WO 02/25438 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

28 March 2002 (28.03.2002)

(10) International Publication Number

WO 02/25438 Al

(51) International Patent Classification’: GOG6F 9/455

(21) International Application Number: PCT/US01/29863
(22) International Filing Date:
20 September 2001 (20.09.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/234,680 22 September 2000 (22.09.2000) US
(71) Applicant: PATCHLINK.COM CORPORATION
[US/US]; Suite 123 PMB175, 3370 N. Hayden Rd.,

Scottsdale, AZ 85251 (US).

(72) Inventors: MOSHIR, Sean; 3370 N. Hayden Rd. #123-
175, Scottsdale, AZ 85251 (US). ANDREW, Christopher,

A., H.; 3290 West Mulberry Drive, Chandler, AZ 85248
(US). HUDLER, Jack, Lee; 619 Rainforest Lane, Allen,
TX 75013 (US). LI, Leon; P.O. Box 41643, Mesa, AZ
85274 (US). GORDON, Jonathan, M.; 5001 East Hilton
Ave, Mesa, AZ 85206 (US). BACON, Michael; 15850 N.
Thompson Peak Pkwy #2051, Scottsdale, AZ 85260 (US).
WILLIAMS, Noah; 9491 East Sandy Vista Drive, Scotts-
dale, AZ 85262 (US). LANE, Jonathan; 8687 Moss Creek
Court, Reno, NV 89506 (US). HORTON, James, J.; 136
North Brett St., Gilbert, AZ 85234 (US). FERGUSON,
Dan; 51 W. Center St. #247, Orem, UT 84057 (US).
(74) Agent: OGILVIE, John, W., L.; Computer Law++, 1211
East Yale Avenue, Salt Lake City, UT 84105 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,

[Continued on next page]

(54) Title: NON-INVASIVE AUTOMATIC OFFSITE PATCH FINGERPRINTING AND UPDATING SYSTEM AND METHOD

(57) Abstract: Methods, systems, and

| PLACE TASK ID ON UPDATE TASK LIST 300 | [moNITOR 302 configured storage media including a
discovery agent (548) are provided for
* discovering software updates, discovering if

a given computer (202) can use the software
update, and then updating the computers

START TASK 304 , CHOOSE PACKAGE COMPUTER 306 ‘

T with the software as needed automatically

across a network (200) without storing the

(ATTEMPT FIRST DOWNLOAD 308
DELAY310 |,

updates on an intermediate machine within

" ATTEMPT SECOND DOWNLOAD 312 ‘

the network. Furthermore, when a failure

(316) is detected, the rollout is stopped and

v the software can be automatically removed

\ DETECT FAILURE 316 !4 DETERMINE (324) from those computers that already
¢ RESULTS were updated. The software update can
SUSPEND TASK 3184] 314 be stored originally at an address that is
i i inaccessible through the network firewall
(214) by intermediately uploading the
{RESTORE TARGET QQJ ‘ NOTIFY ADMIN ﬁ‘ software update to an update computer
Y

REMOVE DOWNLOAD 322

(220) which is not a part of the network
but has access through the firewall, which

l FROM TARGET 324

| SEND EMAIL 330 W

is then used to distribute the update.

rFROM OTHER COMPUTER(S) 326

GATHER INFORMATION 332

F—IARDWARE INFO 334 ‘ FSOFTWARE INFO 336 J

v

[SEND TO REPOSITORY 338 ‘

w0 02/25438 A1 D000 00000 O

MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, Published:
TJ, ™™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW. — with international search report

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

30

WO 02/25438 PCT/US01/29863

NON-INVASIVE AUTOMATIC OFFSITE PATCH FINGERPRINTING AND
UPDATING SYSTEM AND METHOD

RELATED APPLICATIONS

This application claims priority to, and incorporates by reference, provisional U.S.

patent application serial no. 60/234,680 filed September 22, 2000.

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but otherwise reserves all copyright
rights whatsoever. The copyright owner does not hereby waive any of its rights to have this

patent document maintained in secrecy, including without limitation its rights pursuant to

37CFR. §1.14.

FIELD OF THE INVENTION
The present invention relates to systems and methods which update existing
software across a remote network. The invention relates more specifically to checking for
the need for updating and then updating the software as required across a client-server
system without the need for human oversight, and without requiring that a target network

administrative machine keep copies of software patches.

TECHNICAL BACKGROUND OF THE INVENTION

The ‘state of the art’ in the compufer software industry remains such that software
is often delivered with various anomalies in its desired behavior. These anomalous
behaviors have come to be called “bugs”.

The original computer bug is in the operations log of the Harvard University Mark
IT Aiken Relay Calculator, now preserved in the Smithsonian. The operators removed a
moth that had become trapped between relay switches in the computer, and wrote the entry
“First actual case of bug being found.” Problems with computer hardware and software

have since been called “bugs”, with the process of removing problems called “debugging”.

1

10

15

20

25

30

WO 02/25438 PCT/US01/29863

Each time software is “debugged”, a change to that piece of software is created —
this change sometimes results in an additional piece of software called a “patch” or “fix”.
The industry’s software vendors often call these patches by the more formal names
“Service Packs” or “Support Packs.”

This process has become so prevalent in the industry that software vendors use
various naming and numbering schemes to keep track of their available “Support Packs”.
The difficulty of keeping these “Support Packs™ straight is increased when vendors fail to
agree on a standard scheme of naming and numbering.

Microsoft, for instance, for its Windows NT family of operating system software
products has no less than six major “Service Packs” available to be applied to solve
problems its customers may experience. More generally, the total number of patches, fixes,
solutions, and/or service packs for any given operating system may be enormous.

When an application is installed, it may contain one or more of these operating
systems file patches along with the standard computer files. The patches are generally
included because the application vendor discovered some anomalous behavior in one or
more of the operating system files, and so sent a “fix” in the form of a different version of
one of these troublesome files. This would cause relatively little difficulty if only one
application vendor performed this service, or if the file modified by the application vendor
is used only by that vendor’s application. However, this is often not the case.

When another application is installed, that application may include a more recent
version of a shared piece of code. One subset of these shared operating system files are
called DLL’s (dynamically linked libraries), though they also go by other names. These
shared operating system files are often executable, and they expect a fixed number of
parameters, certain kinds of parameters, and so on. If the nature of the shared file has
changed (e.g., the parameter set is different, the name is different, the function is
different), the calling application may no longer behave correctly. Many common
computer functions such as “print” are referenced in this fashion.

Many software vendors try to provide the “latest” version of the operating system
file. However, when a different application is loaded onto a computer, it may overwrite
and subtly (or not-so-subtly) change an operating system file that the original application

needed to function as planned.

10

15

20

25

30

WO 02/25438 PCT/US01/29863

Assume an administrator for an organization is charged with keeping one hundred
servers up and running while supporting three thousand users connecting to these servers.
The administrator is also responsible for installing user requested or management dictated
applications — either shrink wrapped purchases or internally developed applications. The
administrator also has responsibility for the timely distribution, locally or remotely, of time
sensitive documents.

Now imagine that six service packs must be installed on the network and
distributed to all of the clients. Applying the six service packs could easily result in seven
visits to each and every one of the hundred servers for a total of seven hundred visits. This
number assumes one extra visit per machine because the application of one of the service
packs may cause more problems than it fixed, so it had to be undone.

If the three thousand clients were all running the same workstation operating
system, that could mean another twenty-one thousand visits to apply the patches.
Remember this all has to be accomplished while installing and patching the internally
developed applications and the shrink-wrapped products. Distribution of software patches
and files and their subsequent application becomes the first indication of what might be
called “administrator agony”.

While all the installation is occurring, the individual servers must still be
monitored. When a server needs attention the administrator is often contacted by another
person, who may frantically report that their server is down and must be fixed. If the
administrator had some method to monitor these devices, he or she could become more
responsive and further reduce the impact of problems. Monitoring needs are a second
indication of “administrator agony”. There is often high turnover in the administrator’s
job, and the users of these systems may experience lower productivity.

Traditionally, the administrator had been helped by being given extra staff. Of
course this remedy is not without problems — the addition of personnel increases the
number of communication channels between them. The people involved in installation and
updates need a tracking device or system so they don’t perform or attempt to perform the
same unit of work. This lack of coordination between team members is a third indication

of “administrator agony”.

10

15

20

25

. 30

WO 02/25438 PCT/US01/29863

Proposed solutions are currently available in varying forms, implementations, and
coverage or completeness. Typically these proposed solutions are available as shrink-wrap
products that are installable (e.g. patchable) locally in the administrator’s environment.
Some emerging products are helpful, but many conventional solutions are invasive in that
they require massive modification of the administrator’s environment. The shrink-wrap
solution requires additional invasive full product installations in the administrator’s
network, thereby adding to the problem, and lacks a central “command center” to
coordinate the support or distribution plan. Emerging solutions may provide a somewhat
lesser degree of invasion, but nonetheless require a special connection between the
administrator and the solution, and they often do not provide a center for coordinated
efforts.

Furthermore, it is not always obvious exactly what patches, if any, a given piece of
software has received. Updates don’t always clearly announce their presence. So, it is not
always clear whether a specific computer has previously received a specific patch.
Accordingly, there is a need for improved tools and techniques for updating computers

across a network. Such tools and techniques are described and claimed herein.

BRIEF SUMMARY OF THE INVENTION

The present invention relates to methods, articles, signals, and systems for
determining if software needs updating, and if so, then updating the software across a
network with reduced demands on a human administrator. If the update fails, the
computer(s) upon which the update software was installed may be restored to a non-
updated state.

In various embodiments, the invention facilitates software deployment, software
installation, software updating, and file distribution based on software and patch finger
printing across multiple operating systems and devices, across a network. Any computer
with a network connection and with an update agent running on it may connect to an
update server, and then process whatever tasks the administrator has designated for that
agent.

Figures 2 shows an overview of one such system. A network 200, shown with only

two target computers and an update computer for simplicity of illustration, is protected

10

15

20

25

30

WO 02/25438 PCT/US01/29863

from the internet by a firewall 214. The software that is needed to update network target
computers 202, 208 resides on package computers 230, 234 that are located inside or
outside the firewall and barred by the firewall 214 from direct communications with the
target computers 202, 208. However, an update server 220 does have access 216 to the
network 200, potentially through internal firewalls — as well as access through the firewall
214. The system is designed to work both aé an onsite purchased solution as well as a fully
offsite hosted solution, and can operate through firewalls and proxy circuits at any level
within the Intranet/Extranet infrastructure.

Patch fingerprints 902 give a recipe to allow a repository component to determine
if a given software package (associated with the patch fingerprint) , patch, driver, etc.
should be loaded onto a computer in the system. These fingerprints are stored in a patch
component database location 900 that may be inside or outside the firewall 214. It may be
at a separate location or it may be installed on the update server 528. The repository
component also includes an inventory library database 918 that contains basic hardware
and software information about each of the network target computers 202, 208. Using the
information in the patch fingerprint, the inventory library, and specific information gleaned
from each network target computer, the system is able to intelligently recommend which
patches and drivers are required for a given computer.

As shown in Figure 5, the preferred embodiment of the invention employs an
additional agent known as the discovery agent 548 installed on the target computer 500,
which routinely discovers the hardware and software on that machine. This inventory
information is then reported back to an inventory library 918 located somewhere else in
the repository component. In addition to the computer inventory, the discovery agents also
return scan results for patch fingerprints, which indicate whether it is appropriate to install
a specific patch associated with each patch fingerprint.

The Inventory Database thus collects a complete inventory of the software,
hardware and current patch fingerprints that are installed on any particular target computer
within the network. With this information, the update server 528 can present the user with
detailed reports of the current patch status for all computers within the network. This
illustrates the number of computers needing the patch as well as the computers already

installed with the patch.

10

15

20

25

30

WO 02/25438 PCT/US01/29863

In addition, Finger Print definitions 906 are also normally associated with an
update package suitable for deployment by the system. Once the need for a particular patch
has been established by scanning its signature(s) on all computers within the network it
can then be quickly deployed by the administrator by merely selecting the date and time.

The patches that need to be loaded onto specific target computers are listed on the
update server 220 in update lists 222 associated with update agents 204, 210; in the
llustration, list 224 is associated with Targetl 202, and list 226 is associated with Target2
208. The update lists specify at least one location (through means such as a universal
resource locator, or URL) where the patch can be found, and optionally include a date
which is the earliest date that the software can be installed.

In operation, the update agent 204 of Target] 202 checks its update list 224 at the
onsite or offsite update server 220 to see if a new package should be installed. If one is
there, the update agent 204 checks to see if the package is already in memory on the update
server 220. If so, the update agent 204 attempts to install the software patch directly from
the update server 220. If not, the update agent 204 attempts to install the software patch
directly from the package computer location 232. In some instances, this is successful, in
which case the update list 224 is updated.

