[54] 发明名称 利用模型切换和属性插值的自适应多变量过程控制器

[57] 摘要

一种自适应多变量过程控制系统，包括具有多变量过程模型和自适应系统的多变量过程控制器，如模型预测控制器，该多变量过程模型的特征在于一组两个或更多个单输入单输出(SISO)模型，并且该自适应系统自适应该多变量过程模型。该自适应系统检测足以开始自适应循环的过程输入中的变化，并且当检测到该变化时，收集执行模型自适应所需的过程输入和输出数据。接下来，例如，基于哪些过程输入与实际(测得的)输出和由多变量过程模型形成的过程输出之间的误差最相关的确定结果，该自适应系统确定多变量过程模型内自适应的SISO模型子集。然后，该自适应系统执行标准的或公知的模型切换和参数插值技术自适应每一个所选的SISO模型。在自适应一个或多个SISO模型之后，通过确定自适应后的多变量过程模型与当前
1. 一种多变量过程模型自适应方法，该多变量过程模型由两个或更多的在过程控制器中使用的单输入单输出(SISO)模型组成，该过程控制器利用多变量过程模型执行过程控制，该方法包括：
选择SISO模型的子集来进行自适应；
单独自适应所选SISO模型子集中的每一个SISO模型；以及
将自适应后的SISO模型子集提供给过程控制器，以便在多变量过程模型中使用。

2. 如权利要求1所述的多变量过程模型自适应方法，还包括基于过程输入或者过程输出的变化确定何时执行模型自适应。

3. 如权利要求2所述的多变量过程模型自适应方法，其中确定何时执行模型自适应包括收集并存储表示过程输入或过程输出的数据，并且分析所收集的数据来检测过程输入或过程输出中大于预定量的变化。

4. 如权利要求1所述的多变量过程模型自适应方法，其中选择SISO模型的子集包括分析与过程输出相关联的一个或多个SISO模型来确定该一个或多个SISO模型中的每一个和该过程输出之间的相关度，并且基于该相关度选择要自适应的SISO模型。

5. 如权利要求1所述的多变量过程模型自适应方法，其中选择SISO模型的子集包括为多个过程输入中的每一个确定该过程输入和误差度之间的相关度，其中该误差度为测得的过程输出和由多变量过程模型形成的过程输出之间的误差度，利用该相关度选择一个过程输入，并且选择将所选一个过程输入关联到测得的过程输出的一个SISO模型作为SISO模型子集中的一个模型。

6. 如权利要求5所述的多变量过程模型自适应方法，其中利用相关度选择一个过程输入包括确定是否第一过程输入经过了预定量的变化，并且只有第一过程输入经过了预定量的变化时，才选择该第一过程输入作为所选的一个过程输入。

7. 如权利要求1所述的多变量过程模型自适应方法，其中选择SISO模型的子集包括确定哪些过程输入与测得的过程输出和由多变量过程模型形成的建模过程输出之间的误差最相关，并且基于该相关确定来选择一个或多个
SISO 模型。

8. 如权利要求 1 所述的多变量过程模型自适应方法，其中分别自适应所选 SISO 模型子集中的每一个 SISO 模型包括在所选 SISO 模型子集中的至少一个上执行模型切换自适应技术。

9. 如权利要求 1 所述的多变量过程模型自适应方法，其中分别自适应所选 SISO 模型子集中的每一个 SISO 模型包括在所选 SISO 模型子集中的至少一个上执行属性插值自适应技术。

10. 如权利要求 1 所述的多变量过程模型自适应方法，还包括在将自适应后的 SISO 模型子集提供给过程控制器以便在多变量过程模型中使用之前，验证具有自适应后的 SISO 模型子集的多变量过程模型。

11. 如权利要求 10 所述的多变量过程模型自适应方法，其中验证具有自适应后的 SISO 模型子集的多变量过程模型包括确定具有自适应后的 SISO 模型子集的多变量过程模型与不具有自适应后的 SISO 模型的多变量过程模型相比是否具有较低的建模误差。

