

## (19) AUSTRALIAN PATENT OFFICE

(54) Title  
Papaya ringspot virus genes

(51)<sup>6</sup> International Patent Classification(s)  
**A01H 5/00** (2006.01) 0BMJP **C12N**  
**C07K 14/08** (2006.01) 1/21  
**C12N 1/19** (2006.01) 20060101ALI2005122  
**C12N 1/21** (2006.01) 0BMJP **C12N**  
**C12N 5/10** (2006.01) 5/10  
**C12N 7/00** (2006.01) 20060101ALI2005122  
**C12N 15/09** (2006.01) 0BMJP **C12N**  
**C12N 15/82** (2006.01) 7/00  
**A01H 5/00** 20060101ALI2005122  
**0BMJP** **C12N**  
**20060101AFI2005122** 15/09  
**0BMJP** **C07K** 14/08  
**20060101ALI2005100** 20060101ALI2005122  
**0BMJP** **C12N**  
**8BMEP** **C12N** 15/82  
**1/19** 20060101ALI2005100  
**20060101ALI2005122** 8BMEP  
PCT/US02/11805

(21) Application No: 2002307322 (22) Application Date: 2002.04.11

(87) WIPO No: W002/083925

(30) Priority Data

(31) Number (32) Date (33) Country  
60/283,007 2001.04.11 US  
20080320

(43) Publication Date: 2002.10.28  
(43) Publication Journal Date: 2003.04.17

(71) Applicant(s)  
Cornell Research Foundation, Inc.

(72) Inventor(s)  
Sarindu, Nonglak, Nickel, Osmar, Tennant, Paula F., Gonsalves, Dennis, Munoz, Gustavo Alberto Fermin, Cai, Wengi, Souza Jr., Manoel Texeira, Saxena, Sanjay, Chiang, Chu-Hui, Gonsalves, Carol V.

(74) Agent/Attorney  
Phillips Ormonde & Fitzpatrick, Level 22 367 Collins Street, Melbourne, VIC, 3000

(56) Related Art  
Silva-Rosales, L. et al (Arch. Virol., 2000, Vol 145, pages 835-843  
Wang et al. (1994) Phytopathology, Vol. 84, pages 1205-1210  
Cheng et al. (1996) Plant Cell Reports, Vol. 16, pages 127-132  
US 6,002,072 (McMaster et al) 14th December 1999

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
24 October 2002 (24.10.2002)

(10) International Publication Number  
WO 02/083925 A2

|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>7</sup> : | C12Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAXENA, Sanjay; C-45D Gangotri Enclave, Alaknanda, New Delhi 100 019 (IN). <b>CAI, Wengi</b> ; Room 401, Building 80, Zhong Guan Cun, Beijing 100080 (CN). |
| (21) International Application Number:                  | PCT/US02/11805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |
| (22) International Filing Date:                         | 11 April 2002 (11.04.2002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |
| (25) Filing Language:                                   | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |
| (26) Publication Language:                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |
| (30) Priority Data:                                     | 60/283,007 11 April 2001 (11.04.2001) US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |
| (71) Applicant:                                         | <b>CORNELL RESEARCH FOUNDATION, INC.</b> [US/US]; 20 Thornwood Drive, Suite 105, Ithaca, NY 14580 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |
| (72) Inventors:                                         | GONSALVES, Dennis; 595 Castle Street, Geneva, NY 14456 (US). CHIANG, Chu-Hui; 40, 288 Lane, 1 Section Ann-Ho Road, Tainan (TW). TENNANT, Paula, E.; 19 Wellington Drive, Kingston (JM). GONSALVES, Carol, V.; 595 Castle Street, Geneva, NY 14456 (US). SARINDU, Nonglak; Div. of Plant Pathology and Microbiology, Dept. of Agriculture, Pholayotin Road, 10900 Bangkok (TH). SOUZA, Manoel, Texeira, Jr.; SMPW Quadra 12 Conjunto 01, Lote 06 Fracas B, Park Way, CEP-71.741.201 Nucleo Bandeirante, DF (BR). NICKEI, Osmar; Departement of Plant Pathology, NYS Agricultural Experiment Station, 21a Barton Laboratory, Geneva, NY 14456 (US). MUNOZ, Gustavo, Alberto, Fermin; 10 N. Main Street, Geneva, NY 14456 (US). |                                                                                                                                                            |



WO 02/083925 A2

(54) Title: PAPAYA RINGSPOT VIRUS GENES

(57) **Abstract:** The present invention relates to the isolation and identification of nucleic acid sequences encoding the coat protein of papaya ringspot virus in the Kapoho (KA), Keaua (KE), Thailand (TH), Brazil (BR), Jamaica (JA), Mexico (ME), Venezuela (VE), and Oahu (OA) strains, and the uses thereof to impart viral resistance to papaya plants. The present invention also relates to nucleic acid constructs containing individual or multiple papaya ringspot virus coat protein-encoding nucleic acid sequences, and host cells and transgenic plants and seeds containing such constructs. The present invention is also directed to a method of using such constructs to impart to plants resistance to papaya ringspot virus.

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

## PAPAYA RINGSPOT VIRUS GENES

5

## FIELD OF THE INVENTION

The present invention relates to the isolation and purification of nucleic acid sequences encoding for papaya ringspot virus coat proteins, a method of conferring resistance to papaya ringspot virus by transforming plants with a 10 construct containing one or more isolated viral coat protein nucleic acid sequences, and transgenic plants and seeds transformed with such multiple virus nucleic acid constructs.

## BACKGROUND OF THE INVENTION

15 Papaya (*Carica papaya L.*) is an important fruit crop grown widely in tropical and subtropical lowland regions (Manshardt, "Papaya in Biotechnology of Perennial Fruit Crops," ed. Hammerschlag, 21:489-511, CAB Int., Wallingford, UK (1992)). Worldwide, Brazil, India, and Mexico are the largest producers of papaya. Hawaii, the largest producer of papaya in the United States, exports 66% 20 of the total fresh production, primarily to the U.S. mainland and to Japan (Martin, "Papaya Production Statistics," Proc. Annu. Hawaii Papaya Ind. Assoc. Conf., 39th, Kihei, pp. 31-36, Sept. 23-24 (1994)). In total production, papaya ranks above strawberries and below grapefruit (Manshardt, "Papaya in Biotechnology of Perennial Fruit Crops," ed. Hammerschlag, 21:489-511, CAB Int., Wallingford, 25 UK (1992)). The FAO estimated that about 5.7 million metric tons of fruit were harvested in 1995, almost double the 1980 harvest (Galinsky, "World Market for Papaya," Reg. Agribus. Proj. Mark. Inf. Bull. Feb. No. 12, 5 pp. (1996)).

30 Papaya ringspot virus ("PRSV") is a member of the potyvirus group of plant viruses, which are pathogenic to several crop plants, and which exhibit cross-infectivity between members of different plant families. Generally, a potyvirus is a single-stranded (+) RNA plant virus. The viral genome is approximately 10,000 bases in length. The expression strategy of potyviruses includes translation of a complete polyprotein from the positive sense viral

- 2 -

genomic RNA. PRSV is by far the most widespread and damaging virus that infects papaya, occurring worldwide wherever papaya is grown (Purcifull, "Papaya Ringspot Virus," CMI/AAB Descr. Plant Viruses, No. 292 (No. 84 Revis., July 1984) 8 pp. (1984)). PRSV infections have resulted in the devastation of the papaya industry in Brazil, Taiwan, and Hawaii in recent years (Gonsalves, D., "Control of Papaya Ringspot Virus in Papaya: A Case Study," Annu. Rev. Phytopathol. 36:415-37 (1998)). Various attempts have been made to control or prevent infection of crops by PRSV, but these have been largely unsuccessful.

The concept of parasite-derived resistance ("PDR"), conceived in 10 the middle 1980s, offered a new approach for controlling PRSV (Sanford et al., "The Concept of Parasite-Derived Resistance - Deriving Resistance Genes from the Parasite's Own Genome," J. Theor. Biol. 113:395-405 (1985)). Parasite-derived resistance is a phenomenon whereby transgenic plants containing genes or sequences of a parasite are protected against detrimental effects of the same or 15 related pathogens. The application of PDR for plant viruses was first demonstrated when transgenic tobacco expressing the coat protein gene of tobacco mosaic virus was protected against infection by tobacco mosaic virus (Powell-Abel et al., "Delay of Disease Development in Transgenic Plants that Express the Tobacco Mosaic Virus Coat Protein Gene," Science, 232:738-43 (1986)). 20 Subsequent reports have shown that this approach is effective in controlling many plant viruses (Lomonosoff, G.P., "Pathogen-Derived Resistance to Plant Viruses," Ann. Rev. Phytopathol. 33:323-43 (1995)).

The vast majority of reports regarding PDR have utilized the coat 25 protein genes of the viruses that are targeted for control. Although the testing of transgenic plants have been largely confined to laboratory and greenhouse experiments, a growing number of reports have shown that resistance is effective under field conditions (Grumet, R., "Development of Virus Resistant Plants via Genetic Engineering," Plant Breeding Reviews 12:47-49 (1994)). Two virus 30 resistant crops have been deregulated by the Animal and Plant Health Information Service of the United States Department of Agriculture ("USDA/APHIS") and, thus, are approved for unrestricted release into the environment in the U.S. Squash that are resistant to watermelon mosaic virus 2 and zucchini yellow mosaic potyviruses have been commercialized (Fuchs et al., "Resistance of

Transgenic Hybrid Squash ZW-20 Expressing the Coat Protein Genes of Zucchini Yellow Mosaic Virus and Watermelon Mosaic Virus 2 to Mixed Infections by Both Potyviruses," Bio/Technology 13:1466-73 (1995); Tricoli, et al., "Field Evaluation of Transgenic Squash Containing Single or Multiple Virus Coat

5 Protein Gene Constructs for Resistance to Cucumber Mosaic Virus, Watermelon Mosaic Virus 2, and Zucchini Yellow Mosaic Virus," Bio/Technology 13:1458-65 (1995)). A transgenic Hawaiian papaya that is resistant to PRSV has also been developed (Fitch et al., "Virus Resistant Papaya Derived from Tissues Bombarded with the Coat Protein Gene of Papaya Ringspot Virus," Bio/Technology 10:1466-72 (1992); Tennant et al., "Differential Protection Against Papaya Ringspot Virus Isolates in Coat Protein Gene Transgenic Papaya and Classically Cross-Protected Papaya," Phytopathology 84:1359-66 (1994)). This resistant transgenic papaya was recently deregulated by USDA/APHIS. Deregulation of the transgenic papaya is timely, because Hawaii's papaya industry is being devastated by PRSV.

10

15 Remarkable progress has been made in developing virus resistant transgenic plants despite a poor understanding of the mechanisms involved in the various forms of pathogen-derived resistance (Lomonosoff, G.P., "Pathogen-Derived Resistance to Plant Viruses," Ann. Rev. Phytopathol. 33:323-43 (1995)). Although most reports deal with the use of coat protein genes to confer resistance, a growing number of reports have shown that genes encoding viral replicase

20 (Golemboski et al., "Plants Transformed with a Tobacco Mosaic Virus Nonstructural Gene Sequence are Resistant to the Virus," Proc. Natl. Acad. Sci. USA 87:6311-15 (1990)), movement protein (Beck et al., "Disruption of Virus Movement Confers Broad-Spectrum Resistance Against Systemic Infection by

25 Plant Viruses with a Triple Gene Block," Proc. Natl. Acad. Sci. USA 91:10310-14 (1994)), nuclear inclusion a-proteases ("NIa proteases") of potyviruses (Maiti et al., "Plants that Express a Potyvirus Proteinase Gene are Resistant to Virus Infection," Proc. Natl. Acad. Sci. USA 90:6110-14 (1993)), and other viral genes are also effective in conferring resistance. Furthermore, viral genes can be

30 effective in the translatable and non-translatable sense forms, and, less frequently, antisense forms (Baulcombe, D.C., "Mechanisms of Pathogen-Derived Resistance to Viruses in Transgenic Plants," Plant Cell 8:1833-44 (1996); Dougherty et al., "Transgenes and Gene Suppression: Telling us Something New?" Current

Opinion in Cell Biology 7:399-05 (1995); Lomonosoff, G.P., "Pathogen-Derived Resistance to Plant Viruses," Ann. Rev. Phytopathol. 33:323-43 (1995).

Notwithstanding the progress made in the field of plant resistance to viral pathogens, PRSV continues to exert its devastating effect upon papaya and other crops

5 the world over. While the transgenic Hawaiian papaya is controlling the problem temporarily in Hawaii, that line unfortunately appears to susceptible to PRSV isolates with origins outside Hawaii. These observations suggest that transgenic papaya with coat protein genes specific to targeted PRSV isolates would need to be developed for transgenic papaya to effectively control PRSV worldwide. A more practical and  
10 comprehensive approach is needed to halt the devastation of PRSV. Such an approach would impart resistance to PRSV by utilizing genetic engineering techniques to provide greater and more reliable multi-pathogen resistance to crops to PRSV and other RNA-viral plant pathogens.

The present invention is directed to overcoming these and other deficiencies in  
15 the art.

A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was, in Australia, known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.

20 Throughout the description and claims of the specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.

#### SUMMARY OF THE INVENTION

25 The present invention relates to isolated nucleic acid molecules encoding a viral coat protein of papaya ringspot virus and the protein encoded by those nucleic acid molecules.

Another aspect of the present invention pertains to nucleic acid constructs containing the isolated nucleic acid molecules of the present invention operably linked  
30 to 5' and 3' regulatory regions.

The present invention also relates to nucleic acid constructs containing a plurality of trait DNA molecules, wherein at least some of the plurality of trait DNA molecules have a length that is insufficient to independently impart that trait to plants transformed with that trait DNA molecule. However, the plurality of trait DNA

- 5 -

molecules are capable of collectively imparting their traits to plants transformed with the DNA construct and thereby effecting the silencing of the DNA construct. The trait associated with the DNA molecules of this construct is disease resistance, and the trait DNA molecules are derived from a gene encoding a papaya ringspot virus coat protein 5 in a papaya ringspot virus strain selected from the group consisting of Thailand ("TH"), Keaau ("KE"), Kapoho ("KA"), Mexico ("ME"), Taiwan ("YK"), Brazil ("BR"), Jamaica ("JA"), Oahu ("OA"), and Panaewa ("PA").

The present invention also relates to a DNA construct containing a fusion gene which includes a trait DNA molecule which has a length insufficient to independently 10 impart a desired trait to plants transformed with the trait molecule, operatively coupled to a silencer molecule effective to achieve post-transcriptional gene silencing. The trait DNA molecule and the silencer molecule collectively impart the trait to plants transformed with the construct. The DNA molecules of this DNA construct are derived from a gene encoding a papaya ringspot viral coat protein from a papaya ringspot virus 15 strain selected from the group consisting of TH, KE, KA, ME, YK, BR, JA, OA, and VE.

The present invention also relates to host cells, plant cells, transgenic plants, and transgenic plant seeds containing the nucleic acid constructs of the present invention.

The present invention also relates to a method of imparting resistance against 20 papaya ringspot virus to papaya plants. This involves transforming a papaya plant with the constructs of the present invention.

The present invention also relates to an isolated nucleic acid molecule encoding a papaya ringspot virus coat protein, wherein the nucleic acid molecule either: 1) has a nucleic acid sequence of SEQ ID NO:1; or 2) encodes an amino acid having SEQ ID 25 NO: 2.

- 5a -

The present invention also relates to a DNA construct comprising:

a plurality of trait DNA molecules at least some of which have a length that is insufficient to impart that trait to plants transformed with that trait DNA molecule, but said plurality of trait DNA molecules collectively impart their traits to plants

5 transformed with said DNA construct and effect silencing of the DNA construct, wherein the trait is disease resistance and the trait DNA molecules are derived from a gene encoding a papaya ringspot virus coat protein in a papaya ringspot virus strain selected from the group consisting of TH, KE, KA, ME, YK, BR, JA, OA, VE, and PA.

The present invention also relates to a DNA construct comprising:

10 a fusion gene comprising:  
a trait DNA molecule which has a length that is insufficient to independently impart a desired trait to plants transformed with said trait DNA molecule and  
a silencer DNA molecule effective to achieve post-transcriptional gene silencing and operatively coupled to said trait DNA molecule, wherein said trait DNA molecule  
15 and said silencer DNA molecule collectively impart the trait to the plants transformed with said DNA construct, and wherein the trait DNA molecules are derived from a gene encoding a papaya ringspot viral coat protein from a papaya ringspot virus strain selected from the group consisting of TH, KE, KA, ME, YK, BR, JA, OA, VE, and PA.

20 **BRIEF DESCRIPTION OF THE DRAWINGS**

Figures 1A-B show the cloning vectors used for the DNA constructs of the present invention. Figure 1A shows the expression cassette, pEPJ-YKT, containing the PRSV-CP variable regions of the YK, KE, and TH strains ligated into the pEPJ vector. Figure 1B shows the transformation vector pGA482G.

25 Figures 2A-B show the expression vectors used for cloning and subcloning the silencer-PRSV-CP construct. Figure 2A shows the pNP-YKT vector, containing the silencer DNA molecule (*M1/2NP*) and the *PRSV-CP* variable regions of PRSV strains YK, KE, and TH. Figure 2B shows the pGFP-YKT vector, containing the silencer molecule *GFP* ligated to the *PRSV-CP* variable regions of PRSV strains YK, KE, and  
30 TH PRSV strains.

Figures 3A-G show various *PRSV-CP* DNA molecules ligated to the silencer molecule (*M 1/2 NP*) in an expression vector. Figure 3A shows clone pNP-K; Figure 3B shows clone pNP-KK; Figure 3C shows clone pNP-EE; Figure 3D shows clone pNP-KKTC; Figure 3E shows clone pNP-KKTV; Figure 3F 5 shows clone pNP-EETC, and Figure 3G shows clone pNP-EETV.

Figure 4A shows the a full-length (1 Kb) *KE-CP* DNA molecule encoding a translatable RNA for PRSV-CP ligated into the expression vector pEPJ. Figure 4B shows a full-length (1 Kb) *KE-CP* DNA molecule encoding a non-translatable RNA for PRSV-CP ligated into the expression vector pEPJ. 10 Figure 5 shows a 855 bp *Ncol/BamHI Mexico PRSV-CP* DNA molecule ligated into the expression vector pEPJ.

#### DETAILED DESCRIPTION

15 The present invention relates to nucleic acids which encode for a viral coat protein ("CP") of papaya ringspot virus ("PRSV").

