Abstract:
A sensor delivery device and methods of using the device are provided, wherein the sensor delivery device includes a sensor that is adapted to obtain a measurement that can be used to calculate cross-sectional area of a surrounding anatomical structure. In certain cases, the sensor is an electrode arrangement, wherein the electrode arrangement generates a current and measures voltage resulting from the current. The voltage measurement is then used to calculate conductivity of fluid in the surrounding anatomical structure and thus cross-sectional area.
DEVICE AND METHODS FOR MEASURING AND TREATING AN ANATOMICAL STRUCTURE

FIELD

[01] This application relates generally to the field of medical device technology and, more particularly, to devices and methods for positioning and utilizing physiological sensors in anatomical structures of patients, such as in blood vessels or across heart valves. This application also relates generally to methods for calculating cross-sectional areas of anatomical structures.

BACKGROUND

[02] Patients sometimes experience stenosis in an anatomical structure. Stenosis occurs when an abnormal narrowing or stenotic lesion appears in the anatomical structure. Physicians generally evaluate the stenotic lesion before selecting a therapy to treat it. For example, in the case of blood vessels, if the stenotic lesion obstructs blood flow through the vessel to a large degree, physicians often elect to place a stent within the lesion site. On the other hand, if the stenotic lesion only minimally obstructs blood flow, physicians sometimes elect not to use a stent.

[03] One technique for evaluating the degree to which a stenotic lesion obstructs flow through a blood vessel is called the Fractional Flow Reserve measurement (FFR). To calculate the FFR for a given stenotic lesion, two blood pressure readings are taken. One pressure reading is taken on the distal side of the lesion (e.g., downstream from the lesion) and the other pressure reading is taken on the proximal side of the lesion (e.g., upstream from the lesion, towards the aorta). The FFR is defined as the ratio of maximal blood flow in a stenotic lesion, taken distal to the lesion, to normal maximal flow, and is typically calculated based on a measured pressure gradient of the distal pressure to the proximal pressure. The FFR is therefore a unitless ratio of the distal and proximal pressures. The pressure gradient, or pressure drop, across a stenotic lesion is an indicator of the severity of the stenosis, and the FFR is a useful tool in assessing the pressure drop. The more restrictive the stenosis is, the greater the pressure drop, and the lower the resulting FFR.
The FFR measurement is considered a useful diagnostic tool. For example, clinical studies have shown that an FFR of less than about 0.8 or about 0.75 can be a useful criterion on which to base certain therapy decisions. A physician might decide, for example, to perform an interventional procedure (e.g., angioplasty or stent placement) when the FFR for a given stenotic lesion is below 0.8 or 0.75, and may decide to forego such treatment for lesions where the FFR is above 0.8 or 0.75. Thus, the FFR measurement provides a decision point for guiding treatment decisions.

Certain drawbacks are sometimes seen with the FFR method. First, the FFR method is designed merely to determine whether an interventional procedure such as a stent is needed or not needed. It does not provide any tools for enabling a physician to select a stent size that is ideal for the specific stenotic lesion at issue. Stents come in a variety of sizes, and physicians generally need to select an appropriate size and shape depending on the lesion characteristics. Physicians often need to use a separate procedure to determine what stent size to use. Commonly, physicians use an intravascular ultrasound method to determine a diameter of the vessel having the stenotic lesion. This method involves the advancement of a separate ultrasound catheter and the use of a separate ultrasound machine. This adds significant cost and time and more risk to the patient. Thus, it would also be desirable to provide a more simple system capable of both obtaining FFR measurements and selecting an appropriate stent size.

Another drawback seen with the FFR method is that the presence of a measuring device itself in the anatomical structure can affect the accuracy of the measurement. For example, as the measuring device crosses the stenotic lesion, the device itself introduces flow obstruction, in addition to that caused by the lesion itself. The measured distal pressure is sometimes lower than it would be without the additional flow obstruction, which may exaggerate the measured pressure gradient across the lesion. Thus, it would also be desirable to provide an improved system for obtaining more accurate FFR measurements.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings are illustrative of particular embodiments of the invention and therefore do not limit the scope of the invention. The drawings are not to scale (unless
so stated) and are intended for use in conjunction with the explanations in the following
detailed description. Embodiments of the invention will hereinafter be described in
conjunction with the appended drawings, wherein like numerals denote like elements.

[08] Figure 1 is a perspective view of a sensor delivery device according to an embodiment
of the invention;

[09] Figure 2 is a perspective view of a sensor delivery device according to another
embodiment of the invention;

[10] Figure 3 is a perspective view of a sensor delivery device according to yet another
embodiment of the invention;

[11] Figure 4 is a perspective view of a sensor delivery device having a furncation tube
according to an embodiment of the invention;

[12] Figure 5 is a flow diagram of a method of using the sensor delivery device to measure a
cross-sectional area of an anatomical structure according to an embodiment of the
invention;

[13] Figure 6 is a flow diagram of a method of using the sensor delivery device to measure
and adjust a FFR value of an anatomical structure according to an embodiment of the
invention;

[14] Figure 7 is a flow diagram of a method of using the sensor delivery device to measure
blood conductivity and fluid conductivity to calculate a cross-sectional area of an
anatomical structure according to an embodiment of the invention;

[15] Figure 8 is a flow diagram of a method of using the sensor delivery device to measure
conductivity of a first fluid and a second fluid to calculate a cross-sectional area of an
anatomical structure according to an embodiment of the invention;

[16] Figure 9 is a flow diagram of a method of using the sensor delivery device to measure
blood conductivity and fluid conductivity to calculate a cross-sectional area of an
anatomical structure according to another embodiment of the invention; and

[17] Figure 10 is a flow diagram of a method of using the sensor delivery device to measure
conductivity of a first fluid and a second fluid to calculate a cross-sectional area of an
anatomical structure according to another embodiment of the invention.
SUMMARY

[18] Certain embodiments provide an intravascular sensor delivery device. The device can include a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire, a first sensor coupled to the distal sleeve, wherein the first sensor is adapted to measure blood pressure and generate a signal representative of the blood pressure, a second sensor coupled to the distal sleeve, wherein the second sensor is adapted to measure cross-sectional area of a surrounding anatomical structure and generate a signal representative of the cross-sectional area, a proximal portion coupled to the distal sleeve, the proximal portion comprising a communication channel, wherein the communication channel communicates the signal from the first sensor and the signal from the second sensor to a location outside of the patient.

[19] The second sensor of the intravascular sensor delivery device can be an electrode arrangement, for example an electrode arrangement that includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current. The signal representative of the cross-sectional area can be voltage measured by the sense electrodes. The source electrodes and the sense electrodes can also be ring-shaped electrodes that surround a periphery of the distal sleeve. The device can also include a movable sheath that is adapted to cover and uncover the electrode arrangement. The second sensor can be attached to an outer surface of the distal sleeve, perhaps at a location that is distal or proximal to the first sensor. In certain cases, the second sensor is coupled to both the distal sleeve and the proximal portion at a location that is proximal to the first sensor.

[20] The intravascular sensor delivery device can also include third sensor. In such cases, the third sensor can be adapted to measure temperature and generate a signal representative of the temperature and wherein the communication channel communicates the signal from the first sensor, the signal from the second sensor, and the signal from the third sensor to a location outside of the patient. The first sensor and the third sensor can also be a single sensor, wherein the single sensor is adapted to both measure blood pressure and measure temperature.

