GOLF BALLS HAVING MULTI-LAYERED COVERS BASED ON CASTABLE THERMOPLASTIC POLYURETHANES

Applicant: Acushnet Company, Fairhaven, MA (US)

Inventors: Michael J. Sullivan, Old Lyme, CT (US); Mark L. Binette, Mattapoisett, MA (US); Brian Comeau, Berkley, MA (US); Michael Michalewich, Norton, MA (US)

Assignee: Acushnet Company, Fairhaven, MA (US)

Appl. No.: 15/352,873
Filed: Nov. 16, 2016

Related U.S. Application Data

Continuation-in-part of application No. 15/181,734, filed on Jun. 14, 2016, which is a continuation-in-part of application No. 14/724,914, filed on May 29, 2015, which is a division of application No. 13/330,056, filed on Dec. 19, 2011, now Pat. No. 9,044,648, which is a continuation-in-part of application No. 12/403,703, filed on Mar. 13, 2009, now Pat. No. 8,262,510.

Publication Classification

Int. Cl.
A63B 37/00 (2006.01)
A63B 45/00 (2006.01)

U.S. Cl.
CPC A63B 37/0076 (2013.01); A63B 45/00 (2013.01); A63B 37/0051 (2013.01); A63B 37/0039 (2013.01); A63B 37/0033 (2013.01); A63B 37/0045 (2013.01)

ABSTRACT

Golf balls having multi-layered covers are provided. Preferably, the ball includes an inner cover layer made of an aromatic polyurethane composition; and an outer cover layer made of an aliphatic polyurethane composition. At least one of the cover layers is formed by casting an aromatic or aliphatic thermoplastic polyurethane composition. Ethylene acid copolymer ionomers can be used to make a second inner cover layer. The cover layers are disposed about a single or multi-layered core. The invention also includes casting methods for making such multi-layered covers. The resulting ball has good light-stability, cut/shear-resistance, and impact durability.
GOLF BALLS HAVING MULTI-LAYERED COVERS BASED ON CASTABLE THERMOPLASTIC POLYURETHANES

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] Field of the Invention

[0003] The present invention generally relates to multilayered golf balls and more particularly to golf balls having multi-layered covers. More particularly, in one embodiment, the ball includes an inner cover layer made of an aromatic polyurethane composition; and an outer cover layer made of an aliphatic polyurethane composition. At least one of the cover layers is formed by a casting method. The aromatic and aliphatic thermoplastic polyurethane composition can be cast to form the cover layers. The resulting ball has many advantageous physical properties including good light-stability, cut/shear-resistance, and durability along with optimum playing performance properties.

[0004] Brief Review of the Related Art

[0005] Manufacturers of golf balls are constantly looking at new materials for developing multi-piece solid golf balls. In general, the materials should be cost-effective, have good processability, and be capable of producing golf balls with desirable physical and playing performance properties. A multi-piece solid golf ball basically includes a solid inner core protected by an outer cover. The inner core is made commonly from a rubber material such as natural and synthetic rubbers: styrene butadiene, polybutadiene, or polyisoprene. Highly neutralized ethylene acid copolymer ionomer resins (HNPs) also may be used to form the core. The outer cover is made commonly from thermoplastic or thermoset resins such as ionomers, polyolefins, polyamides, polyesters, polyurethanes, and polyureas. As new materials and manufacturing processes have become more economically feasible, multi-piece solid golf balls such as, for example, three-piece, four-piece, and five-piece balls have been introduced. Different materials are used in these golf ball constructions to impart specific properties and playing features to the ball.

[0006] For instance, in recent years, there has been high interest in using thermoset, castable polyurethanes and polyureas to make golf ball covers. Basically, polyurethane compositions contain urethane linkages formed by reacting an isocyanate group (―N=C=O) with a hydroxyl group (OH). Polyurethanes are produced by the reaction of a multi-functional isocyanate with a polyol in the presence of a catalyst and other additives. The chain length of the polyurethane prepolymer is extended by reacting it with a hydroxyl-terminated curing agent. Polyurea compositions, which are distinct from the above-described polyurethanes, also can be formed. In general, polyurea compositions contain urea linkages formed by reacting an isocyanate group (―N=C=O) with an amine group (NH or NH2). The chain length of the polyurea prepolymer is extended by reacting the prepolymer with an amine curing agent. Hybrid compositions containing urethane and urea linkages also may be produced as discussed further below. In general, polyurethane and polyurea covered golf balls are described in the patent literature, for example, U.S. Pat. Nos. 5,334,673; 5,484,870; 6,476,176; 6,506,851; 6,867,279; 6,958,379; 6,960,630; 6,964,621; 7,041,769; 7,105,623; 7,131,915; and 7,186,777.

[0007] Particularly, Sullivan, US Patent Application Publication 2002/0151380 discloses a golf ball having a core and cover wherein the cover comprises: a) an inner cover layer having a first thickness and being disposed directly about the core; b) an outer cover layer having a second thickness no greater than about 0.050 inches; and c) an intermediate cover layer having a third thickness and being disposed between the inner and outer cover layers; wherein the outer cover layer comprises a composition formed of a reactive liquid material (thermoset material comprising polyurethane, polyurea, polyurethane ionomer, epoxy, or a mixture thereof) and the combination of the first, second, and third thickness is no greater than about 0.125 inches.

[0008] Sullivan et al., US Patent Application Publication 2004/0255887 discloses a golf ball having a core and a cover comprising: an inner cover layer; an outer cover layer having a material hardness of 60 Shore D or less; and an intermediate cover layer disposed between the inner and outer cover layers. At least two of the inner, intermediate, and outer cover layers comprise a non-ionomeric material. Preferably, the outer cover layer comprises a polyurethane, a polyurea, a copolymer of a polyurethane, a copolymer of a polyurea, or an interpenetrating polymer network.

[0009] In Sullivan et al., U.S. Pat. No. 5,971,870, thermoplastic or thermosetting polyurethanes and ionomers are described as being suitable materials for making outer cover and any inner cover layer. The cover layers can be formed over the cores by injection-molding, compression molding, casting or other conventional molding techniques. Preferably, each cover layer is separately formed. In one embodiment, the inner cover layer is first injection molded over the core in a cavity mold, subsequently any intermediate cover layers are injection molded over the inner cover layer in a cavity mold, and finally the outer cover layer is injection molded over the intermediate cover layers in a dimpled cavity mold.

[0010] In Sullivan et al., U.S. Pat. No. 7,131,915, the outer cover can be made from a polyurethane composition and various aliphatic and aromatic diisocyanates are described as being suitable for making the polyurethanes. Depending on the type of curing agent used, the polyurethane composition may be thermoplastic or thermoset in nature. Sullivan ‘915 further discloses that compositions for the intermediate cover layer and inner cover layer may be selected from the same class of materials as used for the outer cover layer. In other embodiments, ionomers such as HNPs, can be used to form the intermediate and inner cover layers. The castable, reactive liquid used to form the urethane elastomer material
can be applied over the core using a variety of techniques such as spraying, dipping, spin coating, or flow coating methods.

As discussed above, isocyanates with two or more functional groups are used in producing polyurethane and polyurea polymers. Manufacturers often use aromatic isocyanates for several reasons including their high reactivity and cost benefits. It normally is more economically advantageous to use aromatic isocyanates over other isocyanate compounds, because the raw material costs for aromatic isocyanates are generally lower. Furthermore, the aromatic isocyanates are able to react with the hydroxyl or amine compounds and form a durable and tough polymer having a high melting point. The resulting polyurethane or polyurea generally has good mechanical strength and cut/shear-resistance. However, one disadvantage with using aromatic isocyanates is the polymeric reaction product tends to have poor light stability and may discolor upon exposure to light, particularly ultraviolet (UV) light. Because aromatic isocyanates are used as a reactant, some aromatic structures may be found in the reaction product. Such aromatic structures are inherently unstable and the resulting material tends to discolor when exposed over long time periods to UV light rays. Hence, UV light stabilizers are commonly added to the formulation, but the covers may still develop a yellowish appearance over prolonged exposure to sunlight. Thus, golf balls are normally painted with a white paint and then covered with a transparent coating to protect the ball’s appearance.

In a second approach, aliphatic isocyanates are used to form the prepolymer. Examples of aliphatic isocyanates include, but are not limited to, isophorone diisocyanate (IPDI), 1,6-hexamethylene diisocyanate (HDI), 4,4’-dicyclohexylmethane diisocyanate (“HMDI”), and homopolymers and copolymers thereof. These aliphatic isocyanates can provide polyurethane and polyurea polymers having good light stability but such polymers tend to have reduced mechanical strength and cut/shear-resistance.

As discussed above, golf ball covers having good light stability are needed. At the same time, the golf ball should have high tensile strength, impact durability, and cut/shear-resistance. The present invention provides multi-layered golf balls having such characteristics as well as other advantageous properties and features. In the present invention, the cover of the golf ball is essentially “split” into two separate and distinct layers, an aromatic polyurethane inner cover and an aliphatic polyurethane outer cover layer, wherein at least one of the cover layers is formed by casting an aromatic or aliphatic thermoplastic polyurethane composition. In one embodiment, both the aromatic and aliphatic polyurethane compositions are thermoplastic in nature and both compositions are casted to form the “split” cover. Both the aromatic and aliphatic cover layers contribute to the structure and properties of the “split” cover provide the optimum combination of physical, playing, cosmetic, and color-stable ball properties.

SUMMARY OF THE INVENTION

The present invention relates to multi-layered golf balls comprising a core having at least one layer and a multi-layered cover having at least two layers: i) an outer cover layer comprising a first polyurethane composition containing at least 60 weight percent aliphatic polyurethane; and ii) an inner cover layer, disposed between the core and outer cover layer, the inner cover layer comprising a second polyurethane composition containing at least 60 weight percent aromatic polyurethane. Preferably, the total thickness of the multi-layered cover is no greater than 0.110 inches. At least one of the polyurethanes is thermoplastic, and the cover layer is formed from the thermoplastic polyurethane composition using a casting method. In one version, both the first and second polyurethanes are thermoplastic, and both polyurethane compositions are cast to form cover layers. In another version, one polyurethane is thermoplastic and the other polyurethane is thermoset. Both the thermoplastic and thermoset polyurethane compositions can be casted to form cover layers in this version.

In another embodiment, the polyurethane compositions may be applied to the core or ball sub-assembly to form cover layers using a thermal spray method as discussed further below. Also, the polyurethane compositions can contain plasticizers. For example, plasticizer such as diethylene glycol-dibenzoate, ethyl oleate and propylene carbonate can be added to the polyurethane compositions.

In one embodiment, the core is single-layered and formed from a thermoset rubber composition, preferably polybutadiene rubber. In another embodiment, the core has at least two layers, and at least one of the layers is formed from polybutadiene rubber or other thermoset rubber composition. The ball may further comprise an optional intermediate layer disposed between the core and inner cover layer. Preferably, the intermediate layer comprises an ionomer composition containing at least 60 weight percent ethylene acid copolymer having acid groups such that at least 30%, and preferably 70% or greater, of the acid groups are neutralized. The ionomer composition can further comprise a fatty acid or salt thereof.

The inner, outer, and intermediate covers may further comprise additional polymers and additives. For example, the inner and outer covers may further comprise a polymer selected from the group consisting of aliphatic and aromatic polyurethanes, aliphatic and aromatic polyurethanes, and aliphatic and aromatic urethane-urea hybrids.

In one preferred embodiment, the total thickness of the cover layers is no greater than 0.095 inches. For example, the inner cover layer may have a thickness in the range of 0.010 to 0.050 inches; the outer cover layer may have a thickness of 0.004 to 0.020 inches, and the intermediate cover layer may have a thickness of 0.010 to 0.040 inches. More particularly, in one version, the thickness of the inner cover layer (ICT) is greater than the thickness of the outer cover layer (OCT); and the thickness of the ICT is greater than the thickness of the intermediate cover layer (INTCT). Further, the thickness of the INTCT can be greater than or equal to the thickness of the OCT. In another version, the thickness of the inner cover layer (ICT) is less than the thickness of the outer cover layer (OCT); and the thickness of the OCT is less than the thickness of the intermediate cover layer (INTCT).

The golf balls of this invention can further include a moisture barrier vapor layer. Preferably, the moisture vapor barrier layer is formed from a material selected from the group consisting of polybutadiene, natural rubber, butyl-based rubber, acrylics, trans-polysoprene, neoprene, chlorinated polyethylene, and balata.ethylene/methacrylic acid resins, and mixtures thereof. Preferably, the moisture barrier vapor layer has a thickness of less than 0.010 inches.
The resulting golf ball of this invention has many advantageous physical properties including good cut/shear resistance and impact durability along with optimum cosmetic, playing performance, and color-stable properties.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features that are characteristic of the present invention are set forth in the appended claims. However, the preferred embodiments of the invention, together with further objects and attendant advantages, are best understood by reference to the following detailed description in connection with the accompanying drawings in which:

FIG. 1 is a front view of a dimpled golf ball made in accordance with the present invention;
FIG. 2 is a cross-sectional view of a four-piece golf ball having a core and multi-layered cover made in accordance with the present invention;
FIG. 3 is a cross-sectional view of a five-piece golf ball having a dual-core and multi-layered cover made in accordance with the present invention; and
FIG. 4 is a cross-sectional view of a six-piece golf ball having a dual-core; an intermediate layer; and multi-layered cover made in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates generally to golf balls having multi-layered covers. In one preferred embodiment, the cover includes an inner cover layer made of an aromatic thermoplastic polyurethane composition, and an outer cover layer made of an aliphatic thermoplastic polyurethane composition.