One suitable form of the nucleic acid of the present invention is the CP gene isolated from the PRSV strain Kapoho ("KA"), which has a nucleic acid sequence corresponding to SEQ ID NO: 1 as follows:

20 tccaaagaatg aagctgttgg aatgaaaaac tcaaaagagaa agaaagacag 60  
 aaagaaaaag aaaaagaaaa acaaaaagaa aaaggaaaaag acgatgttag tgacgaaaaat 120  
 gatgtgtcaa cttagcataaa aactggagag agagatagag atgtcaatgt tgggaccagg 180  
 ggaactttcg ctgttccgag aattaaatca tttaactgata agttgattct accaagaatt 240  
 25 aagggaaaga ctgtccttaa tttaagtcat ctttttcagt ataatccgca acaaatttgc 300  
 atttcttaaca ctcgtccac tcagtcacaaa ttgagaagt ggtatgaggg agtgaggat 360  
 gattatggcc ttaatgataa tgaatgcata gttatgatata atggtttgcgat ggtttgggtgt 420  
 atcgagaatg gtacatctcc agacatatct ggtgtatggg ttatgatgga tggggaaacc 480  
 caagttgatt atccaaccaa gcctttaattt gaggatgata ctccgtcatt tagccaaatt 540  
 30 atggctcaact ttagtaacgc ggcagaagca tacatggca agagaatgc tactggaggg 600  
 tacatggccgc ggtacggaaat caagagaaaaat ttgactgaca ttagcctgc tagatatgtct 660  
 ttcgacttct atgagggtgaa ttggaaaaaca cctgatgggg ctccggaaacgc ccacatgcag 720  
 atgaaggctcg cagcgctcgaa aacactatgt cgccagaatgtl ttggatgga cggcgtgtt 780  
 agtaacaagg aagaaaaacac ggagagacac acagtggaaat atgtcgatag agacatgcac 840  
 35 tcttcctgg gtatgcgcaaa ctaa 864

- 7 -

The present invention also relates to the PRSV-KA-CP, encoded by the nucleotide corresponding to SEQ ID NO: 1, where the protein encoded has an amino acid sequence corresponding to SEQ ID NO: 2, as follows:

|    |                                                                 |     |     |     |
|----|-----------------------------------------------------------------|-----|-----|-----|
| 5  | Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Leu Lys Glu |     |     |     |
| 1  | 1                                                               | 5   | 10  | 15  |
|    | Lys Glu Arg Gln Lys Glu Lys Glu Lys Gln Lys Glu Lys Gly         |     |     |     |
|    | 20 25 30                                                        |     |     |     |
| 10 | Lys Asp Asp Ala Ser Asp Glu Asn Asp Val Ser Thr Ser Thr Lys Thr |     |     |     |
|    | 35 40 45                                                        |     |     |     |
| 15 | Gly Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Ala |     |     |     |
|    | 50                                                              | 55  | 60  |     |
|    | Val Pro Arg Ile Lys Ser Phe Thr Asp Lys Leu Ile Leu Pro Arg Ile |     |     |     |
| 20 | 65                                                              | 70  | 75  | 80  |
|    | Lys Gly Lys Thr Val Leu Asn Leu Ser His Leu Leu Gln Tyr Asn Pro |     |     |     |
|    | 85 90 95                                                        |     |     |     |
| 25 | Gln Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu |     |     |     |
|    | 100                                                             | 105 | 110 |     |
|    | Lys Trp Tyr Glu Gly Val Arg Asp Asp Tyr Gly Leu Asn Asp Asn Glu |     |     |     |
|    | 115 120 125                                                     |     |     |     |
| 30 | Met Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly |     |     |     |
|    | 130                                                             | 135 | 140 |     |
|    | Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr |     |     |     |
| 35 | 145                                                             | 150 | 155 | 160 |
|    | Gln Val Asp Tyr Pro Thr Lys Pro Leu Ile Glu His Asp Thr Pro Ser |     |     |     |
|    | 165 170 175                                                     |     |     |     |
|    | Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile |     |     |     |
|    | 180 185 190                                                     |     |     |     |

- 8 -

|    |                                                                 |     |     |     |
|----|-----------------------------------------------------------------|-----|-----|-----|
|    | Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys |     |     |     |
|    | 195                                                             | 200 | 205 |     |
| 5  | Arg Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr |     |     |     |
|    | 210                                                             | 215 | 220 |     |
|    | Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln |     |     |     |
|    | 225                                                             | 230 | 235 | 240 |
| 10 | Met Lys Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met |     |     |     |
|    | 245                                                             | 250 | 255 |     |
|    | Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val |     |     |     |
| 15 | 260                                                             | 265 | 270 |     |
|    | Glu Asp Val Asp Arg Asp Met His Ser Leu Leu Gly Met Arg Asn     |     |     |     |
|    | 275                                                             | 280 | 285 |     |

20 The present invention also relates to an isolated nucleic acid molecule encoding a *CP* gene isolated from the Thailand ("TH") strain of PRSV, which has a nucleic acid sequence corresponding to SEQ ID NO: 3 as follows:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 | tccaaagaatg aagctgtgga tgcgtgtt aatgagaatg taaaagataa agaaaaacag 60<br>aaagaagaaa aagataaaca aaaaggtaaa gaaaataatg aagctagtga cggaaatgat 120<br>gtgtcaactg gcacaaaaac tggagagaga gatagagatg tcaatgcggg aactagtgg 180<br>actttcactg ttccgagaat aaaattattt accgacaaga tgattttacc aagaattaag 240<br>ggaaaaactg tccttatgg aaatcatctt cttcagatata atccgcacca aatagacatc 300<br>tcaaacactc gtgcccactca atctcaatcc gaaaagtggt atgagggagt gggaaatgat 360<br>30 tacggcttta atgataacga aatgcacgtg atgttaatg gtttgcgtt ttgggtgcac 420<br>gaaaatggaa catccccaga catatctggt gtctgggtga tgatggatgg ggaaacccaa 480<br>gtcgattata ccatcaacgc tttagatcgaa catgcacactc cttcggtcag gcaaatcatg 540<br>gctcacttca gtaacgcggc agaggcatac atgcacaaaga ggaatgcac tgagggatc 600<br>atgcgcgcgtt atgaaatcaa gagaaatctg actgcacatta gtctcgctag atatgccttc 660<br>35 gacttctatg aggtgaactc aaaaacacct gatagggtc gtgaagctca tatgcacatg 720<br>aaggctgcag cgctgcgca cactgatcga agaatgtttt gaatggacgg cagtgctcgt 780<br>aacaaggaa aaaaacacgga gagacacaca gtggaaatgt tcaacagaga catgcactct 840<br>ctccctaggtt tgcgcattt a 861 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

- 9 -

The present invention also relates to the viral coat protein of the TH strain of PRSV, encoded for by SEQ ID NO: 3, which corresponds to amino acid SEQ ID NO: 4, as follows:

|    |                                                                 |     |     |     |
|----|-----------------------------------------------------------------|-----|-----|-----|
| 5  | Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Phe Lys Asp |     |     |     |
|    | 1                                                               | 5   | 10  | 15  |
|    | Lys Glu Lys Gln Lys Glu Glu Lys Asp Lys Gln Lys Gly Lys Glu Asn |     |     |     |
|    | 20                                                              | 25  | 30  |     |
| 10 | Asn Glu Ala Ser Asp Gly Asn Asp Val Ser Thr Ser Thr Lys Thr Gly |     |     |     |
|    | 35                                                              | 40  | 45  |     |
| 15 | Glu Arg Asp Arg Asp Val Asn Ala Gly Thr Ser Gly Thr Phe Thr Val |     |     |     |
|    | 50                                                              | 55  | 60  |     |
|    | Pro Arg Ile Lys Leu Phe Thr Asp Lys Met Ile Leu Pro Arg Ile Lys |     |     |     |
|    | 65                                                              | 70  | 75  | 80  |
| 20 | Gly Lys Thr Val Leu Ser Leu Asn His Leu Leu Gln Tyr Asn Pro Gln |     |     |     |
|    | 85                                                              | 90  | 95  |     |
|    | Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu Lys |     |     |     |
|    | 100                                                             | 105 | 110 |     |
| 25 | Trp Tyr Glu Gly Val Arg Asn Asp Tyr Gly Leu Asn Asp Asn Glu Met |     |     |     |
|    | 115                                                             | 120 | 125 |     |
|    | Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly Thr |     |     |     |
| 30 | 130                                                             | 135 | 140 |     |
|    | Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr Gln |     |     |     |
|    | 145                                                             | 150 | 155 | 160 |
| 35 | Val Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser Phe |     |     |     |
|    | 165                                                             | 170 | 175 |     |
|    | Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Ala |     |     |     |
|    | 180                                                             | 185 | 190 |     |

- 10 -

|    |                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | Lys                                                             | Arg | Asn | Ala | Thr | Glu | Arg | Tyr | Met | Pro | Arg | Tyr | Gly | Ile | Lys | Arg |
|    | 195                                                             |     |     |     |     | 200 |     |     |     |     |     |     |     |     | 205 |     |
|    | Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 5  | 210                                                             |     | 215 |     | 220 |     |     |     |     |     |     |     |     |     |     |     |
|    | Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln Met |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | 225                                                             |     | 230 |     | 235 |     | 240 |     |     |     |     |     |     |     |     |     |
| 10 | Lys                                                             | Ala | Ala | Ala | Leu | Arg | Asn | Thr | Asp | Arg | Arg | Met | Phe | Gly | Met | Asp |
|    | 245                                                             |     |     |     | 250 |     |     |     |     |     |     |     |     |     | 255 |     |
|    | Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Glu |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | 260                                                             |     | 265 |     | 270 |     |     |     |     |     |     |     |     |     |     |     |
| 15 | Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | 275                                                             |     | 280 |     | 285 |     |     |     |     |     |     |     |     |     |     |     |

Also suitable as a nucleic acid for use in the present invention is  
 20 the nucleic acid which encodes a *CP* gene isolated from the Keaau ("KE") strain  
 of PRSV. PRSV-KE contains two "cut-sites", i.e., two potential cleavage sites for  
 a mature coat protein. The first cleavage site sequence in the KE strain of PRSV,  
 identified herein as *KE-CP1*, corresponds to SEQ ID NO: 5 (*KECPI*) as follows:

|    |             |             |            |            |             |             |     |
|----|-------------|-------------|------------|------------|-------------|-------------|-----|
| 25 | tcaaggagca  | ctgatgatta  | tcaacttgtt | tggagtgaca | atacacatgt  | gtttcatcag  | 60  |
|    | tccaaagaatg | aagctgtgga  | tgctggttt  | aatgaaaaac | tcaaagagaa  | agaaaaacag  | 120 |
|    | aaagaaaaag  | aaaaagaaaa  | acaaaaagaa | aaaggaagag | acgtatctag  | tgacgaaaat  | 180 |
|    | gatgtgtcaa  | ctagcacaaa  | aactggagag | agagatagag | atgtcaatgt  | tgggaccagt  | 240 |
|    | ggaacttctcg | ctgttccgag  | aattaaatca | tttactgata | agttgattct  | accaagaatt  | 300 |
| 30 | aaggaaaaaga | ctgtccttaa  | ttaaagtcat | cttcttcagt | ataatccgca  | acaaattgac  | 360 |
|    | atttctaaaca | ctcggtccac  | tcagtcacaa | tttgagaagt | gttatgaggg  | agtgaggat   | 420 |
|    | gattatggcc  | ttaatgataa  | tgaatgc当地  | gttatgctaa | atggtttgc当地 | ggtttgggt   | 480 |
|    | atcgagaatg  | gtacatctcc  | agacatatct | ggtgtatggg | ttatgatgg   | tggggaaacc  | 540 |
|    | caagttgatt  | atccaaccaa  | gccttaatt  | gagcatgcta | ctccgtcatt  | taggcaaatt  | 600 |
| 35 | atggctca    | ttagtaacgc  | ggcagaagca | tacattgc当地 | agagaaatgc  | tactgagagg  | 660 |
|    | tacatgc当地   | ggtacggaat  | caagagaaat | ttgactgac  | ttagcctc当地  | tagatatgc当地 | 720 |
|    | tgcacttct   | atgaggtaa   | ttcgaacaca | cctgataggg | ctcgctgac   | ccacatgc当地  | 780 |
|    | atgaaggctg  | cagcgctg    | aaacactagt | cgcagaatgt | ttggatgg    | cggcagtg    | 840 |
|    | agtaacaagg  | aagaaaaacac | ggagagacac | acagtggaa  | atgtcaatag  | agacatgc当地  | 900 |
| 40 | tctctctgg   | gcatgogcaa  | c          |            |             | 921         |     |

- 11 -

A second nucleotide sequence encoding a PRSV-KE coat protein sequence, which starts from the second KE-CP cleavage site, is identified as *KE-CP2* herein, and corresponds to SEQ ID NO: 6, as follows:

5

SEQ ID NOS: 5 and 6 contain, respectively, the N terminus and C terminus cleavage sites for PRSV-KE coat protein. Both cleavage sites result in proteins that appear to be functional in viral replication in the plant. SEQ ID NO: 5 encodes the first coat protein cleavage site product, CP1, of the KE strain of PRSV. KE-CP1 has an amino acid sequence corresponding to SEQ ID NO: 7, as follows:

|                                                                 |                                                                 |    |    |    |
|-----------------------------------------------------------------|-----------------------------------------------------------------|----|----|----|
| Ser Arg Ser Thr Asp Asp Tyr Gln Leu Val Trp Ser Asp Asn Thr His |                                                                 |    |    |    |
| 30                                                              | 1                                                               | 5  | 10 | 15 |
| Val Phe His Gln Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu |                                                                 |    |    |    |
|                                                                 | 20                                                              | 25 | 30 |    |
| 35                                                              | Lys Leu Lys Glu Lys Glu Lys Gln Lys Glu Lys Glu Lys Glu Lys Gln |    |    |    |
|                                                                 | 35                                                              | 40 | 45 |    |
| Lys Glu Lys Gly Arg Asp Asp Ala Ser Asp Glu Asn Asp Val Ser Thr |                                                                 |    |    |    |
|                                                                 | 50                                                              | 55 | 60 |    |

- 12 -

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Thr | Lys | Thr | Gly | Glu | Arg | Asp | Arg | Asp | Val | Asn | Val | Gly | Thr | Ser |     |
| 65  |     |     |     |     | 70  |     |     |     |     | 75  |     |     |     |     | 80  |     |
| 5   | Gly | Thr | Phe | Ala | Val | Pro | Arg | Ile | Lys | Ser | Phe | Thr | Asp | Lys | Leu | Ile |
|     |     |     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |
| 10  | Leu | Pro | Arg | Ile | Lys | Gly | Lys | Thr | Val | Leu | Asn | Leu | Ser | His | Leu | Leu |
|     |     |     |     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |
| 15  | Gln | Tyr | Asn | Pro | Gln | Gln | Ile | Asp | Ile | Ser | Asn | Thr | Arg | Ala | Thr | Gln |
|     |     |     |     |     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |
| 20  | Ser | Gln | Phe | Glu | Lys | Trp | Tyr | Glu | Gly | Val | Arg | Asp | Asp | Tyr | Gly | Leu |
|     |     |     |     |     | 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |
| 25  | Asn | Asp | Asn | Glu | Met | Gln | Val | Met | Leu | Asn | Gly | Leu | Met | Val | Trp | Cys |
|     |     |     |     |     | 145 |     |     |     |     | 150 |     |     |     |     | 160 |     |
| 30  | Ile | Glu | Asn | Gly | Thr | Ser | Pro | Asp | Ile | Ser | Gly | Val | Trp | Val | Met | Met |
|     |     |     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |     |
| 35  | Asp | Gly | Glu | Thr | Gln | Val | Asp | Tyr | Pro | Thr | Lys | Pro | Leu | Ile | Glu | His |
|     |     |     |     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 |     |
| 40  | Ala | Thr | Pro | Ser | Phe | Arg | Gln | Ile | Met | Ala | His | Phe | Ser | Asn | Ala | Ala |
|     |     |     |     |     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     |
| 45  | Glu | Ala | Tyr | Ile | Ala | Lys | Arg | Asn | Ala | Thr | Glu | Arg | Tyr | Met | Pro | Arg |
|     |     |     |     |     | 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |
| 50  | Tyr | Gly | Ile | Lys | Arg | Asn | Leu | Thr | Asp | Val | Ser | Leu | Ala | Arg | Tyr | Ala |
|     |     |     |     |     | 225 |     |     |     |     | 230 |     |     |     |     | 240 |     |
| 55  | Phe | Asp | Phe | Tyr | Glu | Val | Asn | Ser | Lys | Thr | Pro | Asp | Arg | Ala | Arg | Glu |
|     |     |     |     |     | 245 |     |     |     |     | 250 |     |     |     |     | 255 |     |
| 60  | Ala | His | Met | Gln | Met | Lys | Ala | Ala | Ala | Leu | Arg | Asn | Thr | Ser | Arg | Arg |
|     |     |     |     |     | 260 |     |     |     |     | 265 |     |     |     |     | 270 |     |

- 13 -

|                                                                 |     |     |  |
|-----------------------------------------------------------------|-----|-----|--|
| Met Phe Gly Met Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu |     |     |  |
| 275                                                             | 280 | 285 |  |
| Arg His Thr Val Glu Asp Val Asn Arg Asp Met His Ser Leu Leu Gly |     |     |  |
| 5 290                                                           | 295 | 300 |  |
| Met Arg Asn                                                     |     |     |  |
| 305                                                             |     |     |  |

10 SEQ ID NO: 6 encodes the second coat protein cleavage site product, CP2, of the KE strain of PRSV. KE-CP2 has an amino acid sequence corresponding to SEQ ID NO: 8, as follows:

|                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser                                                             | Lys | Asn | Glu | Ala | Val | Asp | Ala | Gly | Leu | Asn | Glu | Lys | Leu | Lys | Glu |     |
| 15                                                              | 1   |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |     |     |
| Lys Glu Lys Gln Lys Glu Lys Glu Lys Lys Gln Lys Glu Lys Gly     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|                                                                 | 20  |     |     |     |     | 25  |     |     |     |     |     |     | 30  |     |     |     |
| 20                                                              | Lys | Asp | Asp | Ala | Ser | Asp | Glu | Asn | Asp | Val | Ser | Thr | Ser | Thr | Lys | Thr |
|                                                                 | 35  |     |     |     |     |     | 40  |     |     |     |     |     | 45  |     |     |     |
| Gly Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Ala |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|                                                                 | 50  |     |     | 55  |     |     |     |     |     |     |     | 60  |     |     |     |     |
| 25                                                              | Val | Pro | Arg | Ile | Lys | Ser | Phe | Thr | Asp | Lys | Leu | Ile | Leu | Pro | Arg | Ile |
|                                                                 | 65  |     |     | 70  |     |     |     |     |     |     |     | 75  |     |     | 80  |     |
| Lys Gly Lys Thr Val Leu Asn Leu Ser His Leu Leu Gln Tyr Asn Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 30                                                              |     |     | 85  |     |     |     | 90  |     |     |     |     |     | 95  |     |     |     |
| Gln Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|                                                                 | 100 |     |     | 105 |     |     |     |     |     |     |     |     | 110 |     |     |     |
| 35                                                              | Lys | Trp | Tyr | Glu | Gly | Val | Arg | Asp | Asp | Tyr | Gly | Leu | Asn | Asp | Asn | Glu |

- 14 -

Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr  
 145 150 155 160  
 5 Gln Val Asp Tyr Pro Thr Lys Pro Leu Ile Glu His Ala Thr Pro Ser  
 165 170 175  
 Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile  
 180 185 190  
 10 Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys  
 195 200 205  
 Arg Asn Leu Thr Asp Val Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr  
 15 210 215 220  
 Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln  
 225 230 235 240  
 20 Met Lys Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met  
 245 250 255  
 Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val  
 260 265 270  
 25 Glu Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280 285