[21] Other embodiments provide an intravascular measuring system. The system can include a guidewire, an intravascular sensor delivery device, an injection device that is adapted to inject a fluid with a known conductivity to the anatomical structure, and a processor...
that is adapted to receive the first signal from the first sensor and the second signal from
the second sensor. The injection device can be adapted to inject a first fluid (e.g., a NaCl
solution having a first concentration, such as a 9% concentration) and a second fluid
(e.g., a NaCl solution having a first concentration, such as a 4.5% concentration) into to
the anatomical structure, wherein the first fluid has a first known conductivity and the
second fluid has a second known conductivity, wherein the known conductivity of the
first fluid is different than the known conductivity of the second fluid.

[22] Further embodiments provide a method of determining cross-sectional area in an
anatomical structure of a patient that includes steps of providing a sensor delivery
device, wherein the sensor delivery device includes a distal sleeve having a guidewire
lumen for slidably receiving a medical guidewire and a sensor coupled to the distal
sleeve, wherein the sensor is adapted to measure fluid conductivity of a surrounding
anatomical structure, (b) positioning the sensor delivery device within the anatomical
structure, (c) administering a first fluid with a known conductivity to the anatomical
structure (e.g., a NaCl solution having a first concentration, such as a 9% concentration),
(d) using the sensor to measure a first conductivity for the first fluid, (e) administering a
second fluid with a known conductivity to the anatomical structure (e.g., a NaCl solution
having a first concentration, such as a 4.5% concentration), wherein the known
conductivity of the first fluid is different than the known conductivity of the second fluid,
(f) using the sensor to measure a second conductivity for the second fluid, and (g) using
the first conductivity and the second conductivity to calculate a cross-sectional area of
the anatomical structure.

[23] Yet other embodiments provide a method of treating an anatomical structure in patient
that includes steps of (a) providing a sensor delivery device, (b) positioning the sensor
delivery device within the anatomical structure; (c) using the first sensor to obtain blood
pressure measurements; (d) using the blood pressure measurements to calculate an FFR
value; (e) electing to use a stent when the FFR value is lower than a threshold value, e.g.,
about 0.8, (f) using the second sensor to obtain one or more fluid conductivity
measurements; (g) using the fluid conductivity measurements to calculate a cross-
sectional area of the anatomical structure; and (h) using the cross-sectional area to select
a stent size.
The step of using the cross-sectional area measurements to select a stent size can be a step of correlating a specific cross-sectional area measurement to a specific stent size. Also, the second sensor can be an electrode arrangement adapted to measure conductivity of fluid in the anatomical structure and the step of using the second sensor to obtain one or more cross-sectional area measurements can include steps of obtaining fluid conductivity measurements and calculating cross-sectional area measurements using the fluid conductivity measurements. The step of using the second sensor to obtain one or more cross-sectional area measurements can also include steps of (a) administering a first fluid (e.g., a NaCl solution having a first concentration, such as a 9% concentration) with a known conductivity to the anatomical structure, (b) using the second sensor to measure a first conductivity for the first fluid, (c) administering a second fluid (e.g., a NaCl solution having a first concentration, such as a 4.5% concentration) with a known conductivity to the anatomical structure, wherein the conductivity of the first fluid is different than the conductivity of the second fluid, (d) using the second sensor to measure a second conductivity for the second fluid, and (e) using the first conductivity and the second conductivity to calculate a cross-sectional area of the anatomical structure.

The method can further include providing the sensor delivery device with a third sensor adapted to measure temperature of fluid in the anatomical structure, wherein the method includes steps of using the third sensor to measure fluid temperature and using the second sensor to obtain one or more cross-sectional area measurements after the fluid temperature reaches a desired temperature value.

Further embodiments provide a method of determining cross-sectional area in an anatomical structure of a patient that can include steps of (a) providing a sensor delivery device, wherein the sensor delivery device includes a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire and a sensor coupled to the distal sleeve, wherein the sensor is adapted to measure fluid conductivity, (b) positioning the sensor delivery device within the anatomical structure, (c) using the sensor to measure a conductivity for the patient's blood, (d) administering fluid with a known conductivity to the anatomical structure, (e) using the sensor to measure a conductivity for the fluid, and (f) using the measured blood conductivity and the measured fluid conductivity to calculate a cross-sectional area of the anatomical structure.
DETAILED DESCRIPTION

[27] For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawing and specific language will be used to describe the same. It will, nevertheless, be understood that no limitation of the scope of the invention is thereby intended; any alterations and further modifications of the described or illustrated embodiments, and any further applications of the principles of the invention as illustrated therein, are contemplated as would normally occur to one skilled in the art to which the invention relates.

[28] In the foregoing detailed description, the invention has been described with reference to specific embodiments. However, it can be appreciated that various modifications and changes can be made without departing from the scope of the invention.

[29] Figures 1-3 show a sensor delivery device 210 being deployed in an anatomical structure. Here, the anatomical structure is a blood vessel of a patient (e.g., coronary artery 234) across a stenotic lesion 236. As used herein, the term "anatomical structure" refers to any body structure having a cross-sectional area or a hollow, tubular or luminal structure.

[30] The sensor delivery device 210 includes a distal sleeve 220 having a guidewire lumen 222 for slidably receiving a medical guidewire 230. A first sensor 240 and a second sensor 270 are each coupled to the distal sleeve 220. The first sensor 240 is capable of measuring blood pressure in the anatomical structure and generating a signal representative of the blood pressure. The second sensor 270 is capable of measuring cross-sectional area of the anatomical structure and generating a signal representative of the cross-sectional area. In some cases, the delivery device also includes a third sensor that is adapted to measure temperature of fluid in the anatomical structure and generate a signal representative of the temperature. In some cases, the first sensor and third sensor are combined into a single sensor that measures both blood pressure and temperature.

[31] While the terms "first sensor," "second sensor," and "third sensor" are used herein, each of these terms are not limited to single or separate sensors. Skilled artisans would understand that any number of sensors can be used for each the "first sensor," "second sensor," and/or the "third sensor." Likewise, the "first sensor," "second sensor," and/or
the "third sensor" can be combined into a single sensor. Moreover, any of the sensors described herein can be provided on any of the embodiments described in U.S. Patent Publication No. 2010/0234698 (Application No. 12/557,685), the entire contents of which are incorporated herein by reference.

[32] The first sensor 240 is adapted to measure blood pressure and generate a signal representative of the blood pressure. In certain embodiments, the first sensor 240 is a fiber optic pressure sensor adapted to measure blood pressure. An example of a fiber optic pressure sensor is a Fabry-Perot fiber optic pressure sensor, which is a commercially available sensor. Examples of Fabry-Perot fiber optic sensors are the "OPP-M" MEMS-based fiber optic pressure sensor (400 micron size) manufactured by Opsens (Quebec, Canada), and the "FOP-MIV" sensor (515 micron size) manufactured by Fiso Technologies, Inc. (Quebec, Canada). In other embodiments, first sensor 240 can be a piezo-resistive pressure sensor (e.g., a MEMS piezo-resistive pressure sensor). In yet other embodiments, first sensor 240 can be a capacitive pressure sensor (e.g., a MEMS capacitive pressure sensor). A pressure sensing range from about -50 mm Hg to about +300 mm Hg (relative to atmospheric pressure) is desired for making most physiological measurements with the first sensor 240, for example.