Golf balls having various constructions may be made in accordance with this invention. For example, golf balls having three-piece, four-piece, five-piece, and six-piece constructions may be made. More particularly, in one version, a three-piece ball comprising a single-layered core and dual-layered cover is made. In other versions, a four-piece ball comprising a dual-layered core and dual-layered cover or a five-piece golf ball comprising a dual-layered core and three-layered cover is made. The dual-layered core has an inner core (center) and surrounding outer core layer. The term, “layer” or “layered” as used herein means generally any spherical portion of the golf ball. The golf ball may further include an intermediate layer. As used herein, the term, “intermediate layer” means a layer of the ball disposed between the core and cover.

The intermediate layer also may be referred to as a casing or mantle layer. The diameter and thickness of the different layers along with properties such as hardness and compression may vary depending upon the construction and desired playing performance properties of the golf ball as discussed further below.

Core Structure

The golf ball may contain a single- or multi-layered core. In one preferred embodiment, at least one of the core layers is formed of a rubber composition comprising polybutadiene rubber material. More particularly, in one version, the ball contains a single inner core formed of the polybutadiene rubber composition. In a second version, the ball contains a dual-core comprising an inner core (center) and surrounding outer core layer.

In one version, the core is formed of a rubber composition comprising a rubber material such as, for example, polybutadiene, ethylene-propylene rubber, ethylène-propylene-diene rubber, polyisoprene, styrene-butadiene rubber, polyalklenamers, butyl rubber, halobutyl rubber, or polystyrene elastomers. For example, polybutadiene rubber compositions may be used to form the inner core (center) and surrounding outer core layer in a dual-layer construction. In another version, the core may be formed from an ionomer composition comprising an ethylene acid copolymer containing acid groups such that greater than 70% of the acid groups are neutralized. These highly neutralized polymers (HNPs) also may be used to form at least one core layer in a multi-layered core construction. For example, a polybutadiene rubber composition may be used to form the center and a HNP composition may be used to form the outer core. Such rubber and HNP compositions are discussed in further detail below.

In general, polybutadiene is a homopolymer of 1,3-butadiene. The double bonds in the 1,3-butadiene monomer are attacked by catalysts to grow the polymer chain and form a polybutadiene polymer having a desired molecular weight. Any suitable catalyst may be used to synthesize the polybutadiene rubber depending upon the desired properties. Normally, a transition metal complex (for example, neodymium, nickel, or cobalt) or an alkyl metal such as alkyl-lithium is used as a catalyst. Other catalysts include, but are not limited to, aluminum, boron, lithium, titanium, and combinations thereof. The catalysts produce polybutadiene rubbers having different chemical structures. In a cis-bond configuration, the main internal polymer chain of the polybutadiene appears on the same side of the carbon-carbon double bond contained in the polybutadiene. In a trans-bond configuration, the main internal polymer chain is on opposite sides of the internal carbon-carbon double bond in the polybutadiene. The polybutadiene rubber can have various combinations of cis- and trans-bond structures. A preferred polybutadiene rubber has a 1.4 cis-bond content of at least 40%, preferably greater than 80%, and more preferably greater than 90%. In general, polybutadiene rubbers having a high 1.4 cis-bond content have high tensile strength. The polybutadiene rubber may have a relatively high or low Mooney viscosity.

Examples of commercially-available polybutadiene rubbers that can be used in accordance with this invention include, but are not limited to, BR 01 and BR 1220, available from BST Elastomers of Bangkok, Thailand; SE BR 1202A and SE BR1203, available from DOW Chemical Co of Midland, Mich.; BUDENE 1207, 1207s, 1208, and 1280 available from Goodyear, Inc of Akron, Ohio; BR 01, 51 and 730, available from Japan Synthetic Rubber (JSR) of Tokyo, Japan; BUNA CB 21, CB 22, CB 23, CB 24, CB 25, CB 29 MEG, CB 60, CB Nd 60, CB 55 NF, CB 70 B, CB KA 8967, and CB 1221, available from Luxmex Corp. of Pittsburgh, Pa.; BR 1208, available from LG Chemical of Seoul, South Korea; UBE POLY BR1308, BR150, BR150B, BR150L, BR230, BR360L, BR710, and VCR617, available from UBE Industries, Ltd. of Tokyo, Japan; EUROPRENE NEOFIR BR 60, INTENE 60 AF and P30AF, and EUROPRENE BR H180, available from Polimeri Europa of Rome, Italy; AFDENE 50 and NEODENE BR40, BR45,
BR50 and BR60, available from Karbochem (PTY) Ltd. of Bruma, South Africa; KBR 01, NDBr 40, NDBr-45, NDBr 60, KBR 710S, KBR 710H, and KBR 750, available from Kunho Petrochemical Co., Ltd. Of Seoul, South Korea; and DIENE 55NF, 70AC, and 320 AC, available from Firestone Polymers of Akron, Ohio.

[0033] To form the core, the polybutadiene rubber is used in an amount of at least about 5% by weight based on total weight of composition and is generally present in an amount of about 5% to about 100%, or an amount within a range having a lower limit of 5% or 10% or 20% or 30% or 40% or 50% and an upper limit of 55% or 60% or 70% or 80% or 90% or 95% or 100%. In general, the concentration of polybutadiene rubber is about 45 to about 95 weight percent. Preferably, the rubber material used to form the core layer comprises at least 50% by weight, and more preferably at least 70% by weight, polybutadiene rubber.

[0034] The rubber compositions of this invention may be cured, either by pre-blending or post-blending, using conventional curing processes. Suitable curing processes include, for example, peroxide-curing, sulfur-curing, high-energy radiation, and combinations thereof. Preferably, the rubber composition contains a free-radical initiator selected from organic peroxides, high energy radiation sources capable of generating free-radicals, and combinations thereof. In one preferred version, the rubber composition is peroxide-cured. Suitable organic peroxides include, but are not limited to, dicumyl peroxide; n-butyl-4,4-di-t-butylperoxy valerate; 1,1-di-t-butylperoxyxy3,3,5-trimethylhydrohexane; 2,5-dimethyl-2,5-di-t-butylperoxyhexane; di-t-butyl peroxide; di-t-amyl peroxide; t-butyldi peroxide; t-butyldi methyl peroxide; 2,5-dimethyl-2,5-di-t-butylperoxyhexane-3; di(t-2-butylperoxisopropyl)benzene; dilauroyl peroxide; dibenzoyl peroxide; t-butyldiperoxide; and combinations thereof. In a particular embodiment, the free radical initiator is dicumyl peroxide, including, but not limited to, Perkadox® BC, commercially available from Akzo Nobel. Peroxide-free-radical initiators are generally present in the rubber composition in an amount of at least 0.05 parts by weight per 100 parts of the total rubber, or an amount within the range having a lower limit of 0.05 parts or 0.1 parts or 1 part or 1.25 parts or 1.5 parts or 2 parts or 2.5 parts or 5 parts by weight per 100 parts of the total rubbers, and an upper limit of 2.5 parts or 3 parts or 5 parts or 6 parts or 10 parts or 15 parts by weight per 100 parts of the total rubber. Concentrations are in parts per hundred (phr) unless otherwise indicated. As used herein, the term, “parts per hundred,” also known as “phrs” or “phr” is defined as the number of parts by weight of a particular component present in a mixture, relative to 100 parts by weight of the polymer component. Mathematically, this can be expressed as the weight of an ingredient divided by the total weight of the polymer, multiplied by a factor of 100.

[0035] The rubber compositions preferably include a reactive cross-linking co-agent. Suitable co-agents include, but are not limited to, metal salts of unsaturated carboxylic acids having from 3 to 8 carbon atoms; unsaturated vinyl compounds and polyfunctional monomers (e.g., trimethylolpropane trimethacrylate); phenylene bismaleimide; and combinations thereof. Particular examples of suitable metal salts include, but are not limited to, one or more metal salts of acrylic, diacrylates, methacrylates, and dimethacrylates, wherein the metal is selected from magnesium, calcium, zinc, aluminum, lithium, and nickel. In a particular embodiment, the co-agent is selected from zinc salts of acrylates, diacrylates, methacrylates, and dimethacrylates. In another particular embodiment, the agent is zinc diacrylate (ZDA). When the co-agent is zinc diacrylate and/or zinc dimethacrylate, the co-agent is typically included in the rubber composition in an amount within the range having a lower limit of 1 or 5 or 10 or 15 or 19 or 20 parts by weight per 100 parts of the total rubber, and an upper limit of 24 or 25 or 30 or 35 or 40 or 45 or 50 or 60 parts by weight per 100 parts of the base rubber.

[0036] Radical scavengers such as a halogenated organosulfur or metal salt thereof, organic disulfide, or inorganic disulfide compounds may be added to the rubber composition. These compounds also may function as “soft and fast agents.” As used herein, “soft and fast agent” means any compound or a blend thereof that is capable of making a core: 1) softer (having a lower compression) at a constant “coefficient of restitution” (COR); and/or 2) faster (having a higher COR at equal compression), when compared to a core equivalently prepared without a soft and fast agent. Preferred halogenated organosulfur compounds include, but are not limited to, pentachlorothiophenol (PCTP) and salts of PCTP such as zinc pentachlorothiophenol (ZnPCTP). Using PCTP and ZnPCTP in golf ball inner cores helps produce softer and faster inner cores. The PCTP and ZnPCTP compounds help increase the resiliency and the coefficient of restitution of the core. In a particular embodiment, the soft and fast agent is selected from ZnPCTP, PCTP, dithiol disulfide, diphenyl disulfide, dixylyl disulfide, 2-nitrosocinol, and combinations thereof.

[0037] The rubber compositions of the present invention also may include “fillers,” which are added to adjust the density and/or specific gravity of the material. Suitable fillers include, but are not limited to, polymeric or mineral fillers, metal fillers, metal alloy fillers, metal oxide fillers and carbonaceous fillers. The fillers can be in any suitable form including, but not limited to, flakes, fibers, whiskers, fibrils, plates, particles, and powders. Rubber regrind, which is ground, recycled rubber material (for example, ground to about 30 mesh particle size) obtained from discarded rubber golf ball cores, also can be used as a filler. The amount and type of fillers utilized are governed by the amount and weight of other ingredients in the golf ball, since a maximum golf ball weight of 45.93 g (1.62 ounces) has been established by the United States Golf Association (USGA).

[0038] Suitable polymeric or mineral fillers that may be added to the rubber composition include, for example, precipitated hydrated silica, clay, talc, asbestos, glass fibers, aramid fibers, mica, calcium metasilicate, barium sulfate, zinc sulfide, lithiopone, silicates, silicon carbide, tungsten carbide, diatomaceous earth, polyvinyl chloride, carbonates such as calcium carbonate and magnesium carbonate. Suitable metal fillers include titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, lead, copper, boron, cobalt, beryllium, zinc, and tin. Suitable metal alloys include steel, brass, bronze, boron carbide whiskers, and tungsten carbide whiskers. Suitable metal oxide fillers include zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, and zinc oxide. Suitable particulate carbonaceous fillers include graphite, carbon black, cotton flock, natural bitumen, cellulose flock, and leather fiber. Micro balloon fillers such as glass and ceramic, and fly ash fillers can also be used. In a particular aspect of this embodiment, the rubber composition includes filler(s)
selected from carbon black, nanoclays (e.g., Cloisite® and Nanofil® nanoclays, commercially available from Southern Clay Products, Inc., and Nanomax® and Nanomer® nanoclays, commercially available from Nanocor, Inc.), talc (e.g., Luzenac HAR® high aspect ratio talcs, commercially available from Luzenac America, Inc.), glass (e.g., glass flake, milled glass, and microglass), mica and mica-based pigments (e.g., Iriodin® pearl luster pigments, commercially available from The Merck Group), and combinations thereof. In a particular embodiment, the rubber composition is modified with organic fiber micropulp.

[0039] In addition, the rubber compositions may include antioxidants to prevent the breakdown of the elastomers. Also, processing aids such as high molecular weight organic acids and salts thereof, may be added to the composition. In a particular embodiment, the total amount of additive(s) and filler(s) present in the rubber composition is 15 wt % or less, or 12 wt % or less, or 10 wt % or less, or 9 wt % or less, or 6 wt % or less, or 5 wt % or less, or 4 wt % or less, or 3 wt % or less, based on the total weight of the rubber composition.

[0040] The polybutadiene rubber material (base rubber) may be blended with other elastomers in accordance with this invention. Other elastomers include, but are not limited to, polybutadiene, polyisoprene, ethylene propylene rubber ("EPDM"), styrene-butadiene rubber, styrenic block copolymer rubbers (such as "SI", "SIS", "SB", "SBS", "SIBS"), and the like, where "S" is styrene, "I" is isobutylene, and "B" is butadiene), polyalkenamers such as, for example, polyoctenamer, butyl rubber, halobutyl rubber, polyurethane elastomers, polyethylene elastomers, polyurethane elastomers, polyureas elastomers, metalloocene-catalyzed elastomers and plasticizers, copolymers of isobutylene and p-alkylstyrene, halogenated copolymers of isobutylene and p-alkylstyrene, copolymers of butadiene with acrylonitrile, polychloroprene, alkyl acrylate rubber, chlorinated isoprene rubber, acrylonitrile chlorinated isoprene rubber, and combinations of two or more thereof.

[0041] The polymers, free-radical initiators, filler, cross-linking agents, and any other materials used in forming either the golf ball center or any portion of the core, in accordance with invention, may be combined to form a mixture by any type of mixing known to one of ordinary skill in the art. Suitable types of mixing include single pass and multi-pass mixing, and the like. The cross-linking agent, and any other optional additives used to modify the characteristics of the golf ball center or additional layer(s), may similarly be combined by any type of mixing. A single-pass mixing process where ingredients are added sequentially is preferred, as this type of mixing tends to increase efficiency and reduce costs for the process. The preferred mixing cycle is single step wherein the polymer, cis-to-trans catalyst, filler, zinc diacrylate, and peroxide are added in sequence.