Another nucleic acid suitable in the present invention is the *CP*  
 30 gene isolated from the Taiwan ("YK") strain of PRSV, corresponding to SEQ ID  
 NO: 9, as follows:

tctaaaaatg aagctgtgga taccggctcg aatgagaagc tcaaagaaaa agaaaagcag 60  
 aaagaaaaag aaaaagataa acaacaagat aaagacaatg atggagctag tgacggaaac 120  
 35 gatgtgtcaa ctgcacaaaa aactggagag agagataggg atgtcaatgc cgaaactagt 180  
 ggaaccttca ctgttccgag gataaagtca tttactgata agatgatctt accaagaatt 240  
 aaggaaaaaa ctgtccttaa tttaaatcat cttcttcagt ataatccgaa acaagttgac 300  
 atctcaaaca ctcgcgcac tcaatctcaa ttgagaagt ggtatgaggg agtggaaaat 360  
 gattatggcc ttaatgataa cgaaatgcaa gtaatgttaa atgggttcat ggtttgggt 420  
 40 atcgaaaaatg gtacatctcc agatataatct ggtgtctggg ttatgatgga tggggaaacc 480

- 15 -

```
caagtgcattt atccccattaa accttttgcattt gaacacgcaat ctccttcattt taggcaatc 540  
atggctcaactt tcagtaaaggc ggcagaggca tacatcgatc agaggaaatgc aactggaaatg 600  
tacatggccgc ggttatggat caagagaaaat ttgactgaca ttatgtctgc tagatatgtc 660  
ttcgattttt atgagggttgc ttccaaatca cctgtataggc ctcgttgcac tcatatgcac 720  
5 atgaaaggctt cagcgatcactt caataactat cgcacaaatgtt ttggaaatggc cggcagtgtc 780  
agtaacaacgg aagaaaacac ggagacacac acagtggaaatg atgtcaacac agacatgcac 840  
tcttccttcgg qtatgcgcaat ttgatc 864
```

SEQ ID NO: 9 encodes the CP of the YK strain of PRSV which has an amino acid sequence corresponding to SEQ ID NO: 10, as follows:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Lys | Asn | Glu | Ala | Val | Asp | Thr | Gly | Leu | Asn | Glu | Lys | Leu | Lys | Glu |     |
| 1   |     |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |
| 15  | Lys | Glu | Lys | Gln | Lys | Glu | Lys | Glu | Lys | Asp | Lys | Gln | Gln | Asp | Lys | Asp |
|     |     |     |     |     | 20  |     |     |     |     | 25  |     |     |     |     | 30  |     |
| 20  | Asn | Asp | Gly | Ala | Ser | Asp | Gly | Asn | Asp | Val | Ser | Thr | Ser | Thr | Lys | Thr |
|     |     |     |     |     | 35  |     |     |     |     | 40  |     |     |     |     | 45  |     |
| 25  | Gly | Glu | Arg | Asp | Arg | Asp | Val | Asn | Ala | Gly | Thr | Ser | Gly | Thr | Phe | Thr |
|     |     |     |     |     | 50  |     |     |     |     | 55  |     |     |     |     | 60  |     |
| 30  | Val | Pro | Arg | Ile | Lys | Ser | Phe | Thr | Asp | Lys | Met | Ile | Leu | Pro | Arg | Ile |
|     |     |     |     |     | 65  |     |     |     |     | 70  |     |     | 75  |     | 80  |     |
| 35  | Lys | Gly | Lys | Thr | Val | Leu | Asn | Leu | Asn | His | Leu | Leu | Gln | Tyr | Asn | Pro |
|     |     |     |     |     | 85  |     |     |     |     | 90  |     |     |     |     | 95  |     |
| 40  | Lys | Gln | Val | Asp | Ile | Ser | Asn | Thr | Arg | Ala | Thr | Gln | Ser | Gln | Phe | Glu |
|     |     |     |     |     | 100 |     |     |     |     | 105 |     |     |     |     | 110 |     |
| 45  | Lys | Trp | Tyr | Glu | Gly | Val | Arg | Asn | Asp | Tyr | Gly | Leu | Asn | Asp | Asn | Glu |
|     |     |     |     |     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |
| 50  | Met | Gln | Val | Met | Leu | Asn | Gly | Leu | Met | Val | Trp | Cys | Ile | Glu | Asn | Gly |
|     |     |     |     |     | 130 |     |     |     |     | 135 |     |     |     |     | 140 |     |
| 55  | Thr | Ser | Pro | Asp | Ile | Ser | Gly | Val | Trp | Val | Met | Met | Asp | Gly | Glu | Thr |
|     |     |     |     |     | 145 |     |     |     |     | 150 |     |     | 155 |     | 160 |     |

- 16 -

- 17 -

ttcttatgagg ttaattcgaa aacacctgat agggctcgcg aagctcacat gcagatgaaa 720  
 gctgcagcgc tgcgaaacac tagtcgcaga atgtttggta tgggcggcag tgtagtac 780  
 aaggaagaaa acacggaaag acacacagt gaagatgtca atagagacat gcactctc 840  
 ctgggtatgc gcaac 855

5

SEQ ID NO: 11 encodes the CP of the ME strain of PRSV which has an amino acid sequence corresponding to SEQ ID NO: 12, as follows:

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | Ser | Lys | Asn | Glu | Ala | Val | Asp | Ala | Gly | Leu | Asn | Glu | Lys | Leu | Lys | Glu |
| 10 | 1   |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |     |     |
|    | Lys | Glu | Lys | Gln | Lys | Glu | Lys | Glu | Lys | Gln | Lys | Glu | Lys | Glu | Lys | Asp |
|    |     |     |     |     | 20  |     |     |     | 25  |     |     |     | 30  |     |     |     |
| 15 | Asn | Ala | Ser | Asp | Gly | Asn | Asp | Val | Ser | Thr | Ser | Thr | Lys | Thr | Gly | Glu |
|    |     |     |     |     | 35  |     |     |     | 40  |     |     |     | 45  |     |     |     |
|    | Lys | Asp | Arg | Asp | Val | Asn | Val | Gly | Thr | Ser | Gly | Thr | Phe | Thr | Val | Pro |
|    |     |     |     |     | 50  |     |     |     | 55  |     |     |     | 60  |     |     |     |
| 20 | Arg | Ile | Lys | Ser | Phe | Thr | Asp | Lys | Met | Ile | Leu | Pro | Arg | Ile | Lys | Gly |
|    |     |     |     |     | 65  |     |     |     | 70  |     |     |     | 75  |     |     | 80  |
|    | Lys | Thr | Val | Leu | Asn | Leu | Asn | His | Leu | Leu | Gln | Tyr | Asn | Pro | Gln | Gln |
| 25 |     |     |     |     | 85  |     |     |     | 90  |     |     |     | 95  |     |     |     |
|    | Ile | Asp | Ile | Ser | Asn | Thr | Arg | Ala | Thr | Gln | Ser | Gln | Phe | Glu | Lys | Trp |
|    |     |     |     |     |     | 100 |     |     |     | 105 |     |     |     | 110 |     |     |
| 30 | Tyr | Glu | Gly | Val | Arg | Asn | Asp | Tyr | Gly | Leu | Asn | Asp | Asn | Glu | Met | Gln |
|    |     |     |     |     | 115 |     |     |     | 120 |     |     |     | 125 |     |     |     |
|    | Val | Met | Leu | Asn | Gly | Leu | Met | Val | Trp | Cys | Ile | Glu | Asn | Gly | Thr | Ser |
|    |     |     |     |     | 130 |     |     |     | 135 |     |     |     | 140 |     |     |     |
| 35 | Pro | Asp | Ile | Ser | Gly | Val | Trp | Val | Met | Met | Asp | Gly | Glu | Ile | Gln | Val |
|    |     |     |     |     | 145 |     |     |     | 150 |     |     |     | 155 |     |     | 160 |

- 18 -

|                                                                    |     |     |     |
|--------------------------------------------------------------------|-----|-----|-----|
| Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser Phe Arg    |     |     |     |
|                                                                    | 165 | 170 | 175 |
|                                                                    |     |     |     |
| Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Ala Lys    |     |     |     |
| 5                                                                  | 180 | 185 | 190 |
|                                                                    |     |     |     |
| Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys Arg Asn    |     |     |     |
|                                                                    | 195 | 200 | 205 |
|                                                                    |     |     |     |
| 10 Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu Val |     |     |     |
|                                                                    | 210 | 215 | 220 |
|                                                                    |     |     |     |
| Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln Met Lys    |     |     |     |
|                                                                    | 225 | 230 | 235 |
|                                                                    |     |     | 240 |
| 15 Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met Gly Gly |     |     |     |
|                                                                    | 245 | 250 | 255 |
|                                                                    |     |     |     |
| Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Glu Asp    |     |     |     |
| 20                                                                 | 260 | 265 | 270 |
|                                                                    |     |     |     |
| Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn                |     |     |     |
|                                                                    | 275 | 280 | 285 |

25 Another nucleic acid suitable in the present invention is the CP gene isolated from the Brazil ("BR") strain of PRSV, corresponding to SEQ ID NO: 13, as follows:

30 tccaaaaatg aagctgtgga tgctggttt aatggaaaacg gtaaagaaca agagaacaa 60  
gaaaaaaaaaa aaaaaaaaaa aaaaaaaa gaaaaaaacg atgcttagta cgaaacgat 120  
gtgtcaacta gcacaagaac tggagagaga gacagagatg tcaatgttgg gaccagtgg 180  
actttcactg ttccgagaac aaaatcattt actgataaga tgatTTTacc tagaattaag 240  
ggaaaaaactg tccttaattt aaatcatctg attcagttata atccgcaaca aattgcattt 300  
tctaaacacto gtgtctactca atcacaattt gagaagtggt acgagggagt gagaatgtat 360  
35 tatggcccta atgataatga gatgcaaaata gttgctaaatg gtttgcgtt gttgtatc 420  
gaaaacggta catetccaga catatctggt gtctgggtta tgatggatgg ggaaaccccg 480  
gttgcactatc caatcaagcc tttaatttgag catgctactc cgtcggttag gcaaaattatg 540  
gcttatttca gtaacggcc agaaggcatac attacaaaga gaaatgtac tgagggatc 600  
atgcggcggtt atgggatcaa gagaattttt actgacattt gtcttgcgtat atatgtttc 660  
40 gattttctatg aggtgaattt gaaaacaccc gatggggctc gcgaaagtc catgcagatg 720

- 19 -

aaagctgcag cgctgcgaaa cactaategc agaatgtttg gtatggacgg cagtgttagt 780  
 aacaaggaag aaaacacgga gagacacaca gtgaaatgt tcaatagaga catgcactct 840  
 ctcctggta tgcgcaacta a 861

5 SEQ ID NO: 13 encodes the CP of the BR strain of PRSV which has an amino acid sequence corresponding to SEQ ID NO: 14, as follows:

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | Ser | Lys | Asn | Glu | Ala | Val | Asp | Ala | Gly | Leu | Asn | Glu | Lys | Arg | Lys | Glu |
|    | 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |     |
| 10 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Gln | Glu | Lys | Gln | Glu | Glu | Lys | Glu | Glu | Lys | Gln | Lys | Lys | Lys | Glu | Lys |
|    |     | 20  |     |     |     | 25  |     |     |     |     | 30  |     |     |     |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Asp | Asp | Ala | Ser | Tyr | Gly | Asn | Asp | Val | Ser | Thr | Ser | Thr | Arg | Thr | Gly |
| 15 |     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Glu | Arg | Asp | Arg | Asp | Val | Asn | Val | Gly | Thr | Ser | Gly | Thr | Phe | Thr | Val |
|    |     | 50  |     |     |     | 55  |     |     |     | 60  |     |     |     |     |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 20 | Pro | Arg | Thr | Lys | Ser | Phe | Thr | Asp | Lys | Met | Ile | Leu | Pro | Arg | Ile | Lys |
|    |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     |     | 80  |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Gly | Lys | Thr | Val | Leu | Asn | Leu | Asn | His | Leu | Ile | Gln | Tyr | Asn | Pro | Gln |
|    |     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |     |     |
| 25 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Gln | Ile | Asp | Ile | Ser | Asn | Thr | Arg | Ala | Thr | Gln | Ser | Gln | Phe | Glu | Lys |
|    |     | 100 |     |     |     | 105 |     |     |     | 110 |     |     |     |     |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Trp | Tyr | Glu | Gly | Val | Arg | Asn | Asp | Tyr | Gly | Leu | Asn | Asp | Asn | Glu | Met |
| 30 |     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Gln | Ile | Val | Leu | Asn | Gly | Leu | Met | Val | Trp | Cys | Ile | Glu | Asn | Gly | Thr |
|    |     |     |     |     |     | 130 |     | 135 |     |     | 140 |     |     |     |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 35 | Ser | Pro | Asp | Ile | Ser | Gly | Val | Trp | Val | Met | Met | Asp | Gly | Glu | Thr | Gln |
|    |     |     |     |     |     | 145 |     | 150 |     |     | 155 |     |     | 160 |     |     |
|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|    | Val | Asp | Tyr | Pro | Ile | Lys | Pro | Leu | Ile | Glu | His | Ala | Thr | Pro | Ser | Phe |
|    |     |     |     |     |     | 165 |     |     | 170 |     |     | 175 |     |     |     |     |
| 40 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

- 20 -

|    |                                                                 |     |     |
|----|-----------------------------------------------------------------|-----|-----|
|    | Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Thr |     |     |
|    | 180                                                             | 185 | 190 |
|    | Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys Arg |     |     |
| 5  | 195                                                             | 200 | 205 |
|    | Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu |     |     |
|    | 210                                                             | 215 | 220 |
| 10 | Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln Met |     |     |
|    | 225                                                             | 230 | 235 |
|    | Lys Ala Ala Ala Leu Arg Asn Thr Asn Arg Arg Met Phe Gly Met Asp |     |     |
|    | 245                                                             | 250 | 255 |
| 15 | Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Glu |     |     |
|    | 260                                                             | 265 | 270 |
|    | Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn         |     |     |
| 20 | 275                                                             | 280 | 285 |

Another nucleic acid suitable in the present invention is a *CP* gene isolated from the Jamaica ("JA") strain of PRSV, corresponding to SEQ ID NO: 15, as follows:

|    |                                                                           |
|----|---------------------------------------------------------------------------|
| 25 | tctaaaaatg aagctgtgga tgctgggtaa aatggaaagc tcaaagaaaa agaaaaacag 60      |
|    | aaagataaaag aaaaagaaaa acaaaaagat aaagaaaaag gagatgtcg tgacggaaat 120     |
|    | gtatggttcg a ctagcacaacaa aactggagag agagatagag atgtcaatgt tgggaccagt 180 |
|    | ggaacttcca ctgttccgag aattaaatcat ttcaactgata agatggttct accaagaatt 240   |
| 30 | aaggaaaaaa ctgtcccttaa tttaaatcat ctttcttcagt ataatccaca acaaatttgc 300   |
|    | atttctaaaca ctcgtgccccac tcagtcacaa tttgagaagt ggtacgaaagg agtgaggagt 360 |
|    | gattatggcc taaaatgatag tgaatgtcaa gtgacgtcaa atggcttgat ggtttgggt 420     |
|    | atcgagaatg gtacatctcc agacatatctt ggtgtctggg ttatgtggaa tggggaaacc 480    |
|    | caagttgatt atccaaatcaa gcctttaatg ggcacgccta ccccatcatt taggcagatt 540    |
| 35 | atggctcaact tcagtaacgc ggcagaagca tacactgc aaagaaaaatgc tactgagagg 600    |
|    | tacatgcgc ggtatggat caagagaaat ttgactgaca ttatgtctgc tagatacgtt 660       |
|    | ttcgattttc atgagggtgaa ttcgaaagaca cctgataggg ctcgtgaagc tcacatgcag 720   |
|    | atgaaagctg cagcgcgtcg aaacactaatat cgcagaatgt ttggatggaa cggcagtgtt 780   |
|    | agtaacaatg aagaaaaacac ggagagacac acagtggaaag atgtcttatat agacatgcac 840  |
| 40 | tctctcctgc gtttgcgca ctga 864                                             |

- 21 -

SEQ ID NO: 15 encodes the CP of the JA strain of PRSV which has an amino acid sequence corresponding to SEQ ID NO: 16, as follows:

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | Ser | Lys | Asn | Glu | Ala | Val | Asp | Ala | Gly | Leu | Asn | Glu | Lys | Leu | Lys | Glu |
| 5  | 1   |     |     |     | 5   |     |     | 10  |     |     |     | 15  |     |     |     |     |
|    | Lys | Glu | Lys | Gln | Lys | Asp | Lys | Glu | Lys | Glu | Lys | Gln | Lys | Asp | Lys | Glu |
|    |     |     |     |     | 20  |     |     | 25  |     |     |     | 30  |     |     |     |     |
| 10 | Lys | Gly | Asp | Ala | Ser | Asp | Gly | Asn | Asp | Gly | Ser | Thr | Ser | Thr | Lys | Thr |
|    |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |     |     |
|    | Gly | Glu | Arg | Asp | Arg | Asp | Val | Asn | Val | Gly | Thr | Ser | Gly | Thr | Ser | Thr |
|    |     |     |     |     | 50  |     |     | 55  |     |     |     | 60  |     |     |     |     |
| 15 | Val | Pro | Arg | Ile | Lys | Ser | Phe | Thr | Asp | Lys | Met | Val | Leu | Pro | Arg | Ile |
|    |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     | 80  |     |     |
|    | Lys | Gly | Lys | Thr | Val | Leu | Asn | Leu | Asn | His | Leu | Leu | Gln | Tyr | Asn | Pro |
| 20 |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |     |     |     |
|    | Gln | Gln | Ile | Asp | Ile | Ser | Asn | Thr | Arg | Ala | Thr | Gln | Ser | Gln | Phe | Glu |
|    |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |     |     |     |     |
| 25 | Lys | Trp | Tyr | Glu | Gly | Val | Arg | Ser | Asp | Tyr | Gly | Leu | Asn | Asp | Ser | Glu |
|    |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |     |     |
|    | Met | Gln | Val | Thr | Leu | Asn | Gly | Leu | Met | Val | Trp | Cys | Ile | Glu | Asn | Gly |
|    |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |     |     |
| 30 | Thr | Ser | Pro | Asp | Ile | Ser | Gly | Val | Trp | Val | Met | Met | Asp | Gly | Glu | Thr |
|    |     |     |     |     | 145 |     |     | 150 |     |     | 155 |     |     | 160 |     |     |
|    | Gln | Val | Asp | Tyr | Pro | Ile | Lys | Pro | Leu | Ile | Glu | His | Ala | Thr | Pro | Ser |
| 35 |     |     |     |     | 165 |     |     | 170 |     |     | 175 |     |     |     |     |     |
|    | Phe | Arg | Gln | Ile | Met | Ala | His | Phe | Ser | Asn | Ala | Ala | Glu | Ala | Tyr | Thr |
|    |     |     |     |     | 180 |     |     | 185 |     |     | 190 |     |     |     |     |     |

