087045199 A2 | N0 00O O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 April 2008 (17.04.2008)

fﬂﬁ A0 OO0 O

(10) International Publication Number

WO 2008/045199 A2

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2007/020664

(22) International Filing Date:

24 September 2007 (24.09.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/828,192 4 October 2006 (04.10.2006) US
60/828,757 9 October 2006 (09.10.2006) US
11/859,498 21 September 2007 (21.09.2007) US

(71) Applicant (for all designated States except US): SALES-
FORCE.COM, INC. [US/US]; The Landmark @ One
Market, Suite 300, San Francisco, CA 94105 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): WEISSMAN, Craig
[US/US]; 1258 Clayton Street, San Francisco, CA 94114
(US).

(74) Agent: ZILKA, Kevin J.; Zilka-Kotab, PC, P.O. Box
721120, San Jose, CA 95172-1120 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT

ON-DEMAND DATABASE SERVICE

%100

102
104 /V’ 106
/‘\/ /‘/
TENANT(S) OF
DEVELOPERS » O';QA?EQA:SNED «— ON.DEMAND,
SERVICE DATABASE SERVICE

& (57) Abstract: In accordance with embodiments, there are provided mechanisms and methods for allowing access to developed
applications via a multi-tenant on-demand database service, in a controlled environment. These mechanisms and methods for pro-
viding such access can enable embodiments to provide additional control over the development process as well as the access of
such developed applications. The ability of embodiments to provide such additional control may lead to an improved application

development framework, etc.

WO 2008/045199 PCT/US2007/020664

METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED
APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE

COPYRIGHT NOTICE
[0001} A portion of the disclosure of this patent document contains material which is subject
to copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark

Office patent file or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION
[0002] The current invention relates generally to developer frameworks, and more

particularly to developing applications in an improved manner.

BACKGROUND

[0003] The subject matter discussed in the background section should not be assumed to be
prior art merely as a result of its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the subject matter of the background
section should not be assumed to have been previously recognized in the prior art. The subject
matter in the background section merely represents different approaches, which in and of
themselves may also be inventions.

[0004) In conventional database systems, users access their data resources in one logical
database. A user of such a conventional system typically retrieves data from and stores data on
the system using the user’s own systems. A user system might remotely access one of a plurality
of server systems that might in turn access the database system. Data retrieval from the system
might include the issuance of a query from the user system to the database system. The database
system might process the request for information received in the query and send to the user

system information relevant to the request.

WO 2008/045199 PCT/US2007/020664

[0005) There is often a desire to develop various applications for extending capabilities of
the aforementioned database systems. To date, however, such applications have typically been
developed in an uncontrolled environment. For example, developers conventionally dictate the
development of such applications, leaving the database system service with less control. This, in
turn, may lead to various shortcomings in the development process, etc. For instance, various
development best practices (e.g. with respect to testing, resource allocation, etc.) may not

necessarily be enforced, since they are under the control of the developer.

WO 2008/045199 PCT/US2007/020664

BRIEF SUMMARY

[0006] In accordance with embodiments, there are provided mechanisms and methods for
allowing access to developed applications via a multi-tenant on-demand database service, in a
controlled environment. These mechanisms and methods for providing such access can enable
embodiments to provide additional control over the development process as well as the access of
such developed applications. The ability of embodiments to provide such additional control may
lead to an improved application development/runtime framework, etc.

[0007] In an embodiment and by way of example, a method is provided for allowing access
to developed applications via a multi-tenant on-demand database service, in a controlled
environment. In use, developed applications are received at a multi-tenant on-demand database
service. Access to the applications is provided to tenants of the on-demand database service.
Such applications are under the control of the on-demand database service.

[0008] While the present invention is described with reference to an embodiment in which
techniques for allowing access to developed applications are implemented in an application
server providing a front end for a multi-tenant database on-demand service, the present invention
is not limited to multi-tenant databases or deployment on application servers. Embodiments may
be practiced using other database architectures, i.e., ORACLE®, DB2® and the like without
departing from the scope of the embodiments claimed.

[0009] Any of the above embodiments may be used alone or together with one another in
any combination. Inventions encompassed within this specification may also include
embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at
all in this brief summary or in the abstract. Although various embodiments of the invention may
have been motivated by various deficiencies with the prior art, which may be discussed or
alluded to in one or more places in the specification, the embodiments of the invention do not
necessarily address any of these deficiencies. In other words, different embodiments of the
invention may address different deficiencies that may be discussed in the specification. Some
embodiments may only partially address some deficiencies or just one deficiency that may be

discussed in the specification, and some embodiments may not address any of these deficiencies.

WO 2008/045199 PCT/US2007/020664

BRIEF DESCRIPTION OF THE DRAWINGS
{0010} FIG. 1A illustrates a system for allowing access to developed applications via an on-
demand database service, in accordance with one embodiment.
[0011] F1G. 1B shows a method for testing developed applications utilizing an on-demand
database service.
[0012] FIG. 2 shows a method for extending an interface that executes with an on-demand
database service.
[0013] FIG. 3 shows a system for allowing access to developed applications via an on-
demand database service, in accordance with another embodiment.
[0014] FIG. 4 shows a method for receiving and processing script from a developer, in
accordance with yet another embodiment. .
[0015] FIG. 5 shows a method for receiving and processing requests from an end user, in
accordance with still yet another embodiment. '
[0016] FIG. 6 illustrates a block diagram of an example of an environment wherein an on-
demand database service might be used.
[0017]) FIG. 7 illustrates a block diagram of an embodiment of elements of FIG. 6 and

various possible interconnections between these elements.

WO 2008/045199 PCT/US2007/020664

DETAILED DESCRIPTION

General Overview

[0018]) Systems and methods are provided for allowing access to developed applications via
a multi-tenant on-demand database service, in a controlled environment. Further, systems and
methods are provided for extending an interface that executes with the on-demand database
service.

[0019] In the development of applications for use with database systems, many challenges
exist that result from the fact that the control of such application development rests with the .
developer. For example, various development best practices (e.g. with respect to testing,
resource allocation, etc.) are not necessarily enforced, since they are under the control of the
developer. Thus, mechanisms and methods are provided herein for allowing access to developed
applications via a multi-tenant on-demand database service, in a controlled environment. The
ability of embodiments to provide such additional control may lead to an improved
development/runtime framework, etc. For example, by administering control over the
development process, etc., embodiments are enabled whereby interfaces (e.g. API’s, etc.) may be
extended in a more affective manner.

[0020] Next, mechanisms and methods will be described for allowing access to developed
applications in a controlled environment, as well as extending an interface that executes with an
on-demand database service.