12. 如权利要求 10 所述的多变量过程模型自适应方法，其中验证具有自适应后的 SISO 模型子集的多变量过程模型包括确定具有自适应后的 SISO 模型子集的多变量过程模型与不具有自适应后的 SISO 模型的多变量过程模型相比，在其作用于相同的过程输入和过程输出数据的情况下是否提供较好的控制。

13. 如权利要求 1 所述的多变量过程模型自适应方法，还包括在将自适应后的 SISO 模型子集提供给过程控制器以便在多变量过程模型中使用之前，将自适应后的 SISO 模型子集中的至少一个 SISO 模型交换为由过程控制器使用的形式。

14. 如权利要求 1 所述的多变量过程模型自适应方法，其中单独自适应所选 SISO 模型子集中的每一个 SISO 模型包括自适应基于参数的 SISO 模型。

15. 如权利要求 14 所述的多变量过程模型自适应方法，其中基于参数的 SISO 模型是一阶加权延时模型。

16. 如权利要求 1 所述的多变量过程模型自适应方法，其中单独自适应所选 SISO 模型子集中的每一个 SISO 模型包括自适应非参数 SISO 模型。

17. 如权利要求 16 所述的多变量过程模型自适应方法，其中非参数 SISO 模型是阶跃响应模型和脉冲响应模型中的一个。
18. 如权利要求 16 所述的多变量过程模型自适应方法，其中单独自适应所选 SISO 模型子集中的每一个 SISO 模型包括调整非参数 SISO 模型的属性。

19. 如权利要求 18 所述的多变量过程模型自适应方法，其中调整非参数 SISO 模型的属性包括调整非参数 SISO 模型的直到首次观察到响应的时间，缩放比例和斜率中的一个。

20. 一种在控制过程中使用的过程控制系统，包括：
过程控制器，包括由两个或更多的在控制过程中使用的单输入单输出 (SISO) 模型组成的多变量过程模型；以及
可通信连接至该过程控制器的模型自适应单元，包括；
用于选择 SISO 模型的子集以进行自适应的第一单元；
用于改变所选 SISO 模型子集中的每个 SISO 模型的第二单元；和
用于将改变后的 SISO 模型子集提供过程控制器以便在多变量过程模型中使用的第三单元。

21. 如权利要求 20 所述的过程控制系统，其中模型自适应单元还包括监督器单元，用于检测一个或多个过程输入或过程输出中的变化，从而确定何时开始自适应循环。

22. 如权利要求 21 所述的过程控制系统，其中监督器单元包括数据收集单元，并用于在数据收集单元中收集和存储表示该一个或多个过程输入或过程输出中的一个的数据，并且分析所收集的数据来检测该一个或多个过程输入或过程输出中的变化一个大于预定量的变化。

23. 如权利要求 21 所述的过程控制系统，其中第一单元用于通过分析与过程输出相关联的一个或多个 SISO 模型来确定与该过程输出相关联的一个或多个 SISO 模型中每一个的输入与该过程输出之间的相关度，从而选择 SISO 模型的子集，并且基于该相关度选择要自适应的 SISO 模型。

24. 如权利要求 20 所述的过程控制系统，其中第一单元用于为多个过程输入中的每一个确定该过程输入与一误差度之间的相关度，其中该误差度为测得的过程输出和由多变量过程模型形成的过程输出之间的误差度，利用该相关度选择一个过程输入，并且选择将所选一个过程输入关联到测得的过程输出的一个 SISO 模型作为 SISO 模型子集中一个模型。

25. 如权利要求 20 所述的过程控制系统，其中第二单元在所选 SISO 模型子集的至少一个 SISO 模型上执行模型切换模型自适应技术。
26. 如权利要求 20 所述的过程控制系统，其中第二单元在所选 SISO 模型子集的至少一个 SISO 模型上执行属性插值模型自适应技术。

27. 如权利要求 20 所述的过程控制系统，其中模型自适应单元还包括验证单元，用于在第三单元将改变后的 SISO 模型子集提供给过程控制器以便在多变量过程模型中使用之前，使用改变后的 SISO 模型子集测试多变量过程模型。