[0042] In one preferred embodiment, the entire core or at least one core layer in a multi-layered structure is formed of a rubber composition comprising a material selected from the group of natural and synthetic rubbers including, but not limited to, polybutadiene, polyisoprene, ethylene propylene rubber ("EPDM"), ethylene-propylene-diene ("EPDM") rubber, styrene-butadiene rubber, styrenic block copolymer rubbers (such as "SI", "SIS", "SB", "SBS", "SIBS"), and the like, where "S" is styrene, "I" is isobutylene, and "B" is butadiene), polyalkenamers such as, for example, polyoctenamer, butyl rubber, halobutyl rubber, polyurethane elastomers, polyethylene elastomers, polyurea elastomers, metalloocene-catalyzed elastomers and plasticizers, copolymers of isobutylene and p-alkylstyrene, halogenated copolymers of isobutylene and p-alkylstyrene, copolymers of butadiene with acrylonitrile, polychloroprene, alkyl acrylate rubber, chlorinated isoprene rubber, acrylonitrile chlorinated isoprene rubber, and combinations of two or more thereof.

[0043] As discussed above, single and multi-layered cores can be made in accordance with this invention. In two-layered cores, a thermoset material such as, for example, thermoset rubber, can be used to make the outer core layer or a thermoplastic material such as, for example, ethylene acid copolymer containing acid groups that are at least partially or fully neutralized can be used to make the outer core layer. Suitable ionomer compositions include partially-neutralized ionomers and highly-neutralized ionomers (HNPs), including ionomers formed from blends of two or more partially-neutralized ionomers, blends of two or more highly-neutralized ionomers, and blends of one or more partially-neutralized ionomers with one or more highly-neutralized ionomers. Suitable ethylene acid copolymer ionomers and other thermoplastics that can be used to form the core layer(s) are the same materials that can be used to make an inner cover layer as discussed further below.

[0044] In another example, multi-layered cores having an inner core, intermediate core layer, and outer core layer, wherein the intermediate core layer is disposed between the intermediate and outer core layers may be prepared in accordance with this invention. More particularly, as discussed above, the inner core may be constructed from a thermoplastic or thermoset composition, such as thermoset rubber. Meanwhile, the intermediate and outer core layers also may be formed from thermoset or thermoplastic materials. Suitable thermoset and thermoplastic compositions that may be used to form the intermediate/outer core layers are discussed above. For example, each of the intermediate and outer core layers may be formed from a thermoset rubber composition. Thus, the intermediate core layer may be formed from a first thermoset rubber composition; and the outer core layer may be formed from a second thermoset rubber composition. In another embodiment, the intermediate core layer is formed from a thermoset composition; and the outer core layer is formed from a thermoplastic composition. In a third embodiment, the intermediate core layer is formed from a thermoplastic composition; and the outer core layer is formed from a thermoplastic composition. Finally, in a fourth embodiment, the intermediate core layer is formed from a first thermoplastic composition; and the outer core layer is formed from a second thermoplastic compositions.

[0045] In a particular embodiment, the core includes at least one additional thermoplastic intermediate core layer formed from a composition comprising an ionomer selected from DuPont® HPF E3X 367, HPF 1000, HPF 2000, HPF AD1035, HPF AD1035 Soft, HPF AD1040, and AD 1172 ionomers, commercially available from E. I. du Pont de Nemours and Company. The coefficient of restitution ("COR"), compression, and surface hardness of each of these materials, as measured on 1.55" injection molded spheres aged two weeks at 23° C/50% RH, are given in Table 1 below.
TABLE 1

<table>
<thead>
<tr>
<th>Example</th>
<th>Solid Sphere COR</th>
<th>Solid Sphere Compression</th>
<th>Solid Sphere Shore D</th>
<th>Shore Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFP 1000</td>
<td>0.830</td>
<td>115</td>
<td>115</td>
<td>54</td>
</tr>
<tr>
<td>HFP 2000</td>
<td>0.860</td>
<td>90</td>
<td>90</td>
<td>47</td>
</tr>
<tr>
<td>HFP AD1035</td>
<td>0.820</td>
<td>63</td>
<td>63</td>
<td>42</td>
</tr>
<tr>
<td>HFP AD1035 Soft</td>
<td>0.780</td>
<td>33</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>HFP AD 1040</td>
<td>0.855</td>
<td>135</td>
<td>135</td>
<td>60</td>
</tr>
<tr>
<td>HFP AD 1172</td>
<td>0.800</td>
<td>32</td>
<td>32</td>
<td>37</td>
</tr>
</tbody>
</table>

In another particular embodiment, the core includes at least one additional thermostable intermediate core layer formed from a blend of two or more ionomers. In a particular aspect of this embodiment, the blend is a 50 wt %/50 wt % blend of two different partially-neutralized ethylene/methacrylic acid copolymers.

In another particular embodiment, the core includes at least one additional thermostable intermediate core layer formed from a blend of one or more ionomers and a maleic anhydride-grafted non-ionicomer polymer. In a particular aspect of this embodiment, the non-ionicomer polymer is a metallocene-catalyzed polymer. In another particular aspect of this embodiment, the blend includes a partially-neutralized ethylene/methacrylic acid copolymer and a maleic anhydride-grafted metallocene-catalyzed polyethylene.

In yet another particular embodiment, the core includes at least one additional thermostable intermediate core layer formed from a composition selected from the group consisting of partially- and fully-neutralized ionomers optionally blended with a maleic anhydride-grafted non-ionicomer polymer; polyester elastomers; polyamide elastomers; and combinations of two or more thereof.

Intermediate Layer Structure

In one preferred embodiment, an intermediate layer is disposed between the core and inner cover layer. The intermediate layer can include any materials known to those of ordinary skill in the art, including thermoplastic and thermosetting materials, but preferably is formed of an ionomer composition comprising an ethylene acid copolymer containing acid groups that are at least partially neutralized. Suitable ethylene acid copolymers that may be used to form the compositions of this invention are generally referred to as copolymers of ethylene; C₃ to C₆ α, β-ethylenically unsaturated mono- or dicarboxylic acid; and optional softening monomer. Copolymers may include, without limitation, ethylene acid copolymers, such as ethylene/(meth)acrylic acid, ethylene/(meth)acrylate/maleic anhydride, ethylene/(meth)acrylic acid/maleic acid monoster, ethylene/maleic acid mono-ester, ethylene/(meth)acrylic acid/n-butyl (meth)acrylate, ethylene/(meth)acrylic acid/iso-butyl (meth)acrylate, ethylene/(meth)acrylic acid/methyl (meth)acrylate, ethylene/(meth) acrylic acid/ethyl (meth)acrylate terpolymers, and the like. The term, “copolymer,” as used herein, includes polymers having two types of monomers, those having three types of monomers, and those having more than three types of monomers. The preferred α, β-ethylenically unsaturated mono- or dicarboxylic acids are (meth) acrylic acid, (meth)acrylic acid, maleic acid, crotonic acid, fumaric acid, and itaconic acid. (Meth) acrylic acid is most preferred. As used herein, “(meth) acrylic acid” means methacrylic acid and/or acrylic acid. Likewise, “(meth) acrylate” means methacrylate and/or acrylate.

When a softening monomer is included, such copolymers are referred to herein as E/X/Y-type copolymers, wherein E is ethylene; X is a C₃ to C₆ α, β-ethylenically unsaturated mono- or dicarboxylic acid; and Y is a softening monomer. The softening monomer is typically an alkyl (meth) acrylate, wherein the alkyl groups have from 1 to 8 carbon atoms. Preferred E/X/Y-type copolymers are those wherein X is (meth) acid and/or Y is selected from (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, methyl (meth) acrylate, and ethyl (meth) acrylate. More preferred E/X/Y-type copolymers are ethylene/(meth) acrylic acid/n-butyl acrylate, ethylene/(meth) acrylic acid/ methyl acrylate, and ethylene/(meth) acrylic acid/ethyl acrylate.

Examples of commercially-available ionomer compositions that can be used in accordance with this invention, include, but are not limited to, Surlyn® ionomer resins and HFP® 1000 and HFP® 2000, commercially available from DuPont; Iotek® ionomers, commercially available from ExxonMobil Chemical Company; Amplify® IO ionomers of ethylene acrylic acid copolymers, commercially available from The Dow Chemical Company; and Clarix® ionomer resins, commercially available from A. Schulman Inc.

The amount of ethylene in the acid copolymer is typically at least 15 wt %, preferably at least 25 wt %, more preferably at least 40 wt %, and even more preferably at least 60 wt %, based on total weight of the copolymer. The amount of C₃ to C₆ α, β-ethylenically unsaturated mono- or dicarboxylic acid in the acid copolymer is typically from 1 wt % to 35 wt %, preferably from 5 wt % to 30 wt %, more preferably from 5 wt % to 25 wt %, and even more preferably from 10 wt % to 20 wt %, based on total weight of the copolymer. The amount of optional softening monomer in the acid copolymer is typically from 0 wt % to 50 wt %, preferably from 5 wt % to 40 wt %, more preferably from 10 wt % to 35 wt %, and even more preferably from 20 wt % to 30 wt %, based on total weight of the copolymer. “Low acid” and “high acid” ionomeric polymers, as well as blends of such ionomers, may be used. In general, low acid ionomers are considered to be those containing 16 wt % or less of acid moieties, whereas high acid ionomers are considered to be those containing greater than 16 wt % of acid moieties. In the present invention, the ionomer preferably has an acid content of at least about 9%, more preferably at least 11%, and most preferably in the range of 13% to 20%. Typically, the ionomer has an acid content of about 15%.

The acidic groups in the copolymeric ionomers are partially or totally neutralized with a cation source. Suitable cation sources include metal cations and salts thereof, organic amine compounds, ammonium, and combinations thereof. Preferred cation sources are metal cations and salts thereof, wherein the metal is preferably lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, manganese, nickel, chromium, copper, or a combination thereof. The metal cation salts provide the cations capable of neutralizing (at varying levels) the carboxylic acids of the ethylene acid copolymer and fatty acids, if present, as discussed further below. These include, for example, the sulfate, carbonate, acetate, oxide, or hydroxide.
salts of lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, manganese, nickel, chromium, copper, or a combination thereof. Preferred metal cation salts are calcium and magnesium-based salts. High surface area cation particles such as micro and nano-scale cation particles are preferred. The amount of cation used in the composition is readily determined based on desired level of neutralization.

[0054] For example, ionomeric resins having acid groups that are neutralized from about 10 percent to about 100 percent may be used. In one type of ionomer composition, the acid groups are partially neutralized. That is, the neutralization level is from about 10% to about 70%, more preferably 20% to 60%, and most preferably 30 to 50%. These ionomer compositions, containing acid groups neutralized to 70% or less, may be referred to ionomers having relatively low neutralization levels.

[0055] In another suitable ionomer composition, the acid groups are highly or fully-neutralized, and these materials may be referred to as highly neutralized polymers (HNPs). In these HNPs, the neutralization level is preferably greater than 70%, more preferably at least 90%, and even more preferably at least 100%. In another embodiment, an excess amount of neutralizing agent, that is, an amount greater than the stoichiometric amount needed to neutralize the acid groups, may be used. That is, the acid groups may be neutralized to 100% or greater, for example 110% or 120% or greater. In one preferred embodiment, a high acid ethylene acid copolymer containing about 19 to 20 wt. % methacrylic or acrylic acid is neutralized with zinc and sodium cations to a 95% neutralization level.

[0056] Ionic plasticizers such as organic acids or salts of organic acids, particularly fatty acids, may be added to the ionomer resin if needed. Such ionic plasticizers are used to make conventional ionomer composition more processable as described in Rajagopalan et al., U.S. Pat. No. 6,756,436, the disclosure of which is hereby incorporated by reference. In one preferred embodiment, the thermoplastic ionomer composition, containing acid groups neutralized to 70% or less, does not include a fatty acid or salt thereof, or any other ionic plasticizer. On the other hand, the thermoplastic ionomer composition, containing acid groups neutralized to greater than 70%, includes an ionic plasticizer, particularly a fatty acid or salt thereof. For example, the ionic plasticizer may be added in an amount of 0.5 to 1 pph, more preferably 1 to 5 pph. The organic acids may be aliphatic, mono- or multi-functional (saturated, unsaturated, or multi-unsaturated) organic acids. Salts of these organic acids may also be employed. Suitable fatty acid salts include, for example, metal stearates, laureates, oleates, palmitates, pelargonates, and the like. For example, fatty acid salts such as zinc stearate, calcium stearate, magnesium stearate, barium stearate, and the like can be used. The salts of fatty acids are generally fatty acids neutralized with metal ions. The metal cation salts provide the cations capable of neutralizing (at varying levels) the carboxylic acid groups of the fatty acids. Examples include the sulfate, carbonate, acetate and hydroxide salts of metals such as barium, lithium, sodium, zinc, bismuth, chromium, cobalt, copper, potassium, strontium, titanium, tungsten, magnesium, cesium, iron, nickel, silver, aluminum, tin, or calcium, and blends thereof. For example, the ionic plasticizer may be added in an amount of 0.5 to 10 pph, more preferably 1 to 5 pph. In addition to the fatty acids and salts of fatty acids discussed above, other suitable ionic plasticizers include, for example, polyethylene glycols, waxes, bis-stearamides, minerals, and phthalates. In another embodiment, an amine or pyridine compound is used, preferably in addition to a metal cation. Suitable examples include, for example, ethylamine, methyamine, diethylamine, tert-butylamine, dodecylamine, and the like. It is preferred the organic acids and salts be relatively non-migratory (they do not bloom to the surface of the polymer under ambient temperatures) and non-volatile (they do not volatilize at temperatures required for melt-blending).

