(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date
26 June 2014 (26.06.2014)
(51) International Patent Classification:
C07C 45/82 (2006.01) C07C 29/40 (2006.01)
C07C 45/62 (2006.01) C07C 45/51 (2006.01)
C07C 45/67 (2006.01) C07C 45/48 (2006.01)
C07C 45/74 (2006.01) C07C 43/313 (2006.01)
C07C 29/42 (2006.01) C07D 311/72 (2006.01)
C07C 29/77 (2006.01) C07D 319/06 (2006.01)
(21) International Application Number:
PCT/EP20 13/077184
(22) International Filing Date:
18 December 2013 (18.12.2013)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12197819.1 18 December 2012 (18.12.2012) EP
(71) Applicant: DSM IP ASSETS B.V. [NL/NL]; Het Oeverlo 1, NL-6411 TE Heerlen (NL).
(72) Inventors: BONRATH, Werner; DSM Nutritional Products Ltd, Patent Department, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
NETSCHER, Thomas; DSM Nutritional Products Ltd, Patent Department, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
MEDLOCK, Jonathan Alan; DSM Nutritional Products Ltd, Patent Department, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
STEMMLER, Rene Tobias; DSM Nutritional Products Ltd, Patent Department, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
VERZIJL, Gerardus Karel Maria; DSM Nutritional Products Ltd, Patent Department, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
VRIES, DE, Andreas Hendrikus Maria; DSM Nutritional Products Ltd, Patent Department, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
SORIANO, Domenico; DSM Nutritional Products Ltd, Patent Department, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
(74) Agent: DUX, Roland; DSM Nutritional Products, Wurmisweg 576, CH-4303 Kaiseraugst (CH).
Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: (6R,10R)-6,10,14-TRIMETYL-PENTADECAN-2-ONE PREPARED FROM 3,7-DIMETHYLOCTA-2-ENAL OR 3,7-DI-METHYLOCTA-2,6-DIENAL

(57) Abstract: The present invention relates to a process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one in a multistep synthesis from 3,7-dimethylot-2-enal or 3,7-dimethylcta-2,6-dienal. The process is very advantageous in that it forms the desired chiral product from a mixture of stereoisomers of the starting product in an efficient way.
The present invention relates to the field of \((6R,10R)-6,10,14\)-trimethylpentadecan-2-one and the reaction products thereof.

Background of the invention

\((6R,10R)-6,10,14\)-Trimethylpentadecan-2-one is an important intermediate, particularly for the synthesis of \((R,R)\)-isophytol \([= (3RS,7R,11R)-3,7,11,15\text{-tetramethylhexadec-1-en-3-ol}]\), \((R,R)\)-phytol and tocopherols.

Isophytol, phytol and tocopherols are chiral substances, the latter two of which occur in nature in the form of the "all-R" stereoisomer. Phytol contains 2 stereocentres and in addition a trisubstituted carbon-carbon double bond which gives rise to E/Z-stereoisomers, while isophytol and tocopherols have 3 stereocentres. Therefore, there are multiple isomers.

It has been shown that of the naturally occurring stereoisomers of tocopherols, \((2R,4'R,8'R)\)-tocopherols, particularly \((2R,4'R,8'R)\)-a-tocopherol, have the highest bioactivity (biopotency).

As natural sources of \((2R,4'R,8'R)\)-tocopherols and \((R,R)\)-phytol, however, are very limited, the market has a strong need for an effective synthesis of \((2R,4'R,8'R)\)-tocopherols and \((R,R)\)-isophytol and \((6R,10R)-6,10,14\text{-trimethylpentadecan-2-one}, the starting material of these products, which is useful for industrial scale application.

As, furthermore, higher bioactivity (biopotency) has been shown, for example by H. Weiser et al. in *J. Nutr.*, 1996, 126(10), 2539-49, to occur in general by tocopherols having the R-configuration at the chiral centre situated next to the ether oxygen atom in the ring of the molecule (i.e. 2R-configuration), as compared to the corresponding isomers having S-configuration, there is a strong need for an effective and industrial scale synthesis of \((2R,4'R,8'R)\)-tocopherols, particularly \((2R,4'R,8'R)\)-alpha-tocopherol.

Summary of the invention

Therefore, the problem to be solved by the present invention is to offer a process for the manufacturing \((6R,10R)-6,10,14\text{-trimethylpentadecan-2-one}.\)
Surprisingly, it has been found that the process according to claim 1 is able to solve this problem. It has been shown that it is possible to obtain one specific isomer of interest from a mixture of isomers of starting material, i.e. mixture of (E)-3,7-dimethyloct-2-enal and (Z)-3,7-dimethyloct-2-enal or a mixture of (E)-3,7-dimethylocta-2,6-dienal and (Z)-3,7-dimethylocta-2,6-dienal.

Preferred embodiments of the inventions allow making use of the non-desired isomers, by using a cis/trans-isomerization. The asymmetric hydrogenation, which is one of the key elements of this invention, can be improved in quality and speed by acetalization of the aldehydes or ketalization of the ketones to be asymmetrically hydrogenated as well as by the use of specific additives.

The process of the invention allows the production of the target molecules efficiently in a high quality from isomeric mixtures, allowing it to be used for industrial scale production. The process is very advantageous in that it forms the desired chiral product from a mixture of stereoisomers of the starting product in an efficient way.

Further aspects of the invention are subject of further independent claims. Particularly preferred embodiments are subject of dependent claims.

Detailed description of the invention

In a first aspect the present invention relates to a process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one in a multistep synthesis from 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal comprising the steps:

a) providing a mixture of (E)-3,7-dimethyloct-2-enal and (Z)-3,7-dimethyloct-2-enal or a mixture of (E)-3,7-dimethylocta-2,6-dienal and (Z)-3,7-dimethylocta-2,6-dienal;

b) separating one isomer of 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal from the mixture of step a);

c) asymmetric hydrogenation using molecular hydrogen in the presence of a chiral iridium complex and yielding (R)-3,7-dimethyloctanal;
d) chemically transforming (R)-3,7-dimethyloctanal to a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one;

e) separating one isomer of (R)-6,10,14-trimethylpentadec-5-en-2-one from the mixture obtained in step d);

f) asymmetric hydrogenation using molecular hydrogen in the presence of a chiral iridium complex and yielding (6R,10R)-6,10,14-trimethylpentadecan-2-one;

wherein the steps a)-f) are in the order a,b,c,d,e,f.

The term "independently from each other" in this document means, in the context of substituents, moieties, or groups, that identically designated substituents, moieties, or groups can occur simultaneously with a different meaning in the same molecule.

A "C_x-alkyl" group is an alkyl group comprising x to y carbon atoms, i.e., for example, a C₁-alkyl group is an alkyl group comprising 1 to 3 carbon atoms. The alkyl group can be linear or branched. For example -CH(CH₃)-CH₂-CH₃ is considered as a C₄-alkyl group.

A "C_xy-alkylene" group is an alkyene group comprising x to y carbon atoms, i.e., for example C₂-C₆ alkyene group is an alkyl group comprising 2 to 6 carbon atoms. The alkyene group can be linear or branched. For example the group -CH(CH₃)-CH₂- is considered as a C₃-alkylene group.

A "phenolic alcohol" means in this document an alcohol which has a hydroxy group which is bound directly to an aromatic group.

Substance names starting with "poly" such as polythiol as used in the present document refer to substances formally containing two or more of the corresponding functional groups per molecule.

The term "stereogenic centre" as used in this document is an atom, bearing groups such that interchanging of any two of the groups leads to a stereoisomer. Stereoisomers are isomeric molecules that have the same
molecular formula and sequence of bonded atoms (constitution), but that differ in the three-dimensional orientations of their atoms in space.

The configuration at a stereogenic centre is defined to be either R or S. The R/S-concept and rules for the determination of the absolute configuration in stereochemistry is known to the person skilled in the art.

In the present document a carbon-carbon double bond is defined as being "prochiral" if addition of molecular hydrogen to said carbon-carbon double bond leads to the formation of a stereogenic carbon centre.

Cis/trans isomers are configurational isomers having different orientation at the double bond. In this document the term "cis" is equivalently used for "Z" and vice versa as well as "trans" for "E" and vice versa. Therefore, for example the term "cis/trans isomerization catalyst" is equivalent to the term "E/Z isomerization catalyst".

A "cis/trans isomerization catalyst" is a catalyst which is able to isomerize a cis isomer (Z-isomer) to a cis/trans isomer mixture (E/Z isomer mixture) or to isomerize a trans isomer (E-isomer) to a cis/trans isomer (E/Z isomer mixture).

The terms "E/Z", "cis/trans" and "R/S" denote mixtures of E and Z, of cis and trans, and of R and S, respectively.

In case identical labels for symbols or groups are present in several formulae, in the present document, the definition of said group or symbol made in the context of one specific formula applies also to other formulae which comprises said same label.

In the present document any single dotted line represents the bond by which a substituent is bound to the rest of a molecule.

3,7-dimethyloct-2-enal is a known substance. 3,7-dimethyloct-2-enal is a mixture of (E)-3,7-dimethyloct-2-enal and (Z)-3,7-dimethyloct-2-enal.

3,7-dimethylocta-2,6-dienal is a known substance and commercially available and is a mixture of mixture of (E)-3,7-dimethylocta-2,6-dienal and (Z)-3,7-dimethylocta-2,6-dienal.
In a first step (step a) of the process a mixture of mixture of (E)-3,7-dimethyloct-2-enal and (Z)-3,7-dimethyloct-2-enal or a mixture of (E)-3,7-dimethylocta-2,6-dienal and (Z)-3,7-dimethylocta-2,6-dienal is provided.

Separation

Steps b) and e) relate to the separation of one of the isomers of 3,7-dimethyloct-2-enal and 3,7-dimethylocta-2,6-dienal from the mixture of step a) and to the separation of one of the isomers of (R)-6,10,14-trimethylpentadec-5-en-2-one from the mixture obtained in step d), respectively.

This separation of isomers in step b) and/or e) can be done in different ways. A first possibility is the separation by means of chromatography. A further and preferred way of separation is that the separation of isomers in step b) and/or e) is done by distillation. The separation is possible by the fact that the isomers have different boiling points. In order to minimize thermal degradation of the isomers it is advisable to distil under reduced pressure and by means of a distillation column.

As the isomers to be separated have different boiling points (see table 1) the isomers can be separated by distillation. Using specific distillation techniques and equipment it is possible to separate the isomer having the higher or the lower boiling point.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Boiling point</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)-3,7-dimethyloct-2-enal</td>
<td>112 °C at 5 mbar</td>
</tr>
<tr>
<td>(E)-6,10-dimethylundec-5-en-2-one</td>
<td>99 °C at 10 mbar</td>
</tr>
<tr>
<td>(Z)-6,10-dimethylundec-5-en-2-one</td>
<td>95 °C at 10 mbar</td>
</tr>
<tr>
<td>(R,E)-6,10,14-trimethylpentadec-5-en-2-one</td>
<td>122 °C at 2 mbar</td>
</tr>
<tr>
<td>(R,Z)-6,10,14-trimethylpentadec-5-en-2-one</td>
<td>119 °C at 2 mbar</td>
</tr>
</tbody>
</table>

Table 1. Boiling points of isomers.
Cis/trans isomerization

In a preferred embodiment the distillation is done in the presence of a cis/trans isomerization catalyst.

Cis/trans isomerization catalysts are catalysts which isomerize the carbon carbon double bonds. It has been found that for the purpose of this invention said cis/trans isomerization catalysing the cis/trans isomerization of the double bonds is particularly nitrogen monoxide (NO) or an organic sulphur compound, particularly a polythiol.

Particularly suitable as cis/trans isomerization catalysts are polythiols of formula (X) or aromatic polythiols

\[
\begin{array}{c}
\text{A} \quad \begin{array}{c}
\text{O}
\end{array} \quad \begin{array}{c}
\text{SH}
\end{array}
\end{array}
\]

wherein \(n_1 \) represents an integer from 1 to 4, particularly 2, and \(m_1 \) represents an integer from 2 to 8, particularly 3 or 4, preferably 4; and \(A \) represents an aliphatic \(m_1 \)-valent hydrocarbon group of the molecular weight of between 28 g/mol and 400 g/mol, particularly between 90 and 150 g/mol.

The polythiols pentaerythritol tetra(mercaptoacetate), trimethylolpropane tris(mercaptoacetate), glycol dimercaptoacetate, pentaerythritol tetra-(3-mercaptopropionate), trimethylolpropanetri-(3-mercaptopropionate) (= 2-ethyl-2-(((3-mercaptopropanoyl)oxy)methyl)propane-1,3-diy bis(3-mercaptopropanoate)) and glycol di-(3-mercaptopropionate) have been shown to be highly preferred polythiols of formula (X) and are the preferred polythiols of all the above mentioned polythiols.

Particularly preferred as aromatic polythiols are 4,4'-dimercaptobiphenyl or 4,4'-thiodibenzene-thiol.

The use of polythiols of formula (X) as cis/trans isomerization catalysts is very advantageous in that polythiols have generally very low vapor pressures (i.e. high boiling points) allowing them to be used at elevated temperatures, e.g. while
distilling the low boiling isomer. Furthermore, the polythiols bear a high density of thiol-functionalities per molecular weight, which is very advantageous, in that only little catalyst needs to be added.

The use of polythiol as cis/trans isomerization catalysts is very advantageous as they allow a very fast isomerization.

Nitrogen monoxide (NO) is a gas and can be introduced to the ketone or ketal to be isomerized as such or in the form of a gas mixture, particularly in combination with at least one inert gas, particularly with nitrogen. In the case a gas mixture is used the amount of nitrogen monoxide in the gas mixture is preferably in the range of 1 - 99 %, particularly of 5 -95 %, by weight of the gas mixture. Particularly, in view of corrosion and toxicity, the amount of nitrogen monoxide in the gas mixture is preferably in the range of 10 - 60 % by weight of the gas mixture.

The use of nitrogen monoxide as cis/trans isomerization catalysts is very advantageous in that the isomerization catalyst can be removed very easily from the ketone or ketal to be isomerized.

Nitrogen monoxide is preferably introduced to the ketone or ketal at atmospheric pressure or up to 1 MPa over-pressure. The over-pressure preferably amounts to 10 to 300 kPa.

Nitrogen monoxide (NO) or a mixture of nitrogen monoxide (NO) with other gases is preferably introduced in a continuous way by means of a tube and bubbled through the ketone or ketal to be isomerized.

The use of cis/trans isomerization allows the transformation of a pure cis or trans isomer or any mixtures of the isomers to yield a thermodynamically equilibrated mixture of the cis and trans isomer. Overall, this enables the separation of the desired isomer by distillation and transformation (isomerization) of the non-preferred isomer (residual isomer) into the desired isomer.

The distillation can be performed in the presence of the cis/trans isomerization catalyst (one-pot isomerization or in-situ isomerization), so that the desired isomer is re-formed continuously and can be separated by distillation.
Furthermore, the cis/trans isomerization can occur in a separate vessel in which the cis/trans isomerization catalyst is added to the remainder of the distillation. Hence, the residual isomer is isomerized by means of a cis/trans isomerization catalyst and subsequently added to the corresponding mixture of isomers provided in steps a) and d), respectively.

The use of the cis/trans isomerization in step b) and/or e) allows a high yield in the desired isomer. In preferred cases, it can be achieved that essentially all of the undesired isomer is overall isomerized to the desired isomer.

Preferably, particularly in the case where the isomerization catalyst is not nitrogen monoxide, more preferably in the case of polythiols as isomerization catalysts, the isomerization is undertaken at temperatures higher than 20° C, particularly at a temperature of between 20 °C and the boiling point of the desired isomer, particularly between 50 °C and the boiling point of the desired isomer. The isomerization can occur at ambient pressure or at reduced pressure. In case of the one-pot isomerization the isomerization is preferably undertaken under reduced pressure.

Particularly for the case of nitrogen monoxide being cis/trans isomerization catalyst the isomerization is undertaken at ambient or over-pressure.

It further has been observed that in the isomerization with polythiols addition of polar solvents such as amides, pyrrolidones, sulfones, sulfoxides, ionic liquids, particularly N,N-dimethylformide (DMF) or N-methyl-2-pyrrolidone (NMP), sulfolane, dimethylsulfoxide (DMSO) and 1-butyl-3-methylimidazolium bromide has an accelerating effect on the isomerization.

Therefore, it is preferred that the process of a cis/trans isomerization is undertaken in the presence of a polar solvent, particularly a polar solvent which is selected from the group consisting of ionic liquids, particularly 1-butyl-3-methylimidazolium bromide, N,N-dimethylformide (DMF), N-methyl-2-pyrrolidone (NMP), sulfolane and dimethylsulfoxide (DMSO).
More preferred it is that the process of a cis/trans isomerization is undertaken in the presence of a polar solvent, particularly a polar solvent which is selected from the group consisting of ionic liquids, particularly 1-butyl-3-methylimidazolium bromide, N,N-dimethylformide (DMF), N-methyl-2-pyrrolidone (NMP) and dimethylsulfoxide (DMSO).

The amount of cis/trans isomerization catalyst is preferably between 1 and 20 % by weight in relation to the amount of the isomers of 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal, respectively to (R)-6,10,14-trimethylpentadec-5-en-2-one.

Ketal acetal formation

In a further embodiment before the step c) a step \(c_0 \) takes place

\(c_0 \) forming an acetal of the isomer of 3,7-dimethyloct-2-enal or of the acetal of the isomer of 3,7-dimethylocta-2,6-dienal separated in step b)

Hence, in step c) the acetal of 3,7-dimethyloct-2-enal or the acetal of 3,7-dimethylocta-2,6-dienal is asymmetrically hydrogenated and after the asymmetric hydrogenation the hydrogenated acetal is hydrolysed to the ketone and yielding (R)-3,7-dimethyloctanal.