In other cases, a download 218 will be obstructed by the firewall 214. If this
happens, the update agent 210 informs the update server 220 and then the update server
220 itself will attempt to retrieve the package and place it in memory 228. From that
memory on the update server, the software is installed directly to the target machine.

A monitor checks to see that the software installs properly on the target 202, 208,
and then continues checking (or can be notified) to ensure that the updated software runs
correctly and that the target computer itself doesn’t experience any problems in what
appear to be unrelated areas. Should the package fail to install properly, or create problems
for the software program that was patched, or create other problems on the target
computer, the package can be automatically removed and the computer restored to its
preinstalled state or another acceptable state in which the update has been removed or
disabled, and the target computer is in a workable state. If the package has been installed
on more than one computer, they all can be removed. If the error occurs in the middle of a

rollout to many computers, the rollout can be halted and the software removed or disabled.

10

15

20

25

30

WO 02/25438 PCT/US01/29863

The monitor may be located on the update server 220, on a repository site 600, at least
partially in the update agent 204, 210, and/or in a combination of such locations.

When there is a problem with an installation, or when an installation is successful,
an administrator can be notified by email, by pager, by beeper, or by some other
notification means.

The update agent 204, 210 can also be used to survey its own target computer, and
this information can be stored in a database offsite or at another location. This information
can then be used to determine what updates a given target computer needs in order to have
the most appropriate configuration. When a new software patch becomes available, the
stored information can be used to determine if a particular target computer needs the patch.

Other aspects and advantages of the present invention will become more fully

apparent through the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

To illustrate the manner in which the advantages and features of the invention are
obtained, a more particular description of the invention will be given with reference to the
attached drawings. These drawings only illustrate selected aspects of the invention and
thus do not limit the invention’s scope. In the drawings:

Figure 1 is a diagram illustrating one of the many distributed computing systems
suitable for use according to the present invention.

Figure 2 is a diagram illustrating systems according to the present invention.

Figure 3 is a diagram illustrating methods according to the present invention.

Figure 4 is a diagram further illustrating methods according to the present
invention.

Figure 5 is a diagram further illustrating systems according to the present
invention.

Figure 6 is a diagram further illustrating systems according to the present
invention.

Figure 7 is a diagram further illustrating systems according to the present

invention.

10

15

20

25

30

WO 02/25438 PCT/US01/29863

Figure 8 is a diagram further illustrating methods according to the present
invention.
Figure 9 is a diagram further illustrating systems according to the present

invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides systems, methods, articles, and signals which help
update existing software across a remote network. The invention relates more specifically
to updating software across a client-server system with little or no need for human
oversight, and without requiring copies of the software patches on an administrative
machine on the network whose clients are being updated. The update is automatic, and it
can detect errors within a specific update and automatically rollback a faulty update to
leave the network in a usable state.

Separate figures discussed herein illustrate various embodiments of the present
invention, but the discussion of a given figure is not necessarily limited to a particular type
of embodiment. For example, those of skill will appreciate that the inventive methods may
also be used in configured storage media and/or computer system implementations
according to the invention. To prevent unnecessary repetition, the discussion of methods
thus applies to articles and systems, and vice versa, unless indicated otherwise. It will also
be appreciated that method steps or system components may be renamed, regrouped,
repeated, or omitted, and that method steps may be ordered differently and/or performed in
overlapping execution, unless the claims as properly understood call for particular steps or
components and/or require a particular order of execution.

For the reader’s convenience, some pertinent information on related technologies
such as networks and firewalls is provided below. The invention goes beyond previously
known technologies, but it may partially comprise or rely on earlier advances in computing

and networking and/or be used together with such earlier advances.

Systems Generally
As shown in Figure 1, computer networks 100 such as secure computer networks

102, 104, may be configured according to the invention. Suitable computer networks 100,

10

15

20

25

30

WO 02/25438 PCT/US01/29863

102, 104 include, by way of example, local networks, wide area networks, and/or portions
of the internet. “Internet” as used herein includes variations such as a private internet, a
secure internet, a value-added network, a virtual private network, or an intranet. Secure
networks may be secured with a security perimeter which is defined by firewall software
116, 118 routing limitations, encryption, virtual private networking, and/or other means.
The network 100, 102, 104 may also include or consist of a secure intranet, which is a
secure network such as a local area network that employs TCP/IP and/or HTTP protocols
internally. The computers 110 connected by the network for operation according to the
invention may be workstations 114, laptop computers 112, disconnectable mobile
computers, servers, computing clusters, mainframes, or a combination thereof. The
computer hardware may be general-purpose, special purpose, stand-alone, and/or
embedded. The network 100 may include other networks, such as one or more LANS,
wide-area networks, wireless networks (including infrared networks), internet servers and
clients, intranet servers and clients, or a combination thereof, which may be protected by
their own firewalls.

A given network 100 may include Novell Netware® network operating system
software NETWARE is a registered trademark of Novell, Inc.), NetWare Connect
Services, VINES, Windows NT, Windows 95, Windows 98, Windows 2000, Windows
ME, LAN Manager, or LANtastic network operating system software, UNIX, TCP/IP and
NFS-based systems, Distributed Computing Environment software, and/or SAA software,
for instance (VINES is a trademark of Banyan Systems; NT, WINDOWS 95, WINDOWS
98, WINDOWS 2000, WINDOWS ME, WINDOWS XP and LAN MANAGER are
trademarks of Microsoft Corporation; LANTASTIC is a trademark of Artisoft; SAA is a
mark of IBM). The network may include a local area network which is connectable to
other networks through a gateway or similar mechanism.

One system according to the invention includes one or more servers 106 that are
connected by network signal lines 108 to one or more network clients 110. The servers and
network clients may be configured by those of skill in the art in a wide variety of ways to
operate according to the present invention. The servers may be configured as internet
servers, as intranet servers, as directory service providers or name servers, as software

component servers, as file servers, or as a combination of these and other functions. The

10

15

25

30

WO 02/25438 PCT/US01/29863

servers may be uniprocessor or multiprocessor machines. The servers 106 and clients 110
each include an addressable storage medium such as random access memory and/or a non-
volatile storage medium such as a magnetic or optical disk. The signal lines 108 may
include twisted pair, coaxial, or optical fiber cables, telephone lines, satellites, microwave
relays, modulated AC power lines, and other data transmission “wires” known to those of
skill in the art, including wireless connections. Signals according to the invention may be
embodied in such “wires” and/or in the addressable storage media.

In addition to the network client computers, a printer, an array of disks and other
peripherals may be attached to a particular system. A given computer may function both as
aclient 110 and a server 106; this may occur, for instance, on computers running
Microsoft Windows NT software. Although particular individual and network computer
systems and components are mentioned, those of skill in the art will appreciate that the
present invention also works with a variety of other networks and computers.

Suitable software and/or hardware implementations of the invention are readily
provided by those of skill in the art using the teachings presented here and programming
languages and tools such as Java, Pascal, C++, C, Perl, shell scripts, assembly, firmware,

microcode, logic arrays, PALs, ASICs, PROMS, and/or other languages, circuits, or tools.

Configured Media Generally

The servers 106 and the network clients 110 and individual computers 110, 114 are
capable of using floppy drives, tape drives, optical drives or other means to read a storage
medium. A suitable storage medium includes a magnetic, optical, or other computer-
readable storage device having a specific physical substrate configuration. Suitable storage
devices include floppy disks, hard disks, tape, CD-ROMs, PROMs, RAM and other
computer system storage devices. The substrate configuration represents data and
instructions which cause the computer system to operate in a specific and predefined
manner as described herein. Thus, the medium tangibly embodies a program, functions,
and/or instructions that are executable by the servers and/or network client computers
and/or individual computers to perform updating, monitoring, administrative and/or other

steps of the present invention substantially as described herein.

10

10

20

25

30

WO 02/25438 PCT/US01/29863

Firewalls

Network administrators generally do not allow just any information into their
system. Rather, they use a firewall 116, 118 to protect the network from security threats. A
firewall is hardware and/or software device that screens incoming messages (often based
on content, origin, or nature of request) and only allows to pass those that are deemed safe.
Three main types of firewalls are screening routers (also called packet filters), proxy server
circuit-level gateways, and proxy server application-level gateways. Screening routers can
base decisions on external information about a network packet such as its domain name
and IP address, so messages that come from acceptable domain names and IP addresses
can be allowed through 120, 124 while refusing messages from other locations 122. Proxy
server circuit-level gateways disguise information about an internal system when passing
the information to an external system. The IP addresses of the internal computers are
typically replaced with the IP address of the proxy. At this level, authentication can be
required. Proxy server application-level gateways provide all of the features of screening
routers and circuit level gateways while also allowing the contents of the packets
themselves to be evaluated. Messages can be rejected for content as well as for security

violations.

Software Installation

System administrators often need to change the software on a specific machine. A
new piece of software must be installed for the first time, as when a new application is
added to a machine. An already-installed piece of software can be updated, as when a new
version of an existing piece of software will be installed on a specific machine; this is also
referred to as “replacing” the software. A data file of an existing piece of software can be
updated without otherwise changing the software configuration, as when tax tables are
updated on an accounting program, or when anti-virus software files are updated. If a
problem is discovered in an existing piece of software, then a fix or patch can be installed.
Any or all of these changes to the state of a specific machine or machines are referred to in

9% <6

this patent as “installation”. Similarly, the words “package,” “patch,” and “update” should
be given the broadest possible meaning. For example, package could refer to an entire

program including all the necessary files, to one or more data files, to a software patch to

11

10

15

20

25

30

WO 02/25438 PCT/US01/29863

an existing file, to a change to a configuration file, to a *.dll file, a driver file for a specific
piece of hardware attached to a computer and/or a computer network, and so on. “Update”

refers to at least attempting to install a package on a computer.

Methods Generally

With reference to Figures 3, 4, and 5, one embodiment of a method operating
according to the present invention includes a target computer 500 in a pre-update state.
The target computer 500 is the computer that the invention will at least attempt to update;
not every embodiment of the invention requires that the update be successful. An update
server 528 is connected across a network 524 to the target computer. In some
implementations the target computer has a non-graphical user interface network
connection, such as a connection through a winsock layer. Typically, the target computer is
protected by a firewall 526, as explained above, but the update server can drill through the
firewall to access the target computer.

An update agent 508 is located at each computer that is to be updated. The update
agent is a software component (usually not very large) that may be installed initially, either
in the traditional manner or by using the invention, on the network target machines such as
workstation(s) and/or server(s). The update agent is capable of operating in the place of the
human administrator, at the direction of the human administrator, to perform work in a
manner similar to what could be performed if the human administrator was actually
present at the machine. The update agent knows how to perform two basic tasks: 1) how to
contact the update server 528 to retrieve a list of tasks and 2) how to start the tasks in the
task list received.

The update agent is capable of updating, configuring, or replacing itself without the
need for manual intervention after the initial install. Typically a small boot-strap agent will
be installed initially, but will grow in abilities as the administrator dictates or as required
to fulfill administrator requests. The update agents of different sorts of target computers
500, such as onsite administrator computers, server computers, and client machines, can
all start out as the same version of a single agent. Machines in a given network can all
have a the same agent installed, or machines can have unique agents installed. When there

is more than one client, each can have a different update agent initially, or a mix of agents

12

10

15

20

25

30

WO 02/25438 PCT/US01/29863

can be installed on different client machines, as is chosen by the administrator, or as is set
up as a default. Similarly, multiple servers and administrators can also have a mix of
different agents initially installed. As the agents for the individual target computers
change, they can all change in concert or they can diverge. In some embodiments, the
agents may all start out different and then converge in functionality.

The offsite location of the update server 528 is a location distinct from the target
computer. The location may be offsite at a completely different vendor, or offsite at a
different physical location fronﬂ the target computer 500 but at a location managed by the
same entity, at the same physical location. It may be at a different-appearing location from
the target computer 500, such as at a subcontractor location, or at some other distinct-
appearing location. The important point is that as far as an individual target computer
operating system is concerned, the work appears to be off-site. One embodiment locates
the update server on the target computer 500 but in a fashion (such as in a different
partition) that appears offsite.

The actual update material that is to be installed on the target computer is often
stored at a separate location (known as the package computer) apart from the update server
and the target computer. The software update itself can be any of a wide variety of
software that can be updated across a network, such as an incremental software patch, a
new software program never before installed on the target computer, an update to an old
program, software scripts, data files, or even an update of the update agent.

If a known condition is met, during a placing step 300, a task id is placed on an
update task list 222. The known condition could be that the patch is not currently on the
computer, that the administrator has given assent, the owner of the target computer 500 has
permission from the owner of the package, the fact that no one has specifically denied
placing privileges, or some other known or inventive condition. The update task list
located on the update server is associated with a specific target computer 500, and
specifies at least one download address where the software update can be found. The
download address can be in any format that is understandable to the computers. The
invention does not depend upon any specific addressing convention. Two common
addressing formats in use currently are the “Universal Resource Locator” and “fully

qualified domain name” formats. Other formats are PURLSs (Persistent Uniform Resource

13

10

15

20

25

30

WO 02/25438 PCT/US01/29863

Locators) and URN’s (Uniform Resource Names), and other naming schemes may be
known in the future. Other information that may be included in the task identifier, such as
a date the download will first be attempted. Multiple download addresses, each of which
specifies a location where the software update can be found, may all be associated with a
specific software update.