[0021] FIG. 1A illustrates a system 100 for allowing access to developed applications via an
on-demand database service 102, in accordance with one embodiment. In the context of the
present description, an on-demand database service may include any service that relies on a
database system that is accessible over a network.

[0022] In one embodiment, the on-demand database service 102 may include a multi-tenant
on-demand database service. In the present description, such multi-tenant on-demand database
service may include any service that relies on a database system that is accessible over a
network, in which various elements of hardware and software of the database system may be
shared by one or more customers. For instance, a given application server may simultaneously
process requests for a great number of customers, and a given database table may store rows for

a potentially much greater number of customers. Various examples of such a multi-tenant on-

WO 2008/045199 PCT/US2007/020664

demand database service will be set forth in the context of different embodiments that will be
described during reference to subsequent figures.

[0023] As shown, the on-demand database service 102 communicates with a plurality of
developers 104. In use, the on-demand database service 102 is adapted to receive developed
applications from the developers 104. In the context of the present description, the developers
104 may include any one or more persons or entities (e.g. corporation, organization, etc.) that
develop computer code. Further, the applications may include any computer code (e.g. a
complete program, a partial program, a code segment, etc.).

[0024] In addition, the on-demand database service 102 communicates with one or more
tenants 106 of the on-demand database service 102. In the aforementioned embodiment where
the on-demand database service 102 includes a multi-tenant on-demand database service, a
plurality of the tenants 106 may exist. In any case, a tenant refers to any one or more persons or
entities that are capable of accessing the on-demand database service 102, in the present
description. For example, the tenant(s) 106 may subscribe to the on-demand database service
102.

[0025] By this design, the on-demand database service 102 serves to provide access to the
applications to the tenant(s) 106 of the on-demand database service 102. In use, the
aforementioned applications are under the control of the on-demand database service 102. By
administering such control, an improved development/runtime framework, etc. is thereby
provided. '

[0026] In various embodiments, such control may be administered in any desired manner.
For example, the on-demand database service 102 may enforce any desired policies by
precluding access to applications by the tenant(s) 106, in situations where the applications do not
adhere to the policies. In other embodiments, the on-demand database service 102 may enforce
such policies by precluding or limiting functionality accessible to the developers 104, in such
non-compliant scenario. For example, publication of an application to the on-demand database
service 102 may be disallowed in the absence of meeting certain requirements. In one specific
embodiment, the on-demand database service 102 may monitor and limit various aspects of the
applications and terminate related code, based on a dynamic contextual limiter. Of course, the

foregoing control may be implemented in any desired manner.

WO 2008/045199 PCT/US2007/020664

[0027] In one embodiment, the aforementioned control may take the form of limiting at least
one aspect of the applications by the on-demand database service 102. For instance, such aspect
may relate to processing, storage, bandwidth, etc. resources made available to the applications of
the developers 104. By this design, the on-demand database service 102 may be able constrain
the developers in a way that optimizes the ability of the on-demand database service 102 to
service the tenant(s) 106 via the applications.

[0028] In various embodiments, such resources-related aspect may involve a database
associated with the on-demand database service 102, a manner in which such database may be
accessed utilizing the applications, etc. In such embodiments, the foregoing aspect may include,
but is not limited to a number of columns of a database, a number of queries to a database in a
predetermined timeframe, a number of rows returned by queries, a number of database statements
(e.g. modification statements, etc.), a number of scﬁpt statements between database statements, a
number of rows processed (e.g. modified, etc.) in a predetermined timeframe, a number of
transaction statements, a total number of uncommitted rows since a last transaction control
statement, a total number of script statements since a last database call, a duration of processing,
etc.

[0029] Of course, such exemplary list is not to be construed as limiting. For example, any
aspect of the on-demand database service 102 (e.g. electronic mail management, etc.) may also be
limited as well. In one specific instance, a number of e-mails one can send per request and/or a
number of outbound web service calls made per request, may be limited. In various
embodiments, limits may be applied to an application on a per-request basis or on a per-time-
period (e.g. per day) basis. In the latter embodiment, such limitation may apply on a per-user or
per-tenant basis.

{0030] In other embodiments, a development of the applications may be controlled. For
example, the applications are controiled by imposing requirements of the on-demand database
service 102 that the applications be tested (e.g. validated, etc.). Such testing may, in one
embodiment, be natively run in an automated manner, by way of a call made to an application
program interface associated with the on-demand database service 102.

[0031] In other aspects of the present embodiment involving development controls, the on-
demand database service 102 may require that functional tests be written for applications and

further require a predetermined percentage of code coverage. In this embodiment, such technique

7

WO 2008/045199 PCT/US2007/020664

may allow one to run such tests whenever the on-demand database service 102 is modified, to
reduce the risk of accidentally breaking working applications. By this design, regression and/or
any other negative traits may be avoided. More information regarding one possible embodiment
involving such controlled testing will be set forth in greater detail during reference to FIG. 1B.

[0032] In still additional embodiments, access to the applications by the tenant(s) 106 of the
on-demand database service 102 may be controlled. For instance, a single instance of each
application may be instantiated among a plurality of the tenant(s) 106 of the on-demand database
service 102. Thus, only a single copy of the application need be stored by the on-demand
database service 102, and simultaneously shared amongst the tenant(s) 106 in the foregoing
manner.

[0033] It should be that the forgoing control may be static or dynamic, may or may not be
uniformly applied, etc. For example, the foregoing aspects and related control criteria may or
may not be different for different applications, tenants 106, etc. Just by way of example, the on-
demand database service 102 may allow for more resources when running an upgrade script, with
respect to when running a per-row database trigger, etc. Further, the on-demand database service
102 may allow for more resources for large tenants 106, etc.

{0034] FIG. 1B shows a method 150 for testing developed applications utilizing an on-
demand database service. As an option, the present method 150 may be implemented in the
context of the on-demand database service 102 of FIG. 1A. Of course, however, the method 150
may be carried out in any desired environment. The aforementioned definitions may apply during
the present description.

[0035] As shown, developed applications are received at an on-demand database service.

See operation 152. In various embodiments, the on-demand database service may or may not
include a multi-tenant on-demand database service.

[0036] Further, the developed applications may be received in whole or in part. For
example, in one embodiment, an application may be developed utilizing a separate system and
may be subsequently uploaded to the on-demand database service. In other embodiments, code
segments of the application may be received at the on-demand database service as the application
is being developed. Of course, hybrid systems are further contemplated which employ both of the
foregoing frameworks. Still yet, the aforementioned receipt of developed applications may or

may not occur over a network.

