Title: DIGITAL DATA CARRIER

Bezeichnung: DIGITALER DATENTRÄGER

Abstract

The invention relates to a digital data carrier (1) with a carrier body (2) whose profile deviates from the standard outer diameter. The inventive digital data carrier is for playing in a standard CD-drive (6) which has a retractable tray (5) with a first receiving element (15) for data carriers with a larger standard diameter and a second receiving element (13) for data carriers with a smaller standard diameter. The digital data carrier has a centring aid on the side of the carrier body facing towards the tray, for centring in the second receiving element (13). Said centring aid consists of two ring pieces located opposite each other and adapted to the second receiving element (13).

Zusammenfassung

Digitaler Datenträger (1) mit einem von einem Standardaußendurchmesser abweichenden Umriß eines Trägerkörpers (2) zur Abspielung in einem Standard-CD-Laufwerk (6), das eine ausfahrbare Schublade (5) mit einer ersten Aufnahme (15) für Datenträger größeren Standarddurchmessers und einer zweiten Aufnahme (13) für Datenträger kleineren Standarddurchmessers aufweist, der an einer der Schublade (5) zugeordneten Unterseite des Trägerkörpers eine Zentrierhilfe zur Zentrierung in der zweiten Aufnahme (13) aufweist, wobei die Zentrierhilfe aus zwei einander gegenüberliegenden, auf die zweite Aufnahme (13) abgestimmten, Ringstücken ausgebildet ist.
LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albanien</th>
<th>ES</th>
<th>Spanien</th>
<th>LS</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
<td>LT</td>
<td>Litauen</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GA</td>
<td>Gabun</td>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GE</td>
<td>Georgien</td>
<td>MD</td>
<td>Republik Moldau</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>Die ehemalige jugoslawische Republik Macedonien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
<td>MR</td>
<td>Mauritanien</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Island</td>
<td>MX</td>
<td>Mexiko</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
<td>NR</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KE</td>
<td>Kenia</td>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KG</td>
<td>Kirgistan</td>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>KR</td>
<td>Republik Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kasachstan</td>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LC</td>
<td>St. Lucia</td>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapur</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td></td>
<td></td>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakien</td>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swasiland</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
<td>TG</td>
<td>Togo</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Türkei</td>
<td>TT</td>
<td>Trinidad und Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>VN</td>
<td>Vietnam</td>
<td>ZA</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UA</td>
<td>Uzbekistan</td>
<td>YU</td>
<td>Jugoslawien</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
Digitaler Datenträger

Beschreibung:

10 Die Erfindung betrifft weiterhin ein System mit einem Datenträger nach einem der Ansprüche 1 bis 68 und mit zugeordneten Funktionsstationen.

15 Die Erfindung betrifft weiterhin ein Verfahren zur Verwendung von Datenträgern nach einem der Ansprüche 1 bis 71 an einer Funktionsstation.

20 Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines digitalen Datenträgers nach einem der Ansprüche 1 bis 68.

25 Die Erfindung betrifft weiterhin eine Spritzgußform zur Herstellung eines digitalen Datenträgers nach einem der Ansprüche 1 bis 68.

Aus der DE 297 09 648.6 ist ein digitaler Datenträger bekannt, der als eine aus einer Compact-Disc (CD) bestehende Visitenkarte ausgebildet ist, deren maximale Breite 110 mm und deren maximale Höhe 70 mm nicht überschreitet. Auf der Visitenkarte sind auf einer Seite Informationen über den Absender optisch zur visuellen Betrachtung gespeichert bzw. aufgebracht und auf einer zweiten Seite sind Informationen in digitaler Form gespeichert, die in einem Standard-CD-Laufwerk mit einem
optischen Lesekopf ausgelesen und anschließend weiterverarbeitet werden können.

Nachteilig dabei ist, daß eine zusätzliche Zentrierhilfe benötigt wird, die die Bedienung des digitalen Datenträgers erheblich erschwert.

Weiterhin ist ein digitaler Datenträger in Form einer Visitenkarte bekannt, der an seiner Unterseite vier Zentriernocken aufweist, die in eine zweite Aufnahme für eine sogenannte Mini-CD eines Standard-CD-Laufwerkes eingreift und den digitalen Datenträger in dieser Aufnahme zentriert.

Nachteilig dabei ist, daß die Aufnahmen für Datenträger kleineren Standarddurchmessers bzw. für Mini-CD’s im allgemeinen einen radialen Schlitz aufweisen, so daß der mit den Zentriernocken versehene Datenträger nur in bestimmten Stellungen sicher zentriert.
Weiterhin nachteilig dabei ist, daß die nachträglich eingestanzten Zentriernocken zum einen leicht abbrechen können, so daß das Standard-CD-Laufwerk beschädigt werden kann, und zum anderen durch das nachträgliche Stanzzen die Unterseite so verformt werden kann, daß die darauf angebrachten digitalen Informationen nicht mehr sicher gelesen werden können.

Aufgabe der vorliegenden Erfindung ist es, die Zentrierhilfe eines digitalen Datenträgers mit einem von einem Standardaußendurchmesser abweichenden Umriß eines Trägerkörpers so zu verbessern, daß eine Beschädigung des digitalen Datenträgers bzw. des Standard-CD-Laufwerkes sicher vermieden und die CD leicht und sicher zentriert werden kann.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Zentrierhilfe aus zwei einander gegenüberliegenden auf die zweite Aufnahme abgestimmten Ringstücken ausgebildet ist.

Gemäß einer bevorzugten Ausführungsform der Erfindung weisen die Ringstücke einen wulstförmigen Querschnitt auf.

Durch die wulstförmige Form wird in einem gewissen Umfang eine Selbzentrierung erreicht bzw. können Toleranzen ausgeglichen werden, so daß der zentrische Sitz eines in das Standard-CD-Laufwerk eingelegten digitalen Datenträgers verbessert wird. Die wulstförmige Form ohne scharfe Kanten vermeidet zudem ein Verkratzen übereinander gestapelter CD’s.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung bilden die Ringstücke einen Positionierungsabsatz und weisen eine Breite auf, die nach außen von einem dem kleineren Standarddurchmesser entsprechenden Außendurchmesser und nach innen von dem Innendurchmesser der Zentrierbohrung begrenzt wird.

Durch die Ausbildung der Ringstücke zu einem Positionierungsabsatz wird die mechanische Stabilität des Trägerkörpers im Bereich des Positionierungsabsatzes verbessert.

Nach einer weiteren bevorzugten Ausführungsform der Erfindung weist die Unterseite des Trägerkörpers bzw. digitalen Datenträgers Informationen in digitalisierter Form auf, die von dem Standard-CD-Laufwerk lesbar sind und auf einer der Unterseite abgewandten Oberseite Informationen in gedruckter Form zur visuellen Betrachtung auf.

Der digitale Datenträger kann damit zunächst visuell betrachtet bzw. gelesen werden, wobei seine digitalen Daten anschließend von einem Standard-CD-Laufwerk, beispielsweise einem Computers, gelesen werden können.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung weist der Trägerkörper einen optischen Speicher-Formteil und ein Funktionskarten-Formteil auf, welche in eine einstückige Doppelform integriert sind. Der Trägerkörper weist mindestens ein zusätzliches Funktionselement für eine zugeordnete Funktionsstation auf, wobei der Funktionskarten-Formteil und die Anordnung des Funktionselementes den geometrischen Randbedingungen der Funktionsstation entsprechen.

Im wesentlichen müssen optisch lesbare Datenträger und damit der optische Speicher-Formteil mechanisch relativ massiv, stabil und absolut plan ausgebildet sein und eine ungestörte, einwandfreie optische Ablesung ermöglichen, während Funktionskarten (z.B. Kreditkarten) relativ dünn und flexibel ausgebildet sind, wobei sie im Gebrauch und durch das ständige Mitführen beim Karteninhaber leicht auch verbogen werden können und wobei sie jedoch die Randbedingungen, insbesondere die Führung oder Positionierung der
Funktionskarte in der zugeordneten Funktionsstation erfüllen müssen, z.B. auch die Positionierung der Funktionselemente auf der Karte relativ zur Funktionsstation. Dieses Problem löst der erfindungsgemäße Datenträger mit dem Positionierungsabsatz und der Ausbildung in Doppelform, so daß der optische Speicher-Formteil bezüglich seiner mechanischen und optischen Eigenschaften den Lesebedingungen der optischen Lesegeräte entspricht und insbesondere auch vollständig ausgewuch tet ist bezüglich des zentralen Innenlochs bzw. der Zentrierbohrung und wobei die Gestaltung des Funktionskarten-Formteils den Randbedingungen der Funktionsstation entspricht und die Schichtdicke außerhalb des Positionierungsabsatzes bzw. des optischen Formteils dünner und damit auch flexibler ausgebildet ist, während der optische Bereich stabil bleibt.

Die abhängigen Ansprüche betreffen insbesondere Weiterbildungen und vorteilhafte Ausführungsvarianten der Erfindung mit höheren Speicherkapazitäten, besseren Handhabungseigenschaften, erweiterten Funktionen und Anwendungen.