During a starting task step 304, the software update is at least attempted to be
uploaded from the package computer 567 to the update server 528. During an optional
choose package computer step 306, if more than one download location is placed on task
id list 226, the location that the software update will be downloaded from is chosen. The
choice can be made by any known or inventive method, such as using the first location on
the list, using the location that a test message returns from most rapidly, using the first
available machine, and so on.

Once a location for the update is known, the software download is attempted from
the location of the package computer 548 to the memory 530 of the update server 528. If

the download is unsuccessful, then in one inventive method another location from the list

“of possible locations in the task update list is chosen, and the download of the software

update is retried. In some implementations, if the download can’t be completed for some
reason, the update server 528 waits for a time and tries to download from the package
computer 567 again. If the download is successful, then the update server 528 attempts to
download 312 the software update to the target computer 500.

Once the download is in cache or other memory in the update computer a second
download 312 is attempted to download the software package from the update server to the
target computer. In some embodiments of the method, the second download 312 is delayed
310 by some predetermined criterion. This delay may be from the start of the first
download, with the delay period based on an estimate of the time needed to download the
software update from the package computer to the update server. The second download
may also be delayed to a specific time of day when the target computer 500 has less of a
chance of being used, such as after a business closes for the day. Other known or inventive
delay criteria may also be used.

A monitor 302 checks the installation, performing the role typically played by an

administrator, to determine the results of the installation 314. Once the results are known,

14

10

15

25

30

WO 02/25438 PCT/US01/29863

an administrator can be notified 328. Notification can be by sending an email 330, by
paging someone, by sending a pre-recorded phone message, or by any other known or
inventive method and means.

If the monitgring step detects a failure 316, then the task that failed is suspended
318. The first download 308 to the update server 528 could fail, as could the second
download from the update server 528 to the target computer 500. If there are multiple
target computers having the software update installed, the Nth installation could fail, and
so on. Determining results preferably goes beyond simply ensuring that the software
update appears to have installed properly, and in some embodiments of the invention
extends for a time beyond the installation. For example, one embodiment of the monitor
will test a patch application by having it installed it on only one target computer, assuring
that it downloads properly, and then watching it for some period of time until the
administrator who sets the time delay gains enough confidence in the patch to allow it to
be applied to other target computers. Should the applicatioﬁ of this patch cause abnormal
activity, as noticed by undesirable behaviors either in the program whose software was
modified or elsewhere in the computer, the rollout can be automatically discontinued until
the problem is resolved.

Furthermore, in some instances when failure is detected the software update is
disabled or removed 324 from the target computer, and that machine is returned
substantially to its pre-update state or another acceptable (working) non-update state. This
may mean that the installed software is taken off the target machine 322; or that not only is
the software removed, but all the ancillary files (.dII’s, .exe’s, etc.) are restored to their pre-
update state. In other instances it may mean that the target computer or some portion
thereof was backed up before the software update was installed, and the backup itself is
restored onto the machine.

If there are multiple target computers 500, failure may be detected by the monitor
after the software has been installed on one or more machines. In this case, the software
update can be removed 322 from not only the target computer 500 where the failure was
spotted, but it can also be removed 326 from all of the other target computers 500 where
the software was previously installed 326. The removal request can come from an

administrator or removal can be performed automatically after failure is detected 316.

15

10

15

20

25

30

WO 02/25438 PCT/US01/29863

The monitor 302 may perform more tasks than simply waiting to hear if a software
package has installed successfully. For example, in some instances the monitor waits for a
time period 400 after the installation and if it has not heard otherwise, assumes that the
installation was successful.

Administrators and administrator helpers can benefit greatly from a central
repository where they can enter and retrieve information regarding requests for help. One
such method is help desk “ticketing”. Ticketing records the requestor, the type of request,
when help was requested, when the response to the request was completed, and other
useful information. A PatchLink HelpDesk service provides facilities for administrators to
manage their network requests and network resources, both people and computer
resources, via one central repository. PatchLink HelpDesk software provides these
facilities across the internet without an invasive application install on the administrator’s
network that introduces yet another resource that has to be managed, backed up, and
updated — this is taken care of transparently at an offsite Management Center.

A website, reachable by a standard web browser or some other known or inventive
network connection, provides the facilities to use the help desk services. A preferred
implementation is currently at the PatchLink web site, reachable at www.patchlink.com.
Simple web forms support the data collection required to begin the enrollment process.
Once the enrollment process is complete, the administrator can license one or more
services on a recurring subscription basis.

The enrollment process is begun when the administrator initiates the process by
signing up and indicating a desired level of participation. A preferred embodiment of the
invention has three different user levels: guest, regular, and executive. A guest is allowed
to view the web site and can read the user forums but cannot post to the forums. A regular
member can perform guest functions and can also chat in chat rooms, and post to forums.
An executive member has a subscription to the site. He or she can perform regular member
functions, and can also use the more advanced features of the site, such as offsite
automatic package updates (e.g., PatchLink Update services), offsite monitoring (e.g.,
PatchLink Monitor services), and the offsite help desk functions (e.g., PatchLink

HelpDesk services).

16

10

15

20

25

30

WO 02/25438 PCT/US01/29863

One embodiment of the method entails an email being sent to a customer care
agent assigned to the customer’s telephone area code. The customer care agent telephones
the pending user to complete the enrollment process. The customer care agent collects the
necessary identity information and payment information, and then upgrades the pending
user’s account to permit use of the account, making the pending user an administrator/
user. The areas the administrator/user can participate in or use is controlled by entries in
the licensed product’s table of the update host’s database. These entries are created by the
customer care agent during the enrollment process.

Recall that all these services are available to the administrator via a browser or
other network connection across the internet. When a monitor enters a ticket into the help
desk and initiates a rollout in some instantiations of the inventive method, the monitor then
decides whether a failure has occurred 316, 406. To decide the monitor may look at what
software updates have recently been installed, how long ago the installations occurred, the
current hardware and software configuration, and so on. Which incidents are considered
failure can be, without limitation, set by an administrator; defaults can be used, and
judgment of the help desk personnel can be taken into account.

In a detect success step 408 the target computer 500 sends a message 410 to the
update server after the download from the update server to the target computer has
completed successfully. The monitor can presume success 404 if a specified time period
has passed without noticing or being notified of a failure.

Failure can be detected in other ways 316, 406. For instance the target computer
can notify the monitor that a failure has occurred; a user can notify the monitor through the
help desk or through a direct link that a failure has occurred; when a target computer does
not contact the monitor within a specified time from the beginning of the second download
312 onto the target machine, a human administrator can declare that a failure has occurred;
and so on. Notice that even after the monitor has declared the outcome of a download to be
a success, later events, such as an indication of failure from the help desk, can cause the
monitor to declare the download to be a failure.

In one embodiment of the invention, the update server 528 waits for a confirmation
of a successful installation (by the monitor, or by another known or inventive contact

method) before the next target computer 500 has the software update placed on its update

17

10

15

20

25

30

WO 02/25438 PCT/US01/29863

list 222. The update server checks for a target computer 500 that is eligible for the
software update but has not yet received it 412. If one is found 414 the appropriate task
identifier, specifying the target machine, the software update, and the location, are added
416 to the update server’s 528 task update list. This way, rather than a mass update where
all eligible computers have the software installed on them en masse, the rollout proceeds
one computer at a time until, after a default or user-defined number of successful
installations, the rollout is deemed a success; at that juncture the software update is made
available to more than one target computer at a time.

It is not always clear by looking at a specific target computer 500 what software
packages and patches have been installed. The invention includes a method to analyze a
target computer 500 to ensure that a given patch has not already been installed on the
computer 500 before the invention attempts to install that patch. The following discussion
includes references to Figures 8 and 9 and continuing reference to Figure 5.

A patch fingerprint which defines a specific software update is described in greater
detail below. The patch fingerprint is located 800 by monitoring a patch component
database location 900 for a new patch fingerprint 902. The word “new” here indicates that
the patch has not yet been downloaded into the repository component 600, or for some
reason needs to be downloaded into the repository component again, even though it has
been downloaded previously. There may be one or many patch component locations; those
locations may be on a separate computer connected to the system through a network link,
on the update server 528, on the target computer 599, on the package computer 567, on a
non-networked location such as a CD, a tape, a floppy disk, etc., or some other known or
inventive location.

Once the patch fingerprint 906 is located 800, it is placed 802 into the repository
component 600. The usual method of placement is to download 804 the patch fingerprint
906 into the repository component, but in some embodiments the fingerprint 906 will be
on the same file system, so the patch fingerprint will be copied without using the network,
such as copying between partitions.

The illustrated patch fingerprint comprises one or more general inventory install
dependencies 912 that can be used to take a high-level look to see if a specific patch can be

installed on a machine. It also includes a signature block 910 that can be used to request

18

10

15

20

25

30

WO 02/25438 PCT/US01/29863

_specific information from a target computer 500, and an existence test 908 which can use
the signature block information to determine if a specific patch has been loaded on a
machine.

In some versions of the invention, the inventory install dependencies 912 describe
at least some of the necessary software and hardware that must be installed on the target
computer 500. These dependencies 912 are compared 808 with information about the
target computer 806 previously stored in the inventory library 918. If the install
information and the inventory information don’t match, then the patch is not installed. In
some versions of the invention a message is sent to at least one administrator containing a
list of components required (such as necessary hardware and software) for the install.

If the necessary inventory information is on the target computer 500, or if the
inventory info is not used, then the signature block is sent 810 from the repository
computer 600 to target computer 500. The information requested in the signature block
814, which may consist of more specific install information, is gathered 812 by the
discovery agent 548 and then sent back to the repository component 818. In some versions
of the invention, the discovery agent also gathers other information 816 about the target
computer such as usage statistics, hardware and software installed, configurations, etc.
This information can then be used to populate the inventory library 918.

Once the signature information 910 has been sent to the repository component 600,
an evaluator 914 evaluates at least a portion of the specific install information requested by
the signature block using the existence test 908, and in some instances the inventory install
information 912, to determine if the patch is absent 822 on the target computer 500.

As an optional step, once it has been determined if the patch is absent a message is
sent 824 to at least one address associated with an administrator. This message may be sent
using a variety of methods, including email, pager, fax, voicemail, instant messaging,

SNMP notification, and so on.

Patch Fingerprint
With continuing reference to Figures 5, 8 and 9, one embodiment of the system
verifies that a software package can reasonably be installed on a given target computer 500

before attempting installation. To do so, a patch fingerprint 906 is used. It defines how to

19

10

15

25

30

WO 02/25438 PCT/US01/29863

determine if a given software package/incremental patch has been previously installed. It
may also define a minimum hardware/software configuration necessary for the patch
installation. These patch fingerprints 906 are stored in a fingerprint library 904. The
fingerprint library 904 is located on a repository component 600. This repository
component 600 may be located on the update server 528, or may be in a separate location
accessible to the update server 528 and the target computer 500. Some versions of the
invention also include an inventory library 918 which contain target inventories. Each
target inventory 920 contains the hardware and software information about a defined set of
target computers 500. This defined set may include as few as one computer or as many as
all of the computers in a given network, or some number in between.

The fingerprint library 904 can be automatically replenished. In some embodi-
ments, at least one, but possibly several, patch component database locations 900 are
monitored 800 for new patches 902. In some embodiments of the invention a signal from
the locations 900 indicates to the repository component 600 that new patches 902 are
available 800. In the preferred implementation the fingerprint library 904 is updated with
new patch fingerprints at specific time intervals. After the repository component 600 is
aware of the new patch fingerprint, the patch fingerprint is placed into the repository
component 802, usually by using a downloader 924 to download the new patch fingerprint.
Patch fingerprints may be entered into the repository components in other ways, however.
For example, one or more patch fingerprints may be manually installed into the fingerprint

library by an administrator.

Inventory Library

The repository component 600 also contains an inventory library 918. A discovery
agent 548, which in some embodiments initially resides on the update server 528, is
installed from the update server 528 to the target computer 500 using known or inventive
methods. This discovery agent 548, described in greater detail below, inventories at least
some of target computer 500°s software information 606, hardware information 608
including specific software updates and patches installed, usage information 604, registry
information 612, web information 610, configuration information 614, services 618, file

information, patch signatures which have been utilized, etc.