WO 2008/045199 PCT/US2007/020664

[0037] With continuing reference to FIG. 1B, the applications may be tested utilizing the on-
demand database service. See operation 154. In the context of the present description, such
testing may relate to any process for assessing at least one aspect of the applications. For
example, such aspect may include, but is not limited to operability, quality, efficiency (e.g. with
respect to resource requirements, etc.), etc. In various different embodiments, the testing may be
for debugging purposes, identifying unwanted deadlock situations, enforcing database semantics,
and/or any desired rules, for that matter.

[0038] In a particular embodiment, the foregoing testing may involve a unit test. Such unit
test may verify whether a particular piece of code of an application is working properly. As an
option, the unit test may take no arguments, commit no data to a database, etc. In other
embodiments, tests may be employed which cover as many lines of code as possible, and, in the
case of conditional logic (including ternary operators), execute each branch of code logic. '
Further, the tests may be designed to complete successfully without throwing any exceptions,
unless those errors are expected and caught. Still yet, tests may be configured to liberally make
use of “System.assert()” methods to prove that code behaves properly, exercise bulk trigger
functionality, etc.

[0039] In one embodiment, the testing may be controlled by the on-demand database service.
For example, all testing may be under the control of the on-demand database service. In other
embodiments, only some of the testing may be under the control of the on-demand database
service. In such embodiment, a first subset of the testing may be controlled by developers of the
applications, and a second subset of the testing may be controlled by the on-demand database
service. .

[0040] Further, the testing may occur at any desired time. For instance, the testing may be
periodic, on-demand, triggered by an event or milestone, etc. In one example, the testing may
occur automatically across all relevant applications upon at least one aspect (e.g. code, feature,
etc.) of the on-demand database service being added, upgraded, etc. To this end, continued
operation of the applications on the on-demand database service is ensured.

[0041] In another embodiment, the testing may be required by the on-demand database
service. Such requirement may be enforced in any desired manner (e.g. see, again, the
aforementioned exemplary enforcement techniques, etc.). As an option, it may be determined

whether at least one of the applications has passed the testing. To this end, access to such

9

WO 2008/045199 PCT/US2007/020664

application(s) may be conditionally provided, based on the determination. For example, access
may be provided to the application(s), if it is determined that the application(s) has passed the
testing. Further, such access to the application(s) may be precluded, if it is determined that the
application(s) has not passed the testing. As an option, a report may be provided to indicate an
extent and/or manner in which the testing was passed or failed, so that appropriate action may be
taken by the application developer. .

[0042] A definition of requirements for such pass may be configured in any desired manner.
For example, such pass criteria may be defined by the on-demand database service. Further, the
criteria may involve any desired parameters, thresholds, etc. To this end, a managed code
environment is provided that requires application developers to give up some control over the
development process, in exchange for the benefit of standardized improvements in applications
available via the on-demand database service.

[0043] FIG. 2 shows a method 200 for extending an interface that executes with an on-
demand database service. As an option, the present method 200 may be implemented in the
context of the on-demand database service 102 of FIG. 1A. In various embodiments, the on-
demand database service may or may not include a multi-tenant on-demand database service. Of
course, however, the method 200 may be carried out in any desired environment. The
aforementioned definitions may apply during the present description.

[0044] As shown, at least one programming language instruction is received at a platform on
which applications can be built. See operation 202. The receipt of such instruction may be
accomplished in any desired manner. For example, the at least one programming language .
instruction may or may not be received at an API associated with the platform.

[0045] In various embodiments, such platform may or may not be part of the on-demand
database service 102 of Figure 1, and may be adapted for sharing applications. It should be
noted, however, the platform may include any hardware and/or software that is capable of
allowing applications to be built. Of course, such applications may or may not be built by third
parties (e.g. parties other than that associated with the platform, etc.).

[0046] In the context of the present description, the foregoing applications may include any
desired software, and such application may be built in any desired manner. For example, in
various embodiments, such “building’” may range from providing a forum to manage the entire or

a portion of the development process, to simply making a pre-existing application accessible for

10

WO 2008/045199 PCT/US2007/020664

use, etc. Still yet, in the present description, the aforementioned programming language
instruction may include any piece of code recognizable by the platform.

[0047] With continuing reference to FIG. 2, a set of instructions to an on-demand database
service may be prepared, based on the at least one programming language instruction. See '
operation 204. In the context of the present description, the set of instructions may include any
code that is recognizable by the on-demand database service.

[0048] In other embodiments where the on-demand database service has the ability to call
out to other external systems, the set of instructions may refer to instructions to another system
via the on-demand database service. Further, the aforementioned controls may be applied to any
call out request to such external systems. For example, such call out request may be given a
lower priority (e.g. disallowed during a low level database operations involving locks, etc.).

[0049] In one embodiment involving a multi-tenant on-demand database service, the set of
instructions may be configured to be applied to all tenants. In another embodiment, the set of
instructions may be tenant-specific. In other words, the set of instructions may be prepared to
query for information related to a single tenant (or subset of tenants) selected from the tenants
storing data utilizing the on-demand database service.

[0050] To this end, the set of instructions may be applied (e.g. to the on-demand database
service) to affect a result, in accordance with the programming language instruction. See
operation 206. In various embodiments, the set of instructions may be applied to provide a result
set from the on-demand database service, updating data in the on-demand database service, and/or
performing any desired action or altering an existing action, in accordance with the programming
language instruction. In one particular embodiment, the set of instructions may be applied to
extend an interface (e.g. API, graphical user interface, etc.) of the on-demand database service in
any desired manner,

[0051] Various possible features may be enabled by the foregoing extension technique. In
one embodiment, the set of instructions may be applied to run a set of multi-object manipulations
at the on-demand database service responsive to a single transaction. For example, the
manipulation of multiple objects which previously required multiple transactions, may, after the
extension, require a single transaction.

[0052] An example of the method 200 of FIG. 2 will now be set forth in the context of the

on-demand database service 102 of FIG. 1A that incorporates the aforementioned platform. In

11

WO 2008/045199 PCT/US2007/020664

such example, the instruction of operation 202 may be received at the on-demand database
service 102 from the developer 104. Thereafter, the on-demand database service 102 may
prepare the set of instructions of operation 204. To this end, such set of instructions of operation
204 may be applied by the on-demand database service 102, in conjunction with use of an
application by the tenant(s) 106. By this design, any desired aspect of the on-demand database
service 102 (e.g. one of the applications, etc.) may be extended in accordance with the original
the instruction received from the developer 104.