Durch die Verwendung eines Chips (Kontakt-Chip, berührungsloser Chip, biochemischer Chip, Kugel-Chip, Speicher-Chip oder elektronischer Chip) als zusätzliches Funktionselement wird der Anwendungsbereich erweitert. Der Einsatz eines solchen Chips wird an dem folgenden Beispiel erläutert:

Nehmen wir einmal an, der Datenträger bzw. die Karte enthält als Information im optischen Speicherbereich ein vielfältiges Angebot an möglichen Sportanlässen und Aktivitäten bereit. Zum Beispiel Skigebiete, Hallenbäder, Fuß-
erwähnen, daß im Zug auch selber die Plätze nicht mehr num-
eriert sind, sondern die Namen gleich angeschrieben ste-
hen, und daß auch aufgrund des Speicher-Chips überprüft
wird, daß auch der richtige Kartenbesitzer an diesem Platz
sitzt. Nach zweimaligem Umsteigen, der Kartenbesitzer wur-
de jeweils zur richtigen Zeit persönlich an seinem Platz
durch eine Computerstimme informiert, gelangt er an sein
Reiseziel. Das Hotel ist über die Ankunft schon unterrich-
tet und auch, daß der Zug mit dem Kartenbesitzer etwas
Verspätung hat. Natürlich hat das Hotel auch ein mit
Leuchttziffern angeschriebenes Taxi am Bahnhof, das den
Kartenbesitzer abholt und im Fahrgastraum wird der Karten-
besitzer mit einem freundlichen "Hallo ..." begrüßt. Im
Hotel angekommen wird dem Kartenbesitzer das gebuchte Zim-
mer zugewiesen, dessen Schlüssel er schon auf der Karte
hat. Der Speicher-Chip öffnet ohne irgendeine Berührung
die Zimmertür und der Gast kann sich wie zu Hause fühlen.
Am nächsten Morgen wird der Kartenbesitzer rechtzeitig ge-
weckt, damit er das spannende Fußballmatch am Sonntag im
Station nicht verpaßt und natürlich steht das Taxi auch
schon bereit vor der Hotelleingangshalle, nachdem er das am
PC bestellte Frühstück eingenommen hat. Daß der Kartenbe-
sitzer am Drehkreuz zum Fußballstation einfach durchgehen
can, versteht sich nun von selbst.

Die Reflexionsschicht des optisch lesbaren Speicherberei-
ches, die aus Gold, Silber, Kupfer, Aluminium oder ähnli-
chen in der CD-ROM-Produktion bekannten Metallen ausgebil-
det ist und aufgedampft wurde, kann als Antenne beim Ein-
satz eines berührungslosen Chips oder von Elektronikbau-
steinen, die als Empfänger oder Sender genutzt werden und
eingesetzt werden. Dazu wird eine Verbindung zwischen dem

Es können beliebige elektronische Bausteine für verschiedene Anwendungen und Aufgaben an beliebiger Stelle auf der Karte vorkommen und angebracht bzw. eingegossen werden, die von einer internen, in der Beschichtung angebrachten Batterie oder durch eine externe Batterie (z. B. eingelegt als Mikrozelle im Innenbereich) Strom beziehen oder durch aufgebrachte Solarzellen die nötige Energie bekommen oder ohne Energiequellen von der Karte arbeiten, z. B. durch Reflexion der zur Karte gesendeten Funk- oder Energiewellen.

Ein eingesetzter elektronischer Baustein sei am folgenden Beispiel erläutert:

Michael J. hat gerade einen neuen Song geschrieben, der natürlich auffällig in den Regalen von Musikgeschäften plaziert werden soll. Um dies zu erreichen, wird ein Teil

Es können auch elektronischen Schaltungen direkt auf der Karte bzw. auf dem Datenträger an beliebiger Stelle angebracht werden. Z. B. um eine Schaltung so anzubringen, daß sie auf der ganzen Fläche oder auf Teilen der gesamten Fläche auf oder in der Karte angebracht ist. Dies ermöglicht den Einsatz der Karte z. B. als kleiner Radiorempfänger mit kleinem Flachlautsprecher, der als Beschichtungselement, ähnlich wie in den Uhren, eingesetzt werden kann. Der elektronische Baustein kann sehr klein in der Mitte des Trägerkörpers angebracht werden. Die Batterien können aus der Beschichtung bestehen, die auf der Kartenunterseite angebracht wird. Der Lautsprecher kann beispielsweise auf der Oberseite des Trägerkörpers als Beschichtungsele-

Es können an beliebiger Stelle auf und unter dem Trägerkörper Solarbausteine oder Solarmodule teilweise oder ganzflächig angebracht werden. Beispielsweise zur Energiegewinnung der auf dem Trägerkörper befindlichen Elektro

Weiterhin kann an einer beliebigen Stelle ein Infrarotsender oder -empfänger angebracht werden, der Daten aufnimmt.
und Daten senden kann, um mit Geräten jeglicher Art, die auch mit solchen Sendern und Empfängern ausgerüstet sind, zu kommunizieren. Dadurch wird eine Kommunikation zwischen Karte bzw. Datenträger und anderen Eingabe- bzw. Ausgabe-
eräten auf einfache Art und Weise möglich.

Weiterhin können an beliebiger Stelle, auf und in dem Trägerkörper Sicherheitsmerkmale angebracht werden, die sowohl visuell, maschinell oder optisch erfaßt oder ausgewertet werden können. Die Sicherheitsmerkmale können auf der Oberfläche oder auch im Datenträger selbst (eingespritzt, eingeschossen) angebracht sein. Diese dient zur Erkennung und Eliminierung von Fälschungen oder aber zur eindeutigen Identifizierung des Datenträgers selbst. So können unsichtbare oder sichtbare Barcodes und Ziffern angebracht werden, die im Zusammenhang mit den auf der Karte befindlichen Daten für gewisse Zugriffsrechte eingesetzt werden können oder aber auch kleine elektronische Schaltungen oder aber auch kleine Gegenstände, wie Mikroglaskegeln, die eine kleine Nummer eingesetzt haben, wie das bei Diamanten beispielsweise gemacht wird.

Die Unterseite des Trägerkörpers kann auch verschiedene Metall- oder Nichtmetallbeschichtungen aufweisen, die den Laservorgang der Karte bzw. des Kartenträgers nicht beeinträchtigen. Z. B. kann ein fluoreszierende Schicht verwendet werden, um einen auffälligen optischen Effekt zu erzeugen. Die Innen- oder Außenbereiche des Trägerkörpers können durch Aufbau von verschiedenen dünnen Beschichtungen zu einer Batterie aufgebaut werden. Es kann auch eine elektrostatische Schicht aufgebracht werden, die zum Er-
fassen von Ton- oder Billedaten an geeigneten Geräten genutzt wird.

Weiterhin kann auch eine Magnetschicht als Band in beliebiger Breite aufgebracht werden, um Daten zu speichern. Durch verschiedene dünne Schichten, die aufeinander oder nebeneinander liegen können, werden Elektronik-Bausteine gestaltet und direkt auf dem Trägerkörper angeordnet.

Der Trägerkörper kann mehrfache Legierungen in Schichten oder nebeneinander aufweisen, die aus verschiedensten metall- oder nichtmetallhaltigen Materialien bestehen. Auf der Unterseite des Trägerkörpers kann ein unsichtbarer harter Schutzlack angebracht werden, der ein Verkratzen der Unterseite erschwert oder verhindert. Dadurch kann der Trägerkörper auch ohne Stapelring unbeschädigt transportiert und auf der optischen lesbaren Seite abgelegt werden.

Die Öffnung im Innenbereich des Trägerkörpers, die Zentrierbohrung muß nicht von Anfang an zentriert sein. Sie kann praktisch an einer beliebigen Stelle der Karte so angebracht werden, daß z. B. nach dem Abbrechen eines vorbehandelten Kartenbereiches die Zentrierbohrung zentral liegt oder aber durch Lack-, Farb- oder Beschichtungsauftrag der Trägerkörper ausgewuchtet wird. Es können auch kleine Gewichte an den Seiten des Trägerkörpers angebracht werden, die vom Gewicht her leichter sind, als die gegenüberliegenden Seiten, um eine Auswuchtung des Trägerkörpers zu erzielen.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist der Trägerkörper als Visitenkarte mit einem im wesentlichen rechteckigen Umriß ausgebildet.

Dadurch ist es möglich, zu den üblichen Informationen einer Visitenkarte digitalisierte Informationen hinzuzufügen, die beispielsweise in einem Computer gelesen werden können.

Bei diesen Informationen kann es sich um audio oder audiovisuelle Aufzeichnungen oder beispielsweise um Kataloge und ähnliches handeln.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist der Trägerkörper als Eintrittskarte ausgebildet und weist an seinem Umfang mindestens einen abtrennbaren Entwertungsabschnitt auf.

Durch die Verwendung eines digitalen Datenträgers als Eintrittskarte können auch hier zusätzliche computerlesbare Informationen aufgebracht sein. Auch ist es so beispielsweise möglich, Bildsequenzen oder Hörproben von Musikstücken aufzuzeichnen.
Nachteilig bei dem bekannten Verfahren zur Herstellung eines digitalen Datenträgers durch Einstanzen einer Zentrierhilfe ist, daß der Stanzvorgang relativ langsam ablaufen muß, um kein Durchbrechen der Zentrierhilfe in Form von Zentriernocken zu erzielen.

Weiterhin nachteilig dabei ist, daß die digitalen Informationen während des Stanzvorganges beschädigt werden können.

Weitere Aufgabe der Erfindung ist es daher, das Herstellverfahren und insbesondere die Qualität zu verbessern und die Herstellzeit und die Herstellkosten zu verringern.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Ringstücke durch Hochdruckspritzen des Trägerkörpers in einem die Ringstücke als Negativform aufweisenden Spritzwerkzeug hergestellt werden.

Dadurch ist es möglich, den Trägerkörper und die Ringstücke in einem Arbeitsgang herzustellen und das Herstellverfahren dadurch zu beschleunigen und gleichzeitig eine Beschädigung der im gleichen Arbeitsgang aufgebrachten digitalen Informationen zu vermeiden.