20

10

15

20

30

WO 02/25438 PCT/US01/29863

This information, or a subset or superset thereof, is then sent, in some embodi-
ments in compressed form, to the target computer inventory 920 in the inventory library
918. Result information can be quite voluminous, and hence may be compressed for
efficient upload and to minimize bandwidth usage on the customers network. A preferred
implementation sends the data using an XML data transfer, though any other known or

inventive data transfer method can be used.

Report Generator

With this information, a report generator 922 can present a user with detailed
reports of the current patch status for all computers within the network, illustrating the
number of computers needing the patch, the computers already installed with the patch,
computers that can’t receive the patch until hardware or software is upgraded and so on. In
addition, the report generator 922 can provide a partial or complete inventory of the
computers attached to the network. In some embodiments the report generator 922
provides graphical presentations of the inventory for analysis by the administrator, both to
track location of hardware as well as to ensure software license compliance. However the
repository component 600 also uses the inventory library 918 information as well as
detected fingerprint information to distribute relevant signatures 910 from the patch
fingerprint 906 to the discovery agent 548, thus greatly optimizing the patch discovery

process by eliminating unnecessary scanning work at the target computer 500.

Discovery Agent

One optional step to decide if a given software program or patch can be installed is
by verifying that the necessary hardware, if applicable, is present, and/or the necessary
software is present. For example, some programs may require a specific operating system,
some programs may require a certain processor. As an example, if an update of Microsoft
Word software is to be installed, it is necessary that Microsoft Word software be on the
machine. These high-level dependencies are stored, in some versions, in the inventory
install block 912 in the patch fingerprint. The information in the inventory install block is
generally high level enough that it can be pulled out of the target inventory 920 of the
specific target computer 500 stored in the inventory library 918.

21

10

15

20

25

30

WO 02/25438 PCT/US01/29863

In some implementations of the invention the patch fingerprint 906 also includes
installation dependency information 912. This, as explained above, is information about
the target computer 500 that can be expected to be found in the inventory library, and so
can be checked without querying the target computer 500. This includes software that
should be present (such as a specific version of a program, a patch, a data file or a driver) a
hardware component that should be present, or specific hardware and/or software that
shouldn’t be present.

If the inventory library does not have an up-to-date inventory for the target
computer 500, the discovery agent can be used to scan the target computer 500 for
inventory information; it does not necessarily need to also scan simultaneously for
signature information. In the preferred implementation, the first time that the discovery
agent 548 runs on a given target computer it scans only for inventory information and then
loads that information into the inventory library 918; it ignores the patch fingerprint
information. At other times when the discovery agent 548 runs it may ignore inventory
information and may, rather, be used to look up specific signature information 910 to test
for the existence of a specific patch. When the signature block information is looked for,
values such as registry entries and INI file values may be inspected for existence, or the
actual value may be returned to the repository component 600,

Each Patch fingerprint comprises a signature block 910 and an existence test 908.
The patch signature block is a set of information requests, the information itself to be
gleaned from a target computer 500 which will then be used to determine if all necessary
bug fix and security patches are installed. Examples of patch signature block information
include but are not limited to file, hardware, registry and configuration information, a
specific file name or directory name, all or part of a path that a file is expected to be found
in, a specific version of a file, a created date of a file, a file version, and a specific registry
value.

In one implementation the fingerprint library 904 is a SQL database. The patch
signatures 910 are extracted from the SQL fingerprint library and then sent to all target
computers that meet the dependency criteria for operating system and installed software as

specified in the inventory install information 912.

22

10

15

20

25

30

35

WO 02/25438 PCT/US01/29863

A preferred implementation employs an XML-based request input file. The result
file sent back to the update server 528 also employs XML formatting. This result file
contains the signature information for the target computer, and may also contain the
software and hardware inventory updates. The inventory and signature information sent to
the update server can be quite voluminous, and so are compressed in the preferred
implementation. The following is a sample patch signature that will gather registry
information for Microsoft Outlook as well as the EXEs date and time, and information in
the registry :
<file componentid="1" reportID="1">

<name>outlook.exe</name>

<path></path>

<version>9.0.2416</version>

<created></created>

<size></size>

<root>HKEY LOCAL_MACHINE</root>

<Key>SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\OUTLOOK.EXE</key>

<value>Path</value>
</file>

Once the discovery agent on the target computer has returned its scan results for
the signature, the existence test 908 logic is used by the evaluator 914 to infer whether that
particular computer actually has the patch or not. This algorithm minimizes the number of
tests that must be done by the evaluator: its sole responsibility is to discover information —
allowing the data analysis to be done by the repository component 600 itself. Distributing
the workload in this fashion provides a better implementation for scanning and analyzing
huge numbers of workstations and servers.

Each existence test is specific to a given patch. A sample existence test might
appear as: if registry QQ contains value ZFILEVAL or (if file Z123.bat was changed on
date 12/12/2000 at 11:52 pm and file Z is of size ZFILESIZE) then the patch ZPATCH is
present. The preferred embodiment of the patch fingerprint library is an SQL database, but
other known or inventive databases can be used.

Note that a patch fingerprint may also contain dependencies to other Finger Print
definitions: for example, “MS-023 IIS Vulnerability Fix” patch might hypothetically
require the presence of “Microsoft Windows Service Pack 2”. This is used to further
optimize where the patch signatures are actually sent. These may sometimes be used in the

23

10

15

20

25

30

WO 02/25438 PCT/US01/29863

install dependencies info 912 and other times in the signature block 910, depending on
circumstances.

In addition, fingerprint definitions 906 are also normally associated with a software
package 554 suitable for deployment by the system. Once the need for a particular patch
has been established by scanning its signature(s) on all computers within the network it
can then be quickly deployed by the administrator by merely selecting the date and time.

In some implementations the downloader 924 regularly checks the patch
component database for new patch fingerprints. When a new patch fingerprint is located, it
is downloaded into the repository component. The evaluator compares the dependencies
needed for the specific patch implementation listed in the install info 912 with each of the
target computer 500 specifications listed in the inventory library. Then an update list is
created which may identify all of the target computers 500 that need the patch, all of the
target computers that don’t possess the patch, all of the target computers that can receive
the patch, as they have the necessary dependencies, and/or all of the target computers 500
that have already received the patch. This update list may now be used to update the target
computers, and/or may be sent to an administrator by a notifier 916.

In some instances of the invention the patch component database is owned by
someone other than the target computer 500 owner. Only if this patch update host has
given permission to the target computer 500 owner will the downloader be allowed to
download the new patch fingerprints into the repository component. The permission may
comprise a purchase agreement, a lease agreement, and an evaluation agreement.

If any modifications are made that may be of interest to the administrator, the
notifier 916 will send a notification message containing the new patch updates that have
become available or the patch-related state changes that have occurred in his network
configuration. Notifications can be sent via e-mail, pager, telephony, SNMP broadcast or

Instant Message.

Target Computer
In one embodiment, the inventive system comprises three pieces: a target computer
500, an update server 528, and a package computer 548, The target computer 500 has a

memory 502, and a network connection 504, which in at least one implementation of the

24

10

15

20

25

30

WO 02/25438 PCT/US01/29863

invention is a winsock layer but which can also be a browser. A socketless protocol can be
implemented, or any other known or inventive network connection can be used. The
update server 528 has a mélnory 530 that may include an optional backup storage 534, and
a network connection 532 which may be a browser. The package computer 567 has a
memory 550, and a network connection 552 which may be a browser. Figure 5 shows one
target computer 500 for convenience but there may be many more in a given embodiment.
Likewise, one update server 528, and one package computer 567 is shown for
convenience, the invention may only require one but also support two or more. In a
preferred embodiment these pieces are all separate computers, but they can be virtual
pieces of the same computer, such that they appear to be distinct. For example, the
“package computer” piece may reside on a different partition of the update server.

The target computer contains a network connection 544, which may be protected
from the outside by a firewall 526 as is discussed above. Different target computers within
a network may run on different platforms; for instance, some may be Windows machines,
some Unix machines, etc. The same update server 528 can be used for all the platforms, or
different update servers 528 can be specified by platform type, or the update servers 528
can be assigned to target computers 500 using a different schema.

The target computer 500 also contains an update agent 508. The update agent is a
software component that can be installed using the inventive method on multiple machines
at a time or, in some embodiments of the system, can be installed in the traditional manner
on the target computer 500. The update agent 508 knows how to perform two basic tasks:
1) how to contact an update server 528 to retrieve its list of tasks from its update list 536

and 2) how to start the tasks in the task list received.

Update agent

The update agent of target computer 500 contacts the update server 528 to
determine if there is work for the agent 508 to do. The update server 528 determines this
by analyzing an agent’s update list queue 536. This update list 536 contains, at a
minimum, a software location reference 538, but can also contain a date 540 that indicates
the earliest date that the software package 554 can be installed, and multiple software

location references, if the same software package is available from multiple locations. The

25

10

15

20

25

30

WO 02/25438 PCT/US01/29863

types of software 554 that can be updated comprise, without restriction, patch files 556
that update a currently installed software application on the target computer, data files 558,
script files 562, new application files 564, executable files, 560 and updates to the update
agent file itself 566 .

When the update agent discovers an entry on its associated update list 536, with an
appropriate date 540, if any, the installer 510 initially checks to see if a copy of the
software package already exists in memory 530 on the update server 528. If found, it then
downloads the software package directly from the update server. This situation may arise
when a previous target computer 500 has requested the software package 554 from the
update server 528.

If the software package is not found, the installer 510 then attempts to download
the update directly from the package computer location given in the software location
reference 538 to the target computer memory 502 using its network connection. This will
be possible if there is no firewall 526, or if the update server can browse the package
computer location 548.

When an administrator builds a package that instructs the update agent 508 to
retrieve the files from a “non trusted” source such as the package computer 567, the
installer 510 will be unable to retrieve the resource directly. However, the update agent can
ask the update server 528 to retrieve the package. In some implementations there are
multiple update servers and the update agent 508 decides which one of them to access
using some predetermined criterion. Examples include selecting the first update server 528
that is available, selecting the least-busy update server, selecting the update server that is
“closest” in networking terms, and so on.

In one implementation of the invention, if the update server 528 can reach the
offsite package computer 567, it reports to the update agent 508 that it can reach the
resource and estimates the time the retrieval will take. This estimate informs the agent how
long it should wait before the requested resource is available. If the calculation estimation
is not exact, as it probably will not be because of internet traffic fluctuations and server
response time variances, then if the agent asks for the resource again the update server will

provide another wait time length and the agent will wait once again. This cycle will repeat

26

10

15

20

25

30

WO 02/25438 PCT/US01/29863

until the update server 528 has the resource available in memory and can deliver it to the
agent upon the next request.

As a particular software package could be requested multiple times by different
agents 508, in one implementation of the invention, the update server 528 will store this
resource in a local cache 530 from which it can fulfill additional retrieval requests. To
prevent the update server 528 from filling up all its available memory with old software
packages, one embodiment stores the number of times the package is accessed and the
time of the latest access for the stored software package and estimates a “time to live”
amount of time for that resource to stay in its cache. A separate task running in the update
server 528 will check periodically for resources that have “outlived” their usefulness and
recover the update host’s storage resources by deleting the stored software package update
from the cache 530.

In one embodiment the update server will make the packages available to the list of
agents one at a time. If an agent 508 or an outcome finder 512 reports that the application
of the patch failed, or if the patch puts the agent’s target computer 500 in such a state that
it can no longer communicate with the update server, then the update server will suspend
the rollout automatically on the administrator’s behalf. At this point, the administrator, or
some other designated person can be notified 516 of the outcome.

An outcome finder 512 determines if the software package installation was
successful and then communicates its finding to the update server 528. If the outcome is
unsuccessful, as discussed above, a restorer 514 places the target computer in an
acceptable non-updated state. The outcome finder 512 does not necessarily monitor only
the actual software installation; rather it can be set up to watch uses of the software that
was patched, the entire target computer, and/or computers that are networked to the target
computer, for some designated period of time. The outcome finder can also have different
levels of success. For instance, the installation itself (file copying) can be considered a low
level of success, while the target computer not misbehaving for a period of time thereafter
can be considered a higher level of success, with different actions taken according to the
success level.

Some embodiments store a backup 506, 534 of a target computer 500 or a portion

thereof before installing the software package on the target computer 500. Sometimes the

27

10

15

20

25

30

WO 02/25438 PCT/US01/29863

backup is stored 534 on the update server, sometimes on the target computer 506, 500
which is having its software updated, and sometimes it is stored offsite at a repository site
600. When the outcome finder 512 reports a problem with a software installation, the
restorer 514 can use the backup 534 to return the target computer to a non-updated state.

In one embodiment of the invention, the update server 528 waits for a cJ;onﬁrmation
of a successful installation (by the outcome finder 512, or by another known or inventive
contact method) before the next target computer 500 has the software location reference
538 to the package placed on its update list 536 at the update server 528. In a preferred
embodiment, when an installation finishes, an administrator is notified 516 of the results
by email 518, pager 520, voice mail 522, SNMP notification 568, instant messaging 570,
beeper, fax or by some other means. If the installation failed, the specific machine that the
installation failed on may be identified. In some embodiments, after a default or user-
defined number of successful installations, the package is made available to more than one
user at a time.