In a further embodiment before the step f) a step \(f_0 \) takes place

\(f_0 \) forming a ketal of the isomer of (R)-6,10,14-trimethylpentadec-5-en-2-one separated in step e)

Hence, in step f) the ketal of (R)-6,10,14-trimethylpentadec-5-en-2-one is asymmetrically hydrogenated and after the asymmetric hydrogenation the hydrogenated ketal is hydrolysed to the ketone and yielding (6R,10R)-6,10,14-trimethylpentadecan-2-one.

The formation of an acetal or ketal from an aldehyde or a ketone, per se, is known to the person skilled in the art.

The acetal of an unsaturated aldehyde can be preferably formed from the above mentioned unsaturated aldehyde and an alcohol.
The ketal of an unsaturated ketone can be preferably formed from the above mentioned unsaturated ketone and an alcohol. It is known to the person skilled in the art that there are alternative routes of synthesis for acetics or ketals. In principle, the acetal or ketal can also be formed by treating an aldehyde or a ketone with ortho-esters or by trans-ketalization or transacetalization such as disclosed for example in Perio et al., *Tetrahedron Letters* 1997, 38 (45), 7867-7870, or in Lorette and Howard, *J. Org. Chem.* 1960, 521-525, the entire content of both is hereby incorporated by reference.

Preferably the acetal or ketal is formed from the above mentioned unsaturated ketone or aldehyde and an alcohol. The alcohol can comprise one or more hydroxyl groups. The alcohol may be a phenolic alcohol or an aliphatic or cycloaliphatic alcohol. Preferably the alcohol has one or two hydroxyl groups.

In case the alcohol has one hydroxyl group, the alcohol is preferably an alcohol which has 1 to 12 carbon atoms. Particularly, the alcohol having one hydroxyl group is selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, pentane-1-ol, 3-methylbutane-1-ol, 2-methylbutane-1-ol, 2,2-dimethylpropan-1-ol, pentane-3-ol, pentane-2-ol, 3-methylbutane-2-ol, 2-methylbutan-2-ol, hexane-1-ol, hexane-2-ol, hexane-3-ol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2-methyl-3-pentanol, 2,2-dimethyl-1-butanol, 2,3-dimethyl-1-butanol, 3,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-ethyl-1-butanol, and all structural isomers of heptanol, octanol and halogenated C₇-C₉-alkyl alcohols, particularly 2,2,2-trifluoroethanol. Particularly suitable are primary or secondary alcohols. Preferably primary alcohols are used as alcohols with one hydroxyl group. Particularly methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol or 2,2,2-trifluoroethanol, preferably methanol, ethanol, 1-propanol, 1-butanol or 2,2,2-trifluoroethanol, are used as alcohols with one hydroxyl group.

In another embodiment the alcohol is a diol, hence has two hydroxyl groups. Preferably the diol is selected from the group consisting of ethane-1,2-
- 11 -

diol, propane-1,2-diol, propane-1,3-diol, butane-1,4-diol, butane-1,3-diol, butane-1,2-diol, butane-2,3-diol, 2-methyl propane-1,2-diol, 2,2-dimethyl propane-1,3-diol, 1,2-dimethyl propane-1,3-diol, benzene-1,2-diol and cyclohexane-1,2-diols. From two cyclohexane-1,2-diols the preferred stereoisomer is syn-cyclohexane-1,2-diol (=c/s-cyclohexane-1,2-diol).

The two hydroxyl group are in one embodiment bound to two adjacent carbon atoms, hence these diols are vicinal diols. Vicinal diols form a 5 membered ring in a ketal.

Particularly suitable are vicinal diols which are selected from the group consisting of ethane-1,2-diol, propane-1,2-diol, butane-1,2-diol, butane-2,3-diol, 2-methyl propane-1,2-diol, benzene-1,2-diol and syn-cyclohexane-1,2-diol, particularly ethane-1,2-diol.

Other particularly suitable are diols, in which the hydroxyl groups are separated by 3 carbon atoms, and, hence, form a very stable 6 membered ring in a ketal. Particularly suitable diols of this type are propane-1,3-diol, butane-1,3-diol, 2-methyl propane-1,3-diol, 2-methyl butane-1,3-diol, 2,2-dimethyl propane-1,3-diol, 1,2-dimethyl propane-1,3-diol, 3-methylpentane-2,4-diol and 2-(hydroxymethyl)-cyclohexanol.

Preferably primary alcohols are used as diols.

The reaction conditions and stoichiometry used for the acetal or ketal formation are known to the person skilled in the art.

The preferred acetals or ketals have the formula (XI) or (XII)

![Diagram](image-url)
wherein a wavy line represents a carbon-carbon bond which is linked to the adjacent carbon-carbon double bond so as to have said carbon-carbon double bond either in the Z or in the E-configuration;
and wherein the double bond having dotted lines (-----) in formula represent either a single carbon-carbon bond or a double carbon-carbon bond;
and wherein ◆ represents a stereogenic centre;
and wherein Q^1 and Q^2
stand either individually or both for a d -C_{10} alkyl group or a halogenated C_1-C_{10} alkyl group;
or form together a C_2-C_6 alkyene group or a $Ce-Ce$ cycloalkylene group.

Q^1 and Q^2 stand particularly for
either a linear C_1-C_{10} alkyl group or fluorinated linear C_1-C_{10} alkyl group,
preferably a linear C_1-C_4 alkyl group or a $-CH_2CF_3$ group
or a group of formula

\[
\begin{align*}
\text{or} & \quad Q^3 Q^4 Q^5 Q^6 \\
\text{or} & \quad Q^3 Q^4
\end{align*}
\]

in which Q^3, Q^4, Q^5 and Q^6 are independently from each other hydrogen atoms or methyl or ethyl groups.

Particularly Q^1 and Q^2 stand both for a fluorinated linear C_1-C_{10} alkyl group, preferably a linear C_1-C_4 alkyl group or a $-CH_2CF_3$ group or form together the alkyene group $CH_2-C(CH_3)2-CH_2$.

Hence the preferred acetals or ketals to be asymmetrically hydrogenated are selected from the group consisting of 1,1-dimethoxy-3,7-dimethyloct-2-ene, 1,1-diethoxy-3,7-dimethyloct-2-ene, 1,1-dipropoxy-3,7-dimethyloct-2-ene, 1,1-diisopropoxy-3,7-dimethyloct-2-ene, 1,1-di-sec-butoxy-3,7-dimethyloct-2-ene, 3,7-dimethyl-1,1-bis(pentan-2-yloxy)oct-2-ene, 1,1-bis(isopentyloxy)-3,7-dimethyloct-
2-ene, 1,1-bis(pentyloxy)-3,7-dimethyloct-2-ene, 1,1-bis(hexyloxy)-3,7-dimethyloct-2-ene, 2-(2,6-dimethylhept-1-en-1-yl)-1,3-dioxolane, 2-(2,6-dimethylhept-1-en-1-yl)-4-methyl-1,3-dioxolane, 2-(2,6-dimethylhept-1-en-1-yl)-4,5-dimethyl-1,3-dioxolane, (3aR,7aS)-2-(2,6-dimethylhept-1-en-1-yl)hexahydrobenzo[d][1,3]dioxole, 2-(2,6-dimethylhept-1-en-1-yl)-1,3-dioxane, 2-(2,6-dimethylhept-1-en-1-yl)-5-methyl-1,3-dioxane, 2-(2,6-dimethylhept-1-en-1-yl)-5,5-dimethyl-1,3-dioxane, 3,7-dimethyl-1,1-bis(2,2,2-trifluoroethoxy)octa-2,6-diene, 3,7-dimethyl-1,1-bis(2,2,2-trifluoroethoxy)oct-2-ene and all the E- and Z-isomers thereof;

or the group consisting of 1,1-dimethoxy-3,7-dimethylocta-2,6-diene, 2-(2,6-dimethylhepta-1,5-dien-1-yl)-1,3-dioxolane, 2-(2,6-dimethylhepta-1,5-dien-1-yl)-4-methyl-1,3-dioxolane, 2-(2,6-dimethylhepta-1,5-dien-1-yl)-5-methyl-1,3-dioxolane, 2-(2,6-dimethylhepta-1,5-dien-1-yl)-5,5-dimethyl-1,3-dioxolane, 2-(2,6-dimethylhepta-1,5-dien-1-yl)-5,5-dimethyl-1,3-dioxolane, 3,7-dimethyl-1,1-bis(2,2,2-trifluoroethoxy)octa-2,6-diene and all the E- and Z-isomers thereof;

or the group consisting of 2,5,5-trimethyl-2-(4,8,12-trimethyltridec-3-en-1-yl)-1,3-dioxane, 6,10,14-trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadec-5-ene, (R)-2,5,5-trimethyl-2-(4,8,12-trimethyltridec-3-en-1-yl)-1,3-dioxane, (R)-6,10,14-trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadec-5-ene and all the E- and Z-isomers thereof.

The hydrolysis of the hydrogenated ketal to the corresponding ketone is known to the person skilled in the art. Particularly suitable is the hydrolysis by means of an acid and isolation of the ketone formed, particularly by means of extraction.

Asymmetric hydrogenation

Steps c) and f) involve asymmetric hydrogenations by molecular hydrogen in the presence of a chiral iridium complex.

Chiral iridium complexes are compounds having organic ligands being coordinated to a central iridium atom. The chirality of chiral iridium complexes is
due to either the chirality of the ligands or the spacial arrangements of the ligands. This concept of chirality is well known from complex chemistry. Ligands can be monodentate or polydentate. Preferably, the ligands bound to the iridium central atom are chelating ligands. For the present invention, it has been shown that particularly chiral iridium complexes having an organic ligand bearing a stereogenic centre are very suitable.

It is preferred that the chiral iridium complex is bound to a chelating organic ligand having N and P as coordinating atoms and to either two olefins or to a diene having two carbon-carbon double bonds, and that, hence, the chiral iridium complex has preferably the following formula (III-O)

\[
\begin{align*}
&\text{Y}^\ominus \\
&\text{P-Q-N} \\
&\text{Y}^1, \text{Y}^2, \text{Y}^3, \text{Y}^4
\end{align*}
\]

wherein

P-Q-N stands for a chelating organic ligand comprising a stereogenic centre or has planar or axial chirality and has a nitrogen and phosphorous atom as binding site to the iridium centre of the complex;

Y\(^1\), Y\(^2\), Y\(^3\) and Y\(^4\) are independently from each other hydrogen atoms, C\(_{1-12}\)-alkyl, C\(_{5-10}\)-cycloalkyl, or aromatic group; or at least two of them form together at least a two-valent bridged group of at least 2 carbon atoms; with the proviso that Y\(^1\), Y\(^2\), Y\(^3\) and Y\(^4\) are not all hydrogen atoms; and

Y\(^\ominus\) is an anion, particularly selected from the group consisting of halide, PF\(_6\)\(^-\), SbF\(_6\)\(^-\), tetra(3,5-bis(trifluoromethyl)phenyl)borate (BAR\(_F\)\(^-\)), BF\(_4\)\(^-\), perfluorinated sulfonates, preferably F\(_3\)C-SO\(_3\)\(^-\) or F\(_9\)C\(_4\)-SO\(_3\)\(^-\); ClO\(_4\)\(^-\), Al(OC\(_6\)F\(_5\))\(_4\)\(^-\), Al(OC(CF\(_3\))\(_3\))\(_4\)\(^-\), N(SO\(_2\)CF\(_3\))\(_2\)\(^-\), N(SO\(_2\)C\(_4\)F\(_7\))\(_2\)\(^-\) and B(C\(_6\)F\(_5\))\(_4\)\(^-\).

The nitrogen and the phosphorous atom are preferably separated by 2 to 5, preferably 3, atoms in the chemical formula of the ligand P-Q-N.
The chelating organic ligand P-Q-N is preferably selected from the formulae (III-N1), (III-N2), (III-N3), (III-N4), (III-N5), (III-N6), (III-N7), (III-N8) and (III-N9)

wherein \(G^1 \) represents either a \(\text{C}_1-\text{C}_4 \)-alkyl, \(\text{C}_{5-7} \)-cycloalkyl, adamantyl, phenyl (optionally substituted with one to three \(\text{C}_{1-5} \)-alkyl, \(\text{C}_{1-4} \)-alkoxy, \(\text{C}_{1-4} \)-perfluoroalkyl groups and/or one to five halogen atoms), benzyl, 1-naphthyl, 2-naphthyl, 2-furyl group;

\(G^2, G^3 \) and \(G^4 \) represent independently from each other hydrogen atoms or a \(\text{C}_1-\text{C}_4 \)-alkyl, \(\text{C}_{5-7} \)-cycloalkyl, adamantyl, phenyl (optionally substituted with one
to three C_{1.5}, C_{1.4}-alkoxy, Ci-4-perfluoroalkyl groups and/or one to five halogen atoms), benzyl, 1-naphthyl, 2-naphthyl, 2-furyl group;

X^1 and X^2 are independently from each other hydrogen atoms, C_{1.4}-alkyl, C_{5.7}-cycloalkyl, adamantyl, phenyl (optionally substituted with one to three C_{1.5}-alkyl, C_{1.4}-alkoxy, C_{1.4}-perfluoroalkyl groups and/or one to five halogen atoms), benzyl, 1-naphthyl, 2-naphthyl, 2-furyl or ferrocenyli;

Ph stands for phenyl;

n is 1 or 2 or 3, preferred 1 or 2;

and R^1, Z^1 and Z^2 are as defined later for formula (III)

In case Y^1 and Y^2 and/or Y^3 and Y^4 form an olefin of the formula Y^1=-Y^2 and/or of the Formula Y^3=-Y^4, this olefin is or these olefins are preferably selected from the group consisting of ethene, prop-1-ene, 2-methylprop-1-ene, 2-methylbut-2-ene, 2,3-dimethylbut-2-ene, (Z)-cyclooctene, cyclohexene, cycloheptene, cyclopentene and norbornene.

In case Y^1, Y^2, Y^3 and Y^4 are forming a diene, it is either cyclic (double bond in a cycle) or acyclic (double bond not in a cycle).

The two carbon-carbon double bonds of the diene are preferably linked by two carbon bonds, i.e. the dienes preferably comprise the substructure C=C-C=C-C=C.

Examples of preferred acyclic dienes are hexa-1,5-diene, hepta-1,5-diene, octa-1,5-diene, octa-2,6-diene, 2,4-dialkyl-2,7-octadiene, 3,6-dialkylocta-2,6-diene, 1,2-divinylcyclohexane and 1,3-butadiene.

Examples for cyclic dienes are cycloocta-1,5-diene, cyclohexa-1,4-diene, cyclohexa-1,3-diene, 3,4,7,8-tetraalklycycloocta-1,5-diene, 3,4,7-trialklycycloocta-1,5-diene, 3,4-di alklycycloocta-1,5-diene, 3,7-di-alklycycloocta-1,5-diene; norbornadiene, 1-alkynorbornadiene, 2-alkynorbornadiene, 7-alkynorbornadiene, dicyclopentadiene, (1s,4s)-bicyclo[2.2.2]octa-2,5-diene.

Preferred diene is cycloocta-1,5-diene.
A highly preferred class of chiral iridium complexes are chiral iridium complexes of formula (III)

\[
\text{III}
\]

wherein

- \(n \) is 1 or 2 or 3, preferred 1 or 2;
- \(X^1 \) and \(X^2 \) are independently from each other hydrogen atoms, \(C_{1,4}\)-alkyl, \(C_{5,7}\)-cycloalkyl, adamantyl, phenyl (optionally substituted with one to three \(C_{1,5}\)-, \(C_{1,4}\)-alkoxy, \(C_{1,4}\)-perfluoroalkyl groups and/or one to five halogen atoms), benzyl, 1-naphthyl, 2-naphthyl, 2-furyl or ferrocenyl;
- \(Z^1 \) and \(Z^2 \) are independently from each other hydrogen atoms, \(C_{1,5}\)-alkyl or \(C_{1,5}\)-alkoxy groups;
- or \(Z^1 \) and \(Z^2 \) stand together for a bridging group forming a 5 to 6 membered ring;
- \(Y^0 \) is an anion, particularly selected from the group consisting of halide, \(PF_6^− \), \(SbF_6^− \), tetra(3,5-bis(trifluoromethyl)phenyl)borate \((\text{BARF}_5^−)\), \(BF_4^− \), perfluorinated sulfonates, preferably \(F_3C\text{-SO}_3^− \) or \(F_9\text{C}_4\text{-SO}_3^− \); \(\text{ClO}_4^− \);
- \(Al(O\text{C}_6\text{F}_5)_4^− \), \(Al(O\text{C}(\text{CF}_3)_2)_4^− \), \(N(SO_2\text{C}_4\text{F}_9)_2^− \) and \(B(\text{C}_6\text{F}_5)_4^− \);
- \(R^1 \) represents either phenyl or \(o\)-tolyl or \(m\)-tolyl or \(p\)-tolyl or a group of formula (IVa) or (IVb) or (IVc)

\[
\text{(IVa)}
\]

\[
\text{(IVb)}
\]

\[
\text{(IVc)}
\]

wherein \(R^2 \) and \(R^3 \) represent either both \(H \) or a \(C_{1,4}\)-alkyl group or a halogenated \(C_{1,4}\)-alkyl group or represent a divalent group forming together a 6-membered cycloaliphatic or an aromatic ring
which optionally is substituted by halogen atoms or by C₁-C₄-alkyl groups or by C₁-C₄-alkoxy groups

R⁴ and R⁵ represent either both H or a C₁-C₄-alkyl group or a halogenated C₁-C₄-alkyl group or a divalent group forming together a 6-membered cycloaliphatic or an aromatic ring which optionally is substituted by halogen atoms or by C₁-C₄-alkyl groups or by C₁-C₄-alkoxy groups;

R⁶ and R⁷ and R⁸ represent each a C₁-C₄-alkyl group or a halogenated C₁-C₄-alkyl group;

R⁹ and R¹⁰ represent either both H or a C₁-C₄-alkyl group or a halogenated C₁-C₄-alkyl group or a divalent group forming together a 6-membered cycloaliphatic or an aromatic ring which optionally is substituted by halogen atoms or by C₁-C₄-alkyl groups or by C₁-C₄-alkoxy groups;

and wherein * represents a stereogenic centre of the complex of formula (III).