Weitere Aufgabe der Erfindung ist es, die bekannte Spritzgußform so zu verbessern, daß ein Ringstücke aufweisender digitaler Datenträger bzw. Trägerkörper durch Hochdruckspritzen hergestellt werden kann.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Spritzgußwerkzeug eingearbeitete Ringstücke als Negativform aufweist.
Durch die eingearbeiteten Ringstücke als Negativform kann der Trägerkörper in üblicher Weise durch Hochdruckspritzen hergestellt werden.

5 Weitere Einzelheiten der Erfindung ergeben sich aus der nachfolgenden ausführlichen Beschreibung und den beigefügten Zeichnungen, in denen bevorzugte Ausführungsformen der Erfindung beispielsweise veranschaulicht sind.

10 In den Zeichnungen zeigen:

Figur 1: Eine Draufsicht auf eine ausgefahrene Schublade eines Standard-CD-Laufwerkes mit eingelegtem digitalen Datenträger in verkleinerter Darstellung,

15 Figur 2: eine Draufsicht auf einen als Visitenkarte ausgebildeten digitalen Datenträger,

Figur 3: eine Vorderansicht des digitalen Datenträgers von Figur 2, entlang der Linie III - III geschnitten,

20 Figur 4: eine Untersicht unter den digitalen Datenträger von Figur 3 aus Richtung IV,

25 Figur 5: eine Draufsicht auf einen als Shaped-CD ausgebildeten digitalen Datenträger,

Figur 6: eine Untersicht unter einen als Eintrittskarte ausgebildeten digitalen Datenträger mit vier entfernbaren Entwertungsabschnitten,

30 Figur 7: eine Untersicht unter einen als Eintrittskarte ausgebildeten digitalen Datenträger mit einem Entwertungsabschnitt,
Figur 8: eine Untersicht unter einen weiteren als Eintrittskarte ausgebildeten Datenträger mit einem Entwertungsabschnitt,

5 Figur 9: eine Untersicht unter einen weiteren als Eintrittskarte ausgebildeten digitalen Datenträger mit einem Entwertungsabschnitt an einer Längsseite,

10 Figur 10: eine Untersicht unter einen als Eintrittskarte ausgebildeten digitalen Datenträger mit zwei an seinen schmalen Seiten ausgebildeten Entwertungsabschnitten,

15 Figur 11: eine Untersicht unter einen als Eintrittskarte ausgebildeten digitalen Datenträger mit zwei Entwertungsabschnitten,

Figur 12: eine schematische Seitenansicht eines Spritzgußwerkzeuges mit herausgefahrener Matrize im Schnitt,

Figur 13: eine Vorderansicht eines digitalen Datenträgers mit Ringstücken, die einen ebenen Positionierungsabsatz bilden, entlang der Linie III - III von Figur 2 geschnitten,

Figur 14: eine Untersicht unter einen digitalen Datenträger mit optischem Speicher-Formteil und Funktionskarten-Formteil in Doppelform,

Figur 15: eine Vorderansicht des digitalen Datenträgers von Figur 14 entlang der Linie XV - XV geschnitten,

35 Figur 16: eine Vorderansicht eines zweiteiligen digitalen Datenträgers entlang der Linie XV - XV von Figur 14 geschnitten,
Figur 17: eine Untersicht unter das Speicher-Formteil des digitalen Datenträgers von Figur 14,

Figur 18: eine Untersicht unter das Funktionskarten-Formteil des digitalen Datenträgers von Figur 14,

Figur 19: eine Untersicht unter einen digitalen Datenträger mit über die Breite des Funktionskarten-Formteil hinausragenden Durchmesser des optischem Speicher-Formteil,

Figur 20: eine Untersicht unter einen kreisförmigen Speicher-Formteil,

Figur 21: eine Untersicht unter einen digitalen Datenträger mit dem optischem Speicher-Formteil von Figur 20 und Positionierungsabsätzen bzw. Ringstücken im Funktionskarten-Formteil,

Figur 22: eine Seitenansicht des digitalen Datenträgers von Figur 21 entlang der Linie XXI - XXI geschnitten,

Figur 23: eine Vorderansicht einer einteiligen Doppelform eines digitalen Datenträgers mit Positionierungsabsatz und mit Funktionselementen im Schnitt und Ausriß,

Figur 24: eine Vorderansicht einer zweiteiligen Doppelform eines digitalen Datenträgers mit Positionierungsabsatz und mit Funktionselementen im Schnitt und Ausriß,

Figur 25: eine Vorderansicht einer zweiteiligen Doppelform eines digitalen Datenträgers mit Positionierungsabsatz im Funktionskarten-Formteil im Schnitt und Ausriß,
Figur 26: eine Draufsicht auf einen digitalen Datenträger mit einem berührungslosen Identifikationsmedium als Funktionselement,

Figur 27: eine Vorderansicht des digitalen Datenträgers von Figur 26 im Schnitt,

Figur 28: eine Untersicht unter einen digitalen Datenträger mit zusätzlichen optischen Datenbereichen,

Figur 29: eine Vorderansicht eines einteiligen DVD-Datenträgers in Doppelform im Schnitt,

Figur 30: eine Vorderansicht einer zweiteiligen Doppelform mit DVD-Datenträger im Schnitt,

Figur 31: eine Draufsicht auf einen digitalen Datenträger im Mini-CD-Format,

Figur 32: ein System mit erfindungsgemäßen Datenträgern und zugeordneten Funktionsstationen und optischen Lesestationen und

Figur 33: ein System mit Telefonkarten-Datenträgern und zugeordneten Telefonstationen.

Ein digitaler Datenträger (1) besteht im wesentlichen aus einem Trägerkörper (2) mit einem von einem Standardaußen-durchmesser einer sogenannten Compact-Disc von 120 mm abweichenden Umriß (3). In seiner Mitte weist der Trägerkörper (2) eine bei CD’s bzw. Mini-CD’s übliche Zentrierbohrung (4) auf.

An seiner einer Schublade (5) eines Standard-CD-Laufwerkes (6) zugewandten Unterseite (7) weist der Trägerkörper (2)
Informationen in digitalisierter Form auf, die von einem nicht dargestellten optischen Lesekopf des Standard-CD-Laufwerkes (6) lesbar sind. Eine der Unterseite (7) abgewandte Oberseite (9) kann Informationen (10) in aufgedruckter Form zur visuellen Betrachtung aufweisen.

Konzentrisch zur zweiten Aufnahme (13) weist die Schublade (5) eine erste Aufnahme (15) mit einem auf die Compact-CD abgestimmten Innendurchmesser auf. Üblicherweise weisen die Schubladen (5) in ihrer Längsrichtung einen u-förmigen Einschnitt (16) auf.

Das Ringstück (12) erhebt sich wulstartig auf der Unterseite (7). Damit weist das Ringstück (12) einen konvex geformten Querschnitt (17) auf. Die Breite (18) des Querschnittes (17) beträgt etwa 0,5 mm und eine Höhe (19) des Querschnittes (17) beträgt etwa 0,8 mm.

Nach einer Ausführungsform ist der Trägerkörper (2) als sogenannte Shaped-CD (20) mit einem freien Umriß (21) ausgebildet.

Nach einer anderen Ausführungsform ist der Trägerkörper (2) als Visitenkarte (22) mit einem im wesentlichen rechteckigen Umriß (23) ausgebildet.

Nach einer weiteren Ausführungsform ist der Trägerkörper (2) als Eintrittskarte (24) ausgebildet. Der Trägerkörper (2) bzw. die Eintrittskarte (24) weist dabei an ihrem Umfang
(25) mindestens einen abtrennbaren Entwertungsabschnitt (26, 26') auf. Der Entwertungsabschnitt (26', 26'') weist zum Trägerkörper (2) hin eine vorgeformte Bruchrille (27) auf. Der Entwertungsabschnitt (26) ist über einen Steg (28) mit dem Trägerkörper (2) verbunden. Es ist aber auch möglich, den Entwertungsabschnitt (26') über 2 Stege (29) mit dem Trägerkörper (2) zu verbinden. Die beiden Stege (29) sind an den äußeren Enden (30) der Entwertungsabschnitte (26') angeordnet. Der Trägerkörper (2) kann einen Entwertungsabschnitt (26, 26') an einer Seite, zwei Entwertungsabschnitte (26a', 26b') an zwei Seiten, drei Entwertungsabschnitte (26a', 26b', 26c') an drei Seiten oder vier Entwertungsabschnitte (26a', 26b', 26c', 26d') an seinen vier Außenseiten aufweisen. Es ist aber grundsätzlich auch möglich an einer Außenseite zwei Entwertungsabschnitte anzuordnen.

Eine Spritzgußform (31) zur Herstellung des digitalen Datenträgers (1) bzw. dessen Trägerkörpers (2) besteht im wesentlichen aus einem zweiteiligen Spritzgußwerkzeug (32), daß ein erstes Formteil (33) und ein zweites, die Matrize enthaltendes Formteil (34) aufweist. Matrizenseitig weist das zweite Formteil (34) eingearbeitete Ringstücke (35) als konkave Negativform der Ringstücke (12) auf. Die digitalen Informationen sind ebenfalls als Negativform in Form von sogenannten Lands und Pits auf der Matrize angeordnet.

Zur Herstellung wird Kunststoff unter Hochdruck in das erste Formteil (33) eingepreßt und gegen die Matrize des zweiten Formteiles (34) geschleudert. Anschließend wird die Matrize bzw. das zweite Formteil (34) zurückgezogen und der geformte Trägerkörper (2) entfernt.