[0057] Preferably, the partially or highly neutralized ethylene acid copolymer in the ionomer composition is used in an amount of at least about 10% by weight based on total weight of composition and is generally present in an amount of about 10% to about 100%, or an amount within a range having a lower limit of 20% or 30% or 40% or 50% or 60% or 70% or 75% and an upper limit of 80% or 85% or 90% or 95% or 100%. Preferably, the concentration of partially or highly neutralized ethylene acid copolymer is at least 40% or about 40% to about 100%, more preferably at least 60% or about 60% to about 100% and even more preferably at least 75% or about 75% to about 100%.

Cover Layer Structure

[0058] The golf balls of this invention further include inner and outer cover layers made of polyurethane compositions. In general, the polyurethane compositions contain urethane linkages formed by reacting an isocyanate group (—N—C=O) with a hydroxyl group (OH). The polyurethanes are produced by the reaction of a multi-functional isocyanate (NCO,—R—NCO) with a long-chain polyol having terminal hydroxyl groups (—OH) in the presence of a catalyst and other additives. The chain length of the polyurethane prepolymer is extended by reacting it with short-chain diols (OH—R—OH). The resulting polyurethane has elastomeric properties because of its “hard” and “soft” segments, which are covalently bonded together. This phase separation occurs because the mainly non-polar, low melting soft segments are incompatible with the polar, high melting hard segments. The hard segments, which are formed by the reaction of the diisocyanate and low molecular weight chain-extending diol, are relatively stiff and immobile. The soft segments, which are formed by the reaction of the diisocyanate and long chain diol, are relatively flexible and mobile. Because the hard segments are covalently coupled to the soft segments, they inhibit plastic flow of the polymer chains, thus creating elastomeric resiliency.

[0059] At least one of the polyurethane compositions used to form a cover layer in accordance with this invention is thermoplastic. The thermoplastic polyurethane is casted to form at least one of the cover layers. For example, an aromatic thermoplastic polyurethane can be casted to form the inner or outer cover layer, preferably the inner cover layer. In another version, an aliphatic thermoplastic polyurethane can be casted to form the inner or outer cover layer, preferably the outer cover layer. In yet another version, both aromatic and aliphatic thermoplastic polyurethanes can be casted to form the cover layers of the golf ball of this invention. The casting method of this invention is described in further detail below. Thermoplastic polyurethanes have minimal cross-linking; any bonding in the polymer network is primarily through hydrogen bonding or other physical mechanism. Because of their lower level of cross-linking, thermoplastic polyurethanes are relatively flexible. The
cross-linking bonds in thermoplastic polyurethanes can be reversibly broken by increasing temperature such as during molding or extrusion. That is, the thermoplastic material softens when exposed to heat and returns to its original condition when cooled. On the other hand, thermoset polyurethanes become irreversibly set when they are cured. The cross-linking bonds are irreversibly set and are not broken when exposed to heat. Thus, thermoset polyurethanes, which typically have a high level of cross-linking, are relatively rigid.

[0060] In the golf balls of the present invention, the inner cover layer preferably comprises an aromatic polyurethane, which is preferably formed by reacting an aromatic diisocyanate with a polyl. Suitable aromatic diisocyanates that may be used in accordance with this invention include, for example, toluene 2,4-diisocyanate (TDI), toluene 2,6-diisocyanate (TDI), 4,4'-methylene diphenyl diisocyanate (MDI), 2,4'-methylene diphenyl diisocyanate (MDI), polymeric methylene diphenyl diisocyanate (PMDI), p-phenylene diisocyanate (PPDI), m-phenylene diisocyanate (PDI), naphthalene 1,5-diisocyanate (NDI), naphthalene 2,4-diisocyanate (NDI), p-xylene diisocyanate (XDI), and homopolymers and copolymers and blends thereof. The aromatic isocyanates are able to react with the hydroxyl or amine compounds and form a durable and tough polymer having a high melting point. The resulting polyurethane generally has good mechanical strength and cut/shear-resistance.

[0061] Meanwhile, the outer cover layer preferably comprises an aliphatic polyurethane, which is preferably formed by reacting an aliphatic diisocyanate with a polyl. Suitable aliphatic diisocyanates that may be used in accordance with this invention include, for example, isophorone diisocyanate (IPDI), 1,6-hexamethylenediisocyanate (HDI), 4,4'-dicyclohexylmethane diisocyanate (“H₆ MDI”), meta-tetramethylxyylene diisocyanate (TMXDI), trans-cyclohexane diisocyanate (CHDI), and homopolymers and copolymers and blends thereof. The resulting polyurethane generally has good light and thermal stability.

[0062] Any polyl available to one of ordinary skill in the art is suitable for use according to the invention. Exemplary polyls include, but are not limited to, polyether polyls, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyls, polycaprolactone polyls, and polycarbonate polyls. In one preferred embodiment, the polyl includes polyether polyl. Examples include, but are not limited to, polytetramethylene ether glycol (PTMEG), polyethylene propylene glycol, polyoxypropylene glycol, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups. Preferably, the polyl of the present invention includes PTMEG.

[0063] In another embodiment, polyester polyls are included in the polyurethane material. Suitable polyester polyls include, but are not limited to, polyethylene adipate glycol; polybutylene adipate glycol; polyethylene propylene adipate glycol; o-phthalate-1,6-hexanediol; poly(hexamethylene adipate) glycol; and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In still another embodiment, polycaprolactone polyls are included in the materials of the invention. Suitable polycaprolactone polyls include, but are not limited to: 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethyl propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In yet another embodiment, polycarbonate polyls are included in the polyurethane material of the invention. Suitable polycarbonates include, but are not limited to, polylactide carbonate and poly(hexamethylene carbonate) glycol. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In one embodiment, the molecular weight of the polyl is from about 200 to about 4000.

[0064] There are two basic techniques that can be used to make the polyurethane compositions of this invention: a) one-shot technique, and b) prepolymer technique. In the one-shot technique, the diisocyanate, polyl, and hydroxyl-terminated chain-extender (curing agent) are reacted in one step. On the other hand, the prepolymer technique involves a first reaction between the diisocyanate and polyl compounds to produce a polyurethane prepolymer, and a subsequent reaction between the prepolymer and hydroxyl-terminated chain-extender. As a result of the reaction between the isocyanate and polyl compounds, there will be some unreacted NCO groups in the polyurethane prepolymer. The prepolymer should have less than 14% unreacted NCO groups. Preferably, the prepolymer has no greater than 8.5% unreacted NCO groups, more preferably from 2.5% to 8%, and most preferably from 5.0% to 8.0% unreacted NCO groups. As the weight percent of unreacted isocyanate groups increases, the hardness of the composition also generally increases.

[0065] Either the one-shot or prepolymer method may be employed to produce the polyurethane compositions of the invention. In one embodiment, the one-shot method is used, wherein the isocyanate compound is added to a reaction vessel and then a curative mixture comprising the polyl and curing agent is added to the reaction vessel. The components are mixed together so that the molar ratio of isocyanate groups to hydroxyl groups is in the range of about 1.01:1.00 to about 1.10:1.00. Preferably, the molar ratio is greater than 1.05:1.00. For example, the molar ratio can be in the range of 1.07:1.00 to 1.10:1.00. In a second embodiment, the prepolymer method is used. In general, the prepolymer technique is preferred because it provides better control of the chemical reaction. The prepolymer method provides a more homogeneous mixture resulting in a more consistent polymer composition. The one-shot method results in a mixture that is inhomogeneous (more random) and affords the manufacturer less control over the molecular structure of the resultant composition.

[0066] The polyurethane compositions can be formed by chain-extending the polyurethane prepolymer with a single chain-extender or blend of chain-extenders as described further below. As discussed above, the polyurethane prepolymer can be chain-extended by reacting it with a single chain-extender or blend of chain-extenders. In general, the prepolymer can be reacted with hydroxyl-terminated curing agents, amine-terminated curing agents, and mixtures thereof. The curing agents extend the chain length of the prepolymer and build-up its molecular weight. Normally, the prepolymer and curing agent are mixed so the isocyanate groups and hydroxyl or amine groups are mixed at a 1.05:1.00 stoichiometric ratio.
A catalyst may be employed to promote the reaction between the isocyanate and polyol compounds for producing the prepolymer or between prepolymer and chain-extender during the chain-extending step. Preferably, the catalyst is added to the reactants before producing the prepolymer. Suitable catalysts include, but are not limited to, bisnaphthol; zinc octoate; stannous octoate; tin catalysts such as bis-butyltin dialurate, bis-butyltin diacetate, stannous octoate; tin (II) chloride; tin (IV) chloride; bis-butyltin dimethoxide, dimethyl-bis[1-oxoenedecyl]oxy]stannane, di-n-octyltin bis-isocyl mercaptocetate; amine catalysts such as triethylenediamine, triethylamine, and tributylamine; organic acids such as oleic acid and acetic acid; delayed catalysts; and mixtures thereof. The catalyst is preferably added in an amount sufficient to catalyze the reaction of the components in the reactive mixture. In one embodiment, the catalyst is present in an amount from about 0.001 percent to about 1 percent, and preferably 0.1 to 0.5 percent, by weight of the composition.

The hydroxyl chain-extending (curing) agents are preferably selected from the group consisting of ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; 2-methyl-1,3-propanediol; 2-methyl-1,4-butanediol; monoethanolamine; diethanolamine; triethanolamine; monoisopropanolamine; diisopropanolamine; dipropylene glycol; polypropylene glycol; 1,2-butanediol; 1,3-butanediol; 1,4-butanediol; 2,3-butanediol; 2,3-dimethyl-2,3-butanediol; trimethylolpropane; cyclohexylmethylenol; triisopropanolamine; N,N,N',N'-tetra-(2-hydroxypropyl)-ethylenediamine; diethylene glycol bis-(aminopropyl)ether; 1,5-pentanediol; 1,6-hexanediol; 1,3-bis-(2-hydroxyethoxy) cyclohexane; 1,4-cyclohexylidimethylyl; 1,3-bis-[2-(2-hydroxyethoxy) ethoxy]cyclohexane; 1,3-bis-[2-{2-(2-hydroxyethoxy) ethoxy}ethoxy]cyclohexane; trimethylolpropane; polytetrahydrofuran ether glycol (PTMG), preferably having a molecular weight from about 250 to about 3000; and mixtures thereof.

Suitable amine chain-extending (curing) agents that can be used in chain-extending the polyurethane prepolymer include, but are not limited to, unsaturated diamines such as 4,4'-diamino-diphenylmethane (i.e., 4,4’-methylene-dianiline or “MDA”), m-phenylene diamine, p-phenylene diamine, 1,2- or 1,4-bis(sec-butylamino)benzene, 3,5-diethyl (2,4- or 2,6-) toluidinediamine or “DETDA”, 3,5-dimethylthio-(2,4- or 2,6-) toluidinediamine, 3,5-dimethylthio-(2,4- or 2,6-) toluidinediamine, 3,3’-dimethyl-4,4’-diaminodiphenylmethane, 3,3’-diethyl-5,5’-dimethyl-1,4’-diaminodiphenylmethane (i.e., 4,4’-methylene-bis(2-ethyl-6-methylbenzeneamine)), 3,3’-dichloro-4,4’-diaminodiphenylmethane (i.e., 4,4’-methylene-bis(2-chloroaniline) or “MOCA”), 3,3’-5,5’-tetrachloro-4,4’-diaminodiphenylmethane (i.e., 4,4’-methylene-bis(2,6-diethylaniline), 2,2’-dichloro-3,3’-5,5’-tetrachloro-4,4’-diaminodiphenylmethane (i.e., 4,4’-methylene-bis(3-chloro-2,6-diethylaniline) or “MCDEA”), 3,3’-diethyl-5,5’-dichloro-4,4’-diaminodiphenylmethane, or “MDEA”), 3,3’-dichloro-2,2’,6,6’-tetrachloro-4,4’-diaminodiphenylmethane, 3,3’-dichloro-4,4’-diaminodiphenylmethane, 4,4’-methylene-bis(2,2’-dichloroaniline) (i.e., 2,2’3,3’-tetrachloro-4,4’-diaminodiphenylmethane or “MDCA”), 4,4’-bis(sec-butylamino)-diphenylmethane, N,N’-dialkyldimino-diphenylmethane; trimethylenglycol-di(p-aminobenzoate), polytetramethylene glycol-di(p-aminobenzolate); saturated diamines such as ethylene diamine, 1,3-propylene diamine, 2-methyl-pentamethylenediamine, hexamethylene diamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexane diamine, imino-bis(propylamine), imido-bis(propylamine), imino-bis(propylamine) (i.e., N-(3-aminopropyl)-N-methyl-1,3-propanediamine), 1,4-bis(3-aminopropoxyl)butane (i.e., 3,3’-[1,4-butanediylbis(oxy)]bis-1-propanamine), diethyleneglycol bis(propylamine) (i.e., diethyleneglycol-di(aminopropyl)ether), 4,7,10-trioxatridecane-1,13-diamine, 1-methyl-2,6-diamino-cyclohexane, 1,4-diamino-cyclohexane, poly(oxyethylene-oxypropylene) diamines, 1,3- or 1,4-bis(methylamino)cyclohexane, isophorone diamine, 1,2- or 1,4-bis(sec-butylamino)cyclohexane, N,N’-diisopropyl-isophorone diamine, 4,4’-diamino-dicyclohexylmethane, 3,3’-dichloro-4,4’-diamino-dicyclohexylmethane, N,N’-dialkylamino-dicyclohexylmethane, polyoxyethylene diamines, 3,3’-diethyl-5,5’-dimethyl-4,4’-diamino-dicyclohexylmethane, polyoxypropylene diamines, 3,3’-diethyl-5,5’-dichloro-4,4’-diamino-dicyclohexylmethane, polytetramethylene ether diamines, 3,3’-5,5’-tetraethyl-4,4’-diaminodicyclohexylmethane (i.e., 4,4’-methylene-bis(2,6-diethylenoxycyclohexane)), 3,3’-dichloro-4,4’-diaminodicyclohexylmethane, 2,2’-dichloro-3,3’-5,5’-tetraethyl-4,4’-diaminodicyclohexylmethane, methylene oxide-capped polyoxypropylene ether diamines, 2,2,3,3’,3-tetrachloro-4,4’-diaminodicyclohexylmethane, 4,4’-bis(see-butylamino)-dicyclohexylmethane, triamines such as diethylamide triamine, dipropylamine triamine, (propylene oxide)-based trimamines (i.e., polyoxypropylene trimamines), N,N,N’-(2-aminoethyl)-1,3,5-propylene diamine (i.e., N,N-amine), glycerin-based triamines, (all saturated); tetramines such as N,N,N,N-bis(3-amino propyl)ethylenediamine (i.e., N,N,N,N-amine) (both saturated), triethylamine tetramer; and other polyamines such as tetraethylene pentamine (also saturated). One suitable amine-terminated chain-extending agent is Ethacure 300™ (dimethylthiotoluenediamine or a mixture of 2,6-diamino-3,5-dimethylthiotoluene and 2,4-diamino-3,5-dimethylthiotoluene.) The amine curing agents used as chain extenders normally have a cyclic structure and a low molecular weight (250 or less).