[0053) In some embodiments, the programming language instruction may include a format,

syntax, etc. that is tailored for use with a database system. In one specific embodiment, a

procedural language salesforce object query language (PL/SOQL) programming language

instruction may be employed. In the present embodiment, the PL/SOQL is capable of serving as

a procedural extension fo an on-demand database centric service API that allows flow control

and transaction control to execute on a server in conjunction with database APIs [e.g. SOQL,

data manipulation language (DML), etc.]. The PL/SOQL can enable the capability to thread
together multiple SOQL/DML statements as a single unit of work on the server. The PL/SOQL
need not necessarily be considered a general purpose programming language, as it is heavily data
focused, in some embodiments. It may, in one optional embodiment, be used by developers to
interface with an on-demand database system, in contrast to traditional application developers’
conventional tools, such as PL/SQL by Oracle®, Inc. of Redwood Shores, California and others.

[0054] The present PL/SOQL embodiment may also include syntax and semantics intended

to emulate that of Java, however, the present embodiment is not limited to Java. The PL/SOQL

embodiments may include variable and expression syntax, block and conditional syntax, loop
syntax, object and array notation, pass by reference, etc. Where embedded concepts that
interface with on-demand database applications are provided, syntax and semantics that are easy
to understand and which encourage efficient use of database APIs may also be employed.

[0055] FIG. 3 shows a system 300 for allowing access to developed applications via an on-
demand database service 302, in accordance with another embodiment. As an option, the present
system 300 may be implemented in the context of the architecture and functionality of FIGS. 1-2.
Of course, however, the system 300 may be carried out in any desired environment. Again, the

aforementioned definitions may apply during the present description.

12

WO 2008/045199 PCT/US2007/020664

[0056] As shown, the on-demand database service 302 remains in communication with a
developer 304 and at least one end user tenant 306 via a network 308. Further, the on-demand
database service 302 includes an application server 310 that interfaces with the developer 304 and
user tenant 306 differently. Specifically, the appiication server 310 may interface with the
developer 304 during a compile-time phase, and the user tenant 306 during a runtime phase.

[0057] For example, the application server 310 is adapted to receive program language
instructions (e.g. script, etc.) from the developer 304 who may, in one embodiment, intend to
extend an API of the on-demand database service 302. In response to receiving such script, the
application server 310 processes (e.g. compiles, etc.) and stores the same in a database 312. As
an option, such processing may further include any of the desired controls mentioned earlier, to
make sure that the developer 304 employs best practices, or any other predetermined practices in
script development. In one embodiment, such compiled script may be stored in the form of
metadata, for use in response to requests from the end user tenant 306. By this feature, the script
may be adapted to be triggered in response to a particular associated request (e.g. request to
select, access, modify, etc. an object) from the end user tenant 306.

[0058] Specifically, the application server 310 is further adapted for receiving requests from
the end user tenant 306. In response to such requests, they are processed utilizing a run-time
interpreter 314 of the application server 310, by using such request to identify and retrieve the
correlating compiled script from the database 312. The run-time interpreter 314 is further
equipped with the ability to processing the compiled script. The compiled script thus may dictate
the manner in which the request is fulfilled, etc. As mentioned earlier, such compiled script may
allow for more efficient retrieval of database information, and/or any other desired enhancement,
etc.

[0059] FIG. 4 shows a method 400 for receiving and processing script from a developer, in
accordance with another embodiment. As an option, the present method 400 may be
implemented in the context of the architecture and functionality of FIGS. 1-3. For example, the
method 400 may represent functionality of the application server 310 of FIG. 3, with respect to
the developer 304. Of course, however, the method 400 may be carried out in any desired
environment. Again, aforementioned definitions may apply during the present description.

[0060] As shown, the present method 400 is triggered upon receipt of script from a

developer. See decision 402. In response to such receipt, the script is compiled, as set forth in

13

WO 2008/045199 PCT/US2007/020664

operation 404. In response to such compilation, the compiled script 'is stored in the form of
metadata, as indicated in operation 406. To this end, the metadata is made available for retrieval
and use in conjunction with requests by an end user tenant.

[0061] FIG. 5 shows a method 500 for receiving and processing requests from an end user,
in accordance with another embodiment. As an option, the present method 500 may be
implemented in the context of the architecture and functionality of FIGS. 1-3. For example, the
method 500 may represent functionality of the application server 310 of FIG. 3, with respect to
the end user tenant 306. Further, the method 500 may follow the method 400 of FIG. 4. Of
course, however, the method 500 may be carried out in any desired environment. Yet gain,
aforementioned definitions may apply during the present description.

[0062] In decisions 502, it is first determined whether a request is received from an end user
tenant. If so, such request is first translated in compliance with a format, protocol, etc. that may
be used to retrieve metadata stored in a database (see operation 406 of Figure 4). Note operations
506-508. Such metadata may then be processed at runtime, for affecting results returned to the
end user tenant, as indicated in operation 510.

System Overview

[0063] FIG. 6 illustrates a block diagram of an environment 610 wherein an on-demand

database service might be used. As an option, any of the previously described embodiments of

the foregoing figures may or may not be implemented in the context of the environment 610.

Environment 610 may include user systems 612, network 614, system 616, processor system

617, application platform 618, network interface 620, tenant data storage 622, system data

storage 624, program code 626, and process space 628. In other embodiments, environment 610

may not have all of the components listed and/or may have other elements instead of, or in

addition to, those listed above.

[0064] Environment 610 is an environment in which an on-demand database service exists.
User system 612 may be any machine or system that is used by a user to access a database user

system. For example, any of user systems 612 can be a handheld computing device, a mobile
phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated

in FIG. 6 (and in more detail in FIG. 7) user systems 612 might interact via a network with an

on-demand database service, which is system 616.

14

WO 2008/045199 PCT/US2007/020664

[0065] An on-demand database service, such as system 616, is a database system that is
made available to outside users that do not need to necessarily be concerned with building and/or
maintaining the database system, but instead may be available for their use when the users need
the database system (e.g., on the demand of the users). Some on-demand database services may
store information from one or more tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly, “on-demand database service 6167
and “system 616” will be used interchangeably herein. A database image may include one or
more database objects. A relational database management system (RDMS) or the equivalent
may execute storage and retrieval of information against the database object(s). Application
platform 618 may be a framework that allows the applications of system 616 to run, such as the
hardware and/or software, e.g., the operating system. In an embodiment, on-demand database
service 616 may include an application platform 618 that enables creation, managing and
executing one or more applications developed by the provider of the on-demand database
service, users accessing the on-demand database service via user systems 612, or third party
application developers accessing the on-demand database service via user systems 612.