In einem weiteren Arbeitsschritt wird der Trägerkörper (2) mit einer üblichen Aluminiumschicht beschichtet und anschließend lackiert. Zum Schluß wird die Oberseite (9) bzw. die Vorderseite des digitalen Datenträgers mit Informationen (10) bedruckt. Der fertige digitale Datenträger (1) kann
dann so in ein Standard-CD-Laufwerk (6) beispielsweise eines nicht dargestellten Computers eingelegt werden, daß seine Ringstücke (12) in der zweiten Aufnahme (13) der Schublade (5) den Trägerkörper (2) zentrieren.

5

Fig. 14 zeigt, von unten betrachtet, d.h. in Richtung der optischen Ablesung 28 (Fig. 15), einen erfindungsgemäßen Datenträger 101 in Kartenformat mit einer einstückigen Doppelform 110 mit zentraler Zentrierbohrung bzw. Innenloch 104, die sich zusammensetzt aus einem optischen Speicher-Formteil 102 gemäß Fig. 17 und einem Funktionskarten-Formteil 103 gemäß Fig. 18. Der größte Durchmesser Dmax des Trägerkörpers bzw. Datenträgers 101 beträgt mehr als 81 mm, d.h. er reicht über den Aufnahmekreis 105a mit ca. 80 mm Durchmesser eines optischen Lesegerätes für Mini-CD-Format hinaus. Das Beispiel von Fig. 14 entspricht z.B. dem weitverbreiteten ISO-Scheckkarten/Chipkarten-Format mit B x L = 54 x 86 mm. Der optische Speicher-Formteil 102 weist mindestens einen kreisringförmigen optisch lesbaren Speicherbereich 108 auf mit einer optischen Trägerschicht 111, einer Datenschicht 112 und einer Reflexionsschicht 113 (wie in Fig. 23 erläutert wird).

Der Speicherbereich 108 weist einen inneren Durchmesser D2 und einen äußeren Durchmesser D3 auf. Um einen großen Speicherbereich zu erreichen, entspricht der Durchmesser D3 vorzugsweise annähernd der Kartenbreite B. Die einstückige Doppelform 110 des Datenträgers 101 weist einen Positionierungsabsatz 105 auf zur Aufnahme und Zentrierung in einem optischen Lesegerät für Mini-CD-Format, d.h. der Positionierungsabsatz 105 (mit Durchmesser D4) entspricht dem Aufnahmekreis 105a eines Mini-CD-Laufwerkes. Der Datenträger 101 weist ein zusätzliches maschinenlesbares Funktionselement 120 auf mit Zugangsberechtigung für eine zugeordnete Funktionsstation 130. Der Funktionskarten-Formteil 103, bzw. dessen Formgebung und Kontur sowie die Anordnung des Funktionselementes 120 in der Doppelform 110 entsprechen den Randbedingungen der Funktionsstation 130 (siehe Fig. 32). Dabei

Die Fig. 15 und 16 zeigen einen Querschnitt längs der Linie XV - XV eines digitalen Datenträgers gemäß Fig. 14 mit zwei möglichen Ausführungsformen der einstückigen Doppelform. In Fig. 15 ist die Doppelform 110 einteilig hergestellt, d.h. die beiden Formteile 102 und 103 werden zusammen als ein Stück hergestellt. Das Beispiel von Fig. 16 zeigt demgegenüber eine Doppelform gleicher Außendimensionen, welche aus zwei separaten Formteilen 102 und 103 zu einer einstückigen Doppelform zusammengefügt ist. Dieser Aufbau der Doppelform wie auch die Integration von Funktionselementen 120, die auch aus mehreren Teilen bestehen können, wird weiter illustriert und ausgeführt zu den Fig. 23 bis 25.

Um möglichst große Speicherkapazitäten zu erreichen, kann der kreisringförmige optische Speicherbereich 108 auch über das übliche ISO-Scheckkartenformat mit einer Breite B von 54 mm hinaus vergrößert werden. Ein Beispiel dazu illustriert Fig. 19, wo der äußere Durchmesser D3 des Speicher-
bereichs 108 über das Normalkartenformat hinausreicht in Form von kleinen kreissektorförmigen Ausbuchtungen. Natürlich sind auch andere Formen möglich, wie etwa die eingezeichnete alternative Datenträgerkontur 101a. Je nach Anwendungszweck können Datenträger-Karten mit größerem Durchmesser D3 auch rechteckförmig ausgebildet sein mit entsprechenden Breiten B von mehr als 54 mm bis z.B. maximal 70 mm.

Die Fig. 20 zeigt ein weiteres Beispiel mit einem kreisförmigen (119) optischen Speicher-Formteil 102 mit einem Durchmesser D3, welcher der Kartenbreite B (Fig. 21) entspricht. Dies ergibt die kleinstmögliche Fläche des optischen Formteils 102 für den gewünschten Speicherbereich 108, was entsprechend weniger optisches Material erfordert und was auch Vorteile für die flexible Gestaltung der Außenbereiche 107 des Karten-Formteiles 103 ergeben kann - entsprechend der gewünschten Anwendung.

Die Fig. 21 und 22 zeigen von unten und im Schnitt längs der Linie XXII - XXII einen Datenträger mit einem kreisförmigen optischen Formteil 102 gemäß Fig. 20 und einen Karten-Formteil 103, der den Positionierungsabsatz 105 enthält. Der Positionierungsabsatz 105 kann hier durch zwei Kreissektoren 116 analog dem Beispiel von Fig. 14 gebildet werden, wie als Alternative in Fig. 21 eingezeichnet ist. Mit diesem Beispiel kann ein Datenträger 101 realisiert werden, der einerseits einen relativ kleinen, kompakten und absolut planen mechanisch stabilen optischen Formteil 102 und andererseits einen relativ großen, dünneren und flexibleren Außenbereich 107 des Kartenfunktions-Formteiles 103 aufweist. Vorzugsweise wird hier die einstückige Doppelform
aus den zwei separaten Teilen 102 und 103 gebildet, wobei
natürlich für eine entsprechend andersgeartete Anwendung
auch eine einteilige (127) Herstellung der Doppelform 110
dieser Art möglich ist.

5
Die Figuren 23 bis 25, welche im wesentlichen den Beispie-
len von Fig. 14, 16 und 22 entsprechen, illustrieren de-
tailtierter den Schichtaufbau der erfindungsgemäßen Daten-
träger 101 bzw. der Doppelform 110. Der optische Speicher-
Formteil 102 besteht im wesentlichen aus einer optischen
Trägerschicht 111, einer oder mehreren Datenschichten 112
mit Reflexionsschichten 113 sowie einer Deckschicht 114 zum
Schutz von Daten- und Reflexionsschichten vor Korrosion und
anderen degradierenden Einflüssen. Auch alle seitlichen
Ränder 106 der Informations- und Reflexionsschichten 112
und 113 sind zu diesem Zweck vorzugsweise in geeigneter
Weise versiegelt (115). Ebenso an inneren Rändern, bei-
spielsweise in Fig. 23, wo ein Funktionselement 120 in die
Doppelform 110 integriert ist, besteht eine Versiegelung
115. In Fig. 24 und 25 liegt diese Versiegelung 115 an den
Rändern 106 des optischen Formteils 102.

Fig. 23 zeigt eine einteilige Doppelform 110, bei welcher
die Formgebung der beiden Formteile 102 und 103 als ein
Teil 127 hergestellt wird, z.B. durch Pressen der Doppelf-
form 110 in einem entsprechenden Formwerkzeug. Bei den Bei-
spielen von Fig. 24 und 25 werden zuerst zwei separate
Formteile 102 und 103 hergestellt und diese anschließend
durch Zusammenfügen (Kleben oder Schweißen) in die einstöck-
kige Doppelform 110 gebracht. Zusätzlich werden auch die
Funktionselemente 120, 121, 122 in die Doppelform inte-
griert.
Eine besonders einfache Herstellmethode liegt darin, die Funktionselemente 120 oder Teile davon bei der Herstellung einer einteiligen Doppelform 127 direkt zu integrieren, z.B. durch Einlegen in das Formwerkzeug und anschließendes Spritzen oder Pressen. Flache Funktionselemente, wie beispielsweise Kontaktelektroden 121, Magnetstreifen 125 oder Barcodes 126 können dabei auch auf der Rückseite des optischen Formteils 102, d.h. hinter der reflektierenden Schicht 113 aufgebracht werden. Dies zeigen z.B. die Fig. 18 und 25 mit einem Magnetstreifen 125 auf der Rückseite oder die Fig. 23 mit einer Kontaktelektrode 121, die ebenfalls über der Reflexionsschicht 113 und der Deckschicht 114 (und damit außerhalb des Lesebereichs 128) aufgebracht ist.

In einer alternativen Formgebung 103a in Fig. 25 kann der Funktionskarten-Formteil innerhalb des Positionierungsabsatzes 105 auch dicker ausgebildet sein als im Außenbereich 107.

Unabhängig davon, ob für eine einteilige (127) oder für eine zweiteilige Doppelform 110, haben die beiden Formteile 102 und 103 unterschiedlichen Anforderungen zu genügen:

Der optische Speicher-Formteil 102 muß optisch einwandfrei es Ablesen in einem entsprechenden Laufwerk ermöglichen, dazu eine mechanisch stabile, plane Grundfläche 109 aufwei sen und aus geeignetem Material bestehen.

Der Funktionskarten-Formteil 103 muß entsprechend die Funktionsfähigkeit in der zugeordneten Funktionsstation 130 ermöglichen, so die Karten-Führung und -Positionierung mit passender Anordnung des Funktionselement 120 auf dem Da-
träger 101, und er muß die praktische Handhabung der Karte im allgemeinen ermöglichen.