These update lists 536 facilitate the administrator’s designation of pre-build
packages, or custom build packages, to be delivered or rolled-out to managed workstations
or clients and managed servers, which we refer to as target computers 500. When these
packages are to be made available, updates are scheduled by the administrator to be
performed by the invention; this may automate a previous task requiring the
administrator’s visit to a client to install a patch or service pack.

The update agent 508 may be aware of the platform it is operating upon, and may
be programmable or scriptable to perform actions on behalf of the administrator. In one
implementation these features are exposed to the administrator through Package Builder
wizards. A “software package” can be any combination of files, service packs, and scripts.
This presents an opportunity for the administration of remote machines, since almost
anything that could be performed at a remote machine can be accomplished via the agent
acting on behalf of the administrator.

One implementation of the invention allows scripts 562 to be run before (pre-
install) and after (post-install) the package installation. An example of a pre-install script
may be: (in pseudo-code)

check for available disk space

28

10

15

25

30

WO 02/25438 PCT/US01/29863

If disk space available greater than ValueX (where ValueX = room needed for
install plus a buffer) then start the install.
Else, alert outside administration that an error has occurred, and terminate.

An example of an post-install script (again, in pseudo-code):

If install was successful, then notify an outside source that install successful.

If install was unsuccessful, then notify an outside source that install was

unsuccessful.

Referring now to Figures 6 and 7, the network 200 may include many different
sorts of target computers, each with an agent that may be specifically constructed for the
specific target platform. For example, a network running Microsoft Windows PCs, Apple
computers, and UNIX computers, may have three types of agents. This provides a benefit
in that the agent is capable of surveying its target computer and reporting this computer
information 602 to the update server 528 and/or to a separate repository site 600 for
storage. In some instances of the system, a discovery agent 548 is provided which
performs the scan, as discussed elsewhere. In other instances the scan is performed by the
update agent 508, or a downloaded script file 562. Hardware configurations 608, software
configurations 606, information about the usage of various hardware and software
components 604, web sites visited, emails sent and received 610, can all be sent to the
offsite location 600. Once this information is available at the update server, an
administrator can view the entire managed network from one place.

When the inventive system is implemented on an existing network, the discovery
agent 548 may perform a survey of the software in existence at least on the target computer
500, with existing software configurations 700 detected and stored within the repository
site 600 memory. Some systems may survey the entire network 200. When updates are
called for, the system knows which ones are needed without needing to resurvey the
network machines to check their current status.

A recommended configuration 704 for the target computer 500 is placed on the
update server 528 or on the repository site 600. The recommended configuration may be
decided on in many ways, either inventive or known to those of skill in the database arts,
for example, by hardware configuration, by software configuration, by type of computer,
by last package update, and so on. The discovery agent 548 then compares the current 700

and recommended 704 configurations and prepares a proposed list of updates 708 for the

29

10

15

20

25

30

WO 02/25438 PCT/US01/29863

target computer 500. The update list may include service packs for installed software,
previously uninstalled software, updated data files, and the like. The process of preparing
the suggested list may take into account not only the current software configuration but
also information such as the hardware configuration 608, and how often a particular
program, data file, etc. is accessed 604, as well as other information that is known to one
of skill in the art, An administrator may be automatically notified of the update list.

Assuming that the target computer current configuration 700 generates a proposed
update list 706, an administrator may be automatically notified 708. At this point, the
computer use may be restricted until the new target computer is updated at least partially,
until the administrator gives permission, or until some other inventive or known condition
is met. This proposed update list 706 may also be used to define an update list 536 used to
actually update the computer, as explained elsewhere.

Packages are compoéed of modules representing files, e.g., software files or data
files, and scripts, which are sequences of actions to take upon files in the package. In some
embodiments of the invention, a human administrator receives notice of the availability of
new software patches. In other embodiments, the notices are sent directly to the offsite

update server 528 which decides when to roll them out. The offsite update server can be

" configured to store in permanent memory the packages that have already been stored on

each target computer. When a new package becomes available, or during the installation of
an existing package, existing evidence of the software packages that need to be installed,
as well as information about previous installations, is available in some embodiments at
the offsite update server 528, and in other instances at the repository site 600.

The packages that are to be updated do not need to be owned by the target
computer 500 user to receive access to it. In one embodiment of the system, the software
package is owned by a third party which leases the software to the user. In another
embodiment, the software package is owned by the update server user who then leases and

provides access to the software package to the target computer 500 user.

Implementation notes
Additional details regarding particular embodiments are provided below. These

implementation details are provided in order to err -- if errors are made -- by including too

30

10

15

20

25

30

35

40

WO 02/25438 PCT/US01/29863

much information rather than including too little. Applicants should not be penalized for
being so forthcoming. In particular, the inclusion of details should not be viewed as an
assumption or admission that those details, or similar details, or a similar level of detail,
are actually required to support the claims ultimately granted. Nor should the inclusion of
particular implementation details be misinterpreted by treating as inventors people who
simply implemented inventive ideas conceived by others.

Agents
e Microsoft Windows Agents
e NetWare Agent
e Linux Agent
e Java Agent

Package Construction / Package Maintenance

An administrator uses this module to create a package for distribution through the
designated Update agents. This package can be a file distribution or a software package,
allowing for more flexibility when updating existing installed software, installing new
software, file-replication, etc. throughout the designated managed machines.

Below are the steps for proper package creation:

1. Enter the Package Specifications

e Package Name — Labels the package throughout the updating process.

e Package Type — When Software Package is selected in the Software Package
routines, after the source files for the package are placed in their proper destination
sequence, the administrator may immediately finish the package creation (using
pre-designated default values for the rest of the options). File Distribution requires
the administrator to complete all steps in the package creation routine.

e Operating System - Choose the Operating Systems to which the package can be
rolled out. Currently, you may select one operating system per package. These
include: Linux , NetWare, Windows 2000/NT, Windows NT, Windows 95/98/ME

e (Optional) Import — Imports a previously exported package. This option is useful
for creating the same package for multiple operating systems.

2. Add the Source

¢ Add File — Adds a file from your local workstation or network location that is
reachable.

¢ Add Dir — Adds a directory from your local workstation or network location that is
reachable.

e Add URL — Adds a remote file to the package via well-known protocols. The
various types of URLs you can add are: Local File — File://, FTP — fip://, HTTP —
http://, Secure HTTP — https://, Anything else you choose as long as the agent
recognizes the protocol (this field is editable).

e Remove — Removes a file from the package.

31

10

15

20

30

35

40

45

WO 02/25438 PCT/US01/29863

Properties — Shows the details of how each file is stored within the update server.
Also allows for multiple sources in case one source is busy or slow (due to net lag
for example). The agent automatically tries the other sources.

Import File — Imports a specific list of files from a previously exported package.
Add the Destination :
Target Computer — A hierarchical tree view of the package file destination. The
various default directories shown depend on the operating system for which this
package is targeted. The package always displays in the same directory path from
which the source files were originally imported (see Step 2). To move the files
around simply highlight the directory or file and drag it to its new location.
Properties — If the directory where the files should install is not displayed, highlight
a file and click the Properties button. This displays the base information of where
the source file is coming from and an entry field for the destination. Type the new
location and click OK and your changes are shown (this may take a while because
the paths are reconnected for large package file numbers).

Export File — Exports a base package to a file (source and destination information)
for use later in an import function.

Dependencies

Left Column — A list of existing packages that are ready for rollout (operating
system dependent). For example, if you have a Java-based package that must be
rolled out to numerous computers, you would select the specific JDK package as
your dependency so that the JDK is installed prior to the current package.

Right Column — The packages placed here (by using the arrow buttons) are the
dependencies for your package. Use the + and — buttons to arrange the
dependencies in order of importance (most important being the first dependency).
Dependencies are processed before your package.

Asset — If the dependencies are not found the package fails to install. For example,
if a Microsoft Office 2000 SR1 package is created, its Asset dependency is
Microsoft Office 2000 which must already be installed.

Install — If the dependencies are not found, install them prior to installing the
current package. Using the above example, if MS Office 2000 is not found, it is
installed prior to installing the SR1 package.

Package Settings

Backup — Backs up any existing package files found on the destination machines.
The editable pull-down list contains the most common directories for the operating
system in question. If your directory is not found just type it into the list.
Confidence Level — The default for all new packages is New. The Confidence
Level indicates that this package was tested and its performance has determined its
confidence level.

Availability — The default is Available which indicates the package is available for
rollouts. Not Available indicates this created package is unavailable for a rollout.
Scripts

There are three types of package scripts you can use: Command Line — The
contents of this script are executed as a standard command line. This script is sent
after the files are copied to their destinations. Pre-Script — The contents of this
script are executed prior to the files being copied onto the machine. Post-Script —
The contents of this script are executed after the files are copied onto the machine.

32

10

15

20

25

30

35

40

45

WO 02/25438 PCT/US01/29863

System Settings

Language — Select the languages for which the package is available. The agent then
checks that the language is on the machine and that the package matches before the
package is installed.

Processor Type — Select the processor for which the package is available. The agent
then checks that the processor is on the machine and that the package matches
before the package is installed.

Finish — Click Finish to upload the files and assemble the package. When the

assembly process ends the button changes from Finish to Done. Click Done to
complete the package creation function.

Define a Group / Modify a Group

This module lets an administrator group machines together, making the rollout procedures
easier so that a rollout is as easy for one machine as it is for 500 machines. Additionally,
an administrator might group machines according to their function or location to make
bandwidth utilization more efficient for their network.

1.
2.

3.

Group Name — The label designation for the group.

Machine List — Select all the machines this group will include. A machine shows
up only after the update agent is installed and registered.

Finish — After the machines are placed in the group, the Finish button changes to
Done. Click Done to complete the group function.

Schedule a Rollout / View Existing Rollouts
The rollout schedule defines the date and time the packages are made available to the
designated machines.

L.

2.

Choose a Package

o Package Selection List — Choose a package (only one at this time) to install.

Choose Machines

e Add a Group - This button displays a dialog box showing a list of the available
groups. Highlight the groups you wish to deploy then click the OK button.

e Remove a Group — Highlight the groups you do not want the package rolled out
to, then click the Remove a Group button.

e Add a Machine — This button displays a dialog box showing a list of available
machines (with registered update agents on them). Highlight the machines to
add then click the OK button.

e Remove a Machine — Highlight the machines you do not want the package
rolled out to, then click the Remove a Machine button.

 Rollback —~ Removes the package just installed and returns the backup (if one
was designated). This option is available only via View Existing Rollouts.

¢ Reapply — Re-installs the package.

Choose a Rollout Date and Time

o Calendar — Choose the date for the rollout installation to occur.

¢ Time — The time on the server when the package is to be rolled out.

Choose Bandwidth and Sequencing

33

10

15

20

25

30

35

40

45

WO 02/25438 PCT/US01/29863

¢ Bandwidth — This level determines how much bandwidth on the server
downloading of the package will utilize. The minimum value is 30 % and the
maximum is 100%.

¢ Sequencing — Selecting YES (default value) causes the rollout to go machine
by machine throughout the entire rollout process and finish after the last
machine is done. If an error occurs anywhere in the rollout process the rollout
stops. Selecting NO causes the rollout to install the package on all machines. If
an error occurs on one machine, it does not affect the package rollout on
another machine.

5. Finish — The rollout is created or updated and is saved after clicking the Done
button.

Agent requests will be in the form of HTML Forms using the POST method. Host
responses will be well-formed XML 1.0 documents. Most of the returned documents are of
such simple structure, a DTD, NameSpace, or Schema will not be included, but they will
be syntactically and structurally in compliance with the XML specification. All dates and
times are normalized to Coordinated Universal Time (GMT).

This describes the transaction or data flow between the Agent, the requestor, and the Host,
the Update Service. All Update transactions will be initiated by the Agent, except for the
case where the Host will open, send the agent ID and then close an agreed upon port and
protocol at the Agent’s IP address to effectively ‘Ping’ or notify the Agent that it should
request a list of work from the host regardless of its request schedule.

First Contact:

Any Agent needing to converse with the update server 528 service, will always make a
request to the designated master site for the /update subdirectory. This subdirectory will be
configured to return a ‘302 Object Moved’ and its ‘new’ location. '

As demonstrated in the following example, the agent performs a ‘HEAD’ request on the
/update subdirectory of the www.patchlink.com site.

Head Request:
HEAD /update http/1.1

The Host responds that the object is moved, and the new location can be found at the
address provided by the Location: header

InstallShield Agent Registration:

During the physical installation of the ‘update agent’, the Administrator will be required to
enter some information before the agent is installed. The Admin will be required to enter
the Host Name or IP Address, the Account Identifier, a GUID (Globally Unique Identifier),
and the User Name and Password that was specified when registering. This data will be
sent to the host to validate the ability to install the agent software, and to generate an ID
for the agent.