When the polyurethane prepolymer is reacted with hydroxyl-terminated curing agents during the chain-extending step, as described above, the resulting polyurethane composition contains urethane linkages. On the other hand, when the polyurethane prepolymer is reacted with amine-terminated curing agents during the chain-extending step, any excess isocyanate groups in the prepolymer will react with the amine groups in the curing agent. The resulting polyurethane composition contains urethane and urea linkages and may be referred to as a polyurethane/urea hybrid. The concentration of urethane and urea linkages in the hybrid composition may vary. In general, the hybrid composition may contain a mixture of about 10 to 90% urethane and about 90 to 10% urea linkages.

More particularly, when the polyurethane prepolymer is reacted with hydroxyl-terminated curing agents during the chain-extending step, as described above, the resulting composition is essentially a pure polyurethane composition containing urethane linkages having the following general structure:
where \(x \) is the chain length, i.e., about 1 or greater, and \(R \) and \(R' \) are straight chain or branched hydrocarbon chain having about 1 to about 20 carbons.

However, when the polyurethane prepolymer is reacted with an amine-terminated curing agent during the chain-extending step, any excess isocyanate groups in the prepolymer will react with the amine groups in the curing agent and create urea linkages having the following general structure:

\[
\begin{align*}
\text{Urethane linkage:} & \quad R - \text{H} - \text{N} - \text{C} - \text{O} - \text{R'} \\
\text{Urea linkage:} & \quad R - \text{H} - \text{N} - \text{C} - \text{O} - \text{N} - \text{C} - \text{O} - \text{R'}
\end{align*}
\]

where \(x \) is the chain length, i.e., about 1 or greater, and \(R \) and \(R' \) are straight chain or branched hydrocarbon chain having about 1 to about 20 carbons.

As discussed above, at least one of the polyurethane compositions used to form a cover layer in accordance with this invention is thermoplastic. The thermoplastic polyurethane is casted to form at least one of the cover layers. For example, the inner cover layer may be formed by casting an aromatic thermoplastic polyurethane composition and the outer cover layer may be formed by casting an aliphatic thermoplastic polyurethane. In another example, the inner cover layer is formed by casting an aromatic thermoset polyurethane composition and the outer cover layer is formed by casting an aliphatic thermoplastic polyurethane. In yet another example, inner cover layer is formed by casting an aromatic thermoplastic polyurethane composition and the outer cover layer is formed by casting an aliphatic thermoset polyurethane composition. The casting method is described in further detail below. In general, thermoplastic polyurethane compositions are typically formed by reacting the isocyanate blend and polyols at a 1:1 stoichiometric ratio. Thermoset compositions, on the other hand, are cross-linked polymers and are typically produced from the reaction of the isocyanate blend and polyols at normally a 1:0.5-1 stoichiometric ratio.

Preferably, a polyurethane composition comprising an aromatic polyurethane is used to form the inner cover layer. The aromatic polyurethane is used in an amount of about 10% by weight based on total weight of composition and is generally present in an amount of about 10% to about 100%, or an amount within a range having a lower limit of 20% or 30% or 40% or 50% or 60% or 70% or 80% or 90% or 95% or 100% and an upper limit of 80% or 85% or 90% or 95% or 100%. Preferably, the concentration of aromatic polyurethane is at least 40% or about 40% to about 100%, more preferably at least 60% or about 60% to about 100%, and even more preferably at least 75% or about 75% to about 100%.

Meanwhile, a polyurethane composition comprising an aliphatic polyurethane is preferably used to form the outer cover layer. The aliphatic polyurethane is used in an amount of at least about 10% by weight based on total weight of composition and is generally present in an amount of about 10% to about 100%, or an amount within a range having a lower limit of 20% or 30% or 40% or 50% or 60% or 70% or 80% or 90% or 95% or 100%. Preferably, the concentration of aliphatic polyurethane is at least 40% or about 40% to about 100%, more preferably at least 60% or about 60% to about 100% and even more preferably at least 75% or about 75% to about 100%. The volume of aromatic polyurethane in the “split cover” (aromatic and aliphatic polyurethanes combined) is preferably in the range of about 20% to about 80% cubic centimeters (cc), more preferably in the range of about 30% to about 70% and even more preferably greater than 50%. The volume of aliphatic polyurethane in the “split cover” (aromatic and aliphatic polyurethanes combined) is preferably in the range of about 80% to about 20% cc, more preferably in the range of about 70% to about 30% and even more preferably less than 50%. By using aromatic polyurethane in an amount of 50% or more of the volume of the polyurethane cover, it is believed that improved physical properties and improved resistance to melting can be achieved. The mechanical performance and other desirable properties of the aromatic polyurethanes along with the shearing resistance and other desirable properties of the aliphatic polyurethanes are realized.

The polyurethane compositions used to form the inner and outer cover layers may contain other polymer materials including, for example: aliphatic or aromatic polyurethanes, aliphatic or aromatic polyureas, aliphatic or aromatic polyurethane/urea hybrids, olefin-based copolymer ionomer compositions, polyethylene, including, for example, low density polyethylene, linear low density polyethylene, and high density polyethylene; polypropylene; rubber-toughened olefin polymers; acid copolymers, for example, poly(meth)acrylic acid, which do not become part of an ionomeric copolymer; plastomers; flexomers; styrene/butadiene/styrene block copolymers; styrene/ethylene-butylene/styrene block copolymers; dynamically vulcanized elastomers; copolymers of ethylene and vinyl acetates; copolymers of ethylene and methyl acrylates; polyvinyl chloride resins; polyamides, poly(amide-ester) elastomers, and graft copolymers of ionomer and polyamide including, for example, Pebax® thermoplastic polyether block amides, available from Arkema Inc; cross-linked trans-polyisoprene and blends thereof; polyester-based thermoplastic elastomers, such as Hytrek®, available from DuPont; polyurethane-based thermoplastic elastomers, such as Elastollan®, available from BASF; polycarbonate/polyester blends such as Xylex®, available from SABIC Innovative Plastics; maleic anhydride-grafted polymers such as Fusabond®, available from DuPont; and mixtures of the foregoing materials.

In addition, the polyurethane compositions may contain fillers, additives, and other ingredients that do not detract from the properties of the final composition. These additional materials include, but are not limited to, catalysts, wetting agents, coloring agents, optical brighteners, cross-linking agents, whitening agents such as titanium dioxide and zinc oxide, ultraviolet (UV) light absorbers, hindered amine light stabilizers, defoaming agents, processing aids,
surfactants, and other conventional additives. Other suitable additives include antioxidants, stabilizers, softening agents, plasticizers, including internal and external plasticizers, impact modifiers, foaming agents, density-adjusting fillers, reinforcing materials, compatibilizers, and the like. Some examples of useful fillers include zinc oxide, zinc sulfate, barium carbonate, barium sulfate, calcium oxide, calcium carbonate, clay, tungsten, tungsten carbide, silica, and mixtures thereof. Rubber regrind (recycled core material) and polymeric, ceramic, metal, and glass microspheres also may be used. Generally, the additives will be present in the composition in an amount between about 1 and about 70 weight percent based on total weight of the composition depending upon the desired properties.

Golf Ball Construction

[0077] The solid cores for the golf balls of this invention may be made using any suitable conventional technique such as, for example, compression or injection-molding. Typically, the cores are formed by compression molding a slug of uncured or lightly cured rubber material into a spherical structure. Prior to forming the cover layer, the core structure may be surface-treated to increase the adhesion between its outer surface and adjacent layer. Such surface-treatment may include mechanically or chemically-abrading the outer surface of the core. For example, the core may be subjected to corona-discharge, plasma-treatment, silane-dipping, or other treatment methods known to those in the art. The cover layers are formed on the core or ball sub-assembly (the core structure and any intermediate layers disposed about the core) using the casting methods of this invention. Prior to forming the cover layers, the ball sub-assembly may be surface-treated to increase the adhesion between its outer surface and the overlying cover material using the above-described techniques.

[0078] In the past, conventional compression and injection-molding and other methods have been used to form cover layers over the core or ball sub-assembly. In general, compression molding normally involves first making half (hemispherical) shells by injection-molding the composition in an injection mold. This produces semi-cured, semi-rigid half-shells (or cups). Then, the half-shells are positioned in a compression mold around the core or ball sub-assembly. Heat and pressure are applied and the half-shells fuse together to form a cover layer over the core or sub-assembly. On the other hand, injection-molding methods generally involve using upper and lower mold cavities that are mated together. The upper and lower mold cavities form a spherical interior cavity when they are joined together. The mold cavities used to form the outer cover layer have interior dimple cavity details. The cover material conforms to the interior geometry of the mold cavities to form a dimple pattern on the surface of the ball. The injection-mold may include retractable support pins positioned throughout the mold cavities. The retractable support pins move in and out of the cavity. The support pins help maintain the position of the core or ball sub-assembly while the molten composition flows through the mold gates. The molten composition flows into the cavity between the core and mold cavities to surround the core and form the cover layer. Compression molding also can be used to cure the cover composition after injection-molding. For example, a thermally-curable composition can be injection-molded around a core in an unheated mold. After the composition is partially hardened, the ball is removed and placed in a compression mold. Heat and pressure are applied to the ball and this causes thermal-curing of the outer cover layer.

[0079] Conventional cast molding methods also have been used to form cover layers. In these methods, the composition used to form the cover is dispensed into mold cavities and the composition is partially-cured ("gelled"). The core is placed typically in the first mold half (cavity), and the partially-cured cover composition surrounds the ball and helps support it in the cavity. Then, the second mold half (cavity) is mated with the first mold half to enclose the core. Sufficient pressure and heat are applied to the mold cavities. The molten composition flows around and encapsulates the core. The molded balls are then cooled in the mold. However, it has been found that casting thermoplastic polyurethane and polyureas to form cover layers is difficult, because surface defects tend to form in the cover. When pre-heated cores and/or pre-heated molds are used, this can lead to surface voids and cosmetic defects such as blisters, streaks, uneven surfaces, trenches, and sink marks. The casting methods of the present invention can be used to cast thermoplastic polyurethanes and polyureas and form covers that are substantially free of surface defects.

[0080] In a preferred embodiment of the present invention, the method for forming the inner (aromatic polyurethane) and outer cover (aliphatic polyurethane) layers involve the following steps. First, a liquid mixture of reactive thermoplastic polyurethane prepolymer and chain-extender (curing agent) used to form the outer cover layer ("the first polyurethane composition") is poured into lower and upper mold cavities, which may be pre-heated (normally at a temperature of about 125° to about 300° F.). The reactive polyurethane prepolymer and chain extender are allowed to at least partially react and form a solid or semi-solid thin coating (skin) over the interior surfaces of the mold cavities. In general, the thickness of this coating is in the range of about 0.004 to about 0.500 inches, more preferably about 0.006 to about 0.040 inches or about 0.008 to about 0.030 inches or even more preferably about 0.012 to about 0.018 inches. Any excess reactive liquid mixture should be removed after this skin-coating of the interior mold cavity surfaces. For example, excess liquid may be poured out of the cavities. In an optional step, the skin-coated mold cavities are allowed to cool before the next reactive polyurethane composition is introduced into the molds. Alternatively, in an optional step, the skin-coated mold cavities are cured prior to adding the next reactive polyurethane composition.

[0081] Next, a liquid mixture of reactive thermoplastic polyurethane prepolymer and chain-extender (curing agent) used to form the inner cover layer ("the second polyurethane composition") is poured into the skin-coated lower and upper mold cavities. After this second polyurethane reactive mixture has resided in the lower mold cavity for a sufficient time period (typically about 40 to about 100 seconds), the intermediate golf ball (core structure and surrounding inner cover layer) is lowered at a controlled speed into the reactive mixture. Ball suction cups can hold the intermediate ball in place via reduced pressure or partial vacuum. After sufficient gelling of the reactive mixture (typically about 4 to about 12 seconds), the vacuum is removed and the intermediate ball is released into the mold cavity. Then, the upper mold cavity is mated with the lower mold cavity under sufficient pressure and heat. An exothermic reaction occurs when the thermoplastic polyurethane prepolymer and chain extender are
mixed and this continues until the cover material encapsulates and solidifies around the intermediate ball. Finally, the molded balls are cooled in the mold and removed when the molded cover is hard enough so that it can be handled without deforming.