Entsprechend werden daher die Schichtdicken H, HO, HT gewählt, wobei die Gesamtdicke H maximal 1,2 mm betragen kann, d.h. höchstens entsprechend der Dicke des flachen Teils einer CD-ROM, jedoch ohne Stapelring. Oft wird jedoch eine geringere Gesamtdicke H von 0,8 bis 1,0 mm benötigt. Da der optische Speicherbereich 108 wesentlich kleiner ist als eine normale CD-ROM mit 120 mm Durchmesser, kann hier auch mit einer reduzierten Schichtdicke des optischen Speicherbereichs 102 von z.B. HO = 0,7 bis 1,0 mm dennoch eine genügende mechanische Stabilität und Planheit in diesem Bereich erreicht werden. Die totale Schichtdicke H liegt vorzugsweise in einem Bereich zwischen 0,8 und 1,1 mm. Dazu ist es erforderlich, daß der Außenbereich 107 des Funktionskarten-Formteils 103 eine reduzierte Schichtdicke HT von vorzugsweise 0,5 bis 0,7 mm aufweist und daß entsprechend die Höhe des Positionierungsabsatzes HA mindestens 0,3 mm beträgt, vorzugsweise jedoch 0,4 bis 0,5 mm.
Die totale Höhe H setzt sich zusammen aus HO + HD, d.h. mit einer allfälligen Zusatzschichtdicke HD für die Anordnung von Funktionselementen (Fig. 23) oder im Falle einer zweiteiligen Doppelschicht für eine durchgehende rückseitige
Decksschicht als Zusatzschicht 114a (Fig. 24 u. 25). Anderseits beträgt die Höhe auch H = HA + HT, wobei das Verhältnis HT/H vorzugsweise zwischen 0,5 und 0,6 liegt, um die Stabilität und Planheit des optischen Speicherbereichs 108 im Vergleich zur Flexibilität des Außenbereichs 107 in ein günstiges Verhältnis zu setzen. Mit der Positionierungsabsatz 105 wird also nicht nur die Positionierung des Datenträgers 101 in einem entsprechenden Laufwerk sichergestellt, sondern es werden auch die notwendigen mechanischen Eigenschaften der Doppelform erreicht.

Die Fig. 26 und 27 zeigen ein Beispiel eines Datenträgers 101 mit einem Funktionselement 120, das als berührungsloses Identifikationsmedium 123 ausgebildet ist und welches aus

Dies ist auch mög­lich in einer weiteren Ausführungsvariante 122a, 124a, die in Fig. 26 u. 27 alternativ dargestellt ist. Eine möglichst großflächige Antenne 124a verläuft hier dem Umfang der Karte 1 entlang, größtenteils außerhalb des optischen Speicherbereichs 108. Nur im Zentrum verläuft die sehr flach ausgebildete Antenne 124a durch den Rand des Bereichs 108. Dies jedoch nur auf der Rückseite der Datenträger-Karte 1, d.h. hinter der Reflexionsschicht 113 des Bereichs 108, so daß der optische Lesebereich 128 nicht be-

Selbstverständlich sind auch Identifikationsmedien und Datenträger mit Kontakten 121 als Funktionselemente einsetzbar.

Zur Erhöhung der optischen Speicherkapazität des Bereichs 108 bestehen verschiedene Möglichkeiten neben der schon illustrierten Vergrößerung des Begrenzungsdurchmessers D3 nach Fig. 19. So können, wie in Fig. 28 illustriert wird, zusätzlich zum kreisringförmigen Speicherbereich oder Datenbereich 108.1 weitere Datenbereiche 108.2 vorgesehen werden, z.B. als an den Bereich 108.1 anschließende Kreissegmente oder Sektoren, welche bis zum Positionierungsabsatz 105, bzw. Aufnahmekreis 105 des Mini-CD-Formats reichen können.

Eine weitere Möglichkeit zur Erhöhung der optischen Speicherkapazität besteht darin, eine Datenkompaktierung mittels entsprechender zugeordneter Software auszuführen.

Zur wesentlichen Erhöhung der Informationskapazität kann das Medium auch als DVD-Datenträger ausgebildet sein.

Dies illustrieren die Figuren 29 und 30, welche zweiseitig lesbare DVD-Datenträger als optischen Speicher 108 enthalten. Diese zweiseitigen DVD-Datenträger enthalten Informationsschichten, die von zwei Seiten, d.h. in den Figuren von unten (a) und von oben (b) abzulesen sind. Mit einem unteren Speicherbereich 108a, der von unten lesbar ist im Lesebereich 128a und einem oberen Speicherbereich 108b, der von oben ablesbar ist im Lesebereich 128b.

Entsprechend wird natürlich auch der Datenträger 101 mit seiner Doppelform 110 ausgebildet: Mit offenen, optische einwandfreien ebenen Grundflächen 109a und 109b des optischen Funktions-Formteils 102 und indem alle Funktionselemente 120, 121, 122 außerhalb beider Lesebereiche 128a und 128b angeordnet sind.

Wie die Beispiele zeigen, ist die einstückige Doppelform 110 auch mit DVD-Datenträgern einteilig (127) oder zweiteilig ausführbar.

Fig. 29 zeigt eine einteilige Ausführung, bei der wiederum die beiden Formteile 102 und 103 in einem Herstellvorgang zusammen erzeugt werden, und die Fig. 30 zeigt ein möglicheres Beispiel einer zweiteiligen Ausführung mit einem separaten optischen Speicher-Formteil 102 und einem außenliegenden Funktionskarten-Formteil 103, in welchen der Formteil 102 eingelegt und eingefügt ist. Der Positionierungsabsatz 105 wird hier durch den Formteil 103 gebildet, der auch ein Funktionselement 120, z.B. einen Mikroprozessor-Chip 122 enthält. Ein weiterer flacher Teil des Funktion-
selements, z.B. Kontaktelektroden 121, kann dabei teilweise auch über dem optischen Formteil 102 angebracht sein. Er begrenzt jedoch den optischen Speicherbereich 108b im Beispiel von Fig. 30. Auch diese DVD-Schichten weisen zwecks Verhinderung von Korrosion und degradierenden Einflüssen an allen seitlichen Rändern (106) eine Versiegelung 115 auf.

Für Anwendungen bzw. Funktionsstationen, die kein Kartensformat mit einem größten Durchmesser Dmax von mehr als 80 mm erfordern, wird eine weitere Lösung der Aufgabe vorgeschlagen: Ein optisch lesbaren Datenträger in (shaped) Mini-CD Format, in dem ein Funktionselement 120 mit Identifikationsfunktionen, d.h. ein Identifikationsdatenträger oder -medium 123, integriert ist, wobei das Funktionselement außerhalb des optischen Lesebereichs 128 angeordnet ist. Diese Datenträger benötigen keine Kartendoppelform und deren Positionierungsabsatz 105 wird durch Teile der Außenkontur innerhalb des Mini-CD-Formats gebildet. Funktionselemente mit Identifikationsfunktionen ermöglichen höherwertige Funktionen, welche z.B. anspruchsvolle Sicherheitscodes erfordern (was z.B. für die bekannten einfachen Telefonkarten nicht erforderlich ist). Auch mit einem solchen Datenträger in Mini-CD-Format ergibt die Kombination der Identifikationsfunktionen mit der großen Speicherkapazität des optischen Speicherbereichs ein weites Feld neuer kombinierter Anwendungen wie im folgenden illustriert wird.

Fig. 31 zeigt ein Beispiel eines optisch lesbaren Datenträgers 102, dessen größter Durchmesser Dmax (von ca. 80 mm) einem Mini-CD-Laufwerk entspricht mit mindestens einem kreisringförmigen, annähernd bis zum Kartenrand reichenden optisch lesbaren Speicherbereich 108, welcher eine optische

Solche Datenträger 202 mit Identifikationsmedien können sowohl in berührungsloser Form als auch mit Kontaktelektroden 121 ausgeführt sein. Besonders interessant sind natürlich berührungslose Identifikationsmedien 123, bei denen die Formgebung des Datenträgers weitgehend frei wählbar ist, bzw. sich auf die Ausgestaltung der Übertragungsantennen 124 zur berührungslosen Kommunikation mit den Funktionsstationen 130 ausrichtet. In der Fig. 31 ist ein Datenträger 202 mit berührungslosen Identifikationsmedien 123 dargestellt (ähnlich dem Beispiel von Fig. 26, jedoch in anderer Form) mit zwei Kreissektoren 116 als Außenkontur und als Positionierungsabsatz 105 für Mini-CD-Laufwerke sowie mit einer großflächigen Antenne 124 entlang der Außenkontur des Datenträgers 202 und mit einem Mikroprozessor-Chip 122 als Identifikationsdatenträger 123 außerhalb des optischen Speicherbereichs 108. Die Antenne 124 ist auf der Rückseite hinter der optischen Datenschicht und Reflexionsschicht
aufgebracht und liegt damit auch ausserhalb des optischen Lesebereichs 128 (siehe Fig. 27). Als alternative Variante ist auch hier ein kreisförmiger berührungsloser Identifikationsträger 123a mit Chip 122a und Antenne 124a innerhalb des optischen Speicherbereichs 108 in der Fig. 31 dargestellt. Auch bei solchen Datenträgern 202 in Mini-CD-Format können flache Teile (wie Kontaktelektroden 121, Antenne 124, Magnetstreifen 125) von Funktionselementen 120 auf der Rückseite von einseitigen optischen Speicherbereichen angeordnet sein. Auch für die Dicke H des Datenträgers, welche vorzugsweise 0,8 bis 1,1 mm beträgt, bzw. für die Dicke der optischen Schicht HO von 0,7 bis 1,0 mm, gelten analoge Überlegungen wie bei den Datenträgerkarten 101 bzw. zu deren optischem Speicher-Formteil 102. Als optisches Speichermedium 108 sind auch hier CD-ROM-, CD-R-, CD-RW- oder DVD-Datenträger anwendbar.