[0066] The users of user systems 612 may differ in their respective capacities, and the
capacity of a particular user system 612 might be entirely determined by permissions (penﬁission
levels) for the current user. For example, where a salesperson is using a particular user system
612 to interact with system 616, that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to interact with system 616, that user
system has the capacities allotted to that administrator. In systems with a hierarchical role
model, users at one permission level may have access to applications, data, and database
information accessible by a lower permission level user, but may not have access to certain
applications, database information, and data accessible by a user at a higher permission level.
Thus, different users will have different capabilities with regard to accessing and modifying
application and database information, depending on a user’s security or permission level.

[0067] Network 614 is any network or combination of networks of devices that communicate
with one another. For example, network 614 can be any one or any combination of a LAN (local
area network), WAN (wide area network), telephone network, wireless network, point-to-point
network, star network, token ring network, hub network, or other appropriate configuration. As

the most common type of computer network in current use is a TCP/IP (Transfer Control

15

WO 2008/045199 PCT/US2007/020664

Protocol and Internet Protocol) network, such as the global internetwork of networks often
referred to as the “Internet” with a capital “I,” that network will be used in many of the examples
herein. However, it should be understood that the networks that the present invention might use
are not so limited, although TCP/IP is a frequently implemented protocol.

[0068] User systems 612 might communicate with system 616 using TCP/IP and, at a higher
network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 612 might include an HTTP client
commonly referred to as a “browser” for sending and receiving HTTP messages to and from an
HTTP server at system 616. Such an HTTP server might be implemented as the sole network
interface between system 616 and network 614, but other techniques might be used as well or
instead. In some implementations, the interface between system 616 and network 614 includes
load sharing functionality, such as round-robin HTTP request distributors to balance loads and
distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users
that are accessing that server, each of the plurality of servers has access to the MTS? data;
however, other alternative configurations may be used instead.

[0069] In one embodiment, system 616, shown in FIG. 6, implements a web-based customer
relationship management (CRM) system. For example, in one embodiment, system 616 includes
application servers configured to implement and execute CRM software applications as well as
provide related data, code, forms, webpages and other information to and from user systems 612
and to store to, and retrieve from, a database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be stored in the same physical
database object, however, tenant data typically is arranged so that data of one tenant is kept
logically separate from that of other tenants so that one tenant does not have access to another
tenant’s data, unless such data is expressly shared. In certain embodiments, system 616
implements applications other than, or in addition to, a CRM application. For example, system
616 may provide tenant access to multiple hosted (standard and custom) applications, including a
CRM application. User (or third party developer) applications, which may or may not include
CRM, may be supported by the application platform 618, which manages creation, storage of the
applications into one or more database objects and executing of the applications in a virtual

machine in the process space of the system 616.

16

WO 2008/045199 PCT/US2007/020664

[0070] One arrangement for elements of system 616 is shown in FIG. 7, including a network
interface 620, application platform 618, tenant data storage 622 for tenant data 623, system data
storage 624 for system data accessible to system 616 and possibly multiple tenants, program
code 626 for implementing various functions of system 616, and a process space 628 for
executing MTS system processes and tenant-specific processes, such as running applications as
part of an application hosting service. Additional processes that may execute on system 616
include database indexing processes.

[0071} Several elements in the system shown in FIG. 6 include conventional, well-known
elements that are explained only briefly here. For example, each user system 612 could include a
desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access
protocol (WAP) enabled device or any other computing device capable of interfacing directly or
indirectly to the Internet or other network connection. User system 612 typically runs an HTTP
client, e.g., a browsing program, such as Microsoft’s Internet Explorer browser, Netscape’s
Navigator browser, Opera’s browser, or a WAP-enabled browser in the case of a cell phone,
PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant
database system) of user system 612 to access, process and view information, pages and
applications available to it from system 616 over network 614. Each user system 612 also
typically includes one or more user interface devices, such as a keyboard, a mouse, trackbail,
touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUT)
provided by the browser on a display (e.g., a monitor screen, LCD display, erc.) in conjunction
with pages, forms, applications and other information provided by system 616 or other systems
or servers. For example, the user interface device can be used to access data and applications
hosted by system 616, and to perform searches on stored data, and otherwise allow a user to
interact with various GUI pages that may be presented to a user. As discussed above,
embodiments are suitable for use with the Internet, which refers to a specific global internetwork
of hetworks. However, it should be understood that other networks can be used instead of the
Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based
network, any LAN or WAN or the like.

[0072] According to one embodiment, each user system 612 and all of its components are
operator configurable using applications, such as a browser, including computer code run using a

central processing unit such as an Intel Pentium® processor or the like. Similarly, system 616

17

WO 2008/045199 PCT/US2007/020664

(and additional instances of an MTS, where more than one is present) and all of their
components might be operator configurable using application(s) including computer code to run
using a central processing unit such as processor system 617, which may include an Intel
Pentium® processor or the like, and/or multiple processor units. A computer program product
embodiment includes a machine-readable storage medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the
embodiments described herein. Computer code for operating and configuring system 616 to
intercommunicate and to process webpages, applications and other data and media content as
described herein are preferably downloaded and stored on a hard disk, but the entire program
code, or portions thereof, may also be stored in any other volatile or non-volatile memory
medium or device as is well known, such as a ROM or RAM, or provided on any media capable
of storing program code, such as any type of rotating media including floppy disks, optical discs,
digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and
magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media
or device suitable for storing instructions and/or data. Additionally, the entire program code, or
portions thereof, may be transmitted and downloaded from a software source over a transmission
medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any
other conventional network connection as is well known (e.g., extranet, VPN, LAN, erc.) using
any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are
well known. It will also be appreciated that computer code for implementing embodiments of
the present invention can be implemented in any programming language that can be executed on
a client system and/or server or server system such as, for example, C, C++, HTML, any other
markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript,
and many other programming languages as are well known may be used. (Java™ is a trademark
of Sun Microsystems, Inc.).

[0073] According to one embodiment, each system 616 is configured to provide webpages,
forms, applications, data and media content to user (client) systems 612 to support the access by
user systems 612 as tenants of system 616. As such, system 616 provides security mechanisms
to keep each tenant’s data separate unless the data is shared. If more than one MTS is used, they
may be located in close proximity to one another (e.g., in a server farm located in a single

building or campus), or they may be distributed at locations remote from one another (e.g., one

18

WO 2008/045199 PCT/US2007/020664

or more servers located in city A and one or more servers located in city B). As used herein,
each MTS could include one or more logically and/or physically connected servers distributed
locally or across one or more geographic locations. Additionally, the term “server” is meant to
include a computer system, including processing hardware and process space(s), and an
associated storage system and database application (e.g., OODBMS or RDBMS) as is well
known in the art. It should also be understood that “server system™ and “server” are often used
interchangeably herein. Similarly, the database object described herein can be implemented as
single daiabases, a distributed database, a collection of distributed databases, a database with
redundant online or offline backups or other redundancies, etc., and might include a distributed
database or storage network and associated processing intelligence.