[0082] In another embodiment, the liquid mixture of reactive polyurethane prepolymer and chain-extender (curing agent) used to form the outer cover layer ("the first polyurethane composition") may be thermally-sprayed into the lower and upper mold cavities to form a thin layer which subsequently is cured.

[0083] Also, any of the thermoplastic layers of the golf balls of this invention (for example, inner cover or outer cover layer) may be treated with polyisocyanates to further enhance cross-linking and improve durability of the cover layer. These polyisocyanates function as cross-linkers in the thermoplastic polyurethane cover. The chain length of the thermoplastic polyurethane is increased and thus the molecular weight of the polyurethane is increased when treated with the polyisocyanates.

[0084] In the present invention, at least one of the cover layers is thermoplastic. However, as discussed above, it is not necessary that both the aromatic and aliphatic polyurethane compositions used to form the cover layers be thermoplastic in nature. Thus, in the above example, where the polyurethane compositions are casted into cover layers, both the first and second polyurethane compositions may be thermoplastic. Alternatively, the first polyurethane composition may be thermoplastic and the second polyurethane composition may be thermoset. In a third embodiment, the first polyurethane composition may be thermoset and the second polyurethane composition may be thermoplastic.

[0085] In a further version, the thermoplastic polyurethane composition is first cast into a sheet or slab, and then the sheet/ slab is chopped-up into smaller pieces. These thermoplastic polyurethane pieces are injection-molded to produce semi-cured, semi-rigid half shells (cups). These hemispherical shells are then placed around the ball sub-assembly in a compression mold. Under sufficient heating and pressure, the half-shells fuse together to form an inner thermoplastic polyurethane cover layer that surrounds the sub-assembly. In yet another version, a cured thin film of thermoplastic polyurethane is first formed and then is stamped or vacuum-molded into the shape of half-shells, which ultimately is molded around the core or ball sub-assembly.

[0086] As discussed above, an intermediate layer, preferably formed from an ethylene acid copolymer ionomer composition, is positioned between the core or ball sub-assembly and inner cover. The intermediate layer comprising the ionomer composition may be formed using a conventional technique such as, for example, compression or injection-molding. For example, the ionomer composition may be injection-molded or placed in a compression mold to produce half-shells. These shells are placed around the core in a compression mold, and the shells fuse together to form an intermediate layer. Alternatively, the ionomer composition is injection-molded directly onto the core using retractable pin injection-molding.

[0087] After the golf balls have been removed from the mold, they may be subjected to finishing steps such as flash-trimming, surface-treatment, marking, coating, and the like using techniques known in the art. For example, in traditional white-colored golf balls, the white-pigmented cover may be surface-treated using a suitable method such as, for example, corona, plasma, or ultraviolet (UV) light-treatment. Then, indicia such as trademarks, symbols, logos, letters, and the like may be printed on the ball’s cover using pad-printing, ink-jet printing, dye-sublimation, or other suitable printing methods. Clear surface coatings (for example, primer and top-coats), which may contain a fluorescent whitening agent, are applied to the cover. The resulting golf ball has a glossy and durable surface finish.

[0088] In another finishing process, the golf balls are painted with one or more paint coatings. For example, white primer paint may be applied first to the surface of the ball and then a white top-coat of paint may be applied over the primer. Of course, the golf ball may be painted with other colors, for example, red, blue, orange, and yellow. As noted above, markings such as trademarks and logos may be applied to the painted cover of the golf ball. Finally, a clear surface coating may be applied to the cover to provide a shiny appearance and protect any logos and other markings printed on the ball.

Colored Golf Balls

[0089] As discussed above, in one version, the balls of this invention have a traditional white-colored cover. In another version, the cover has a non-traditional color such as, for example, red, blue, orange, or yellow. The cover also can be multi-colored. The colored pigments or dyes in the cover layer provide an opaque surface by absorbing the incident light at selective wavelengths. In general, the pigments only absorb certain light wavelengths of the visible spectrum (red, orange, yellow, green, and blue), and the wavelengths, which are not absorbed, are transmitted back to give the appearance of a specific color. Balls having unique aesthetics also may be made. For example, the outer cover layer may be optically translucent or transparent so that the underlying components of the ball can be seen.

[0090] More particularly, in one version, the outer cover layer is substantially transparent and the underlying intermediate cover layer is colored so that the color is visible to a person looking at the exterior of the ball as disclosed in Morgan et al., U.S. Pat. No. 7,722,483, the disclosure of which is hereby incorporated by reference. In another version, the underlying intermediate cover layer contains light-reflective fillers, optical brighteners, glitter specks, metalics, particularly metalized films and foils, and the like to provide special decorative effects. The outer cover layer also may contain such light-reflective and colored additives. When the outer cover layer is substantially transparent, the outer cover layer preferably contains ultraviolet (UV) light absorbers, light stabilizers, and the like. The UV light absorbers and stabilizers serve as filters to help prevent harmful UV light rays from penetrating through the cover layer, thereby helping to maintain good color-stability in the ball. The UV light absorbers, light stabilizers, and the like also may be added to the intermediate and inner cover layers in accordance with this invention.

[0091] Pearlescent pigments are particularly preferred, because these materials can provide a pearly luster effect. Pearlescent pigment is generally made up of multiple platelet-like semi-transparent particles. When light strikes the platelets, it is partially reflected and partially transmitted through them. For example, metal-effect pearlescent pigments such as aluminum, copper, copper-zinc (brass) alloys, and zinc particles may be used. Basic lead carbonate and bismuth oxychloride pigment particles also can be used.
Also, natural or synthetic mica platelets may be coated with iron oxide or titanium dioxide to form special effect pearlescent pigments. Organic pigments also can be crystallized to form pigment flakes, and pigments having a natural pearlescence such as pigment suspensions derived from fish scales may be used.

[0092] Metallics, particularly metalized films and foils, and glitter specks, which comprise very small plastic pieces painted in metallic, neon, and iridescent colors to reflect light also can be used as reflective fillers in accordance with this invention. Titanium dioxide pigment is preferably used as light-reflective filler, because of its light scattering properties including reflectivity and refraction. Other useful metal (or metal alloy) flakes, plates, powders, or particles may include bismuth boron, brass, bronze, cobalt, copper, nickel, chrome, iron, molybd enum, nickel powder, stainless steel, zirconium aluminum, tungsten metal, beryllium metal, zinc, or tin. Other metal oxides may include zinc oxide, iron oxide, aluminum oxide, magnesium oxide, zirconium oxide, and tungsten trioxide also may be suitable.

[0093] The intermediate cover layer may also contain various pigments, dyes, and fluorescent materials to provide special effects. Suitable pigments include, for example, nickel and chrome titanates, chrome yellow, cadmium types, carbon black, chrome oxide green types, phthalocyanine blue or green, perylene and quinacridone types, and other conventional pigments. Pigment extenders include, for example, barytes, heavy spar, microtalc, kaolin, micaeous iron oxide, magnesium oxide, quartz flour, powdered slate, and silicon carbide. Color flop pigments, as disclosed in Ohira et al, U.S. Pat. Nos. 7,018,307 and 6,558,277, which show a change in color as the viewing angle may be used in accordance with the present invention. Edge-effect pigments, which are attracted to the edges or sharper contours of the surfaces to which they are applied, also may be used. Likewise, if a fluorescent glow is desired, then fluorescent dye may be added to the composition. Suitable fluorescent dyes include, for example, dyes from the thiocyanate, xanthene, perylene, perylene imide, coumarin, thiindigo, napthalimide and methine dye classes. Representative yellow fluorescent Conventional non-fluorescent dyes also may be used including, but not limited to, azo, heterocyclic azo, anthraquinone, benzodihyranone, polycyclic aromatic carbonyl, indigo, polymethine, styryl, di- and tri-aryl carbonyl phthalocyanines, quinolones, sulfurs, nitro and nitroso, stilbene, and formazan dyes.

[0094] In another embodiment, the outer cover layer and intermediate cover layer are both substantially transparent; and the inner cover layer is opaque so that it can be seen through the outer and intermediate cover layers. The inner cover layer preferably contains the above-described light-reflective fillers, optical brighteners, glitter specks, metallics, pigments, dyes, and fluorescent materials. In yet another embodiment, version, each of the cover layers is substantially transparent, and the core may be seen through the layers. The core, which is visible through the cover layers, may contain the above-described light-reflective fillers, optical brighteners, glitter specks, metallics, pigments, dyes, and fluorescent materials. In addition, the core layers may contain ultraviolet (UV) light absorbers, light stabilizers, and the like as described above.

[0095] As discussed above, the lower and upper mold cavities are mated together to form the outer cover layer for the ball. The outer cover material encapsulates the inner ball. The mold cavities used to form the outer layer have interior dimple cavity details. The cover material conforms to the interior geometry of the mold cavities to form a dimple pattern on the surface of the ball. The mold cavities may have any suitable dimple arrangement such as, for example, icosahedral, octahedral, cube-octahedral, dipyramidal, and the like. In addition, the dimples may be circular, oval, triangular, square, pentagonal, hexagonal, heptagonal, octagonal, and the like. Possible cross-sectional shapes include, but are not limited to, circular arc, truncated cone, flattened teardrop, and profiles defined by a parabolic curve, ellipse, semi-spherical curve, saucer-shaped curve, sine or catenary curve, or conical curve. Other possible dimple designs include dimples within dimples, constant depth dimples, or multi-lobe dimples, as disclosed in U.S. Pat. No. 6,749,525. It also should be understood that more than one shape or type of dimple may be used on a single ball, if desired.

[0096] The use of various dimple patterns and profiles provides a relatively effective way to modify the aerodynamic characteristics of a golf ball. Suitable dimple patterns include, for example, icosahedron-based pattern, as described in U.S. Pat. No. 4,560,168; octahedral-based dimple patterns as described in U.S. Pat. No. 4,960,281; and tetrahedron-based patterns as described in co-assigned, copending, U.S. patent application Ser. No. 12/894,827, the disclosure of which is hereby incorporated by reference. Other tetrahedron-based dimple designs are shown in co-assigned, co-pending design applications D 29/362,123; D 29/362,124; D 29/362,125; and D 29/362,126, the disclosures of which are hereby incorporated by reference.

[0097] Dimple patterns that provide a high percentage of surface coverage are preferred, and are well known in the art. For example, U.S. Pat. Nos. 5,562,552, 5,575,477, 5,957,787, 5,249,804, and 4,925,193 disclose geometric patterns for positioning dimples on a golf ball. In one embodiment, the golf balls of the invention have a dimple coverage of the surface area of the cover of at least about 60 percent, preferably at least about 65 percent, and more preferably at least 70 percent or greater. Dimple patterns having even higher dimple coverage values may also be used with the present invention. Thus, the golf balls of the present invention may have dimple coverage of at least about 75 percent or greater, about 80 percent or greater, or even about 85 percent or greater.

[0098] The total number of dimples on the ball, or dimple count, may vary depending such factors as the sizes of the dimples and the pattern selected. In general, the total number of dimples on the ball preferably is between about 100 to about 1000 dimples, although one skilled in the art would recognize that differing dimple counts within this range can significantly alter the flight performance of the ball. In one embodiment, the dimple count is about 300-360 dimples. In one embodiment, the dimple count on the ball is about 360-400 dimples.

Thickness and Hardness of Golf Balls

[0099] The multi-layered cover of the golf balls of this invention provide the ball with a variety of advantageous mechanical and playing performance properties as discussed further below. In general, the hardness, diameter, and thickness of the different cover layers may vary depending upon the desired ball construction. Preferably, the inner cover layer hardness (material) is about 50 Shore D or greater, more preferably about 55 Shore D or greater, and most
preferably about 60 Shore D or greater. In one embodiment, the inner cover has a Shore D hardness of about 62 to about 90 Shore D. In another embodiment, the inner cover has a Shore D hardness of about 64 to about 76 Shore D, and in yet another version, the inner cover has a Shore D hardness of about 66 to about 72 Shore D. More particularly, in one example, the inner cover has a hardness of about 68 Shore D or greater. The relationship between the various cover layers is also important in the construction of the golf ball of this invention. Preferably, the inner cover layer hardness is greater than the intermediate cover layer hardness by at least 5 Shore D units, and the inner cover layer hardness preferably is greater than the outer cover layer hardness by at least 5 Shore D Units. In addition, the thickness of the inner cover layer is preferably about 0.015 inches to about 0.100 inches, more preferably about 0.020 inches to about 0.080 inches, and most preferably about 0.030 inches to about 0.050 inches. Typically, the thickness of the inner cover is about 0.035 or 0.040 or 0.045 inches.

As discussed above, the hardness of the intermediate cover layer is preferably less than the hardness of the inner cover layer. However, the hardness of the intermediate cover layer is preferably about equal to or greater than the hardness of the outer cover layer. More preferably, the difference between the intermediate cover layer hardness and outer cover layer hardness is no greater than 5 Shore D units. Particularly, the intermediate cover layer preferably has a material hardness of 70 Shore D or less, or 65 Shore D or less, or 60 Shore D or less, or 55 Shore D or less. Preferably, the intermediate cover has a Shore D hardness (material) in the range of about 25 Shore D to about 60 Shore D, more preferably about 30 to about 50 Shore D. In other embodiments, however, the intermediate cover has a hardness of greater than 70 Shore D, for example, 75 Shore D or greater. Also, the thickness of the intermediate cover layer is preferably about equal to or greater than the thickness of the outer cover layer. More particularly, the thickness of the inner cover layer is preferably about 0.005 inches to about 0.040 inches, more preferably about 0.010 inches to about 0.035 inches, and most preferably about 0.015 inches to 0.030 inches.