Die erfindungsgemäße Datenträger-Funktionskarte 101 kann im Prinzip beliebige Kartenfunktionen und optisch lesbare Informationen kombinieren.

Die Kartenfunktionen 40 der Funktionselemente 20 ermöglichen den Bezug einer entsprechenden Leistung, beispielsweise Zulassungs-, Zugangs- und Zutrittskarten, Identifikations-Sicherheitskarten und Berechtigungskarten, Wertkarten: Cash Cards, Telefonkarten und Parkkarten, Kontokarten, Kundenkarten, Kreditkarten.

Die Darstellung der optischen Information des Speicherbereichs 108 kann direkt ablaufen oder selektiv, auswählbar,

In additiven Anwendungen von Kartenfunktionen und optischen Informationen werden diese nacheinander, an verschiedenen Orten und nicht gleichzeitig ausgeübt bzw. dargestellt.

In kombinierten Anwendungen können beide an einer Station gleichzeitig und auch interaktiv ausgeübt und dargestellt werden.

Im folgenden wird an einigen Anwendungsbeispielen das große Feld völlig neuartiger Anwendungsmöglichkeiten illustriert, das mit dem erfindungsgemäßen Datenträgerkarten in Doppelform eröffnet wird:

Fig. 32 illustriert ein solches System mit Datenträgern 101 mit maschinenlesbaren Funktionselementen 120 und zugeordneten Funktionsstationen 130, an denen die Kartenfunktionen 140 ausgeübt werden können und wobei die optischen Speicherbereiche 108 der Datenträgerkarten zusätzlich auch an separaten optischen Lesestationen 135 gelesen und dargestellt werden können.

In Anwendung A werden die Datenträgerkarten 101 an optischen Lesestationen 135 mittels eines Bildschirms 136 gelesen und dargestellt. Zudem kann eine Verbindung zum Internet 150 realisiert werden. In der Anwendung B werden
die Karten in einfachen Funktionsstationen 130 mit der 5
Karte 101 Funktionen 140 ausgeübt, z.B. der Zutritt 142 zu 10
einem bestimmten Bereich ohne Anzeige von optischer Infor-
mation. In der Anwendung C der Datenträgerkarten 101 in 15
einer kombinierten Station 130, die auch eine Lesestation 135 und einen Bildschirm 136 enthält, werden optische Informa-
10
tionen dargestellt und entsprechende Funktionen 142, 143, 144, 145 ausgeübt. Wie in den Beispielen noch illustriert wird, können Anwendungssysteme beliebige Kombina-

tionen dieser drei Arten A, B, C aufweisen.

Fig. 33 illustriert als kombiniertes Anwendungsbeispiel 5
einen Telefonkarten-Datenträger 131 mit einem Wertbereich 10
zum Telefonieren und einem optischen Speicherbereich 108 15
für eine entsprechend ausgerüsteten Telefonstation 138. Die-
10
se enthält eine Funktionsstation 130 für die Funktion Telefonieren mit einem Bildschirm zur Anzeige und Suche von Telefonnummern aus einer Datei. Zusätzlich ist ein op-
15
tisches Laufwerk und Lesegerät 135 in die Funktionsstation 130 integriert mit einem internen Speicher 134 (z.B. in 20
Form von RAM-Chips oder einer Hard-Disk) zur Aufnahme der Information aus dem optischen Speicherbereich 108 der Tele-
fonkarte 131. Beim Einschieben der Karte 131 in die Sta-
25
tion 130 wird zuerst die Zugangs berechtigung gelesen (d.h.
geprüft, ob ein Wertbetrag zum Telefonieren vorhanden 30
ist), anschließend wird die Karte im optischen Laufwerk 135 gelesen und deren Information in den internen Speicher 134 geladen. Darauf kann während dem Telefonieren unter Abbuchung des Wertbereichs der Karte gleichzeitig auch die gespeicherte optische Information aus dem Speicher 134 am Bildschirm 136 abgespielt werden (z.B. eine Firmeninforma-
35
tion oder PR-Darstellungen des Herausgebers der Telefon-
karte).

Eine abgewandelte weitere Anwendung für Mobiltelefone mit 40
hochauflösendem Bildschirm kann ein Telefonkarten-

In einer ähnlichen Art können als weiteres Beispiel Clubkarten-Datenträger z.B. als Jahreskarte für Mitglieder eines Freizeitchlubs einerseits das Leistungsangebot des Clubs zeigen und anderseits den Bezug der verschiedenen Leistungen durch die Karte mit den integrierten Funktionen ermöglichen.

Als weiteres Anwendungsbeispiel können die erfindungsgemäßen Datenträger-Funktionskarten beispielsweise an großen Veranstaltungen wie Messen oder Ausstellungen für verschiedene Berechtigungs-, Zugangs- und Bezugsfunktionen eingesetzt werden, und der optische Speicherbereich 108 kann die persönlichen Daten mit Fotografie des ganzen Veranstaltungspersonals enthalten. Damit kann ein Mitglied des Per-
sonals an einer Funktionsstation z.B. einen codegeschützten Zugang erhalten und zusätzlich noch mit den persönlichen Daten inklusive Bild der Person aus dem optischen Speicher überprüft werden. Dies bildet eine zusätzliche Sicherheitsfunktion.

In gleicher Weise können natürlich auch die persönlichen Daten mit Foto des Personals einer weltweit tätigen Firma in den optischen Speicherbereich 108 der Datenträgerkarte aufgenommen werden und somit eine Person bei Ausübung von Kartenfunktionen für die Firma an verschiedenen Orten auf der Welt zusätzlich noch durch ihre persönlichen Daten mit Bild identifiziert werden. Dadurch kann auch ein nicht berechtigter Benutzer einer solchen (z.B. gestohlenen) Datenträgerkarte anhand dieser persönlichen Daten und Foto überprüft und als nicht berechtigt festgestellt werden.
Patentansprüche

2. Digitaler Datenträger nach Anspruch 1, dadurch gekennzeichnet, daß die Ringstücke (12) einen wulstförmigen Querschnitt (17) aufweisen.

3. Digitaler Datenträger nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ringstücke (12) eine Breite (18) zwischen 0,3 bis 1,0 mm aufweisen.

4. Digitaler Datenträger nach Anspruch 3, dadurch gekennzeichnet, daß die Ringstücke (12) eine Breite (18) von etwa 0,5 mm aufweisen.

5. Digitaler Datenträger nach Anspruch 1, dadurch gekennzeichnet, daß die Ringstücke 12' einen Positionierungsabsatz (105) bilden und eine Breite (18') aufweisen, die nach außen von einem dem kleineren Standarddurchmesser entsprechenden Außendurchmesser (14) und nach innen von dem Innendurchmesser der Zentrierbohrung (4, 104) begrenzt wird.

6. Digitaler Datenträger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Ringstücke (12) eine Höhe (19) zwischen 0,3 bis 1 mm aufweisen.
7. Digitaler Datenträger nach Anspruch 6, dadurch gekennzeichnet, daß die Ringstücke (12) eine Höhe (19) von etwa 0,8 mm aufweisen.

8. Digitaler Datenträger nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Ringstücke (12, 12') einen Außendurchmesser (14) von 80 mm entsprechend einer Mini-CD aufweisen.

9. Digitaler Datenträger nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Unterseite (7) Informationen in digitalisierter Form aufweist, die von dem Standard-CD-Laufwerk (6) lesbar sind, und daß eine der Unterseite (7) abgewandte Oberseite (9) Informationen (10) in aufgedruckter Form zur visuellen Betrachtung aufweist.

10. Digitaler Datenträger nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) mindestens einen kreisringförmigen, annähernd bis zum Kartenrand reichenden optisch lesbaren Speicherbereich (108) mit einer optischen Trägerschicht (111), einer Datenschicht (112) und mit einer Reflexionsschicht (113) aufweist.

11. Digitaler Datenträger nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) einen optischen Speicher-Formteil (102) und ein Funktionskarten-Formteil (103) aufweist, welche in eine einstückige Doppelform (110) integriert sind.

12. Digitaler Datenträger nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) mindestens ein zusätzliches Funktionselement (120) für eine zugeordnete Funktionsstation (130) aufweist, wobei der Funktionskarten-Formteil (103) und die Anordnung des Funktionselementes (120) den geometrischen Randbedingungen der Funktionsstation (130) entsprechen.
13. Digitaler Datenträger nach Anspruch 12, dadurch gekennzeichnet, daß das Funktionselement (120) außerhalb des optischen Lesebereichs (128) angeordnet ist.

14. Digitaler Datenträger nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) eine Dicke (H) aufweist, die höchstens 1,2 mm beträgt und eine ebene Grundfläche (109) aufweist.

15. Digitaler Datenträger nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) mit dem Funktionselement (120) bezüglich der Zentrierbohrung (104) ausgewuchtet ist.

16. Digitaler Datenträger nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Kartenformat dem ISO-Scheckkartenformat von 54 x 86 mm entspricht und alle Ränder des optischen Speicherbereichs seitlich versiegelt sind (115).

17. Digitaler Datenträger nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der optische Speicherbereich (108) einen Durchmesser (D3) zwischen 54 mm und 70 mm aufweist.

18. Digitaler Datenträger nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, daß außerhalb des kreisringförmigen Speicherbereichs (108.1) zusätzliche Datenbereiche (108.2) im optischen Speicher-Formteil (102) vorgesehen sind.

19. Digitaler Datenträger nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß der optische Speicher-Formteil (102) durch zwei Kreissektoren (116) mit 80 mm Durchmesser begrenzt wird.

20. Digitaler Datenträger nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß der optische Speicher-Formteil (102) kreisförmig (119) ausgebildet ist mit einem Durchmes-
ser (D3), welcher der Kartenbreite (B) entspricht und wobei der Positionierungsabsatz (105) durch den Karten-Formteil (103) gebildet wird.

22. Digitaler Datenträger nach einem der Ansprüche 11 bis 21, dadurch gekennzeichnet, daß die Doppelform (110) einteilig (127) hergestellt ist.

23. Digitaler Datenträger nach einem der Ansprüche 11 bis 22, dadurch gekennzeichnet, daß der Trägerkörper (101) aus mindestens zwei separaten Teilen (102, 103) zur Doppelform (110) zusammengefügt ist.

24. Digitaler Datenträger nach einem der Ansprüche 11 bis 23, dadurch gekennzeichnet, daß die Höhe (HA) des Positionierungsabsatzes (105) 0,3 mm bis 0,5 mm beträgt.

25. Digitaler Datenträger nach einem der Ansprüche 11 bis 24, dadurch gekennzeichnet, daß die Dicke (H) des Trägerkörpers (101) 0,8 mm bis 1,1 mm, die Dicke (HO) des optischen Formteiles (102) 0,7 bis 1,0 mm und die Dicke (HT) des Außenbereich (107) des Karten-Formteils (103) 0,5 bis 0,7 mm beträgt.

27. Digitaler Datenträger nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) bzw. der optische Speicherbereich (108) eine Datenkompaktierung mittels zugeordneter Software aufweist.
28. Digitaler Datenträger nach einem der Ansprüche 12 bis 27, dadurch gekennzeichnet, daß mindestens Teile des Funktionselementes (120) in eine einteiligen Doppelform (127) integriert sind.

29. Digitaler Datenträger nach einem der Ansprüche 12 bis 28, dadurch gekennzeichnet, daß das Funktionselement (120) als Magnetstreifen oder Barcode ausgebildet ist.

30. Digitaler Datenträger nach einem der Ansprüche 12 bis 29, dadurch gekennzeichnet, daß das Funktionselement (120) einen Mikrochip (122) aufweist.

31. Digitaler Datenträger nach Anspruch 30, dadurch gekennzeichnet, daß das Funktionselement (120) einen Kontakt-Chip als Mikrochip (122) und Kontaktielektroden (121) aufweist.

32. Digitaler Datenträger nach Anspruch 30, dadurch gekennzeichnet, daß der Mikrochip (122) als berührungsloser Chip ausgebildet ist.

33. Digitaler Datenträger nach Anspruch 30, dadurch gekennzeichnet, daß der Mikrochip (122) als biochemischer Chip ausgebildet ist.

34. Digitaler Datenträger nach Anspruch 30, dadurch gekennzeichnet, daß der Mikrochip (122) als Kugel-Chip ausgebildet ist.

35. Digitaler Datenträger nach Anspruch 30, dadurch gekennzeichnet, daß der Mikrochip (122) als elektronischer Chip ausgebildet ist.

36. Digitaler Datenträger nach einem der Ansprüche 29 bis 35, dadurch gekennzeichnet, daß der Mikrochip (122) als Speicherchip ausgebildet ist.
37. Digitaler Datenträger nach einem der Ansprüche 29 bis 36, dadurch gekennzeichnet, daß das Funktionselement (20) als berührungsloses Identifikationsmedium (23) mit einer Antenne (24) und mit Identifikationsfunktionen ausgebildet ist.

38. Digitaler Datenträger nach einem der Ansprüche 10 bis 37, dadurch gekennzeichnet, daß die Reflexionsschicht als Antenne ausgebildet ist.

39. Digitaler Datenträger nach Anspruch 38, dadurch gekennzeichnet, daß die Reflexionsschicht mit einer zusätzlichen Metallschicht verstärkt ist.

40. Digitaler Datenträger nach einem der Ansprüche 1 bis 39, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) verschiedene zusätzliche Schichten mit zusätzlichen Funktionen aufweist.

41. Digitaler Datenträger nach Anspruch 40, dadurch gekennzeichnet, daß die zusätzlichen Schichten eine Batterie bilden, die zwischen benachbarten Schichten unterschiedlicher Metallegierungen eine Isolationsschicht aufweist.

42. Digitaler Datenträger nach Anspruch 40 oder 41, dadurch gekennzeichnet, daß Teilbereiche des Trägerkörpers (2, 101) zusätzliche Schichten unterschiedlicher Legierungen nebeneinander aufweisen.

43. Digitaler Datenträger nach einem der Ansprüche 1 bis 42, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) eine abrubbelbare Beschichtung aufweist.

44. Digitaler Datenträger nach einem der Ansprüche 1 bis 43, dadurch gekennzeichnet, daß ein kreisförmiger berührungsloser Identifikationsdatenträger innerhalb des optischen Speicherbereichs (108) angeordnet ist.
45. Digitaler Datenträger nach einem der Ansprüche 12 bis 44, dadurch gekennzeichnet, daß insbesondere auf der Rückseite von einseitigen optischen Speicherbereichen (108) flache Teile (121, 124, 125) von Funktionselementen (120) angeordnet sind.

46. Digitaler Datenträger nach einem der Ansprüche 12 bis 45, dadurch gekennzeichnet, daß die Funktionselemente (120) Identifikationsmedien mit Zulassungs- und Zugangsfunktionen (142), Identifikations- (143), Konto- und Kreditkartenfunktionen (145) und/oder Wertkartenfunktionen (144) aufweisen.

47. Digitaler Datenträger nach einem der Ansprüche 12 bis 46, dadurch gekennzeichnet, daß der optische Speicherbereich (108) Datenteilbereiche (148) enthält, welche nur mittels einer vorzugsweise codierten Zulassungsfunktion des Funktionselements (120) lesbar sind.

48. Digitaler Datenträger nach einem der Ansprüche 12 bis 47, dadurch gekennzeichnet, daß das Funktionselement (120) eine Telefonkarte oder eine Wertkarte (144) definiert.

49. Digitaler Datenträger nach einem der Ansprüche 12 bis 48, dadurch gekennzeichnet, daß der optische Formteil (102) Polycarbonat, Acrylpolymere oder PET aufweist.

50. Digitaler Datenträger nach einem der Ansprüche 1 bis 49, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) elektronische Bausteine aufweist, die von einer Batterie gespeist werden.

51. Digitaler Datenträger nach einem der Ansprüche 1 bis 50, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) elektronische Schaltungen aufweist.
52. Digitaler Datenträger nach einem der Ansprüche 1 bis 51, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) elektronische Bausteine aufweist, die von einer Batterie gespeist werden.

53. Digitaler Datenträger nach einem der Ansprüche 1 bis 52, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) mindestens einen Solarbaustein aufweist.

54. Digitaler Datenträger nach einem der Ansprüche 1 bis 53, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) eine Flüssigkristallanzeige aufweist.

55. Digitaler Datenträger nach einem der Ansprüche 1 bis 54, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) ein Mikroobjektiv aufweist.

56. Digitaler Datenträger nach einem der Ansprüche 1 bis 55, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) einen Infrarotsender aufweist.

57. Digitaler Datenträger nach einem der Ansprüche 1 bis 56, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) einen Infrarotempfänger aufweist.

58. Digitaler Datenträger nach einem der Ansprüche 1 bis 57, dadurch gekennzeichnet, daß der Trägerkörper (2, 101) aufgebrachte Sicherheitsmerkmale aufweist.

59. Digitaler Datenträger nach einem der Ansprüche 1 bis 58, dadurch gekennzeichnet, daß der Trägerkörper (2) als Shaped-CD (20) mit einem freien Umriß (21) ausgebildet ist.

60. Digitaler Datenträger nach einem der Ansprüche 1 bis 58, dadurch gekennzeichnet, daß der Trägerkörper (2) als Visitenkarte (22) ausgebildet ist.
61. Digitaler Datenträger nach Anspruch 60, dadurch gekennzeichnet, daß die Visitenkarte (22) einen im wesentlichen rechteckigen Umriß (23) aufweist.

62. Digitaler Datenträger nach einem der Ansprüche 1 bis 58, dadurch gekennzeichnet, daß der Trägerkörper (2) als Eintrittskarte (24) ausgebildet ist.

63. Digitaler Datenträger nach Anspruch 62, dadurch gekennzeichnet, daß der Trägerkörper (2) an seinem Umfang (25) mindestens einen abtrennbaren Entwertungsabschnitt (26, 26', 26'') aufweist.

64. Digitaler Datenträger nach Anspruch 63, dadurch gekennzeichnet, daß der Entwertungsabschnitt (26, 26') zum Trägerkörper (2) hin eine vorgeformte Bruchrille (27) aufweist.

65. Digitaler Datenträger nach Anspruch 63 oder 64, dadurch gekennzeichnet, daß der Entwertungsabschnitt (26, 26') über mindestens einen Steg (28, 29) mit dem Trägerkörper verbunden ist.

66. Digitaler Datenträger nach Anspruch 65, dadurch gekennzeichnet, daß der Entwertungsabschnitt (26') über zwei an seinen äußeren Enden (30) angeordneten Stegen (29) mit dem Trägerkörper (2) verbunden ist.

67. Digitaler Datenträger nach einem der Ansprüche 63 bis 66, dadurch gekennzeichnet, daß der Trägerkörper (2) einen im wesentlichen rechteckigen Umriß (25) aufweist, an dessen Seiten die Entwertungsabschnitte (26, 26') angeordnet sind.

68. Digitaler Datenträger nach einem der Ansprüche 5 bis 67, dadurch gekennzeichnet, daß der Positionierungsabsatz (105) den Trägerkörper (202) bildet und ein Funktionslement (120) mit Identifikationsfunktion (123) aufweist.
69. System mit einem Datenträger (101) nach einem der Ansprüche 1 bis 68 und mit zugeordneten Funktionsstationen (130), dadurch gekennzeichnet, daß die Karten-Funktionen (140) an den Funktionsstationen (130) ausgeübt werden können und daß die optischen Speicherbereiche (108) zusätzlich auch von optischen Lesestationen (135) gelesen werden können.

70. System nach Anspruch 69, dadurch gekennzeichnet daß an den Funktionsstationen (130) sowohl Karten-Funktionen (140) ausgeübt als auch mittels optischen Laufwerken und Lesestationen (135) optische Informationen aus dem Speicherbereich (108) ausgelesen und dargestellt werden können.

71. System nach Anspruch 70, dadurch gekennzeichnet, daß die Funktionsstationen zusätzlich einen internen Speicher (134) aufweisen in dem optische Informationen aus dem Speicherbereich (108) einlesbar sind.

72. Verfahren zur Verwendung von Datenträgern nach einem der Ansprüche 1 bis 71 an einer Funktionsstation (130), dadurch gekennzeichnet, daß zuerst die Zugangsberechtigung zur Funktionsstation geprüft wird, dann die optische Information aus dem Speicherbereich (108) in einen internen Speicher (134) der Funktionsstation (130) eingelesen und anschließend wieder die Karten-Funktion (140) ausgeübt wird.

73. Verfahren zur Herstellung eines digitalen Datenträgers nach einem der Ansprüche 1 bis 68, dadurch gekennzeichnet, daß die Ringstücke (12) durch Hochdruckspritzen des Trägerkörpers (2, 101) in einem die Ringstücke (12) als Negativform aufweisenden Spritzwerkzeug (32) hergestellt werden.

74. Verfahren nach Anspruch 73, dadurch gekennzeichnet, daß der Umriß (3, 21) im gleichen Arbeitsgang durch ein entsprechend ausgebildetes Spritzwerkzeug (32) hergestellt wird.
75. Verfahren nach Anspruch 73, dadurch gekennzeichnet, daß der Umriß (3, 21) in einem späteren Arbeitsgang durch Ausstanzen aus einem runden Trägerkörper (2) hergestellt wird.

76. Spritzgußform zur Herstellung eines digitalen Datenträgers (1) nach einem der Ansprüche 1 bis 68, dadurch gekennzeichnet, daß das Spritzgußwerkzeug (32) eingearbeitete Ringstücke (35) als Negativform aufweist.
Fig. 23

Fig. 24

Fig. 25

\[H = H_0 + HD = HT + HA \]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC 6</th>
<th>G06K19/08</th>
<th>G06K19/06</th>
<th>G11B7/24</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC 6</th>
<th>G06K</th>
<th>G11B</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>page 1 -page 5 figures 1,2</td>
<td>—/—</td>
</tr>
<tr>
<td>A</td>
<td>—/—</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

*Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 16 September 1999

Date of mailing of the international search report: 01/10/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized Officer: Jacobs, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>GB 2 239 974 A (HORNE TREVOR LESLIE DARRELL) 17 July 1991 (1991-07-17) abstract page 1 figure 1</td>
<td>29</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 735 550 A (HINKLE MICHAEL B) 7 April 1998 (1998-04-07) abstract</td>
<td>58</td>
</tr>
<tr>
<td>Y</td>
<td>FR 2 746 201 A (SEAGATE TECHNOLOGY) 19 September 1997 (1997-09-19) page 2, line 18 - line 21</td>
<td>54</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 736 782 A (SCHAIRER WERNER) 7 April 1998 (1998-04-07) abstract</td>
<td>56, 57</td>
</tr>
<tr>
<td>Y</td>
<td>A abstract column 1, line 1 - column 7, line 5 column 9, line 3 - line 10 figure 1</td>
<td>45</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 702 314 A (BAYER AG) 20 March 1996 (1996-03-20) figures 1, 2</td>
<td>45</td>
</tr>
<tr>
<td>X</td>
<td>US 4 812 633 A (GIORGINI NORMAN L ET AL) 14 March 1989 (1989-03-14)</td>
<td>1-7, 9, 10, 14, 16, 20, 21, 26, 27, 40, 43, 49, 59, 73, 76, 74, 75, 17</td>
</tr>
<tr>
<td>Y</td>
<td>A abstract column 1, line 5 - column 4, line 31 figures 1, 3</td>
<td>-/--</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>X</td>
<td>NL 9 000 256 A (JAN ESSEBAGGERS) 2 September 1991 (1991-09-02)</td>
<td>1,10,14, 16,20, 21,26, 27,40, 43,49,59, 74,75, 17</td>
</tr>
</tbody>
</table>
| Y | page 1 - page 3
figure 1 | |
| A | IKUTA K ET AL: "Biochemical IC chip toward cell free DNA protein synthesis"
PROCEEDINGS MEMS 98. IEEE, ELEVENTH ANNUAL INTERNATIONAL WORKSHOP ON MICRO ELECTRO
MECHANICAL SYSTEMS. AN INVESTIGATION OF MICRO STRUCTURES, SENSORS, ACTUATORS,
mACHINES AND SYSTEMS (CAT. NO.98CH36176), PROCEEDINGS IEEE ELEVENTH ANNUAL
INTERNATIONAL, pages 131-136, XP002115497
page 131 | 33 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 29709648 U</td>
<td>11-12-1997</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>GB 2239974 A</td>
<td>17-07-1991</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5735550 A</td>
<td>07-04-1998</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>FR 2746201 A</td>
<td>19-09-1997</td>
<td>WO 9734252 A</td>
<td>18-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0751479 A</td>
<td>02-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9034605 A</td>
<td>07-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 68616 T</td>
<td>15-11-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 597318 B</td>
<td>31-05-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6638186 A</td>
<td>18-06-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3682049 A</td>
<td>21-11-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0230069 A</td>
<td>29-07-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62145589 A</td>
<td>29-06-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2158394 A</td>
<td>20-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8096088 A</td>
<td>12-04-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9507840 A</td>
<td>26-04-1996</td>
</tr>
<tr>
<td>US 4812633 A</td>
<td>14-03-1989</td>
<td>CA 1327849 A</td>
<td>15-03-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 8904215 U</td>
<td>18-05-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2629933 A</td>
<td>13-10-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9600643 Y</td>
<td>25-01-1996</td>
</tr>
<tr>
<td>NL 9000256 A</td>
<td>02-09-1991</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 G06K19/08 G06K19/06 G11B7/24

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCIERTE GEBIETE
Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 G06K G11B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>A Seite 1 - Seite 5 Abbildungen 1,2</td>
<td>29,54, 56-58</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>17,24, 25,72</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind die Fortsetzung von Feld C zu ennehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche
16. September 1999

Absendetermin des internationalen Rechercheberichts
01/10/1999

Name und Postanschrift der internationalen Recherchebehörde:
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter:
Jacobs, P

Formblatt PCT/ISA210 (Ektett 2) (Juli 1992)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Zusammenfassung Spalte 1, Zeile 1 - Spalte 7, Zeile 5 Spalte 9, Zeile 3 - Zeile 10 Abbildung 1</td>
<td>45</td>
</tr>
<tr>
<td>Y</td>
<td>Zusammenfassung Spalte 1, Zeile 5 - Spalte 4, Zeile 31 Abbildungen 1, 3</td>
<td>17</td>
</tr>
<tr>
<td>Kategorie</td>
<td>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</td>
<td>Selr. Anspruch Nr.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>X</td>
<td>NL 9 000 256 A (JAN ESSEBAGGERS) 2. September 1991 (1991-09-02)</td>
<td>1, 10, 14, 16, 20,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21, 26, 27, 40,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43, 49, 59, 74, 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Y</td>
<td>Seite 1 - Seite 3</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Abbildung 1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>IKUTA K ET AL: "Biochemical IC chip toward cell free DNA protein synthesis"</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>PROCEEDINGS MEMS 98. IEEE. ELEVENTH ANNUAL INTERNATIONAL WORKSHOP ON MICRO ELECTRO MECHANICAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEMS. AN INVESTIGATION OF MICRO STRUCTURES, SENSORS, ACTUATORS, MACHINES AND SYSTEMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(CAT. NO.98CH36176), PROCEEDINGS IEEE ELEVENTH ANNUAL INTERNATIONAL, Seiten 131-136,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 131</td>
<td></td>
</tr>
<tr>
<td>Patentnummer</td>
<td>Land</td>
<td>Typ</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>DE 29709648</td>
<td>U</td>
<td>KEINE</td>
</tr>
<tr>
<td>GB 2239974</td>
<td>A</td>
<td>KEINE</td>
</tr>
<tr>
<td>US 5735550</td>
<td>A</td>
<td>KEINE</td>
</tr>
<tr>
<td>FR 2746201</td>
<td>A</td>
<td>WO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP</td>
</tr>
<tr>
<td>US 4868373</td>
<td>A</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA</td>
</tr>
<tr>
<td>US 4812633</td>
<td>A</td>
<td>CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR</td>
</tr>
<tr>
<td>NL 9000256</td>
<td>A</td>
<td>KEINE</td>
</tr>
</tbody>
</table>