[33] The second sensor 270 can include any sensor type that is capable of measuring a cross-sectional area of a surrounding anatomical structure. In some cases, the sensor 270 measure conductivity of fluid in an anatomical structure. The fluid conductivity measurements can then be used to calculate a cross-sectional area measurement. In Figures 1-3, the second sensor 270 is an electrode arrangement that includes source electrodes 272, 274 and sense electrodes 276, 278. The source electrodes 272, 274 deliver a current and the sense electrodes 276, 278 measure voltage resulting from the current. The voltage measurement from the sense electrodes 276, 278 can be used to calculate the fluid conductivity and thus the cross-sectional area of the surrounding anatomical structure. Examples of suitable algorithms and methods for calculating a cross-sectional area measurement using voltage and/or fluid conductivity measurements can be found in U.S. Patent No. 7,454,244 (Application No. 10/782,149), the entire contents of which are incorporated herein by reference.

[34] The sensor delivery device 10 also includes a proximal portion 250, which is coupled to the distal sleeve 220. The proximal portion 250 includes a communication channel 260
and the sensors are communicably connected to the communication channel 260. The communication channel communicates signals from the sensors to a location outside of the patient (e.g., to a processor, display, computer, monitor, or to another medical device). The communication channel 260 can be any suitable channel that transmits signals generated by the sensors to a location outside of the patient. Exemplary communication channels include fiber optic, electrically conductive, wireless, infrared, acoustic, and/or ultrasound mediums. The communication channel 260 can be disposed along an outer surface of proximal portion 250, or can be formed within the proximal portion 250, as shown in Figures 1-3. For example, the communication channel 260 can be a communication lumen that extends longitudinally through proximal portion 250 in some embodiments.

[35] The first sensor 240, the second sensor 270 and the third sensor are each coupled to a distal sleeve 220. The sensors can be provided at any suitable location along the distal sleeve 220. In some cases, the sensors can be provided on an outer surface of the distal sleeve 220.

[36] Figures 1-3 each show an electrode arrangement 270 that is coupled to the distal sleeve 220 at different locations. In Figure 1, each of the electrodes 272, 274, 276, 278 are coupled to the distal sleeve 220 at a position that is proximal to the first sensor 240. In Figure 2, the source electrodes 272, 274 are coupled to both the distal sleeve 220 and the proximal portion 250 whereas the sense electrodes 276, 278 coupled only to the distal sleeve. Specifically, the sense electrodes are coupled to the distal sleeve 220 at a position that is distal to the proximal portion 250 and proximal to the first sensor 240. In Figure 3, each of the electrodes 272, 274, 276, 278 are coupled to the distal sleeve 220 at a position that is distal to the first sensor 240.

[37] In Figures 1-3, the electrodes 272, 274, 276, 278 each have a ring shape so that they surround a circumference or periphery of the distal sleeve (and proximal portion in some embodiments). Of course, the electrodes 272, 274, 276, 278 can instead be point electrodes or have other suitable configurations. The electrodes 272, 274, 276, 278 can also be made of any suitable conductive material such as platinum iridium or a carbon-coated surface. Additionally, the electrodes 272, 274, 276, 278 can be provided in communication with the communication channel 260 using any desired method. For
example, in FIG. 1, one or more wires 275 connect the electrodes 272, 274, 276, 278 to the communication channel 60.

[38] In certain embodiments, the sensor delivery device further includes a movable sheath, wherein the movable sheath is adapted to cover and uncover the sensor 270 or the electrode arrangement 270. Such a movable sheath is valuable in cases where it is desired to trap the patient's blood between the sheath and the electrodes, as will be further discussed below.

[39] The proximal portion 250 is also adapted to assist an operator in positioning the distal sleeve 220 and the sensors within the anatomical structure of the patient. This is typically accomplished by an operator first inserting a "standard" medical guidewire 230 into a patient's vasculature and advancing it to an anatomical structure of interest. The sensor delivery device 210 is then deployed by "threading" the distal sleeve 220 onto the guidewire 230 such that the lumen 222 slides over the guidewire 230, and advancing the distal sleeve 220 (and the associated sensors) by moving (e.g., pushing and/or pulling) the proximal portion 250 until sensors are in the desired location. Thus, the distal sleeve 220, and hence, the sensors, can be positioned within an anatomical structure of a patient by causing the distal sleeve 220 to slide over the medical guidewire 230 to the desired position.

[40] The proximal portion 250 can also be formed of a material of sufficient stiffness in order to assist an operator in positioning the distal sleeve 220 and the sensors within an anatomical structure of the patient. Suitable materials for the proximal portion 250 can be materials such as stainless steel, nitinol, nylon, and plastic, for example, or composites of multiple materials. Depending on the application, the proximal portion 250 can be made stiffer and more rigid than the distal sleeve 220 in order to provide a reasonable amount of control to push, pull and otherwise maneuver the device to the location of interest within the patient.

[41] The device 210 and the guidewire 230 are typically manipulated inside a guiding catheter (not shown), which has been placed in the anatomical structure of interest. In certain embodiments of the invention, the guidewire lumen 222 may be sized to slide over "standard" sized medical guidewires. For example, a number of manufacturers make medical guidewires that range in size from less than about 0.014 inches outer diameter to more than about 0.038 inches outer diameter, typically having a finite number of
common sizes within this range. "Standard" size medical guidewires might, for example, have outer diameters of 0.010, 0.014, 0.018, 0.021, 0.025, 0.028, 0.032, 0.035, and 0.038 inches. Thus, in certain preferred embodiments of the invention, the guidewire lumen 222 may be sized appropriately to slide over a particular standard size medical guidewire. A device according to preferred embodiments of the invention may therefore be made available in a range of sizes corresponding to standard medical guidewire sizes.

[42] In certain embodiments of the invention, the distal sleeve 220 of the device can be substantially concentric with the guidewire 230. The coupling of the proximal portion 250 to the distal sleeve 220 allows the guidewire 320 to separate from the rest of device 210 (e.g., in what is sometimes referred to as a "monorail" catheter configuration); this would typically occur inside a guiding catheter. The guidewire 230 and device 210 would both exit the patient at the proximal end of a guiding catheter as separate devices. Having the device 210 and guidewire 230 separate allows the physician to independently control device 210 and guidewire 230, as necessary. It may also allow a physician to use a shorter guidewire for catheter exchange. For example, a monorail-type configuration may allow for the use of a guidewire that is approximately 170 to 200 cm long, whereas an "over-the-wire" configuration might require the use of a much longer (e.g., up to 300 cm or more) guidewire. Having the device 210 and guidewire 230 separate (except at the distal sleeve 220) may also result in less friction than if the device 210 and guidewire 230 had to be moved together as a unit. In some embodiments, a hydrophilic coating may be applied to various portions of the device to further reduce the amount of friction encountered, for example, when advancing or retracting device 210.