The complex of formula (III) is neutral, i.e. the complex consists of a complex cation of formula (III) and anion Y as defined before.

\[
\begin{align*}
\text{The person skilled in the art knows that anions and cations may be dissociated.}
\end{align*}
\]

X¹ and/or X² represent preferably hydrogen atoms, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, iso-pentyl, neopentyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, phenyl, benzyl, o-tolyl, m-tolyl, p-tolyl, 4-methoxyphenyl, 4-trifluoromethylphenyl, 3,5-di-tert-butylphenyl, 3,5-dimethoxyphenyl, 1-naphthyl, naphthyl, 2-furyl, ferrocenyl or a phenyl group which is substituted with one to five halogen atoms.
In case of X^1 and/or X^2 representing phenyl groups which are substituted with one to five halogen atoms, the phenyl groups substituted by fluorine atoms are particularly useful, i.e. CeH_4F, $\text{C}_6\text{H}_3\text{F}_2$, $\text{C}_6\text{H}_2\text{F}_3$, CeHF_4 or CeF_6.

In case of X^1 and/or X^2 representing phenyl groups which are substituted with one to three C_1-C_4-alkyl, the phenyl groups substituted by methyl group(s) are particularly useful, particularly ortho-tolyl and para-tolyl.

Preferably both X^1 and X^2 represent the same substituent.

Most preferred both X^1 and X^2 are phenyl or ortho-tolyl groups.

It is preferred that the C_i-C_4-alkyl or alkoxy groups used in the definition of R^2, R^3, R^4, R^5, R^6, R^7, R^8, R^9 and R^{10} above are primary or secondary, preferably primary, alkyl or alkoxy groups.

A particularly suited substituent R^1 of formula (IVa) is the 9-anthryl or 1-naphthyl group.

A further particularly suited substituent R^1 of formula (IVb) is the mesityl group.

A further particularly suited substituent R^1 of formula (IVc) is the 2-naphthyl group.

Preferably R^1 is represented by phenyl (abbreviated as "Ph") or formula (IV-1) or (IV-2) or (IV-3), particularly (IV-1) or (IV-3).

(IV-1) abbreviated as "Anth" (IV-2) abbreviated as "1-Naphth" (IV-3) abbreviated as "Mes"
It has been found that the most preferred substituent R is either 9-anthryl or phenyl.

The preferred chiral iridium complexes of formula (III) are the complexes of formulae (III-A), (III-B), (III-C), (III-D), (III-E) and (III-F).

Most preferred as chiral iridium complexes of formula (III) are the complexes of formulae (III-C) and (III-D) and (III-F), particularly the one of formula (III-C) or (III-F).

The chiral iridium complexes of formula (III) can be synthesized accordingly as described in detail in Chem. Sci., 2010, 1, 72 - 78 whose entire content is hereby incorporated by reference.
The iridium complex of formula (III) is chiral. The chirality at said chiral centre marked by the asterisk is either S or R, i.e. there exist two enantiomers (IIia) and (IIib) of the chiral complex of formula (III):

The individual enantiomers of the complex of formula (III) could be principally separated after the complexation step from a racemic mixture. However, as Chem. Sci., 2010, 1, 72 - 78 discloses, the synthesis of the complex of formula (III) comprises a reaction involving a non-racemic chiral alcohol. As it is known that the further reaction steps do not modify the chirality of the complex its isomeric purity (S:R-ratio) is governed therefore by the enantiomeric purity of said alcohol. As said corresponding alcohol can be obtained in a R/S ratio of more than 99 % resp. lower than 1 %, the complex of formula (III) can be obtained in extremely high enantiomeric purities, particularly in a R/S ratio of more than 99 % resp. lower than 1 %.

The chiral iridium complex is preferably used in an excess of one enantiomer.

Particularly, it is preferred that the ratio of the molar amounts of the individual enantiomers R:S of the chiral iridium complex of formula (III) is more than 90:10 or less than 10:90, preferably in the range of 100:0 to 98:2 or 0:100 to 2:98. Most preferred is that this ratio is about 100:0 resp. about 0:100. The ultimately preferred ratio is 100:0 resp. 0:100.

In one embodiment the stereogenic centre indicated by * has the R-configuration.

In another embodiment the stereogenic centre indicated by * has the S-configuration.
The hydrogenating agent is molecular hydrogen (H₂).

The amount of chiral iridium complex is preferably from about 0.0001 to about 5 mol %, preferably from about 0.001 to about 2 mol %, more preferably from about 0.01 to about 1 mol %, based on the amount of the ketone resp. ketal.

The hydrogenation can be carried out in substance or in an inert carrier, particularly in an inert solvent, or a mixture of inert solvents. The hydrogenation is preferably carried out in substance (neat).

Preferred suitable solvents are halogenated hydrocarbons, hydrocarbons, carbonates, ethers and halogenated alcohols.

Particularly preferred solvents are hydrocarbons, fluorinated alcohols and halogenated hydrocarbons, particularly halogenated aliphatic hydrocarbons.

Preferred examples of hydrocarbons are hexane, heptane, toluene, xylene and benzene, particularly toluene and heptane.

Preferred ethers are dialkylethers. Particularly useful ethers are dialkylethers with less than 8 carbon atoms. Most preferred ether is methyl tert.-butyl ether (CH₃-O-C(CH₃)₃).

Preferred halogenated alcohols are fluorinated alcohols. A particularly preferred fluorinated alcohol is 2,2,2-trifluoroethanol.

One preferred group of halogenated hydrocarbon are halogenated aromatic compounds, particularly chlorobenzene.

Preferred examples of halogenated aliphatic hydrocarbons are mono- or polyhalogenated linear or branched or cyclic C₁ to C₁₅-alkanes. Especially preferred examples are mono- or polychlorinated or -brominated linear or branched or cyclic C₁ to C₁₅-alkanes. More preferably are mono- or polychlorinated linear or branched or cyclic C₁ to C₁₅-alkanes. Most preferred are dichloro methane, 1,2-dichloroethane, 1,1,1-trichloroethane, chloroform, and methylene bromide.

The most preferred solvent for the hydrogenation is dichloromethane.

The amount of solvent used is not very critical. However, it has been shown that the concentration of the ketone or ketal or aldehyde or acetal to be hydrogenated is preferably between 0.05 and 1 M, particularly between 0.2 and 0.7 M.

The hydrogenation reaction is conveniently carried out at an absolute pressure of molecular hydrogen from about 1 to about 100 bar, preferably at an
absolute pressure of molecular hydrogen from about 20 to about 75 bar. The reaction temperature is conveniently between about 0 to about 100°C, preferably between about 10 to about 60°C.

The sequence of addition of the reactants and solvent is not critical.

The technique and apparatus suitable for the hydrogenation is principally known to the person skilled in the art.

By the asymmetric hydrogenation a prochiral carbon-carbon double bond is hydrogenated to form a chiral stereogenic centre at one or both of the carbon atoms.

In step c) either 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal or an acetal of 3,7-dimethyloct-2-enal or an acetal of 3,7-dimethylocta-2,6-dienal is asymmetrically hydrogenated.

In step f) either 6,10,14-trimethylpentadec-5-en-2-one or a ketal of 6,10,14-trimethylpentadec-5-en-2-one is hydrogenated.

In case an acetal or ketal is asymmetrically hydrogenated, after the asymmetric hydrogenation the asymmetrically hydrogenated ketal has preferably the formula (XV) or (XVI).

wherein \(\hat{\diamond} \) represents a stereogenic centre;

and wherein \(Q^1 \) and \(Q^2 \) are as defined for formula (XI) and (XII).
Hence the preferred acetals or ketals which have been asymmetrically hydrogenated are preferably selected from the group consisting of

- 2-(2,6-dimethylheptyl)-5,5-dimethyl-1,3-dioxane,
- 3,7-dimethyl-1,1-bis(2,2,2-trifluoroethoxy)octane,
- 2,5,5-trimethyl-2-(4,8,12-trimethyltridecyl)-1,3-dioxane,
- 6,10,14-trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadecane;
- (R)-2-(2,6-dimethylheptyl)-5,5-dimethyl-1,3-dioxane,
- (R)-3,7-dimethyl-1,1-bis(2,2,2-trifluoroethoxy)octane,
- 2,5,5-trimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-1,3-dioxane and
- (6R,10R)-6,10,14-trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadecane.

When these ketals or acetals are hydrolysed into the corresponding ketone, they yield 3,7-dimethyloctanal or 6,10,14-trimethylpentadecan-2-one, or (R)-3,7-dimethyloctanal or (6R,10R)-6,10,14-trimethylpentadecan-2-one, respectively.

Despite the fact that the asymmetric hydrogenation of 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal and (R)-6,10,14-trimethylpentadec-5-en-2-one by means of molecular hydrogen in the presence of a chiral iridium complex, particularly those of formula (III), is already rather fast and efficient and shows high conversion rates as well as excellent selectivities, it has been observed that the asymmetric hydrogenation can even be improved when ketals of the corresponding ketones are asymmetrically hydrogenated.

It has been observed that the chiral iridium complex of a specific chirality (R or S) converts the starting material into a product bearing a specific stereogenic centre, which is formed as a result of the asymmetric hydrogenation.

As is in the present invention it is desired to produce products bearing a stereocentre with R-configuration by asymmetric hydrogenation i.e. (R)-3,7-dimethyloctanal in step c), and (6R,10R)-6,10,14-trimethylpentadecan-2-one in step f), respectively, the chirality of the chiral iridium complex needs to be selected depending on whether the olefin isomers being separated in step b) and step e), respectively, have the Z- or E-configuration.
It has been shown that when chiral iridium complexes of formula \(\text{(III)} \) having the S-configuration at the stereogenic centre indicated by * are used for the hydrogenation of E-isomers, i.e. \((E)-3,7\text{-dimethyloct-2-enal} \) or \((E)-3,7\text{-dimethylocta-2,6-dienal} \) and \((R,E)-6,10,14\text{-trimethylpentadec-5-en-2-one} \), respectively, the corresponding products, i.e. \((R)-3,7\text{-dimethyloctanal} \) in step c), and \((6R,10R)-6,10,14\text{-trimethylpentadecan-2-one} \) in step f), are obtained bearing the R-configuration at the newly formed stereogenic centre. Correspondingly, the hydrogenation of Z-isomers, i.e.

\((Z)-3,7\text{-dimethyloct-2-enal} \) or \((Z)-3,7\text{-dimethylocta-2,6-dienal} \) and \((R,Z)-6,10,14\text{-trimethylpentadec-5-en-2-one} \), respectively, in the presence of the chiral iridium complex of formula \(\text{(III)} \) having the R-configuration at the stereogenic centre indicated by * furnishes the same products, i.e. \((R)-3,7\text{-dimethyloctanal} \) in step c), and \((6R,10R)-6,10,14\text{-trimethylpentadecan-2-one} \) in step f), are obtained bearing the R-configuration at the newly formed stereogenic centre.

Surprisingly, it has been found that this finding is independent from whether an aldehyde or ketone or an acetal or a ketal is used in step c) or f).

Therefore, the chiral iridium complex of formula \(\text{(III)} \) used in step c) and/or f) for the asymmetric hydrogenation preferably has the S-configuration at the stereogenic centre indicated by * in case \((E)-3,7\text{-dimethyloct-2-enal} \) or \((E)-3,7\text{-dimethylocta-2,6-dienal} \), or acetals thereof, or \((R,E)-6,10,14\text{-trimethylpentadec-5-en-2-one} \), or ketals thereof, is to be hydrogenated;

or has the R-configuration at the stereogenic centre indicated by * in case \((Z)-3,7\text{-dimethyloct-2-enal} \) or \((Z)-3,7\text{-dimethylocta-2,6-dienal} \), or acetals thereof, or \((R,Z)-6,10,14\text{-trimethylpentadec-5-en-2-one} \), or ketals thereof, is to be hydrogenated.

In a preferred embodiment of the invention the asymmetric hydrogenation in step c) and/or step f) takes place in the presence of an additive which is selected from the group consisting of organic sulfonic acids, transition metal salts of organic sulfonic acids, metal alkoxides, aluminoxanes, alkyl aluminoxanes and \(B(R)_{(3-v)}(OZ)_v \); wherein \(v \) stands for 0, 1, 2 or 3 and \(R \) stands for F, a \(C_1-c\text{-alkyl} \), a
halogenated d-6-alkyl, an aryl or halogenated aryl group; and Z stands a C\textsubscript{1-6}-alkyl, a halogenated C\textsubscript{1-3}-alkyl, an aryl or halogenated aryl group.

Particularly suitable additives are selected from the group consisting of triflic acid, alkyl aluminoxanes, particularly methyl aluminoxane, ethyl aluminoxane, tetra alkoxy titanates, B\textsubscript{(R)}\textsubscript{3} \textsubscript{V}(OZ)\textsubscript{V}; particularly tri-/sopropyl borate and triethylborane and BF\textsubscript{3}, preferably in the form of a BF\textsubscript{3} etherate.

Particularly useful as the transition metal salts of organic sulfonic acids are scandium, indium, yttrium and zirconium salts of organic sulfonic acids.

Metal alkoxides are known to the person skilled in the art. This term particularly relates to the alkoxides of the elements of the group 4 and 13 of the periodic system. It is also known to the person skilled in the art that the metal alkoxides often do not form well-defined structures. Characteristically, metal alkoxides have hydrocarbyl group bound by an oxygen atom to a metal centre. A metal alkoxide may also have different metal centres which are bridged by oxygen or oxygen containing groups, such as for example (polynuclear) aluminium oxoalkoxides.

Particularly useful as metal alkoxides are titanium alkoxides (also being called alkoxy titanates) zirconium alkoxides (also being called alkoxy zirconates) or aluminium alkoxides.

A particularly preferred class of metal alkoxide is of the type of polynuclear aluminium oxoalkoxides such as disclosed in \textit{J. Chem. Soc, Dalton Trans.}, 2002, 259-266 or in \textit{Organometallics} 1993, 12, 2429-2431.

Alkyl aluminoxanes, are known products which are particularly useful as co-catalysts for olefin polymerizations of the Ziegler-Natta type. They are prepared by controlled hydrolysis of trialkylaluminium compound, particularly trimethylaluminium or triethylaluminium. The hydrolysis can be achieved for example by hydrated metal salts (metal salts containing crystal water).

Preferably the additive is selected from the group consisting of triflic acid, alkyl aluminoxanes, particularly methyl aluminoxane, ethyl aluminoxane, tetra
alkoxy titanates, $B(R)(\delta - V)(OZ)_{\nu}$, particularly tri-/sopropyl borate and triethylborane and BF3, preferably in the form of a BF3 etherate.

More preferred are triflic acid, alkyl aluminoxanes, particularly methyl aluminoxane, ethyl aluminoxane, tetra alkoxy titanates, $B(R)(\delta - V)(OZ)_{\nu}$, particularly tri-/sopropyl borate and triethylborane.

Especially good results have been obtained by an additive with has been obtained from trimethylaluminoxane and 2,2,2-trifluoroethanol or from trialkylaluminium and 2,2,2-trifluoroethanol.

It has been found that the quality and speed of the asymmetric hydrogenation using molecular hydrogen in the presence of a chiral iridium complex is enhanced significantly when the above mentioned additives are used.

It has been further observed that, most significantly, the efficiency of the asymmetric hydrogenation is maximized when the above mentioned additives are used with the corresponding acetics or ketals of the aldehydes or ketones to be asymmetrically hydrogenated, i.e. ketals of 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal or (R)-6,10,14-trimethylpentadec-5-en-2-one.

The increased efficiency has the effect that the amount of chiral iridium complex can be remarkably lowered by using an acetal or ketal of 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal or (R)-6,10,14-trimethylpentadec-5-en-2-one and/or addition of the mentioned additive(s), particularly in the combination with fluorinated alcohols, particularly 2,2,2-trifluoroethanol, to achieve a given yield and stereospecific hydrogenation in the asymmetric hydrogenation as compared to the corresponding asymmetric hydrogenation of 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal or (R)-6,10,14-trimethylpentadec-5-en-2-one as such.

When the process comprises steps of cis/trans isomerization, as discussed above in detail, the process of invention is extremely interesting because for an optimal use of all starting material, it is not necessary to set up two parallel product lines for the separate asymmetric hydrogenation of each isomer using hydrogenation complexes of opposite chirality. Therefore, the in-situ isomerization, as discussed above, is much preferred.
Chemical transformation

In step d) (R)-3,7-dimethyloctanal is chemically transformed to a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one;

In a preferred method the chemical transformation of (R)-3,7-dimethyloctanal to a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one is done by the steps

d1) reacting with acetone to yield (R)-6,10-dimethylundec-3-en-2-one, i.e. mixture of (R,E)-6,10-dimethylundec-3-en-2-one and (R,Z)-6,10-dimethylundec-3-en-2-one;

d2) hydrogenation of (R)-6,10-dimethylundec-3-en-2-one with molecular hydrogen in the presence of a hydrogenation catalyst to yield (R)-6,10-dimethylundecan-2-one;

followed by

either

d3) ethynylation of (R)-6,10-dimethylundecan-2-one using ethyne in the presence of a basic substance to yield (7R)-3,7,11-trimethyldodec-1-yn-3-ol;

d4) hydrogenation of (7R)-3,7,11-trimethyldodec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (7R)-3,7,11-trimethyldodec-1-en-3-ol;

or

d3') vinylolation of (R)-6,10-dimethylundecan-2-one by addition of a vinyl Grignard reagent to yield (7R)-3,7,11-trimethyldodec-1-en-3-ol;

followed by

either

d5) reacting (7R)-3,7,11-trimethyldodec-1-en-3-ol with 2-methoxyprop-1-ene to yield a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one;

or
d5') reacting (7R)-3,7,11-trimethylododec-1-en-3-ol with an alkyl acetoacetate or diketene in the presence of a base and/or an acid yield a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one.

Details for the reaction type and conditions of the variant using steps d3) is disclosed in EP 1 532 092 B1, particularly in example 2, or WO 2003/029175 A1 (using a basic anion exchange resin), the entire content of which is hereby incorporated by reference. The hydrogenation with molecular hydrogen in the presence of a Lindlar catalyst in step d4) is known to the person skilled in the art. For example A. Ofner et al., Helv. Chim. Acta, 42., 1959, 2577-2584 disclose the combination of steps d3) and d4) the entire content of which is hereby incorporated by reference.

US 4,028,385 for example discloses details for the reaction type and conditions of the variant using step d3') as well as also for steps d3) and d4), the entire content of which is hereby incorporated by reference.

Details for the reaction type and conditions of the variant using step d5), which is a Saucy-Marbet reaction, are disclosed for example in DE 1193490 and DE 196 49 564 A1, the entire content of both documents is hereby incorporated by reference.

Details for the reaction type and conditions of the first variant in step d5'), which is a Carroll rearrangement, are disclosed for example in chapter 8 "The Carroll Rearrangement" in Hatcher et al., The Claisen Rearrangement; Hiersemann, M.; Nubbemeyer, U., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA, 2007; 397-430, the entire content of both documents is hereby incorporated by reference. In the Carroll rearrangement the reaction occurs with an alkyl acetoacetate, preferably methyl acetoacetate or ethyl acetoacetate, in the presence of a base, preferably an alkali acetate such as sodium acetate.

The reaction type and conditions of the second variant in step d5') are disclosed for example in US 2,795,617 or in W. Kimel et al., J. Org. Chem. 1957,
As mentioned earlier, (6R,10R)-6,10,14-trimethylpentadecan-2-one is an important intermediate and is particularly useful for the synthesis of (R,R)-isophytol, (2-ambo)-a-tocopherol or of (2R,4'R,8'R)-a-tocopherol.

Therefore, in a further aspect the invention relates to a process of manufacturing (R,R)-isophytol ((3RS,7R,11R)-3,7,11,15-tetramethylhexadec-1-en-3-ol) which comprises the process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one as described above in detail; followed by the steps either
g) ethynylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one using ethyne in the presence of a base to yield (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol;
h) hydrogenation of (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (R,R)-isophytol; or
h') vinylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one by addition of a vinyl Grignard reagent to yield (R,R)-isophytol.

The conditions for steps g) and h) and h') correspond to the ones described for the analogous steps d3) and d4) and d3') in step d).

In a further aspect the invention relates to a process of manufacturing compound of formula (V) comprising the process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one as described above in detail;
followed by the steps either

5
g) ethynylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one using ethyne in the presence of a basic substance to yield (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol;

h) hydrogenation of (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (R,R)-isophytol;

or

10
h') vinylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one by addition of a vinyl Grignard reagent to yield (R,R)-isophytol;

followed by the steps

15
m) condensing (R,R)-isophytol with compound of formula (VI) to yield compound of formula (V) being an isomeric mixture in view of the chirality at the centre indicated by #;

wherein # represents a stereogenic centre.

The conditions for steps g) and h) and h') correspond to the ones described for the analogous steps d1) and d2) and d1') in step d).

The condensation reaction of (R,R)-isophytol and compound of formula (VI), described as step m), is known by the person skilled in the art. For this condensation a series of catalysts may be used such as ZnC^/mineral acid, BF_3/AICI3, Fe/HCl, trifluoroacetic acid or boric acid/carboxylic acid as well as
indium(III) or scandium(III) salts as disclosed in WO 2005/121 115 A1. Furthermore, suitable catalysts are heteropoly acids, particularly 12-tungstophosphoric acid or 12-tungstosilicic acid such as disclosed in EP 0 970 953 A1.

The compounds of formula (V) represent (2-ambo)-a-tocopherol, i.e. a mixture of the corresponding (2R,4'R,8'R)-cx-tocopherol and (2S,4'R,8'R)-cx-tocopherol).

In a further aspect the invention relates to a process of manufacturing compound of formula (V-A) comprising

the process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one as described above in detail;

followed by the steps either
g) ethynylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one using ethyne in the presence of a basic substance to yield (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol;

h) hydrogenation of (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (R,R)-isophytol;

or

h') vinylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one by addition of a vinyl Grignard reagent to yield (R,R)-isophytol; followed by the steps

m) condensing (R,R)-isophytol with compound of formula (VI) to yield compound of formula (V) being an isomeric mixture in view of the chirality at the centre indicated by #;
This process of manufacturing compound of formula (V-A) is the same as the process of manufacturing compound of formula (V) except for an additional step n).

The isolation of a (2R,4'R,8'R)-a-tocopherol from the corresponding (2-ambo)-a-tocopherol can be achieved by chromatographic separation by means of a chiral phase, particularly as described in WO2012/152779 A1. It is also preferred to enhance the yield in (2R,4'R,8'R)-a-tocopherol by means of epimerization of fractions enriched in (2S,4'R,8'R)-a-tocopherol as disclosed as step c) in WO2012/152779 A1. The entire content of WO2012/152779 A1 is hereby included by reference.
The substances (E)-3,7-dimethyloct-2-enal, (Z)-3,7-dimethyloct-2-enal, (E)-3,7-dimethylocta-2,6-dienal, (Z)-3,7-dimethylocta-2,6-dienal, (R,E)-3,7-dimethyloctanal, (R,Z)-3,7-dimethyloctanal; acetals of (E)-3,7-dimethyloct-2-enal, (Z)-3,7-dimethyloct-2-enal, (E)-3,7-dimethylocta-2,6-dienal, (Z)-3,7-dimeihylocta2,6-dienal, (R,E)-3,7-dimethyloctanal, (R,Z)-3,7-dimethyloctanal; (R,E)-6,10,14-trimethylpentadec-5-en-2-one, (R,Z)-6,10,14-trimethylpentadec-5-en-2-one, ketals of (R,E)-6,10,14-trimethylpentadec-5-en-2-one, ketals of (R,Z)-6,10,14-trimethylpentadecan-2-one, ketals of (6R,10R)-6,10,14-trimethylpentadecan-2-one, (7R)-3,7,11-trimethyldodec-1-yn-3-ol, (7R)-3,7,11-trimethyldodec-1-en-3-ol and (R,R)-isophytol are important intermediates for the synthesis of tocopherols, vitamin K1, as well as for flavours and fragrances or for pharmaceutical products. The majority of them has a typical odour which makes them very attractive to be used as ingredients in products of the industry of flavours and fragrances such as in perfumes.

In a further aspect, the invention relates to a composition comprising
- at least one acetal or ketal of formula (XI) or (XII) and
- at least one chiral iridium complex.
The acetal or ketal of formula (XI) or (XII) and the chiral iridium complex, their ratios and as well their preferred embodiments, properties and effects have been discussed in this documents already in great detail.

In a final aspect, the invention relates to ketals of of formula (XX-A) or (XX-B) or (XX-C) or (XX-D) or (XX-E).
wherein the double bond having dotted lines () in the above formulae represents either a single carbon-carbon bond or a double carbon-carbon bond; and

wherein a wavy line represents a carbon-carbon bond which is linked to an adjacent single carbon bond (— representing —) or to an adjacent carbon-carbon double bond (— representing —) so as to have said carbon-carbon double bond either in the Z or in the E-configuration.

and wherein

Q¹ and Q²

stand either individually or both for a C₁⁻d o alkyl group or a halogenated C₁⁻C₁₀ alkyl group;

or form together a C₂-C₆ alkylenic group or a C₉-Cₑ cycloalkylene group;

with the exception of 1,1-dimethoxy-3,7-dimethyloct-2-ene.

Particularly the acetal or ketal is selected from
the group consisting of 1,1-diethoxy-3,7-dimethyloct-2-ene, 1,1-dipropoxy-
3,7-dimethyloct-2-ene, 1,1-diisoproxy-3,7-dimethyloct-2-ene, 1,1-di-sec-butoxy-
3,7-dimethyloct-2-ene, 3,7-dimethyl-1,1-bis(pentan-2-yloxy)oct-2-ene, 1,1-
bis(isopentylxyloxy)-3,7-dimethyloct-2-ene, 1,1-bis(pentyloxy)-3,7-dimethyloct-2-ene,
1,1-bis(hexyloxy)-3,7-dimethyloct-2-ene, 2-(2,6-dimethylhept-1-en-1-yl)-1,3-
dioxolane, 2-(2,6-dimethylhept-1-en-1-yl)-4-methyl-1,3-dioxolane, 2-(2,6-
dimethylhept-1-en-1-yl)-4,5-dimethyl-1,3-dioxolane, (3aR,7aS)-2-(2,6-
dimethylhept-1-en-1-yl)hexahydrobenzo[d][1,3]dioxole, 2-(2,6-dimethylhept-1-en-
1-yl)-1,3-dioxane, 2-(2,6-dimethylhept-1-en-1-yl)-5-methyl-1,3-dioxane, 2-(2,6-
dimethylhept-1-en-1-yl)-5,5-dimethyl-1,3-dioxane, 3,7-dimethyl-1,1-bis(2,2,2-
trifluoroethoxy)octa-2,6-diene, 3,7-dimethyl-1,1-bis(2,2,2-trifluoroethoxy)octa-2,6-
diene and all the E- and Z-isomers thereof;

or from the group consisting of (E)-3,7-dimethyl-1,1-bis(2,2,2-trifluoro-
ethoxy)octa-2,6-diene and (Z)-3,7-dimethyl-1,1-bis(2,2,2-trifluoroethoxy)octa-2,6-
diene and all the E- and Z-isomers thereof;

or the group consisting of 2,5,5-trimethyl-2-(4,8,12-trimethyltridec-3-en-1-yl)-
1,3-dioxane, 6,10,14-trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadec-5-ene, (R)-
2,5,5-trimethyl-2-(4,8,12-trimethyltridec-3-en-1-yl)-1,3-dioxane, (R)-6,10,14-
trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadec-5-ene and all the E- and Z-isomers thereof.

All these acetals or ketals are particularly suited for the asymmetric
hydrogenation as described above in detail or are the product of said asymmetric
hydrogenation. As mentioned also before the unsaturated acetals or ketals
behave extremely advantageously as compared to the corresponding ketones or
aledhydes.
Figures

In the following paragraphs some preferred embodiments of the inventions are further discussed by means of schematic figures 1 to 7. This, however, is not to be understood as limiting the invention to the embodiments described here in the figures.

The reference signs in parentheses in the figures, such as (R-V) are used for identification purposes as described below and are not to be confused with the indication of formula such as (V) used in the rest of this document.

The figures 1 to 4 show the subsequent steps from both 3,7-dimethyloct-2-enal and 3,7-dimethylocta-2,6-dienal to (6R,10R)-6,10,14-trimethylpentadecan-2-one.

The figures 1 to 5 show the subsequent steps from both 3,7-dimethyloct-2-enal and 3,7-dimethylocta-2,6-dienal to (R,R)-isophytol, (2-ambo)-a-tocopherol and (2R,4'R,8'R)-a-tocopherol, respectively.

In figure 1, three different possibilities for the synthesis of (R)-3,7-dimethyloctanal (R-la) are schematically shown (Figure 1a, 1b, 1c). As a first step a) for all possibilities shown in figure 1, a mixture of (E)-3,7-dimethyloct-2-enal and (Z)-3,7-dimethyl oct-2-enal or a mixture of (E)-3,7-dimethyl octa-2,6-dienal and (Z)-3,7-dimethyl octa-2,6-dienal (E/Z-I) is provided. In figure 1a) the E-isomer (E-I) (i.e. (E)-3,7-dimethyl oct-2-enal or (E)-3,7-dimethyl octa-2,6-dienal, respectively) and the corresponding Z-isomer (Z-I) (i.e (Z)-3,7-dimethyl oct-2-enal or (Z)-3,7-dimethyl octa-2,6-dienal, respectively) are separated in step b) from the mixture provided in step a). The separation in step b) is preferably done by distillation over a column. In step c) the Z-isomer is asymmetrically hydrogenated with a specific chiral iridium complex, whereas the E-isomer is asymmetrically hydrogenated with the corresponding enantiomeric chiral iridium complex. A preferred chiral iridium complex is the one of formula (III). The E-isomer (E-I) is asymmetrically hydrogenated using molecular hydrogen in the presence of the chiral iridium complex of formula (IIIa) (S-Ir-complex) having the S-configuration at the stereogenic centre indicated by * in formula (III). The Z-isomer (Z-I), on the other hand, is asymmetrically hydrogenated using molecular hydrogen in the presence of the chiral iridium complex of formula (IIIb) (R-Ir-complex) having the
R-configuration at the stereogenic centre indicated by * in formula (II). Both asymmetric hydrogenation routes furnish the same product, i.e. (R)-3,7-dimethyloctanal (R-la). The double bond at position 6 of (Z)-3,7-dimethylocta-2,6-dienal is also hydrogenated during the asymmetric hydrogenation. However, as this double bond is not prochiral, no chiral centre is formed at this position during the hydrogenation.

In figure 1b) only one of the isomers (E-isomer (E-)) (here: desired isomer) is asymmetrically hydrogenated as described above for figure 1a). The other isomer (Z-isomer (Z-)) (here: undesired isomer) is subjected to cis/trans isomerization in step a) by addition of a cis/trans isomerization catalyst (c/t-cat) and heating. The cis/trans isomerization catalyst preferably used is a polythiol, particularly of formula (X). By the action of the cis/trans isomerization catalyst the (Z-isomer (Z-)) is isomerized to a mixture of the E-isomer and the Z-isomer (E/Z-I) which can be added in step b) to the mixture provided in step a). Figure 1b) shows the process in case the E-isomer is the desired isomer, i.e. the one which is asymmetrically hydrogenated. It is obvious that in case the Z-isomer is the desired isomer, i.e. the one which is asymmetrically hydrogenated, the isomerization process would apply in an analogous way to that of the E-isomer.

In figure 1c) only one of the isomers (Z-isomer (Z-)) (here: desired isomer) is asymmetrically hydrogenated as described above for figure 1a). A cis/trans isomerization catalyst (c/t-cat) is added to the mixture of the E-isomer and the Z-isomer (E/Z-I) provided in step a). In step b) the separation of the (desired) isomer (Z-isomer (Z-)) is done by distillation in the presence of the cis/trans isomerization catalyst in a (one-pot isomerization or in-situ isomerization). As the desired isomer is separated by distillation, the remainder, enriched in the higher boiling isomer, is isomerized so that in the distillation vessel a thermodynamic equilibrium between the Z- and E- isomers is formed continuously. This procedure may allow all of the undesired isomer being present in the isomer mixture at the beginning provided in step a) to be converted to the desired isomer.
Figures 2 and 3 show the chemical transformation of (R)-3,7-dimethyloctanal to a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one.

In figure 2 is the conversion of (R)-3,7-dimethyloctanal (R-la), followed by reaction in step d1' with acetone and a base schematically shown to yield (R)-6,10-dimethylundec-3-en-2-one (R-lb), which is then hydrogenated in step d2' with molecular hydrogen in the presence of a hydrogenation catalyst (shown: a Pd/carbon hydrogenation catalyst) to yield (R)-6,10-dimethylundecan-2-one (R-II).

Figure 3 shows the subsequent steps of the chemical transformation step d): (R)-6,10-dimethylundecan-2-one (R-II) is chemically transformed to a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (E/Z-R-III). Figure 3 also shows the preferred variants of such chemical transformations.

In one of the variants shown in figure 3, (7R)-3,7,1 1-trimethylidodec-1-en-3-ol (R-llb) is formed from (R)-6,10-dimethylundecan-2-one (R-II) by reacting in a first step, i.e. step d3), (R)-6,10-dimethylundecan-2-one (R-II) with ethyne (acetylene) in the presence of a base (shown is KOH) to yield the intermediate (7R)-3,7,1 1-trimethylidodec-1-yn-3-ol (R-lla) and then in second step, i.e. in step d4), reacting with molecular hydrogen in the presence of a Lindlar catalyst.

In another variant (7R)-3,7,1 1-trimethylidodec-1-en-3-ol (R-llb) is formed directly by means of reaction with a Grignard reagent. In figure 3 vinylmagnesium chloride is shown as Grignard reagent.

Subsequently, two variants for the conversion of (7R)-3,7,1 1-trimethylidodec-1-en-3-ol (R-llb) to the mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (E/Z-R-III) are shown in figure 3. In the first variant, (7R)-3,7,1 1-trimethylidodec-1-en-3-ol (R-llb) is reacted in a Saucy-Marbet reaction (step d5)) with 2-methoxyprop-1-ene to yield a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (E/Z-R-III). In the second variant, (7R)-3,7,1 1-trimethylidodec-1-en-3-ol (R-llb) is reacted with alkyl acetoacetate, preferably methyl acetoacetate, in the presence of a base, preferably sodium acetate, to a
mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6, 10,14-
trimethylpentadec-5-en-2-one (E/Z-R-III) (Carroll rearrangement).

In figure 4, three different possibilities for the synthesis of (6R,10R)-
6,10,14-trimethylpentadecan-2-one (R-IV) are schematically shown (Figure 4a),
4b), 4c)). As a first for all possibilities shown in figure 4, a mixture of (R,E)-
6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-
2-one (E/Z-R-III) is provided in step a). In figure 4a) the E-isomer (E-R-III) (i.e.
(R,E)-6,10,14-trimethylpentadec-5-en-2-one) and the corresponding Z-isomer (Z-
R-III) (i.e (R,E)-6,10,14-trimethylpentadec-5-en-2-one) are separated in step e)
from the mixture. The separation in step e) is preferably done by distillation over a
column. In step f) the Z-isomer is asymmetrically hydrogenated with a specific
chiral iridium complex, whereas the E-isomer is asymmetrically hydrogenated with
the corresponding enantiomeric chiral iridium complex. A preferred chiral iridium
complex is the one of formula (III). The E-isomer (E-R-III) is asymmetrically
hydrogenated using molecular hydrogen in the presence of the chiral iridium
complex of formula (IIa) (S-Ir-complex) having the S-configuration at the
stereogenic centre indicated by * in formula (III). The Z-isomer (Z-R-III), on the
other hand, is asymmetrically hydrogenated using molecular hydrogen in the
presence of the chiral iridium complex of formula (1Mb) (R-Ir-complex) having the
R-configuration at the stereogenic centre indicated by * in formula (III). Both
asymmetric hydrogenation routes furnish the same product, i.e. (6R,10R)-6,10,14-
trimethylpentadecan-2-one (R-IV).

In figure 4b) only one of the isomers (E-isomer (E-R-III)) (desired isomer)
is asymmetrically hydrogenated as described above for figure 4a). The other
isomer (Z-isomer (Z-R-III)) (undesired isomer) is subjected to cis/trans
isomerization in step γ) by addition of a cis/trans isomerization catalyst (c/t-cat)
and heating. The cis/trans isomerization catalyst preferably used is a polythiol,
particularly of formula (X). By the action of the cis/trans isomerization catalyst the
(Z-isomer (Z-R-III)) is isomerized to a mixture of the E-isomer and the Z-isomer
(E/Z-R-III) which can be added in step δ) to the mixture. Figure 4b) shows the
process in case the E-isomer is the desired isomer, i.e. the one which is
asymmetrically hydrogenated. It is obvious that in case the Z-isomer is the desired isomer, i.e. the one which is asymmetrically hydrogenated, the isomerization process would apply in an analogous way to that of the E-isomer.

In figure 4c) only one of the isomers (Z-isomer (Z-R-III)) (desired isomer) is asymmetrically hydrogenated as described above for figure 4a). A cis/trans isomerization catalyst (c/t-cat) is added to the mixture of the E-isomer and the Z-isomer (E/Z-R-III). In step e) the separation of the (desired) isomer (Z-isomer (Z-R-III)) is done by distillation in the presence of the cis/trans isomerization catalyst in a (one-pot isomerization or in-situ isomerization). As the desired isomer is separated by distillation, the remainder, enriched in the higher boiling isomer, is isomerized so that in the distillation vessel a thermodynamic equilibrium between the Z- and E-isomers is formed continuously. This procedure may allow all of the undesired isomer being present in the isomer mixture at the beginning provided in step e) to be converted to the desired isomer.

Figure 5 shows the subsequent steps from (6R,10R)-6,10,14-trimethylpentadecan-2-one to (R,R)-isophytol, (2-amfeo)-a-tocopherol, and (2R,4'R,8'R)-a-tocopherol, respectively.

Figure 5 shows two variants for the conversion of (6R,10R)-6,10,14-trimethylpentadecan-2-one to (R,R)-isophytol. In the first variant, (R,R)-isophytol (R-V) is formed from (6R,10R)-6,10,14-trimethylpentadecan-2-one (R-IV) by reacting in a first step, i.e. step g), (6R,10R)-6,10,14-trimethylpentadecan-2-one (R-IV) with ethyne (acylene) in the presence of a base (shown is KOH) to yield the intermediate (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol (R-IVa) and then in a second step, i.e. in step h), reacting with molecular hydrogen in the presence of a Lindlar catalyst.

In the other variant shown, (R,R)-isophytol (R-V) is formed from (6R,10R)-6,10,14-trimethylpentadecan-2-one (R-IV) by means of reaction with a Grignard reagent, in step h'). In figure 5 vinylmagnesium chloride is shown as Grignard reagent.

(R,R)-isophytol (R-V) can further be condensed in step m) with 2,3,5-trimethylbenzene-1,4-diol to yield (2-ambo)-a-tocopherol (R/S-Vl)).
In a further step n) \((2R,4'R,8'R)-\alpha\text{-tocopherol (R-VI)}\) is isolated from the corresponding \((2\text{-amfeo})-\alpha\text{-tocopherol (R/S-VI)}\). The isolation is preferably done by chromatographic separation by means of a chiral phase.

In figures 6 and 7 preferred embodiments of asymmetric hydrogenations are shown. Figure 6 refers to the process steps in figure 1 and figure 7 to the process steps of figure 4.

The left side of figure 6 shows in step co) the formation of ketals \((E-IK)\) of \((E)-3,7\text{-dimethyloct-2-enal or (E)-3,7\text{-dimethylocta-2,6-dienal (E-R)}\), respectively (which are obtained after separation of the corresponding isomer mixture in step b)) using an alcohol (in figure 6 ethylene glycol is shown) in the presence of an acid. The ketal \((E-IK)\) is then asymmetrically hydrogenated in step c) as discussed in figure 1. The direct product of this asymmetric hydrogenation is an asymmetrically hydrogenated ketal \((R-IIK)\), which after acidic hydrolysis in step c') yields \((R)-3,7\text{-dimethyloctanal (R-la)}\). On the right side of figure 6 the corresponding reaction scheme is shown for the \(Z\)-isomer, i.e. \((Z)-3,7\text{-dimethyloct-2-enal or (Z)-3,7\text{-dimethylocta-2,6-dienal (Z-I)}\), respectively, furnishing via the corresponding ketal intermediate \((Z-IK)\) the same compound \((R)-3,7\text{-dimethyloctanal (R-la)}\).

The left side of figure 7 shows in step f0) the formation of ketals \((E-R-IIIK)\) of \((R,E)-6,10,14\text{-trimethylpentadec-5-en-2-one (E-R-III) obtained after isomer separation in step e}) using an alcohol (in figure 7 ethylene glycol is shown) in the presence of an acid. The ketal \((E-R-IIIK)\), preferably \((R,E)-2\text{-methyl-2-(4,8,12\text{-trimethylythdec-3-en-1 -yl})-1 ,3\text{-dioxolane, is then asymmetrically hydrogenated in step f) as discussed in figure 4. The direct product of this asymmetric hydrogenation is an asymmetrically hydrogenated ketal, i.e. 2-methyl-2-((4R,8R)-4,8,12\text{-trimethyltridecyl})-1 ,3-dioxolane (R-IVK), which after acidic hydrolysis in step f) yields \((6R,10R)-6,10,14\text{-trimethylpentadecan-2-one (R-IV)\). On the right side of figure 7 the corresponding reaction scheme is shown for the \(Z\)-isomer, i.e. \((R,Z)-6,10,14\text{-trimethylpentadec-5-en-2-one (Z-R-III)\), furnishing via the ketal intermediate, preferably \((R,Z)-2\text{-methyl-2-(4,8,12\text{-trimethyltridec-3-en-1-yl})-1 ,3\text{-dioxolane (Z-R-IIIK)\), the same compound \((6R,10R)-6,10,14\text{-trimethylpentadecan-2-one (R-IV)\).}
Examples

The present invention is further illustrated by the following experiments.

Analytical Methods

GC Determination of E/Z-ratio and/or purity of (R)-6, 10, 14-trimethylpentadec-5-en-2-one (R-THFA):
Agilent 6850, column DB-5HT (30 m, 0.25 mm diameter, 0.10 µm film thickness), 107 kPa helium carrier gas). The samples were injected as solutions in hexane, split ratio 300:1, injector temperature 200 °C, detector temperature 350 °C. Oven temperature program: 100 °C (8 min), 10 X/min to 200 °C (1 min), 20 °C/min to 220 °C (4 min), runtime 24 min.

GC Determination of purity of (6R, 10R)-6,10, 14-trimethylpentadecan-2-one
Agilent 6850, column DB-5HT (30 m, 0.25 mm diameter, 0.10 µm film thickness), 115 kPa helium carrier gas). The samples were injected as solutions in hexane, split ratio 300:1, injector temperature 200 °C, detector temperature 350 °C. Oven temperature program: 120 °C (5 min), 14 °C/min to 260 °C (2 min), 20 °C/min to 280 °C (4 min), runtime 22 min.

GC Determination of purity of (3RS, 7R, 11R)-3,7,11,15-tetramethylhexadec-1-en-3-0/ ((R,R)-Isophytol)
Agilent 6850 instrument equipped with FID. Agilent DB-5 column (30 m, 0.32 mm diameter, 0.25 µm film thickness) with 25 psi molecular hydrogen carrier gas. The samples were injected as solutions in acetonitrile with a split ratio of 50:1. Injector temperature: 250 °C, detector temperature: 350 °C. Oven temperature program: 100 °C, 4 °C/min to 250 °C.

GC Determination of E/Z-ratio and/or purity of (E)-3,7-dimethylocta-2,6-dienal (geranial) and ketals:
Agilent 6850 instrument, column Agilent DB-5 (123-5032E, 30 m x 0.32 mm, film 0.25 µm), the samples were injected as solutions in acetonitrile, split ratio 50:1, injector 250 °C, detector 350 °C. Oven temperature program: 100 °C, 4 X/min until 250 °C, 37.5 min total runtime.
Analysis of the asymmetrically hydrogenated reaction products.

The corresponding dimethyl, ethylene glycol, neopentyl and bis(trifluoroethyl) ketals were hydrolyzed to the ketones in the presence of aqueous acid and analyzed for conversion and their stereoisomer ratio using the following methods for ketones.

The conversion of the hydrogenation reaction was determined by gas chromatography using an achiral column.

Method for Conversion:

Agilent 7890A GC equipped with FID. Agilent HP-5 column (30 m, 0.32 mm diameter, 0.25 μm film thickness) with 25 psi molecular hydrogen carrier gas. The samples were injected as solutions in dichloromethane with a split ratio of 10:1. Injector temperature: 250 °C, detector temperature: 300 °C. Oven temperature program: 50 °C (2 min) then 15 °C/min to 300 °C, hold 5 min.

Retention times (t_R):

<table>
<thead>
<tr>
<th>Substance</th>
<th>min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geranial</td>
<td>7.1</td>
</tr>
<tr>
<td>Geranial-neo</td>
<td>15.2</td>
</tr>
<tr>
<td>neopentyl-neo</td>
<td>14.1</td>
</tr>
<tr>
<td>R,E-THFA-DM</td>
<td>24.2, pc<sup>1</sup></td>
</tr>
<tr>
<td>R,E-THFA-neo</td>
<td>29.1</td>
</tr>
<tr>
<td>R,Z-THFA-DM</td>
<td>23.1, pc<sup>1</sup></td>
</tr>
<tr>
<td>R,Z-THFA-neo</td>
<td>27.9</td>
</tr>
<tr>
<td>R-THGA-DM</td>
<td>13.1</td>
</tr>
<tr>
<td>R-Tetrahydrocitral-neo</td>
<td>12.6</td>
</tr>
<tr>
<td>R-THGA-neo</td>
<td>18.9</td>
</tr>
<tr>
<td>R-THGA-tfe</td>
<td>11.8</td>
</tr>
<tr>
<td>RR-C18-DM</td>
<td>decomp.<sup>2</sup></td>
</tr>
<tr>
<td>RR-C18-neo</td>
<td>28.5</td>
</tr>
<tr>
<td>RR-C18-tfe</td>
<td>21.4</td>
</tr>
</tbody>
</table>

¹pc = partial decomposition

²decomp. = decomposition during GC analysis
For the determination of the isomer ratio, the hydrogenated ketones can be reacted with either \((+)-\text{diisopropyl}-0,0'-\text{bis(trimethylsilyl)}-\text{L-tartrate}\) or \((-)-\text{diisopropyl}-0,0'-\text{bis(trimethylsilyl)}-\text{D-tartrate}\) in the presence of trimethylsilyl triflate
\([\text{Si(CH}_3]_3(\text{OSO}_2\text{CF}_3)]\) to form the diastereomeric ketals as described in A. Knierzinger, W. Walther, B. Weber, R. K. Muller, T. Netscher, *Helv. Chim. Acta* 1990, 73, 1087-1107. The ketals can be analysed by gas chromatography using an achiral column to determine the isomer ratios. For the hydrogenated ketone 6,10-dimethylundecan-2-one, either \(\text{D-(–)}\)- or \(\text{L-(+)}\)-diisopropyltartrate can be used. For 6,10,14-trimethylpentadecan-2-one, \(\text{L-(+)}\)-diisopropyltartrate can be used to measure the quantity of the \((6R,10R)\)-isomer that was present. \(\text{D-(–)}\)-diisopropyltartrate can be used to determine the amount of the \((6S,10S)\)-isomer. Thus the selectivity of the stereoselective hydrogenation can be determined indirectly.

Method for determination of isomers:

Agilent 6890N GC with FID. Agilent CP-SN88 for FAME column (60 m, 0.25 mm diameter, 0.20 \(\mu m\) film thickness) with 16 psi molecular hydrogen carrier gas. The samples were injected as solutions in ethyl acetate with a split ratio of 5:1. Injector temperature: 250 °C, FID detector temperature: 250 °C. Oven temperature program: 165 °C (isothermal, 240 min)

The \(\text{Ir}\) complexes indicated in the following experiments are prepared according to the disclosure in *Chem. Sci.*, 2010, 1, 72 - 78.
Experiment E1: Synthesis of (R)-6, 10-dimethylundecan-2-one

1. Separation of 3.7-dimethylocta-2,6-dienal (step a/b)
 (E)-3,7-dimethylocta-2,6-dienal (geranal) was separated from a mixture of geranial and neral by distillation.

2. Formation of neopentyl glycol ketal of (E)-3,7-dimethylocta-2,6-dienal (Geranial-neo) (step c)
 Tetramethyl orthocarbonate (0.675 g, 4.86 mmol, 98%, 1.48 eq.) was suspended in dichloromethane (10 mL) under argon at room temperature. 2,2-Dimethylopropane-1,3-diol (2.27 g, 21.8 mmol, 6.6 eq.) was added and the mixture was stirred for 2 h, after which a clear solution was obtained. Boron trifluoride etherate (0.372 mL, 0.422 g, 2.88 mmol, 97%, 0.90 eq.) was added and after stirring for 10 min at room temperature, the reaction was cooled to -78 °C. The reaction was diluted with dichloromethane (5 mL) and geranial (0.503 g, 3.29 mmol, 99.9%, 1.0 eq.) was added slowly and dropwise via a cooled syringe (using dry ice wrapped in a towel) over 10 min. Subsequently, the reaction was stirred at -78 °C or 1 h. GC analysis indicated full conversion. The reaction was quenched slowly with cooled triethylamine (4.0 mL, 2.91 g, 28.7 mmol, 8.7 eq.) at -78 °C. Subsequently, sat. aq. NaHCO₃ (6 mL) was added at -78 °C and the suspension was allowed to warm to room temperature. The reaction was diluted with pentane (50 mL) and the organic phase was washed with sat. aq. NaHCO₃ (2 x 50 mL), water (50 mL), dried over MgSO₄, filtered and concentrated in vacuo, furnishing (E)-2-(2,6-dimethylhepta-1,5-dien-1-yl)-5,5-dimethyl-1,3-dioxane (573 mg, 97.3% (GC), 71% yield, E/Z 97.6:2.4) as colorless liquid.

Characterization data of (E)-2-(2,6-dimethylhepta-1,5-dien-1-yl)-5,5-dimethyl-1,3-dioxane (Geranial-neo):

1H NMR (300 MHz, CDC₃): δ 0.74 (s, 3 H), 1.23 (s, 3 H), 1.59 (s, 3 H), 1.68 (s, 3 H), 1.74 (d, J = 1.3 Hz, 3 H), 1.98-2.18 (m, 4 H), AB signal (δ_A = 3.51, δ_B = 3.65, J_AB = 11.0 Hz, 4 H), 5.06-5.15 (m, 1 H), 5.09 (d, J = 6.4 Hz, 1 H), 5.34 (dq, J = 6.2, 1 Hz, 1 H).

13C NMR (75 MHz, CDC₃): δ 17.3 (1 C), 17.6 (1 C), 21.9 (1 C), 23.0 (1 C), 25.6 (1 C), 26.2 (1 C), 30.0 (1 C), 39.2 (1 C), 77.3 (2 C), 98.9 (1 C), 121.7 (1 C), 123.8 (1 C), 131.8 (1 C), 142.9 (1 C) ppm.
MS (El, m/z): 238 (M+, 7), 237 [(M-H)+, 7], 223 [(M-CH3)+, 5], 195 (15), 181 (6), 169 (30), 134 (12), 115 (30), 83 (26), 69 (100), 55 (30), 41 (57).
IR (cm⁻¹): 2953 (w), 2928 (w), 2845 (w), 1746 (w), 1680 (w), 1451 (w), 1393 (m), 1362 (w), 1284 (m), 1232 (w), 1192 (w), 1142 (m), 1093 (s), 1041 (w), 1015 (m), 981 (s), 967 (s), 929 (m), 814 (w), 790 (w), 670 (w).

2. Asymmetric hydrogenations of geraniol / geraniol ketal (step c)
An autoclave was charged with 0.5 mmol (E)-2-(2,6-dimethylhepta-1,5-dien-1-yl)-5,5-dimethyl-1,3-dioxane or (E)-geraniol, and with 4 g of dichloro methane and a solution of 2 mol% of the chiral iridium complex of formula (III-F) having the S-chirality at the centre indicated by ‘l’ in said formula. The autoclave was closed and a pressure of 30 bar of molecular hydrogen was applied. The reaction mixture was stirred for 16 hours at 40 °C. Afterwards the pressure was released and the solvent was removed. In case of hydrogenation of (E)-2-(2,6-dimethylhepta-1,5-dien-1-yl)-5,5-dimethyl-1,3-dioxane analysis by GC showed full conversion and a hydrogenated acetal purity of 71%, while only 2% product was observed in the (E)-geraniol case.

Characterization data of (R)-2-(2,6-dimethylheptyl)-5,5-dimethyl-1,3-dioxane (R-Tetrahydrocitral-neo):

¹H NMR (300 MHz, CDC₃): δ 0.72 (s, 3 H), 0.87 (d, J = 6.6 Hz, 6 H), 0.91 (d, J = 6.4 Hz, 3 H), 1.06-1.18 (m, 2 H), 1.20 (s, 3 H), 1.22-1.78 (m, 8 H), 3.43 (dd, J = 11.2, 1.4 Hz, 2 H), 3.61 (d, J = 11.2 Hz, 2 H), 4.48 (t, J = 5.2 Hz, 1 H) ppm.

¹³C NMR (75 MHz, CDC₃): δ 19.7 (1 C), 21.9 (1 C), 22.6 (1 C), 22.7 (1 C), 23.1 (1 C), 24.5 (1 C), 27.9 (1 C), 28.6 (1 C), 29.7 (1 C), 30.1 (1 C), 37.5 (1 C), 39.2 (1 C), 42.1 (1 C), 77.3 (1 C), 101.4 (1 C) ppm.

MS (El, m/z): 241.3 [(M-Hf, 10], 200 (1), 155 (4), 130 (4), 115 (100), 69 (35), 56 (21), 41 (19).

IR (cm⁻¹): 2953 (s), 2924 (s), 2854 (m), 1744 (w), 1645 (w), 1461 (m), 1406 (w), 1393 (w), 1378 (w), 1284 (m), 1252 (w), 1230 (w), 1162 (s), 1122 (s), 1083 (m), 1044 (w), 1017 (w), 974 (m), 932 (w), 921 (w), 890 (w), 837 (w), 735 (w), 666 (w).
3. Hydrolysis of (RV2-(2,6-dimethylheptyl)-5,5-dimethyl-1,3-dioxane
A sample of the hydrogenated acetal (30 mg) ((R)-2-(2,6-dimethylheptyl)-5,5-
dimethyl-1,3-dioxane (R-Tetrahydrocitral-neo)) was dissolved in formic acid (3 mL) under argon, treated with sodium formate (50 mg) and heated to 70 °C for 1 h. After cooling, the reaction was diluted with water (10 mL) and EtOAc (20 mL). The organic phase was washed with brine (5 mL), dried over MgSO₄ and concentrated. (R)-3,7-dimethyloctanal (R-Tetrahydrocitral) was analyzed for its stereoisomer ratio.

4. Synthesis of (R)-6,10-dimethylundec-3-en-2-one (step d1)
A 25 mL round bottom flask, equipped with stir bar and an argon inlet was charged with (R)-3,7-dimethyloctanal (1.00 g, 6.08 mmol, 1.0 eq., 95%), acetone (4.48 g, 77.1 mmol, 12.7 eq.) and a solution of NaOH (43 mg, 1.07 mmol, 17 mol%) in distilled water (1.67 mL). The reaction was heated to 45°C under argon for 24 h. Subsequently, the reaction was allowed to cool to room temperature and neutralized with acetic acid (51 µL, 0.90 mmol, 15 mol%). The reaction was diluted with pentane (50 mL) and water (50 mL). The aqueous phase was extracted with pentane (2 x 50 mL) and the combined organic phases were washed with water (50 mL) and saturated NaCl solution (50 mL). The organic phase was dried over MgSO₄ and concentrated. The crude material (1.13 g) was purified by distillation in a Kugelrohr apparatus at 120 °C/7.1·10⁻² mbar, furnishing (R)-6,10-dimethylundec-3-en-2-one as colorless oil (0.703 g, 88 a% by GC, 52% yield).

5. Synthesis of (RV6.10-dimethylundecan-2-one (step d2)
Palladium on carbon (5%, 10 mg) was added to a solution of (R)-6,10-
dimethylundecan-2-one (150 mg, 88%) in heptane (2 g) in a glass liner. The liner was placed in the reactor, the reactor was sealed and purged 3 times with nitrogen (pressurised to 6 bar, then vent) and then purged 3 times with hydrogen (pressurised to 6 bar then vent). The reactor was heated to 25 °C under stirring at 500 rpm. Then the stirring rate was increased to 1000 rpm and the reactor pressurised with 6 bar hydrogen. The reactor was stirred until the desired hydrogen uptake was obtained, then cooled, vented and purged once with
nitrogen. The mixture was filtered, and evaporated to give (R)-6,10-dimethylundecan-2-one (144 mg). GC analysis showed 89% purity.

Analysis of the isomer ratio of the product showed a 88:12 ratio (R):(S) which is consistent with the starting composition.

An identical reaction with palladium on alumina (5%, 10mg) gave a crude product (146 mg) with a GC purity of 90%. Analysis of the isomer ratio of the product showed a 88:12 ratio (R):(S) which is consistent with the starting composition.

Experiment E3a: Vinylation of (R)-6, 10-dimethylundecan-2-one (step d3')

A dried 100 mL four-necked flask equipped with overhead stirrer, thermometer, condenser and argon inlet was evacuated and purged with argon. Vinylimagnesium chloride (23.63 mL of a 1.6 M solution in THF, 37.8 mmol, 1.56 eq.) was added at room temperature. A solution (R)-6,10-dimethylundecan-2-one (5.01 g, 24.24 mmol, 96.0%, 1.0 eq.) in dry THF (20 mL) was added slowly within 20 min. The exothermic reaction was maintained between 25 and 30 °C internal temperature by cooling with an ice bath. After complete addition the reaction was allowed to stir at room temperature for 1 h. Saturated NH₄Cl solution (10 mL) was added carefully to quench excess Grignard reagent. Pentane (150 mL), water (150 mL) and brine (150 mL) was added. The organic phase was extracted with brine (2 x 150 mL) and the aqueous phase was back-extracted with pentane (2 x 150 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo, resulting in a colorless oil (5.42 g). The crude product was purified by vacuum distillation in a Kugelrohr apparatus. The main fraction distilled at 143 X/3.8 mbar, furnishing (7R)-3,7,11-trimethyldec-1-en-3-ol as colorless oil with a purity of 94.0% (5.15 g, 21.38 mmol, 88% yield).

Experiment E3b: Ethynylation of (R)-6, 10-dimethylundecan-2-one (step d3)

(R)-6,10-dimethylundecan-2-one (340 g, 1.70 mol, 1.0 eq., 99.0%) was added to an autoclave equipped with thermostat, dosing pump, acetylene inlet and ammonia inlet. The reactor was sealed, evacuated and flushed with nitrogen and cooled to 15 °C. Ammonia (632 g, 37.2 mol, 22.0 eq., 99.8%) was condensed into the reactor and cooled to 15 °C, resulting in a pressure of 8-9 bar. Acetylene was
introduced until 12 bar pressure was reached, followed by a dosed addition of KOH (45 wt.-% in water, 6.6 g, 52.9 mmol, 3.1 mol%) at 15 °C. The reaction progress was monitored by GC. After 90 min the reaction mixture was neutralized with acetic acid, and the reactor was subsequently vented at 25 °C. The reaction mixture was washed and concentrated in vacuo and purified by distillation in vacuo furnishing 325 g of (7R)-3,7,11-trimethylpentadec-1-yn-3-ol with a purity of 95% (81% yield).

Experiment E3c: Hydrogenation of (7R)-3,7,11-trimethylpentadec-1-yn-3-ol (step d4)

(7R)-3,7,11-trimethylpentadec-1-yn-3-ol (910 g, 4.06 mol, 1.0 eq., 95%), Lindlar catalyst catalyst (850 mg) were placed into an autoclave. The reactor was sealed, evacuated, flushed with nitrogen and subsequently heated to 45 °C. The reactor was evacuated once more and flushed with hydrogen, pressurized to 2 bar. The reaction was stirred for approx. 2-3 hours at 45 °C until the calculated amount of molecular hydrogen had been consumed. After filtration 884 g of (7R)-3,7,11-trimethylpentadec-1-en-3-ol was obtained with a purity of 91.5% (88 % yield).

Experiment E4: Reaction of (7R)-3,7,11-trimethylpentadec-1-en-3-ol with 2-methoxyprop-1-ene (step d5)

(7R)-3,7,11-trimethylpentadec-1-en-3-ol (640 g, 2.59 mol, 1.0 eq., 91.5%), H₃PO₄ (20 wt% in water, 4.5 g, 8.2 mmol, 0.32 mol%) and isopropenyl methyl ether (600 g, 8.17 mol, 3.2 eq., 98.0%) were placed into a 2 L autoclave equipped with thermostat, overhead stirrer and 1.1 m distillation column (Sulzer packing). The reactor was sealed, evacuated and flushed with nitrogen and subsequently heated to 80 °C. The pressure that built up was slowly vented. The inner temperature was then gradually raised to 160 °C within 1 h. The reaction was stirred for 3 h at 160 °C. The reaction mixture was cooled to 30 °C, concentrated in vacuo and washed with water and NaHCO₃ solution. Then low boilers were removed by distillation (jacket temperature 150 °C, 1 mbar), furnishing 690 g of a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one as residue with a purity of 85% (85% yield). The mixture was analyzed by GC to be a mixture of 49 % E-isomer and 36 % Z-isomer.
Experiment E5: Separation of E/Z isomer mixtures of (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (step e)
The mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one 1.94 kg, 36% (R,Z)-6,10,14-trimethylpentadec-5-en-2-one and 49% (R,E)-6,10,14-trimethylpentadec-5-en-2-one was fractionated using the separation equipment consisting of a still (volume: 9 litre) with a falling film evaporator, a rectifying column (70 mm inner diameter, height 5 m). The column was equipped with a very efficient structured packing (Sulzer). The rectification process was operated at a top pressure of approx. 2 mbar and at a column top temperature varied in the range from 95 to 122°C and the bottom temperature in the still was 165°C. The reflux ratio was adjusted to 20. Fractionation of the distillate stream furnished fractions containing (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (content of Z-isomer = 97%). At the end (R,E)-6,10,14-trimethylpentadec-5-en-2-one was found left in the still (content of E-isomer = 94%). Both isomers were further purified by fractionation and furnished fractions of both E-isomer and Z-isomer each with a purity of 99.5%.

Experiment E6: Asymmetric hydrogenations of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (step f)
Both isomers (R,E)-6,10,14-trimethylpentadec-5-en-2-one (R,E-THFA) (E/Z = 99.5/0.5, R/S = 92/8) and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (R,Z-THFA) (Z/E = 99.5/0.5, R/S = 92/8) were hydrogenated asymmetrically, separate from each other in the following manner:

A 125 mL autoclave was charged with 7.0 g (26 mmol) of the specific isomer, 50 mL of 2,2,2-trifluoroethanol and a solution of the chiral iridium complex of formula (Ill-F) having the chirality given in table 3 at the centre indicated by * in said formula (42 mg, 0.026 mmol, 0.1 mol%) in anhydrous dichloromethane (4 g). The autoclave was closed and a pressure of 50 bar of molecular hydrogen was applied. The reaction mixture was heated to 30 °C whilst stirring for 16 hours. Afterwards the pressure was released and the solvent removed. The product formed is (6R,10R)-6,10,14-trimethylpentadecan-2-one. The conversion as well as the amount of isomers formed is given in table 3.

The products of the two separate asymmetric hydrogenations have been combined.
In a further experiment in an autoclave 0.25 mmol of (R,E)-6,10,14-trimethylpentadec-5-en-2-one) \((R.E-\text{THFA})\) and 1 mol-%, of the Ir complex of the formula (III-D) and 1.25 ml of absolute (dry) dichloromethane were put. The autoclave was closed and a pressure of 50 bar of molecular hydrogen was applied. Under stirring the reaction solution was kept at room temperature for 14 hours. Afterwards the pressure was released and the solvent removed. For determining the conversion the crude product was analysed by achiral gas chromatography without any further purification. The amount for the isomers has been determined using the above method and given in table 3.

In a further experiment in an autoclave 0.5 mmol of (R,E)-6,10,14-trimethylpentadec-5-en-2-one) \((R,E-\text{THFA})\) and 1 mol-%, of the Ir complex of the formula as indicated in table 3’ and 4 g solvent as indicated in table 3’ were put. The autoclave was closed and a pressure of 30 bar of molecular hydrogen was applied. Under stirring the reaction solution was kept at room temperature for 16 hours. Afterwards the pressure was released and the solvent removed. For determining the conversion the crude product was analysed by achiral gas chromatography without any further purification. The amount for the isomers has been determined using the above method and given in table 3’.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R,Z-</td>
<td>R,E-</td>
</tr>
<tr>
<td></td>
<td>THFA</td>
<td>THFA</td>
</tr>
<tr>
<td>Formula of Ir-complex</td>
<td>III-F</td>
<td>III-F</td>
</tr>
<tr>
<td>Configuration of chiral Ir-complex</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Amount of chiral Ir complex [mol-%]</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Conversion [%]</td>
<td>>99</td>
<td>>99</td>
</tr>
<tr>
<td>(6R,10R)-6,10,14-trimethylpentadecan-2-one [%]</td>
<td>87.0</td>
<td>88.4</td>
</tr>
<tr>
<td>(6S,10R)-6,10,14-trimethylpentadecan-2-one [%]</td>
<td>5.3</td>
<td>3.7</td>
</tr>
<tr>
<td>(6R,10S)-6,10,14-trimethylpentadecan-2-one [%]</td>
<td>7.7</td>
<td>7.9</td>
</tr>
<tr>
<td>(6S,10S)-6,10,14-trimethylpentadecan-2-one [%]</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 3: Asymmetric hydrogenation of \(R,E-\text{THFA}\) and \(R,Z-\text{THFA}\).

*: (6R,10S) and (6S,10S) isomers determined as sum.
Experiment E6a: Preparation of ketals of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (step f).

a) Preparation of dimethyl ketals

(R,E)-6, 10,14-trimethylpentadec-5-en-2-one or (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (170.5 mmol) was added to trimethyl orthoformate (50.8 mL, 49.2 g, 451 mmol, 2.65 eq.) and cooled to 5 °C. Sulfuric acid (96%, 32.3 mg, 0.29 mmol, 0.2 mol%) in MeOH (16 mL) was added within 5 min. Subsequently, the reaction was heated to reflux (65 °C IT) for 3 h. After cooling, thin layer chromatography (TLC) analysis indicated full conversion. NaOMe (0.24 mL of a 25% solution in MeOH) was added to neutralize the acid. The mixture was concentrated in vacuo and subsequently diluted with hexane (50 mL). The developed precipitate was filtered...
off and the filtrate was concentrated. The crude product was purified by distillation, furnishing the desired dimethyl ketal.

b) Preparation of neopentyl glycol ketals

(R,E)-6,10,14-trimethylpentadec-5-en-2-one or (R,Z)-6,10,14-trimethylpentadec-5-en-2-one (90.7 mmol), 2,2-dimethyl-1,3-propanediol (neopentylglycol, 32.4 g, 283 mmol, 3.4 eq.) and p-toluene sulfonic acid monohydrate (60 mg, 0.31 mmol, 0.3 mol%) were suspended in toluene (300 mL). The reaction was heated to 90 °C upon which a homogeneous solution formed. Subsequently, at 75 °C, vacuum was applied cautiously (first 63 mbar, then 24 mbar) in order to slowly distill toluene off (approx. 100 mL over 4 h). After 4 h, thin layer chromatography (TLC) analysis indicated full conversion of the ketone. The reaction was allowed to cool to room temperature and diluted with heptane (300 mL) upon which excess neopentylglycol precipitated. The precipitate was filtered off (17.4 g wet). The filtrate was treated with Et3N (1 mL), subsequently washed with aqueous NaHCO₃ solution (2.4% w/w, 2 x 300 mL), dried over MgSO₄ and concentrated in vacuo. The crude product was purified by distillation, furnishing the desired neopentyl ketal.

<table>
<thead>
<tr>
<th>Ketone</th>
<th>R-E-THFA-DM</th>
<th>R-Z-THFA-DM</th>
<th>R-E-THFA-neo</th>
<th>R-Z-THFA-neo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R,E)-6,10,14-trimethylpentadec-5-en-2-one</td>
<td>(R,Z)-6,10,14-trimethylpentadec-5-en-2-one</td>
<td>(R,E)-6,10,14-trimethylpentadec-5-en-2-one</td>
<td>(R,Z)-6,10,14-trimethylpentadec-5-en-2-one</td>
<td></td>
</tr>
<tr>
<td>(R,E)-2,2,2-dimethyloxy-6,10,14-trimethylpentadec-5-ene</td>
<td>(R,Z)-2,2,2-dimethyloxy-6,10,14-trimethylpentadec-5-ene</td>
<td>(R,E)-2,5,5,5-trimethyl-2-(4,8,12-trimethyltridec-3-en-1-yl)-1,3-dioxane</td>
<td>(R,Z)-2,5,5,5-trimethyl-2-(4,8,12-trimethyltridec-3-en-1-yl)-1,3-dioxane</td>
<td></td>
</tr>
<tr>
<td>Yield [%]</td>
<td>92</td>
<td>87</td>
<td>83</td>
<td>86</td>
</tr>
<tr>
<td>E/Z</td>
<td>99.5/0.5</td>
<td>3.6/96.4</td>
<td>99.8/0.2</td>
<td>4/96</td>
</tr>
</tbody>
</table>

Tab. 3a: Preparation of dimethyl and neopentyl glycol ketals of 6,10,14-trimethylpentadec-5-en-2-one.
Characterization data:

(R,E)-2.2-dimethoxy-6.10.14-trimethylpentadec-5-ene (R-E-THFA-DM)

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 0.84 (d, J = 6.6 Hz, 3 H), superimposed by 0.86 (d, J = 6.6 Hz, 6 H), 0.99-1.44 (m, 11 H), superimposed by 1.28 (s, 3 H), 1.52 (tqq, J = 6.6, 6.6, 6.6 Hz, 1 H), 1.60 (s, 3 H), 1.60-1.66 (m, 2 H), 1.90-2.05 (m, 4 H), 3.18 (s, 6 H), 5.10 (tq, J = 7.1, 1.1 Hz, 1 H) ppm.

\(^1^3\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 16.3 (1 C), 20.1 (1 C), 21.3 (1 C), 23.0 (1 C), 23.1 (1 C), 23.2 (1 C), 25.2 (1 C), 25.7 (1 C), 28.4 (1 C), 33.1 (1 C), 36.9 (1 C), 37.1 (1 C), 37.7 (1 C), 39.8 (1 C), 40.3 (1 C), 48.4 (2 C), 101.9 (1 C), 124.0 (1 C), 136.0 (1 C) ppm.

MS (Ei, m/z): No GC-MS was obtained due to decomposition on the column.

IR (cm\(^{-1}\)): 2952 (m), 2927 (s), 2869 (m), 2828 (w), 1461 (m), 1377 (m), 1301 (w), 1262 (m), 1222 (m), 1197 (m), 1172 (m), 1120 (m), 1101 (m), 1076 (m), 1054 (s), 930 (w), 854 (m), 737 (w), 620 (w).

(R,Z)-2.2-dimethoxy-6.10.14-trimethylpentadec-5-ene (R-Z-THFA-DM)

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 0.85 (d, J = 6.4 Hz, 3 H), superimposed by 0.87 (d, J = 6.5 Hz, 6 H), 1.01-1.27 (m, 7 H), 1.28 (s, 3 H), 1.29-1.44 (m, 4 H), 1.53 (dq, J = 6.5, 6.5 Hz, 1 H) ppm.

\(^1^3\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 19.7 (1 C), 20.9 (1 C), 22.60 (1 C), 22.69 (1 C), 22.71 (1 C), 23.4 (1 C), 24.8 (1 C), 25.5 (1 C), 28.0 (1 C), 32.0 (1 C), 32.7 (1 C), 36.8 (1 C), 37.0 (1 C), 37.3 (1 C), 39.3 (1 C), 48.0 (2 C), 101.5 (1 C), 124.3 (1 C), 135.9 (1 C) ppm.

MS (Ei, m/z): No GC-MS was obtained due to decomposition on the column.

IR (cm\(^{-1}\)): 2952 (m), 2927 (m), 2869 (m), 2828 (w), 1462 (m), 1376 (m), 1301 (w), 1261 (w), 1197 (w), 1172 (m), 1119 (m), 1098 (m), 1074 (m), 1054 (s), 1022 (w), 854 (m), 736 (w), 622 (w).

(R,E)-2.5.5-trimethyl-2-(4.8.12-thmethyltridec-3-en-1-yl)-1.3-dioxane (R-E-THFA-neo)

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 0.84 (d, J = 6.4 Hz, 3 H), 0.86 (d, J = 6.6 Hz, 6 H), 0.92 (s, 3 H), 0.99 (s, 3 H), superimposed by 0.97-1.44 (m, 11 H), superimposed
by 1.37 (s, 3 H), 1.52 (qqt, J = 6.9, 6.9, 6.9 Hz, 1 H), 1.60 (s, 3 H), 1.67-1.76 (m, 2 H), 1.93 (t, J = 7.4 Hz, 2 H), 2.03-2.18 (m, 2 H), AB signal (δ_A = 3.45, δ_B = 3.52, J_AB = 11.4 Hz, 4 H), 5.12 (tq, J = 7.2, 1.0 Hz, 1 H) ppm.

13C NMR (75 MHz, CDCl3): δ 15.8 (1 C), 19.7 (1 C), 20.9 (1 C), 22.0 (1 C), 22.6 (2 C), 22.7 (2 C), 24.8 (1 C), 25.3 (1 C), 27.9 (1 C), 29.9 (1 C), 32.6 (1 C), 36.6 (1 C), 37.3 (1 C), 37.4 (1 C), 39.3 (1 C), 39.9 (1 C), 70.3 (2 C), 98.8 (1 C), 123.8 (1 C), 135.5 (1 C) ppm.

MS (El, m/z): 352 (M+, 4), 337 [(M-CH₂)⁺, 8), 265 (6), 129 (100), 95 (10), 69 (25), 43 (25).

IR (cm⁻¹): 2953 (s), 2926 (s), 2867 (m), 1462 (m), 1394 (w), 1369 (m), 1270 (w), 1249 (m), 1211 (m), 1187 (w), 1119 (s), 1088 (s), 1043 (m), 1021 (m), 951 (w), 925 (w), 907 (w), 862 (m), 791 (w), 738 (w), 678 (w).

(R.ZV2.5.5-trimethyl-2-(4.8.12-trimethyltridec-3-en-1-vl)-1,3-dioxane) (R-Z-THFA-neo)

1H NMR (300 MHz, CDCl3): δ 0.84 (d, J = 6.4 Hz, 3 H), superimposed by 0.86 (d, J = 6.6 Hz, 6 H), 0.93 (s, 3 H), 0.97 (s, 3 H), 1.00-1.42 (m, 11 H), superimposed by 1.36 (s, 3 H), 1.52 (qqt, J = 6.7, 6.7, 6.7 Hz, 1 H), 1.63-1.76 (m, 2 H), 1.67 (s, 3 H), 1.94-2.15 (m, 4 H), AB signal (δ_A = 3.45, δ_B = 3.51, J_AB = 11.1 Hz, 4 H), 5.12 (t, J = 7.1 Hz, 1 H) ppm.

13C NMR (75 MHz, CDCl3): δ 19.6 (1 C), 21.1 (1 C), 21.9 (1 C), 22.60 (2 C), 22.67 (2 C), 22.69 (1 C), 23.4 (1 C), 24.8 (1 C), 25.4 (1 C), 27.9 (1 C), 29.9 (1 C), 32.0 (1 C), 32.7 (1 C), 36.9 (1 C), 37.3 (1 C), 39.3 (1 C), 70.3 (2 C), 98.8 (1 C), 124.6 (1 C), 135.7 (1 C) ppm.

MS (El, m/z): 352 (M⁺, 3), 337 [(M-CH₂)⁺, 9), 265 (6), 129 (100), 95 (10), 69 (24), 43 (25).

IR (cm⁻¹): 2953 (s), 2926 (s), 2860 (m), 1463 (m), 1394 (w), 1371 (m), 1270 (w), 1250 (w), 1211 (m), 1188 (w), 1117 (s), 1086 (s), 1043 (m), 1022 (w), 951 (w), 925 (w), 907 (w), 855 (m), 792 (w), 737 (w), 667 (w).
Experiment E6b: Asymmetric hydrogenations of ketals of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one.

An autoclave was charged with 0.5 mmol of ketals of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one as indicated in tables 3b and 3c, and with 4 g of the solvent as indicated in tables 3b and 3c and a solution of the chiral iridium complex of formula (III-F) having the chirality given in tables 3b and 3c at the centre indicated by * in said formula in the amount indicated in tables 3b and 3c. The autoclave was closed and a pressure of 30 bar of molecular hydrogen was applied. The reaction mixture was stirred for 16 hours at room temperature. Afterwards the pressure was released and the solvent was removed.

Hydrogenation of (R,E)-6,10,14-trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadec-5-ene yielded (6R,10R)-6,10,14-trimethyl-2,2-bis(2,2,2-trifluoroethoxy)pentadecane using the ir complex of formula (III-F) of the S configuration at the chiral centre marked by *.

The characterization of the hydrogenated ketals is given hereafter.

<table>
<thead>
<tr>
<th>Ketal to be hydrogenated</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula of Ir complex</td>
<td>III-F</td>
<td>III-F</td>
<td>III-F</td>
</tr>
<tr>
<td>Configuration of chiral Ir complex at *</td>
<td>(S)</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>Amount of chiral Ir complex [mol-%]</td>
<td>0.25</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Solvent</td>
<td>DCM</td>
<td>TFE</td>
<td>DCM</td>
</tr>
<tr>
<td>Conversion [%]</td>
<td>>99</td>
<td>>99</td>
<td>>99</td>
</tr>
<tr>
<td>Isomer-Distribution²,³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RR) [%]</td>
<td>90.0</td>
<td>88.7</td>
<td>90.6</td>
</tr>
<tr>
<td>((SS)+(RS)) [%]</td>
<td>8.0</td>
<td>8.7</td>
<td>9.4</td>
</tr>
<tr>
<td>(SR) [%]</td>
<td>2.0</td>
<td>2.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Tab. 3b: Asymmetric hydrogenation of different ketals of (R,E)-6,10,14-trimethylpentadec-5-en-2-one leading to (6R,10R)-6,10,14-trimethylpentadecan-2-one.

Conditions: 0.5 mmol ketal, 4 g solvent, pressure p(H₂)=30 bar, 16 h stirring at room temperature

¹ TFE = 2,2,2-trifluoroethanol; DCM = dichloromethane
² (SS) stands for the (6S,10S)-isomer, (RR) stands for the (6R,10R)-isomer, (SR) stands for the (6S,10R)-isomer, (RS) stands for the (6R,10S)-isomer of the corresponding ketal of 6,10,14-trimethylpentadecan-2-one
³ is determined as ketone after hydrolysis of the ketal
Tab. 3c: Asymmetric hydrogenation of different ketals of (R,Z)-6,10,14-trimethylpentadec-5-en-2-one leading to (6R,10R)-6,10,14-trimethylpentadecan-2-one.
Conditions: 0.5 mmol ketal, 4 g solvent, pressure p(H₂)=30 bar, 16 h stirring at room temperature

1 TFE = 2,2,2-trifluoroethanol; DCM = dichloromethane
2 (SS) stands for the (6S,10S)-isomer, (RR) stands for the (6R,10R)-isomer, (SR) stands for the (6R,10S)-isomer of the corresponding ketal of 6,10,14-trimethylpentadecan-2-one
3 is determined as ketone after hydrolysis of the ketal.

Characterization data:

<Chemical_Structure_1>

<Chemical_Structure_2>

<Chemical_Structure_3>
2.5.5-trimethyl-2-((4R,8R)-4,8,12-trimethyltetradecyl)-1,3-dioxane (RR18-neo)

1H NMR (300 MHz, CDCl$_3$): δ 0.78-0.95 (m, 15 H), 0.95-1.61 (m, 19 H), superimposed by 1.01 (s, 3H), 1.36 (s, 3H), 1.63-1.74 (m, 2 H), AB signal (δ_A = 3.44, δ_B = 3.55, J_{AB} = 11.7 Hz, 4 H) ppm.

13C NMR (75 MHz, CDCl$_3$): δ 19.72 (1 C), 19.74 (1 C), 20.4 (1 C), 20.9 (1 C), 22.56 (1 C), 22.62 (1 C), 22.72 (1 C), 22.77 (1 C), 24.5 (1 C), 24.8 (1 C), 28.0 (1 C), 30.0 (1 C), 32.8 (1 C), 32.8 (1 C), 37.28 (1 C), 37.35 (1 C), 37.42 (2 C), 38.2 (1 C), 39.4 (1 C), 70.3 (2 C), 99.1 (1 C) ppm.

MS (EI, m/z): 339 [(M-CH$_3$)$_2$]+, 83, 269 (5), 129 (100), 69 (21), 43 (18).

IR (cm$^{-1}$): 2952 (s), 2925 (s), 2867 (m), 1463 (m), 1394 (m), 1372 (m), 1258 (m), 1211 (m), 1189 (w), 1141 (w), 1100 (s), 1043 (m), 1020 (m), 951 (w), 925 (w), 907 (m), 858 (m), 792 (w), 737 (w), 677 (w).

Experiment E6c: Hydrolysis of hydrogenated ketals of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one.

After the asymmetric hydrogenation of the corresponding ketals of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one, the hydrogenated ketals obtained were hydrolyzed to the ketone and yielded (6R,10R)-6,10,14-trimethylpentadecan-2-one.

The hydrogenated ketals have been hydrolyzed according to the following methods:

Method 1 - Neopentyl ketals, dimethyl ketals from asymmetric hydrogenation reactions in dichloromethane

A sample of the reaction mixture from the asymmetric hydrogenation reaction (1-2 ml) was stirred with an equal volume of 1M aqueous solution of hydrochloric acid at room temperature for 1 hour. Dichloromethane (2 ml) was added and the layers were separated. The aqueous layer was washed with dichloromethane (2 ml) twice. The combined organic layers were evaporated under reduced pressure to yield the ketone as a colourless to pale-yellow oil. The crude ketone was then analysed for purity and isomer ratio and identified to be (6R,10R)-6,10,14-trimethylpentadecan-2-one.
(Method 2 - Ethylene glycol ketals and dimethyl ketals from asymmetric hydrogenation reactions in trifluoroethanol)

A sample of the reaction mixture from the asymmetric hydrogenation reaction (1-2 ml) was stirred with 0.5 ml of a solution of 9:1:0.2 (by volume) methanol:water:trifluoroacetic acid at 40 °C for 1 hour. Dichloromethane (2 ml) and water (2 ml) were added and the layers were separated. The aqueous layer was washed with dichloromethane (2 ml) twice. The combined organic layers were evaporated under reduced pressure to yield the ketone as a colourless to pale-yellow oil. The crude ketone was then analysed for purity and isomer ratio and identified to be (6R,10R)-6,10,14-trimethylpentadecan-2-one.

Formation of (R,R)-isophytol

Experiment E6-I: Ethynylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one (step g)

(6R,10R)-6,10,14-trimethylpentadecan-2-one (35.0 g, 129 mmol, 1.0 eq., 98.8%) was added to an autoclave equipped with thermostat, dosing pump, acetylene inlet and ammonia inlet. The reactor was sealed, evacuated, then flushed with nitrogen and cooled to 15 °C. Ammonia (715 g, 45.0 mol, 326 eq., 99.8%) was condensed into the reactor and cooled to 15 X, resulting in a pressure of 8-9 bar. Acetylene was introduced until 12 bar was reached, followed by a dosed addition of KOH (40 wt% in water, 5.0 g, 35.6 mmol, 28 mol%) at 15 °C. The reaction progress was monitored by GC. At the desired conversion (after approx. 2 h), the reaction mixture was neutralized with acetic acid, and the reactor was subsequently vented at 25 °C. The reaction mixture was washed and concentrated in vacuo and purified by distillation in vacuo furnishing 26.9 g (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol with a purity of 98.8 area% (70% yield).
Experiment E6-II: Hydrogenation of (6R, 10R)-6, 10, 14-trimethylpentadecan-2-one in the presence of a Lindlar catalyst (step h)

(7R, 11R)-3, 7, 11, 15-tetramethylhexadec-1-en-3-ol (10 g, 33.4 mmol, 98.4 % purity), dissolved in heptane (40 g) and Lindlar catalyst (850 mg) were placed into an autoclave. The reactor was sealed, flushed with nitrogen and subsequently heated to 85 °C. When the desired temperature was reached, the reaction was pressurized with 2 bar hydrogen. The reaction was stirred for approximately 22 hours at this temperature until the required amount of hydrogen gas was consumed. After filtration, the crude product was combined with a second reaction batch. 11.9 g of the crude material was purified by distillation, furnishing 11.1 g of (RR)-isophytol (97.6% purity by GC, 88% overall yield).

Experiment E6-III: Vinylation of (6R, 10R)-6, 10, 14-trimethylpentadecan-2-one (step h’)

A dried 100 mL four-necked flask equipped with overhead stirrer, thermometer, condenser and argon inlet was evacuated and purged with argon. Vinylmagnesium chloride (18.3 mL of a 1.6 M solution in THF, 29.0 mmol, 1.59 eq.) was added at room temperature. A solution of (6R, 10R)-6, 10, 14-trimethylpentadecan-2-one (5.00 g, 18.3 mmol, 98.2%, 1.0 eq.) in dry THF (20 mL) was added slowly within 25 min. The exothermic reaction was maintained between 25 and 30 °C internal temperature by cooling with an ice bath. After complete addition the reaction was allowed to stir at room temperature for 1 h.

Saturated NH₄Cl solution (10 mL) was added carefully to quench excess Grignard reagent. Pentane (150 mL), water (150 mL) and brine (150 mL) was added. The organic phase was extracted with brine (2 x 150 mL) and the aqueous phase was back-extracted with pentane (2 x 150 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo, resulting in a colorless oil (5.58 g). The crude product was purified by vacuum distillation in a Kugelrohr apparatus. The main fraction distilled at 143 °C/3.5x10⁻² mbar, furnishing (R,R)-isophytol (= (7R, 11R)-3, 7, 11, 15-tetramethylhexadec-1-en-3-ol) as colorless oil with a purity of 99.3% (5.271 g, 96% yield).
Experiment El: Formation of (2-ambo)-α-tocopherol (step m)

(R,R)-isophytol (= (7R,11R)-3,7,11,15-tetramethylhexadec-1-en-3-ol) was condensed with 2,3,5-trimethylbenzene-1,4-diol (= 2,3,5-trimethylhydroquinone) in the presence of a condensation catalyst to (2-ambo)-α-tocopherol according to the procedure disclosed in WO 2005/121 115 A1.

Experiment E8: Formation of (2R,4'R,8'R)-α-tocopherol (step n)

(2-ambo)-tt-tocopherol was separated by means of chromatographic separation using a chiral phase. The preparative chromatography yielded (2R,4'R,8'R)-α-tocopherol and (2S,4'R,8'R)-α-tocopherol:

The (2-ambo)-α-tocopherol of experiment E7 was analyzed by HPLC (Column: Daicel Chiracel® OD-H, 250 mm x 4.6 mm; eluent 0.5% ethanol in n-heptane; flow 1 ml/min; detection 220 nm, 2 µl injection. Figure 7b) shows this chromatogram (Retention time 7.2 resp. 8.2 min, 50.2 : 49.2).

A solution of 140 mg (2-ambo)-α-tocopherol in heptane was injected and two peaks with retention time at maximum of 13.4 min (1) (50.1%) and 15.0 min (2) (49.9%) were separated by the preparative HPLC separation. Figure 7a) shows the chromatogram of the preparative HPLC separation.

After evaporation to dryness and dissolution the two collected fractions have been reanalysed on an analytical column (Daicel Chiracel® OD-H, 250 mm x 4.6 mm; eluent 0.5% ethanol in n-heptane; flow 1 ml/min; detection 220 nm, 2 µl injection). Figure 7c), respectively Figure 7d), show the chromatogram of the first fraction, respectively the second fraction. The isomeric ratios of the two isomers (Retention time 7.2 min, resp. 8.2 min) in said fractions are 99.5 : 0.5 (Figure 7c)) and 0.8 : 99.2 (Figure 7d), respectively. Hence, the two isomers have been separation by preparative chromatography almost completely.

The isomers have been identified to be (2R,4'R,8'R)-α-tocopherol (retention time 7.2 min) and (2S,4'R,8'R)-α-tocopherol (retention time 8.2 min).

Experimental details for chromatography of experiment E8:

- 62 -
Preparative separations were performed on an Agilent 1100 series HPLC system consisting of an Agilent 1100 degasser, Agilent 1100 preparative pump, Agilent 1100 diode array detector, Agilent 1100 MPS G2250A autosampler/fraction collector controlled by chemstation/CC-mode software package.

HPLC conditions for preparative separation:
Column: Daicel Chiracel® OD-H, 250 mm x 20 mm; eluent 0.5% isopropanol, 0.2% acetic acid in n-heptane; flow 13 ml/min; detection 220 nm, 400 µl injection.
Claims

1. A process of manufacturing (6R, 10R)-6, 10, 14-trimethylpentadecan-2-one in a multistep synthesis from 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal comprising the steps
 a) providing a mixture of (E)-3,7-dimethyloct-2-enal and (Z)-3,7-dimethylocta-2,6-dienal or a mixture of (E)-3,7-dimethylocta-2,6-dienal and (Z)-3,7-dimethylocta-2,6-dienal;
 b) separating one isomer of 3,7-dimethyloct-2-enal or 3,7-dimethylocta-2,6-dienal from the mixture of step a)
 c) asymmetric hydrogenation using molecular hydrogen in the presence of a chiral iridium complex and yielding (R)-3,7-dimethyloctanal;
 d) chemically transforming (R)-3,7-dimethyloctanal to a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6, 10, 14-trimethylpentadec-5-en-2-one;
 e) separating one isomer of (R)-6,10,14-trimethylpentadec-5-en-2-one from the mixture obtained in step d)
 f) asymmetric hydrogenation using molecular hydrogen in the presence of a chiral iridium complex and yielding (6R,10R)-6, 10, 14-trimethylpentadecan-2-one;

wherein the steps a)-f) are in the order a,b,c,d,e,f.

2. The process according to claim 1 characterized in that before the step c) a step c0) takes place
 c0) forming an acetal of the isomer of 3,7-dimethyloct-2-enal or of the acetal of the isomer of 3,7-dimethylocta-2,6-dienal separated in step b)

and that in step c) the acetal of 3,7-dimethyloct-2-enal or the acetal of 3,7-dimethylocta-2,6-dienal is asymmetrically hydrogenated and after the asymmetric hydrogenation the hydrogenated acetal is hydrolysed to the ketone and yielding (R)-3,7-dimethyloctanal.

3. The process according to claim 1 or 2 characterized in that before the step f) a step f0) takes place
forming an acetal of the isomer of 6,10,14-trimethylpentadec-5-en-2-one separated in step e)

and that in step f) the ketal of 6,10,14-trimethylpentadec-5-en-2-one is asymmetrically hydrogenated and after the asymmetric hydrogenation the hydrogenated ketal is hydrolysed to the ketone and yielding (6R,10R)-6,10,14-trimethylpentadecan-2-one.

4. The process according to any one of the preceding claims characterized in that the asymmetric hydrogenation in step c) and/or in step f) takes place in the presence of an additive which is selected from the group consisting of organic sulfonic acids, transition metal salts of organic sulfonic acids, metal alkoxides, aluminoxanes, alkyl aluminoxanes and B(R)(3-v)(OZ)v;

wherein v stands for 0, 1, 2 or 3 and

R stands for F, a C1-6-alkyl, a halogenated C1-6-alkyl, an aryl or halogenated aryl group; and

Z stands a C1-6-alkyl, a halogenated C1-6-alkyl, an aryl or halogenated aryl group.

5. The process according to any one of the preceding claims characterized in that in step d) the chemical transformation of (R)-3,7-dimethyloctanal to a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one is done by the steps

d1) reacting with acetone to yield (R)-6,10-dimethylundec-3-en-2-one;

d2) hydrogenation of (R)-6,10-dimethylundec-3-en-2-one with molecular hydrogen in the presence of a hydrogenation catalyst to yield (R)-6,10-dimethylundecan-2-one;

followed by either

d3) ethynylation of (R)-6,10-dimethylundecan-2-one using ethyne in the presence of a basic substance to yield (7R)-3,7,11-trimethyldodec-1-yn-3-ol;
d4) hydrogenation of (7R)-3,7,11-trimethyldodec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (7R)-3,7,11-trimethyldodec-1-en-3-ol; or
d3') vinylation of (R)-6,10-dimethylundecan-2-one by addition of a vinyl Grignard reagent to yield (7R)-3,7,11-trimethyldodec-1-en-3-ol; followed by either
d5) reacting (7R)-3,7,11-trimethyldodec-1-en-3-ol with 2-methoxyprop-1-ene to yield a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6, 10,14-trimethylpentadec-5-en-2-one; or
d5') reacting (7R)-3,7,11-trimethyldodec-1-en-3-ol with an alkyl acetoacetate or diketene in the presence of a base and/or an acid to yield a mixture of (R,E)-6,10,14-trimethylpentadec-5-en-2-one and (R,Z)-6,10,14-trimethylpentadec-5-en-2-one.

6. The process according to any one of the preceding claims characterized in that the separation of isomers in step b) and/or e) is done by distillation.

7. The process according to claim 6 characterized in that the distillation is done in the presence of a cis/trans isomerization catalyst.

8. The process according to any one of the preceding claims 1-6 characterized in that the residual isomer is isomerized by means of a cis/trans isomerization catalyst and added to the corresponding mixture of isomers provided by steps a) resp. d).

9. The process according to any one of the preceding claims characterized in that the chiral iridium complex in steps c) and/or f) is a chiral iridium complex of formula (III-0).
wherein

P-Q-N stands for a chelating organic ligand comprising a stereogenic centre or has planar or axial chirality and has a nitrogen and phosphorous atom as binding site to the iridium centre of the complex;

\(Y^1, Y^2, Y^3 \text{ and } Y^4 \) independently from each other are hydrogen atoms, \(C_{1-12} \) alkyl, \(C_{5,10}\)-cycloalkyl, or aromatic group; or at least two of them form together at least a two-valent bridged group of at least 2 carbon atoms; and

\(Y^{(i)} \) is an anion, particularly selected from the group consisting of halide, \(PF_6^- \), \(SbFe^- \), tetra(3,5-bis(trifluoromethyl)phenyl)borate \((BAr^-)_4 \), \(BF_4^- \), perfluorinated sulfonates, preferably \(F3C-SO3^- \) or \(F9C4-SO3^- \); \(Cl0^- \), \(Al(OC_{6}F_{5})_4^- \), \(Al(OC(CF_{3})_{3})_4^- \), \(N(SO_{2}CF_{3})_2^- \), \(N(SO_{2}CF_9)_2^- \) and \(B(C_6F_5)_4^- \).

10. The process according to any one of the preceding claims 1-8 characterized in that the chiral iridium complex in steps c) and/or f) is a chiral iridium complex of formula (III)

wherein

n is 1 or 2 or 3, preferred 1 or 2;

\(X^1 \) and \(X^2 \) are independently from each other hydrogen atoms, \(C_{1-4} \)-alkyl, \(C_{5-7} \)-cycloalkyl, adamantyl, phenyl (optionally substituted with one to three \(C_{1-5} \) alkyl, \(C_{1-4} \)-alkoxy, \(C_{1-4} \)-perfluoroalkyl groups and/or one to five halogen atoms)), benzyl, 1-naphthyl, 2-naphthyl, 2-furyl or ferrocenyl;
Z¹ and Z² are independently from each other hydrogen atoms, C₅₋-alkyl or C₅₋-alkoxy groups;
or Z¹ and Z² stand together for a bridging group forming a 5 or 6 membered ring;

Y⁰ is an anion, particularly selected from the group consisting of halide, PF₆⁻, SbF₆⁻, tetra(3,5-bis(trifluoromethyl)phenyl)borate(BArF), BF₄⁻, perfluorinated sulfonates, preferably F₃C-SO₃⁻ or F₉C₄-SO₃⁻; ClO₄⁻, Al(OF₅C₆)₄⁻, Al(O(CF₃)₃)₄⁻, N(SO₂CF₃)₂⁻ N(SO₂C₄F₉)₂⁻ and B(C₆F₅)₄⁻;

R¹ represents either phenyl or o-tolyl or m-tolyl or p-tolyl or a group of formula (IVa) or (IVb) or (IVc)

wherein R² and R³ represent either both H or a Ci-C₄₋-alkyl group or a halogenated Ci-C₄₋-alkyl group or represent a divalent group forming together a 6-membered cycloaliphatic or an aromatic ring which optionally is substituted by halogens atoms or by CrC₄₋-alkyl groups or by C₆₋-C₄₋-alkoxy groups

R⁴ and R⁵ represent either both H or a Ci-C₄₋-alkyl group or a halogenated Ci-C₄₋-alkyl group or a divalent group forming together a 6-membered cycloaliphatic or an aromatic ring which optionally is substituted by halogens atoms or by Ci-C₄₋-alkyl groups or by Ci-C₄₋-alkoxy groups;

R⁶ and R⁷ and R⁸ represent each a Ci-C₄₋-alkyl group or a halogenated C₆₋-C₄₋-alkyl group;

R⁹ and R₁₀ represent either both H or a CrC₄₋-alkyl group or a halogenated Ci-C₄₋-alkyl group or a divalent group forming together a 6-membered cycloaliphatic or an aromatic ring which optionally is substituted by halogens atoms or by C₆₋-C₄₋-alkyl groups or by C₆₋-C₄₋-alkoxy groups;
and wherein * represents a stereogenic centre of the complex of formula (III).

11. The process according to claim 10 characterized in that the chiral iridium complex of formula (III) used in step c) and/or f) used for the asymmetric hydrogenation has the S-configuration at the stereogenic centre indicated by * in case (E)-3,7-dimethyloct-2-enal or (E)-3,7-dimethylocta-2,6-dienal, or acetals thereof, or (R,E)-6,10,14-trimethylpentadec-5-en-2-one, or ketals thereof, is to be hydrogenated;

or has the R-configuration at the stereogenic centre indicated by * in case (Z)-3,7-dimethyloct-2-enal or (Z)-3,7-dimethylocta-2,6-dienal, or acetals thereof, or (R,Z)-6,10,14-trimethylpentadec-5-en-2-one, or ketals thereof, is to be hydrogenated.

12. A process of manufacturing (R,R)-isophytol ((3RS,7R,1R)-3,7,11,15-tetramethylhexadec-1-en-3-ol) comprising a process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one as described in the process according any one of the preceding claims 1-11; followed by the steps either

g) ethynylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one using ethyne in the presence of a basic substance to yield (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol;

h) hydrogenation of (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (R,R)-isophytol;
or

h') vinylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one by addition of a vinyl Grignard reagent to yield (R,R)-isophytol.

13. A process of manufacturing compound of formula (V) comprising a process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one as described in the process according any one of the preceding claims 1-11;
followed by the steps

either

g) ethynylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one using ethyne in the presence of a basic substance to yield (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol;

h) hydrogenation of (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (R,R)-isophytol;

or

h') vinylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one by addition of a vinyl Grignard reagent to yield (R,R)-isophytol;

followed by the steps

m) condensing (R,R)-isophytol with compound of formula (VI) to yield compound of formula (V) being an isomeric mixture in view of the chirality at the centre indicated by #;

wherein # represents a stereogenic centre.

14. A process of manufacturing compound of formula (V-A) comprising a process of manufacturing (6R,10R)-6,10,14-trimethylpentadecan-2-one as described in the process according any one of the preceding claims 1-11; followed by the steps either
g) ethynylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one using ethyne in the presence of a basic substance to yield (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol;

h) hydrogenation of (7R,11R)-3,7,11,15-tetramethylhexadec-1-yn-3-ol with molecular hydrogen in the presence of a Lindlar catalyst to yield (R,R)-isophytol;

or

h') vinylation of (6R,10R)-6,10,14-trimethylpentadecan-2-one by addition of a vinyl Grignard reagent to yield (R,R)-isophytol;

followed by the steps

m) condensing (R,R)-isophytol with compound of formula (VI) to yield compound of formula (V) being an isomeric mixture in view of the chirality at the centre indicated by #;

wherein # represents a stereogenic chiral centre;

and

n) isolating compound of formula (V-A) form the from the isomeric mixture of formula (V)

15. Composition comprising
- 72 -

- at least one acetal or ketal of formula (XI) or (XII) and
- at least one chiral iridium complex

![Chemical structures](image)

wherein a wavy line represents a carbon-carbon bond which is linked to the adjacent carbon-carbon double bond so as to have said carbon-carbon double bond either in the Z or in the E-configuration;

and wherein the double bond having dotted lines (-----) in formula (XII) represent either a single carbon-carbon bond or a double carbon-carbon bond;

and wherein ◆ represents a stereogenic centre;

and wherein Q¹ and Q² stand either individually or both for a C₁-C₁₀ alkyl group or a halogenated C₁-C₁₀ alkyl group;

or form together a C₂-C₆ alkylene group or a C₆-C₈ cycloalkylene group.

16. Acetal or ketal of formula (XX-A) or (XX-B) or (XX-C) or (XX-D) or (XX-E)
wherein the double bond having dotted lines (— —) in the above formulae represents either a single carbon-carbon bond or a double carbon-carbon bond; and

wherein a wavy line represents a carbon-carbon bond which is linked to an adjacent single carbon bond (— — representing —) or to an adjacent carbon-carbon double bond (— — representing —) so as to have said carbon-carbon double bond either in the Z or in the E-configuration.

and wherein

Q¹ and Q² stand either individually or both for a C₁-C₁₀ alkyl group or a halogenated C₁-C₁₀ alkyl group;

or form together a C₂-C₆ alkylene group or a Ce-Ce cycloalkylene group;

with the exception of 1,1-dimethoxy-3,7-dimethyloct-2-ene.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 7

(E-R-III) → \(f_0 \) → (E-R-IIIK) → \(f \) → \(H_2/(S\text{-Ir-complex}) \) (cat) → (R-IVK) → \(f' \) → \(H^+ \) → (R-IV)

(Z-R-III) → \(f_0 \) → (Z-R-IIIK) → \(f \) → \(H_2/(R\text{-Ir-complex}) \) (cat) → (R-IVK) → \(f' \) → \(H^+ \) → (R-IV)
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2013/077184

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07C45/82 C07C45/62 C07C45/67 C07C45/74 C07C29/42 C07C29/17 C07C29/40

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- C07C
- C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

B. FIELDS SEARCHED

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal
- WPI Data
- CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TAKANO ET AL.: "An Enantiomercial led Synthesis of Phytol by Reiteration' Appli(\text{i})cati on of the Chi(\text{r})al 3-Hydroxaldehyde Formati on Reacti on", SYNLETT, no. 4, 1991, pages 279-282, XP002695186, Reacti on sequence cpd. 19 to cpd. 34 ---- ---- ----</td>
<td>1-16</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- **A**: document defining the general state of the art which is not considered to be of particular relevance
- **E**: earlier application or patent but published on or after the international filing date
- **L**: document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified)
- **O**: document referring to an oral disclosure, use, exhibition or other means
- **P**: document published prior to the international filing date but later than the priority date claimed

Date of actual completion of the international search

7 April 2014

Date of mailing of the international search report

24/04/2014

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV RIJSWIJK

Tel. (+31-70) 340-2040,

Fax. (+31-70) 340-3016

Authorized officer

Fri t z, Marti n
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>US 4292459</td>
<td>A</td>
<td>29-09 - 1981</td>
</tr>
</tbody>
</table>