34

10

15

20

25

30

35

40

45

WO 02/25438 PCT/US01/29863

Agent TaskList

Once InstallShield has successfully installed the BootStrap Agent software on the
computer, it’s time for the agent to start working. After the agent resolves the update
server 528 host site address, it posts a “TaskList’ request. A ‘TaskList’ is a simple list of
‘Task’ items the Admin has scheduled for the Agent to perform.

The BootStrap Agent must be able to:

Request the initial TaskList.

Receive the initial TaskList.

Understand the initial TaskList.

Download the Full Agent’s install file.

Run the Agent Install.

Report any install problems, if so, continue as instructed

Start the full Agent.

Poll for new TaskLists

Understand SoftPkg IDs and dependencies and download them.

0. Initial “Action Scripts” either by invoking an external Script Engine or by invoking
the Script Engine from within the Agent.

=0 0NN R W

The Agent making the initial TaskList request and processing the returned response
accomplishes this. For example:

TaskList Request

POST server_object_returned_in_firstcontact http/1.1
Content-Type: text/html

Content-Length: 32

Action=TaskList
&AccountID=AF011203-7A09-4b67-A38E-1CB8D8702A50
&AgentID=D7292F2D-CCFE-46dc-B036-3B318C2952E3
&AgentVer=0.0

&LocalTime=20000628010100

&Status=0

In this request, the Agent’s Version is 0.0. This indicates to the host that this is a new
installation of the agent and that the host should prepare a ‘Task’ for the agent that
downloads the latest versions of the appropriate agent software. In the following response,
this is shown as the first ‘Task’ - TaskID="C1D50120-FF13-11d3-95B5-000629526438”.

Whenever there has been a change to the Agent’s policy, the host will include the policy
data in the ‘“TaskList’ — since this is the initial request from the agent, the policy data is
included in this response.

LocalTime is just that the Local time (NOT GMT). This allows the server to know exactly
what time it is on the Agent machine. Format is in YYYYMMDDHHMMSS.

35

10

15

25

30

35

40

45

WO 02/25438 PCT/US01/29863

Status tells the tasklist processor to just return a simple yes or no status if there are tasks
to be done.

Status=0 means to return a normal task list. Status=1 means tell the agent if you have tasks
to be done. This allows the agent to come in non-SSL and do a quick check.

Agent Soft Package Request

The first task indicates there is a module to be installed. As shown below, the agent
requests the detailed installation information from the host:

Soft Package Request

POST server_object returned_in_firstcontact http/1.1
Content-Type: text/html
Content-Length: nnnn

Action= SOFTPKG
&AccountID=AF011203-7A09-4b67-A38E-1CB8D8702A50
&AgentID=D7292F2D-CCFE-46dc-B036-3B318C2952E3
&AgentVer=0.0 ~
&TaskID=C1D50120-FF13-11d3-95B5-000629526438
&PkgID=12340000-1111-0000-0000-000000000000

&Local Time=20000628010100

Note that in this instance, the Agent’s version is 0.0. This indicates to the host that the
package to update the Agent software should be included in the TaskList response. This
allows the host to dynamically determine when there is a newer version of the agent
software that is available and directs the agent to update itself.

The host puts together an “Open Software Distribution” document that details the
information the agent will need to be able to complete the task:

LocalTime is just that the Local time (NOT GMT). This allows the server to know exactly
what time it is on the Agent machine. Format is in YYYYMMDDHHMMSS.

Soft Package (All elements)
A soft package showing all the possible XML components (shows backup).

<?xml version="1.0"?>

<IDOCTYPE SOFTPKG SYSTEM "http://msdn.microsoft.com/standards/osd/osd.dtd">

<SOFTPKG xmlns:GX="http://www.patchlink.com/standards/osd/update.dtd"
GX:TaskID="C1D50120-FF13-11d3-95B5-000629526438"
GX:PkglD="12340000-1111-0000-0000-000000000000"
Name="12340000-1111-0000-0000-000000000000"

36 '

10

20

25

30

35

40

45

WO 02/25438

PCT/US01/29863

GX:Relnstall="N” GX:RollBack="N">
<TITLE>Windows NT update agent</TITLE>
<IMPLEMENTATION>
<OS VALUE="win2k"/>
<OS VALUE="win98"/>
<DISKSIZE Value="123456"/>
<CODEBASE>
<GX:DIR ModuleID="00000104-0000-0000-0000-000000000000">
<GX:Destination>
<GX:URI DateTime="20000415010100">
<GX:URL>FILE://%TEMP%/</GX:URL>
<GX:ACL Attrib="RWXHSMA Name="$OTHER”/>
<GX:ACL Attrib="RWXHSMA” Group="$GROUP”/>
<GX:ACL Attrib="RWXHSMA?” Name="$USER”/>
</GX:URI>
</GX:Destination>
</GX:DIR >
<GX:FILE Expand="N" Overwrite="Y" ModuleID="00000100-0000-0000-0000-
000000000000

Soft Package Status ~ Success

The return codes RC and SoftPkgRC are in decimal format. SoftPkgRC denotes the
overall completion of the package. Some modules could have been successful (RC=0) but
another may have caused the error. If a rollout is attempted with a package that has already
been install once then the agent will return (RC=0) for all the modules it installed and
return (SoftPkgRC=725003) or 0x000b100b Soft Package already installed.

Upon completion of the task, the agent will update the host with the results:
Request

POST server_object_returned_in _firstcontact http/1.1

Content-Type: text/html

Content-Length: nnn

Action=Status
&AccountlD=AF011203-7A09-4b67-A38E-1CBSD8702A50
&AgentID=D7292F2D-CCFE-46dc-B036-3B318C2952E3
&AgentVer=2.0
&TaskID=C1D50120-FF13-11d3-95B5-000629526438
&PKGID=12340000-1111-0000-0000-000000000000
&InstallDate=20000101123456

&SoftPkgRC=0

&SoftPkgRCMsg=Success
&ModuleID=00000100-0000-0000-0000-000000000000
&RC=0

&RCMsg=Success

37

WO 02/25438

File Attributes and ACL’s

PCT/US01/29863

This part describes the GX:ACL element found in GX:Destination (GX:URI)

element. The attributes in Update are supplied in to the agent in the Super set form
5 defined below.

The problem with doing basic file attributes is that some file systems blur the
boundary between Attributes and ACL’s. An attribute is the basic ACL of a file

and what is defined here is a small cross platform superset. For instance, Windows
10 NTFS has the Read Only attribute flag but it also has the Read ACL. Therefore, if

we are going to make generic attribute flags, then we must expect the meaning to

be altered somewhat when used as ACL’s. Those on the Unix platform will see no
difference, except that like other platforms, you would ignore flags that you do not

understand or no defined behavior is listed here.

15
Three default ACL’s are defined and act like basic file attributes; SOTHER,
$GROUP, $USER.
On Unix the file system all three of these attribute ACL’s would use. However,
NT, FAT and NetWare would use only § OTHER for basic file attributes. Any
20 other names in the ACL’s element data will be construed as a name
ACL and Attribute flags
Letter | Short Definition
R Read Display the file's data, attributes,
owner, and permissions
w Write Write to the file, append to the
file.
X Execute | Run the file (if it's a program or
has a program associated with it
for which you have the necessary
permissions)
H Hidden Hidden file
S System System file
M Modify Read, write, modify, execute,
and change the file's attributes.
A Archive File is ready for Archive
25
The XML syntax:
This denotes an ACL for a User
<GX:ACL Attrib="RWXHSMA?” Name="UserName”/>
30 ACL for a Group. Note that §GROUP will always use Group=

<GX:ACL Attrib="RWXHSMA” Group="GroupName”/>

38

10

15

20

25

30

35

40

45

WO 02/25438 PCT/US01/29863

Soft Package - Rollback

HTTP/1.1 200 OK
Connection: close
Content-Type: text/xml
Content-Length: nnn

<?xml version="1.0"?>
<IDOCTYPE SOFTPKG SYSTEM "http://msdn.microsoft.com/standards/osd/osd.dtd">
<SOFTPKG xmlns:GX="http://www.patchlink.com/standards/osd/update.dtd"
GX:TaskID="C1D50120-FF13-11d3-95B5-000629526438"
GX:PkglID="12340000-1111-0000-0000-000000000000"
Name="12340000-1111-0000-0000-000000000000"
GX:Relnstall="N” GX:RollBack="Y">
<TITLE>Windows NT update agent</TITLE>
<IMPLEMENTATION>
<DISKSIZE Value="432"/>
<CODEBASE>
<GX:FILE Expand="N" Overwrite="Y" ModuleID="00000100-0000-0000-0000-
000000000000">
<GX:Destination>
<GX:URP>
<GX:URL>FILE://%TEMP%/</GX:URL>
<GX:FILENAME>HelloWorld.txt</GX:FILENAME>
</GX:URI>
</GX:Destination>
<GX:Backup>
<GX:URI>
<GX:URL>FILE://%TEMP%/Backup</GX:URL>
</GX:URI>
</GX: Backup >
</GX:FILE>
</CODEBASE>
</IMPLEMENTATION>
</SOFTPKG>

This example rolls back the simple file copy with backup shown above. The agent denotes
a rollback from the attribute GX:Rollback="Y" in the SOFTPKG element tag. The
GX:Source element tags are not supplied.

The destination MUST contain a filename to restore the backup to. (Note: it is not an error
if the backup files do not exist prior to rollback (the destination may not have existed when
the package was distributed). It is however, an error if the destination files exists and
cannot be deleted prior to the rollback.)

ProxyGet

39

10

15

20

25

30

35

40

45

WO 02/25438 PCT/US01/29863

Sometimes an agent may be installed behind a firewall in such a configuration that the
agent is only allowed access to the host site. The agent will detect this case when it tries to
retrieve a module for a package that is on the vendor’s site. When the agent realizes that it
cannot establish communications with a standard HTTP get, it can ask the host to retrieve
the file on the agent’s behalf by using a ‘ProxyGet’ request — as described below:

Request

POST server_object_returned_in_firstcontact http/1.1
Content-Type: text/html
Content-Length: nnn

Action=ProxyGet
&AccountID=AF011203-7A09-4b67-A38E-1CB8D8702A50
&AgentID=D7292F2D-CCFE-46dc-B036-3B318C2952E
&AgentVer=2.0 :
&URL~=http://www.Microsoft.com/hotfix/Q12345.exe

ProxyGetStatus
Request

POST server_object_returned_in_firstcontact http/1.1
Content-Type: text/html
Content-Length: nnn

Action=ProxyGetStatus
&AccountlD=AF011203-7A09-4b67-A38E-1CB8D8702A50
&AgentlD=D7292F2D-CCFE-46dc-B036-3B318C2952E3
&AgentVer=2.0
&ReflD=107045CF06E011D28D6D00CO4F8EFSEQ

GetRequest

POST server_object returned in_firstcontact http/1.1
Content-Type: text/html
Content-Length: nnn

Action=Get
&AccountID=AF011203-7A09-4b67-A38E-1CB8D8702A50
&AgentID=D7292F2D-CCFE-46dc-B036-3B318C2952E3
&AgentVer=2.0
&ReflD=107045CF06E011D28D6D00CO4FS8EF8EQ

40

10

15

20

25

30

35

40

45

WO 02/25438 PCT/US01/29863

HTTP Get
Request:

GET /download/Q12345 EXE http/1.1

Bandwidth Utilization
Range specified Get Request:

HTTP/1.1 allows a client to request that only part (a range of) the response entity be
included within the response. HTTP/1.1 uses range units in the Range and Content-Range
header fields. An entity may be broken down into subranges according to various structural
units.

range-unit = bytes-unit | other-range-unit

bytes-unit = "bytes"
other-range-unit = token

The only range unit defined by HTTP/1.1 is "bytes". HTTP/1.1 implementations may
ignore ranges specified using other units. HTTP/1.1 has been designed to allow
implementations of applications that do not depend on knowledge of ranges.

Since all HTTP entities are represented in HTTP messages as sequences of bytes, the
concept of a byte range is meaningful for any HTTP entity.

Byte range specifications in HTTP apply to the sequence of bytes in the entity-body
(not necessarily the same as the message-body). A byte range operation may specify a
single range of bytes, or a set of ranges within a single entity.