[0074] FIG. 7 also illustrates environment 610. However, in FIG. 7 elements of system 616
and various interconnections in an embodiment are further illustrated. FIG. 7 shows that user
system 612 may include processor system 612A, memory system 612B, input system 612C, and
output system 612D. FIG. 7 shows network 614 and system 616. FIG. 7 also shows that system
616 may include tenant data storage 622, tenant data 623, system data storage 624, system data
625, User Interface (UI) 730, Application Program Interface (API) 732, PL/SOQL 734, save
routines 736, application setup mechanism 738, applications servers 1000;-1000y, system
process space 702, tenant process spaces 704, tenant management process space 710, tenant
storage area 712, user storage 714, and application metadata 716. In other embodiments,
environment 610 may not have the same elements as those listed above and/or may have other
elements instead of, or in addition to, those listed above.

[0075] User system 612, network 614, system 616, tenant data storage 622, and system data
storage 624 were discussed above in FIG. 6. Regarding user system 612, processor system 612A
may be any combination of one or more processors. Memory system 612B may be any
combination of one or more memory devices, short term, and/or long term memory. Input
system 612C may be any combination of input devices, such as one or more keyboards, mice,
trackballs, scanners, cameras, and/or interfaces to networks. Qutput system 612D may be any
combination of output devices, such as one or more monitors, printers, and/or interfaces to
networks. As shown by FIG. 7, system 616 may include a network interface 620 (of FIG. 6)
implemented as a set of HTTP application servers 700, an application platform 618, tenant data

storage 622, and system data storage 624. Also shown is system process space 702, including

19

WO 2008/045199 PCT/US2007/020664

individual tenant process spaces 704 and a tenant management process space 710. Each
application server 1000 may be configured to tenant data storage 622 and the tenant data 623
therein, and system data storage 624 and the system data 625 therein to serve requests of user
systems 612. The tenant data 623 might be divided into individual tenant storage areas 712,
which can be either a physical arrangement and/or a logical arrangement of data. Within each
tenant storage area 712, user storage 714 and application metadata 716 might be similarly
allocated for each user. For example, a copy of a user’s most recently used (MRU) items might
be stored to user storage 714. Similarly, a copy of MRU items for an entire organization that is a
tenant might be stored to tenant storage area 712. 'A UI 730 provides a user interface and an API
732 provides an application programmer interface to system 616 resident processes to users
and/or developers at user systems 612, The tenant data and the system data may be stored in
various databases, such as one or more Oracle™ databases.

[0076] Application platform 618 includes an application setup mechanism 738 that supports
application developers’ creation and management of applications, which may be saved as
metadata into tenant data storage 622 by save routines 736 for execution by subscribers as one or
more tenant process spaces 704 managed by tenant management process 710 for example.
Invocations to such applications may be coded using PL/SOQL 34 that provides a programming
language style interface extension to API 732. Invocations to applications may be detected by
one or more system processes, which manages retrieving application metadata 716 for the
subscriber making the invocation and executing the metadata as an application in a virtual
machine.

[0077] Each application server 700 may be communicably coupled to database systems, e.g.,
having access to system data 625 and tenant data 623, via a different network connection. For
example, one application server 700; might be coupled via the network 614 (e.g., the Internet),
another application server 700n.; might be coupled via a direct network link, and another
application server 700y might be coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating
between application servers 700 and the database system. However, it will be apparent to one
skilled in the art that other transport protocols may be used to optimize the system depending on

the network interconnect used.

20

WO 2008/045199 PCT/US2007/020664

[0078] In certain embodiments, each application server 700 is configured to handle requests
for any user associated with any organization that is a tenant. Because it is desirable to be able to
add and remove application servers from the server pool at any time for any reason, there is
preferably no server affinity for a user and/or organization to a specific,application server 700.
In one embodiment, therefore, an interface system implementing a load balancing function (e.g.,
an F5 Big-IP load balancer) is communicably coupled between the application servers 700 and
the user systems 612 to distribute requests to the application servers 700. In one embodiment,
the load balancer uses a least connections algorithm to route user requests to the application
servers 700. Other examples of load balancing algorithms, such as round robin and observed
response time, also can be used. For example, in certain embodiments, three consecutive
requests from the same user could hit three different application servers 700, and three requests
from different users could hit the same application server 700. In this manner, system 616 is
multi-tenant, wherein system 616 handles storage of, and access to, different objects, data and
applications across disparate users and organizations.

[0079] As an example of storage, one tenant might be a company that employs a sales force
where each salesperson uses system 616 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data, performance data, goals and progress
data, etc., all applicable to that user’s personal sales process (e.g., in tenant data storage 622). In
an example of a MTS arrangement, since all of the data and the applications to access, view,
modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having
nothing more than network access, the user can manage his or her sales efforts and cycles from
any of many different user systems. For example, if a salesperson is visiting a customer and the
customer has Internet access in their lobby, the salesperson can obtain critical updates as to that
customer while waiting for the customer to arrive in the lobby.

[0080] While each user’s data might be separate from other users’ data regardless of the
employers of each user, some data might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization that is a tenant. Thus, there might be
some data structures managed by system 616 that are allocated at the tenant level while other
data structures might be managed at the user level. Because an MTS might support multiple
tenants including possible competitors, the MTS should have security protocols that keep data,

applications, and application use separate. Also, because many tenants may opt for access to an

21

WO 2008/045199 PCT/US2007/020664

MTS rather than maintain their own system, redundancy, up-time, and backup are additional
functions that may be implemented in the MTS. In addition to user-specific data and tenant-
specific data, system 616 might also maintain system level data usable by multiple tenants or
other data. Such system level data might include industry reports, news, postings, and the like
that are sharable among tenants.

[0081] In certain embodiments, user systems 612 (which may be client systems)
communicate with application servers 700 to request and update system-level and tenant-level
data from system 616 that may require sending one or more queries to tenant data storage 622
and/or system data storage 624. System 616 (e.g., an application server 700 in system 616)
automatically generates one or more SQL statements (e.g., one or more SQL queries) that are
designed to access the desired information. System data storage 624 may generate query plans to
access the requested data from the database.

