
US008583757B2 

(12) United States Patent (10) Patent No.: US 8,583,757 B2 
Takaoka et al. (45) Date of Patent: Nov. 12, 2013 

(54) DATA PROCESSING METHOD AND 2010/0095303 A1 4/2010 Archer et al. 
COMPUTER SYSTEM 2010, 0131545 A1 5/2010 Srivastava et al. ............ 707/769 

2011/0161294 A1* 6/2011 Vengerov et al. . 707,637 
ck 

(75) Inventors: Nobumitsu Takaoka, Sagamihara (JP); 2012fOO16901 A1 1/2012 Agarwal et al. ............... 707/769 
Masaaki Iwasaki, Tachikawa (JP); FOREIGN PATENT DOCUMENTS 
Naoki Utsunomiya, Machida (JP); 
Yoshiki Kano, Yokohama (JP) JP 2000-330959 11, 2000 

(73) Assignee: Hitachi, Ltd., Tokyo (JP) OTHER PUBLICATIONS 

(*) Notice: Subject to any disclaimer, the term of this Apache architecture and design specification The Hadoop Distrib 
patent is extended or adjusted under 35 uted File System: Architecture and Design (copyright 2007) to 
U.S.C. 154(b) by 562 days. Borthakur. (“Borthakur’).* 

Specification Hadoop Documentation Release 0.2.2 (2009): URL: 
(21) Appl. No.: 12/810,707 http://hadoop.apache.org/docs/r0.22.0/) to Hadoop. ("Hadoop').* 
(22) PCT Filed: May 31, 2010 Technical user guide Amazon Elastic MapReduce Developer Guide 

API version (Nov. 30, 2009) to Amazon Web Services (AWS). 
(86). PCT No.: PCT/UP2O1 O/OO3626 (AWS).* 

VLDB 2009 paper Hive-A warehousing solution over a map-reduce 
S 371 (c)(1), framework (2009) to Thusoo et al. (“Thusoo’).* 
(2), (4) Date: Jun. 25, 2010 International Search Report in International Application No. PCT/ 

JP2010/003626 mailed Feb. 25, 2011. 
(87) PCT Pub. No.: WO2011/151852 

PCT Pub. Date: Dec. 8, 2011 * cited by examiner 

(65) Prior Publication Data Primary Examiner — Phuoc Nguyen 
US 2011 FO295968A1 Dec. 1, 2011 Assistant Examiner — June Sison 

(51) Int. Cl. (74) Attorney, Agent, or Firm — Brundidge & Stanger, P.C. 
G06F 5/67 (2006.01) 

(52) U.S. Cl. (57) ABSTRACT 
USPC ........................................... 709/213; 709/217 

(58) Field of Classification Search A technique for increasing the speed of data entry into a 
USPC .......................................................... 709/213 distributed processing platform is provided. According to a 
See application file for complete search history. computer system of the present invention, when data is 

entered into each node in a distributed manner, the most 
(56) References Cited efficient entry method (a method with the highest processing 

speed) is selected from among a plurality of entry methods, so 
U.S. PATENT DOCUMENTS that the data is entered into each node with no overlaps in 

6,567.806 B1 5, 2003 TSuchida et al. accordance with the selected method. 
7,475,199 B1 1/2009 Bobbitt et al. 
7.917.495 B1* 3/2011 Chapman et al. ............. 707/713 

2005, OO 10682 A1 1/2005 Amir et al. 15 Claims, 18 Drawing Sheets 

  



U.S. Patent Nov. 12, 2013 Sheet 1 of 18 US 8,583,757 B2 

FIG. 1 

Management 
Server 

Local Area Network 

Data Entry 
Server 

Storage Device 

    

    

  



U.S. Patent Nov. 12, 2013 Sheet 2 of 18 US 8,583,757 B2 

FIG. 2 

12 Network I/F 

13 Processor 

14 Storage Network I/F 

Storage Area Network (SAN) 

    

  



U.S. Patent Nov. 12, 2013 Sheet 3 of 18 US 8,583,757 B2 

FIG. 3 

DBM Program LAN Throughput Information 

Data Entry Instruction Volume Throughput 
Processing Program Information 

Estimate Computation SANThroughput Information 
Execution Program 

Entry Method Selection DB Configuration Information Program 

Data Translation Program 

Entry Method Execution 
Program 

Operating System 

101 108 

102 109 

103 110 

104 111 

105 

106 

107 

    

    

    

  

  



U.S. Patent Nov. 12, 2013 Sheet 4 of 18 US 8,583,757 B2 

FIG. 4 

32 

33 Processor 

Local Disk 
34 Storage Network I/F 

Storage Area Network 

  

  

    

  

  

  



U.S. Patent Nov. 12, 2013 Sheet 5 of 18 US 8,583,757 B2 

FIG. 5 

301 DBM Program 

Split Data Entry Request 
Processing Program 

303 Direct Read Program Data Translation Program 307 

Distributed Processing 
304 Execution Program 

Distributed File System 
305 Management Program 

3O6 Operating System 

  



U.S. Patent Nov. 12, 2013 Sheet 6 of 18 US 8,583,757 B2 

FIG. 6 

Storage Area Network 

25 

Storage Network IVF 24 

23 Processor 

21 

22 Disk Controller 

Disk Disk Disk 
Device Device Device 

26 26 26 

  

    

  

    

  



U.S. Patent Nov. 12, 2013 Sheet 7 of 18 US 8,583,757 B2 

FIG. 7 

Device 

29 

2901 2902 2903 2904 

    

      

  

  

  



U.S. Patent Nov. 12, 2013 Sheet 8 of 18 

FIG. 9 

Management 
Server 

Data Entry 
Request 

900 

Data Entry 
Server 

Storage Device 

US 8,583,757 B2 

Local Area Network 

  

  



U.S. Patent Nov. 12, 2013 Sheet 9 of 18 US 8,583,757 B2 

FIG. 10 

Management 
Server 

Data Entry 
Request Local Area Network 

900 

Data Entry 
Server 

Storage Device 

  

  

  



U.S. Patent Nov. 12, 2013 Sheet 10 of 18 US 8,583,757 B2 

FIG 11 

4. 
Management 10 

Server 
- 

Data Ent 6 
Request ry 934 

q Local Area Network 
A 

900 

Data Entry Node Node Node 
Server 

st storage Area.Network Cit 

Storage Device 

  

  

  

    

  

  



U.S. Patent Nov. 12, 2013 Sheet 11 of 18 US 8,583,757 B2 

FIG. 12 

Start Entry Method Selection 1000 

Estimate Direct Read 1001 
Time (T1) 

Estimate Time (T2) 
Required for Data Entry 
Server to Enter Data 

10O2 

Select Entry Method with 
Data Entry Server 

1004 1005 Select Entry Method by 
Direct Reading 

End Entry Method Selection 1006 

  

  

  

  

  



U.S. Patent Nov. 12, 2013 Sheet 12 of 18 US 8,583,757 B2 

FIG. 13 

1100 Start Estimation of Direct Read 
Time 

1101 

Record 
Identifiers 
Usable? 

NO 

Estimate Time Required 
to Execute Entry Method 
Using Record Identifiers 

End Estimation of Direct Read 1104 
Time 

Estimate Time Required 
to Read Data with 
Individual Nodes 

103 

    

  

  

  

  

  

  



U.S. Patent Nov. 12, 2013 Sheet 13 of 18 US 8,583,757 B2 

FIG. 14 

Start Estimation of Time 
Required to Execute Entry 
Method Using Record 

Identifiers 
Calculate Total Volume of 
Data to be Read by Nodes 

(MS=NRSR) 
1208 

Obtain Size of Column (SC) to 
be Read Calculate Time Required for 

Nodes to Read Records to be 
Processed (T1 A-MS/TH V) 

1209 

Obtain Number of Records (R) Obtain Size (I) of Record 1210 
Identifiers 

Calculate Data Volume 
Necessary to Identify Records 

(C=SC*R) 

Calculate Total Volume of 
Record Identifiers to be Sent to 

Nodes (ML=I*NR) 
21 

Calculate Throughput (THV) Obtain Throughput (TH L) of 
of Data Entry via SAN Data Entry via LAN 

1212 

Calculate Time Required to 
Send Sum of Record 
Identifiers via LAN 
(T1 N=MLITH L) 

Calculate Time Required to 
Read Data Volume C 
(T1 S=C/TH V) 

1213 

Calculate Time Required to 
Execute Entry Method Using 

Record Identifiers 

Obtain Number of Records 
(NR) to be Processed 1214 

Obtain Size of each Record 
(SR) 

End Estimation of Time 215 
Required to Execute Method 
Using Record Identifiers 

  

  

  

    

    

  

  

  

  

      

  

    

  

  

      

    

  

  

      

  



U.S. Patent Nov. 12, 2013 Sheet 14 of 18 US 8,583,757 B2 

FIG. 15 

Start Estimation of Time 
Required for Individual Nodes 

to Read Data 
1300 

Obtain Size of Column (SC) Obtain Number of Records 1306 
to be Read (NR) to be Processed 

Obtain Number of Records 
(R) 

Obtain Size of each Record 
(SR) 

307 

Calculate Data Volume Calculate Total Volume of 
Necessary to Identify Records Data to be Read by Nodes 1308 

(C=SC*R) (MS=NRSR) 

Obtain Throughput (THV) 1309 
Obtain Number of Nodes (N) of Data Entry via SAN 

Calculate Volume of Data to Calculate Time Requited for 
be Read from Logical Volume Nodes to Individually Obtain 1310 

(MD=C*N) Data (T1=(MD+MS),TH V) 

End Estimation of Time 
Required for Individual Nodes 

to Read Data 
13. 