One key feature of the golf balls of this invention is their relatively thin outer cover layers. The outer cover preferably has a thickness within a range having a lower limit of 0.004 or 0.006 or 0.008 and an upper limit of 0.010 or 0.020 or 0.030 or 0.040 inches. Preferably, the thickness of the outer cover is about 0.016 inches or less, more preferably 0.008 inches or less. As discussed above, the hardness of the outer cover layer is preferably about equal to or less than the hardness of the intermediate cover layer. The outer cover preferably has a material hardness of 60 Shore D or less, or 55 Shore D or less, or 50 Shore D or less, or 50 Shore D or less, or 45 Shore D or less. Preferably, the outer cover has a Shore D hardness in the range of about 25 to about 50.

In general, the inner cover layer is relatively stiff having a relatively high flex modulus of 40,000 psi or greater, more preferably 50,000 psi or greater, most preferably 60,000 psi or greater; while the intermediate and outer cover layers are more flexible preferably having a relatively low flex modulus of less than 50,000 psi, more preferably less than 40,000 psi. The relatively high modulus materials preferably have a modulus within the range of 50,000 psi to 120,000 psi. The relatively low modulus materials preferably have a modulus within the range of 1,000 psi to 49,000 psi. As discussed above, the relationship between the three separate and distinct cover layers helps impart different properties to the golf ball. Preferably, the flex modulus of the inner cover layer is greater than the intermediate cover layer hardness by at least 5,000 psi; and the flex modulus of the inner cover layer is preferably greater than the flex modulus of the outer cover layer by at least 5,000 psi.

The United States Golf Association ("USGA") has set total weight limits for golf balls. Particularly, the USGA has established a maximum weight of 45.93 g (1.62 ounces) for golf balls. There is no lower weight limit. In addition, the USGA requires that golf balls used in competition have a diameter of at least 1.68 inches. There is no upper limit so many golf balls have an overall diameter falling within the range of about 1.68 to about 1.80 inches. The golf ball diameter is preferably about 1.68 to 1.74 inches, more preferably about 1.68 to 1.70 inches. In accordance with the present invention, the weight, diameter, and thickness of the core and cover layers may be adjusted, as needed, so the ball meets USGA specifications of a maximum weight of 1.62 ounces and a minimum diameter of at least 1.68 inches. Preferably, the overall diameter of the core and intermediate layers is about 90 percent to about 98 percent of the overall diameter of the finished ball. The outer cover layer made of the polyurethane composition of this invention is relatively thin and the diameter of the outer cover layer preferably is less than 2% of the overall diameter of the finished ball.

The combination of an inner cover layer comprising an ionomer composition; an intermediate cover layer comprising an aromatic polyurethane composition; and an outer cover layer comprising an aliphatic polyurethane composition provides the ball with optimum properties. The cover of this golf ball is essentially "split" into three separate and distinct layers, wherein each cover layer contributes to the overall good physical and playing properties of the ball. For example, the multi-layered cover has good durability and toughness. The different hardness and thickness levels of the cover layers provide the ball with high impact durability and cut-, shear- and tear-resistance levels. In addition, the multi-layered cover, in combination with the core layer, helps impart high resiliency to the golf balls. Preferably, the golf ball has a Coefficient of Restitution (COR) of at least 0.750 and more preferably at least 0.800 (as measured per the test methods below.) The core of the golf ball generally has a compression in the range of about 50 to about 130 and more preferably in the range of about 70 to about 110 (as measured per the test methods below.) These properties allow players to generate greater ball velocity off the tee and achieve greater distance with their drives. At the same time, the relatively thin outer cover layer means that a player will have a more comfortable and natural feeling when striking the ball with a club. The ball is more playable and its flight path can be controlled more easily. This control allows the player to make better approach shots near the green. Furthermore, the outer covers of this invention have good light stability. The outer covers have high ultraviolet light (UV)-resistance and are less likely to discolor upon exposure to sunlight. In summary, the golf balls of this invention have good light stability without sacrificing important mechanical properties such as durability and high cut/shear-resistance.
As discussed above, the method of this invention is particularly effective in providing golf balls having a very thin outer cover layer. Furthermore, the method of this invention provides thin outer covers with substantially uniform thickness. The resulting balls of this invention have good impact durability and cut/shear-resistance.

Referring to FIG. 1, a front view of a finished golf ball that can be made in accordance with this invention is generally indicated at (10). The dimples (12) may have various shapes and be arranged in various patterns to modify the aerodynamic properties of the ball as discussed in detail above.

In FIG. 2, a four-piece golf ball (14) with a multi-layered cover (16) comprising inner cover layer (16a), intermediate cover layer (16b), and outer cover layer (16c) is shown. The ball (14) further includes a solid, one-piece core (18). Turning to FIG. 3, the five-piece ball (20) includes a dual-core (22) comprising an inner core (center) (22a) and outer core layer (22b). The multi-layered cover (26) encapsulates the core structure (22) and includes inner (26a), intermediate (26b), and outer (26c) cover layers. Finally, in FIG. 4, a six-piece ball (30) containing a dual-core (32) comprising inner (32a) and outer core layers (32b) is shown. An intermediate cover layer (34) is disposed between the core structure (32) and multi-layered cover (36). The intermediate cover layer (34) also may be referred to as a casing layer. The intermediate cover layer (34) preferably has good water vapor barrier properties to prevent moisture from penetrating into the core material. The ball may include one or more intermediate layers (34) disposed between the core (32) and cover (36) structures. The multi-layered cover (36) includes inner (36a), intermediate (36b), and outer (36c) cover layers.

It should be understood that the golf balls shown in FIGS. 1-4 are for illustrative purposes only and not meant to be restrictive. Other golf ball constructions can be made in accordance with this invention.

For example, a golf ball construction having a single or multi-layered core and a multi-layered cover can be made, wherein the core includes the following layers: a) an outer cover layer comprising a first polyurethane composition containing aliphatic polyurethane; and b) an inner cover layer, underlying the outer cover layer, wherein the inner cover layer comprises a second polyurethane composition containing aromatic polyurethane. This outer/inner cover layer construction is discussed in further detail above.

In this embodiment, the cover of the golf ball is essentially "split" into two separate and distinct layers, an aromatic polyurethane inner cover (which will become the intermediate cover layer in the three-layered cover of the present invention) and an aliphatic polyurethane outer cover layer, wherein each cover layer contributes to provide the optimum combination of physical; playing; cosmetic; and color-stable properties. When the split polyurethane cover includes an inner cover layer made of an aromatic polyurethane composition and outer cover layer made of an aliphatic polyurethane composition, several benefits are realized. For example, the cover has the benefits of the lower cost and mechanical strength, impact durability, and other desirable physical properties of aromatic polyurethanes as well as the benefits of the light stability and shear-resistance of the aliphatic polyurethanes.

As discussed above, the ball may include a single-layered or dual-layered core. In another embodiment, a multi-layered core construction comprising an inner core, intermediate core, and outer core layer can be made. The above-described thermost rubber or thermoplastic compositions can be used to make the core layers. Also, as discussed above, an ionomer composition containing olefin (preferably, ethylene) acid copolymer having acid groups such that at least 30% of the acid groups are neutralized can be used to make a layer in the golf ball. This ethylene acid copolymer ionomer layer is optional and is preferably disposed between the core and multi-layered cover structures; this layer may be referred to as a casing, mantle, or intermediate layer.

More particularly, in one example, a golf ball having a single or multi-layered core and a split polyurethane cover (aliphatic and aromatic polyurethanes) is prepared. In this example, the inner cover layer comprising the aliphatic polyurethane is formed by casting an aliphatic thermoplastic polyurethane (TPU). The second cover layer comprising the aromatic polyurethane is formed by casting an aromatic thermoplastic polyurethane (TPU). Preferably, the cast aliphatic TPU is used to form the outer cover layer and the cast aromatic TPU is used to form the inner cover layer.

In a second example, a golf ball having a single or multi-layered core and a split polyurethane cover (aliphatic and aromatic polyurethanes), wherein the first cover layer comprising the aliphatic polyurethane is formed by casting an aliphatic TPU in a manner similar to the first example above. However, the second cover layer comprising the aromatic polyurethane is formed by casting an aromatic thermostet polyurethane as opposed to a TPU.

In a third example, a golf ball having a single or multi-layered core and a split polyurethane cover (aliphatic and aromatic polyurethanes), but the first cover layer comprising the aliphatic polyurethane is formed by casting an aliphatic thermostet polyurethane as opposed to a TPU. Meanwhile second cover layer comprising the aromatic polyurethane is formed by casting an aromatic thermoplastic polyurethane (TPU) as described above.

In a fourth example, a golf ball having a single or multi-layered core containing a thin moisture barrier layer as described in Hogge et al., U.S. Pat. Nos. 8,066,928, and 7,004,854; Jordan, U.S. Pat. Nos. 7,306,528 and 7,004,855; Cavallaro et al., U.S. Pat. No. 6,632,147; and Sullivan et al., U.S. Pat. No. 8,303,436, the disclosures of which are hereby incorporated by reference, can be made. These intermediate layers help prevent moisture from penetrating into the core structure. Suitable materials that can be selected from the group consisting of polybutadiene, natural rubber, butyl-based rubber, acrylics, trans-polyisoprene, neoprene, chlorinated polyethylene, and balata. Other suitable materials include for the barrier layer include, but are not limited to, synthetic or natural rubbers, such as polyolefins, styrene polymers, single-site catalyzed polymers, acrylics, etc. Polyolefins and copolymers or blends thereof include balata, polyethylene, chlorinated polyethylene, polypropylene, polybutylene, butyl-based rubbers, isoprene rubber, trans-polyisoprene, neoprene, ethylene-propylene rubber, ethylene-butylene rubber, and ethylene-propylene-(non-conjugated diene) terpolymers. Styrenic polymers include polystyrenes and copolymers thereof, such as styrene-butadiene copolymers, poly(styrene-co-maleic anhydride), acrylonitrile-butylene-styrene copolymers, styrene-olefin block copolymers (e.g. Kraton rubbers from Shell Chemical), and
poly(styrene sulfonate). Ethylene/methacrylic acid resins such as Nucrel™, available from DuPont, also can be used to form the layer.

[0116] The moisture barrier vapor layer helps prevent a substantial amount of liquid and/or vapor from passing through the interface between the moisture barrier layer and underlying core structure. By encapsulating the core in a moisture vapor barrier layer of this invention, the core is protected from liquid and/or vapor. This helps some properties of the golf balls (for example, high coefficient of restitution) from being detrimentally affected when the balls are stored in humid conditions. Preferably, the moisture barrier layer has a moisture vapor transmission rate that is lower than that of the cover. The ball in this example further includes a split polyurethane cover (aliphatic and aromatic polyurethanes) as described above. The first cover layer comprising the aliphatic polyurethane may be formed by casting an aliphatic thermoplastic polyurethane (TPU); and the second cover layer comprising the aromatic polyurethane may be formed by casting an aromatic thermoplastic polyurethane (TPU) as described in Example One above. Alternatively, only one of the cover layers may be formed by casting an TPU (aliphatic or aromatic); while the other cover layer may be formed by casting a thermoset polyurethane (aliphatic or aromatic).

[0117] Preferably, the moisture vapor barrier layer has a thickness of less than 0.010 inches. Particularly, the thickness of the layer is in the range of about 0.0001 to about 0.010 inches, more preferably in the range of about 0.0005 to about 0.005 inches, and most preferably in the range of about 0.001 to about 0.004 inches.

[0118] As described above, preferably at least one of the cover layers is formed by casting a thermoplastic polyurethane (aliphatic or aromatic); and in some examples, both cover layers may be formed by casting a thermoplastic polyurethane.

[0119] If a casting method is not used, the cover layer may be formed by other methods. For example, a thermal spraying method as described in U.S. patent application Ser. No. 14/819,511, filed on Aug. 6, 2015; or other suitable spraying method as described in Sullivan et al., U.S. Pat. No. 6,612,939; Tomita et al., U.S. Pat. No. 8,568,837; and Galbraith, U.S. Pat. No. 8,857,733, the disclosures of which are hereby incorporated by reference, can be used to apply the polyurethanes. In the thermal spraying method described in the ‘511 Application, the thermoplastic polyurethane cover layer can be formed by forming a heated mixture, wherein the polymeric particles are softened. The heated mixture is formed by directing a heated fluid (for example, air) so that the fluid surrounds and mixes with a stream of polymeric particles. The heated mixture is then applied to the ball sub-assembly to form a coated layer over the sub-assembly. In this method, the only the air or other surrounding fluid is exposed to the heat source. The polymeric particles do not directly come into contact with the heat source. This helps minimize or eliminate surface defects and other damage to the coated layer.

[0120] In addition, any of the cover or other layers of the golf balls of this invention can contain a silane material that will help bond the given layer to an adjacent layer. For example, as discussed above, an ethylene acid copolymer ionomer layer can be formed and is preferably disposed between the core and multi-layered cover structure (aliphatic polyurethane layer and aromatic polyurethane layer). This ionomer layer may be referred to as a casing, mantle, or intermediate layer.