[0082] Each database can generally be viewed as a collection of objects, such as a set of
logical tables, containing data fitted into predefined categories. A “table” is one representation
of a data object, and may be used herein to simplify the conceptual description of objects and
custom objects according to the present invention. It should be understood that “table” and
“object” may be used interchangeably herein. Each table generally contains one or more data
categories logically arranged as columns or fields in a viewable schema. Each row or record of a
table contains an instance of data for each category defined by the fields. For example, a CRM
database may include a table that describes a customer with fields for basic contact information
such as name, address, phone number, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer, product, sale price, date, etc. In some
multi-tenant database systems, standard entity tables might be provided for use by all tenants.
For CRM database applications, such standard entities might include tables for Account,
Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood
that the word “entity” may also be used interchangeably herein with “object” and “table”.

[0083] In some mﬁlti-tenant database systems, tenants may be allowed to create and store
custom objects, or they may be allowed to customize standard entities or objects, for example by
creating custom fields for standard objects, including custom index fields. In certain
embodiments, for example, all custom entity data rows are stored in a single multi-~tenant

physical table, which may contain multiple logical tables per organization. It is transparent to

22

WO 2008/045199 PCT/US2007/020664

customers that their multiple “tables” are in fact stored in one large table or that their data may
be stored in the same table as the data of other customers.

[0084] While the invention has been described by way of example and in terms of the
specific embodiments, it is to be understood that the invention is not limited to the disclosed
embodiments. To the contrary, it is intended to cover various modifications and similar
arrangements as would be apparent to those skilled in the art. Therefore, the scope of the

appended claims should be accorded the broadest interpretation so as to encompass all such

modifications and similar arrangements.

23

WO 2008/045199 PCT/US2007/020664

In the Claims:

1. A method, comprising:
receiving developed applications at a multi-tenant on-demand database service; and
providing access to the applications to tenants of the on-demand database service;

wherein the applications are under the control of the on-demand database service.

2. The method of claim 1, wherein at least one aspect of the applications is limited by the

on-demand database service.

3. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes an amount of resources made available to the applications.

4, The method of claim 3, wherein the resources include at least one of storage resources,

processing resources, and bandwidth resources.

5. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of columns of a database.

6. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of queries to a database.

7. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of number of rows returned by queries.

24

WO 2008/045199 PCT/US2007/020664

8. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of database statements.

9. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of script statements between database statements.

10. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of number of rows processed.

11. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of transaction statements. ~

12, The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a total number of uncommitted rows since a last transaction control statement.

13. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a fotal number of script statements since a last database call.

14. The method of claim 1, wherein a development of the applications is controlled.

15. The method of claim 14, wherein the applications are controlled by a requirement of the

on-demand database service that the applications be tested.

25

WO 2008/045199 PCT/US2007/020664

16. The method of claim 14, wherein the applications are controlled by a requirement of the

on-demand database service that the applications be validated.

17. The method of claim 1, wherein access to the applications by the tenants of the on-

demand database service is controlled.

18. The method of claim 17, wherein a single instance of each application is instantiated

among a plurality of the tenants of the on-demand database service.

19. The method of claim 1, and further comprising compiling the applications.

20. The method of claim 19, wherein the compiled applications are capable of being

processed by a run-time interpreter of the on-demand database service.

21. The method of claim 19, wherein the compiled applications include metadata.
22. The method of claim 21, wherein the metadata is stored in a database.
23. The method of claim 2, wherein the at least one aspect of the applications that is limited

includes a number of electronic mail messages.

24. A machine-readable medium carrying one or more sequences of instructions which, when

executed by one or more processors, cause the one or more processors to carry out the steps of:
receiving developed applications at a multi-tenant on-demand database service; and
providing access to the applications to tenants of the on-demand database service;

wherein the applications are under the control of the on-demand database service.

26

WO 2008/045199 PCT/US2007/020664

25. An apparatus, comprising;:
a processor; and
one or more stored sequences of instructions which, when executed by the
processor, cause the processor to carry out the steps of:
receiving developed applications at a multi-tenant on-demand database
service; and
providing access to the applications to tenants of the on-demand database
service;
wherein the applications are under the control of the on-demand database

service.

26. A method for transmitting code for use in a multi-tenant database system on a
transmission medium, the method comprising:

transmitting code to receive developed applications at a multi-tenant on-demand database
service; and

transmitting code to provide access to the applications to tenants of the on-demand
database service;

wherein the applications are under the control of the on-demand database service.

27. A method, comprising:

receiving, at a platform on which applications can be built, at least one programming
language instruction;

preparing, based on the at least one programming language instruction, a set of
instructions to an on-demand database service; and

applying the set of instructions to the on-demand database service to affect a result, in

accordance with the programming language instruction.

28. The method of claim 27, wherein the set of instructions is applied to extend an interface.

29. The method of claim 28, wherein the interface includes an application program interface.

27

WO 2008/045199 PCT/US2007/020664

30. The method of claim 28, wherein the interface includes a graphical user interface.

31. The method of claim 27, wherein the set of instructions is applied to provide a result set

from the on-demand database service, in accordance with the programming language instruction.

32. The method of claim 27, wherein the set of instructions is applied to update data in the

on-demand database service, in accordance with the programming language instruction.

33. The method of claim 27, wherein the set of instructions is applied to run a set of muliti-

object manipulations at the on-demand database service responsive to a single transaction.

34. The method of claim 27, wherein the applications are built by third parties.

35. The method of claim 27, wherein the at least one programming language instruction

includes a PL/SOQL language instruction.

36. The method of claim 27, wherein the at least one programming language instruction is

received at an application program interface of the platform.

37. The method of claim 27, wherein the platform is adapted for sharing the applications.

38. The method of claim 27, wherein the on-demand database service includes a multi-tenant

on-demand database service.

28

WO 2008/045199 PCT/US2007/020664

39. The method of claim 27, wherein the set of instructions are prepared to query for
information related to a tenant selected from a plurality of tenants storing data utilizing the on-

demand database service.

40. The method of claim 27, wherein the platform allows developers to upload the
applications, and allows tenants of the on-demand database service to use the uploaded

applications.

41. The method of claim 40, wherein the uploaded applications are under the control of the

on-demand database service.

42, A method, comprising:

receiving, at a platform on which applications can be built, at least one programming
language instruction;

preparing, based on the at least one programming language instruction, a set of
instructions to another system via an on-demand database service; and

applying the set of instructions to affect a result, in accordance with the programming

language instruction.

43. The method of claim 42, wherein the other system includes an external system.

44, A machine-readable medium carrying one or more sequences of instructions which, when
executed by one or more processors, cause the one or more processors to carry out the steps of:

receiving, at a platform on which applications can be built, at least one programming
language instruction;

preparing, based on the at least one programming language instruction, a set of
instructions to an on-demand database service; and

applying the set of instructions to the on-demand database service to affect a result, in

accordance with the programming language instruction.