When the administrator has selected Bandwidth Utilization features, by specifying them in
the agent’s policy data, the agent will make ‘Range’ specified Get requests rather than
simple Get requests. '

Consider the following Agent Profile:

<Policy Interval Type="S" Interval="60" Start="000000" End="060000"
Retries="3” BackOff="10%"” AlwaysUseProxyGet="Y"
Fail Action="“Stop” UDPPort="1234" TCPPort="1234"
KeepAliveConns="Y"
DownloadRestartable="Y” DownloadChunkSize="1024"
Download WaitSchedule="S” Download WaitInterval="10"/>

The following shows a request for the first 1024 bytes of the Q12345.Exe file, and the
host’s response:

41

10

15

WO 02/25438

Request:

GET /download/Q12345 EXE http/1.1
Range: bytes=0-1023

ProxyGet Request:

POST server_object returned _in_firstcontact http/1.1
Content-Type: text/html
Content-Length: nnn

Action=Get
&AccountID=AF011203-7A09-4b67-A38E-1CB8D8702A50
&AgentID=D7292F2D-CCFE-46dc-B036-3B318C2952E3
&AgentVer=2.0
&ReflD=107045CF06E011D28D6D00CO4FSEFSE(
&RangeBytes=0-1023

Response XML Elements

PCT/US01/29863

Flement POLICY

42

WO 02/25438

PCT/US01/29863

Attributes

IntervalType — type of time period.

e S=Seconds

e M=Minutes

e H=Hours
Interval — Number of time periods that agent should check host for
Tasklist.
Start — The time of day the agent should start running and checking
for work to do (GMT).
Stop — The time of day the agent should stop running and checking for
work to do (GMT).
Retries — The number of times to retry a request before applying the
Backoff amount.
BackOff — the amount of Interval Type time to added to the Interval
after a failed contact with the host. This may be expressed as a
percentage by appending the percent sign (%). UDPPort— {nnn}
UDP port number used to wake up the Agent.
TCPPort— {nnn} TCP port number used to wake up the Agent.
TraceLevel — OFF = 0, INFO = 1, DETAILED =2, DEBUG =3
PurgelntervalType — type of time period (see Interval Type)
Purgelnterval — Number of time periods (Purgelnterval Type) that the
agent should scan backups and purge those with a time older than the
purge interval.

Child of

TASKLIST

Parent of

Element

TASK

Attributes

TaskID — unique task identifier.
PkgID — The package identifier to be acted upon.

Child of

TASTLISK

Parent of

Discovery Agent XML tags

<name> tag - This is the name of the file you want to search for.
e <path>tag - Very versatile. This is the path you want to search for the file in.

<Version> tag - This is the version of the file you are looking for.

43

10

15

20

25

30

35

40

45

WO 02/25438 PCT/US01/29863

<created> tag - This is the date the file was created.
Example <version> > 5/30/2001 12:01:04 PM </version>

Note: This exact date format is preferred.

<Size> tag - This is the size of the file you are looking for. Note: Cannot due < or >
<root> tag - This is the root key to look for the registry entry in.

<Key> tag - This is the key in the registry you are looking for.

<value> tag -.this is the value in the key you are looking for.

<Data> tag - this is the data you expecting to find in that key.

<class> tag - You can specify any valid WMI class that makes sense. example
win32_services

<searchfield> - This is the field that will best determine what wmi entries to look at.
<searchvalue> - This is the value that will best determine what wmi entries to look at.
<checkfield> - This is the field to look in to get the value you are expecting to get.

<checkvalue> - This is the value you are expecting to find.

Example of the <registry> section of the input file.

<registry componentid="" reportID="">
<root> </root>
<key> </key>
<value> </value>
<data> </data>
</registry>

Patch Fingerprint Signature example

<report reportid="22">
<file componentid="1" reportID="1">

<name>outlook.exe</name>
<path></path>
<version></version>
<created></created>
<size>57393</size>
<root>HKEY_ LOCAL MACHINE</root>

44

10

15

20

25

WO 02/25438 PCT/US01/29863

<Key>SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\OUTLOOK.EXE</key>
<value>Path</value>
</file>
</report>

The Above example will find the outlook Path from the registry and then will validate its
size.

Summary

The invention provides systems, methods, and configured storage media for
assuring that software updates are needed, and that the computers have the necessary
software and hardware components, then updating the software across a network with little
or no need for human oversight, without requiring copies of the software patches on an
administrative machine on the network whose clients are being updated, and which
removes the updates from the affected machines, leaving them in a usable state when a
problem is discovered during installation or after installation with an installed patch.

As used herein, terms such as “a” and “the” and item designations such as “update
server” are inclusive of one or more of the indicated item. In particular, in the claims a
reference to an item means at least one such item is required. When exactly one item is
intended, this document will state that requirement expressly.

The invention may be embodied in other specific forms without departing from its
essential characteristics. The described embodiments are to be considered in all respects
only as illustrative and not restrictive. Headings are for convenience only. The claims are
part of the specification which describes the invention. The scope of the invention is,
therefore, indicated by the appended claims rather than by the foregoing description. All
changes which come within the meaning and range of equivalency of the claims are to be
embraced within their scope.

What is claimed and desired to be secured by patent is:

45

10

15

20

30

WO 02/25438 PCT/US01/29863

CLAIMS
L. An automated method for at least attempting to update software in a system
having a first target computer in a non-update state connected across a network to an
update server in a pre-update state, the system also having a package computer which is
inaccessible to the first target computer but accessible to the update server, and a
repository component accessible to the first target computer and the update server, the
method comprising the steps of:
putting at least one patch fingerprint which defines a specific software
update into the repository component, the patch fingerprint comprising a patch
signature and an existence test;
gathering information about the first target computer and sending the
information back to the repository component;
comparing at least a portion of the gathered information with the patch
fingerprint to determine if the specific software update is absent from the target
computer;
if a known condition is met, then placing at least one task identifier on an
update task list, the task identifier specifying the first target computer, the update
task list stored at the update server, the task identifier also specifying at least one
download address which references a location on the package computer that
contains a software update for the first target computer;
starting a task in response to the task identifier, the task attempting a first
download of the software update from the package computer to the update server;
if the first download completes successfully, then attempting a second
download of the software update from the update server to the first target
computer; and
monitoring the attempted downloads for an outcome.
2. The method of claim 1, wherein the known condition is the software update
being absent from the target computer.
3. The method of claim 1, wherein information about the target computer

comprises at least one of: hardware configuration, current software installed, specific

46

10

15

25

30

WO 02/25438 PCT/US01/29863

software updates installed, registry information, file information, services currently
running, web information, and configuration information.

4. The method of claim 1, further comprising a patch locating step which
monitors at least one patch component database location for a new patch fingerprint, and
wherein the putting step further comprises downloading the new patch fingerprint into the
repository component after the new patch is located.

5. The method of claim 1, wherein the system further comprises a patch
component database which signals the repository component that a new patch fingerprint
is available, and wherein the putting step further comprises downloading the new patch
fingerprint into the repository component after the new patch is located.

0. The method of claim 1, wherein the patch signature consists of specific
computer information, the method further comprises the step of the repository component
sending the patch signature to the target computer, and the gathering step further
comprises the target computer gathering the specific computer information mentioned in
the patch signature, and then sending the gathered computer information back to the
repository component.

7. The method of claim 1, wherein the comparing step further comprises using
the existence test together with the at least a portion of the gathered information to
determine if the specific software update is absent from the target computer.

8. The method of claim 1, wherein the patch fingerprint further comprises
patch inventory information, the system includes an inventory database containing target
computer information and wherein the gathering step is started only if the target computer
information and the patch inventory information match.

9. The method of claim 1, wherein the method further comprises notifying an
administrator after the comparing step wherein notifying an administrator comprises
sending a message to a predetermined address at least one of: an email message, a pager
message, an instant message, a SNMP notification, and a voice mail message.

10. The method of claim 9, wherein the system comprises at least two target
computers and the message comprises a list of all target computers from which the

software update is absent and wherein the known condition to be met prior to placing the

47

10

15

20

25

30

WO 02/25438 PCT/US01/29863

task identifier on the update task list is a message from the administrator indicating
consent.

11. The method of claim 1, wherein the method further comprises suspending
the task after the monitoring step detects a download failure and then restoring the first
target computer to the non-update state.

12. The method of claim 1, which further comprises removing the software
update from the first target computer after the monitoring step detects a failure.

13. The method of claim 1, wherein the system includes at least two target
computers both of which have received the download of the software update and wherein
the monitoring step records an outcome of failure on at least one of the updated computers,
further comprising the step of removing the updates from the at least two updated target
computers.

14. The method of claim 1, wherein there are at least two package computers
and the offsite update server determines which package computer to download the
software update from based on a predetermined criterion.

15. The method of claim 1, wherein between the first and second downloads
the method includes a delay step wherein the second download is delayed for a period
which is based on a predetermined criterion.

16. The method of claim 15, wherein the delay step specifies a time delay and
the specified time delay is based on an estimate of the time needed to download the
software update from the package computer to the update server.

17. The method of claim 1, wherein there is at least a second target computer,
the offsite update server contains an offsite update server list that lists each target
computer that is to receive the software update, and the method further comprises the step
of checking the offsite update server list for a target computer that has not received the
update and if one is found, adding an update task identifier for that target computer to the
update task list.

18. The method of claim 17, wherein the checking step is performed after the
monitoring step determines that the outcome is successful.

19. The method of claim 1, wherein an outcome of success in the monitoring

step is indicated by the target computer sending a message to the update server after the

48

10

15

20

25

30

WO 02/25438 PCT/US01/29863

second download has completed successfully, and wherein an outcome of failure in the
monitoring step is indicated by the update server not receiving a message from the target
computer within a time period that is based on a predetermined condition.

20. The method of claim 1, wherein the monitoring step further comprises
watching the first target computer, for a time period that is based on a predetermined
criterion, to at least attempt to detect abnormal activity associated with running the
software update, and if abnormal activity is detected during the time period then declaring
the outcome of the monitoring step to be failure.

21. The method of claim 1, wherein the monitoring step further comprises
accepting messages from a help desk service, for a time period that is based on a
predetermined criterion, to at least attempt to detect abnormal activity associated with
running the software update, and if abnormal activity is reported during the time period
then declaring the outcome of the monitoring step to be failure.

22. The method of claim 1, wherein the monitoring step further comprises
notifying an administrator of the outcome, wherein notifying an administrator comprises
sending to a predetermined address at least one of: an email message, a pager message, an
instant message, a fax, a SNMP notification, or a voice mail message.

23. Atarget computer in a non-updated state which is located in a network and
which is configured to attempt to receive a software package across the network, and to
attempt to install on itself a received software package to update software, at least one
update server being accessible to the network through a remote connection, a target
computer update list on the update server containing a reference to a software package
location; the target computer comprising:

memory;

a network connection;

an update agent that reads the target computer update list from the update
server, uses the reference to the software package to locate the software package;

an installer that attempts to install the software package on the target
computer;

an outcome finder that determines if the software package installation was

successful; and

49

10

15

20

25

30

WO 02/25438 PCT/US01/29863

a restorer that restores the target computer to a non-updated state if the
outcome finder determines that the software package installation was not
successful.

24. The target computer of claim 21, in combination with the update server to
form a system.

25. The system of claim 24, wherein the update list further comprises a date,
and wherein the update agent will wait at least until the date before attempting to
download the software package.

26. The target computer of claim 24, wherein there are at least two update
servers and the update agent determines which update server to utilize using at least one
predetermined criterion.

27. The target computer of claim 26, wherein the predetermined criteria
includes at least one of: selecting the first update server that is available, and selecting the
least-busy update server.

28. The target computer of claim 23, wherein the target computer cannot
directly access the software package, the update server can directly access the software
package, and wherein the installer first attempts to download the software package to the
update server memory, and if the first download is successful, the installer then attempts to
download the software package from the update server memory to the target computer
memory.

29. The target computer of claim 28, wherein the software package is kept in
the update server memory and then deleted from the update server memory after at least
one predetermined criterion is met.

30. The target computer of claim 28, wherein the update agent residing on the
target computer initially checks the update server for the software package in the update
server memory and if the software package is found there, the target computer downloads
the software package directly from the update server.

31. The target computer of claim 23, wherein the softwarepackage is owned by
an update host and is leased from the update host by a user.

32. The target computer of claim 23 in combination with the update server,

wherein the update server is accessible to the target computer through a firewall and

50

10

15

20

25

30

WO 02/25438 PCT/US01/29863

wherein the update server must provide authentication before it can be accessed by the
target computer.

33. The target computer of claim 23, further comprising means for notifying an
administrator of the outcome finder results wherein the means for notifying comprises at
least one of: email messages, pager messages, instant messages, SNMP notification, and
voice mail messages. ‘

34. The target computer of claim 23, wherein the location of the software
package is specified by at least one of: a Uniform Resource Locator and a fully qualified
domain name.

35. The target computer of claim 23, wherein the software package includes at
least one of: a software patch to an existing file, at least one file to install a software
application that has not previously been installed on the target computer, a data file, a
script file, an executable file, and an update of the update agent.

36. The target computer of claim 23, in combination with a repository
component which stores information about the target computer, the target computer further
comprising a discovery agent that gathers information about the target computer and
reports that information back to an inventory library in the repository component.