[43] The distal sleeve 220 can be substantially tubular, as shown, or can have any shape that allows distal sleeve 220 to slide over a medical guidewire 230 in an anatomical structure of interest. The distal sleeve 220 can be formed of a flexible material in some embodiments to facilitate positioning and placement of the distal sleeve 220 (and sensors) over a guidewire 230 through narrow vascular structures such as coronary arteries. In certain embodiments, the distal sleeve 220 comprises a flexible polyimide tube or flexible microcoil tube sized for placement in vascular structures, such as in coronary arteries or peripheral arteries. In some embodiments, flexibility may be achieved and/or enhanced by applying a series of cuts along the surface of the distal sleeve 220. The length of distal sleeve 220 can also vary. In embodiments to be used
deep within coronary arteries, for example, distal sleeve 220 can be up to about 15 inches long. The distal sleeve 220 can also include a thin covering to provide additional structural support and/or improve handling characteristics of the device. Such a covering can comprise, for example, polyester (PET) shrink tubing that substantially covers the distal sleeve.

One advantage of the sensor delivery device 210 is that it does not require repositioning of the guidewire in order to make multiple sensor readings. Once the guidewire has been positioned across a stenotic lesion, for example, the sensor delivery device 210 can be positioned (e.g., advanced and/or retracted) over the guidewire and the sensors can therefore be advanced and retracted across lesions to make pressure, temperature and cross-sectional area readings, for example, without moving the guidewire. A physician may also save time by not having to reposition the guidewire across the lesion or lesions to make such measurements.

The sensor delivery device 210 can also interact with other devices and/or display equipment. In some embodiments, as shown in FIG. 4, the sensor delivery device 210 interacts with a processor 296. The sensor delivery device 210 and processor 296 can interact using any known connection mechanism in the art. In certain cases, a furcation tube 290 and a connector 294 can be used to send signals from the sensors 240, 270 to the processor 296. The processor 296 can be, for example, a standalone display monitor to show signal waveforms and/or numerical values of the signals from sensors 240, 270. The processor 296 could include data recording capabilities in some embodiments.

The processor 296 is adapted to receive signals from each of the sensors and to use those signals to make calculations. Typically, the processor 296 uses one or more algorithms to make calculations. For example, in cases where the sensor 270 is an electrode arrangement, the electrode arrangement obtains a voltage measurement representative of the conductivity of the surrounding fluid and then sends that measurement to the processor 296. The processor 296 then uses the measured voltage to calculate fluid conductivity and thus cross-sectional area of the anatomical structure.

In other embodiments, the sensor delivery device 210 also interacts with a medical fluid injection device, such as a powered fluid injector used to inject contrast media and/or saline during certain medical procedures (e.g., angiography, computed tomography, MRI, ultrasound, etc.). Exemplary powered injection systems that can be used with the
sensor delivery device 210 are described in U.S. Patent Publication No. 2010/0234698 (Application No. 12/557,685), the entire contents of which are incorporated herein by reference. In some embodiments, the injection device is adapted to inject a first fluid and a second fluid into the anatomical structure. Typically, the first fluid has a first known conductivity and the second fluid has a second known conductivity, wherein the known conductivity of the first fluid is different than the known conductivity of the second fluid. In certain embodiments, the first fluid can be a NaCl solution having a first concentration and the second fluid can be a NaCl solution having a second concentration, wherein the first concentration is higher than the second concentration. As an example, the first fluid can be a NaCl solution having a 9% concentration and the second fluid can be a NaCl solution having a 4.5% concentration.

Figures 5-10 are flow diagrams that illustrate certain methods of using the sensor delivery device. Each of these methods will now be described. Figure 5 is a flow diagram that illustrates a method 300 of using the sensor delivery device to measure a cross-sectional area of an anatomical structure. Step 305 comprises a guidewire into the patient and into an anatomical structure of interest. Step 310 comprises deploying a sensor delivery device 210 including one or more sensors over the guidewire and positions the device (and thus the sensors) in the anatomical structure. Step 315 comprises using one of the sensors to measure and calculate cross-sectional area of the anatomical structure. Finally, step 320 comprises using the cross-sectional area calculation to select a stent size for the anatomical structure. In certain cases, the stent size is selected by correlating a specific cross-sectional area measurement to a specific stent size.

Figure 6 is a flow diagram of a method 400 of using the sensor delivery device to measure and adjust a FFR value of an anatomical structure. Step 405 comprises placing a guidewire into the patient and into an anatomical structure of interest. Step 410 comprises deploying a sensor delivery device 210 including one or more sensors over the guidewire and positions the device (and thus the sensors) in the anatomical structure. Step 415 comprises using one of the sensors to measure and calculate an initial FFR value. Exemplary methods and algorithms for calculating an FFR value are described in U.S. Patent Publication No. 2010/0234698 (Application No. 12/557,685), the entire contents of which are incorporated herein by reference. Step 410 comprises using one of
the sensors to measure and calculate cross-sectional area. Step 425 comprises using the initial FFR value and cross-sectional area to calculate a corrected FFR value.

Figure 7 is a flow diagram of a method 500 of using the sensor delivery device to measure blood conductivity and fluid conductivity to calculate a cross-sectional area of an anatomical structure. Step 505 comprises placing a guidewire into the patient and into an anatomical structure of interest. Step 510 comprises deploying a sensor delivery device 210 including one or more sensors over the guidewire and positions the device (and thus the sensors) in the anatomical structure. Step 515 comprises using one of the sensors to measure a conductivity of the patient's blood. Step 520 comprises administering a fluid with a known conductivity to the anatomical structure. Step 525 comprises using one of the sensors to measure a conductivity of the fluid. Finally, step 530 comprises using the measured blood conductivity and fluid conductivity to calculate a cross-sectional area of the anatomical structure. Exemplary methods of using measured conductivities to calculate a cross-sectional area of an anatomical structure can be found in U.S. Patent No. 7,454,244 (Application No. 10/782,149), the entire contents of which are incorporated herein by reference.

Figure 8 is a flow diagram of a method 600 of using the sensor delivery device to measure conductivity of a first fluid and a second fluid to calculate a cross-sectional area of an anatomical structure. Step 605 comprises placing a guidewire into the patient and into an anatomical structure of interest. Step 610 comprises deploying a sensor delivery device 210 including one or more sensors over the guidewire and positioning the device (and thus the sensors) in the anatomical structure. Step 615 comprises administering a first fluid with a known conductivity to the anatomical structure. Step 620 comprises using one of the sensors to measure a first conductivity for the first fluid. Step 625 comprises administering a second fluid with a known conductivity to the anatomical structure. Step 630 comprises using the sensor to measure a second conductivity for the second fluid. Finally, step 635 comprises using the measured first conductivity and second conductivity to calculate cross-sectional area of the anatomical structure.

Figure 9 is a flow diagram of a method 700 of using the sensor delivery device to measure blood conductivity and fluid conductivity to calculate a cross-sectional area of an anatomical structure. Step 705 comprises placing a guidewire into the patient and into an anatomical structure of interest. Step 710 comprises deploying a sensor delivery
device 210 including one or more sensors over the guidewire and positioning the device (and thus the sensors) in the anatomical structure. Step 715 comprises using one of the sensors to measure conductivity for a patient's blood. Step 720 comprises using a temperature sensor to measure fluid temperature in the anatomical structure. Step 725 comprises administering a fluid with a known conductivity to the anatomical structure. Step 730 comprises using one of the sensors to measure conductivity of the fluid when the fluid temperature reaches a desired temperature value. Step 735 comprises using the measured blood conductivity and fluid conductivity to calculate cross-sectional area of the anatomical structure.