- 22 -

|    |                                                                 |     |     |
|----|-----------------------------------------------------------------|-----|-----|
|    | Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys |     |     |
|    | 195                                                             | 200 | 205 |
|    | Arg Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr |     |     |
| 5  | 210                                                             | 215 | 220 |
|    | Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln |     |     |
|    | 225                                                             | 230 | 235 |
| 10 | Met Lys Ala Ala Ala Leu Arg Asn Thr Asn Arg Arg Met Phe Gly Met |     |     |
|    | 245                                                             | 250 | 255 |
|    | Asp Gly Ser Val Ser Asn Asn Glu Glu Asn Thr Glu Arg His Thr Val |     |     |
|    | 260                                                             | 265 | 270 |
| 15 | Glu Asp Val Tyr Ile Asp Met His Ser Leu Leu Arg Leu Arg Asn     |     |     |
|    | 275                                                             | 280 | 285 |

Another nucleic acid suitable in the present invention is a *CP* gene  
 20 isolated from the Oahu ("OA") strain of PRSV, corresponding to SEQ ID NO: 17,  
 as follows:

|    |                                                                           |
|----|---------------------------------------------------------------------------|
|    | tccaaagaatg aagctgtgga tgctggttt aatgaaaaat tcaaagagaa ggaaaaacag 60      |
|    | aaagaaaaag aaaaagaaaa acaaaaagag aaagaaaaag atgggtctag tgacgaaaat 120     |
| 25 | gatgtgtcaa ctagcacaaa aactggagag agagatagatgt atgtcaatgt cgggaccagg 180   |
|    | ggaaccttca cagttccgag aattaaatca tttactgata agatgattct accgagaatt 240     |
|    | aaggggaaagg ctgtccctaa tttaatcat cttcttcagt acaatccgca acaaatgcac 300     |
|    | atttctaaca ctcgtgcgc tcattcacaa ttgaaaagt ggtatgaggg agtgaggaaat 360      |
|    | gattatgcc ttaatgatcaa tgaaatgc aaatgtctaa atgggttgcat ggtttgggt 420       |
| 30 | atcgagaatgt atcatctcc agacatatctt ggtgtctggg taatgtatggaa tggggaaacc 480  |
|    | caagtcgatt atccaatcaa gcctttgatt gagcatgcta ctccgtcatt taggcaaaatt 540    |
|    | atggctcaact ttagtaacgc ggcagaagca tacattgcga agagaaatgc tactgagagg 600    |
|    | tacatgcgc ggtatggaaat caagagaaaat ttgactgaca ttagectcgc tagatacgat 660    |
|    | ttcgactttt atgaggtaa ttcgaaaaca cctgatagag ctcgcgaagc tcacatgcac 720      |
| 35 | atgaaggctg cagcgcgtcgaa aacaccaggat cgccagaatgt ttggatggaa cggcagtgtt 780 |
|    | agtaacaagg aaaaaacac ggagagacac acagtggaaatg atgtcaatag agacatgcac 840    |
|    | tctctctgg gatatgcgaa ctaa 864                                             |

SEQ ID NO: 17 encodes the CP of the OA strain of PRSV which has an amino  
 40 acid sequence corresponding to SEQ ID NO: 18, as follows:

- 23 -

Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Phe Lys Glu  
 1 5 10 15

5 Lys Glu Lys Gln Lys Glu Lys Glu Lys Gln Lys Glu Lys Glu  
 20 25 30

Lys Asp Gly Ala Ser Asp Glu Asn Asp Val Ser Thr Ser Thr Lys Thr  
 35 40 45

10 Gly Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Thr  
 50 55 60

Val Pro Arg Ile Lys Ser Phe Thr Asp Lys Met Ile Leu Pro Arg Ile  
 15 65 70 75 80

Lys Gly Lys Ala Val Leu Asn Leu Asn His Leu Leu Gln Tyr Asn Pro  
 85 90 95

20 Gln Gln Ile Asp Ile Ser Asn Thr Arg Ala Ala His Ser Gln Phe Glu  
 100 105 110

Lys Trp Tyr Glu Gly Val Arg Asn Asp Tyr Ala Leu Asn Asp Asn Glu  
 115 120 125

25 Met Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly  
 130 135 140

Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr  
 30 145 150 155 160

Gln Val Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser  
 165 170 175

35 Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile  
 180 185 190

Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys  
 195 200 205

40

- 24 -

|    |                                                                 |     |     |     |
|----|-----------------------------------------------------------------|-----|-----|-----|
|    | Arg Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr |     |     |     |
|    | 210                                                             | 215 | 220 |     |
|    | Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln |     |     |     |
| 5  | 225                                                             | 230 | 235 | 240 |
|    | Met Lys Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met |     |     |     |
|    | 245                                                             | 250 | 255 |     |
| 10 | Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val |     |     |     |
|    | 260                                                             | 265 | 270 |     |
|    | Glu Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn     |     |     |     |
|    | 275                                                             | 280 | 285 |     |
| 15 |                                                                 |     |     |     |

Another nucleic acid suitable in the present invention is the *CP* gene isolated from the Venezuela ("VE") strain of PRSV, corresponding to SEQ ID NO: 19, as follows:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 20 | atggctgtgg atgctgggtt gaatggaaag ctc当地aaaaa aagagaaaaa agaaaaagaa 60<br>aaagaaaaac agaaaagagaa agagaaatgt gatgctatgt acggaaatgt tggtgtcaact 120<br>agcacaaaaa ctggagagag agatagagat gtc当地attttgg accaggatgg aactttcaact 180<br>gtcccttagga tt当地atcatt tactgtataag atgatgtttac cgagaattaa gggaaagact 240<br>gtcccttaatt taaatcatct tcttc当地gtatgcat aatccgaaac aaatttgacat ttcttaatact 300<br>cgtgccc当地tctc agtgc当地atgt tgagaaatgtg tggggatgt tgatggccctt 360<br>aatgataatgtt aatgc当地atgt gatgctaaat ggctt当地gtatgg tttgggtgtat tgagaatgtt 420<br>acatctccatcg acatatctgg tggtt当地gggtt atgggtggatgg gggaaacccaa agttgattat 480<br>ccaaatcaagc ct当地taatttgc gcatgctaca cc当地tcaatttgc ggc当地atttgc ggc当地tatttt 540<br>agtaacgc当地gg cagaagc当地ata cattgc当地atgtt agaaatgttca ct当地gaggatgtt catgc当地ccgg 600<br>30 tatggaaatca agagaaatttt gactgacatc aaccttagtctc gatacgcttt tgatgttctat 660<br>gagggtgaaattt cggaaacmc当地tctc tgatagggtt cgtgaaatgttca acatgc当地atgttca gaagggttgc当地a 720<br>gctt当地ggc当地aa acataatctgg cagaatgtt当地ttt ggtatcgacg gcaatgtttag caacaaggaa 780<br>gaaacacccgg agagacacac agtggatgtat gtcaatagag acatgc当地actc tctt当地gggtt 840<br>atgegcaactt aaatactcgc actt当地gtgtt当地ttt gactgtt当地ggc当地tgc当地t 885 |  |  |  |
| 35 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

SEQ ID NO: 19 encodes the CP of the VE strain of PRSV which has an amino acid sequence corresponding to SEQ ID NO: 20, as follows:

|    |                                                                 |   |    |    |
|----|-----------------------------------------------------------------|---|----|----|
|    | Met Ala Val Asp Ala Gly Leu Asn Gly Lys Leu Lys Glu Lys Glu Lys |   |    |    |
| 40 | 1                                                               | 5 | 10 | 15 |

- 25 -

Lys Glu Lys Glu Lys Glu Lys Gln Lys Glu Lys Glu Lys Asp Asp Ala  
 20 25 30

5 Ser Asp Gly Asn Asp Val Ser Thr Ser Thr Lys Thr Gly Glu Arg Asp  
 35 40 45

Arg Asp Val Asn Ile Thr Ser Gly Thr Phe Thr Val Pro Arg Ile Lys  
 50 55 60

10 Ser Phe Thr Asp Lys Met Ile Leu Pro Arg Ile Lys Gly Lys Thr Val  
 65 70 75 80

Leu Asn Leu Asn His Leu Leu Gln Tyr Asn Pro Lys Gln Ile Asp Ile  
 15 85 90 95

Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu Lys Trp Tyr Glu Gly  
 100 105 110

20 Val Arg Asp Asp Tyr Gly Leu Asn Asp Asn Glu Met Gln Val Met Leu  
 115 120 125

Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly Thr Ser Pro Asp Ile  
 130 135 140

25 Ser Gly Val Trp Val Met Val Asp Gly Glu Thr Gln Val Asp Tyr Pro  
 145 150 155 160

Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser Phe Arg Gln Ile Met  
 30 165 170 175

Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Ala Met Arg Asn Ala  
 180 185 190

35 Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys Arg Asn Leu Thr Asp  
 195 200 205

Ile Asn Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu Val Asn Ser Lys  
 210 215 220

40

- 26 -

Xaa Pro Asp Arg Ala Arg Glu Ala His Met Gln Met Lys Ala Ala Ala  
225 230 235 240

Leu Arg Asn Thr Asn Arg Arg Met Phe Gly Ile Asp Gly Ser Val Ser  
5 245 250 255

Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Asp Asp Val Asn Arg  
260 265 270

10 Asp Met His Ser Leu Leu Gly Met Arg Asn  
275 280

Also suitable for use in the present invention are variants of the  
nucleic acid molecules shown above. An example of a suitable nucleic acid is a  
15 nucleic acid molecule which has a nucleotide sequence that is at least 85% similar  
to the nucleotide sequence of the SEQ ID NOS: 1, 3, 5, 6, 9, 11, 13, 15, 17, and 19  
by basic BLAST using default parameters analysis, or which hybridizes to the  
nucleotide sequence of SEQ ID NOS: 1, 3, 5, 6, 9, 11, 13, 15, 17, and 19 under  
stringent conditions characterized by a hybridization buffer comprising 5X SSC  
20 buffer at a temperature of about 42°-65°C, preferably 45°C.

Fragments of genes encoding PRSV-CP are particularly useful in  
the present invention. Fragments capable of use in the present invention can be  
produced by several means. In one method, subclones of the gene encoding the  
CP of choice are produced by conventional molecular genetic manipulation by  
25 subcloning gene fragments. In another approach, based on knowledge of the  
primary structure of the protein, fragments of a PRSV-CP encoding gene may be  
synthesized by using the PCR technique together with specific sets of primers  
chosen to represent particular portions of the protein. These, then, would be  
cloned into an appropriate vector in either the sense or antisense orientation.

30 Another example of suitable fragments of the nucleic acids of the  
present invention are fragments of the genes which have been identified as  
conserved ("con") regions of the CP proteins, or alternatively, those portions of  
PRSV-CP nucleotide sequences that have been identified as variable ("var")  
regions. Sequences identified using DNAStar Mega alignment program as either  
35 variable or conserved in a PRSV-CP gene can be amplified using standard PCR

methods using forward and reverse primers designed to amplify the region of choice and which include a restriction enzyme sequence to allow ligation of the PCR product into a vector of choice. Combinations of amplified conserved and variable region sequences can be ligated into a single vector to create a "cassette" 5 which contains a plurality of DNA molecules in one vector. The use of conserved and variable regions of PRSV-CP DNA is further detailed below in the Examples.

The present invention also relates to a DNA construct that contains a DNA molecule encoding for a PRSV-CP isolated from any of a variety of PRSV strains, most preferably the TH, KA, KE, YK, ME, BR, JA, OA, and VE strains.

10 This involves incorporating one or more of the nucleic acid molecules of the present invention, or a suitable portion thereof, of the nucleic acid corresponding to SEQ ID NOS: 1, 3, 5, 6, 9, 11, 13, 15, 17, and 19 into host cells using conventional recombinant DNA technology. Generally, this involves inserting the nucleic acid molecule into an expression system to which the nucleic acid 15 molecule is heterologous (i.e., not normally present). The heterologous nucleic acid molecule is inserted into the expression system which includes the necessary elements for the transcription and translation of the inserted protein coding sequences.

The nucleic acid molecules of the present invention may be 20 inserted into any of the many available expression vectors and cell systems using reagents that are well known in the art. Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC1084, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, 25 SV 40, pBluescript II SK +/- or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, CA, which is hereby incorporated by reference in its entirety), pQE, pIH821, pGEX, pET series (see Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology vol. 185 (1990), which is hereby incorporated by 30 reference in its entirety), and any derivatives thereof. Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al.,

Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Press, NY (1989), and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., which are hereby incorporated by reference in their entirety.

5        In preparing a DNA vector for expression, the various DNA sequences may normally be inserted or substituted into a bacterial plasmid. Any convenient plasmid may be employed, which will be characterized by having a bacterial replication system, a marker which allows for selection in a bacterium, and generally one or more unique, conveniently located restriction sites.

10      Numerous plasmids, referred to as transformation vectors, are available for plant transformation. The selection of a vector will depend on the preferred transformation technique and target species for transformation. A variety of vectors are available for stable transformation using *Agrobacterium tumefaciens*, a soilborne bacterium that causes crown gall. Crown gall are characterized by

15      tumors or galls that develop on the lower stem and main roots of the infected plant. These tumors are due to the transfer and incorporation of part of the bacterium plasmid DNA into the plant chromosomal DNA. This transfer DNA ("T-DNA") is expressed along with the normal genes of the plant cell. The plasmid DNA, pTi, or Ti-DNA, for "tumor inducing plasmid," contains the *vir* genes necessary for movement of the T-DNA into the plant. The T-DNA carries genes that encode proteins involved in the biosynthesis of plant regulatory factors, and bacterial nutrients (opines). The T-DNA is delimited by two 25 bp imperfect direct repeat sequences called the "border sequences." By removing the oncogene and opine genes, and replacing them with a gene of interest, it is possible to

20      transfer foreign DNA into the plant without the formation of tumors or the multiplication of *Agrobacterium tumefaciens* (Fraley, et al., "Expression of Bacterial Genes in Plant Cells," Proc. Nat'l Acad. Sci. 80:4803-4807 (1983), which is hereby incorporated by reference in its entirety).

25      Further improvement of this technique led to the development of the binary vector system (Bevan, M., "Binary *Agrobacterium* Vectors for Plant Transformation," Nucleic Acids Res. 12:8711-8721 (1984), which is hereby incorporated by reference in its entirety). In this system, all the T-DNA sequences (including the borders) are removed from the pTi, and a second vector containing

T-DNA is introduced into *Agrobacterium tumefaciens*. This second vector has the advantage of being replicable in *E. coli* as well as *A. tumefaciens*, and contains a multiclinal site that facilitates the cloning of a transgene. An example of a commonly used vector is pBin19 (Frisch, et al., "Complete Sequence of the 5 Binary Vector Bin19," *Plant Molec. Biol.* 27:405-409 (1995), which is hereby incorporated by reference in its entirety). Any appropriate vectors now known or later described for genetic transformation are suitable for use in the present invention.

U.S. Patent No. 4,237,224 issued to Cohen and Boyer, which is 10 hereby incorporated by reference in its entirety, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including prokaryotic organisms and eukaryotic cells grown in tissue culture.

15 Certain "control elements" or "regulatory sequences" are also incorporated into the vector-construct. These include non-translated regions of the vector, promoters, and 5' and 3' untranslated regions which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host 20 utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used.

A constitutive promoter is a promoter that directs expression of a gene throughout the development and life of an organism. Examples of some 25 constitutive promoters that are widely used for inducing expression of transgenes include the nopaline synthase ("NOS") gene promoter, from *Agrobacterium tumefaciens*, (U.S. Patent 5034322 to Rogers et al., which is hereby incorporated by reference in its entirety), the cauliflower mosaic virus ("CaMV") 35S and 19S 30 promoters (U.S. Patent No. 5,352,605 to Fraley et al., which is hereby incorporated by reference in its entirety), the enhanced CaMV35S promoter ("enh CaMV35S"), the figwort mosaic virus full-length transcript promoter ("FMV35S"), those derived from any of the several actin genes, which are known to be expressed in most cells types (U.S. Patent No. 6,002,068 to Privalle et al., which is hereby incorporated by reference in its entirety), and the ubiquitin

promoter ("ubi"), which is a gene product known to accumulate in many cell types.

An inducible promoter is a promoter that is capable of directly or indirectly activating transcription of one or more DNA sequences or genes in response to an inducer. In the absence of an inducer, the DNA sequences or genes will not be transcribed. The inducer can be a chemical agent, such as a metabolite, growth regulator, herbicide or phenolic compound, or a physiological stress directly imposed upon the plant such as cold, heat, salt, toxins, the action of a pathogen or disease agent such as a virus or fungus. A plant cell containing an inducible promoter may be exposed to an inducer by externally applying the inducer to the cell or plant such as by spraying, watering, heating, or by exposure to the operative pathogen. An example of an appropriate inducible promoter for use in the present invention is a glucocorticoid-inducible promoter ("GIP") (Schena et al., "A Steroid-Inducible Gene Expression System for Plant Cells," 15 Proc. Natl. Acad. Sci. 88:10421-5 (1991), which is hereby incorporated by reference in its entirety). Other useful promoters include promoters capable of expressing potyvirus proteins in an inducible manner or in a tissue-specific manner in certain cell types where infection is known to occur. These include, for example, the inducible promoters from phenylalanine ammonia lyase, chalcone 20 synthase, extensin, pathogenesis-related protein, and wound-inducible protease inhibitor from potato. Other examples of such tissue specific promoters include seed, flower, or root specific promoters as are well known in the field (U.S. Patent No. 5,750,385 to Shewmaker et al., which is hereby incorporated by reference in its entirety). For a review on maximizing gene expression, see Roberts and Lauer, 25 Methods in Enzymology 68:473 (1979), which is hereby incorporated by reference in its entirety.

The particular promoter selected is preferably capable of causing sufficient expression of the DNA coding sequences to which it is operably linked, to result in the production of amounts of the proteins effective to provide viral 30 resistance, but not so much as to be detrimental to the cell in which they are expressed. The actual choice of the promoter is not critical, as long as it has sufficient transcriptional activity to accomplish the expression of the preselected proteins, where expression is desired, and subsequent conferral of viral resistance

- 31 -

to the plants. The promoters selected should be capable of functioning in tissues including, but not limited to, epidermal, vascular, and mesophyll tissues.

The nucleic acid construct of the present invention also includes an operable 3' regulatory region, which provides a functional poly(A) addition signal (AATAAA) 3' of its translation termination codon. This is selected from among those which are capable of providing correct transcription termination and polyadenylation of mRNA for expression in the host cell of choice, operably linked to a DNA molecule which encodes for a protein of choice. A number of 3' regulatory regions are known to be operable in plants. Exemplary 3' regulatory regions include, without limitation, the nopaline synthase 3' regulatory region (Fraley, et al., "Expression of Bacterial Genes in Plant Cells," Proc. Nat'l Acad. Sci. USA 80:4803-4807 (1983), which is hereby incorporated by reference in its entirety) and the cauliflower mosaic virus 3' regulatory region (Odell, et al., "Identification of DNA Sequences Required for Activity of the Cauliflower Mosaic Virus 35S Promoter," Nature 313(6005):810-812 (1985), which is hereby incorporated by reference in its entirety). Virtually any 3' regulatory region known to be operable in plants would suffice for proper expression of the coding sequence of the nucleic acid construct of the present invention.