37. The target computer of claim 36, wherein the information gathered
comprises at least one of: usage statistics, hardware configurations, current software
installed, specific updates installed, specific patches installed, registry information, file
information, services currently running, patch signatures utilized, and configuration
information.

38. The target computer and repository component system of claim 36, further
comprising at least one patch fingerprint which contains information used to determine
whether a software package associated with the patch fingerprint is installed on the target
computer, the patch fingerprint comprising a patch signature and an existence test.

39. The system of claim 38, the patch fingerprint further comprising general
install information and the system including an evaluator which evaluates at least a portion
of the stored inventory library information about the target computer using the general
install information to determine if the software package associated with the patch

fingerprint can be installed on the target computer.

51

10

15

25

30

WO 02/25438 PCT/US01/29863

40. The system of claim 39, wherein the patch signature includes a request for
specific install information, the diséovery agent first locates in the target computer the
specific install information mentioned by the patch signature, and then sends the specific
install information back to the repository component.

41. The system of claim 40, wherein the evaluator uses the existence test and
the specific install information to determine if the software package associated with the
patch fingerprint is installed on the target machine.

42. The system of claim 39, wherein the evaluator determines if the target
computer possesses a necessary computer configuration to successfully install the software
package associated with the patch fingerprint.

43. The system of claim 42, wherein the necessary computer configuration
comprises at least one of: a software package that should be present, a hardware
component that should be present, a software package that should be removed, a hardware
component that should be removed.

44. The system of claim 39, further comprising a patch component database
which includes new patch fingerprints, and wherein a downloader is signaled when a new
patch fingerprint is installed on the patch component database.

45. The system of claim 44, wherein there are at least two target computers, the
system further comprising a separate target inventory for each of the at least two target
computers, wherein a notifier uses the evaluator in combination with the target inventories
to create the update list which identifies zero or more target computers wherein the
software package associated with the patch fingerprint is absent, and the notifier then
notifies at least one administrator of the update list.

46. The system of claim 45, further comprising a report generator which
generates reports comprising a list of zero or more computers wherein the patch is absent
as well as a list of zero or more computers wherein the patch is present.

47. The system of claim 45, wherein notifying an administrator comprises
sending at least one of an email, pager, telephone message, instant message, fax, beeper, or
SNMP notification to a predetermined address.

48. The system of claim 45, wherein the patch component database is owned by

an update host, the target computer has an owner, and the downloader is allowed to

52

10

15

20

25

30

WO 02/25438 PCT/US01/29863

replicate the new patch fingerprint and associated patch information only if the target
computer owner has permission from the update host.

49. The system of claim 48, wherein the permission consists of at least one of:
a purchase agreement, a lease agreement, an evaluation agreement.

50. The target computer of claim 23 in combination with the update server,
wherein the target computer further comprises a current configuration, and the update
server further comprises a recommended configuration, thg system further comprising a
surveyor which scans the target computer for its current configuration, compares the
current configuration to the recommended configuration, and then prepares a proposed
update list utilizing the current configuration and the recommended configuration.

51. The system of claim 50, wherein a new target computer is added to the
system, the surveyor scans the new target computer generating an update list, and an
administrator is automatically notified of the update list for the new target computer.

52. The system of claim 51, wherein the new target computer usage is restricted
until a predetermined condition is met.

53. The system of claim 52, wherein the predetermined condition comprises at
least one of: the new target computer is updated to at least partially meet the update list,
the administrator gives permission.

54. The target computer of claim 23 in combination with the update server,
wherein the update server further comprises a backup creator, and wherein the backup
creator creates a copy of the target computer before the installer installs the software
package, and wherein the copy of the target computer is used by the restorer to restore the
target computer to the non-updated state if the outcome finder determines that the software
package installation was not successful.

55. The system of claim 53, wherein the copy of the target computer is stored in
a memory of the update server.

56. - A configured program storage medium having a configuration that
represents data and instructions which will cause at least a portion of a computer system to
perform method steps for at least attempting to update software in a system having a first
target computer in a pre-update state connected across a network to an update server in a

pre-update state, the system also having a package computer which is inaccessible to the

53

10

15

20

25

30

WO 02/25438 PCT/US01/29863

first target computer but accessible to the update server, and a repository component
accessible to the first target computer and the update server, the method comprising the
steps of: gathering information about the first target computer and sending the information
back to the repository component; putting at least one patch fingerprint which defines a
specific software update into a repository component, the patch fingerprint comprising a
patch signature and an existence test; comparing at least a portion of the gathered
information with the patch fingerprint using the existence test to determine if the specific
software update is absent from the target computer; if a known condition is met then
placing at least one task identifier on an update task list, the task identifier specifying the
first target computer, the update task list stored at the update server, the task identifier also
specifying at least one download address which references a location on the package
computer that contains a software update for the first target computer; starting a task in
response to the task identifier, the task attempting a first download of the software update
from the package computer to the update server; if the first download completes
successfully, then attempting a second download of the software update from the update
server to the first target computer; and monitoring the attempted downloads for an
outcome.

57. The configured storage medium of claim 56, wherein the known condition
is the software update being absent from the target computer.

58. The configured storage medium of claim 56, wherein information about the
target computer comprises at least one of: hardware configuration, current software
installed, specific software updates installed, registry information, file information,
services currently running, and configuration information.

59. The configured storage medium of claim 56, wherein gathered information
is placed in a database in the repository component such that the information about the
target computer can be accessed by the repository component.

60. The configured storage medium of claim 56, further comprising a patch
locating step which monitors at least one patch component database location for a new
patch fingerprint, and wherein the putting step further comprises downloading the new

patch fingerprint into the repository component after the new patch is located.

54

WO 02/25438 PCT/US01/29863

61. The configured storage medium of claim 56, wherein the method further
comprises notifying an administrator after the comparing step wherein notifying an
administrator comprises sending a message to a predetermined address at least one of: an
email message, a pager message, an instant message, a SNMP notification, or a voice mail
message.

62. The configured storage medium of claim 61, wherein the system comprises
at least two target computers and the notifying an administrator message comprises a list

of all target computers that lack the software update.

55

WO 02/25438 PCT/US01/29863

1/8

COMPUTER
NETWORK(S) 100

N

SECURE NETWORK 102
) 0] = =
=1» =
\ |] - =
] J
(| O
- O
1 gl N ~_
S 1oy — 124
120
\v v 116
SECURE
NETWORK 104 [/
=l — 108
(-
I
108
/ rr
<2
c
110,114 _ 110 114 110, 112

Fig. 1

WO 02/25438

PCT/US01/29863

200
: | TARGET1 202 TARGET? 208
" | | UPDATE AGENT 204 UPDATE AGENT 210
.| | MEMORY 206 MEMORY 212
i
- 216
\ 4
UPDATE SERVER 220 PACKAGE
COMPUTER LOC1
UPDATE LIST 222 530
TARGET1 TARGET2
PATCH1 PATCH1 |4— ggTFcsz\F;gz
DATE DATE 232
LOC LOC
Pfgg:iz PACKAGE
COMPUTER LOGC2
LOC2
224 , 234
j SOFTWARE
226 PATCH 2 236
MEMORY 228
214
Intranet / LAN Internet

Fig. 2

WO 02/25438 PCT/US01/29863

3/8

PLACE TASK ID ON UPDATE TASK LIST 300 MONITOR 302

v

STARTTASK 304 "1 00SE PACKAGE COMPUTER 306

N\ ¢ ¢

ATTEMPT FIRST DOWNLOAD 308

DELAY 310 |,

al ATTEMPT SECOND DOWNLOAD 312

DETECT FAILURE 31

==« DETERMINE
v RESULTS
i- SUSPEND TASK 318 314 l
| RESTORE TARGET 320 NOTIFY ADMIN 328
REMOVE DOWNLOAD 322 l
FROM TARGET 324 SEND EMAIL 330

FROM OTHER COMPUTER(S) 326

GATHER INFORMATION 332

HARDWARE INFO 334 SOFTWARE INFO 336

v

SEND TO REPOSITORY 338

Fig. 3

WO 02/25438 PCT/US01/29863

4/8

MONITOR 302

WAIT FOR A TIME PERIOD 400

v

ACCEPT INPUT FROM HELP DESK 402

PRESUME v ’.
SUCCESS 404 DETECT FAILURE 316, 406

DETECT SUCCESS 408
SEND MESSAGE 410

v

CHECK OFFSITE COMPUTER LIST FOR
TASK COMPUTER WITHOUT UPDATE 412

v

FIND TASK COMPUTER WITHOUT UPDATE 414

v

ADD UPDATE TASK IDENTIFIER
TO UPDATE TASK LIST 416

CHECK FOR NEW SOFTWARE UPDATE 418

y

FIND UPDATE 420

v

PLACE TASK ID ON UPDATE TASK LIST 422

v

Fig. 4

WO 02/25438 PCT/US01/29863

5/8

TARGET COMPUTER 500 BACKUP 506
MEMORY 502 NETWORK CONNECTION 504
UPDATE AGENT 508 INSTALLER 510

OUTCOME FINDER 512 RESTORER 514
NOTIFICATION MEANS 516

EMAIL 518 PAGER 520 VOICE MAIL
522
SNMP 568 INSTANT 570
DISCOVERY AGENT 548

?
l.ﬁ 524 526

UPDATE SERVER 528 CONNECTION 532
MEMORY 530 BACKUP 534
UPDATE LIST 536

SOFTWARE LOCATION REF 538 DATE 540

/544 i |
PACKAGE COMPUTER 567 CONNECTION 552
SOFTWARE PACKAGE 554
PATCH 556 DATA 558 EXE 560
SCRIPT 562 NEW APP 564 | | AGENT 566

Fig. 5

WO 02/25438

PCT/US01/29863

6/8

TARGET HOST SITE 600

A

TARGET COMPUTER 500

SCRIPT FILE 562

COMPUTER INFORMATION 602

USAGE INFO 604 SOFTWARE INFO 606

HARDWARE INFO 608 | | WEB INFO 610

Fig. 6

TARGET COMPUTER 500
CURRENT CONFIGURATION 700

PROPOSED
UPDATE
LIST 706

v

il

REPOSITORY COMPUTER 600

RECOMMENDED CONFIGURATION 704

'

ADMINISTRATOR MESSAGE 708

Fig. 7

WO 02/25438 PCT/US01/29863

718

LOCATE PATCH FINGERPRINT 800
PUT PATCH FINGERPRINT INTO REPOSITORY
COMPONENT 802

DOWNLOAD PATCH FINGERPRINT 804

v

LOOK AT INVENTORY DATABASE 806

v

<« DO TARGET INFO AND INVENTORY INFO MATCH? 808

v

SEND SIGNATURE TO TARGET COMPUTER 810

v

GATHER INFORMATION 812
SIGNATURE 814 OTHER 816
SEND INFO TO REPOSITORY COMPONENT 818

v

COMPARE GATHERED INFO TO FINGERPRINT 820

DETERMINE IF PATCH ABSENT 822

v

SEND MESSAGE 824

Fig. 8

WO 02/25438 PCT/US01/29863

8/8

PATCH COMPONENT DATABASE LOCATION 900

NEW PATCH FINGERPRINT 902

'

REPOSITORY COMPONENT 600 EVALUATOR 914
FINGERPRINT LIBRARY 904 NOTIFIER 916
PATCH FINGERPRINT 906 INVENTORY

LIBRARY 918

EXISTENCE TEST 908 TARGET

SIGNATURE BLOCK 910 INVENTORY 520
REPORT

INSTALL INFO 912 GENERATOR 922
DOWNLOADER 924

Fig. 9

INTERNATIONAL

SEARCH REPORT

International application No.
PCT/US01/29863

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOGF 9/455
USCL :717/1,717/11, 707/203, 707/204

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. 717/1, 717/11, 707/208, 707/204

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

seagehgfl EEE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EAST, WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y | US 5,860,012 A [LUU] 12 JANUARY 1999, col 1-2, lines 60-67

and lines 1-17

Y US 5,649,187 A [HORNBUCKE] 15 JULY 1997, col 1-4, lines 19-

67, lines 1-67

1-62

1-62

D Further documents are listed in the continuation of Box C. I:l See patent family annex.

* Special categories of cited documents:

"A document defining the general state of the art which is not
considered to be of particular relevance

"EY earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(x) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"o document referring to an oral disclosure, use, exhibition or other
means

"p document published prior to the international filing date but later

than the priority date claimed

" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive step

when the document is taken alone

"y document of particular velevance; the claimed invention cannot be
considered to involve an inventive step when the document is
vombined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

06 DECEMBER 2001

Date of mailing of the international searc&report

02 JAN

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20281

Facsimile No. (708) 305-3280

Authorized officer

S X
Ll N I

. Ep) :’}//,,J,Lf—f—-'.
ANIL KHATRI U S N L AT =

LT 8 et

Telephone No. (703) 305-3703

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