  

  

  

  

    

  

  

  

  

  



U.S. Patent Nov. 12, 2013 Sheet 15 of 18 US 8,583,757 B2 

FIG. 16 

Start Estimation of Time Required for Data 
Entry Server to Enter Data 

Calculate Volume of Data to be Read from Logical Volume 
(MV=MD(N=1)+MS) 

1400 

1401 

Calculate Time Required to Read MV from Logical Volume 
(T2 S=MV/TH V) 

Obtain Number of Records of Data to be Entered into Nodes 

Obtain Size of each Record (SR) 

Calculate Total Volume of Data to be Entered into Nodes 
(ML-NS*SR*X) 

Obtain Throughput (TH L) of Data Entry via LAN 

Calculate Data Transmission Time via LAN 
(T2 L-ML/TH L) 

Calculate Time Required for Data Entry Server to Enter Data 
(T2=(T2 S+T2 L)*Y) 

End Estimation of Time Required for Data 1409 
Entry Server to Enter Data 

1402 

1403 

1404 

1405 

1406 

1407 

1408 

    

  

      

    

  

  

  

  

  

  

    

  



U.S. Patent Nov. 12, 2013 Sheet 16 of 18 US 8,583,757 B2 

FIG. 17 

401 Data Entry 

Data Entry Server Direct Entry 
Total Volume of Data to be 220G 403 
Sent via LAN 

Total Volume of Data to be 200G 404 
Sent via SAN 

Estimated Time 2100S 405 

406 

Conditions: Date=2/1/2010 to 2/28/2010 40 

Option: 

Z, Activate Direct Entry 
421 

422-- Estimate 423 

  



U.S. Patent Nov. 12, 2013 Sheet 17 of 18 US 8,583,757 B2 

FIG. 18 

Management 
Server 

Data Entry 
Request Local Area Network 

900 

Data Entry 
Server 

Storage Area Network 

29b. 

Database 
(Replica) 

Database 
(Replica) 29 

28a. 

Storage Device 

  

  

    

    

  

  

  



U.S. Patent Nov. 12, 2013 Sheet 18 of 18 US 8,583,757 B2 

FIG. 19 

Management 
Server 

Data Entry 
Request Local Area Network 

900 

Storage Area Network 

29b. 

Database 

28b. 

Storage Device 

2a 

29a 

Database 

28a. 

Storage Device 

  

    

  



US 8,583,757 B2 
1. 

DATA PROCESSING METHOD AND 
COMPUTER SYSTEM 

TECHNICAL FIELD 

The present invention relates to a data processing method 
and a computer system, and for example, to a technique for 
entering data to be processed into a distributed processing 
platform which is connected to data storage. 

BACKGROUND ART 

In recent years, parallel processing platforms have been 
developed with which a plurality of computers (hereinafter 
also referred to as nodes) is connected in parallel using a local 
area network (LAN) or the like so that a large volume of data 
can be processed in parallelina short time. For example, there 
is known a parallel processing platform called "Hadoop.” 
Hadoop builds a distributed file system using a plurality of 
computers so that data stored in the distributed file system can 
be subjected to distributed processing. As an example of 
typical applications, creating search indexes is known. 
Hadoop is also considered to be one of the effective methods 
for analyzing a large Volume of data in a short time. To 
implement the Hadoop, however, it is necessary to store data 
in a distributed manner from storage as a precondition to 
performing parallel processing. 
A case in which a large Volume of data is analyzed is 

described below. First, data to be processed is entered into the 
distributed processing platform. This data is obtained by 
extracting data to be analyzed from a data source (e.g., a 
database), which is not included in the distributed processing 
platform, and translating it into a form that can be processed 
by the distributed processing platform. Translation and entry 
of such data are performed by one of the computers that 
constitute the distributed processing platform or by another 
computer. 
The entered data is stored in the distributed file system 

made up of storage devices (e.g., hard disk drives) of com 
puters that constitute the distributed processing platform. At 
this time, the data is divided into blocks of a given size before 
being stored in each computer. Thereafter, each computer 
performs analytical processing to its associated partial data. 
The associated partial data is, in many cases, data that has 
been obtained by dividing the original data into blocks and 
storing each data block in the storage device of each com 
puter. The result of the analytical processing executed by each 
computer is merged again as a single output result by the 
distributed processing platform for storage in the distributed 
file system. 
As one of the distributed processing techniques, there is 

known a technique called a distributed database. For 
example, Patent Literature 1 discloses a method for building 
a database system with a plurality of computers. 

CITATION LIST 

Patent Literature 

PTL 1:JP Patent Publication (Kokai) No. 2000-330959 A 

SUMMARY OF INVENTION 

Technical Problem 

As described above, when data is processed with a distrib 
uted processing platform, the data to be processed should be 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
entered into the distributed processing platform in advance. 
In Such a case, however, if the throughput of a network used 
for the data entry is low, the data entry would take a longtime. 

In the distributed database such as the one described in 
Patent Literature 1, search processing can be executed in 
parallel to the database that has been divided into a plurality 
of segments in advance. However, it is not necessarily the 
case that the source data that should be entered into the 
distributed processing platform is stored in the distributed 
database. 
The present invention has been made in view of the fore 

going, and provides a technique for increasing the speed of 
data entry into a distributed processing platform. 

Solution to Problem 

In order to solve the aforementioned problems, according 
to a computer system of the present invention, when data is 
entered into each node in a distributed manner, the most 
efficient entry method (a method with the highest processing 
speed) is selected from among a plurality of entry methods, so 
that the data can be entered with no overlaps into each node in 
accordance with the selected method. 
More specifically, the data entry server (1) estimates the 

processing time required to execute each of the first and 
second data entry methods, and selects one of the first and 
second data entry methods based on the estimated processing 
time. Then, the data entry server (1) or a plurality of nodes (3) 
executes data entry processing based on the selected data 
entry method. 
The first data entry method herein is a method in which the 

data entry server (1) reads data from the logical volume (28) 
in response to a data entry request from a user, and then 
divides the data into a plurality of blocks and sends the data 
blocks to the plurality of nodes (3) with no overlaps. More 
specifically, the data entry server (1) obtains all or part of data 
in a given column of a database (29) included in the logical 
volume (28), identifies data to be read using the data in the 
column, obtains the identified data from the database (29), 
and distributes the obtained data to the plurality of nodes (3). 

Meanwhile, the second data entry method is a method in 
which the plurality of nodes (3), in response to an instruction 
from the data entry server (1), reads data from the logical 
volume 28 with no overlaps by dividing the data into a plu 
rality of blocks. More specifically, the second data entry 
method includes (i) a method in which the data entry server 
(1) obtains all or part of data in a given column of the database 
(29) included in the logical volume (28), identifies data to be 
read using the data in the column, and sends information on 
the identified data to the plurality of nodes (3), so that the 
plurality of nodes (3) obtains the identified data from the 
database (29), and (ii) a method in which the plurality of 
nodes (3) obtains all or part of data in a given column of the 
database (29) included in the logical volume (28), identifies 
data to be read using the data in the column, and obtains the 
identified data from the database (29). 

Further features of the present invention will become 
apparent from the following embodiments and accompany 
ing drawings for carrying out the present invention. 

Advantageous Effects of Invention 

According to the present invention, an optimal method for 
entering data into a distributed processing platform can be 
selected and executed, whereby the speed of data entry into 



US 8,583,757 B2 
3 

the distributed processing platform can be increased as com 
pared to that of the conventional techniques. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a diagram showing the schematic configuration of 
a computer system 10 in accordance with the first embodi 
ment of the present invention. 

FIG. 2 is a diagram showing the internal configuration of a 
data entry server 1 in accordance with the present invention. 

FIG. 3 is a diagram showing programs and data stored in 
memory 11 of the data entry server 1 in accordance with the 
present invention. 

FIG. 4 is a diagram showing the internal configuration of a 
node 3 of the present invention. 

FIG.5 is a diagram showing programs stored in memory 31 
of the node 3 of the present invention. 

FIG. 6 is a diagram showing the internal configuration of a 
storage device 2 of the present invention. 

FIG. 7 is a diagram showing the relationship between a 
RAID group and logical Volumes of the storage device 2 of 
the present invention. 

FIG. 8 is a diagram showing the configuration of a database 
29 of the present invention. 

FIG.9 is a diagram illustrating a data entry method with the 
data entry server 1. 

FIG. 10 is a diagram illustrating a data entry method using 
record identifiers. 

FIG. 11 is a diagram illustrating a data entry method in 
which the nodes 3 directly access a logical volume 28. 

FIG. 12 is a flow chart illustrating the processing of deter 
mining a data entry method in accordance with the present 
invention. 

FIG. 13 is a flow chart illustrating the processing of calcu 
lating the data entry processing time when the nodes 3 
directly access the logical volume 28 in accordance with the 
present invention. 

FIG. 14 is a flow chart illustrating the processing of calcu 
lating the data entry processing time when record identifiers 
are used in accordance with the present invention. 

FIG. 15 is a flow chart illustrating the processing of calcu 
lating the data entry processing time when record identifiers 
are not used and the nodes 3 directly access the logical Vol 
ume 28 in accordance with the present invention. 

FIG. 16 is a flow chart illustrating the processing of calcu 
lating the data entry processing time of the data entry server 1 
in accordance with the present invention. 

FIG. 17 is a diagram showing a management Screen 40 that 
displays a user interface in accordance with the present inven 
tion. 

FIG. 18 is a diagram showing the schematic configuration 
of the computer system 10 in accordance with the second 
embodiment of the present invention. 

FIG. 19 is a diagram showing the schematic configuration 
of the computer system 10 in accordance with the third 
embodiment of the present invention. 

DESCRIPTION OF EMBODIMENTS 

The present invention discloses a technique for, in the field 
of data storage techniques, increasing the speed of entering 
data to be processed into a distributed processing platform. 

Hereinafter, embodiments of the present invention will be 
described with reference to the accompanying drawings. It 
should be noted that the following embodiments are only 
illustrative for carrying out the present invention and are not 
intended to limit the technical scope of the present invention. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
Structures that are common throughput the drawings are 
assigned the same reference numerals. It should also be noted 
that a “program' as referred to in this specification and draw 
ings is configured to operate such that once a code described 
in the program is read by a processor, the program executes 
given processing. However, it is also possible to implement 
the processing that should be executed by a program as a 
module so that each module can execute given processing. 
Embodiment 1 

(1) First Embodiment 
<Configuration of a Computer System 
FIG. 1 is a diagram showing the schematic configuration of 

a computer system 10 in accordance with this embodiment of 
the present invention. The computer system 10 includes a data 
entry server 1, a storage device 2, a plurality of nodes 3, a 
management server 4, a storage area network (hereinafter, 
SAN) 5, and a local area network (hereinafter, LAN) 6. 
The data entry server 1 and the plurality of nodes 3 are 

connected to the management server 4 via the LAN 6 in a 
mutually communicable manner. In addition, the data entry 
server 1 and the plurality of nodes 3 are connected to the 
storage device 2 via the SAN 5. 
The storage device 2 includes a plurality of logical Volumes 

28. Each logical volume 28 is accessible as a block device 
from the data entry server 1 and the nodes 3 via the SAN 5. 
Each of one or more of the logical volumes 28 has stored 
therein a database that is the source of data to be processed by 
the distributed processing platform (each node). 
The plurality of nodes 3 are computers that constitute the 

distributed processing platform. The data entry server 1 con 
trols a mechanism for entering into the distributed processing 
platform, which is built from the plurality of nodes 3, data to 
be processed by the distributed processing platform. The 
management server 4, in response to a user's request, 
instructs the data entry server 1 to enter the data requested by 
the user into the distributed processing platform. As described 
below, the data entry server 1 supports a plurality of methods 
as the methods for entering data into the distributed process 
ing platform. 
The SAN5 is a FC-SAN using Fibre Channel, an IP-SAN 

using iSCSI, an FCoESAN using FCoE (Fiber Channel over 
Ethernet (Registered Trademark)), or a network using other 
protocols. It should be noted that the LAN 6 can combine the 
function of the SAN 5. 

In the computer system 10 shown in FIG. 1, methods for 
selectively entering, in response to a request, data on the 
database stored in the logical volume 28 into the distributed 
processing platform, which is built from the plurality of nodes 
3, are broadly divided into the two following methods. 
The first method is a method in which the data entry server 

1 accesses the logical Volume 28 to obtain desired data, trans 
lates the form of the obtained data, and enters the data into the 
distributed processing platform. When such a data entry 
method is used, a total processing time required for the data 
entry server 1 to access the logical volume 28 to obtain data 
and to enter the data into the distributed processing platform 
can be long (though Such processing time can be reduced if 
parallel processing is possible). 
The second method is a method in which each node 3 

individually searches the database and obtains data with no 
overlaps. This data entry method will take a long time for the 
nodes 3 to access the logical Volume 28. Although data is not 
sent from the data entry server 1 via the LAN 6, the volume of 
data read from the logical volume 28 could be increased as 
compared to that of the first method because each node 3 



US 8,583,757 B2 
5 

individually searches the database and thus data necessary to 
determine the search conditions is sent with overlaps to each 
node 3. 

According to the present invention, when data is entered 
into the distributed processing platform, the processing time 
required to execute each of the aforementioned methods is 
estimated in advance, so that a data entry method with a 
shorter processing time is selected and executed. 

<Data Entry Serverd 
FIG.2 is a diagram showing the schematic configuration of 

the data entry server 1 in accordance with this embodiment of 
the present invention. The data entry server 1 includes 
memory 11, a network interface (hereinafter, an interface 
shall be referred to as I/F) 12, a processor 13, and a storage 
network I/F 14. Such components are mutually connected via 
an interconnect 17. 
The processor 13 executes various processing using vari 

ous programs and various data stored in the memory 11. The 
network I/F 12 is connected to the LAN 6 via a communica 
tion channel 16 and controls communication performed via 
the LAN 6. The storage network I/F 14 is connected to the 
SAN 5 via a communication channel 15 and controls com 
munication performed via the SAN 5. 
More than one memory 11, processor 13, network I/F 12, 

storage network I/F 14, and communication channels 15 and 
16 can be provided. In addition, the data entry server 1 can be 
provided with a storage device (e.g., a hard disk drive) for 
storing various data. The network I/F 12 can combine the 
function of the storage network I/F 14. 
<Memory Internal Structure of Data Entry Servers 
FIG. 3 is a diagram showing programs and data stored in 

the memory 11 of the data entry server 1 in accordance with 
this embodiment of the present invention. 

The memory 11 has stored therein a DBM (database man 
agement) program 101, a data entry instruction processing 
program 102, an estimate computation execution program 
103, an entry method selection program 104, a data transla 
tion program 105, an entry method execution program 106, an 
operating system 107, LAN throughput information 108, Vol 
ume throughput information 109, SAN throughput informa 
tion 110, and DB configuration information 111. 

The DBM program 101 is a program configured to manage 
the database, and controls data entry into and data output from 
a database 29 (e.g., information shown in the items of FIG. 8) 
stored in the logical volume 28 of the storage device 2. The 
database 29 has stored therein data (source data) that is the 
Source of data to be processed by the distributed processing 
platform. 
The data entry instruction processing program 102 is a 

program configured to receive an instruction from the man 
agement server 14 to enter data into the distributed processing 
platform. 
The estimate computation execution program 103 is a pro 

gram configured to, before data is entered into the distributed 
processing platform (each node), estimate the time required 
to enter the data. The entry method selection program 104 is 
a program configured to determine a data entry method. 
The data translation program 105 is a program configured 

to obtain data stored in the database 29 from the DBM pro 
gram 101 and translate the data into a data form to be pro 
cessed by the distributed processing platform. This is 
because, in order to cause the distributed processing platform 
to process data, it would be necessary to, for example, merge 
the obtained data into a single file by translating the data form 
into a given form, or decompress the compressed data before 
transferring such data to the distributed processing platform. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
The entry method execution program 106 is a program 

configured to execute the method for entering data into the 
distributed processing platform that has been selected by the 
entry method selection program 104. 
The operating system 107 is an operating system program 

configured to control the data entry server 1. 
The LAN throughput information 108 is information 

related to the throughput performance when the data entry 
server 1 enters data into the distributed processing platform 
via the communication channel 16 and the LAN 6. Such a 
value is, for example, 2 Gbps (2 gigabits per second) and can 
be any of the following: a value measured after actually 
entering data into the distributed processing platform in 
advance, a fixed value entered into the management server 
(management computer) 4 by a user, an instantaneous mea 
sured value that is variable, and a mean value thereof. 
The volume throughput information 109 is information 

related to the throughput performance when data is read from 
the logical volume 28 (the volume of data that can be read per 
second). 
As the DB configuration information 111, information 

related to the configuration of the database 29 is stored. 
Examples of the configuration information of the database 29 
herein include the number of records stored in the database 
29, the size (bytes) of each record, and the size (bytes) of each 
column including the records (see FIG. 8). 
<Node> 
FIG. 4 is a diagram showing the schematic configuration of 

each node 3 in accordance with this embodiment of the 
present invention. The node 3 includes memory 31, a network 
I/F 32, a processor 33, a storage network I/F 34, and a local 
disk device 38. Such components are mutually connected via 
an interconnect 37. 
The processor 33 executes various processing using vari 

ous programs and various data stored in the memory 31. The 
network I/F 32 is connected to the LAN 6 via a communica 
tion channel 36 and controls communication performed via 
the LAN 6. The storage network I/F 34 is connected to the 
SAN 5 via a communication channel 35 and controls com 
munication performed via the SAN 5. 
The local disk device 38 has stored therein various pro 

grams to be executed by the node 3 and data necessary to 
execute the programs. The local disk device 38 also has stored 
therein data for building a distributed file system. 

It should be noted that more than one memory 31, proces 
sor 33, network I/F 32, storage network I/F 34, local disk 
device 38, and communication channels 35 and 36 can be 
provided. The network I/F 32 can combine the function of the 
storage network I/F 34. 
<Memory Internal Structure of the Node> 
FIG. 5 is a diagram showing the structure of each program 

and data stored in the memory 31 of the node 3 in accordance 
with this embodiment of the present invention. 
The memory 31 has stored therein a DBM program 301, a 

split data entry request processing program 302, a direct read 
program 303, a distributed processing execution program 
304, a distributed file system management program 305, an 
operating system 306, and a data translation program 307. 
The DBM program 301 is a program configured to manage 

the database as with the DBM program 101, and is used for 
the node 3 to read data stored in the database 29. The DBM 
program 301 is, when each node 3 has received a data read 
instruction (e.g., SQL (Structured Query Language)) from 
the data entry server 1, caused to operate by the processor 33 
based on the instruction. 



US 8,583,757 B2 
7 

The split data entry request processing program 302 is a 
program configured to receive a data entry request sent from 
the data entry server 1. 

The direct read program 303 is a program configured to 
read data to be processed from the database 29 using the DBM 
program 301. 
The distributed processing execution program 304 is a 

program configured to execute distributed processing. This 
program processes data that has been obtained in response to 
an instruction from the data entry server 1, and then writes the 
processing result to the distributed file system (local disk 
device). Accordingly, the processing result is stored in the 
local disk device 38 or is transferred to another node 3. 
The distributed file system management program 305 is a 

program configured to manage the distributed file system. 
With this program, the local disk device 38 (or part of it) 
constitutes a single name space, so that each node 3 and the 
data entry server 1 can refer to files stored in the distributed 
file system. 
The operating system 306 is an operating system program 

configured to control the node 3. 
The data translation program 307 is a program configured 

to translate the data stored in the database 29, which has been 
obtained with the use of the DBM program 301, into a data 
form to be processed by the distributed processing platform 
(the distributed processing execution program 304). It should 
be noted that the data translation program 307 operates upon 
directly receiving data from the database 29. Thus, the data 
translation program 307 may not operate depending on data 
entry methods. 

<Storage Device> 
FIG. 6 is a diagram showing the schematic configuration of 

the storage device 2 in accordance with this embodiment of 
the present invention. The storage device 2 includes memory 
21, a disk controller 22, a processor 23, a storage network I/F 
24, and a plurality of disk devices 26. The memory 21, the 
disk controller 22, the processor 23, and the storage network 
I/F24 are connected with an interconnect 27. The plurality of 
disk devices 26 is connected to the disk controller 22. The 
storage network I/F 24 is connected to the SAN 5 via a 
communication channel 25. 
The memory 21 has stored therein programs to be executed 

by the processor 23 and data used by the programs. The 
memory 21 is also used for each of the processor 23, the disk 
controller 22, and the storage network I/F 24 to mutually 
exchange data. 
The processor 23 executes processing in response to a 

request from a computer connected to the storage device 2 to 
read data from or write data to the logical volume 28 and also 
executes various other processing. 
The disk controller 22 reads data from or writes data to the 

disk devices 26 in response to a request from the processor 23. 
The storage network I/F 24 controls communication 

between the storage device 2 and a computer connected 
thereto. 

The disk device 2 is, for example, a hard disk drive, a solid 
state drive (SSD), or other types of storage devices. 

It should be noted that more than one memory 21, disk 
controller 22, and storage network I/F24 can be provided. 
<RAID Group> 
The storage device 2 has a plurality of disk devices (26a to 

26e) that constitutes a RAID group. RAID is an acronym for 
Redundant Array of Independent Disks, and is widely known 
as a data protection means using a plurality of disk devices. 

FIG. 7 is a diagram showing the configuration of a RAID 
group 27 and the logical volume 28 in the storage device 2. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
The RAID group 27 includes a plurality of disk devices 26 

(26a to 26e). A combination of the plurality of disk devices 26 
constitutes a single storage capacity. It is assumed herein that 
the RAID group 27 is built with the RAID level 5 redundancy 
method. 
The logical volumes 28 (28a and 28b) divide the storage 

capacity of the RAID group 27 and constitute a single storage 
capacity. Herein, as the logical volumes 28a and 28b are 
included in the single RAID group 27, the throughput of the 
logical volumes 28a and 28b corresponds to the throughput of 
the RAID group 27. 

<Configuration of Databased 
FIG. 8 is a diagram showing an exemplary configuration of 

the database 29 stored in the logical volume 28 in accordance 
with this embodiment of the present invention. In this 
embodiment, a database for storing observed data (e.g., tem 
perature data) of various devices (e.g., computers or storage 
in a data center) that are operated in a given computer center 
is used, for example. Although the database is analyzed from 
various aspects to predicta device failure or to select a newly 
introduced device, the present invention is not limited thereto. 
The database 29 has stored therein a single table including 

four columns, for example. In the first column 2901 of the 
database 29, the date and time of observation are stored. In the 
second column 2902, an identifier of the observed device is 
stored. In the third column 2903, an identifier of a sensor (e.g., 
a temperature sensor or a vibration sensor) installed on the 
device is stored. In the fourth column 2904, a value read from 
the sensor is stored. 

<Types of Data Entry Methods 
Hereinafter, a method for entering data into the distributed 

processing platform as used in this embodiment will be 
described. In this embodiment, the three following data entry 
methods are provided, for example, and a method with the 
highest processing speed is selected from among Such meth 
ods. However, it is also possible to select two of the three 
methods or to add another method and select an entry method 
with the highest processing speed from among the four meth 
ods. 

(i) Method for entering data into the distributed file system 
with the data entry server 1 

(ii) Method for entering data using record identifiers 
(iii) Method for entering data by directly reading the data 

base 29 with each node 3 
Hereinafter, each method will be described in detail. 
<Entry Method with the Data Entry Serverd 
FIG. 9 is a diagram illustrating a method for entering data 

into the distributed file system with the data entry server 1 in 
accordance with this embodiment of the present invention. In 
this method, the data entry server 1 searches the database 29 
for data requested to be entered and obtains the data, and then 
enters such data into the distributed file system. A column of 
the database 29 to be searched is determined by analyzing a 
data entry request 900. Described hereinafter is a case in 
which a column 911 is determined to be the column to be 
searched. 

First, the data entry server 1 obtains all records in the 
column 911 of the database 29 (a data flow 914), and selects 
records that meet the conditions specified by the data entry 
request 900 (e.g., conditions such as “observed data of a given 
PC obtained during a given period of time'). In the example 
herein, records 912 and 913 are selected through a search. 

Next, the data entry server 1 obtains the records 912 and 
913 (a data flow 915). 

Finally, the data entry server 1 forms data to be entered into 
the distributed file system based on the obtained records 912 
and 913, and stores the data into each node 3 (a data flow 916). 



US 8,583,757 B2 
9 

Although the example herein shows a case in which two 
records are extracted for descriptive purposes, more than two 
records can be extracted. 

In the data flow 914, the data entry server 1 obtains all 
records in the column 911 from the logical volume 28 in 
which the database 29 is stored. In the data flow 915, the data 
entry server 1 obtains the records 912 and 913 from the 
logical volume 28. Thus, accessing the logical Volume 28 to 
obtain such data takes a long time. 
The data flows 914 and 915 can also be executed in parallel. 

In that case, however, the volume of data read from the logical 
Volume 28 remains the same. 
<Method Using Record Identifiers> 
FIG. 10 is a diagram illustrating a data entry method using 

record identifiers in accordance with this embodiment of the 
present invention. In this method, the data entry server 1, in 
response to the data entry request 900, searches the database 
29 and extracts records that meet the conditions, and then 
obtains identifiers of the records. However, the data entry 
server 1 does not obtain the records. Then, the data entry 
server 1 sends the record identifiers with no overlaps to the 
nodes 3, so that the nodes 3 obtain the records based on the 
record identifiers. The record identifier herein is the identifi 
cation information that is uniquely set for each record stored 
in the database 29. When the database 29 is searched for 
record identifiers as a search condition, desired records can be 
obtained at a fast speed. Described hereinafter is a case in 
which the column 911 is searched as in the aforementioned 
description. 

First, the data entry server 1 obtains all records in the 
column 911 of the database 29 (a data flow 924), and selects 
records that meet the conditions. In the example herein, the 
records 912 and 913 are selected. 

Next, the data entry server 1 obtains record identifiers of 
the selected records. The record identifiers can be stored in a 
data area of the database 29 or in other management areas. In 
Such a case, the data entry server 1 also obtains the record 
identifiers in the data flow 924. 

Further, the data entry server 1 evenly sends the obtained 
record identifiers to the nodes 3 with no overlaps (a data flow 
925). The nodes 3, upon receiving the record identifiers, 
obtain records indicated by the record identifiers (data flows 
926 and 927), and translate the records into a data form to be 
processed, and then start the processing. 
The method in which the data entry server 1 enters data 

(FIG. 9) takes a long processing time as the data to be pro 
cessed is sent via the LAN 6 and the SAN 5, whereas in the 
method using record identifiers (FIG. 10), the processing 
speed can be expected to be increased as the data to be 
processed is not sent via the LAN 6. However, the method 
using record identifiers would take an additional processing 
time for sending the record identifiers in the data flow 925. 

<Direct Read Method Using the Nodes> 
FIG. 11 is a diagram illustrating a data entry method in 

which the nodes 3 directly read the database in accordance 
with this embodiment of the present invention. In this 
method, the data entry server 1 creates from the data entry 
request 900 search conditions for the nodes 3 to read records 
with no overlaps (search conditions based on which the nodes 
3 should execute a search), and sends the search conditions to 
the nodes 3. The nodes 3, upon receiving the search condi 
tions, individually search the database 29 based on the search 
conditions, and obtain records to be processed. 
The data entry server 1, upon receiving the data entry 

request 900, creates search conditions to be sent to the nodes 
3 based on the data entry request 900 so that the nodes 3 will 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
be able to read records with no overlaps. Herein, the range of 
data stored in the column 911 is assigned to each node 3. 
The data entry server 1 sends the created search conditions 

to each node 3 (a data flow 934). 
Then, each node 3 searches the database 29 based on the 

received search conditions. 
To execute a search, each node obtain all records in the 

column 911 (data flows 935 and 936). Through such a search, 
each node identifies a record that meets the conditions and 
reads such record (data flows 937 and 938). According to such 
a method, the column 911 is read by each node 3 with over 
laps. 

<Entry Method Determination Processing> 
FIG. 12 is a flow chart illustrating an overview of the 

processing of determining a data entry method in accordance 
with this embodiment of the present invention. The entry 
method determination processing is executed when the pro 
cessor 13 of the data entry server 1 causes the estimate com 
putation execution program 103 to operate upon receiving a 
data entry request from the management server 4 via the data 
entry instruction processing program 102. The processor 13 
operates the data entry instruction processing program 102 
and transfers the received data entry request to the estimate 
computation execution program 103. The entry method deter 
mination processing starts with step 1000 in accordance with 
the estimate computation execution program 103. 

In step 1001, the processor 13 estimates the time T1 
required for each node to directly read the database as a data 
entry method, and retains the result in the memory 11. This 
processing will be described in detail later. 

In step 1002, the processor 13 estimates the time T2 
required for the data entry server 1 to enter data into the 
distributed processing platform as another data entry method, 
and retains the result in the memory 11. This processing will 
be described in detail later. 

In step 1003, the processor 13 compares the estimated 
times T1 and T2. If the T1 is determined to be shorter than the 
T2 (if the answer to step 1003 is No), the flow proceeds to step 
1005, so that the entry method in which each node 3 directly 
reads the database is selected. If the T1 is determined to be 
longer than the T2 (if the answer to step 1003 is Yes), the flow 
proceeds to step 1004, so that the data entry method with the 
data entry server 1 is selected. Upon termination of the afore 
mentioned processing, the processor 13 terminates the entry 
method determination processing (step 1006). 

Using the entry method determined through the aforemen 
tioned entry method determination processing, the processor 
13 enters the data to be processed into the distributed process 
ing platform (the target nodes 3). 

<Details of the Processing (step 1001) of Estimating the 
Direct Entry Time (T1)> 

FIG. 13 is a flow chart illustrating the details of the pro 
cessing (step 1001) of estimating the time required to execute 
the direct entry processing in accordance with this embodi 
ment of the present invention. 
The present processing starts with step 1100. In step 1101, 

the processor 13 determines if the DBM program 301 of the 
node 3 is able to obtain data stored in the database 29 using 
record identifiers. This is determined by referring to the DBM 
program 101 (the DBM program 101 has the same content as 
the DBM program 301) with the processor 13 or checking if 
DBM configuration information (not shown) has registered 
thereon information indicating whether or not data acquisi 
tion using record identifiers is Supported. 

If record identifiers are determined to be usable (if the 
answer to step 1101 is Yes), the flow proceeds to step 1102, so 
that the processor 13 estimates the time required to execute 



US 8,583,757 B2 
11 

the data entry method using record identifiers (step 1102). 
Step 1102 will be described in detail with reference to FIG. 
14. 

If record identifiers are determined to be not usable (if the 
answer to step 1101 is No), the flow proceeds to step 1103, so 
that the processor 13 estimates the time required for each 
node 3 to individually read data from the database 29 (step 
1103). Step 1103 will be described in detail with reference to 
FIG. 15. 
Upon calculating any of the aforementioned estimated 

times, the processor 13 terminates the processing of estimat 
ing the T1 (step 1104). 

<Processing of Estimating the Time when Record Identi 
fiers are used (Step 1102)> 

FIG. 14 is a flow chart illustrating the details of the pro 
cessing (step 1102) of estimating the time required to execute 
the data entry method using record identifiers in accordance 
with this embodiment of the present invention. 

The present processing starts with step 1200. In the present 
processing, the time required to search for records is calcu 
lated first from the volume of data to be read from the logical 
volume 28 and the throughput of the logical volume 28. 

In step 1201, the processor 13, in order to identify records 
to be entered into the distributed processing platform (any of 
the nodes 3), calculates the size SC (bytes) of a column 
including the records to be read. Such SC is obtained by first 
identifying a column that should be searched based on the 
data entry request 900, and then identifying the size of the 
column with reference to the DB configuration information 
111. 

In step 1202, the processor 13 identifies the number (R) of 
records stored in the database 29 with reference to the DB 
configuration information 111. 

In step 1203, the processor 13 calculates the volume of data 
(C: which corresponds to the data volume of the column 911) 
that needs to be read from the logical volume 28 to execute a 
search to identify records to be entered into the distributed 
processing platform. 

In step 1204, the processor 13 identifies the throughput 
(TH V) of reading data from the logical volume 28 with 
reference to the volume throughput information 109. 

In step 1205, the processor 13 calculates the time (T1 S) 
required to read the data volume C calculated in step 1203 
from the logical volume 28 based on the C and TH V. 

In steps 1206 to 1208, the processor 13 calculates the time 
required for each node 3 to individually read the record to be 
processed based on the volume of data to be read from the 
logical Volume 28 and the throughput of the logical Volume 
28. 

Next, the processor 13 calculates the total processing time 
required for each node 3 to individually read the record to be 
processed. Such time is calculated from the total volume of 
data to be read from the logical volume 28 and the throughput 
of the logical volume 28. 

In step 1206, the processor 13 calculates the approximate 
number of records (NR) to be read. This value is determined 
from the data distribution state of each column identified in 
step 1201 and the extraction conditions of the data to be 
processed that are included in the data entry request 900 sent 
from the management server 4. The data distribution state of 
each column is obtained from the configuration information 
of the database 29 stored as the DB configuration information 
111. For example, if the data to be processed is data on all 
devices for a given month, the processor 13 calculates the 
number of records accumulated in one month by extracting 
the number of sensors and the values of the sensors stored in 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
the database 29 with reference to the DB configuration infor 
mation 111 and obtaining intervals of data stored in the data 
base 29. 

In step 1207, the processor 13 obtains the size SR (bytes) of 
each record with reference to the DB configuration informa 
tion 111. 

In step 1208, the processor 13 calculates the total volume 
(MS) of data to be read by the nodes 3. This value is the 
product of the aforementioned NR and SR. 

In step 1209, the processor 13 calculates the time (T1 A) 
required for each node 3 to read the record to be processed. 
This value is determined from the aforementioned MS and 
TH V. 

Next, the processor 13 calculates the time required to send 
record identifiers to the nodes. In step 1210, the processor 13 
obtains the size I (bytes) of the record identifiers via the DBM 
program 101. 

In step 1211, the processor 13 calculates the estimated total 
volume (ML) of the record identifiers to be sent to the nodes. 
This value is the product of the aforementioned NR and I. 

In step 1212, the processor 13 obtains the throughput 
(TH L) of entering data via the LAN 6 from the LAN 
throughput information 108. 

In step 1213, the processor 13 determines the time (T1 N) 
required to send the record identifiers via the LAN 6 by 
dividing the total volume ML of the record identifiers deter 
mined in step 1211 by the TH L. 

In step S1214, the processor 13 determines the time T1 
required to execute the method using record identifiers, as the 
sum of the aforementioned T1 S, T1A, and T1 N. Herein, it 
is also possible to further multiply the T1 by an adequate 
coefficient (X) on the assumption that part of T1 S, T1A, 
and T1 N can be processed in parallel. That is, if parallel 
processing can be executed, the processing time required 
therefor can be shorter than the total time of the T1S, T1A, 
and T1 N. Thus, multiplying them by 0.8 or 0.7, for example, 
can calculate the T1 for which the parallel processing is taken 
into account. 

Through the aforementioned processing, the processor 13 
terminates the calculation of the T1 (step 1215). 

<Details of the Processing (Step 1103) of Estimating the 
Direct Read Time (T1)> 

FIG. 15 is a flow chart illustrating the details of the pro 
cessing (step 1103) of estimating the time (T1) required for 
each node 3 to individually access the database 29 and obtain 
the data to be processed. 
The present processing starts with step 1300. In step 1301 

to step 1303, the volume of data (C), which needs to be read 
from the logical volume 28 to search for records, is calcu 
lated. This processing is the same as those in step 1201 to step 
1203. In step 1304, the processor 13 obtains the number (N) 
of the nodes 3. 

Then, in step 1305, the processor 13 calculates the volume 
of data (MD) to be read from the logical volume 28 when each 
node 3 individually executes a search. This can be determined 
from the product of the C and N on the assumption that each 
node refers to the same records. 

In step 1306 to step 1308, the processor 13 calculates the 
total volume (MS) of the records to be read from the database 
29 by the nodes 3. This processing is the same as those in step 
1206 to step 1208. 

In step 1309, the processor 13 obtains the throughput 
(TH V) of reading data from the logical volume 28. This 
processing is the same as that in step 1204. 

In step 1310, the processor 13 estimates the time (T1) 
required for each node 3 to individually obtain data from the 



US 8,583,757 B2 
13 

database 39. This value can be determined by substituting the 
aforementioned MD, MS, and TH V into T1=(MD+MS)/ 
TH V. 

Returning the T1 determined as described above, the pro 
cessor 13 terminates the processing (step S1311). 

<Details of the Processing (Step 1002) of Estimating the 
Server Entry Time (T2)> 

FIG. 16 is a flow chart illustrating the details of the pro 
cessing (step 1002) of estimating the processing time (T2) 
required for the data entry server 1 to obtain data from the 
database 29 and enter the data to be processed into the dis 
tributed processing platform (each node). 

The present processing starts with step 1400. In step 1401, 
the processor 13 calculates the volume of data (MV) to be 
read from the logical volume 28. This value is determined by 
summing the MD calculated in step 1305 and the MS calcu 
lated in step 1308 (MV=MD+MS). 

In step 1402, the processor 13 calculates the time (T2 S) 
required to read the MV. This value is determined by dividing 
the aforementioned MV by the TH V (T2 S=MV/TH V). 

In step 1403, the processor 13 estimates the number of 
records (NS) of data to be entered into the distributed pro 
cessing platform. This processing is the same as those in step 
1206 and 1306. 

In step 1404, the processor 13 obtains the size of each 
record (SR). This processing is the same as those in step 1207 
and step 1307. 

In step 1405, the processor 13 obtains the total volume 
(ML) of data to be entered into the distributed processing 
platform. This value is determined by multiplying the afore 
mentioned NS and SR. It should be noted that when data is 
entered into the distributed processing platform, if data trans 
lation is necessary, the aforementioned value can be further 
multiplied by the increase-decrease rate (X) of the data vol 
ume for the translation. 

In step 1406, the processor 13 obtains the throughput 
(TH L) of entering data into the distributed processing plat 
form via the LAN 6. This processing is the same as that in step 
1212. 

In step 1407, the processor 13 calculates the approximate 
time (T2 L) required to enter the data into the distributed 
processing platform via the LAN 6. The T2 L is determined 
by dividing the ML by the TH L (T2 L=ML/TH L). 

In step 1408, the processor 13 calculates the approximate 
time (T2) required for the data entry server 1 to enter the data 
into the distributed processing platform. The T2 is determined 
as T2 S--T2. L. 

It should be noted that if the data reading from the logical 
Volume 28 and the data transmission via the LAN 6 can be 
performed in parallel, the aforementioned value can be fur 
ther multiplied by a coefficient (Y) for which such parallel 
processing is taken into account. 

Then, the processor 13 returns the obtained T2 and termi 
nates the processing (step 1409). 

<Variation: When Index is Set 
There are cases in which dereference information for 

increasing the search speed is set in the column to be 
searched. Dereference information has a data structure hav 
ing the value of the relevant column as a key and having 
recorded thereon the internal identification information or 
storage position of records. The deference information are 
stored in order of the values of columns. Therefore, it is 
possible to eliminate the need to read all columns having 
records in order to extract a record that meets the search 
conditions. Therefore, the processing speed can be further 
increased. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
Thus, if dereference information is set in the target column, 

in calculation of the volume of data to be read from the logical 
volume 28 to execute a search (steps 1201 to 1203, steps 1301 
to 1303, and step 1401), the number of columns to be read can 
be determined by multiplying the number of records (NR) to 
be read by an adequate coefficient. Such coefficient can differ 
depending on the structure of the deference information used 
in the database 29. 

<Screen of Management Servers 
FIG. 17 is a diagram showing a management Screen 40 of 

the management server (management computer) 4 in accor 
dance with this embodiment of the present invention. The 
management Screen 40 is displayed on a display device Such 
as a monitor connected to the management sever 4, a monitor 
of another computer, or the like. The user can operate the 
management screen 40 using an input device Such as a key 
board or a mouse, and instructs the data entry server 1 to enter 
data into the distributed processing platform. 
On the management screen 40, for example, a table 400, a 

data extraction condition entry area 410, a direct entry vali 
dation button 421, an estimate button 422, and a start button 
423 are displayed. The direct entry validation button 421 
herein is a button to permit all nodes 3 to directly access data 
in the database 29. 
On the table 400, the total volume of data to be sent to the 

distributed processing platform from the data entry server 1 
via the LAN 6 (row 403), the total volume of data to be read 
from the logical volume 28 by the data entry server 1 or the 
nodes 3 (row 404), and a data entry processing time (row 405) 
are displayed in relation to the data entry with the data entry 
server 1 (column 401) and the direct data entry with the nodes 
3 (column 402). In the row 406, a button to select a data entry 
method is displayed. 
The operation of the user using Such a screen will now be 

described. First, the user enters into the data extraction con 
dition entry area 410 the conditions of data to be entered into 
the distributed processing platform. The example herein 
shows a case in which data in the period of February, 2010 is 
entered. 

Thereafter, when the user has pressed the estimate button 
422, the data entry server 1 performs the processing shown in 
FIGS. 12 to 16 to calculate the volume of data to be sent via 
the LAN 6, the volume of data to be sent via the SAN 5, the 
time required to enter the data, and an optimal data entry 
method. Such values are displayed on the table 400 by the 
management server 4. In the example herein, the direct entry 
method with the nodes 3 is selected as the data entry method. 

If the user agrees with Such selection, he/she presses the 
start button 423 to instruct the data entry start. The user can 
also change the data entry method by operating the button 
displayed in the row 406. At this time, the user can activate the 
button 421 so that an access control of the nodes 3 to the 
logical Volume 28 can be automatically set. If data entry start 
is instructed with the button 421 in an active state, the storage 
device 2 and the SAN 6 are set such that each node 3 is able 
to access the logical Volume 28. Such processing can also be 
performed by the data entry server 1 or the management 
server 4. 
Embodiment 2 

(2) Second Embodiment 
FIG. 18 is a diagram showing the schematic configuration 

of the computer system 10 in accordance with the second 
embodiment of the present invention. 

In the second embodiment, the storage device 2 has a 
function of internally replicating a logical Volume, whereby 
the speed of reading the logical volume 28 with the data entry 
server 1 and each node 3 is increased using the replication of 



US 8,583,757 B2 
15 

the logical volume. In this embodiment, in addition to the 
three data entry methods described in the first embodiment, 
another data entry method is provided in which replicas 28a 
and 28b of the logical volume 28 having stored therein the 
database 29 are created prior to the execution of the data entry 
so that each node 3 will read data from the replicas in parallel. 
Although FIG. 18 shows an example in which two replicas of 
the logical Volume are used, the number of replicas can be 
more than two. 

In this embodiment, in addition to the two data entry pro 
cessing times estimated in the first embodiment, the follow 
ing data entry processing times are also estimated. 

T1m: The time required for the nodes 3 to directly enter 
data when replicas of the logical Volume are used. 

T2m: The time required for the data entry server 1 to enter 
data when replicas of the logical Volume are used. 

<Calculation of the Estimated Time and Entry Method 
Selection Processing> 
T2m is calculated as follows. 
(i) The time (TR) required to replicate the logical volume 

28 is calculated first. This value can be calculated from the 
volume of the logical volume 28 and the volume replication 
throughput of the storage device 2. The Volume replication 
throughput can be an actual measured value. If the logical 
volume 28 in the replication destination already includes part 
of the replica of the logical volume 28 (the database 29) in the 
replication source, the time required to replicate the differ 
ence is calculated. 

(ii) In step 1402 in which the time required for the data 
entry server 1 to enter data is estimated as described with 
reference to FIG. 16, the T2 is calculated by replacing the 
throughput (THV) of the logical volume 28 by the total 
throughput (TH V") of the logical volumes 28 in the replica 
tion destination. This T2 is represented as T2'. 

(iii) The aforementioned TR and T2 are summed so that 
T2n=TR-T2. 
TH V represents the total throughput of the RAID group 

that constitutes the logical volumes 28 in the replication des 
tination. If the logical volumes 28 belong to different RAID 
groups, the TH V' corresponds to the total throughput of the 
logical volumes 28 in the replication destinations. It should be 
noted that if the throughput of the communication channel 25 
between the storage device 2 and the SAN5 or the throughput 
of the SAN 5 is lower than the aforementioned TH V', the 
TH V is the throughput of the communication channel 25 or 
the SAN 5. 
T1m is calculated from T1m=TR--T1' where T1' represents 

the T1 that has been calculated by replacing the TH V in step 
1204 of FIG. 14 and in step 1309 of FIG. 15 by the TH V. 
The thus calculated T1m and T2m, and T1 and T2 calcu 

lated in the first embodiment are compared to select a method 
with the shortest estimated processing rime as an entry 
method. 
When direct reading by each node 3 is executed as a result 

of the aforementioned determination, the data entry server 1 
instructs each node 3 to access a given logical Volume 28 so 
that the number of the nodes 3 that access each logical volume 
28 can be made equal. 
Embodiment 3 

(3) Third Embodiment 
FIG. 19 is a diagram showing the schematic configuration 

of the computer system in accordance with the third embodi 
ment of the present invention. 

In the third embodiment, a plurality of storage devices 2a 
and 2b is used. The storage devices 2a and 2b have logical 
volumes 28a and 28b, respectively. The database 29 is 
divided (databases 29a and 29b) for storage in the logical 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
volumes 28a and 28b. Although FIG. 19 shows an example in 
which two storage devices are used, more than two storage 
devices can be used. In addition, the database 29 can be 
divided for storage in more than two logical Volumes. 

In this embodiment, each logical volume 28 can be 
accessed in parallel as in the second embodiment. Thus, the 
T2 is calculated based on the total throughput TH V" of the 
plurality of logical volumes as the throughput TH V of the 
logical volume. It should be noted that when the throughput of 
the access path between the storage devices 2, each node 3. 
and the data entry server 1 including the SAN5 is lower than 
the TH V", the TH V" is the throughput of such access path. 

Then, a method with the shortestestimated processing time 
is selected using the T1 and T2 that have been calculated 
using the TH V". 
When each of the storage devices 2a and 2b has a function 

of replicating the logical Volume 28, a processing time which 
is required when replicas are used can be calculated as in the 
second embodiment so that Such a method can be used as a 
candidate entry method. 

(4) Conclusion 
The present invention can be used as, when a large Volume 

of data is to be processed (e.g., analyzed) using a plurality of 
computer resources, in particular, an efficient method for 
entering the data to be processed into the computer resources. 

In one embodiment of the present invention, the data entry 
server (1) estimates the processing time required to execute 
each of the first and second data entry methods, and selects 
one of the first and second data entry methods based on the 
estimated processing time. Then, the data entry server (1) or 
a plurality of nodes (3) executes data entry processing based 
on the selected data entry method. The first data entry method 
herein is a method in which the data entry server (1) reads data 
from the logical Volume (28) in response to a data entry 
request from a user, and then divides the data into a plurality 
of blocks and sends the data blocks to the plurality of nodes 
(3) with no overlaps. More specifically, the data entry server 
(1) obtains all data in a given column of the database (29) 
included in the logical volume (28), identifies data to be read 
using the data in the column, obtains the identified data from 
the database (29), and distributes the obtained data to the 
plurality of nodes (3). Meanwhile, the second data entry 
method is a method in which the plurality of nodes (3), in 
response to an instruction from the data entry server (1), reads 
data from the logical volume (28) with no overlaps by divid 
ing the data into a plurality of blocks. More specifically, 
examples of the second data entry method include a (i) 
method in which the data entry server (1) obtains all data in a 
given column of the database (29) included in the logical 
volume (28), identifies data to be read using the data in the 
column, and sends information on the identified data to the 
plurality of nodes (3), so that the plurality of nodes (3) obtains 
the identified data from the database (29), and (ii) a method in 
which the plurality of nodes (3) obtains all data in a given 
column of the database (29) included in the logical volume 
(28), identifies data to be read using the data in the column, 
and obtains the identified data from the database (29). By 
executing Such data entry processing, data is entered into the 
distributed platform (each node) after a data entry path with 
the shortest processing time is selected from among various 
data entry paths. Thus, the data entry processing speed can be 
increased. 
The processing time required to execute each of the first, 

second A, and second B data entry methods is estimated using 
the throughput of the SAN (5) and the LAN (6), the through 
put of the logical volume (28), the total volume of data to be 
sent to the plurality of nodes (3), and the total volume of data 



US 8,583,757 B2 
17 

to be read from the logical volume (28). Accordingly, the 
processing time of each method can be accurately estimated. 
When the storage device (2) has replicas (28a and 28b) of 

the logical volume (28) or when the computer system (10) has 
a plurality of storage devices (2a, 2b), the time required to 
read data from the plurality of data storage areas in parallel is 
calculated, so that the processing time is estimated using the 
calculated time. Executing parallel processing allows a fur 
ther increase in the data entry processing speed. 

It should be noted that the present invention can also be 
realized by a program code of Software that implements the 
functions of the embodiments. In Such a case, a storage 
medium having recorded thereon the program code is pro 
vided to a system or an apparatus, and a computer (or a CPU 
or a MPU) in the system or the apparatus reads the program 
code stored in the storage medium. In this case, the program 
code itself read from the storage medium implements the 
functions of the aforementioned embodiments, and the pro 
gram code itself and the storage medium having recorded 
thereon the program code constitute the present invention. As 
the storage medium for Supplying Such a program code, for 
example, a flexible disk, CD-ROM, DVD-ROM, a hard disk, 
an optical disc, a magneto-optical disc, a CD-R, a magnetic 
tape, a non-volatile memory card, ROM, or the like is used. 

Further, based on an instruction of the program code, an OS 
(operating system) running on the computer or the like may 
perform some or all of actual processes, and the functions of 
the aforementioned embodiments may be implemented by 
those processes. Furthermore, after the program code read 
from the storage medium is written to the memory in the 
computer, the CPU or the like of the computer may, based on 
the instruction of the program code, perform some or all of the 
actual processes, and the functions of the aforementioned 
embodiments may be implemented by those processes. 

Moreover, the program code of the software that imple 
ments the functions of the embodiments may be distributed 
via a network, and thereby stored in storage means such as the 
hard disk or the memory in the system or the apparatus, or the 
storage medium such as a CD-RW or the CD-R, and at the 
point of use, the computer (or the CPU or the MPU) in the 
system or the apparatus may read the program code stored in 
the storage means or the storage medium and execute the 
program code. 

REFERENCE SIGNS LIST 

1 Data Entry Server 
2 Storage Device 
3 Node 
4 Management Server 
5 SAN 
6 LAN 

The invention claimed is: 
1. A data processing method of a computer system, the 

computer system including a data entry server, a plurality of 
nodes connected to the data entry server via a first network, 
and a storage device connected to the data entry server and the 
plurality of nodes via a second network, the storage device 
including a logical Volume having stored therein at least data 
as data sources that can be read by each of the plurality of 
nodes, the method comprising: 

causing the data entry server to estimate a processing time 
required to execute each of first and second data entry 
methods, and to select one of the first and second data 
entry methods based on the estimated processing time; 
and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
causing the data entry server or the plurality of nodes to 

execute data entry processing based on the selected data 
entry method, 

wherein the first data entry method is a method in which the 
data entry server reads data from the logical Volume, 
divides the data into a plurality of blocks, and sends the 
data blocks to the plurality of nodes with no overlaps, 

wherein the second data entry method is a method in which 
the plurality of nodes, in response to an instruction from 
the data entry server, reads the data from the logical 
volume with no overlaps by dividing the data into a 
plurality of blocks, and 

wherein the storage device storing the logical Volume is 
separated from the plurality of nodes so that the logical 
volume does not constitute a distributed file system 
which is composed of the plurality of nodes. 