[0121] The outer surface of the first layer (in this example, the ionomer layer) interacts directly with an inner surface of the second layer (in this example, the polyurethane layer) at an interface or boundary between the two layers. Strong interlayer adhesion is created when one of the two different layers comprises a silane-containing adhesion promoter in an amount of from about 0.1 wt. % to about 5 wt. % of the total layer composition. In one embodiment, a relatively small amount of silane-containing adhesion promoter is used and the concentration of silane-containing adhesion promoter is in the range of about 0.1 to about 2.5 wt. %.

[0122] In another embodiment, a relatively large amount of silane-containing adhesion promoter is used and the concentration of silane-containing adhesion promoter is in the range of about 2.5 to about 5.0 wt. %. Suitable silane-containing adhesion promoters include, for example, Silane-containing adhesion promoters may include, for example, organosilanes, organosiloxanes, and combinations thereof. Non-limiting examples of suitable silanes include silane esters; vinyl silanes; methacroyloxy silanes; epoxy silanes; sulfur silanes; amino silanes; ureido silanes; or a mixture thereof. Suitable silane-containing adhesion promoters are further described in U.S. patent application Ser. No. 14/943,314, the disclosure of which is hereby incorporated by reference. The silane-containing adhesion promoter is able to create strong bonding between the differing layers of the golf ball.
invention. Suitable plasticizers include, for example, phthalate plasticizers such as: dimethyl phthalate, diethyl phthalate, dimethoxy-ethyl phthalate, dibutyl phthalate, butyl cyclohexyl phthalate, butyl benzyl phthalate, dibutoxy ethyl phthalate, di-2-ethylbutyl phthalate, bis(diethylene glycol monooctyl ether) phthalate, di-n-hexyl phthalate, di-2-ethylhexyl phthalate, diisooctyl phthalate, di-2-ethylhexyl hexahydrophthalate. Other suitable plasticizers include aromatic and alkyl phosphate esters and aromatic and aliphatic esters of diacids, such as esters of alkanedioic acids and especially esters of dibenzoic acid. Adipate and sebacate plasticizers may also be used in accordance with the present invention. These plasticizers may be used alone or in combination as a mixture of plasticizers. In a particularly preferred embodiment, the plasticizer is selected from the group consisting of dipropylene glycol-dibenzoate, ethyl oleate and propylene carbonate. In general, the amount of plasticizer present in the polyurethane dispersion may be from about 1 to 30 parts per hundred, based on dry polyurethane weight, and preferably from about 5 to 25 parts per hundred.

[0125] Thermoplastic, thermoset, and castable polyurethanes are discussed in detail above. In general, thermoplastic polyurethanes do not contain any chemical cross-linking and have good elasticity and flexibility. The thermoplastic polyurethanes contain relatively soft (built from polyols and isocyanates) and hard segments (built from chain extenders and isocyanates). In general, thermoset polyurethanes contain chemical cross-linking and have less flexibility but greater strength, durability and chemical/heat-resistance than thermoplastic polyurethanes.

[0126] The amount and type of curing agent used helps determine whether a composition of the invention will be thermoplastic or thermoset, the method of molding the compositions of the invention onto the ball also will vary depending on the type of composition. Polyurethane prepolymers cured with a diol or secondary diamine at 1:0.8 to 1:1.2 stoichiometry in the absence of moisture are generally thermoplastic in nature, while castable thermosetting polyurethane compositions, on the other hand, are generally produced from a polyurethane prepolymer respectively cured with a primary diamine or polyfunctional glycol such as a triol or tetrol.

[0127] In general, castable polyurethanes refer to liquid polyurethanes that are dispensed into an open mold, which can be mated with another open mold containing liquid polyurethane, to form the end-product (for example, cover or intermediate layer.)

[0128] In one embodiment, a castable polyurethane prepolymer and curing agent can be mixed in a motorized mixer inside a mixing head by metering amounts of the curative and prepolymer through the feed lines. The preheated lower mold cavities can be filled with the reactive polyurethane and curing agent liquid mixture. Likewise, the preheated upper mold cavities can be filled with the reactive mixture. A liquid dispensing process as described in U.S. Pat. Nos. 7,655,171; 7,490,975; and 7,246,937, the disclosures of which are hereby incorporated by reference, can be used in accordance with the present invention. This process involves pumping the reactive polyurethane components into a mixer body and mixing them together with a dynamic mixer element. The components are heated to a temperature in the range of about 150°F. to about 350°F. as the components flow through a dispensing port, which dispenses the components into the lower and upper half-molds. The dispensing port moves into and out of the mold cavity by pneumatic pressure so the components are deposited uniformly into the half-molds.

[0129] Thus, as discussed above, multi-piece golf balls having, for example, three-piece, four-piece, five-piece, and six-piece constructions with multi-layered cover structures may be made in accordance with this invention. More particularly, some examples of suitable golf ball constructions include the following. In one version, a three-piece golf ball containing a single-layered core and dual-layered split aromatic and aliphatic polyurethane cover is made. In another version, a four-piece golf ball containing a dual-core and dual-layered split aromatic and aliphatic polyurethane cover is made. In yet another construction, a five-piece golf ball containing a dual-core; casing layer; and split aromatic and aliphatic polyurethane cover layer may be made. Finally, six-piece golf balls having a multi-layered core; casing layer, and split aromatic and aliphatic polyurethane also may be made. It should be understood that the golf ball constructions described above are only some examples and not meant to be limiting. Other golf ball constructions can be made in accordance with this invention.

Test Methods:

[0130] Hardness:

[0131] The surface hardness of a golf ball layer or other spherical surface is obtained from the average of a number of measurements taken from opposing hemispheres, taking care to avoid making measurements on the parting line of the core or on surface defects such as holes or protrusions. Hardness measurements are made pursuant to ASTM D-2240 “Indentation Hardness of Rubber and Plastic by Means of a Durometer.” Because of the curved surface of the golf ball layer, care must be taken to ensure that the golf ball or golf ball sub-assembly is centered under the durometer indenter before a surface hardness reading is obtained. A calibrated digital durometer, capable of reading to 0.1 hardness units, is used for all hardness measurements and is set to take hardness readings at 1 second after the maximum reading is obtained. The digital durometer must be attached to and its foot made parallel to the base of an automatic stand. The weight on the durometer and attack rate conforms to ASTM D-2240.

[0132] It should be understood there is a fundamental difference between “material hardness” and “hardness as measured directly on a golf ball.” For purposes of the present invention, material hardness is measured according to ASTM D-2240 and generally involves measuring the hardness of a flat “slab” or “button” formed of the material. Surface hardness, as measured directly on a golf ball (or other spherical surface), typically results in a different hardness value. The difference in “surface hardness” and “material hardness” values is due to several factors including, but not limited to, ball construction (that is, core type, number of cores and/or cover layers, and the like); ball (or sphere) diameter; and the material composition of adjacent layers. It also should be understood that the two measurement techniques are not linearly related and, therefore, one hardness value cannot easily be correlated to the other.

[0133] Coefficient of Restitution (COR):

[0134] The COR is determined according to a known procedure, wherein a golf ball or golf ball sub-assembly (for example, a golf ball core) is fired from an air cannon at two given velocities and a velocity of 125 ft/s is used for the calculations. Ballistic light screens are located between the air cannon and steel plate at a fixed distance to measure ball velocity. As the ball travels toward the steel plate, it activates
TABLE 2

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-methylene diphenyl diisocyanate (MDI) - Aromatic</td>
<td>23.58%</td>
</tr>
<tr>
<td>Polymeg™ 2000</td>
<td>63.78%</td>
</tr>
<tr>
<td>Curative Blend of 70.75% 1,4-butanediol and 29.25% Polyone Stantone HCC 33462 white pigment dispersion.</td>
<td>9.07%</td>
</tr>
<tr>
<td>Dibutyl tin dilaurate (T-12)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-methylene diphenyl diisocyanate (MDI) - Aromatic</td>
<td>22.72%</td>
</tr>
<tr>
<td>Polymeg™ 2000</td>
<td>61.45%</td>
</tr>
<tr>
<td>Curative Blend of 77.4% Ethacure 300™ (dimethylthiodiisocyanatide) and 22.6% Polyone Stantone HCC 33462 white pigment dispersion.</td>
<td>12.25%</td>
</tr>
<tr>
<td>Polyone Stantone HCC 33462 white pigment dispersion.</td>
<td></td>
</tr>
<tr>
<td>Dibutyl tin dilaurate (T-12)</td>
<td></td>
</tr>
</tbody>
</table>

In the above Examples, there is first a reaction between the diisocyanate and polyol compounds to produce a polyurethane prepolymer. As a result of the reaction, there are some unreacted NCO groups in the polyurethane prepolymer. In Sample A, there are about 11.5% unreacted NCO groups; in Sample B, there are about 9.5% unreacted NCO groups; and in Sample C, there are about 6.0% unreacted NCO groups. Then, there is a reaction between the prepolymer and curative blend (1,4-butanediol and PolyOne Stantone HCC 33462 white pigment dispersion—Samples A and B; and dimethylthiodiisocyanatide and PolyOne Stantone HCC 33462 white pigment dispersion—Sample C.) In Sample A, the mix ratio of prepolymer to curative blend is 5.9:1. (This is an equivalent ratio of isocyanate groups to alcohol groups of 0.981.) In Sample B, the mix ratio of prepolymer to curative blend is 7.19:1. (equivalent ratio of 0.981.) In Sample C, the mix ratio of prepolymer to curative blend is 5.32:1. (equivalent ratio of 1.05:1.) The polyurethane composition is dispensed into mold cavities having a temperature in the range of about 120°F to about 185°F.—Samples A and B; and in the range of about 140°F to about 170°F.—Sample C.

When numerical lower limits and numerical upper limits are set forth herein, it is contemplated that any combination of these values may be used. Other than in the example text or otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials and others in the specification may be read as if prefixed by the word “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.

All patents, publications, test procedures, and other references cited herein, including priority documents, are fully incorporated by reference to the extent such disclosure
is not inconsistent with this invention and for all jurisdictions in which such incorporation is permitted.

[0143] It is understood that the compositions and golf ball products described and illustrated herein represent only some embodiments of the invention. It is appreciated by those skilled in the art that various changes and additions can be made to compositions and products without departing from the spirit and scope of this invention. It is intended that all such embodiments be covered by the appended claims.

We claim:

1. A golf ball, comprising:
 a core having at least one layer, and
 a multi-layered cover having at least two layers, the multi-layered cover comprising:
 i) an outer cover layer comprising a first polyurethane composition, the composition comprising aliphatic polyurethane, and the aliphatic polyurethane being present in an amount of at least 60 weight percent; and
 iii) an inner cover layer disposed between the core and outer cover layer, the inner cover layer comprising a second polyurethane composition, the composition comprising aromatic polyurethane, and the aromatic polyurethane being present in an amount of at least 60 weight percent, at least one of the cover layers being formed by casting an aliphatic or aromatic thermoplastic polyurethane.

2. The golf ball of claim 1, wherein the core is single-layered, the core being formed from a thermoset rubber composition.

3. The golf ball of claim 1, wherein the core is dual-layered and at least one of the layers comprises a thermoset rubber composition.

4. The golf ball of claim 1, wherein the ball further comprises an intermediate layer disposed between the core and inner cover layer, the intermediate layer comprising an ionomer composition containing ethylene acid copolymer having acid groups such that at least 30% of the acid groups are neutralized, the ethylene acid copolymer being present in an amount of at least 60 weight percent.

5. The golf ball of claim 4, wherein 70% or greater of the acid groups of the ethylene acid copolymer are neutralized.

6. The golf ball of claim 5, wherein the ionomer composition further comprises a fatty acid or salt thereof.

7. The golf ball of claim 4, wherein the ethylene acid copolymer is selected from the group consisting of ethylene/ (meth)acrylic acid/n-butyl acrylate; ethylene/(meth)acrylic acid/ethyl acrylate; ethylene/(meth)acrylic acid/methyl acrylate; ethylene/(meth)acrylic acid/n-butyl acrylate; and ethylene/(meth)acrylic acid/isobutyl acrylate copolymers.

8. The golf ball of claim 1, wherein the outer cover layer further comprises a polymer selected from the group consisting of aromatic polyurethanes, aromatic polyureas, and aromatic isocyanurate hybrids and copolymers and blends thereof.

9. The golf ball of claim 1, wherein the inner cover layer further comprises a polymer selected from the group consisting of aliphatic polyurethanes, aliphatic polyureas, and aliphatic isocyanurate hybrids and copolymers and blends thereof.

10. The golf ball of claim 1, wherein the inner cover layer is formed by casting an aromatic thermoplastic polyurethane composition and the outer cover layer is formed by casting an aliphatic thermoplastic polyurethane composition.

11. The golf ball of claim 1, wherein the inner cover layer is formed by casting an aromatic thermoplastic polyurethane composition and the outer cover layer is formed by casting an aliphatic thermoplastic polyurethane composition.

12. The golf ball of claim 1, wherein the inner cover layer is formed by casting an aromatic thermoplastic polyurethane composition and the outer cover layer is formed by casting an aliphatic thermoset polyurethane composition.

13. The golf ball of claim 1, wherein at least one of the cover layers is formed by thermal spraying.

14. The golf ball of claim 1, wherein at least one of the polyurethane compositions further comprises a plasticizer.

15. The golf ball of claim 1, wherein the plasticizer is selected from dipropylene glycol dibenzoate, ethyl oleate and propylene carbonate.

16. The golf ball of claim 1, wherein the core is encapsulated by a moisture vapor barrier layer comprising a material selected from the group consisting of polybutadiene, natural rubber, butyl-based rubber, acrylics, trans-polyisoprene, neoprene, chlorinated polyethylene, butadiene/ethylene/methacrylic acid resins, and mixtures thereof.

17. The golf ball of claim 16, wherein the moisture vapor barrier layer has a thickness of less than 0.010 inches.

* * * * *