[53] Figure 10 is a flow diagram of a method 800 of using the sensor delivery device to measure conductivity of a first fluid and a second fluid to calculate a cross-sectional area of an anatomical structure. Step 805 comprises placing a guidewire into the patient and into an anatomical structure of interest. Step 810 comprises deploying a sensor delivery device 210 including one or more sensors over the guidewire and positioning the device (and thus the sensors) in the anatomical structure. Step 815 comprises using a temperature sensor to measure fluid temperature in the anatomical structure. Step 820 comprises administering a first fluid with a known conductivity to the anatomical structure. Step 825 comprises using one of the sensors to measure a first conductivity for the first fluid when the fluid temperature reaches a desired temperature value. Step 830 comprises administering a second fluid with a known conductivity to the anatomical structure. Step 835 comprises using one of the sensors to measure a second conductivity for the second fluid when the fluid temperature reaches a desired temperature value. Finally, step 840 comprises using the measured first conductivity and second conductivity to calculate cross-sectional area of the anatomical structure.

[54] Certain specific embodiments of the methods illustrated in Figures 5-10 will now be described. In certain embodiments, a method is provided that enables a physician to first determine an FFR value of an anatomical structure and then to calculate cross-sectional area of the anatomical structure in order to select an appropriate stent size. Such a method includes providing a sensor delivery device, wherein the sensor delivery device includes a first sensor that is adapted to measure blood pressure and a second sensor that is adapted to measure cross-sectional area of the anatomical structure, positioning the sensor delivery device within the anatomical structure, using the first sensor to obtain
one or more blood pressure measurements, using the blood pressure measurements to calculate an FFR value, electing to use a stent when the FFR value is lower than a threshold value, using the second sensor to obtain one or more cross-sectional area measurements, and using the cross-sectional area measurements to select a stent size. The FFR threshold value can be about 0.8, for example. In many cases, the step of using the cross-sectional area measurements to select a stent size comprises correlating a specific cross-sectional area measurement to a specific stent size.

[55] In other embodiments, a method is provided that includes enables a physician to obtain an initial FFR value of an anatomical structure and then to calculate fluid conductivity measurements of fluid of the anatomical structure in order to correct or adjust the initial FFR value. Such a method includes providing a sensor delivery device, wherein the sensor delivery device includes a first sensor is adapted to measure blood pressure and a second sensor adapted to measure conductivity of fluid in the anatomical structure, positioning the sensor delivery device within the anatomical structure, using the first sensor to obtain one or more blood pressure measurements, using the blood pressure measurements to calculate an initial FFR value, using the second sensor to obtain one or more cross-sectional area measurements, using the cross-sectional area measurements to calculate a corrected FFR value. The corrected FFR value closer to what the FFR value would have been if the sensor delivery device was not present (or if just a guidewire was present) in the anatomical structure. In certain cases, the corrected FFR value is calculated using an algorithm that combines the initial FFR value with the cross-sectional area measurements. The algorithm could also account for cross-sectional area measurements taken proximal and/or distal to the stenotic lesion and the volumetric flow rate or blood velocity. The method can further include electing to use a stent when the corrected FFR value is beneath a threshold value, for example a value of about 0.8. In this case, the method can even further include using the cross-sectional area to select a stent size.

[56] In certain embodiments, the second sensor is used to measure fluid conductivity, which can then be used to calculate a cross-sectional area of the anatomical structure. Typically, the second sensor measures fluid conductivities for two different fluids and uses those conductivity measurements to calculate cross-sectional area. In some cases, two fluids other than the patient's blood are used. In such cases, the method includes administering
a first fluid with a known conductivity to the anatomical structure, using the second sensor to measure a first conductivity for the first fluid, administering a second fluid with a known conductivity to the anatomical structure, wherein the conductivity of the first fluid is different than the conductivity of the second fluid, using the second sensor to measure a second conductivity for the second fluid, and using the first conductivity and the second conductivity to calculate a cross-sectional area of the anatomical structure. In certain embodiments, the first fluid is a NaCl solution having a first concentration, for example a 9% concentration, and the second solution is a NaCl solution having a second concentration, for example a 4.5% concentration, wherein the first concentration is higher than the second concentration.

[57] In other cases, the patient's blood is used as one of the fluids if its conductivity is known. In such cases, the method includes using the second sensor to measure conductivity for the patient's blood, administering fluid with a known conductivity to the anatomical structure, using the second sensor to measure conductivity for the fluid, and using the measured blood conductivity and the measured fluid conductivity to calculate a cross-sectional area of the anatomical structure. Using the patient's blood as one of the fluids is advantageous because it eliminates having to perform two fluid administrations, which provides time savings and convenience. In certain cases, the sensor delivery device can include a movable sheath that is movable by a user to cover and uncover the second sensor. For example, when the second sensor is an electrode arrangement, the sheath covers and uncovers the electrodes. When moved to cover the electrodes, the sheath traps a small amount of the patient's blood between the electrodes and the conductivity of the blood can be directly measured. This allows for the amount of current used by the electrodes for such a blood conductivity measurement to be less than the amount of current needed to measure a fluid in the surrounding anatomical structure.

[58] In each of these methods, the second sensor can be an electrode arrangement that is adapted to measure fluid conductivity. In such cases, the method includes using the electrodes to obtain fluid conductivity measurements and calculating cross-sectional area measurements using the fluid conductivity measurements. In certain preferred cases, the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current, for example a constant current, and the sense electrodes measure voltage resulting from the current. As such, in some cases, the
method comprises obtaining voltage measurements and calculating fluid conductivity (and thus calculating cross-sectional area measurements) using the voltage measurements.

[59] In embodiments where the second sensor is an electrode arrangement, the electrodes can also measure blood flow velocity. For example, the electrode arrangement can be configured to measure resistance between the source electrodes (for example between a first and a second source electrode) and the resistance between sense electrodes (for example between a first and a second sense electrode). When a fluid having conductivity different than the patient's blood travels past the electrodes, the time difference in when the measured change in resistance occurs on each set of electrodes can be used to measure the blood flow velocity at the anatomical structure. In other words, the blood flow velocity can be calculated by dividing the time difference by the distance between these sets of electrodes. The blood flow velocity measurement and the cross-sectional area measurement can also both be used to calculate a volumetric blood flow.

[60] In certain cases, the above methods can also include providing a third sensor, wherein the third sensor is a temperature sensor that measures temperature of fluid in the anatomical structure. The third sensor and the first sensor can be a single sensor in some embodiments, wherein the single sensor is adapted to measure both blood pressure and fluid temperature. Such a temperature sensor is useful because it provides the ability to create a timing signal that the physician and/or processor could use to determine when the fluid (which has a lower temperature than blood) is present in the anatomical structure. For example, in cases where the second sensor measures conductivity of patient's blood and an outside fluid, the method comprises using the second sensor to measure a conductivity for the patient's blood, administering fluid with a known conductivity to the anatomical structure, using the third sensor to measure fluid temperature, using the second sensor to measure a conductivity for the fluid after the fluid temperature reaches a desired temperature value, and using the measured blood conductivity and the measured fluid conductivity to calculate a cross-sectional area of the anatomical structure.

[61] Likewise, in cases where the second sensor measures conductivities of two fluids other than a patient's blood, the method comprises administering a first fluid with a known conductivity to the anatomical structure, using the third sensor to measure fluid
temperature, using the second sensor to measure a conductivity for the first fluid after the fluid temperature reaches a desired temperature value, administering a second fluid with a known conductivity to the anatomical structure, wherein the conductivity of the first fluid is different than the conductivity of the second fluid, using the second sensor to measure a conductivity for the second fluid after the fluid temperature reaches a desired temperature value, and using the first conductivity and the second conductivity to calculate a cross-sectional area of the anatomical structure.

Further, in cases where a third sensor or temperature sensor is used, both the fluid conductivities and the temperature can be measured and recorded in real time. Such a real time or continuous recording arrangement provides several advantages. First, when a fluid is injected, a user and/or processor can select a fluid conductivity measurement that corresponds to the lowest temperature measurement (or select the lowest fluid conductivity measurement obtained). This ensures that the measurement selected is actually the measurement of the injected fluid. Also, a real time measuring system allows for a user to continuously monitor the fluid conductivity while the sensor delivery device is moved through the body. Once the sensor delivery device is placed near or within the anatomical structure of interest, the user can manipulate the device until the lowest fluid conductivity measurement is located. At this point, the user then fixes the device at that location in order to perform the above-described methods. This allows for a user to fix the device at a location that likely has a minimum lumen diameter and is thus a location that is most affected by the stenosis.

Example

The following steps illustrate one exemplary method of the invention.

1) A clinician identifies a stenotic lesion via angiogram.
2) The clinician determines that the lesion is "intermediate," that is, it is not clear whether or not intervention (e.g., stenting) would be beneficial or harmful to the patient.
3) The clinician inserts the sensor delivery device including sensors into place and equalizes to aortic pressure.
4) The clinician administers adenosine.
5) The clinician calculates a FFR value using a sensor on the sensor delivery device.
6) If the FFR value is below a certain threshold value, the clinician decides to insert a stent.

7) With the sensory delivery device still in place, the clinician measures cross-sectional area (CSA) as follows:
 a. A first conductance value (CI) is measured (with blood in lumen).
 b. 0.9% saline is administered (injected) while measuring and/or monitoring conductance. The minimum reading is recorded as C2.
 c. 0.45% saline is administered (injected) while measuring and/or monitoring conductance. The minimum reading is recorded as C3.
 d. C3 and C2 are utilized along with known fluid conductivities to calculate CSA.
 e. Alternatively, CI is used along with a separate measurement of blood conductivity (e.g., C2), to calculate CSA, and the C3 measurement could be dropped.

8) The clinician uses the CSA measurement to select a stent size.

9) The clinician inserts the appropriately sized stent into the stenotic lesion.

10) The sensor delivery device can also include a special marker band with a pattern recognizable to a computer algorithm. Based on locating the marker band, a computer could automatically place visual information (such as the FFR reading and/or the vessel sizing information) on the angiogram itself.
WHAT IS CLAIMED IS:

1. An intravascular sensor delivery device comprising:
 a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire;
 a first sensor coupled to the distal sleeve, wherein the first sensor is adapted to measure blood pressure and generate a signal representative of the blood pressure;
 a second sensor coupled to the distal sleeve, wherein the second sensor is adapted to measure cross-sectional area of a surrounding anatomical structure and generate a signal representative of the cross-sectional area;
 a proximal portion coupled to the distal sleeve, the proximal portion comprising a communication channel, wherein the communication channel communicates the signal from the first sensor and the signal from the second sensor to a location outside of the patient.

2. The device of claim 1 wherein the second sensor comprises an electrode arrangement.

3. The device of claim 2 wherein the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current.

4. The device of claim 3 wherein the signal representative of the cross-sectional area is the voltage measured by the sense electrodes.

5. The device of claim 3 wherein the electrode arrangement includes two source electrodes and two sense electrodes.
6. The device of claim 3 wherein the source electrodes and the sense electrodes are ring-shaped electrodes that surround a periphery of the distal sleeve.

7. The device of claim 2 further comprising a movable sheath, wherein the movable sheath is adapted to cover and uncover the electrode arrangement.

8. The device of claim 1 wherein the second sensor is attached to an outer surface of the distal sleeve.

9. The device of claim 1 wherein the second sensor is coupled to the distal sleeve at a location that is distal to the first sensor.

10. The device of claim 1 wherein the second sensor is coupled to the distal sleeve at a location that is proximal to the first sensor.

11. The device of claim 1 wherein the second sensor is coupled to both the distal sleeve and the proximal portion at a location that is proximal to the first sensor.

12. The device of claim 1 further comprising a third sensor, wherein the third sensor is adapted to measure temperature and generate a signal representative of the temperature and wherein the communication channel communicates the signal from the first sensor, the signal from the second sensor, and the signal from the third sensor to a location outside of the patient.

13. The device of claim 12 wherein the first sensor and the third sensor are a single sensor, wherein the single sensor is adapted to both measure blood pressure and measure temperature.
14. The device of claim 1 wherein the signal representative of the cross-sectional area is a signal that can be used to calculate the cross-sectional area using one or more algorithms.

15. An intravascular measuring system comprising:
 a guidewire;
 an intravascular sensor delivery device that has a lumen that slidably receives the guidewire, wherein the sensor delivery device includes a first sensor and a second sensor, wherein the first sensor is adapted to measure blood pressure and generate a first signal representative of the blood pressure and wherein the second sensor is adapted to measure cross-sectional area of a surrounding anatomical structure and generate a second signal representative of the cross-sectional area;
 an injection device that is adapted to inject a fluid with a known conductivity to the anatomical structure; and
 a processor that is adapted to receive the first signal from the first sensor and the second signal from the second sensor.

16. The intravascular measuring system of claim 15 wherein the sensor delivery device comprises:
 a distal sleeve having the lumen for slidably receiving the guidewire, wherein both the first sensor and the second sensor are coupled to the distal sleeve; and
 a proximal portion coupled to the distal sleeve, the proximal portion comprising a communication channel, wherein the communication channel communicates the signal from the first sensor and the signal from the second sensor to the processor.
17. The intravascular measuring system of claim 15 wherein the second sensor comprises an electrode arrangement.

18. The intravascular measuring system of claim 17 wherein the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current.

19. The intravascular measuring system of claim 18 wherein the second signal representative of the cross-sectional area is the voltage measured by the sense electrodes.

20. The intravascular measuring system of claim 19 wherein the processor uses the measured voltage to calculate a cross-sectional area of the surrounding anatomical structure.

21. The intravascular measuring system of claim 18 wherein the electrode arrangement includes two source electrodes and two sense electrodes.

22. The intravascular measuring system of claim 18 wherein the source electrodes and the sense electrodes are ring-shaped electrodes that surround a periphery of the distal sleeve.

23. The intravascular measuring system of claim 17 wherein the sensor deliver device further comprises a movable sheath, wherein the movable sheath is adapted to cover and uncover the electrode arrangement.

24. The intravascular measuring system of claim 15 wherein the second sensor is coupled to the distal sleeve at a location that is distal to the first sensor.
25. The intravascular measuring system of claim 15 wherein the second sensor is coupled to the distal sleeve at a location that is proximal to the first sensor.

26. The intravascular measuring system of claim 15 wherein the second sensor is coupled to both the distal sleeve and the proximal portion at a location that is proximal to the first sensor.

27. The intravascular measuring system of claim 15 wherein the sensor delivery device further comprises a third sensor, wherein the third sensor is adapted to measure temperature and generate a third signal representative of the temperature and wherein the processor that is adapted to receive the first signal from the first sensor, the second signal from the second sensor and the third signal from the third sensor.

28. The intravascular measuring system of claim 27 wherein the first sensor and the third sensor are a single sensor, wherein the single sensor is adapted to both measure blood pressure and measure temperature.

29. The intravascular measuring system of claim 15 wherein the injection device is adapted to inject a first fluid and a second fluid into the anatomical structure, wherein the first fluid has a first known conductivity and the second fluid has a second known conductivity, wherein the known conductivity of the first fluid is different than the known conductivity of the second fluid.

30. The intravascular measuring system of claim 29 wherein the first fluid is a NaCl solution having a first concentration and the second solution is a NaCl solution having a second concentration, wherein the first concentration is higher than the second concentration.
31. The intravascular measuring system of claim 30 wherein the first fluid is a NaCl solution having a 9% concentration and the second solution is a NaCl solution having a 4.5% concentration.

32. The intravascular measuring system of claim 15 wherein the second signal representative of the cross-sectional area is a signal that can be used to calculate the cross-sectional area using one or more algorithms.

33. A method of treating an anatomical structure in patient, the method comprising:

 (a) providing a sensor delivery device, wherein the sensor delivery device includes:

 (i) a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire;

 (ii) a first sensor coupled to the distal sleeve, wherein the first sensor is adapted to measure blood pressure; and

 (iii) a second sensor coupled to the distal sleeve, wherein the second sensor is adapted to measure cross-sectional area of the anatomical structure;

 (b) positioning the sensor delivery device within the anatomical structure;

 (c) using the first sensor to obtain one or more blood pressure measurements;

 (d) using the blood pressure measurements to calculate an FFR value;

 (e) electing to use a stent when the FFR value is lower than a threshold value;

 (f) using the second sensor to obtain one or more cross-sectional area measurements;

 (g) using the cross-sectional area measurements to select a stent size.
34. The method of claim 33 wherein the step of using the cross-sectional area measurements to select a stent size comprises correlating a specific cross-sectional area measurement to a specific stent size.

35. The method of claim 33 wherein the threshold value is about 0.8.

36. The method of claim 33 wherein the second sensor comprises an electrode arrangement, wherein the electrode arrangement is adapted to measure conductivity of fluid in the anatomical structure and the step of using the second sensor to obtain one or more cross-sectional area measurements comprises obtaining fluid conductivity measurements and calculating cross-sectional area measurements using the fluid conductivity measurements.

37. The method of claim 33 wherein the second sensor comprises an electrode arrangement, wherein the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current and the step of using the second sensor to obtain one or more cross-sectional area measurements comprises obtaining voltage measurements and calculating cross-sectional area measurements using the voltage measurements.

38. The method of claim 33 wherein the sensor delivery device further comprises a third sensor, wherein the third sensor is adapted to measure temperature of fluid in the anatomical structure and the method further comprises using the third sensor to measure fluid temperature and using the second sensor to obtain one or more cross-sectional area measurements after the fluid temperature reaches a desired temperature value.
39. The method of claim 38 wherein the first sensor and the third sensor are a single sensor, wherein the single sensor is adapted to measure both blood pressure and fluid temperature.

40. The method of claim 33 wherein the step of using the second sensor to obtain one or more cross-sectional area measurements comprises:

 (a) administering a first fluid with a known conductivity to the anatomical structure;

 (b) using the second sensor to measure a first conductivity for the first fluid;

 (c) administering a second fluid with a known conductivity to the anatomical structure, wherein the conductivity of the first fluid is different than the conductivity of the second fluid;

 (d) using the second sensor to measure a second conductivity for the second fluid; and

 (e) using the first conductivity and the second conductivity to calculate a cross-sectional area of the anatomical structure.

41. A method of treating an anatomical structure in patient, the method comprising:

 (a) providing a sensor delivery device, wherein the sensor delivery device includes:

 (i) a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire;

 (ii) a first sensor coupled to the distal sleeve, wherein the first sensor is adapted to measure blood pressure; and

 (iii) a second sensor coupled to the distal sleeve, wherein the second sensor is adapted to measure conductivity of fluid in the anatomical structure;
(b) positioning the sensor delivery device within the anatomical structure;
(c) using the first sensor to obtain blood pressure measurements;
(d) using the blood pressure measurements to calculate an FFR value;
(e) electing to use a stent when the FFR value is lower than a threshold value;
(f) using the second sensor to obtain one or more fluid conductivity measurements;
(g) using the fluid conductivity measurements to calculate a cross-sectional area of the anatomical structure; and
(h) using the cross-sectional area to select a stent size.

42. The method of claim 41 wherein the step of using the cross-sectional area measurements to select a stent size comprises correlating a specific cross-sectional area measurement to a specific stent size.

43. The method of claim 41 wherein the threshold value is about 0.08.

44. The method of claim 41 wherein the second sensor comprises an electrode arrangement, wherein the electrode arrangement is adapted to measure conductivity of fluid in the anatomical structure.

45. The method of claim 44 wherein the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current and the step of using the second sensor to obtain one or more fluid conductivity measurements comprises obtaining voltage measurements and calculating fluid conductivity measurements using the voltage measurements.
46. The method of claim 44 wherein the step of using the second sensor to obtain one or more cross-sectional area measurements comprises:

(a) administering a first fluid with a known conductivity to the anatomical structure;

(b) using the second sensor to measure a first conductivity for the first fluid;

(c) administering a second fluid with a known conductivity to the anatomical structure, wherein the known conductivity of the first fluid is different than the known conductivity of the second fluid;

(d) using the second sensor to measure a second conductivity for the second fluid; and

(e) using the first conductivity and the second conductivity to calculate a cross-sectional area of the anatomical structure.

47. A method of treating an anatomical structure in patient, the method comprising:

(a) providing a sensor delivery device, wherein the sensor delivery device includes:

(i) a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire;

(ii) a first sensor coupled to the distal sleeve, wherein the first sensor is adapted to measure blood pressure; and

(iii) a second sensor coupled to the distal sleeve, wherein the second sensor is adapted to measure conductivity of fluid in the anatomical structure;

(b) positioning the sensor delivery device within the anatomical structure;

(c) using the first sensor to obtain one or more blood pressure measurements;
(d) using the blood pressure measurements to calculate an initial FFR value;

(e) using the second sensor to obtain one or more fluid conductivity measurements;

(f) using the fluid conductivity measurements to calculate a corrected FFR value.

48. The method of claim 47 further comprising electing to use a stent when the corrected FFR value is beneath a threshold value.

49. The method of claim 48 wherein the threshold value is about 0.08.

50. The method of claim 48 further comprising using the fluid conductivity measurements to calculate a cross-sectional area of the anatomical structure and using the cross-sectional area to select a stent size.

51. The method of claim 50 wherein the step of using the cross-sectional area to select a stent size comprises correlating a specific cross-sectional area to a specific stent size.

52. The method of claim 47 wherein the second sensor comprises an electrode arrangement, wherein the electrode arrangement is adapted to measure conductivity of fluid in the anatomical structure.

53. The method of claim 52 wherein the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current and the step of using the second sensor to obtain one or more fluid conductivity measurements
comprises obtaining voltage measurements and calculating fluid conductivity measurements using the voltage measurements.