28. 如权利要求 27 所述的过程控制系统，其中模型自适应单元还包括变换单元，用于在将改变后的 SISO 模型子集提供给过程控制器以前在多变量过程模型中使用之前，将改变后的 SISO 模型子集中的至少一个变换为过程控制器内的多变量过程模型使用的形式。

29. 如权利要求 20 所述的过程控制系统，其中所选 SISO 模型子集中的至少一个 SISO 模型是基于参数的 SISO 模型。

30. 如权利要求 29 所述的过程控制系统，其中基于参数的 SISO 模型是一阶加空载时间模型。

31. 如权利要求 20 所述的过程控制系统，其中所选 SISO 模型子集中的至少一个 SISO 模型是非参数 SISO 模型。

32. 如权利要求 31 所述的过程控制系统，其中非参数 SISO 模型是阶跃响应模型和脉冲响应模型中的一个。

33. 如权利要求 31 所述的过程控制系统，其中第二单元用于通过调整非参数 SISO 模型的直到首次观察到响应的时间、放大比例和斜率中的一个来调整非参数 SISO 模型的属性。

34. 如权利要求 20 所述的过程控制系统，其中过程控制器是模型预测控制型控制器。

35. 一种在过程控制系统中使用的模型自适应单元，该过程控制系统具有由两个或更多个单输入单输出 (SISO) 模型组成的多变量过程模型，该模型自适应单元包括：

 计算机可读介质；

 存储在该计算机可读介质中且用于在处理器上执行的程序，该程序包括：

 第一例程，被配置为选择 SISO 模型的子集以进行自适应；

 第二例程，被配置为自适应所选 SISO 模型子集中的每一个 SISO 模型；和

 第三例程，用于在过程控制系统中使用自适应的 SISO 模型子集。
第三例程，被配置成将自适应后的 SISO 模型子集提供给多变量过程
模型。
36. 如权利要求 35 所述的模型自适应单元，其中该程序还包括监督器例
程，被配置成检测过程输入或过程输出中的变化，以确定何时开始自适应循
环。
37. 如权利要求 35 所述的模型自适应单元，其中第一例程为多个过程输
入中的每一个确定该过程输入和一误差度之间的相关度，其中该误差度为测
得的过程输出和由多变量过程模型形成的过程输出之间的误差度，利用该相
关度选择一个过程输入，并且选择将所选一个过程输入关联到测得的过程输
出的一个 SISO 模型作为 SISO 模型子集中的一个模型。
38. 如权利要求 35 所述的模型自适应单元，其中第二例程在所选 SISO
模型子集的至少一个 SISO 模型上执行模型切换模型自适应技术。
39. 如权利要求 35 所述的模型自适应单元，其中第二例程在所选 SISO
模型子集的至少一个 SISO 模型上执行属性插值模型自适应技术。
40. 如权利要求 35 所述的模型自适应单元，其中该程序还包括验证例程，
其在第三例程将自适应后的 SISO 模型子集提供给多变量过程模型之前，使用
自适应后的 SISO 模型子集测试多变量过程模型。
41. 如权利要求 40 所述的模型自适应单元，其中该程序还包括变换单元，
其在第三例程将自适应后的 SISO 模型子集提供给多变量过程模型之前，将自
适应后的 SISO 模型子集中的至少一个变换为多变量过程模型使用的形式。
42. 如权利要求 35 所述的模型自适应单元，其中所选 SISO 模型子集中的
至少一个 SISO 模型是非参数 SISO 模型，并且其中第二单元通过调整非参
数 SISO 模型的直到首次观察到响应的时间、缩放比例和斜率中的一个来调整
非参数 SISO 模型的属性。
利用模型切换和属性插值的自适应多变量过程控制器