A vector of choice, suitable promoter, and an appropriate 3' regulatory region can be ligated together to produce the expression systems which contain the nucleic acids of the present invention, or suitable fragments thereof, using well known molecular cloning techniques as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Press, NY (1989), and Ausubel et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., which are hereby incorporated by reference in their entirety.

Once the isolated nucleic acid molecules encoding the various papaya ringspot virus coat proteins or polypeptides, as described above, have been cloned into an expression system, they are ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like.

Accordingly, another aspect of the present invention relates to a recombinant plant cell containing one or more of the PRSV-CP nucleic acids of the present invention. Basically, this method is carried out by transforming a plant cell with a nucleic acid construct of the present invention under conditions effective to yield transcription of the DNA molecule in response to the promoter. Methods of transformation may result in transient or stable expression of the DNA under control of the promoter. Preferably, the nucleic acid construct of the present invention is stably inserted into the genome of the recombinant plant cell as a result of the transformation, although transient expression can serve an important purpose, particularly when the plant under investigation is slow-growing.

Plant tissue suitable for transformation include without limitation, leaf tissue, root tissue, meristems, zygotic and somatic embryos, callus, protoplasts, tassels, pollen, embryos, anthers, and the like. The means of transformation chosen is that most suited to the tissue to be transformed.

Transient expression in plant tissue is often achieved by particle bombardment (Klein et al., "High-Velocity Microprojectiles for Delivering Nucleic Acids Into Living Cells," *Nature* 327:70-73 (1987), which is hereby incorporated by reference in its entirety). In this method, tungsten or gold microparticles (1 to 2  $\mu\text{m}$  in diameter) are coated with the DNA of interest and then bombarded at the tissue using high pressure gas. In this way, it is possible to deliver foreign DNA into the nucleus and obtain a temporal expression of the gene under the current conditions of the tissue. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells (U.S. Patent Nos. 4,945,050, 5,036,006, and 5,100,792, all to Sanford et al., which are hereby incorporated by reference in their entirety). For papaya, particle gun bombardment has been a particularly successful method (Fitch, M.M., "Stable Transformation of Papaya Via Micro-Projectile Bombardment," *Plant Cell Rep.* 9:189 (1990), and Fitch et al., "Somatic Embryogenesis and Plant Regeneration from Immature Zygotic Embryos of Papaya (*Carica papaya L.*)," *Plant Cell Rep.* 9:320 (1990), which are hereby incorporated by reference). Other variations of particle bombardment, now known or hereafter developed, can also be used.

An appropriate method of stably introducing the nucleic acid construct into plant cells is to infect a plant cell with *Agrobacterium tumefaciens* or *Agrobacterium rhizogenes* previously transformed with the nucleic acid construct. As described above, the Ti (or Ri) plasmid of *Agrobacterium* enables

5 the highly successful transfer of a foreign DNA into plant cells. Yet another method of introduction is fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies (Fraley, et al., Proc. Natl. Acad. Sci. USA 79:1859-63 (1982), which is hereby incorporated by reference in its entirety). The DNA molecule may also be introduced into the plant cells by

10 electroporation (Fromm et al., Proc. Natl. Acad. Sci. USA 82:5824 (1985), which is hereby incorporated by reference in its entirety). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the expression cassette. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids.

15 Electroporated plant protoplasts reform the cell wall, divide, and regenerate. The precise method of transformation is not critical to the practice of the present invention. Any method that results in efficient transformation of the host cell of choice is appropriate for practicing the present invention.

After transformation, the transformed plant cells must be

20 regenerated. Plant regeneration from cultured protoplasts is described in Evans et al., Handbook of Plant Cell Cultures, Vol. 1: (MacMillan Publishing Co., New York, 1983); Vasil I.R. (ed.), Cell Culture and Somatic Cell Genetics of Plants, Acad. Press, Orlando, Vol. I, 1984, and Vol. III (1986), and Fitch et al., "Somatic Embryogenesis and Plant Regeneration from Immature Zygotic Embryos of

25 Papaya (*Carica papaya L.*)," Plant Cell Rep. 9:320 (1990), which are hereby incorporated by reference in their entirety.

It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, all major species of sugarcane, sugar beets, cotton, fruit trees, and legumes.

30 Means for regeneration vary from species to species of plants, but generally, a suspension of transformed protoplasts or a petri plate containing explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced

in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, 5 then regeneration is usually reproducible and repeatable.

Preferably, transformed cells are first identified using a selection marker simultaneously introduced into the host cells along with the nucleic acid construct of the present invention. Suitable selection markers include, without limitation, markers encoding for antibiotic resistance, such as the *nptII* gene which 10 confers kanamycin resistance (Fraley, et al., *Proc. Natl. Acad. Sci. USA* 80:4803-4807 (1983), which is hereby incorporated by reference in its entirety), and the genes which confer resistance to gentamycin, G418, hygromycin, streptomycin, spectinomycin, tetracycline, chloramphenicol, and the like. Cells or tissues are grown on a selection medium containing the appropriate antibiotic, whereby 15 generally only those transformants expressing the antibiotic resistance marker continue to grow. Other types of markers are also suitable for inclusion in the expression cassette of the present invention. For example, a gene encoding for herbicide tolerance, such as tolerance to sulfonylurea is useful, or the *dhfr* gene, which confers resistance to methotrexate (Bourouis et al., *EMBO J.* 2:1099-1104 20 (1983), which is hereby incorporated by reference in its entirety). Similarly, "reporter genes," which encode for enzymes providing for production of an identifiable compound are suitable. The most widely used reporter gene for gene fusion experiments has been *uidA*, a gene from *Escherichia coli* that encodes the  $\beta$ -glucuronidase protein, also known as GUS (Jefferson et al., "GUS Fusions:  $\beta$  25 Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants," *EMBO J.* 6:3901-3907 (1987), which is hereby incorporated by reference in its entirety). Similarly, enzymes providing for production of a compound identifiable by luminescence, such as luciferase, are useful. The selection marker employed will depend on the target species; for certain target species, different antibiotics, 30 herbicide, or biosynthesis selection markers are preferred.

Plant cells and tissues selected by means of an inhibitory agent or other selection marker are then tested for the acquisition of the viral gene by Southern blot hybridization analysis, using a probe specific to the viral genes

contained in the given cassette used for transformation (Sambrook et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor, New York: Cold Spring Harbor Press (1989), which is hereby incorporated by reference in its entirety).

5           The presence of a viral coat protein gene can also be detected by immunological assays, such as the double-antibody sandwich assays described by Namba et al., "Expression of the Gene Encoding the Coat Protein of Cucumber Mosaic Virus (CMV) Strain WL appears to Provide Protection to Tobacco Plants Against Infection by Several Different CMV Strains," Gene 107:181-188 (1991),  
10       which is hereby incorporated by reference in its entirety, as modified by Clark et al., "Characteristics Of the Microplate Method for Enzyme-Linked Immunosorbent Assay For the Detection of plant Viruses," J. Gen. Virol. 34, 475-83 (1977), which is hereby incorporated by reference in its entirety. Potyvirus resistance can also be assayed via infectivity studies as generally described by  
15       Namba et al., "Protection of Transgenic Plants Expressing the Coat Protein Gene of Watermelon Virus ii or Zucchini Yellow Mosaic Virus Against Potyviruses," Phytopath. 82:940946 (1992), which is hereby incorporated by reference in its entirety, wherein plants are scored as symptomatic when any inoculated leaf shows vein-clearing, mosaic, or necrotic symptoms.

20       After the expression cassette is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. Once transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedure so that the nucleic  
25       acid construct is present in the resulting plants. Alternatively, transgenic seeds or propagules (e.g., cuttings) are recovered from the transgenic plants. These seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants.

30       The present invention also relates to DNA constructs which contain a plurality of DNA molecules which are derived from one or more genes which encode a papaya ringspot viral coat protein. The *PRSV-CP* DNA molecules may be derived from one or more strains, including, but not limited to, TH, KE, KA, ME, YK, BR, JA, OA, and VE. Some of the *PRSV-CP* DNA molecules may be a

- 36 -

fragment of the nucleic acid sequence of the CP(s) of choice which by itself is too short, i.e., does not contain sufficient nucleotide sequence, to impart its respective trait when placed in a vector and used to transform plant cells as described above. Collectively, however, this plurality of DNA molecules impart their trait 5 to the transformed plant. The trait which is imparted is resistance to the PRSV strain from which any given DNA molecule in the construct is derived. Suitable nucleic acids for this construct include fragments of a PRSV CP-encoding DNA molecule, of any strain, including but not limited to, TH, KE, KA, ME, YK, BR, JA, OA, and VE. The DNA molecules are inserted in the construct as less than 10 full-length DNA, preferably in the range of about 200 bp of the full-length PRSV-CP DNA molecule. The 200 bp fragments are preferably chosen from the conserved and variable regions of CP-encoding DNA. There is no need to include separate promoters for each of the fragments; only a single promoter is required. Moreover, such viral gene fragments can preferably be incorporated in a single 15 expression system to produce transgenic plants with a single transformation event.

The present invention also relates to a DNA construct containing a fusion gene which includes a trait DNA molecule which has a length insufficient to independently impart a desired trait to plants transformed with the trait molecule, operatively coupled to a silencer molecule effective to achieve post- 20 transcriptional gene silencing. The trait DNA molecule and the silencer molecule collectively impart the trait to plants transformed with the construct. The trait DNA molecules of this DNA construct are derived from a gene encoding a papaya ringspot viral coat protein from a papaya ringspot virus strains which include, but are not limited to TH, KE, KA, ME, YK, BR, JA, OA, and VE. The fragments of 25 trait DNA molecules are subcloned into the fusion gene cassette. Suitable DNA fragments are those of about 200 bp which derive from the variable and conserved regions of the CP-encoding molecules of choice. The silencer molecule of the construct of the present invention can be selected from virtually any nucleic acid which effects gene silencing. This involves the cellular mechanism to degrade 30 mRNA homologous to the transgene mRNA. The silencer DNA molecule can be heterologous to the plant, need not interact with the trait DNA molecule in the plant, and can be positioned 3' to the trait DNA molecule. For example, the silencer DNA molecule can be a viral cDNA molecule, including, without

limitation, a gene encoding a replicase, a movement protein, or a nucleocapsid protein; a green fluorescence protein encoding DNA molecule, a plant DNA molecule, or combinations thereof.

In any of the constructs of the present invention, the DNA molecule conferring disease resistance can be positioned within the DNA construct in the sense (5'→3') orientation. Alternatively, it can have an antisense (3'→5') orientation. Antisense RNA technology involves the production of an RNA molecule that is complementary to the messenger RNA molecule of a target gene. The antisense RNA can potentially block all expression of the targeted gene. In the anti-virus context, plants are made to express an antisense RNA molecule corresponding to a viral RNA (that is, the antisense RNA is an RNA molecule which is complementary to a "plus" (+) sense RNA species encoded by an infecting virus). Such plants may show a slightly decreased susceptibility to infection by that virus. Such a complementary RNA molecule is termed antisense RNA.

It is possible for the DNA construct of the present invention to be configured so that the trait and silencer DNA molecules encode RNA molecules which are translatable. As a result, that RNA molecule will be translated at the ribosomes to produce the protein encoded by the DNA construct. Production of proteins in this manner can be increased by joining the cloned gene encoding the DNA construct of interest with synthetic double-stranded oligonucleotides which represent a viral regulatory sequence (i.e., a 5' untranslated sequence) (U.S. Patent No. 4,820,639 to Gehrke, and U.S. Patent No. 5,849,527 to Wilson, which are hereby incorporated by reference in their entirety).

Alternatively, the DNA construct of the present invention can be configured so that the trait and silencer DNA molecules encode mRNA which is not translatable. This is achieved by introducing into the DNA molecule one or more premature stop codons, adding one or more bases (except multiples of 3 bases) to displace the reading frame, removing the translation initiation codon, etc. See U.S. Patent No. 5,583,021 to Dougherty et al., which is hereby incorporated by reference in its entirety. The subject DNA construct can be incorporated in cells using conventional recombinant DNA technology, such as described in detail above.

Another aspect of the present invention is a method to confer resistance to PRSV to plants. This involves transforming susceptible plants with one or more of the nucleic acid constructs of the present invention, testing for transformation using a marker inherent in the vector, selecting transgenics, and

5 regenerating and reproducing the transgenic plants as described above. The expression system of the present invention can be used to transform virtually any plant tissue under suitable conditions. Transformed cells can be regenerated into whole plants such that the PRSV-transgene imparts resistance to PRSV in the intact transgenic plants. In either case, the plant cells transformed with the

10 recombinant DNA expression system of the present invention are grown and caused to express the DNA molecule or molecules in the constructs of the present invention, and, thus, to impart papaya ringspot resistance.

While not wishing to be bound by theory, by use of the constructs of the present invention, it is believed that post-transcriptional gene silencing is

15 achieved. More particularly, the silencer DNA molecule is believed to boost the level of heterologous RNA within the cell above a threshold level. This activates the degradation mechanism by which viral resistance is achieved.

Transgenic plants which show post-transcription gene silencing-derived resistance establish the highly resistant state and prevent virus replication.

20 A chimeric transgene consisting of a silencer DNA (e.g., *GFP*) fused with various small nontranslatable fragment viral genome would be preferred for viral resistance. There are several advantages. First, the silencer DNA can increase the induced gene silencing. Second, the chimeric nature of the gene would provide multiple virus resistance. Third, nontranslatable construction produces no protein,

25 thus reducing the possible complementation of naturally occurring mutants and transencapsidation of other viruses. Fourth, the small fragment also reduces the possibility of recombination with other viral genomes.

Absent a complete understanding of the mechanism(s) of viral resistance conferred through this type of genetic manipulation, optimization of the

30 production of viral resistant transgenics is still under study. Thus, the degree of resistance imparted to a given transgenic plant (high, medium, or low efficacy) is unpredictable. However, it has been noted that when combinations of viral gene expression cassettes are placed in the same binary plasmid, and that multigene

cassette containing plasmid is transformed into a plant, the viral genes all exhibit substantially the same degrees of efficacy when present in transgenic plants. For example, if one examines numerous transgenic lines containing two different intact viral gene cassettes, the transgenic line will be immune to infection by both 5 viruses. Likewise if a transgenic line exhibits a delay in symptom development to one virus, it will also exhibit a delay in symptom development to the second virus. Finally, if a transgenic line is susceptible to one of the viruses it will be susceptible to the other. This phenomenon is unexpected. If there were not a correlation between the efficacy of each gene in these multiple gene constructs, 10 this approach as a tool in plant breeding would probably be prohibitively difficult to use. The probability of finding a line with useful levels of expression can range from 10-50%, depending on the species involved (U.S. Patent No. 6,002,072 to McMaster et al., which is hereby incorporated by reference in its entirety).

15 The present invention will be further described by reference to the following detailed examples.

#### EXAMPLES

##### Example 1– Amplification and Cloning of CP Variable Region DNAs

20 Total RNA was extracted from PRSV-infected papaya plants. Different *PRSV-CP* gene fragments, each about 200 bp, from Taiwan (YK), Keaau (KE), and Thailand (TH) strains were amplified by reverse-transcription and polymerase-chain-reaction (RT-PCR) and extracted from agarose gels. The primers used to amplify the variable region of the PRSV-CP gene of strains YK, 25 KE, and TH are shown in Table 1.

- 40 -

Table 1

| PRSV Strain | Product (bp) | Primer position | Primer Sequence (SEQ ID NO)                                           |
|-------------|--------------|-----------------|-----------------------------------------------------------------------|
| YKvar       | 209          | 21-39           | 5' GAGAtctaga <u>TAATGATAACCGGTCTGAATGAGAAG</u> 3'<br>(SEQ ID NO: 21) |
|             |              | 212-229         | 5' GGATcctcgag <u>AGATCATCTTATCACTAA</u> 3'<br>(SEQ ID NO: 22)        |
| KEvar       | 209          | 21-39           | 5' TAGActcgag <u>TGCTGGTTGAATGAAAAA</u> 3'<br>(SEQ ID NO: 23)         |
|             |              | 211-229         | 5' CGATccggg <u>GAATCAACTTATCAGTAA</u> 3'<br>(SEQ ID NO: 24)          |
| THvar       | 206          | 21-39           | 5' TATAccgggg <u>TGCTGGTCTTAATGAGAAG</u> 3'<br>(SEQ ID NO: 25)        |
|             |              | 209-226         | 5' CTACggatcc <u>AAATCATCTGTCGGTAA</u> 3'<br>(SEQ ID NO: 26)          |

5 Restriction enzyme sequence is shown in small letters; the stop codon is shown in caps, without underline; viral sequences are underlined.

Following amplification using conventional PCR techniques, the amplified fragments were digested with the appropriate restriction enzymes. A restriction enzyme *Xba*I-*Xho*I digested YK fragment (209 bp) was first ligated 10 into the pEPJ vector. A *Xho*I-*Sma*I digested KE fragment (209 bp) was ligated behind (i.e., at the 3' end of) the YK fragment and then a *Sma*I-*Bam*HI digested TH fragment (206 bp) was ligated behind the KE. The resultant clone, pEPJ-YKT, shown in Figure 1A, contains the variable region of CP from YK-KE-TH in the 5' → 3' direction. Following a *Hind*III-*Kpn*I restriction digest, the pEPJ-YKT 15 expression cassette was ligated into the *Hind*III-*Kpn*I cloning site of transformation vector pGA482G, shown in Figure 1B, resulting in clone pTi-EPJ-YKT. Cesium chloride purified pTi-EPJ-YKT was then used for host cell transformation by particle gun bombardment.

**Example 2 -Cloning of CP Variable Regions into Silencer Construct**

Fragments *Xba*I/*Bam*HI from pEPJ-YKT were ligated into other expression vectors pNP, shown in Figure 2A, and pGFP, shown in Figure 2B, creating pNP-YKT and pGFP-YKT, respectively. "M1/2 NP" shown in Figure 2A refers to a fragment consisting of approximately one half (387-453 bp) of the gene encoding the nucleocapsid protein ("N" or "NP" gene) of the viral genome of the tomato spotted wilt virus ("TSWV"), a tospovirus that causes crop damage worldwide. Expression of large fragments (approximately 1/2 or greater) of the N gene of TSWV have been shown to confer high levels of resistance to TSWV-BL in 20-51% of R1 plants transformed with the fragment, and tolerance to tospovirus infection in 4-22% of R1 plants isolate but not to the distantly related Impatiens necrotic spot virus ("INSV") (Law et al., "The M RNA of Impatiens Necrotic Spot Tospovirus (Bunyaviridae) Has an Ambisense Genomic Organization," *Virology*, 188:732-41 (1992), which is hereby incorporated by reference in its entirety) or groundnut ringspot virus ("GRSV") (Pang et al., "The Biological Properties of a Distinct Tospovirus and Sequence Analysis of Its mRNA," *Phytopathology*, 83:728-33 (1993), which is hereby incorporated by reference in its entirety). The N gene of TSWV is an example of a gene derived from the viral genome that is useful as a silencer molecule in the nucleic acid constructs of the present invention. Restriction enzyme *Hind*III/*Kpn*I digested fragments from these two expression vectors were then ligated into the *Hind*III/*Kpn*I cloning site of the transformation vector pGA482G, resulting in clones pTi-NP-YKT and pTi-GFP-YKT. Cesium chloride purified pTi-NP-YKT and pTi-GFP-YKT were then used for host cell transformation by particle gun bombardment.