54. A method of determining cross-sectional area in an anatomical structure of a patient, the method comprising:

(a) providing a sensor delivery device, wherein the sensor delivery device includes a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire and a sensor coupled to the distal sleeve, wherein the sensor is adapted to measure fluid conductivity;

(b) positioning the sensor delivery device within the anatomical structure;

(c) using the sensor to measure conductivity for the patient's blood;

(d) administering fluid with a known conductivity to the anatomical structure;

(e) using the sensor to measure conductivity for the fluid;

(f) using the measured blood conductivity and the measured fluid conductivity to calculate a cross-sectional area of the anatomical structure.

55. The method of claim 54 wherein the sensor comprises an electrode arrangement, wherein the electrode arrangement is adapted to measure conductivity of fluid in the anatomical structure.

56. The method of claim 55 wherein the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current and the steps of using the sensor to measure a conductivity for the patient's blood and using the sensor to measure a conductivity for the fluid each comprise obtaining voltage measurements and calculating fluid conductivity measurements using the voltage measurements.
A method of determining cross-sectional area in an anatomical structure of a patient, the method comprising:

(a) providing a sensor delivery device, wherein the sensor delivery device includes a distal sleeve having a guidewire lumen for slidably receiving a medical guidewire and a sensor coupled to the distal sleeve, wherein the sensor is adapted to measure fluid conductivity of a surrounding anatomical structure;

(b) positioning the sensor delivery device within the anatomical structure;

(c) administering a first fluid with a known conductivity to the anatomical structure;

(d) using the sensor to measure a first conductivity for the first fluid;

(e) administering a second fluid with a known conductivity to the anatomical structure, wherein the known conductivity of the first fluid is different than the known conductivity of the second fluid;

(f) using the sensor to measure a second conductivity for the second fluid;

(g) using the first conductivity and the second conductivity to calculate a cross-sectional area of the anatomical structure.

The method of claim 57 wherein the first fluid is a NaCl solution having a first concentration and the second solution is a NaCl solution having a second concentration, wherein the first concentration is higher than the second concentration.

The method of claim 58 wherein the first fluid is a NaCl solution having a 9% concentration and the second solution is a NaCl solution having a 4.5% concentration.

The method of claim 57 wherein the sensor comprises an electrode arrangement, wherein the electrode arrangement is adapted to measure conductivity of fluid in the anatomical structure.
61. The method of claim 60 wherein the electrode arrangement includes source electrodes and sense electrodes, wherein the source electrodes generate a current and the sense electrodes measure voltage resulting from the current and the steps of using the sensor to measure a first conductivity for the first fluid and using the sensor to measure a second conductivity for the second fluid each comprise obtaining voltage measurements and calculating fluid conductivity measurements using the voltage measurements.
FIG. 5

PLACING A GUIDEWIRE IN A PATIENT IN AN ANATOMICAL STRUCTURE OF INTEREST

DEPLOYING A SENSOR DELIVERY DEVICE WITH A SENSOR OVER THE GUIDEWIRE SUCH THAT THE SENSOR IS POSITIONED IN THE ANATOMICAL STRUCTURE

USING THE SENSOR TO MEASURE AND CALCULATE CSA

USING CSA TO SELECT A STENT SIZE
FIG. 6

1. PLACING A GUIDEWIRE IN A PATIENT TO AN ANATOMICAL STRUCTURE OF INTEREST
2. DEPLOYING A SENSOR DELIVERY DEVICE WITH SENSORS OVER THE GUIDEWIRE SUCH THAT THE SENSORS ARE POSITIONED IN THE ANATOMICAL STRUCTURE
3. USING A SENSOR TO MEASURE AND CALCULATE FFR
4. IF FFR IS BELOW A THRESHOLD VALUE, USING A SENSOR TO MEASURE AND CALCULATE CSA
5. USING CSA TO ADJUST THE FFR VALUE
FIG. 7

1. Placing a guide wire in a patient to an anatomical structure of interest
2. Deploying a sensor delivery device with a sensor over the guide wire such that the sensor is positioned in the anatomical structure
3. Using the sensor to measure a conductivity for a patient's blood
4. Administering a fluid with a known conductivity to the anatomical structure
5. Using the sensor to measure a conductivity for the fluid
6. Using the measured blood conductivity and fluid conductivity to calculate CSA of the anatomical structure
FIG. 8

1. Placing a guide wire in a patient to an anatomical structure of interest.

2. Deploying a sensor delivery device with a sensor over the guide wire such that the sensor is positioned in the anatomical structure.

3. Administering a first fluid with a known conductivity to the anatomical structure.

4. Using the sensor to measure a first conductivity for the first fluid.

5. Administering a second fluid with known a conductivity to the anatomical structure.

6. Using the sensor to measure a second conductivity for the second fluid.

7. Using the measured first conductivity and second conductivity to calculate CSA of the anatomical structure.
FIG. 9

705. Placing a guide wire in a patient to an anatomical structure of interest.

710. Deploying a sensor delivery device with a sensor over the guide wire such that the sensor is positioned at the anatomical structure.

715. Using the sensor to measure a conductivity for a patient’s blood.

720. Using a temperature sensor to measure fluid temperature in the anatomical structure.

725. Administering a fluid with a known conductivity to the anatomical structure.

730. Using the sensor to measure a conductivity for the fluid when the fluid temperature reaches a desired temperature value.

735. Using the measured blood conductivity and fluid conductivity to calculate CSA of the anatomical structure.
FIG. 10

1. Placing a guide wire in a patient to an anatomical structure of interest (805)
2. Deploying a sensor delivery device with a sensor over the guide wire such that the sensor is positioned at the anatomical structure (810)
3. Using a temperature sensor to measure fluid temperature in the anatomical structure (815)
4. Administering a first fluid with a known conductivity to the anatomical structure (820)
5. Using the sensor to measure a first conductivity for the first fluid when the fluid temperature reaches a desired temperature value (825)
6. Administering a second fluid with known a conductivity to the anatomical structure (830)
7. Using the sensor to measure a second conductivity for the second fluid when the fluid temperature reaches a desired temperature value (835)
8. Using the measured first conductivity and second conductivity to calculate CSA of the anatomical structure (840)
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B5/053 A61B5/107 A61B5/02

ADD.

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>wo 98/35611 AI (TECHNION RES & DEV FOUNDATION [I L] ; GAT DANIEL [I L] ; BEYAR RAPHAEL [I L] 20 August 1998 (1998-08-20) abstract page 7, paragraph 3 - page 12, paragraph 2 figures 1-3</td>
<td>1-32</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search 14 January 2013

Date of mailing of the international search report 21/01/2013

Authorized officer Artikis T
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: 33-61
 because they relate to subject matter not required to be searched by this Authority, namely:
 Rule 39.1(iv) PCT - Method for treatment of the human or animal body by surgery

2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2655732 A1</td>
<td>10-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2034881 A2</td>
<td>18-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009542341 A</td>
<td>03-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009182287 A1</td>
<td>16-07-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008005388 A2</td>
<td>10-01-2008</td>
</tr>
<tr>
<td>WO 9835611 A1</td>
<td>20-08-1998</td>
<td>AU 5877098 A</td>
<td>08-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9835611 A1</td>
<td>20-08-1998</td>
</tr>
</tbody>
</table>