2. The data processing method according to claim 1, 
wherein the first network is a local area network and the 

second network is a storage area network, 
wherein the first data entry method is a method in which the 

data entry server obtains all data in a given column of a 
database included in the logical Volume, identifies data 
to be read using the data in the column, obtains the 
identified data from the database, and distributes the 
obtained data to the plurality of nodes, 

wherein the second data entry method includes: 
(i) a second A method in which the data entry server obtains 

all data in a given column of the database included in the 
logical volume, identifies data to be read using the data 
in the column, and sends information on the identified 
data to the plurality of nodes, so that the plurality of 
nodes obtains the identified data from the database, and 

(ii) a second B method in which the plurality of nodes 
obtains all data in a given column of the database 
included in the logical volume, identifies data to be read 
using the data in the column, and obtains the identified 
data from the database, and 

wherein the data entry server estimates a processing time 
required to execute each of the first, second A, and 
second B data entry methods using throughput of the 
local area network, throughput of the storage area net 
work, throughput of the logical Volume, the total Volume 
of data to be sent to the plurality of nodes, and the total 
volume of data to be read from the logical volume, and 
selects a data entry method with the shortest estimated 
processing time from among the first, second A, and 
second B data entry methods. 

3. The data processing method according to claim 1, 
wherein the first data entry method is a method in which the 

data entry server obtains all data in a given column of a 
database included in the logical Volume, identifies data 
to be read using the data in the column, obtains the 
identified data from the database, and distributes the 
obtained data to the plurality of nodes, 

wherein the second data entry method includes: 
(i) a second A method in which the data entry server obtains 

all data in a given column of the database included in the 
logical volume, identifies data to be read using the data 
in the column, and sends information on the identified 
data to the plurality of nodes, so that the plurality of 
nodes obtains the identified data from the database, and 

(ii) a second B method in which the plurality of nodes 
obtains all data in a given column of the database 
included in the logical volume, identifies data to be read 
using the data in the column, and obtains the identified 
data from the database, and 



US 8,583,757 B2 
19 

wherein the data entry server estimates a processing time 
required to execute each of the first, second A, and 
second B data entry methods, and selects one of the first, 
second A, and second B data entry methods based on the 
estimated processing time. 

4. The data processing method according to claim 1, 
wherein the data entry server estimates the processing time 
required to execute each of the first and second data entry 
methods using throughput of the first and second networks, 
throughput of the logical Volume, the total Volume of data to 
be sent to the plurality of nodes, and the total volume of data 
to be read from the logical volume. 

5. The data processing method according to claim 1, 
wherein the second storage device includes replicas of the 

logical volume, and 
wherein the data entry server calculates times required to 

read data from the logical Volume and from the replicas 
of the logical Volume in parallel, and estimates the pro 
cessing time required to execute each of the first and 
second data entry methods using the calculated times. 

6. The data processing method according to claim 1, 
wherein the data stored in the logical volume includes 

dereference information for facilitating identification of 
the data to be read, and 

wherein the data entry server calculates a time required to 
obtain the data to be read using the dereference infor 
mation, and estimates the processing time required to 
execute each of the first and second data entry methods 
using the calculated time. 

7. The data processing method according to claim 1, 
wherein the computer system includes a plurality of stor 

age devices, 
wherein the data to be read is stored across the plurality of 

storage devices, and 
wherein the data entry server calculates a time required to 

read the data from the plurality of storage devices in 
parallel, and estimates the processing time required to 
execute each of the first and second data entry methods 
using the calculated time. 

8. A computer system comprising: 
a data entry server, 
a plurality of nodes connected to the data entry server via a 

first network; and 
a storage device connected to the data entry server and the 

plurality of nodes via a second network, the storage 
device including a logical Volume having stored therein 
at least data as data sources that can be read by each of 
the plurality of nodes, and the storage device being a 
non-transitory, tangible computer-readable storage 
medium, 

wherein the storage device storing the logical Volume is 
separated from the plurality of nodes so that the logical 
volume does not constitute a distributed file system 
which is composed of the plurality of nodes, 

wherein the data entry server estimates a processing time 
required to execute each of first and second data entry 
methods, and selects one of the first and second data 
entry methods based on the estimated processing time, 

wherein the data entry server or the plurality of nodes 
executes data entry processing based on the selected data 
entry method, 

wherein the first data entry method is a method in which the 
data entry server reads data from the logical Volume, 
divides the data into a plurality of blocks, and sends the 
data blocks to the plurality of nodes with no overlaps, 
and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
wherein the second data entry method is a method in which 

the plurality of nodes, in response to an instruction from 
the data entry server, reads the data from the logical 
volume with no overlaps by dividing the data into a 
plurality of blocks. 

9. The computer system according to claim 8. 
wherein the first network is a local area network and the 

second network is a storage area network, 
wherein the first data entry method is a method in which the 

data entry server obtains all data in a given column of a 
database included in the logical Volume, identifies data 
to be read using the data in the column, obtains the 
identified data from the database, and distributes the 
obtained data to the plurality of nodes, and 

wherein the second data entry method includes: 
(i) a second A method in which the data entry server obtains 

all data in a given column of the database included in the 
logical volume, identifies data to be read using the data 
in the column, and sends information on the identified 
data to the plurality of nodes, so that the plurality of 
nodes obtains the identified data from the database, and 

(ii) a second B method in which the plurality of nodes 
obtains all data in a given column of the database 
included in the logical volume, identifies data to be read 
using the data in the column, and obtains the identified 
data from the database, and 

wherein the data entry server estimates a processing time 
required to execute each of the first, second A, and 
second B data entry methods using throughput of the 
local area network, throughput of the storage area net 
work, throughput of the logical Volume, the total Volume 
of data to be sent to the plurality of nodes, and the total 
volume of data to be read from the logical volume, and 
selects a data entry method with the shortest estimated 
processing time from among the first, second A, and 
second B data entry methods. 

10. The computer system according to claim 8. 
wherein the first data entry method is a method in which the 

data entry server obtains all data in a given column of the 
database included in the logical Volume, identifies data 
to be read using the data in the column, obtains the 
identified data from the database, and distributes the 
obtained data to the plurality of nodes, 

wherein the second data entry method includes: 
(i) a second A method in which the data entry server obtains 

all data in a given column of the database included in the 
logical volume, identifies data to be read using the data 
in the column, and sends information on the identified 
data to the plurality of nodes, so that the plurality of 
nodes obtains the identified data from the database, and 

(ii) a second B method in which the plurality of nodes 
obtains all data in a given column of the database 
included in the logical volume, identifies data to be read 
using the data in the column, and obtains the identified 
data from the database, and 

wherein the data entry server estimates a processing time 
required to execute each of the first, second A, and 
second B data entry methods, and selects one of the first, 
second A, and second B data entry methods based on the 
estimated processing time. 

11. The computer system according to claim 8, wherein the 
data entry server estimates the processing time required to 
execute each of the first and second data entry methods using 
throughput of the first and second networks, throughput of the 
logical volume, the total volume of data to be sent to the 
plurality of nodes, and the total volume of data to be read from 
the logical volume. 



US 8,583,757 B2 
21 

12. The computer system according to claim 8. 
wherein the second storage device includes replicas of the 

logical volume, and 
wherein the data entry server calculates times required to 

read data from the logical Volume and from the replicas 5 
of the logical Volume in parallel, and estimates the pro 
cessing time required to execute each of the first and 
second data entry methods using the calculated times. 

13. The computer system according to claim 8. 
wherein the data stored in the logical volume includes 10 

dereference information for facilitating identification of 
the data to be read, and 

wherein the data entry server calculates a time required to 
obtain the data to be read using the dereference infor 
mation, and estimates the processing time required to 15 
execute each of the first and second data entry methods 
using the calculated time. 

14. The computer system according to claim 8. 
wherein the computer system includes a plurality of stor 

age devices, 2O 
wherein the data to be read is stored across the plurality of 

storage devices, and 
wherein the data entry server calculates a time required to 

read the data from the plurality of storage devices in 
parallel, and estimates the processing time required to 25 
execute each of the first and second data entry methods 
using the calculated time. 

15. The computer system according to claim 8, further 
comprising: 

a management server that displays a user interface config- 30 
ured to instruct the data entry server to enter data into the 
plurality of nodes. 

k k k k k 

22 