29

WO 2008/045199 PCT/US2007/020664

45, An apparatus, comprising:
a processor; and
one or more stored sequences of instructions which, when executed by the
processor, cause the processor to carry out the steps of:
receiving, at a platform on which applications can be built, at least one
programming language instruction;
preparing, based on the at least one programming language instruction, a
set of instructions to an on-demand database service; and
applying the set of instructions to the on-demand database service to affect

a result, in accordance with the programming language instruction.

46. A method for transmitting code for use in a multi-tenant database system on a
transmission medium, the method comprising:

transmitting code to receive, at a platform on which applications can be built, at least one
programming language instruction; '

transmitting code to prepare, based on the at least one programming language instruction,
a set of instructions to an on-demand database service; and

transmitting code to apply the set of instructions to the on-demand database service to

affect a result, in accordance with the programming language instruction.
47. A method, comprising:
receiving developed applications at an on-demand database service; and

testing the applications utilizing the on-demand database service.

48. The method of claim 47, wherein the testing is required by the on-demand database

service.

49, The method of claim 47, wherein the testing is controlled by the on-demand database

service.

30

WO 2008/045199 PCT/US2007/020664

50. The method of claim 47, wherein a first subset of the testing is controlled by developers
of the applications, and a second subset of the testing is controlled by the on-demand database
service.

51. The method of claim 47, wherein the testing is for debugging purposes.

52. The method of claim 47, wherein the testing is for identifying deadlock situations.

53. The method of claim 47, wherein the testing is for enforcing database semantics.

54. The method of claim 47, wherein the testing is for enforcing a plurality of rules.

55. The method of claim 47, and further comprising determining whether at least one of the

applications has passed the testing.

56. The method of claim 55, and further comprising conditionally providing access to the at

least one application, based on the determination.

57. The method of claim 56, wherein the access is conditionally provided to at least one

tenant of the on-demand database service.

58. The method of claim 56, and further comprising providing access to the at least one

application, if it is determined that the at least one application has passed the testing.

59. The method-of claim 56, and further comprising precluding access to the at least one

application, if it is determined that the at least one application has not passed the testing.
60. The method of claim 47, and further comprising compiling the applications.

61. The method of claim 60, wherein the compiled applications are capable of being

processed by a run-time interpreter of the on-demand database service.

31

WO 2008/045199 PCT/US2007/020664

62. The method of claim 60, wherein the compiled applications include metadata.

63. The method of claim 62, wherein the metadata is stored in a database.

64. The method of claim 47, wherein the on-demand database service includes a multi-tenant

on-demand database service.

65. The method of claim 47, wherein the testing includes at least one unit test.

66. A machine-readable medium carrying one or more sequences of instructions which, when "
executed by one or more processors, cause the one or more processors to carry out the steps of:
receiving developed applications at an on-demand database service; and

testing the applications utilizing the on-demand database service.

67. An apparatus, comprising:
a processor; and
one or more stored sequences of instructions which, when executed by the
processor, cause the processor to carry out the steps of’
receiving developed applications at an on-demand database service; and

testing the applications utilizing the on-demand database service.

68. A method for transmitting code for use in a multi-tenant database system on a
transmission medium, the method comprising:
transmitting code to receive developed applications at an on-demand database service;
and

transmitting code to test the applications utilizing the on-demand database service.

32

WO 2008/045199

104

/\/

1/8

DEVELOPERS

PCT/US2007/020664

<::;;0

102
pad 106
/\/
TENANT(S) OF
ON-DEMAND g ! ON-DEMAND
DATABASE DATABASE SERVICE
SERVICE

FIGURE 1A

WO 2008/045199 PCT/US2007/020664

2/8

%150

162
RECEIVING DEVELOPED APPLICATIONS AT /-/

AN ON-DEMAND DATABASE SERVICE

l

TESTING THE APPLICATIONS UTILIZING /-/
THE ON-DEMAND DATABASE SERVICE

164

FIGURE 1B

WO 2008/045199

3/8

RECEIVING AT A PLATFORM ONTO WHICH
APPLICATIONS CAN BE BUILT, AT LEAST
ONE PROGRAMMING LANGUAGE
INSTRUCTION

!

PREPARING, BASED ON THE AT LEAST
ONE PROGRAMMING LANGUAGE
INSTRUCTION, A SET OF INSTRUCTIONS
TO AN ON-DEMAND DATABASE SERVICE

!

APPLYING THE SET OF INSTRUCTIONS TO
THE ON-DEMAND DATABASE SERVICE TO
AFFECT A RESULT IN ACCORDANCE WITH
THE PROGRAMMING LANGUAGE
INSTRUCTION

FIGURE 2

PCT/US2007/020664

%200

202

204

206

PCT/US2007/020664

WO 2008/045199

4/8

20e

€ 3dNOld

0og

AN
+ [| ¥asn ana
iy NETEREEI
183nday T, 183ND3Y
V.LVav.Law o
¥3do13A3a
- NEL LT
3000 3000 'ﬁv
@ a3 11dnwo9D zo_\k.wo_._n_% Eoﬂ_n_s_ooz: i)
rAT> oLE l_@ .

70€

WO 2008/045199 PCT/US2007/020664

5/8

%400

402

RECEIVE
SCRIPT?

404
COMPILE SCRIPT 7
406
SAVE COMPILED |~
SCRIPT AS METADATA

FIGURE 4

WO 2008/045199 PCT/US2007/020664

6/8

%500

502

REQUEST
RECEIVED?

504

TRANSLATE REQUEST

!

RETRIEVE METADATA (‘/

!

PROCESS METADATA ad

!

oOUTPUTRESULTS V™

FIGURE 5

506

508

510

WO 2008/045199 PCT/US2007/020664

7/8

%600

Tenant
P m
Data o
Storage
/- 628
f 618 Processor
System Process Space
Application 620
Platform /
Network System £16
Interface

Environment 610

User User
System | = ot System
812 612

FIGURE 6

WO 2008/045199

PCT/US2007/020664

8/8
- 1 - 622 j
| %- 623
624 [TenantSpace |~ 712
-—— : 1
E 625 User Storage ~ 714
— Application MetaData [716
Application
Setup Tenant Management System L
Mechanism 738 Process Process 616
Save | 710 702
Routines 736
Tenant 1 || Tenant 2 Tenant N
PLI%(;QL Process || Process Process
L
618 ~Y0s — o2
AP1732 ul 730
~ — -
~ —
-~ ——
S~ ——
~ — -
S~ -
-~ -—
Appl. - 700, Appl. |~ 700x
Server T Server —~
Environment
610
Network
614
612
— 612
Processor Memory
System 612A | | System 612B
Input Qutput
System 612C | | System 612D

FIGURE 7

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings

