006.01),

(87) Date publication PCT/PCT Publication Date: 2013/07/04 GO6F 9/06 (2006.01)

(45) Date de délivrance/lssue Date: 2021/01/12

(72) Inventeurs/Inventors:
CHANDRAMOULI, BADRISH, US;

(85) Entrée phase nationale/National Entry: 2014/06/16 NATH, SUMAN K., US;
86) N° demande PCT/PCT Application No.: US 2012/070427 ZHOU, WENCHAO, US
(87) N° publication PCT/PCT Publication No.: 2013/101563 | (73) Propriétaire/Owner:

(30) Priorité/Priority: 2011/12/27 (US13/337,291)

MICROSOFT TECHNOLOGY LICENSING, LLC, US
(74) Agent: SMART & BIGGAR LLP

(54) Titre : TOPOLOGIES COTE CLOUD
(54) Title: CLOUD-EDGE TOPOLOGIES

SYSTEM ARCHITECTURE 200

CLoup 104
F-F PP
228 |
g LINQ RACE PROCESSOR 204
226
RACE GRAPH OPTIMIZER QUERY DSMS
MANAGEMENT {|| CONSTRUCTOR 208 CONSTRUCTOR (== |NSTANCE AT
SERVICE 202 206 210 CLouD 222(4)
| X
APP DEVELOPER D * y
224 STATS DATA
£44 214 CONTROL DATA PLANE
F-F ApP PLANE 218 220
> ~
228¢4) REF DATA
216
: r"/\
P “,
{ l NETWORK 106 l
DSMS 222(1}
\ 4 DSMS 222(2) DSMS 222(N}
F-F appP 228(1)
F-F APP 228(2) F-F APP 228(N)
HARDWARE 230 N

PROCESSOR || STORAGE \
232 234 /
/

OTHER 236 4

COMPUTING

DEVICE 102(1)

(57) Abrégé/Abstract:

COMPUTING COMPUTING
DEVICE 102(2) DEVICE 102(N)

The description relates to cloud-edge topologies. Some aspects relate to cloud-edge applications and resource usage in various
cloud-edge topologies. Another aspect of the present cloud-edge topologies can relate to the specification of cloud-edge
applications using a temporal language. A further aspect can involve an architecture that runs data stream management systems
(DSMSs) engines on the cloud and cloud-edge computers to run query parts.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca (Eal lada

CA 02859500 2014-06-16

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(10) International Publication Number

WO 2013/101563 A1l

4 July 2013 (04.07.2013) WIPOIPCT
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GO6F 15/16 (2006.01) GO6F 9/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. e] DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
PCT/US2012/070427 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
19 December 2012 (19.12.2012) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
.) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
(25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(26) Publication Language: English M, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
13/337,291 27 December 2011 (27122011) Us kind Of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant (for all designated States except US): MI- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
CROSOFT CORPORATION [US/US]; One Microsoft TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Way, Redmond, Washington 98052-6399 (US). EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
. MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM
(72) Inventors: CHANDRAMOULI, Badrish; c¢/o Microsott > 2 e e N et i x
Corporation, LCA - International Patents, One Microsott E/[Ii)’ QQPII\I](EB%I\IB‘IEDC F,li(?)G’ CL CM, GA, GN, GQ, GW,
Way, Redmond, Washington 98052-6399 (US). NATH, > T T ’
Suman K.; ¢/o0 Microsoft Corporation, LCA - International Declarations under Rule 4.17:
Patents, One Microsoft Way, Redmond, Washington . , .
98052-6399 (US). ZHOU, Wenchao: /o Microsoft Cor- — as to applicant’s entitlement to apply for and be granted a
M o > .
poration, LCA - International Patents, One Microsoft Way, patent (Rule 4.17(ib))
Redmond, Washington 98052-6399 (US). — as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii
(81) Designated States (unless otherwise indicated, for every o { (i)

kind of national protection available). AE, AG, AL, AM,

[Continued on next page]

2013/101563 A1 |1 000 OO0 OO0 O 00

(54) Title: CLOUD-EDGE TOPOLOGIES

SYSTEM ARCHITECTURE 200
T CLoup 104

F-F APP]
228 |

RACE PROCESSOR 204

RACE
MANAGEMENT
SERVIGE 202

GRAPH
CONSTRUCTOR
206

OPTIMIZER

QUERY
CONSTRUCTOR
210

DSMS
INSTANCE AT
CLoup 222(4

1

208

APP DEVELOPER

3
REF DATA

CONTROL DATA PLANE
PLANE 218 220
“/\/‘

PROCESSOR || STORAGE N
232 234 J/
7/

OTHER 236 /

A
{ NETWORK 106
DSMS 222(1
2 DSMS 222(2 DSMS 222(N
F-F APP 228(1
22810 F-F aPP 228(2) F-F APP 228(N)
HARDWARE 230 AN 0

COMPUTING
DEVICE 102(1) COMPUTING COMPUTING
FIG 2 DEVICE 102(2 DEVICE 102(N)

(57) Abstract: The description relates to cloud-edge topologies. Some aspects relate to cloud-edge applications and resource usage
in various cloud-edge topologies. Another aspect of the present cloud-edge topologies can relate to the specification of cloud-edge
applications using a temporal language. A further aspect can involve an architecture that runs data stream management systems

o (DSMSs) engines on the cloud and cloud-edge computers to run query parts.

CA 02859500 2014-06-16

WO 2013/101563 A1 WAL 00TV VAT 0 00 AN O

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

Cloud-Edge Topologies
BACKGROUND

[0001] The widespread adoption of 'smart' portable computing devices, such as
smartphones, by consumers and availability of vast amounts of cloud-based computing
resources have led to what is known as the "cloud-edge topology". These smart portable
computing devices are termed 'smart’ in that processor and memory advancements allow
these devices to have substantial computing resources available to the user. Smart
portable computing devices can generate real-time data such as GPS location, battery
consumption, speed, etc. These smart portable computing devices can also be thought of
as cloud-cdge devices in that communication between an individual device and the cloud-
bascd rcsources can be thought of as an cdgc.

10002] Given the substantial computing resources available on the smart portable
computing device, the user may select various applications to run on his/her device. Many
of these applications can be termed as cloud-edge applications in that an application
instance runs on the smart portable computing device and another application instance
runs on the cloud-based computing resources. There exists a broad class of cloud-edge
applications that correlate data across multiple smart portable computing devices and the
cloud to achieve the application's functionality. An example is a friend-finder application
that functions to notify a user if any friends are close by. This application functionality
depends upon correlation of real-time locations and slow-changing data such as social
networks. While great amounts of computing resources are available on the smart
portable computing devices and the cloud-based resources, resource usage, such as
communication resources, can be significant when large numbers of smart portable
computing devices are running cloud-edge applications.

SUMMARY

[0003] The description relates to cloud-edge topologies. Some aspects relate to
cloud-edge applications and resource usage in various cloud-edge topologies. One
example can evaluate a real-time streaming query that utilizes data from multiple different
edge computing devices. The multiple different edge computing devices can be
configured to communicate with cloud-based resources but not to communicate directly
with one another. Individual edge computing devices include an instantiation of an
application conveyed in a declarative temporal language. This example can compare

resource usage between first and second scenarios. The first scenario involves uploading

10

15

20

25

81780010

query data from the multiple different edge computing devices to the cloud-based resources
for processing. The second scenario involves uploading the query data from all but one node
of the multiple different edge computing devices to the cloud-based resources and
downloading the query data to the one node of the multiple different edge computing devices

for processing.

[0004] Another aspect of the present cloud-edge topologies can relate to the specification
of cloud-edge applications using a temporal language. A further aspect can involve an
architecture that runs data stream management systems (DSMSs) engines on the cloud and

cloud-edge computers to run query parts.

[0004a] According to one aspect of the present invention, there is provided a computer-
readable storage media having instructions stored thereon that when executed by a computing
device cause the computing device to perform acts, comprising: evaluating a real-time
streaming query that utilizes data from multiple different edge computing devices, the
multiple different edge computing devices configured to communicate with cloud-based
resources and to communicate indirectly with one another via the cloud-based resources, but
not to communicate directly with one another, and wherein individual edge computing devices
include an instantiation of an application or application part that is conveyed in a declarative
temporal language; and, comparing resource usage between a first scenario that involves
uploading query data, associated with the real-time streaming query, from the multiple
different edge computing devices to the cloud-based resources for processing and a second
scenario that involves uploading the query data from all but one of the multiple different edge
computing devices to the cloud-based resources and downloading the query data to a sub-set
of the multiple different edge computing devices for processing, wherein the sub-set includes

the one edge computing device.

[0004b] According to another aspect of the present invention, there is provided a system,
comprising: storage storing a Real-time Applications over Cloud-Edge (RACE) cloud-based
management service that is executable by a computing device, the RACE cloud-based
management service configured to interact with an application executing on cloud-based

resources and at individual edge computing devices in communication with the cloud-based

2

CA 2859500 2017-12-13

10

25

81780010

resources, the RACE cloud-based management service configured to mimic a data stream
management systems (DSMS) engine to receive temporal declarative queries from the
individual edge computing devices; and a hardware RACE processor configured to intercept
the temporal declarative queries and to parse and compile individual temporal declarative

queries into an object representation.

[0004¢] According to still another aspect of the present invention, there is provided a
method implemented by onc or morc computing devices, comprising: interacting with an
application executing on cloud-based resources and at individual edge computing devices in
communication with the cloud-based resources; intercepting and parsing temporal declarative
queries from the individual edge computing devices, the temporal declarative queries being
associated with the application; and, compiling individual temporal declarative queries into an

object representation.

[0004d] According to yet another aspect of the present invention, there is provided a system
comprising: a first processing device and a first storage device storing first computer-
executable instructions which, when executed by the first processing device, cause the first
processing device to: interact with an application executing on cloud-based resources and at
individual edge computing devices in communication with the cloud-based resources, and
receive temporal declarative queries from the individual edge computing devices; and, a
second processing device and a second storage device storing second computer-executable
instructions which, when executed by the second processing device, cause the second
processing device to: intercept the temporal declarative queries, and parse and compile

individual temporal declarative queries into an object representation.

[0005] The above listed examples are intended to provide a quick reference to aid the

reader and are not intended to define the scope of the concepts described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The accompanying drawings illustrate implementations of the concepts conveyed in
the present application. Features of the illustrated implementations can be more readily

understood by reference to the following description taken in conjunction with the

2a

CA 2859500 2017-12-13

81780010

accompanying drawings. Like reference numbers in the various drawings are used wherever
feasible to indicate like elements. Further, the left-most numeral of each reference number

conveys the Figure and associated discussion where the reference number is first introduced.

[0007] FIG. 1 shows an example of a system to which the present cloud-edge application

resource usage concepts can be applied in accordance with some implementations.

[0008] TIG. 2 shows an example of a system architecture to which the present cloud-edge

application resource usage concepts can be applied in accordance with some implementations.

[0009] FIGS. 3-9 show graph examples to which the present cloud-edge application

resource usage concepts can be applied in accordance with some implementations.

[00010] FIG. 10 shows a flowchart of an example of cloud-edge application resource usage

techniques in accordance with some implementations of the present concepts.

2b

CA 2859500 2017-12-13

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

DETAILED DESCRIPTION
OVERVIEW
100011] The present concepts relate to cloud-based systems and dynamic, resource-
aware processing by applications running on cloud-based systems and connected devices.
[00012] For purposes of explanation consider introductory FIG. 1, which shows an
example of a system 100 which can implement the present concepts. System 100 includes
three cloud edge computing devices (hereinafter, "computing devices") 102(1), 102(2),
and 102(N) (where N signifies that any number of compuling devices could be utilized).
The computing devices 102(1)-102(N) can communicate with the cloud 104 via a network
106 as indicated by lines 108(1)-108(3), respectively. In this example, individual
computing devices can communicate with one another through the cloud 104, but not
directly with other computing devices. The cloud 104 can offer vast amounts of
computing resources 110, though the exact physical location of these computing resources
may not be readily apparent. Cloud computing continues to gain in popularity because of
the relatively cheap and plentiful computing resources that it offers.
[00013] Computing devices 102(1)-102(N) can be any type of computing devices.
Commonly these computing devices are portable computing devices such as smart phones
and tablet computers. The term "computer”" or "computing device" as used herein can
mean any type of device that has some amount of processing capability. While specific
examples of such devices are illustrated for purposes of explanation, other examples of
such devices can include traditional computing devices, such as personal computers, cell
phones, smart phones, personal digital assistants, or any of a myriad of ever-evolving or
yet to be developed types of devices. Further, rather than being [(ree-standing, a computer
may be incorporated into another device. For instance, a dashboard computer can be
included into a car or other vehicle.
[00014] Viewed from one perspective, the computing devices 102(1)-102(N) can be
thought of as 'edge devices' in a topology supported by the cloud 104 and network 106.
Many of these edge devices are equipped with sensors that produce frequent or continuous
streams of real-time data such as user’s GPS location, speed, current activity, device’s
battery usage, etc. In addition, there can be an increasing amount of slower-changing
rcference data, such as social network graphs and fucl prices at gas stations being made
available at the cloud, e.g., via data markets. This proliferation of computing devices and
data has fueled increasing interest in an emerging class of real-time cloud-edge

applications (or, cloud-edge apps for short). These cloud-edge apps can provide services,

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

such as notifications or rccommendations bascd on rcal-time feeds collected from a large
number of edge computing devices and the cloud.

100015] In some scenarios, the computing devices 102(1)-102(N) communicate
their data to the cloud 104 for processing by one or more service providers running on
cloud computing resources 110. For instance, assume for purposes of explanation that one
such service is a friend-finder service that notifies a user whenever any of her friends are
near her current location. In some implementations, the friend-finder service can be
accomplished by a [riend-(inder application running on cloud computing resources 110
and corresponding friend-finder applications running on individual computing devices
102(1)-102(N).

[00016] Enabling the friend-finder application entails correlation of real-time
locations from users’ smartphones (e.g., computing devices 102(1)-102(N)) as well as
slowly changing reference data such as a social network (defining the friend relationship).
For ease of explanation consider only computing devices 102(1) and 102(2) and assume
that computing device 102(1) belongs to User! and that computing device 102(2) belongs
to User2. Further, assume that Userl and User2 have been deemed as 'friends’. Each
computing device can from time-to-time upload data to the cloud as indicated by arrows
112(1) and 112(2). The uploaded data can be processed by the service provider operating
on the cloud computing resources 110. The service provider can determine results for
each computing device and communicate those results back to the respective computing
devices 102(1) and 102(2). In some cases, such a process can entail high numbers of
uploading and downloading communications over network 106 between the cloud 104 and
the computing devices 102(1) and 102(2). The present concepts can allow [or an
alternative option. This alternative option can be thought of as a dynamic resource-aware
option. In the dynamic resource-aware option, one of the computing devices 102(1) and
102(2) may determine that system resource usage, such as these network communications,
can be reduced by the individual computing device obtaining the data of the other
computing device from the cloud and handling the processing locally on the individual
computing device. (The network communications can be considered by number and/or by
network bandwidth usage). In such a case, the individual computing device does not
upload. Thc other (remaining) computing devices upload as normal, and the individual
computing device downloads. This dynamic resource-aware option can be thought of as
dynamic in that the resource usage calculations may change as the scenario changes. One

such example is described below relative to a rate at which a computing device is

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

gencerating location data. The resource usage calculations can producc a different result
when the rate of location data changes. Thus, rather than being a one-time determination,
the determination may be repeated in an iterative manner as conditions or parameters
change.

[00017] To illustrate this reduced resource usage, suppose that computing device
102(1) belongs to Userl and that computing device 102(2) belongs to User2. Further
assume that Userl is working in his/her office (e.g., relatively stationary) and User2 is
driving in a nearby neighborhood. In the above-described [ixed conliguration, an existing
friend-finder app will require User2 (computing device 102(2) to upload (112(2)) his/her
location frequently (say, once every 10 seconds) so that the cloud knows his/her up-to-date
location to correlate with Userl's location. Userl (computing device 102(1)), however,
can upload (112(1)) his/her location infrequently (say, once an hour) since he/she is not
moving much. In this example, the total communication overhead of Userl and User2
will be 361 messages per hour (ignoring final notification messages) over network 106.
This network usage can be expensive, especially when a user has many friends or runs
many such apps. This can severely limit the utility of the application since it is forced to
limit how frequently to correlate users’ data, which translates to high notification latency.
Moreover, users may simply turn the application off due to its high resource usage.
However, this inefficiency can be addressed easily in the above example with the dynamic
resource-aware option. Instead of using correlate-at-the-cloud methodology, Userl's
location can be sent to User2's computing device 102(2) (through the cloud 104 as
indicated by arrows 114 and 116, respectively). The correlation can then be performed by
User2’s computing device. In this case, User2 does not need to send his/her location
anywhere and the total cost would become only 2 messages per hour (one from Userl to
the cloud, and the other from the cloud to User2). Note that at a subsequent point in time,
such as when Userl is traveling home, the dynamic resource-aware option may determine
a different approach, such as processing at the cloud 104.

[00018] In summary, the dynamic resource-aware option can determine what (if
any) computation to push, and to which edge computing device to push it to. The
determination can be thought of as an optimization problem that depends on various
factors such as thc network topology, ratcs of the data strcams, data upload and download
costs, pairs of streams to correlate, etc. Morcover, since these parameters can change over

time (e.g., Userl’s rate can change when he/she starts traveling after office hours), the

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

determination can bc dynamically updatcd. Onc dynamic rcsourcc-awarc option
implementation is referred to as RACE and is described in detail below.

100019] Briefly, RACE (for Real-time Applications over Cloud-Edge), is a
framework and system for specitying and efficiently executing cloud-edge apps. RACE
can use database techniques to address two main aspects. First, RACE addresses the
specification of real-time cloud edge applications. Second, RACE addresses system
resource usage associated with executing the real-time cloud edge applications. System
resource usage can be enhanced and/or optimized (hereinafler, (or the sake of brevity, the
term "optimized" means "enhanced and/or optimized").

SPECIFICATION OF CLOUD-EDGE APPLICATIONS

[00020] RACE addresses the specification of real-time cloud edge applications by
abstracting the core logic of cloud-edge apps as platform-agnostic continuous queries
(CQs) over a set of streaming data sources.

[00021] Cloud-edge apps are often written in standard imperative languages such as
Objective C, Java or C#. Application developers are required to manually implement
mechanisms that handle cross-device communications, publishing and subscribing to data
streams, and time-related semantics in the application logic such as temporal joins and
windowed computations. This process is time-consuming and error-prone. RACE can
add platform support for common functionalities shared by most cloud-edge apps.
Application designers can then focus on the core application logic, instead of the
implementation details.

[00022] The present implementations leverage the [act that while different cloud-
edge apps have diverse application-specilic [eatures (e.g., visualization and support [(or
privacy), they can share some commonalities. For example, both the data and core
application logic for cloud-edge apps are often temporal in nature. In other words, cloud-
edge apps can be viewed as continuous queries that continuously correlate real-time and
slower changing (but still temporal) reference data in a massively distributed system.
[00023] For instance, the friend-finder app can be thought of as a temporal join
between the real-time GPS locations of edge devices and a slower-changing social
network stream. A location-aware coupon application correlates current user location
information with uscrs’ profiles (computed over a historical time window) and current
advertisements. Thus, in some implementations, the specification language for cloud-edge
apps should contain native support for temporal semantics. Such support enables clean

expression of time-oriented operations such as temporal joins and windowed aggregations.

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

Alternatively or additionally, the language can have other propertics. For instance, onc
such property is the declarative nature of the specification language. This can allow
application designers to specify applications in a declarative and network-topology
agnostic manner, where they can focus on “what” the applications are, instead of “how”
they are implemented. The implementation details can be transparent to application
designers, and instead be handled automatically by the underlying platform. Another
property can relate to succinctness. The specification of applications can be succinct,
allowing productive prototyping, deployment, and debugging by the application designers.
Succinctness is aligned naturally with the adoption of declarative specifications.
Flexibility can be another property. The specification language can be flexible, such that
application designers can easily customize the application according to different
input/output sources and configurations.

[00024] The design space of specification languages is now described in light of
these properties. Declarative languages such as SQL and Datalog (and its variants, e.g.
Network Datalog) can allow succinct and flexible specification of continuous queries in
distributed environments. However, these languages do not have native support for
temporal semantics, which can be crucial for most cloud-edge apps. On the other hand,
data stream management systems (DSMSs) use declarative temporal languages that satisty
the desired properties. Examples include LINQ™ for StreamInsight™, and StreamSQIL™
for Oracle® CEP, and StreamBase™. The description below utilizes LINQ for
StreamlInsight as the specification language, but is applicable to other configurations.
LINQ allows the declarative specilication ol temporal queries, and is based on a well-
delined algebra and semantics that (it well with the temporal nature of cloud-edge apps.
[00025] The discussion that follows provides an example of a cloud-edge app
specification. Recall that the friend-finder query finds all user pairs (Userl, User2) that
satisfy the conditions: 1) User2 is a friend of Userl; and 2) the two users are
geographically close to each other at a given time. At this point, for purposes of
explanation, assume that the friend relation is asymmetric, i.e., User2 being a friend of
Userl does not necessarily imply the converse, given a point in time. There are two inputs
to the friend-finder app, namely the GPS location streams reported by the edge devices,
and the social nctwork data. The GPS locations arc actively collected at runtime, whercas
the social network data is relatively slow-changing and is generally available at the cloud.
Friend-finder can be written as a two-stage temporal join query as illustrated below.

var query() = from el in location

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

from ¢2 in socialNctwork

where el.Userld==e2.Userld

select new { el.Userld, ¢l.Latitude,

cl.Longitude, ¢2.Friendld };
var queryl = from el in query0
from e2 in location
where el.Friendld == e2.Userld &&
Distance(el.Latitude, el.Longitude,
e2.Latitude, e2.Longitude) < THRESHOLD

select new { Userl = el.Userld, User2 = e2.Userld };
[00026] The first query (query0) joins the GPS location stream (location) with the
social network reference stream (socialNetwork), and the resulting output stream is joined
with the GPS locations again (in queryl), to check the distance between ecach pair of
friends. The final output is a stream of pairs (Userl, User2) where the two users are
friends and are geographically close to each other.
[00027] The query specification above defines the high-level logic of the query as
temporal joins, and references the schemas of the location stream and socialNetwork
stream. It is written over the social network stream and a conceptually unified GPS
location stream input, and is thus network-topology-agnostic. ~As another example,
assume that a desired function is to find friends who visited a particular location (say a
restaurant) within the last week. To specify this, the present concepts can allow replacing
the location input in queryl with location.AlterEventDuration(TimeSpan.FromDays(7)).
This extends the “lifetime” of location events to 7 days, allowing the join to consider
events from friends within the last week.
[00028] In summary, RACE can utilize a declarative specification of a cloud-edge
app. RACE can execute the logic on the distributed system composed of the edge devices
and the cloud. RACE can use an unmodified DSMS as a black box to locally execute
queries on individual edge devices and the cloud. Some RACE implementations can
operate on the assumption that the DSMS provides a management application program
interface (API) for users to submit queries (that define the continuous queries to be
cxecuted), cvent types (that specify the schema of input data strcams), and input and
output adapters (that define how streaming data reaches the DSMS from the outside world

and vice versa). Further, the API also allows users to start and stop queries on the DSMS.

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

[00029] Stated anothcr way, somc implementations may move diffcrent data
streams (or parts of streams) to the cloud and/or to other edge computing devices via the
cloud. Some other data streams may be retained locally at the device and not uploaded to
the cloud. Further, these various (moved and local) streams can serve as inputs to
application query segments running at various locations (such as a sub-set of the devices
or even at the cloud). The output streams of such queries themselves can either be
retained locally for further computations or uploaded to the cloud (and then possibly
forwarded to other devices). Overall, the computation specified by the end user can be
performed in a distributed manner.

RACE ARCHITECTURE

[00030] FIG. 2 shows an overall system or system architecture 200 of one RACE
implementation. System architecture 200 carries over computing devices 102(1)-102(N),
cloud 104, and network 106 from FIG. 1. System architecture 200 introduces a RACE
management service 202 and a RACE processor 204. The RACE processor includes a
graph constructor 206, an optimizer 208, and a query constructor 210. System architecture
200 also includes statistics data 214, reference data 216, a control plane 218, and a data
plane 220. The computing devices 102(1)-102(N) include an instance of DSMS 222(1)-
222(3), respectively. A DSMS instance 222(4) also occurs in the cloud 104.

[00031] The system architecture 200 is explained relative to an experience provided
to an application developer 224. The application developer can interact with the RACE
management service 202 by writing an application in a declarative and temporal language,
such as LINQ 226. Assume for purposes of explanation that the application is a [(riend-
(inder app 228. The (unctionality of [(riend-(inder apps was introduced above relative to
FIG. 1. The friend-finder app 228 can be manifest on individual computing devices
102(1)-102(N) as friend-finder app instantiations 228(1)-228(3), respectfully, and on cloud
104 as friend-finder app instantiations 228(4). Further, while only illustrated relative to
computing device 102(1) for sake of brevity, the individual computing devices can include
various hardware 230. In this example the illustrated hardware is a processor 232, storage
234, and other 236. The above mentioned elements are described in more detail below.
[00032] Processor 232 can execute data in the form of computer-readable
instructions to provide a functionality, such as a fricnd-finder functionality. Data, such as
computer-readable instructions, can be stored on storage 234. The storage can be internal

or external to the computing device. The storage 234 can include any one or more of

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

volatile or non-volatilc memory, hard drives, and/or optical storage dcvices (c.g., CDs,
DVDs ete.}, among others.

100033] Computer 102(1) can also be configured to receive and/or generate data in
the form of computer-readable instructions from storage 234. Computer 102(1) may also
receive data in the form of computer-readable instructions over network 106 that is then
stored on the computer for execution by its processor.

[00034] In an alternative configuration, computer 102(1) can be implemented as a
system on a chip (SOC) type design. In such a case, [unctionality provided by the
computer can be integrated on a single SOC or multiple coupled SOCs. In some
configurations, computing devices can include shared resources and dedicated resources.
An interface(s) facilitates communication between the shared resources and the dedicated
resources. As the name implies, dedicated resources can be thought of as including
individual portions that are dedicated to achieving specific functionalities. Shared
resources can be storage, processing units, etc. that can be used by multiple functionalities.
[00035] Generally, any of the functions described herein can be implemented using
software, firmware, hardware (e.g., fixed-logic circuitry), manual processing, or a
combination of these implementations. The terms “tool”, “component”, or "module" as
used herein generally represent software, firmware, hardware, whole devices or networks,
or a combination thereof. In the case of a software implementation, for instance, these
may represent program code that performs specified tasks when executed on a processor
(e.g., CPU or CPUs). The program code can be stored in one or more computer-readable
memory devices, such as computer-readable storage media. The [eatures and techniques
of the component are platform-independent, meaning that they may be implemented on a
variety of commercial computing platforms having a variety of processing configurations.
[00036] As used herein, the term "computer-readable media" can include transitory
and non-transitory instructions. In contrast, the term "computer-readable storage media"
excludes transitory instances. Computer-readable storage media can include "computer-
readable storage devices". Examples of computer-readable storage devices include
volatile storage media, such as RAM, and non-volatile storage media, such as hard drives,
optical discs, and flash memory, among others.

[00037] The other hardware 236 can includc displays, input/output devices, scnsors,
etc. that may be implemented on various computing devices.

100038] The RACE management service 202 can run in the cloud 104 and exposc a
management service that is fully compatible with the DSMS’s management API. Thus,

10

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

individual computing dcvices 102(1)-102(N) can submit their declarative cloud-cdge app
logic to RACE management service 202 as regular temporal declarative queries supported
by the respective DSMS 222(1)-222(N). Note that from the edge device’s perspective
(e.g., computing devices 102(1)-102(N)), they simply appear to communicate with a
normal DSMS engine.

[00039] Viewed from another perspective, RACE management service 202 can be
thought of as being configured to interact with an application executing on the cloud and
at individual edge computing devices in communication with the cloud. The RACE
management service 202 can be configured to mimic a DSMS engine to receive temporal
declarative queries from the individual edge computing devices.

[00040] Briefly, the RACE processor 204 can be thought of as intercepting and
parsing the incoming query, adapters, and types from the individual computing devices
102(1)-102(N) running the friend-finder app 228. The RACE processor 204 then compiles
these inputs into an object representation of the original query. The object representation
is passed to the graph constructor module 206 that converts the original query into a larger
query graph. For example, the larger query graph can include per-edge input streams and
operators. The query graph is passed to the optimizer module 208 to decide the optimal
operator placement. Finally, the query constructor module 210 can generate object
representations of types, adapters, and (sub-)queries to be executed on individual
computing device 102(1)-102(N) or at the cloud 104. These objects are sent to the
individual DSMSs (via their management APIs) of the respective computing devices to
execute the application logic in a distributed (ashion. Note that while in this
configuration, the RACE management service 202 and the RACE processor 204 are
implemented on the cloud 104, in other implementations, alternatively or additionally, the
RACE management service and/or the RACE processor could be implemented on one or
more of computing devices 102(1)-102(N). The RACE management service and/or the
RACE processor implemented on the computing devices could be freestanding or work in
a cooperative manner with corresponding RACE management service and/or the RACE
processor instantiations on the cloud.

[00041] The graph constructor 206 can be thought of as taking the object
representation of a query as input, along with statistics on strcam rates and mctadata
information on each input. The graph constructor first can use the object representation of
the query to generate a query pattern, which represents the template or skeleton for

generating the expanded query graph. For instance, Fig. 3 illustrates the query pattern 302

11

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

output by the graph constructor 206 for the friend-finder query described above relative to
paragraph 25.

100042] Some of the input streams in the query pattern 302 refer to per-device data
streams such as GPS location sources. The graph constructor 206 can create multiple
instances of the query pattern by splitting such streams into multiple inputs, one per edge.
Slow-changing reference data inputs, such as the social network, can be materialized to
limit the size of the generated query graph. For example, FIG. 4 shows a social network
400 of four users P, Q, R, and S. FIG. 5 shows corresponding instantiated query patlerns
502(1), 502(2), and 502(3) for the friend-finder query. Note that in order to allow
information sharing and avoid duplicated edges in the instantiated query patterns, the
instantiated source and join operators are named carefully, as shown in FIG. 5. The final
step is to stitch the instantiated query patterns 502(1)-502(3) into a complete query graph.
[00043] FIG. 6 shows a final query graph 602 derived from the instantiated query
patterns shown in FIG. 5. Note that when combining the instantiated query patterns, the
vertices (in the instantiated patterns) with the same name are mapped to the same vertex in
the final query graph. For instance, the Join<GPS-P, SNP > vertex is shared by the
instantiated patterns for edges (P; R) and (P; S).

[00044] Returning to FIG. 2, the optimizer module 208 accepts the final query
graph 602 as input, and decides where to execute each operator (e.g., query part) in the
query graph so that the total or collective communication cost of the application is
minimized (or at least reduced). With thousands or even millions of users participating the
cloud-edge system, the (inal query graph could be huge — containing millions of operators.
For such a large query graph, the optimal operator placement is non-trivial. The RACE
Optimizer module can utilize various techniques to determine optimal operator placement.
One such technique is described below under the heading "Optimal Operator Placement”.
RACE can perform periodic re-optimization to adjust the placement to changes in the
query graph and/or statistics.

[00045] After the decisions for enhanced/optimal operator placement are made, the
RACE processor 204 has a set of rooted query graphs (each consisting of a directed
acyclic graph (DAG) of temporal operators). Each such graph corresponds to some
location (cdge or cloud). The query constructor modulc 210 can gencratc object
representations of the query components (including event types, adapters and queries) for
cach graph. The query constructor module can then submit object representations to the

corresponding DSMS via the control plane 218. Note that two additional adapters can be

12

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

installcd at cach DSMS instancc — onc to send cvent data to the data planc 220, and
another to receive event data from the data plane.

100046] The RACE control plane 218 is used to deploy the generated query
fragments and metadata to the cloud instance and the edge instances of the DSMS, using
the DSMS’s management API. A complication is that edge devices (e.g., phones) are
usually not directly reachable or addressable from RACE management service 202.
Instead, the RACE management service can maintain a server to which the edge devices
create and maintain persistent connections in order (o receive management commands that
are forwarded to the DSMS instances on the edges. During query execution, events flow
between edge devices and the cloud. RACE management service 202 can use a separate
data plane 220 that is exposed as a server at the cloud 104, and to which the edge
computing devices 102(1)-102(N) can connect via the control plane 218. The generated
queries on edge computing devices and the cloud subscribe to and publish named streams
that are registered with the data plane 220. The data plane routes events from the cloud
104 to the edge computing devices 102(1)-102(N) and vice versa.

[00047] With thousands or even millions of users participating in the cloud-edge
system, the final query graph could be huge — containing millions of operators. Since data
sources are distributed (e.g., GPS data streams of various users are originated from their
edge-devices), the placement of every operator has its impact to the query evaluation
overhead. There are exponentially many different combinations of operator placement. A
naive approach that searches for the whole design space may not be feasible. In addition,
considering the sharing ol intermediale results makes the problem even harder.

[00048] The following discussion relates to an example of an efficient algorithm f(or
optimal operator placement, by leveraging the special “star” topology of cloud-edge
systems. For some implementations, the correctness of the algorithm can be proven given
the two assumptions mentioned below. Further, the overhead of finding the optimal
placement can be very low.

[00049] Assumption 1. The final output of queries are relatively much smaller than
the input streaming data, and therefore its cost can be ignored.

[00050] This assumption is reasonable given the general nature of cloud-edge apps.
In addition, bascd on privacy considcrations, somc implcmentations can restrict the
allowed locations of operators. For instance, the streaming data may include sensitive
personal information (e.g. the geo-location traces of a mobile phone). An edge client may

not want to expose the raw information, unless it is properly processed (by excluding the

13

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

scnsitive data from the final results of a join opcration), or if it is shipped only to nodcs
that have been authorized.

100051] Assumption 2. For any join A »< B (where A and B are the input streams
of the join), the join operation is performed either at the cloud or on the nodes where A or
B originated.

[00052] Note that this assumption does not simplify the placement problem; there
still exist an exponential number of possible operator placements. Before presenting the
reasoning and the proposed algorithm several graph-based denotations are described.
[00053] Definition (Demand) Can be denoted, as a pair (v1, V), that a streaming
data source v, “demands” (i.e., needs to correlate with) the data generated by another
source V).

[00054] Decfinition (Demand Graph) Given a Cloud-Edge app, the demand graph G

= (V, E) is defined as follows: the vertex set V = { v /v is a streaming data source }, and E

= {(v1, v) | (v, V3) is a demand pair}. Each edge e = (4) € £ is associated with a rate
7y, indicating the rate of v; ’s stream that is demanded by v;.
[00055] Algorithm 1. Generate Demand Graph from Query Graph
func DemandGraph (G2 = (V9,E?))
VP« ¢ EP < ¢
for vv, € V¢ do
supposc el = (v,,v,) € E% e, = (v3,v,) € E?
VP« VP +{v}

E? « EP +{e; = (vg,v3), €5 = (v3,v2)}

end for
return GP = (V2,EP)
[00056] FIG. 7 shows the corresponding demand graph 702 for the friend-finder

query, given the social network shown in FIG. 4. Edges in the demand graph 702
illustratc the demand rclationships. For instance, the cdge (GPS-P, SNp) indicatcs that the
GPS reading from P (GPS-P) should be correlated with the social network (SNp). In a
demand graph, join operators are treated as virtual data sources in the demand graph (as
they are producing join results as streams). Actually, there is a one-to-one mapping
between demand graphs and query graphs. Given a query graph G¢ = (V¥, E9), Algorithm
1 generates the corresponding demand graph G” = (V”, E?). The query graph can be re-

engineered from the demand graph by following a similar algorithm.

14

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

[00057] Assignment: Download vs. Upload. In gencral, deciding optimal operator
placement for distributed query evaluation is known to be a hard problem. The essence of
the proposed algorithm is rooted in leveraging a special network property of the cloud-
edge architecture. In this case, edge computing devices cannot communicate with each
other directly. Instead, to exchange information, the edge computing devices have to
upload or download data through the cloud-side servers.

[00058] Definition (Upload and Download). Given a demand graph G = (V, E), for
an edge (I, j) € E, this implementation characterizes v; as “uploading” on (I, j), if,
regardless of where v; is placed (either at an edge computing device or the cloud server),
it always makes the effort to have the corresponding stream (demanded by v;) available at
the cloud server; otherwise, v; is characterized as “downloading” on (£ j).

[00059] Intuitively, once a vertex decides to upload on an edge (which represents a
required data correlation), there is no reason for it to download any data for this
correlation from the cloud-side server, because the correlation can simply be performed at
the cloud side (as the data has been made available at the cloud side already). Consider
the following lemma.

[00060] Lemma 1. Given a demand graph G = (V,E), in its optimal operator

placement, ¥(i,j) € E, (i,j) has to be in one of the two statuses: either v; is uploading
(but not downloading) or downloading (but not uploading) on (i,j).

[00061] Proof. Suppose a vertex v; €V decides to both upload and download on
(i,). The join operator for the corresponding correlation can be placed at three locations
(according to Assumption 2), namely vi, v;, and the cloud. In this case, the join operator
cannot be placed at v; in the optimal placement: as v; is already uploading its stream. The
join operation could have been performed at the cloud, in which case, it saves the
communication cost for downloading v;’s data to v;. Therelore, v; is not downloading on
(i,) (as no join operators are placed at v;).

[00062] Lemma 1 offers support for the conclusion that, given a demand graph G =
(V,E), there exists a mapping from its optimal placement to a set of upload vs. download
decisions made on each vertex in G. Such a set of decisions is defined as an assignment.
[00063] Definition (Assignment). Given a demand graph G = (V,E), an assignment
A : E — {D,U} is defined as follows: Aij = U if vertex vj decides to upload its streaming
data on edge (i,j), otherwise, Aij = D.

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

[00064] The optimal placement and its corrcsponding assignment can be denoted as
P and A”'. FIG. 8 shows the optimal placement (P*") for the demand graph 702 of FIG.
7. FIG. 9 shows the corresponding assignment (A”"). In the optimal operator placement,
the join between GPS-P and SNp is performed at node P, which means that the partitioned
social network graph SNp should be shipped to node P, i.e., SNp is “uploaded” to the
cloud, and GPS-P is not. This is consistent with the assignment given in FIG. 9.

[00065] It is natural to ask the questions 1) whether there exists a reverse mapping

from A”" to P*’, and 2) whether there exists an efficient algorithm to find A””, given a
demand graph. The discussion below initially relates to the first question, and then
gradually develops the answer for the second question.
[00066] Not all assignments can be mapped to a viable evaluation plan. There is a
fundamental constraint: join requires the co-location of all its inputs. Therefore, for any
join that takes inputs from different sources (edge devices), ar most one device is
downloading.
[00067] Definition (Viability and Conflict). Given a demand graph G = (V, E), an
assignment A is viable if it satisfies the following condition: Ve = (i) €E, A;; #D vV A;; #
D. An edge that breaks this condition is called a conflict edge.
100068] For example, F1G. 9 illustrates a viable assignment given the demand graph
shown in FIG. 7, as for any correlation, at most one data source is deciding to download.
If the Agnp gps-p 1s changed to download, it will invalidate the assignment, as the edge (SN,
GPS-C) is a conflict edge.
[00069] Algorithm 2. Compute Placement from Assignment

func Placement(G® = (V2 E%), Assign)

// Initialize the placement of leal vertices (i.e., raw sources)

Placement « {}

for v v e VYdo

if 13 e= (v, v) € E% then
Placement, «— v
end if

end for

// Determine operator placement in a bottom-up fashion

TopoOrder — V¥ sorted by topology sort.

16

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

for V v € TopoOrder in the bottom — up order do
Suppose e; = (v, v) € B2, e3 = (vy, v) € E?
if Assign,; = D then Placement, «— Placement,,
else if Assign,; = D then Placement, — Placement,;
else Placement, «— Cloud
end for
return Placement
[00070] Lemma 2. Given a viable assignment A, A can be mapped to a
corresponding operator placement.
[00071] Proof. Prove by construction. Operator placement is decided in a bottom-
up fashion (shown as Algorithm 2). As the base case, the locations of the leaf vertices in a
query graph are known (trivially the stream sources). For an internal vertex (i.e., a virtual
vertex that represents a join operator), according to assumption 2, it can either be placed at
the cloud-sidc scrver, or co-locatcs with onc of its inputs. If all its input sourccs decide to
upload, then the join operator should be placed at the cloud; otherwise, there is one and
only one input source (given that assignment A is viable) deciding to download, then the
join operator should be co-located with that input source.
[00072] Theorem 4.5 The optimal operator placement problem can be reduced to

finding a viable assignment with optimal cost (directly derived from Lemma 1 and Lemma

2).
[00073] Single-level Join Queries
[00074] This discussion starts with a simple scenario, where applications are

specified as single-level join queries. The discussion will be extended to multilevel join
queries in the discussion that follows.

[00075] Same Demand Rate

[00076] The discussion first considers a special case of the single-level join queries,
in which, for any vertex i in a demand graph, the stream rates for all outgoing edges are
the same, namely, V(i,j) € £, ri; = ri Basically, a join operator requires the full streaming
data from each input stream to perform the join operation. This corresponds to the queries
where no filtering (such as projection or selection) is performed before the join.

[00077] Instead of directly considering the cost of an assignment, some
implementations can compute the gain of switching upload and download (which could be

positive or negative) compared to a base viable assignment — a naive solution that all

17

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

vertices decide to upload their strcaming data. By switching a vertex i from upload to
download, the gain can be computed as follows: gain; = r; =Y jyeg - Namely, the gain
can be thought of as thc benefit of not uploading i’s strcaming data at a cost of
downloading all the streams that are correlated with i’s stream.

[00078] Definition (Global optimality). Given a demand graph G = (V,L), for the
global optimal assignment is a viable assignment A that maximizes the total gains.

[00079] The following technique to find an assignment A”" that gives the global
optimality considers a greedy approach where each vertex in the demand graph locally
makes the assignment decision based on its own benelfit.

[00080] Definition (Local optimality). Given a demand graph G = (V,E), for each
vertex v € V| the local optimal assignment for v is a local decision on A, that maximize
the local gain. Specifically, A, = D if and only if gain, > 0.

[00081] It can be proven that the local optimality is actually consistent with the
global optimality, which has two implications: First, the overhead for computing the local
optimality is low, which is linear to the number of degrees of the vertex in the demand
graph. Sccond, it mecans that the assignment problem can be partitioned and solved in
parallel. This is particularly important in cases where the demand graph is huge, as this
technique can leverage the vast computation resources at the cloud to solve it efficiently.
[00082] Theorem 1. Given a demand graph G = (V, E), the assignment A = {Av| A,
= local optimal assignment at v, v €V} is viable.

[00083] Proof. Prove by contradiction. Suppose there exist a conflict edge e=(i, j),
which means that 4; = D and 4, = D. A; = D provides that gain; = r; — Y. jyee 7 > 0.
Therefore, r; > r; . Similarly, r; > r; can be derived from 4; = D. Contradiction.

[00084] Theorem 2. Local optimality is consistent with global optimality, namely,
global optimality can be derived by individually applying local optimality.

[00085] Proof. 1) Theorem 1 shows that the assignment derived by individually
applying local optimality is viable. 2) Each local optimality is computing the maximal

gain for an isolated physical link, and the global optimality is simply addition of the gains

on the physical links.
[00086] Different Demand Rates
[00087] The discussion is now extended to consider the scenario where, for a given

vertex i, the stream rates demanded by each of the other vertices may be different. For

example, in the case of the friend-finder app, the event rate for a particular user may be

18

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

diffcrent with respect to cach of their friends. Here, it is assumed that the strcam with a
lower rate can be constructed using one with a higher rate, which corresponds to querics
that apply sampling filters. In other words, a filter that needs to sample x events/sec can
be provided by another filter that samples y events/sec, for any y = x. In such a scenario,
decisions on uploading versus downloading need to be made for each edge (instead of
each vertex) in the demand graph.
[00088] Assuming the rates Tjy; are sorted at vertex i, such that r;,, <r1;, < .. <
Fiv,» it is not hard to see that an optimal assignment for the p sorted edges must have the
pattern fU, ..., U, D, ...,D].
[00089] Definition (Local optimality). Consider the gain in an assignment ¥; < k,
Ay = U Yj >k Ai,v]., = D: gainiy, = Ty, — Ty, - Yk+igssp Togi - Some
implementations can select k = argmax,<j<pgain,, , and configure the assignment in
the pattern described above.
[00090] Lemma 4.8. After applying local optimality at vertex £ that Ai,vj =Ditis
implied that 1y, > 1y .
[00091] Proof. Proof by contradiction. Suppose Tiw; S Ty According to the
definition of local optimality:

Gain;,, = Yip, = Tivg™ Zk+1555p Ty ¢

Gaini,v]— = Tiw, ~Tiw; — Zj+1sssp Tys,¢

Notice that j > £, since Ai,vj = D. Also, gaini,v]. — gaing, = Tyt
Dk+1gs<j—-1 Ty i T ('rvj, —ri,v; > 0. This crcates a contradiction (sincc gain;y, is
optimal).
[00092] Thcorem 3. The viability theorem (Theorem 1) still holds.
[00093] Proof. Proof by contradiction. Suppose there exists a conflict edge e(v;, v
). Applying Lemma 3, supplies 7,1 ;,p > Typpq from A,y o = D, and 1,549, > 19, from
Az v1 = D, which produces a contradiction.
100094] Multi-level Join Queries
[00095] When considering multi-level join queries, there can be difficulties that
prevent naively applying the algorithm developed for single-level join queries. For
example, for single-level join queries, the cost of the output streams for join operators is

not considered (as it is assumed that the final output is negligible compared to the input

19

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

strcams). Howecver, it is not the casc for multi-level join querics. For cxample, when
naively applying the algorithm presented in the prior section, an edge device may
individually decide to download other streams and perform the computation locally.
However, if the edge device is aware of the fact that the output stream is then required for
a higher-level join operator (whose optimal placement is at the cloud side), it may make a
different decision. The discussion below relates to how this challenge is resolved by
extending the algorithm for single-level joins.

[00096] Assumption 3. 4 data stream from a given edge appears in no more than
one child subtree of any operator in the query graph.

[00097] This is a reasonable assumption, since one can simply combine streams
from the same edge device into a single stream, or locally perform the necessary
computation that these streams are involved in. Note that this assumption does not
preclude sharing of source or intermediate results, and in particular, it always holds in case
the query pattern is a left-deep tree over different data sources.

[00098] Operator Placement in a Top-down Fashion

[00099] The internal join operators in the query graph can be viewed as virtual
stream sources, except that their locations need to be decided. Intuitively, given a query
graph, the present techniques can make the upload vs. download decisions for the
operators in the top-down fashion. For example, the decision can be made for a given
vertex v that corresponds to a join operator, as long as the location where its output
should be shipped to (based on the placement decision made by its parent operalor) is
known. The algorithm for the single-level join queries can be straightforwardly extended
by additionally including the cost of shipping the output stream to the destination.
[000100] Note that the only destination considered is the cloud side. For example,
even if the destination is another edge device (as the output stream is required by another
vertex v, located at the edge device), the technique need not consider the downloading
part of the shipping cost (i.e., the cost of sending the output stream from cloud side to that
edge device), as this downloading cost is already considered in calculating the gain for vo.
Note that Assumptions 1 and 3 ensure that when considering vertex v, the actual
placement decision can be disregarded for its destination, as it will definitely be placed
either at the cloud or at some other edge that v; (or its subtree) do not overlap with. This
key observation makes the extension of the algorithm possible, and it can easily be shown

that the extended algorithm still guarantees a viable and optimal assignment.

20

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

[000101] Upload vs. Download in a Top-down Fashion
1000102] Notice that the previous approach (for single-level join queries) derives the
placement of operators in the bottom-up fashion after the upload vs. download decisions
are made. Algorithm 3 can be tweaked to decide upload vs. download assignment, based
on the parent operators’ assignment instead of their placement (as the placement is not
available).
[000103] Once the decision of the parent vertex vy, is known, some implementations
can consider what decision should be made for a child vertex v,. Again, v, has two
choices — either upload or download.
[000104] In one scenario, if the decision of the parent vertex v; is download, it
means that there is no need to make the effort to have the output available at the cloud
server. Therefore, when finding the local optimality for v, the cost of the output stream is
not considered in computing the gains.
[000105] In another scenario, if the decision of the parent vertex v; is upload, it
means that the output stream of v, should be made available at the cloud server.
Therefore, when finding the local optimality for v, the cost of the output stream should be
considered.
[000106] Algorithm 3 takes the demand graph G = (V, E) as the input, and computes
the optimal operator placement. The algorithm applies to a generic scenario where it
assumes a multi-level join query, and per-edge demand rates (i.e., the rates associated with
thc demand cdges starting from a given vertex might be different). According to
Theorems 1 and 2, it is not hard to see that the derived assignment is viable and optimal.
Algorithm 3. Compute Optimal Assignment.

func Assignment(G2 = (V2 ,£9),G” = (V* ,E"))

// Compute local optimality in a top-down fashion

TopoOrder — V¥ sorted by topology sort:

Assign — ;

for V v € TopoOrder in the top — down order do

EStart — {er = (v, vf)| ex € EP)
Sort EStart according to 1, ,

max

r — max(y,v')eEStart Tyr

for V ex = (v, V') € EStart do

H max
gain, «—r —Typvr T Zk+1sssp Tys vge

21

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

V, « v’s parent in the query graph
if Assign,, = U then
//Gain should include the cost of join output.
gaing < gaing + ray // raj is cost of join result
end if
end for
kP «— argmax; g, gaing
for V1 < k < k" do Assign,; <« U
for VA”'< k < p do Assign, < D
end for
return Assign
[000107] Asymmetric Upload / Download Costs
[000108] So far, the above techniques have operated on the assumption that the
upload cost and the download cost are the same. However, in reality, it might not be the
case. For example, the per-unit prices of bandwidth utilization for uploading and
downloading might bc different (c.g., a cloud service provider may introduce asymmetric
costs to encourage users to feed data into the cloud). As another example, an edge device
might exhibit different battery consumptions for uploading and downloading.
[000109] The discussion that follows considers asymmetric upload / download costs.
The per-unit cost for uploading and download are denoted as C* and C%. For scenarios
where C% < €9, the results for C* = C% presented in the previous sections still hold.
Basically, the reasoning of the key viability theorem (Theorem 1) holds.
[000110] On the other hand, deciding optimal operator placement is a harder problem
for cases where C* > C%. For a special case where C¢ = 0, it can be shown that the
optimal operator placement problem is provable hard by reduction from the classic
weighted min vertex cover (WMVC) problem. Essentially, the viability theorem breaks in
these cases, therefore, having edge devices individually apply local optimality may result
in conflicts. In such cases, a viable assignment can still be obtained by resolving the
conflicts by setting some vertices in the demand graph to upload with higher rates.
Therefore, the problem reduces to the WMVC problem in the residual graph, which lacks
an efficient general solution. The following discussion relates to a condition. If the

condition is satisfied, the optimal operator placement problem can be solved efficiently.

22

10

15

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

1000111 Definition. Given a demand graph G = (V,E), the skew of a vertex v € V,
Sy is defined as the ratio between the maximum and minimum rate associated with the

outgoing edges from v. Namely, S, = max e, iyep. iy / MMy jyepTv,j-

[000112] Definition Given a demand graph G = (V.E), the skew of G is defined as
the maximum skew among the nodes in G. Namely, § = max,cyS,.
Condition Local Complexity
Select None O(N), N = # of friends
Conditions Sampling O(N logN), N=# of friends
Condition Global Complexity
Query Single-level Parallelizable local
Complexity algorithm
Multi-level Local algorithm in top-down
fashion
Asymmetric c*<cH Parallelizable local
Costs algorithm
c* > e DP with acyclic residual
graph

[000113] Table 1: Shows a summary of the operator placement algorithm. Global
optimality is achieved in all cases.
[000114] Lemma 4. Given the skew S of a graph G, if C < C* < (1 + 1/S)- C%,
after applying local optimality on all vertices, the residual graph G' that consists of the
conflict edges is acyclic (i.e., separated trees).
[000115] Proof. Proof by contradiction. Suppose there exists a cycle (vq, v2), (v,
V3),..er (Vp—1)r Vp)y (Vp, V1) in the residual graph G'. For the purpose of presentation,
denote that vo = v, and v, 41y = v;. Since every edge in the cycle is a conflict edge, V1 <
i <p, there is a loose bound that

C* - max(Ty,, vy 1Yoy, vyv1,) > ce- (roi—1,v; T Tor1, v,)
By adding these inequalities it can be derived that

C™ - Y1sisp max (7, vi_q oy ”i+1) ~

d _
c*- leisp(rvi—l, vir o4 ,vi) -

23

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

ce- Ysisp Max(ry, v, Ty, ”i+1) +

d .
C® - Yisisp min(ry, v, 1T, Vi+1)'

There(ore, this implementation can derive the [ollowing contradiction:

X1 <isp min(r”i,”i—lyr"i,”Hl)

Cv/C%>1+ >1+1/8S.

Zasisp MaX(Ty vy Ty vy,
[000116] Theorem 4. If C% < CY% < (1+1/S) - C%, the optimal operator placement
can be found in P-time.
[000117] Proof. It can be concluded by applying Lemma 4 that G’ is acyclic. This
discussion shows that, for each tree in the residual graph G, its weighted minimal vertex
cover can be found in linear time, using a dynamic program algorithm.
[000118] Starting from the leaf vertices, for each vertex v, consider the cost of the
vertex cover for the subtree (rooted by v), having (or not having) v in the cover set. For
any inner vertex v, if v is not in the cover set, then all the children of v should be in the
cover set. Therefore, Cost, =Xiechilae) Cost;. On the other hand, if v is in the cover set,
then each subtree can independently choose its vertex cover: Costj= ¢, +
min;Epilavy(Costy,, Costy).
[000119] Note that for a special case where the stream rates required by different
friends are the same, the optimal placement can be found in P-time, if ¢/ < % < 2- C?
(which holds in most practical scenarios). Empirically, even if C* > 2 - C¢, the conflicting
edges still form isolated trees.
[000120] Summary
[000121] Tablc 1 summarizes the theorctical results and the time complexity the
proposed operator placement algorithm, given various combinations of query
complexities, select conditions, and upload/download cost ratios.
[000122] The operator placement algorithm computes the globally optimal solution
by individually considering local optimality for each vertex in the demand graph. This
discussion proves that local optimality is consistent with the global optimality (if C* <
C%). An efficient greedy algorithm is proposed for computing local optimality. With this
efficient greedy algorithm each node individually chooses the solution that maximizes the

local gain.

24

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

[000123] This algorithm handles both single-level and the more complex multi-level
join queries. In the case of multi-level join queries internal join operators in a query graph
are treated as virtual vertices. The local optimality can be computed for each individual
vertex in a top-down fashion. In addition, in the common case where the residual graph is
acyclic (for C* > €%), there is an efficient dynamic programming (DP) algorithm to find
the optimal assignment for the demand graph. Therefore, an optimal operator placement
for the query graph can be determined. The extension of these concepts to general query
graphs with black-box operators is also explained.

[000124] Given the nature of cloud-edge apps (which are usually correlations across
real-time data), the discussion above focused mainly on join queries (with sampling
filters). The discussion that follows relates to how the proposed algorithm can be applied
to support general query graphs in a cloud-edge topology. The discussion further explains
how runtime dynamism such as changes in the query graph and event rates can be
handled.

1000125] Handling General Query Graphs

[000126] A query graph G is defined as a directed acyclic graph (DAG) over a set of
black-box operators (denoted as 0O), where the leafs in & are called sources, and the roots
are called sinks. Each operator in O may take zero (for the sources) or more inputs, and its
output may be used as an input to other operators. Selection and projection are examples
of one-input operators, while join operation is an example of two-input operators (or a
multi-input operator for bushy joins). The high-level intuitions of the operator placement
algorithm still hold in that each operator can individually decide (in a top-down order)
whether it should upload (or download) its output to optimize its local cost. In this case
the viability of the assignment is still guaranteed as before. Moreover, given that the
operators are considered as black-boxes, there is no further opportunity to exploit sharing
across the output of different operators. In this case, the consistency between local
optimal and global optimal still holds, following a similar reasoning as Theorem 2.
Thercfore, the problem can again be reduced to finding the optimal upload/download
assignments, and the proposed efficient local optimality algorithms can be used.

[000127] Handling Dynamism

[000128] Some instances of the algorithm assume the availability of the query graph,
and rate statistics for all streams. The optimal placement is computed based on this
information collected at the optimization stage. However, the query graph may change

over time, for example, due to the addition and removal of edges in the social network.

25

10

15

20

25

30

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

Similarly, cvent ratcs may also change over time. Thus, it may be nccessary to adapt to
these changes during runtime. Given that the proposed optimization algorithm is very
efficient, the periodic re-optimization is a viable solution. However, re-optimization may
encounter deployment overhead (e.g., sending control plane messages such as query
definitions). If implementations re-optimize very frequently, the re-optimization overhead
may overshadow the benefits of the optimization.

[000129] To resolve this dilemma, one solution is to use a cost-based online
algorithm. For instance, such algorithm can estimate and maintain the accumulated loss
due to not performing re-optimization, and choose to perform the re-optimization if the
accumulated loss exceeds the overhead of re-optimization. A potentially beneficial
property of this approach is that it is 3-competitive—it is guaranteed that the overall cost is
bounded by 3 times of the optimal (even with a priori knowledge of the changes).

[000130] The discussion above offers great detail of specific RACE
implementations. RACE can support a broad class of real-time cloud-edge applications.
RACE addressed two main technical challenges: (1) the specification of such applications;
and (2) their optimized execution in the cloud-edge topology. For (1), the discussion
shows that using a declarative temporal query language (such as LINQ for Streamlnsight)
to express these applications is very powerful and intuitive. For (2), the use of DSMS
engines is proposed to share processing and execute different portions of the application
logic on edge devices and the cloud. Here, the novel algorithms are highly efficient yet
provably minimize global network cost, while handling asymmetric networks, general
query graphs, and sharing of intermediate results. The above RACE implementations are
configured to work with Microsoi® Streamlnsight®, a commercially available DSMS.
Other implementations can be configured to use other DSMS options.

[000131] Experiments over real datasets indicated that the RACE optimizer is orders-
of-magnitude more efficient than state-of-the-art optimal placement techniques. Further,
the placements achieved by the present implementations incurred several factors lower
cost than simpler schemes for a friend-finder app over a realistic social network graph
with 8:6 million edges. RACE is easily parallelizable within the cloud. It also scales well
using just a single machine on real deployments with up to 500 edge clients. Details of
somc implementations arc described above at a finc level of granularity. The discussion
below offers a broader description that can relate to the above mentioned implementations

and/or to other implementations.

26

10

15

20

25

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

FURTHER METHOD EXAMPLES

1000132] F1G. 10 illustrates a flowchart of a technique or method 1000 that is
consistent with at least some implementations of the present concepts.

[000133] At block 1002, the method can obtain a declarative streaming query in a
cloud-edge topology that includes multiple edge devices and cloud-based resources.
[000134] At block 1004, the method can convert the declarative streaming query into
a query graph that reflects the multiple edge devices.

[000135] At block 1006, the method can determine whether to execule operators ol
the query graph on individual edge devices or on the cloud-based resources based upon
resource usage for the cloud-edge topology.

[000136] The order in which the above-mentioned methods are described is not
intended to be construed as a limitation, and any number of the described blocks can be
combined in any order to implement the method, or an alternate method. Furthermore, the
method can be implemented in any suitable hardware, software, firmware, or combination
thereof, such that a computing device can implement the method. In one case, the method
is stored on a computer-readable storage media as a set of instructions such that execution
by a computing device causes the computing device to perform the method.
CONCLUSION

[000137] Although techniques, methods, devices, systems, etc., pertaining to cloud
edge resources and their allocation are described in language specific to structural features
and/or methodological acts, it is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the specific [eatures or acts described.
Rather, the specific features and acts are disclosed as exemplary forms of implementing

the claimed methods, devices, systems, etc.

27

10

15

20

25

81780010

CLAIMS:

1. A computer-readable storage media having instructions stored thereon that when

executed by a computing device cause the computing device to perform acts, comprising:

evaluating a real-time streaming query that utilizes data from multiple different
edge computing devices, the multiple different edge computing devices configured to
communicate with cloud-based resources and to communicate indirectly with one another via
the cloud-based resources, but not to communicate directly with one another, and wherein
individual edge computing devices include an instantiation of an application or application

part that is conveyed in a declarative temporal language; and,

comparing resource usage between a first scenario that involves uploading query
data, associated with the real-time streaming query, from the multiple different edge
computing devices to the cloud-based resources for processing and a second scenario that
involves uploading the query data from all but one of the multiple different edge computing
devices to the cloud-based resources and downloading the query data to a sub-set of the
multiple different edge computing devices for processing, wherein the sub-set includes the

one edge computing device.

2. The computer-readable storage media of claim 1, wherein the comparing resource
usage comprises comparing at least bandwidth usage associated with the uploading of the first

scenario and the uploading and downloading of the second scenario.

3. The computer-readable storage media of claim 2, wherein the comparing bandwidth
usage considers asymmetric upload and download costs between individual edge computing

devices and the cloud.

4. The computer-readable storage media of claim 1, further comprising in an instance
where resource usage is less in the second scenario, causing a remainder of the multiple edge
computing devices to upload the query data to the cloud-based resources and then causing the

cloud-based resources to download the query data to the one edge computing device.

28

CA 2859500 2019-04-29

10

15

20

25

81780010

5. The computer-readable storage media of claim 1, further comprising in an instance
where resource usage is greater in the second scenario, causing the multiple edge computing
devices including the one edge computing device to upload the query data to the cloud-based

resources and causing the processing to be performed on the cloud-based resources.

6. The computer-readable storage media of claim 1, wherein the comparing
resource usage is performed dynamically in a manner that considers parameters relating to the
cloud-based resources, the multiple different edge computing devices and communication
parameters between the cloud-based resources and the multiple different edge computing
devices and wherein the comparing is repeated in an iterative manner to reflect parameter

changes.

7. The computer-readable storage media of claim 1, wherein the evaluating and
comparing are performed by an individual edge computing device that generated the real-time
streaming query or the evaluating and comparing are performed by the cloud-based resources
or the evaluating and comparing are performed by the cloud-based resources and by each of

the multiple different edge computing devices.

8. The computer-readable storage media of claim 1, wherein the evaluating comprises
rewriting the real-time streaming query as a directed acyclic graph of temporal operators that

references schemas of multiple streams.

9. The computer-readable storage media of claim 1, wherein the evaluating the real-
time streaming query comprises compiling the real-time streaming query into an object

representation.

10. The computer-readable storage media of claim 9, wherein the evaluating the object
representation comprises a query graph with edges of the query graph defined between the

multiple different edge computing devices and the cloud-based resources.

29

CA 2859500 2019-04-29

CA 02859500 2014-06-16

PCT/US2012/070427

WO 2013/101563

117

l "Old

(A ERLE =170T 30IA3a (DAERLEL
ONILNdINOD ONLLNAINOD ONILNdINOD

901 MHOMLAN

0l N3LSAS

PCT/US2012/070427

27

CA 02859500 2014-06-16

WO 2013/101563

(N)Z01 301A3a {2)Z0} 3o1A3a N.w—u_

ONLLNdWOD ONILNdINOD [ERLE
ONILNdNOD
9¢€¢ ¥3H10
44 454
JOVHOLS d0SS3ID0Hd

0E¢ IUvYMadvH
(N)8CZ ddv 4-4 (2)82¢ ddv 4-4

(10822 ddv 4-4
(NJ2ZZ SNSAa (2IZZZ SNSA

» P (T)Zzz snsa
0T MHOMLaN 3

oz)
viva 43y
Y [T
0ce B2 aNvd dd¥ 14
INVId vivg OMLNOD AR ___
v1vad SLVLS 1444
0 + - ¥3d013A3A ddy
{¥)2ge ano1d 0lc 90¢ Z0Z I0IAY3S
L1V FONVLSNI || HOLONHISNOD | 80¢ "OLONHLSNOD ||| LNawaovNvy
SINSA AHIND HAZINILLO HdVd5) IOV _
i 9z | I
F0Z H0SSI00dd JOVY ONIT = T
— ddv 4-4
¥01l dno1d —

02 IENLOILIHOYY WILSAS

CA 02859500 2014-06-16

WO 2013/101563 PCT/US2012/070427

37

— QUERY PATTERN 302

>
<
/N

GPS-0 SN GPS-1

FIG.3

CA 02859500 2014-06-16

PCT/US2012/070427

WO 2013/101563

4/7

(d ‘S) 3003 ¥o4
d-Sd9 wzm w Sd9

wzm S-SdO>NIor

\

An_ SdD'< SNS ‘S-SdO>NIOf>NIOf* w_

Ad

(Y ‘d) 3903 4o+

H-SdO

G "OId

(£)Z0G Ny3Lllvd
INO AILVILNVISN]

(O ‘d) 2903 "0+

INS d-Sd9 0-Sd9 NS d-Sd9

N4

[><] <Ns ‘d-Sdo>Nior

/

[><]<¥-8d9‘< NS ‘d-SdO>NIOr>NIOr:
¥(2)20G N¥3LLVd
AY3IND AILVILNVYLSN]|

A

[><] <Ns ‘d-Sdo>Nior

/

[><]<0-Sd9'< NS 'd-SdO>NIor>NIof

4/A:Nom NY3L1Vd
AHIND A3LVILNYLISN|

¥ "Old

W 00p YHOMLIN TVID0S

CA 02859500 2014-06-16

PCT/US2012/070427

WO 2013/101563

5/7

L 'Old

g= 0L=

m-maoo%mzw 0-Sd9 a-mn_oo|4vn_zm H-SdO
Ol=
._NH
> >
><] >< ><
A <0/ HdVYD aNvAEQ
S-Sd9 NS O-Sd9 d-SdD INS y-Sd9
<5NS ‘S-Sd9>NIor _VA\ Kﬁzw ‘d-SdO>Nior

<<d-8d9'< 5NS '$-8do>> [><] _NA_ ><] <u-sdo'< NS ‘d-sdo>>

<D-8d9O< INS ‘d-SdO>>
W 209 HdVHO ANIND TVNIS

CA 02859500 2014-06-16

PCT/US2012/070427

WO 2013/101563

6/7

8 'Old

w-Wn_O/ Vw O-Sd9 n_-wn_w/ \n_Zw d-Sd9

717

81780010
METHOD 1000

OBTAIN A DECLARATIVE STREAMING QUERY IN A CLOUD-EDGE TOPOLOGY
THAT INCLUDES MULTIPLE EDGE DEVICES AND CLOUD-BASED RESOURCES

1004 RN ¢

CONVERT THE DECLARATIVE STREAMING QUERY INTO A QUERY GRAPH
THAT REFLECTS THE MULTIPLE EDGE DEVICES

1006 ™~ ¢
DETERMINE WHETHER TO EXECUTE OPERATORS OF THE QUERY GRAPH

ON INDIVIDUAL EDGE DEVICES OR ON THE CLOUD-BASED RESQURCES
BASED UPON RESOURCE USAGE FOR THE CLOUD-EDGE TOPOLOGY

FIG.10

CA 2859500 2020-01-13

SYSTEM ARCHITECTURE 200

CLouD 104

APP DEVELOPER

RACE
MANAGEMENT
SERVICE 202

GRAPH
GONSTRUCTOR
206

RACE PROCESSOR 204
OPTIMIZER | QUERY
o

208 CONSTRUCTOR 4

DSMS
INSTANCE AT
CLoup 222(4)

S8TATS DATA

214

REFDATA
216

v

CONTROL
PLANE 218

A

DATA PLANE
220

A
(: NETWORK 108
DSMs
22201} \ 4 DSMS 222(2) DSMS 222(N)
F-F app 228(1
F-F APP 228(2) F-F APP 228(N)
HARDWARE 230 AN .
\ i
’ Y
4
/
’
COMPUTING
DEVICE 102(1) COMPUTING COMPUTING
DEVICE 102(2) DEVICE 102(N)

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - DRAWINGS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - REPRESENTATIVE_DRAWING