25

**Example 3 -Amplification and Cloning of CP Conserved Region DNAs**

Total RNA was extracted from PRSV-infected papaya plants. Different PRSV-CP gene fragments, each about 200 bp, from Keau (KE) and Thailand (TH) were amplified by RT-PCR. The primers used to amplify the 30 conserved region of the PRSV-CP gene of strains KE and TH are shown in Table 2.

Table 2

| PRSV Strain | Product (bp) | Primer position | Primer Sequence (SEQ ID NO)                                        |
|-------------|--------------|-----------------|--------------------------------------------------------------------|
| KEcon       | 203          | 649-686         | 5' TCAAtctagagtgcac <u>GCTAGATATGCTTCGAC</u> 3'<br>(SEQ ID NO: 27) |
|             |              | 834-851         | 5' AAGTtcgaggtcac <u>CCCAGGAGAGAGTCATG</u> 3'<br>(SEQ ID NO: 28)   |
| THcon       | 203          | 646-683         | 5' AATAccgggg <u>GCTAGATATGCTTCGAC</u> 3'<br>(SEQ ID NO: 29)       |
|             |              | 831-848         | 5' TTATggatcc <u>CCTAGGAGAGAGTCATG</u> 3'<br>(SEQ ID NO: 30)       |

Restriction enzyme sequence is shown in small letters; the stop codon is shown in caps, without underline; viral sequences are underlined.

5

Constructs containing the silencer molecule 1/2 NP are shown in Figures 3A-G. These constructs are designated herein as clone pNP-X<sub>n</sub>, where "X" denotes of PRSV strain from which the *CP* DNA is derived, and "n" represents the number fragments of "X" in the cassette. When the DNA is 10 inserted in the sense orientation, "X" is the first initial of the strain, for example, "K" for KE, "T" for TH. When a fragment is inserted in the antisense orientation, the strain acronym is flipped, for example, KE becomes EK, and "X" becomes the first initial of the antisense designation. For example, for an antisense fragment of KE, "X" becomes "E." Translatable and nontranslatable forms of the DNA 15 molecule are further designated with the prefix "TL" and "NTL", respectively.

Clone pNP-K, shown in Figure 3A, was obtained by ligating a single 203 bp *Xba*I/*Xho*I digested KE DNA fragment in a sense orientation into the expression vector pNP containing the 365 bp M1/2NP DNA molecule. Clone pNP-KK, shown in Figure 3B, and pNP-EE, shown Figure 3C, containing sense 20 and antisense KE fragments, respectively, were obtained by ligating a *Sal*I digested KE DNA fragment into pNP-K. Clone pNP-KKTC, shown in Figure 3D, pNP-KKTV, shown in Figure 3E, pNP-EETC, shown in Figure 3F; and pNP-EETV, shown in Figure 3G, were obtained by ligating a *Sma*I/*Bam*HI digested KE

fragment from the conserved region (KEcon) or from the variable region (KEvar) into pNP-KK or pNP-EE.

The pNP clones were *Hind*III /*Kpn*I digested from the expression vectors, and ligated into the *Hind*III/*Kpn*I cloning site of the transformation vector 5 pGA482G, resulting in clones pTi-NP-K, pTi-NP-KK, pTi-NP-EE, pTi-NP-KKTC, pTi-NP-KKTV, pTi-NP-EETC and pTi-NP-EETV. Cesium chloride purified pTi-NP-clones were then used for host cell transformation by particle gun bombardment.

10 **Example 4 - Amplification and Cloning of Full Length Translatable and Nontranslatable KE**

Two full-length KE-CP constructs, shown in Figure 4, start from the first CP cut site which is 60 nt upstream from the second CP cut site. The 15 primers used for amplification and construction of pEPJ-TL KE and pEPJ-NTL KE are shown in Table 3.

Table 3

| PRSV Strain                    | Product (bp) | Primer Sequence (SEQ ID NO)                                                                                                                      |
|--------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| TL KE<br>55'KE1L<br>3'KE10117  | 921          | 5'AGCTAAccatggAAT <u>CAAGGAGCACTGATGATTATC</u> 3'<br>(SEQ ID NO: 31)<br><br>5'ATTTggatccggg <u>GTTGCGCATGCCAGGAGAGAG</u> 3'<br>(SEQ ID NO: 32)   |
| NTL KE<br>5'KEN1L<br>3'KE10117 | 921          | 5' AGCTAAccatggAATA <u>ATGGAGCACTGATGATTATC</u> 3'<br>(SEQ ID NO: 33)<br><br>5' ATTTggatccggg <u>GTTGCGCATGCCAGGAGAGAG</u> 3'<br>(SEQ ID NO: 34) |

20 Restriction enzyme sequence is shown in small letters; the stop codon is shown in caps, without underline; viral sequences are underlined.

Following amplification, the *Nco*I/*Bam*HI digested PCR *KECP* fragments were ligated into pEPJ vector, as shown in Figure 4. Using

- 44 -

*Hind*II/*Kpn*I, the expression cassette was then subcloned into the transformation vector pGA482G.

**Example 5 -Amplification and Cloning of MEX CP**

5 The primers used for amplification and preparation of construct pEPJ-MEX CP are shown in Table 4.

**Table 4**

| PRSV Strain | Product (bp) | Primer Sequence (SEQ ID NO)                                             |
|-------------|--------------|-------------------------------------------------------------------------|
| NTL Mex     | 855          | 5'CGAtctagaccatgg <b>AATAATGATCCAAGAACATGAAGC</b> 3'<br>(SEQ ID NO: 35) |
|             |              | 5'CTTAAggatcc <b>GTTGCGCATACCCAGGAGAGA</b> 3' 3'<br>(SEQ ID NO: 36)     |

10 Restriction enzyme sequence is shown in small letters; the stop codon is shown in caps, without underline; viral sequences are underlined.

**Example 6 - Transformation of Papaya with PRSV-CP DNA Constructs**

Papaya embryos were bombarded with DNA constructs prepared as described above and shown in Figures 2-5. The transformation procedure was followed as described in Cai et al., "A Protocol for Efficient Transformation and Regeneration of *Carica papaya L. In Vitro*," *Cell Devel. Biol-Plant* 35: 61-69 (1999), which is hereby incorporated by reference in its entirety. Plasmid DNA was purified by ethidium bromide CsCl gradient (Ausubel et al., "CsCl/Ethidium Bromide Preparations of Plasmid DNA," *Current Protocols in Molec Biol.* unit 2.9.1-2.9.20 (1995), which is hereby incorporated by reference in its entirety), ethanol precipitated and suspended in water. Immature zygotic embryos were extracted from seeds of immature green 'Sunrise' or 'Kapoho' papaya and placed on induction medium and kept in the dark. Zygotic embryos with their somatic embryo clusters were placed on Whatman #2 filter paper and spread. The somatic embryos were allowed to proliferate, and following this, the embryos were spread firmly onto fresh filter paper and bombarded with tungsten-coated plasmid DNA. Seven days after bombardment, materials were transferred to induction medium

- 45 -

containing kanamycin at 75 mg/L. After four weeks, the kanamycin level was raised to 150 mg/L. After a few weeks in kanamycin medium, actively growing embryo clusters were transferred to kanamycin-free medium. When the embryos developed a pale ivory color and appeared as finger-like extensions, they were 5 transferred to maturation medium for two to four weeks. Mature somatic embryos were transferred to germination medium and then developed into plantlets with dark green leaves and root initials. Those plantlets were transferred to baby jars with rooting medium and transferred to the greenhouse.

Transgenic lines from the germination medium were analyzed by 10 PCR to confirm that the virus gene was in the plantlets. Northern blots were carried out to detect the level of RNA expressed in transgenic lines, and the copy number of the transgene in the transgenic plants was determined by Southern blot analysis.

Following transfer to the greenhouse, transgenic plants were 15 challenged with the KE strain of PRSV. Plants were thereafter monitored for viral symptoms. If no disease symptoms appeared after approximately 4 weeks post-inoculation, those plants were challenged with a different PRSV strain to test for cross-resistance.

20 **Example 7 - Resistance Imparted to PRSV by Transgenes**

219 transgenic lines containing the various PRSV DNA constructs of the present invention, as described above, were transferred to the greenhouse. Inoculation with KE virus was carried out on 90 plant lines transformed with at least one KE-containing DNA construct. Of those 90 lines challenged with PRSV- 25 KE, 26 lines showed resistance and 64 lines were susceptible.

Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the 30 scope of the invention as defined in the claims which follow.

2002307322 30 Jul 2007

- 46 -

## THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An isolated nucleic acid molecule encoding a papaya ringspot virus coat protein, wherein the nucleic acid molecule either: 1) has a nucleic acid sequence of SEQ ID NO:1; or 2) encodes an amino acid having SEQ ID NO: 2.
2. A DNA construct comprising:  
the nucleic acid molecule according to claim 1 and  
an operably linked promoter and 3' regulatory region.
3. A DNA expression vector comprising:  
the DNA construct according to claim 2.
4. A host cell transduced with a DNA construct according to claim 2.
5. A host cell according to claim 4, wherein the cell is selected from the group consisting of a bacterial cell, a virus, a yeast cell, and a plant cell.
6. A transgenic plant transformed with a DNA construct according to claim 2.
7. A transgenic plant according to claim 6, wherein the plant is papaya.
8. A transgenic plant seed transformed with a DNA construct according to claim 2.
9. A transgenic plant seed according to claim 8, wherein the plant is papaya.
10. A DNA construct comprising:  
a plurality of trait DNA molecules at least two of which have a coding region of a length that is insufficient to independently impart its trait to plants transformed with that trait DNA molecule, but said plurality of trait DNA molecules collectively impart their traits to plants transformed with said DNA construct and effect silencing of the

- 47 -

DNA construct, wherein the trait is disease resistance and the trait DNA molecules are derived from a gene encoding a papaya ringspot virus coat protein from a papaya ringspot virus strain selected from the group consisting of TH, KE, KA, ME, YK, BR, JA, OA, VE, and PA.

5

11. A DNA construct according to claim 10, wherein one or more of the trait DNA molecules are selected from the group consisting of the variable regions and conserved regions of said papaya ringspot viral coat proteins.

10

12. The DNA construct according to claim 10 or claim 11, wherein one or more of the trait DNA molecules are in the sense ( $5' \rightarrow 3'$ ) orientation.

13. The DNA construct according to claim 10 or claim 11, wherein one or more of the trait DNA molecules are inserted in the antisense ( $3' \rightarrow 5'$ ) orientation.

15

14. An expression vector comprising:  
the DNA construct according to any one of claims 10 to 13.

20

15. A host cell transduced with a DNA construct according to any one of claims 10 to 13.

16. A host cell according to claim 15, wherein the cell is selected from the group consisting of a bacterial cell, a virus, a yeast cell, and a plant cell.

25

17. A transgenic plant transformed with a DNA construct according to any one of claims 10 to 13.

18. A transgenic plant according to claim 17, wherein the plant is papaya.

30

19. A transgenic plant seed transformed with a DNA construct according to any one of claims 10 to 13.

20. A transgenic plant seed according to claim 19, wherein the plant is papaya.

- 48 -

21. A DNA construct comprising:  
a fusion gene comprising:  
a trait DNA molecule which has a length that is insufficient to independently  
5 impart a desired trait to plants transformed with said trait DNA molecule and  
a silencer DNA molecule effective to achieve post-transcriptional gene silencing  
and operatively coupled to said trait DNA molecule, wherein said trait DNA molecule  
and said silencer DNA molecule collectively impart the trait to the plants transformed  
with said DNA construct, and wherein the trait DNA molecules are derived from a gene  
10 encoding a papaya ringspot viral coat protein from a papaya ringspot virus strain  
selected from the group consisting of TH, KE, KA, ME, YK, BR, JA, OA, VE, and PA.
22. A DNA construct according to claim 21, further comprising:  
a promoter sequence operatively coupled to said fusion gene and  
15 a termination sequence operatively coupled to said fusion gene to end  
transcription.
23. A DNA construct according to claim 21 or claim 22, wherein said  
silencer DNA molecule is selected from the group consisting of a viral DNA molecule,  
20 a fluorescence protein encoding DNA molecule, a plant DNA molecule, a viral gene  
silencer, and combinations thereof.
24. An expression vector comprising:  
the DNA construct according to any one of claims 21 to 23.  
25
25. A host cell transduced with a DNA construct according to any one of  
claims 21 to 23.
26. A host cell according to claim 25, wherein the cell is selected from the  
30 group consisting of a bacterial cell, a virus, a yeast cell, and a plant cell.
27. A transgenic plant transformed with a DNA construct according to any  
one of claims 21 to 23.

- 49 -

28. A transgenic plant according to claim 27, wherein the plant is papaya.
29. A transgenic plant seed transformed with a DNA construct according to any one of claims 21 to 23.
- 5 30. A transgenic plant according to claim 29, wherein the plant is papaya.
31. A method of imparting resistance to papaya plants against papaya ringspot virus comprising:
  - 10 transforming a papaya plant with a DNA construct according to any one of claims 2, 10 or 21.
  - 15 32. A DNA construct according to claim 10 or claim 21, wherein the gene encoding a papaya ringspot virus coat protein is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, and SEQ ID NO: 19.
  - 20 33. A DNA construct according to claim 32, wherein the gene encoding a papaya ringspot virus coat protein is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 15, SEQ ID NO: 17, and SEQ ID NO: 19.
  - 25 34. An isolated nucleic acid molecule according to claim 1, substantially as hereinbefore described with reference to any one of the Examples and/or Figures.
  35. A DNA construct according to claim 10 or claim 21, substantially as hereinbefore described with reference to any one of the Examples and/or Figures.

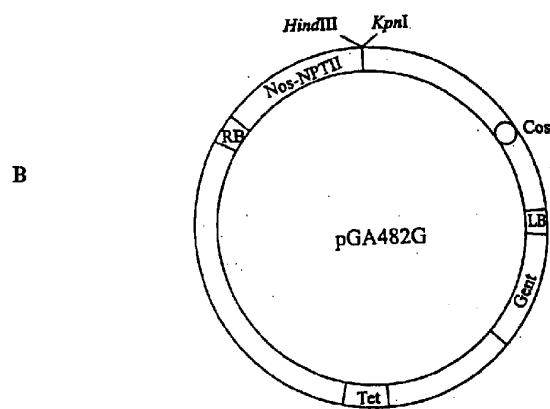
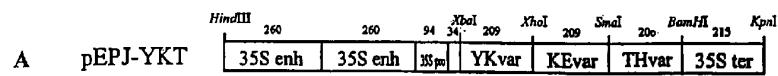
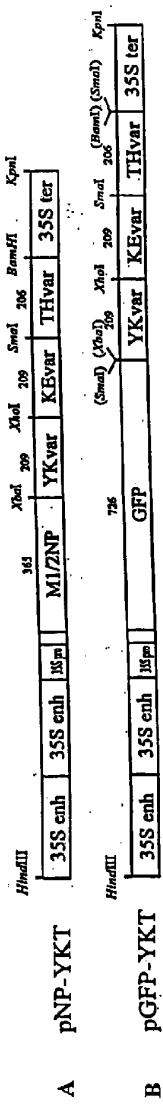





FIGURE 1



## FIGURE 2

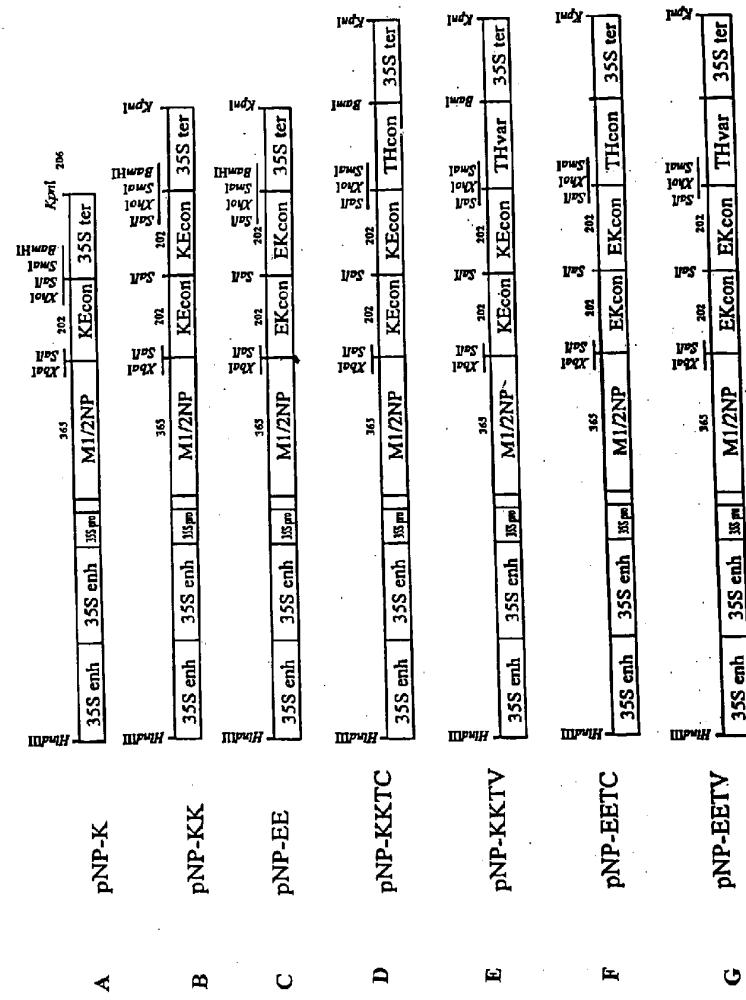



FIGURE 3

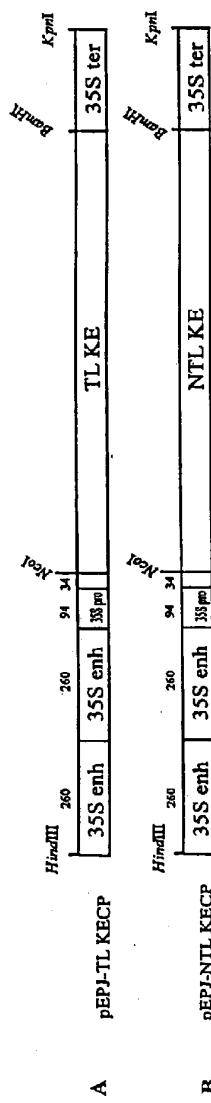



FIGURE 4

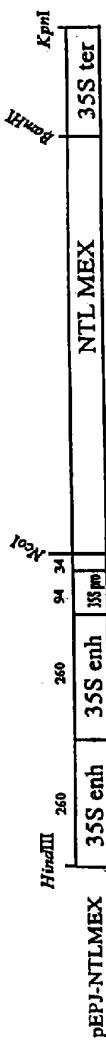



FIGURE 5

## SEQUENCE LISTING

<110> Gonsalves, Dennis  
Chiang, Chu-Hui  
Tennant, Paula F.  
Gonsalves, Carol V.  
Sarindu, Nonglak  
Souza, Jr., Manoel Teixeira  
Nickel, Osmar  
Munoz, Gustavo Alberto Fermin  
Saxena, Sanjay  
Cai, Wengqi

<120> PAPAYA RINGSPOT VIRUS GENES

<130> 19603/3381

<140>  
<141>

<150> 60/283,007  
<151> 2001-04-11

<160> 36

<170> PatentIn Ver. 2.1

<210> 1  
<211> 864  
<212> DNA  
<213> PRSV-KA-CP

<400> 1  
tccaaagaatg aagctgtgga tgctgggtt aatgaaaaac tcaaagagaa agaaagacag 60  
aaagaaaaag aaaaagaaaa acaaaaagaa aaaggaaaa acgatgttag tgacgaaaat 120  
gatgtgtcaa ctagcacaaa aactggagag agagatagag atgtcaatgt tgggaccagt 180  
ggaactttcg ctgttccgag aattaaaatca tttactgata agttgattct accaagaatt 240  
aaggaaaaaga ctgtccctaa ttaagtcat cttcttcagt ataatccgca acaaattgac 300  
atttctaaaca ctcgtgccac tcagtcacaa tttgagaagt ggtatgggg agtgaggat 360  
gattatggcc ttaatgataa tgaatgcaa gttatgctaa atggtttgat ggtttttgt 420  
atcgagaatg gtacatctcc agacatatct ggtgtatggg ttatgatgga tggggaaacc 480  
caagttgatt atccaaaccaaa gcctttaattt gaggatgata ctccgtcatt taggcaaatt 540  
atggctcaat tttagtaacgc ggcagaagca tacattgcga agagaaaatgc tactgagagg 600  
tacatgcgcg ggtacggaaat caagagaaaat ttgactgaca ttagcctcgc tagatatgct 660  
ttcgactct atgagggtgaa ttcgaaaaca cctgtatggg ctcgcgaagc ccacatgcag 720  
atgaaggatg cagcgctcgaa aacactagt cgcagaatgt ttggatgga cggcagtgtt 780  
agtaacaagg aagaaaaacac ggagagacac acagtggaaat atgtcgatag agacatgcac 840  
tctctcctgg gtatgcgcaa cttaa 864

<210> 2  
 <211> 287  
 <212> PRT  
 <213> PRSV-KA-CP

<400> 2  
 Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Leu Lys Glu  
 1 5 10 15

Lys Glu Arg Gln Lys Glu Lys Glu Lys Gln Lys Glu Lys Gly  
 20 25 30

Lys Asp Asp Ala Ser Asp Glu Asn Asp Val Ser Thr Ser Thr Lys Thr  
 35 40 45

Gly Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Ala  
 50 55 60

Val Pro Arg Ile Lys Ser Phe Thr Asp Lys Leu Ile Leu Pro Arg Ile  
 65 70 75 80

Lys Gly Lys Thr Val Leu Asn Leu Ser His Leu Leu Gln Tyr Asn Pro  
 85 90 95

Gln Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu  
 100 105 110

Lys Trp Tyr Glu Gly Val Arg Asp Asp Tyr Gly Leu Asn Asp Asn Glu  
 115 120 125

Met Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly  
 130 135 140

Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr  
 145 150 155 160

Gln Val Asp Tyr Pro Thr Lys Pro Leu Ile Glu His Asp Thr Pro Ser  
 165 170 175

Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile  
 180 185 190

Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys  
 195 200 205

Arg Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr

210 215 220

Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln  
 225 230 235 240

Met Lys Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met  
 245 250 255

Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val  
 260 265 270

Glu Asp Val Asp Arg Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280 285

<210> 3  
 <211> 861  
 <212> DNA  
 <213> PRSV-TH-CP

<400> 3  
 tccaaaatg aagctgtgga tgctggctt aatgagaagt tcaaagataa agaaaaacag 60  
 aaagaagaaa aagataaaca aaaaggtaaa gaaaataatg aagctagtga cggaaatgtat 120  
 gtgtcaacta gcacaaaaac tggagagaga gatagagatg tcaatgccgg aactagtgg 180  
 actttcactg ttccgagaat aaaattttt accgacaaga tgattttacc aagaattaag 240  
 gaaaaaaactg tccttagttt aaatcatctt cttagtata atccgcaaca aatagacatc 300  
 tcaaacactc gtgccactca atctcaattc gaaaagtggat atgaggggagt gaggaaatgtat 360  
 tacggcttta atgataacga aatcaagtg atgttaatg gtttgatggat ttggcgcatac 420  
 gaaaatggaa catccccaga catatctgtgt gtcgggtgtatggatggatgg 480  
 gtcgattatc ccatcaagcc tttgatcgaa catgcaactc ctgcgttcag gcaaatcatg 540  
 gctcaacttca gtaacggcgc agaggcatac atcgcaaaaga ggaatgctac tgagaggatc 600  
 atggccgggt atggaatcaa gagaatctg actgacatta gtctcgctat atatgtttt 660  
 gacttctatg aggtgaactc aaaaacacccat gataggcgtc gtgaagctca tatgcagatg 720  
 aagctgcag cgctgcgcaa cactgatcgc agaatgtttt gaatggacgg cagtgctc 780  
 aacaaggaaag aaaaacacggaa gagacacaca gtggaaatgt tcaacagaga catgcaactc 840  
 ctcttagtta tgccaaatgg 861

<210> 4  
 <211> 286  
 <212> PRT  
 <213> PRSV-TH-CP

<400> 4  
 Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Phe Lys Asp  
 1 5 10 15

Lys Glu Lys Gln Lys Glu Glu Lys Asp Lys Gln Lys Gly Lys Glu Asn

20

25

30

Asn Glu Ala Ser Asp Gly Asn Asp Val Ser Thr Ser Thr Lys Thr Gly  
 35 40 45

Glu Arg Asp Arg Asp Val Asn Ala Gly Thr Ser Gly Thr Phe Thr Val  
 50 55 60

Pro Arg Ile Lys Leu Phe Thr Asp Lys Met Ile Leu Pro Arg Ile Lys  
 65 70 75 80

Gly Lys Thr Val Leu Ser Leu Asn His Leu Leu Gln Tyr Asn Pro Gln  
 85 90 95

Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu Lys  
 100 105 110

Trp Tyr Glu Gly Val Arg Asn Asp Tyr Gly Leu Asn Asp Asn Glu Met  
 115 120 125

Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly Thr  
 130 135 140

Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr Gln  
 145 150 155 160

Val Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser Phe  
 165 170 175

Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Ala  
 180 185 190

Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys Arg  
 195 200 205

Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu  
 210 215 220

Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln Met  
 225 230 235 240

Lys Ala Ala Ala Leu Arg Asn Thr Asp Arg Arg Met Phe Gly Met Asp  
 245 250 255

Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Glu  
 260 265 270

Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn

275

280

285

<210> 5  
 <211> 921  
 <212> DNA  
 <213> PRSV-KE-CP1

<400> 5  
 tcaaggagca ctgatgatta tcaacttgtt tggagtgaca atacacatgt gtttcatcag 60  
 tccaagaatg aagctgtgga tgctggttt aatgaaaaac tcaaagagaa agaaaaacag 120  
 aaagaaaaag aaaaagaaaa acaaaaagaa aaaggaaagag acgtatcgat tgacgaaaat 180  
 gatgtgtcaa cttagcaca aactggagag agagatagag atgtcaatgt tgggaccagt 240  
 ggaactttcg ctgttccgag aattaaatca ttactgtata agttgattct accaagaatt 300  
 aaggaaaga ctgtccttaa ttaagtcat ttcttcgtataatccgca acaaatttgc 360  
 atttctaaca ctcgtgccac tcagtcacaa ttgagaagt ggtatgaggg agtgaggat 420  
 gattatggcc ttaatgataa tgaaatgca gttatgctaa atgggttgc 480  
 atcgagaatg gtacatctcc agacatatct ggtgtatggg ttatgtatgga tggggaaaacc 540  
 caagtgtttt atccaaaccaa gccttaattt gaggatgtca ctccgtcatt taggcaattt 600  
 atggctact tttagtaacgc ggcagaagca tacattgcga agagaaatgc tactgagagg 660  
 tacatgcgc ggtacggaaat caagaaaaat ttgactgacg ttacgcctgc tagatatgct 720  
 ttgcacttct atgggtgaa ttcaaaaaca cctgtatggg ctgcgcgaagc ccacatgcag 780  
 atgaaggctg cagcgcgtcg aaacactgtatgtatgca gggcagtgtt 840  
 agtaacaagg aagaaaacac ggagagacac acagtggaaag atgtcaatag agacatgcac 900  
 tcttcctgg gcatgcgca c 921

<210> 6  
 <211> 864  
 <212> DNA  
 <213> PRSV-KE-CP2

<400> 6  
 tccaagaatg aagctgtgga tgctggttt aatgaaaaac tcaaagagaa agaaaaacag 60  
 aaagaaaaag aaaaagaaaa acaaaaagaa aaaggaaaag acgtatcgat tgacgaaaat 120  
 gatgtgtcaa cttagcaca aactggagag agagatagag atgtcaatgt tgggaccagt 180  
 ggaactttcg ctgttccgag aattaaatca ttactgtata agttgattct accaagaatt 240  
 aaggaaaaaag ctgtccttaa ttaagtcat ttcttcgtataatccgca acaaatttgc 300  
 atttctaaca ctcgtgccac tcagtcacaa ttgagaagt ggtatgaggg agtgaggat 360  
 gattatggcc ttaatgataa tgaaatgca gttatgctaa atgggttgc 420  
 atcgagaatg gtacatctcc agacatatct ggtgtatggg ttatgtatgga tggggaaaacc 480  
 caagttgtt atccaaaccaa gccttaattt gaggatgtca ctccgtcatt taggcaattt 540  
 atggctact tttagtaacgc ggcagaagca tacattgcga agagaaatgc tactgagagg 600  
 tacatgcgc ggtacggaaat ttgactgacg ttacgcctgc tagatatgct 660  
 ttgcacttct atgggtgaa ttcaaaaaca cctgtatggg ctgcgcgaagc ccacatgcag 720  
 atgaaggctg cagcgcgtcg aaacactgtatgtatgca gggcagtgtt 780  
 agtaacaagg aagaaaacac ggagagacac acagtggaaag atgtcaatag agacatgcac 840  
 tcttcctgg gcatgcgca ctaa 864

<210> 7  
 <211> 307  
 <212> PRT  
 <213> PRSV-KE-CP1

<400> 7  
 Ser Arg Ser Thr Asp Asp Tyr Gln Leu Val Trp Ser Asp Asn Thr His  
 1 5 10 15

Val Phe His Gln Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu  
 20 25 30

Lys Leu Lys Glu Lys Gln Lys Glu Lys Lys Glu Lys Gln  
 35 40 45

Lys Glu Lys Gly Arg Asp Asp Ala Ser Asp Glu Asn Asp Val Ser Thr  
 50 55 60

Ser Thr Lys Thr Gly Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser  
 65 70 75 80

Gly Thr Phe Ala Val Pro Arg Ile Lys Ser Phe Thr Asp Lys Leu Ile  
 85 90 95

Leu Pro Arg Ile Lys Gly Lys Thr Val Leu Asn Leu Ser His Leu Leu  
 100 105 110

Gln Tyr Asn Pro Gln Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln  
 115 120 125

Ser Gln Phe Glu Lys Trp Tyr Glu Gly Val Arg Asp Asp Tyr Gly Leu  
 130 135 140

Asn Asp Asn Glu Met Gln Val Met Leu Asn Gly Leu Met Val Trp Cys  
 145 150 155 160

Ile Glu Asn Gly Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met  
 165 170 175

Asp Gly Glu Thr Gln Val Asp Tyr Pro Thr Lys Pro Leu Ile Glu His  
 180 185 190

Ala Thr Pro Ser Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala  
 195 200 205

Glu Ala Tyr Ile Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg

210 215 220

Tyr Gly Ile Lys Arg Asn Leu Thr Asp Val Ser Leu Ala Arg Tyr Ala  
 225 230 235 240

Phe Asp Phe Tyr Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu  
 245 250 255

Ala His Met Gln Met Lys Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg  
 260 265 270

Met Phe Gly Met Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu  
 275 280 285

Arg His Thr Val Glu Asp Val Asn Arg Asp Met His Ser Leu Leu Gly  
 290 295 300

Met Arg Asn  
 305

<210> 8  
 <211> 287  
 <212> PRT  
 <213> PRSV-KE-CP2

<400> 8  
 Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Leu Lys Glu  
 1 5 10 15

Lys Glu Lys Gln Lys Glu Lys Glu Lys Gln Lys Glu Lys Gly  
 20 25 30

Lys Asp Asp Ala Ser Asp Glu Asn Asp Val Ser Thr Ser Thr Lys Thr  
 35 40 45

Gly Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Ala  
 50 55 60

Val Pro Arg Ile Lys Ser Phe Thr Asp Lys Leu Ile Leu Pro Arg Ile  
 65 70 75 80

Lys Gly Lys Thr Val Leu Asn Leu Ser His Leu Leu Gln Tyr Asn Pro  
 85 90 95

Gln Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu  
 100 105 110

Lys Trp Tyr Glu Gly Val Arg Asp Asp Tyr Gly Leu Asn Asp Asn Glu  
 115 120 125  
 Met Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly  
 130 135 140  
 Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr  
 145 150 155 160  
 Gln Val Asp Tyr Pro Thr Lys Pro Leu Ile Glu His Ala Thr Pro Ser  
 165 170 175  
 Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile  
 180 185 190  
 Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys  
 195 200 205  
 Arg Asn Leu Thr Asp Val Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr  
 210 215 220  
 Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln  
 225 230 235 240  
 Met Lys Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met  
 245 250 255  
 Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val  
 260 265 270  
 Glu Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280 285

<210> 9  
 <211> 864  
 <212> DNA  
 <213> PRSV-YK-CP

<400> 9  
 tctaaaaatg aagctgtgga taccggctcg aatgagaagc tcaaagaaaa agaaaagcag 60  
 aaagaaaaag aaaaagataa acaacaaatg aaagacaatg atggagctag tgacggaaac 120  
 gatgtgtcaa cttagcacaa aactggagag agagataggg atgtcaatgc cggaaactgt 180  
 ggaaccttca ctgttccgag gataaagtca tttactgata agatgatctt accaagaatt 240  
 aaggaaaaaa ctgtccctaa tttaaatcat cttcttcagt ataatccgaa acaagttgac 300  
 atctcaaaca ctgcgcac tcaatctcaa tttgagaagt ggtatgaggg agtgagaaat 360  
 gattatggcc ttaatgataa cgaatgcaa gtaatgttaa atgggttgat ggtttgggtgt 420  
 atcggaaaatg gtacatctcc agatataatctt ggtgtctggg ttatgatggaa tggggaaaacc 480

caagtcgatt atcccattaa acctttgatt gaacacgcaa ctccttcatt taggcaaatac 540  
 atggctcaact tcagtaacgc ggcagaggca tacatcgca agaggaatgc aactgagaag 600  
 tacatgccgc ggtatggaaat caagagaaat ttgactgaca tttagtctgc tagatatgct 660  
 ttcgattct atgaggtgaa ttcgaaaaca cctgataggg ctcgtgaagc tcataatgcag 720  
 atgaaggctg cagcgctacg caataactaat cgcggaaatgt ttggaatggc cggcagtgtc 780  
 agtaacaagg aagaaaacac ggagagacac acagttggaaatgtcggaaacag agacatgcac 840  
 tcttcctgg gtatgcgcaa ttga 864

<210> 10  
 <211> 287  
 <212> PRT  
 <213> PRSV-YK-CP

<400> 10  
 Ser Lys Asn Glu Ala Val Asp Thr Gly Leu Asn Glu Lys Leu Lys Glu  
 1 5 10 15

Lys Glu Lys Gln Lys Glu Lys Glu Lys Asp Lys Gln Gln Asp Lys Asp  
 20 25 30

Asn Asp Gly Ala Ser Asp Gly Asn Asp Val Ser Thr Ser Thr Lys Thr  
 35 40 45

Gly Glu Arg Asp Arg Asp Val Asn Ala Gly Thr Ser Gly Thr Phe Thr  
 50 55 60

Val Pro Arg Ile Lys Ser Phe Thr Asp Lys Met Ile Leu Pro Arg Ile  
 65 70 75 80

Lys Gly Lys Thr Val Leu Asn Leu Asn His Leu Leu Gln Tyr Asn Pro  
 85 90 95

Lys Gln Val Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu  
 100 105 110

Lys Trp Tyr Glu Gly Val Arg Asn Asp Tyr Gly Leu Asn Asp Asn Glu  
 115 120 125

Met Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly  
 130 135 140

Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr  
 145 150 155 160

Gln Val Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser  
 165 170 175

Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile  
 180 185 190  
 Ala Lys Arg Asn Ala Thr Glu Lys Tyr Met Pro Arg Tyr Gly Ile Lys  
 195 200 205  
 Arg Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr  
 210 215 220  
 Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln  
 225 230 235 240  
 Met Lys Ala Ala Leu Arg Asn Thr Asn Arg Lys Met Phe Gly Met  
 245 250 255  
 Asp Gly Ser Val Ser Asn Lys Glu Asn Thr Glu Arg His Thr Val  
 260 265 270  
 Glu Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280 285

<210> 11  
 <211> 855  
 <212> DNA  
 <213> PRSV-ME-CP

<400> 11  
 tccaaagaatg aagctgtgga tgctggttt aatgaaaaac tcaaagaaaa agaaaaacag 60  
 aaagaaaaag aaaaacaaaa agaaaaaagaa aaagacaatg ctatgtacgg aatgtatgtg 120  
 tcgactagca caaaaactgg agagaaaatg agagatgtca atgtcggAAC tagtggAAact 180  
 ttcaactgttc cgagaattaa atcatttaact gataatgtgaa ttcttaccggag aatthaaggga 240  
 aagactgtcc ttaattttaa tcatcttctt cagttataatc cgcaacaaat tgatatttct 300  
 aacactcgatg ccactcagtc acaatttgag aatgtatgtg agggagtggatgaaatgattat 360  
 ggtctgaatg aataatgaaat gcaatgtatgtc ctgaaatggct tgatggttt gtttatcgag 420  
 aatgtatcat ctccagacat atctgtgtt tgggttatgaa tggatggggaa aattcaagtt 480  
 gactatccaa tcaaggccctt aatttggatcat gctaccccgat cattttggca gattatggct 540  
 cacttttagta acgcggcaga agcatatattt gcaaaagagaa atgcacttgcgaggtacatg 600  
 ccgcggatgtt gaaatcgatg aatatttgcgat gacatttgcgat tcgttgcgttgcgat 660  
 ttctatgagg ttaatttcgaa aacacctgtatgttgggtatgaa tggatggggaa aattcaagtt 720  
 gctgcagcgc tgccaaacac tagtcgcaga atgtttggta tggggcccgag tgtagttaac 780  
 aaggaaagaaa acacggaaag acacacatgtg gaagatgtca atagagacat gcactcttc 840  
 ctggatgtgc gcaac 855

<210> 12  
 <211> 285  
 <212> PRT

&lt;213&gt; PRSV-ME-CP

<400> 12  
 Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Leu Lys Glu  
 1 5 10 15  
 Lys Glu Lys Gln Lys Glu Lys Glu Lys Gln Lys Glu Lys Glu Lys Asp  
 20 25 30  
 Asn Ala Ser Asp Gly Asn Asp Val Ser Thr Ser Thr Lys Thr Gly Glu  
 35 40 45  
 Lys Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Thr Val Pro  
 50 55 60  
 Arg Ile Lys Ser Phe Thr Asp Lys Met Ile Leu Pro Arg Ile Lys Gly  
 65 70 75 80  
 Lys Thr Val Leu Asn Leu Asn His Leu Leu Gln Tyr Asn Pro Gln Gln  
 85 90 95  
 Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu Lys Trp  
 100 105 110  
 Tyr Glu Gly Val Arg Asn Asp Tyr Gly Leu Asn Asp Asn Glu Met Gln  
 115 120 125  
 Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly Thr Ser  
 130 135 140  
 Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Ile Gln Val  
 145 150 155 160  
 Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser Phe Arg  
 165 170 175  
 Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Ala Lys  
 180 185 190  
 Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys Arg Asn  
 195 200 205  
 Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu Val  
 210 215 220  
 Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln Met Lys  
 225 230 235 240

Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met Gly Gly  
 245 250 255

Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Glu Asp  
 260 265 270

Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280 285

<210> 13  
 <211> 861  
 <212> DNA  
 <213> PRSV-BR-CP

<400> 13  
 tccaaaaatg aagctgtgga tgctgggtt aatgaaaacg gtaaaagaaca agagaaaacaa 60  
 gaagaaaaag aagaaaaaca aaaaaaagaaa gaaaaagacg atgctagttt cggaaacat 120  
 gtgtcaacta gcacaagaac tggagagaga gacagagatg tcaatgtgg gaccagtgg 180  
 acttctactt ttccgagaac aaaatcattt actgataaga tgattttacc tagaattaag 240  
 gaaaaacttgc tccttaattt aaatcatctg attcgtata atccgcaaca aattgacatt 300  
 tcttaacactc gtgtctactca atcacaattt gagaagtggt acgagggtg gaggaatgtat 360  
 tatggcctta atgataatga gatgaaataa gtgctaaatg gtttgatggt ttgggttatac 420  
 gaaaacggta catctccaga catactctgt gtctgggtta tgatggatgg ggaaacccag 480  
 gttgactatc caatcaagcc tttaatttgcgatgtactc cgtcggttag gcaattatgt 540  
 gctcatttca gtaacgcggc agaagcatac attacaaga gaaatgtac tgagaggtac 600  
 atgcgcggatggatggatca gagaattttgcgtacatcatttgcgtatc 660  
 gatttctatg aggttgcattt gaaaacacccat gatagggttc gcgaaatgtca catgcgtatg 720  
 aaagctgcgatgtactc cgtcggttagtgcgtatc cgtcggttagtgcgtatc 780  
 aacaaggaaag aaaaacacggaa gagacacaca gtgaaatgtac tcaatagaga catgcactct 840  
 ctcctgggtt tgctgggtt a 861

<210> 14  
 <211> 286  
 <212> PRT  
 <213> PRSV-BR-CP

<400> 14  
 Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Arg Lys Glu  
 1 5 10 15

Gln Glu Lys Gln Glu Lys Glu Lys Glu Lys Gln Lys Lys Lys Glu Lys  
 20 25 30

Asp Asp Ala Ser Tyr Gly Asn Asp Val Ser Thr Ser Thr Arg Thr Gly  
 35 40 45

Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Thr Val  
 50 55 60  
 Pro Arg Thr Lys Ser Phe Thr Asp Lys Met Ile Leu Pro Arg Ile Lys  
 65 70 75 80  
 Gly Lys Thr Val Leu Asn Leu Asn His Leu Ile Gln Tyr Asn Pro Gln  
 85 90 95  
 Gln Ile Asp Ile Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu Lys  
 100 105 110  
 Trp Tyr Glu Gly Val Arg Asn Asp Tyr Gly Leu Asn Asp Asn Glu Met  
 115 120 125  
 Gln Ile Val Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly Thr  
 130 135 140  
 Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr Gln  
 145 150 155 160  
 Val Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser Phe  
 165 170 175  
 Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Thr  
 180 185 190  
 Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys Arg  
 195 200 205  
 Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu  
 210 215 220  
 Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln Met  
 225 230 235 240  
 Lys Ala Ala Ala Leu Arg Asn Thr Asn Arg Arg Met Phe Gly Met Asp  
 245 250 255  
 Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Glu  
 260 265 270  
 Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280 285  
  
 <210> 15  
 <211> 864

&lt;212&gt; DNA

&lt;213&gt; PRSV-JA-CP

&lt;400&gt; 15

tctaaaaatg aagctgtgga tgctgggta aatgaaaagc tcaaagaaaa agaaaaacag 60  
 aaagataaag aaaaagaaaa acaaaaagat aaagaaaaag gagatgttag tgacggaaat 120  
 gatgttgcg atagcacaaa aactggagag agagatagag atgtcaatgt tgggaccagt 180  
 ggaacttcca ctgttccgag aattaaatca ttcactgata agatggttt accaagaatt 240  
 aaggaaaaa ctgtccctaa tttaaatcat ctteccatgt ataattccaca acaaattgac 300  
 atttcaaca ctctgcccac tcagtcacaa ttggagaat ggtacgagg agtgaggagt 360  
 gattatggcc taaatgttag tgaatgca a gtgacgctaa atggcttgat ggtttgggt 420  
 atcgagaatgt tcatatctcc agacatatctt ggtgtctggg ttatgtgg tggggaaacc 480  
 caagttgattt atccatcaa gccttaattt ggcacgcta ccccatcatt taggcagatt 540  
 atggctact tcagtaacgc ggcagaagca tacactgca a agagaatgc tactgagagg 600  
 tacatgcgcg ggtatggaaat caagagaaat ttgactgaca ttatgtcgc tagatagct 660  
 ttcgatttctt atgggtgaa ttcaagaca cctgataggg ctctgaaagc tcaatgcag 720  
 atgaaagctg cagcgtcgaa aacactaat cgcagaatgt ttgttatgg cggcagtgtt 780  
 agtaacaatg aagaaaaacac ggagagacac acatggaaat atgtctatat agacatgcac 840  
 tctctctgc gtttgcgcaaa ctga 864

&lt;210&gt; 16

&lt;211&gt; 287

&lt;212&gt; PRT

&lt;213&gt; PRSV-JA-CP

&lt;400&gt; 16

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Lys | Asn | Glu | Ala | Val | Asp | Ala | Gly | Leu | Asn | Glu | Lys | Leu | Lys | Glu |
| 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Glu | Lys | Gln | Lys | Asp | Lys | Glu | Lys | Glu | Lys | Gln | Lys | Asp | Lys | Glu |
| 20  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Gly | Asp | Ala | Ser | Asp | Gly | Asn | Asp | Gly | Ser | Thr | Ser | Thr | Lys | Thr |
| 35  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Glu | Arg | Asp | Arg | Asp | Val | Asn | Val | Gly | Thr | Ser | Gly | Thr | Ser | Thr |
| 50  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Pro | Arg | Ile | Lys | Ser | Phe | Thr | Asp | Lys | Met | Val | Leu | Pro | Arg | Ile |
| 65  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Gly | Lys | Thr | Val | Leu | Asn | Leu | Asn | His | Leu | Leu | Gln | Tyr | Asn | Pro |
| 85  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Gln | Ile | Asp | Ile | Ser | Asn | Thr | Arg | Ala | Thr | Gln | Ser | Gln | Phe | Glu |
| 100 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

Lys Trp Tyr Glu Gly Val Arg Ser Asp Tyr Gly Leu Asn Asp Ser Glu  
 115 120 125

Met Gln Val Thr Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly  
 130 135 140

Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr  
 145 150 155 160

Gln Val Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser  
 165 170 175

Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Thr  
 180 185 190

Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys  
 195 200 205

Arg Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr  
 210 215 220

Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln  
 225 230 235 240

Met Lys Ala Ala Ala Leu Arg Asn Thr Asn Arg Arg Met Phe Gly Met  
 245 250 255

Asp Gly Ser Val Ser Asn Asn Glu Glu Asn Thr Glu Arg His Thr Val  
 260 265 270

Glu Asp Val Tyr Ile Asp Met His Ser Leu Leu Arg Leu Arg Asn  
 275 280 285

<210> 17  
 <211> 864  
 <212> DNA  
 <213> PRSV-OA-CP

<400> 17  
 tccaaagaatg aagctgtgga tgctggttt aatgaaaaat tcaaagagaa ggaaaaacag 60  
 aaagaaaaag aaaaagaaaa acaaaaagag aaagaaaaag atggtgctag tgacgaaaat 120  
 gatgtgtcaa ctgcacaaa aactggagag agagatagag atgtcaatgt cgggaccagt 180  
 ggaactttca cagttccgag aattaaatca tttactgata agatgattct accgagaatt 240  
 aaggggaaagg ctgtccttaa tttaaatcat cttcttcagt acaatccgca acaaatcgac 300  
 atttctaaca ctcgtgcgc tcattcacaa tttgaaaagt ggtatgaggg agtgaggaat 360  
 gattatgccc ttaatgataa tgaatgcaa gtgatgctaa atggtttgat ggttttgt 420  
 atcgagaatg gtacatctcc agacatatct ggtgtctggg taatgatgga tggggaaacc 480

caagtcgatt atccaaatcaa gcctttgatt gagcatgcta ctccgtcatt taggcaaatt 540  
 atggctcaact ttagtaacgc ggcagaagca tacattgega agagaaatgc tactgagagg 600  
 tacatgccgc ggtatggaaat caagagaaat ttgactgaca ttagcctcgc tagatacgct 660  
 ttgcactttt atgaggtgaa ttcgaaaaca cctgatagag ctgcgcaagc tcacatgcag 720  
 atgaaggctg cagcgcgtcg aaacaccagt cgcagaatgt ttggatgaa cggcagtgtt 780  
 agtaacaagg aagaaaacac ggagagacac acatggaaatg atgtcaatag agacatgcac 840  
 tctccctgg gtagcgc当地 ctaa 864

<210> 18  
 <211> 287  
 <212> PRT  
 <213> PRSV-OA-CP

<400> 18  
 Ser Lys Asn Glu Ala Val Asp Ala Gly Leu Asn Glu Lys Phe Lys Glu  
 1 5 10 15

Lys Glu Lys Gln Lys Glu Lys Glu Lys Glu Lys Gln Lys Glu Lys Glu  
 20 25 30

Lys Asp Gly Ala Ser Asp Glu Asn Asp Val Ser Thr Ser Thr Lys Thr  
 35 40 45

Gly Glu Arg Asp Arg Asp Val Asn Val Gly Thr Ser Gly Thr Phe Thr  
 50 55 60

Val Pro Arg Ile Lys Ser Phe Thr Asp Lys Met Ile Leu Pro Arg Ile  
 65 70 75 80

Lys Gly Lys Ala Val Leu Asn Leu Asn His Leu Leu Gln Tyr Asn Pro  
 85 90 95

Gln Gln Ile Asp Ile Ser Asn Thr Arg Ala Ala His Ser Gln Phe Glu  
 100 105 110

Lys Trp Tyr Glu Gly Val Arg Asn Asp Tyr Ala Leu Asn Asn Glu  
 115 120 125

Met Gln Val Met Leu Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly  
 130 135 140

Thr Ser Pro Asp Ile Ser Gly Val Trp Val Met Met Asp Gly Glu Thr  
 145 150 155 160

Gln Val Asp Tyr Pro Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser  
 165 170 175

Phe Arg Gln Ile Met Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile  
 180 185 190  
 Ala Lys Arg Asn Ala Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys  
 195 200 205  
 Arg Asn Leu Thr Asp Ile Ser Leu Ala Arg Tyr Ala Phe Asp Phe Tyr  
 210 215 220  
 Glu Val Asn Ser Lys Thr Pro Asp Arg Ala Arg Glu Ala His Met Gln  
 225 230 235 240  
 Met Lys Ala Ala Ala Leu Arg Asn Thr Ser Arg Arg Met Phe Gly Met  
 245 250 255  
 Asp Gly Ser Val Ser Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val  
 260 265 270  
 Glu Asp Val Asn Arg Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280 285

<210> 19  
 <211> 885  
 <212> DNA  
 <213> PRSV-VE-CP

<220>  
 <221> unsure  
 <222> (678)  
 <223> M at position 678 in this sequence is either a or  
 C

<400> 19  
 atggctgtgg atgtgggtt gaatggaaag ctcaaagaaa aagagaaaaa agaaaaagaa 60  
 aaagaaaaac agaaagagaa agagaaaatg gatgctatgt acggaaatgtatgtcaact 120  
 agcacaaaaa ctggagagag agatagatgt gtcataatgg ggaccagtgg aactttcaact 180  
 gtcccttaga ttaaatcatt tactgtataag atgattttac cgagaattaa gggaaagact 240  
 gtcccttaatt taaatcatct tcttcgtat aatccgaaac aaatttgacat ttctaaataact 300  
 cgtgcactc agtgcgcaatt tgagaaaatgg tatgaggagtg tgaggatgtatggcctt 360  
 aatgataatg aaatgcgaaatgt gatgctaaat ggcttgatgg tttggatgtatgg 420  
 acatctccag acatatctgg tgtttgggtt atgggtggatgg gggaaacccaa agttgattat 480  
 ccaatcaagc ctttaattgtat gcatgtaca ccgtcattttt ggcaattttt ggcttattttt 540  
 agtaacgcgg cagaagcata cattgcgtat agaaaatgtca ctgagaggta catgcgcgg 600  
 tatggaaatcg agagaaatgtt gactgacatc aaccttagctc gatacgcttt tgattctat 660  
 gaggtgtt cggaaacacmcc tggatgggtt cgtggatgtatcgatc acatgcgatc gaagggtgtca 720  
 gctttgcgaa acactaatcg cagaatgtttt ggtatcgacg gcagtgttag caacaaggaa 780  
 gaaaacacgg agagacacac agtggatgtatcgatc acatgcactc tctctgggtt 840

atgcgcaact aaatactcgc acttgtgtgt ttgtcgagcc tgact 885

<210> 20  
 <211> 282  
 <212> PRT  
 <213> PRSV-VB-CP

<220>  
 <221> UNSURE  
 <222> (225)  
 <223> Xaa at position 225 in this sequence is any amino acid

<400> 20  
 Met Ala Val Asp Ala Gly Leu Asn Gly Lys Leu Lys Glu Lys Glu Lys  
 1 5 10 15  
 Lys Glu Lys Glu Lys Glu Lys Gln Lys Glu Lys Glu Lys Asp Asp Ala  
 20 25 30  
 Ser Asp Gly Asn Asp Val Ser Thr Ser Thr Lys Thr Gly Glu Arg Asp  
 35 40 45  
 Arg Asp Val Asn Ile Thr Ser Gly Thr Phe Thr Val Pro Arg Ile Lys  
 50 55 60  
 Ser Phe Thr Asp Lys Met Ile Leu Pro Arg Ile Lys Gly Lys Thr Val  
 65 70 75 80  
 Leu Asn Leu Asn His Leu Leu Gln Tyr Asn Pro Lys Gln Ile Asp Ile  
 85 90 95  
 Ser Asn Thr Arg Ala Thr Gln Ser Gln Phe Glu Lys Trp Tyr Glu Gly  
 100 105 110  
 Val Arg Asp Asp Tyr Gly Leu Asn Asp Asn Glu Met Gln Val Met Leu  
 115 120 125  
 Asn Gly Leu Met Val Trp Cys Ile Glu Asn Gly Thr Ser Pro Asp Ile  
 130 135 140  
 Ser Gly Val Trp Val Met Val Asp Gly Glu Thr Gln Val Asp Tyr Pro  
 145 150 155 160  
 Ile Lys Pro Leu Ile Glu His Ala Thr Pro Ser Phe Arg Gln Ile Met  
 165 170 175

Ala His Phe Ser Asn Ala Ala Glu Ala Tyr Ile Ala Met Arg Asn Ala  
 180 185 190

Thr Glu Arg Tyr Met Pro Arg Tyr Gly Ile Lys Arg Asn Leu Thr Asp  
 195 200 205

Ile Asn Leu Ala Arg Tyr Ala Phe Asp Phe Tyr Glu Val Asn Ser Lys  
 210 215 220

Xaa Pro Asp Arg Ala Arg Glu Ala His Met Gln Met Lys Ala Ala Ala  
 225 230 235 240

Leu Arg Asn Thr Asn Arg Arg Met Phe Gly Ile Asp Gly Ser Val Ser  
 245 250 255

Asn Lys Glu Glu Asn Thr Glu Arg His Thr Val Asp Asp Val Asn Arg  
 260 265 270

Asp Met His Ser Leu Leu Gly Met Arg Asn  
 275 280

<210> 21

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Amplification  
 Oligos

<400> 21

gagatctaga taatgatacc ggtctgaatg agaag 35

<210> 22

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Amplification  
 Oligos

<400> 22

ggatctcgag agatcatctt atcagtaa 28

<210> 23  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 23  
tagactcgag tgctggttt aatgaaaaaa 29

<210> 24  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 24  
cgatccggg gaatcaactt atcagtaa 28

<210> 25  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 25  
tatacccggg tgctggtctt aatgagaag 29

<210> 26  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 26  
ctacggatcc aaatcatctt gtcggtaa 28

<210> 27  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 27  
tcaatctaga gtcgacgcta gatatgcttt cgac 34

<210> 28  
<211> 34  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 28  
aagtctcgag gtcgacccca ggagagatg catg 34

<210> 29  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 29  
aatacccgaa gctagatatg ctttcgac 28

<210> 30  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 30  
ttatggatcc cctaggagag agtgcatg 28

<210> 31  
<211> 36  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 31  
agctaaccat ggaatcaagg agcactgatg attatc 36

<210> 32  
<211> 36  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 32  
atttgatcc cggggttgcg catgccagg agagag 36

<210> 33  
<211> 36  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Amplification  
Oligos

<400> 33  
agctaaccat ggaataatgg agcactgatg attatc 36

<210> 34

&lt;211&gt; 36

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

<223> Description of Artificial Sequence: Amplification  
Oligos

&lt;400&gt; 34

atttggatcc cggggttgcg catgcccagg agagag

36

&lt;210&gt; 35

&lt;211&gt; 38

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

<223> Description of Artificial Sequence: Amplification  
Oligos

&lt;400&gt; 35

cgatctagac catttgaata atgatccaag aatgaagc

38

&lt;210&gt; 36

&lt;211&gt; 31

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

<223> Description of Artificial Sequence: Amplification  
Oligos

&lt;400&gt; 36

ctttaggatcc gttgcgcata cccaggagag a

31