5

技术领域
这里公开的方法和装置一般涉及过程控制技术，尤其是涉及一种自适应多变量控制技术，其在模型自适应过程期间执行模型切换和参数插值之一或两者。

10

背景技术
在自动化系统例如大型制造工厂、化学炼油厂等中使用基于逻辑的控制器切换策略来实现自适应过程控制，这在本领域中是公知的。基于逻辑的切换策略的示例性讨论参见 Morse, F.M. Pait 和 S.R. Weller 的 “Logic-Based Switching Strategies for Self-Adjusting Control”，IEEE 33rd Conference on Decision and Control” (Dec. 1994)。一般来说，基于逻辑的控制器切换策略可以归类为两种方法中的一种，这两种方法一般被标识为预定路线(prerouted)的控制器方法和基于模型的参数化控制器方法。

在原理上，预定路线控制器的调整(tuning)评估包含在预定的一组可能的控制器中的可能的控制器。当识别出执行得令人满意的控制器时，评估结束。预定路线控制器调整系统的设计相对简单，并且对控制器结构施加较少的要求。然而，预定路线控制器调节系统的优势由于内在的与调整时间相关的较差性能而显得不重要，即从预定组中选择最佳控制器所需的时间长度过长。

基于模型的参数化控制器一般包括两个或多与参数相关的子系统、产生输出估算误差的模型、和内部控制器。操作时，基于适当定义的模型组的估算，把控制信号传送到正被控制的过程。基于“循环切换”的概念，基于模型的参数化控制器实施控制器切换策略，使用该策略时，可以提供或者不提供附加的激励信号给该过程。

控制器的过程控制系统，其特征在于多个参数和 N 个模型并行操作，并且具有与多个控制器参数对应的模型参数。在任何时间点，通过切换规则来选择单个模型和对应的参数化控制器，并且使用对应的控制输入来控制该过程。取决于过程的要求、操作员的需要和任何其它适当的要求，这些模型可是固定参数模型，的以是自适应参数模型。固定参数模型控制系统提供一种简单和有效的手段来确保至少存在这样一个模型，该模型的特征在于其参数充分接近于未知过程的参数。

基于利用固定参数模型的过程控制系统的循环切换提供较快的自适应速度，但需要在过程控制器内部设计并存储大量的模型。应该注意到，固定模型能够精确地代表仅仅有限数量的过程环境或状态，并且为了渐近地提高过程准确性，就必须采用自适应模型。

实际上，由于合理过程近似需要大量的模型，基于模型的切换策略引出了大量问题。例如，可以合理地期望包括一个基于固定模型的自调谐器的简单的单输入单输出(SISO)系统要包括几百个固定模型，以实现满意的过程性能。因而，随着系统变得越来越复杂，例如，多变量系统，所需的定制的固定模型数呈指数增加，从而增加了系统设置时间和系统存储要求。更有效的解决方案需要考虑特定的过程模型结构和控制器类型，并且建议将简单的切换策略替换为更完善的过程。

用于 Dahlin 控制器的一种修改的基于模型的方法已经由 Gendron 在 "Improving the Robustness of Dead-Time Compensators for Plants with Unknown or Varying Delay", Control Systems 90 Conference(Helsinki 1990)一文中提出。该文献公开了一种基于空载时间(dead time)变化提供过程自适应的简单的一阶加空载(first-order-plus-dead-model)过程模型。不是依靠简单的模型切换，而是控制器使用基于一组模型的加权和的模型，所述一组模型的特征在于完全不同的空载时间。该组中的每一个模型生成过程输出的预测值，并且根据预测误差的简单函数自动调节对应的加权。该基本概念已经延伸到了在 Dahlin 控制器结构内包括过程增益和空载时间变化。

一般来说，设计自适应 PID 自适应控制器的普遍方法是直接法和间接法或者基于模型的方法。如上所述，基于模型的方法对于利用切换策略的控制系统是有效的，并且提供一个适当的开始位置，从该开始位置设计一种自适应切换 PID 控制器。已知提供一种与递归最小二乘方(RLS)估计算器相连接的基
于模型标实的自适应 PID 控制器，该控制器跟踪模型参数的变化。与递归模型标实无关的典型的问题包括选择初始参数存在困难、不充分的激励、滤波、参数最终（wind-up）、和迟钝的参数跟踪速度。因为这些变量的复杂度和与计算精确的估计值相关联的困难度，在本领域中很好理解可以通过简化过程模型来改善已知的基于模型的自适应 PID 控制器的性能。

Astrom 和 Hagglund 在“Industrial Adaptive Controllers Based on Frequency Response Techniques”, Automatica, Vol.27, No. 4, pp. 599-609(1991)中描述了一种简化的基于模型的自适应控制器的示例性说明。总体上，这篇文章公开了一种用来在频域内执行过程模型自适应并且响应于设置点的变化和自然扰动来进行了谐的控制器。更具体地说，通过将带通滤波器应用到过程输入和输出中来选择谐调频率，其中通过自动调谐器(tuner-on-demand)来定义滤波器的带通频率。自动调谐器在自适应调谐器操作之前利用中继(relay)振荡技术是最终的周期，并且利用简化的 RLS 估算器为谐调频率定义过程增益。自动调谐器具有跟踪过程增益的变化的功能。然而，当遇到载时或者时间常数发生改变时，被跟踪的点就不再呈现 $-\pi$ 相位，并且控制器谐调也变得不精确。

此外，已知可以通过应用几个谐调频率和利用一个插值器来定义具有相位 $-\pi$ 的频率从而改善谐调操作。可选择地，可以应用单个调谐频率和在每一次调谐循环之后调节频率来跟踪相位 $-\pi$。两个调谐器模型适应随后的设定点变化和自然扰动，并且可以在控制器输出或者在设定点输入中插入外部激励。尽管这种自动调谐器不呈现已有技术的尺寸和设置约束条件，但是它们复杂得多。

而且，这两个调谐器模型利用仅仅识别两个参数即最终增益和最终周期的简单自适应模型。包括这些简单的两参数自适应模型的调谐器模型适合于

Ziegler - Nichols 调谐或者一些模拟修改，但是不适用于优选采用内部模型控制(IMC)或者 Lambda 调谐的应用。简单的 RLS 识别器可以用于为前馈控制确定静态增益，而 RLS 识别器方法不提供进行足够前馈控制所需的过程前馈动态特性。另外，因为前馈信号是负荷扰动，并且扰动信号不能被插入到反馈路径中，所以该方法存在不充分激励的问题。

前馈修改的一个可选择的解决方案由 Bristol 和 Hansen 在名称为“Multivariable Adaptive Feedforward Controller”的美国专利 No. 5,043,863 中
公开。这一专利公开了一种基于微分方程式的过程模型，其被设计成包含负荷扰动。基于测量的过程数据周期性地更新该过程模型，其中扰动的特征在于由投影法实现的力矩(momentum)关系和控制关系。一般来说，导出的解决方案非常复杂，并且需要很多激励，与上述 RLS 识别器方法几乎相同。此外，导出的解决方案仅适用于前馈控制而不适用于具有反馈的自适应控制器。

美国专利 No. 6,577,908 公开了一种经过重大修改和增强的自适应切换过程，其引入了参数插值和模型再校正(recentering)的技术来代替模型插值，这使得有可能大幅减少用于自适应的模型数量。该专利中公开的控制器特征在于缩短的自适应时间，完整的过程模型识别和减少的过程激励需要。

虽然适于简单的过程模型，但是上述模型和参数自适应及切换技术仅限于在自适应单输入单输出(SISO)控制器系统中使用，并且还没有用于多变量控制场合，即控制器基于一个或多个输入提供对两个或更多个变量的同时控制的场合。然而，多变量控制，特别是作为一种特定类型的多变量控制的模型预测控制(MPC)已经迅速地成为用于复杂控制场合的有用控制策略。因此期望提供一种能够用于多变量控制器的自适应策略，使这些控制器在运行期间能够自适应，从而更好地对过程中的变化、设定点等作出反应，以便提供更好的控制。

发明内容

一种自适应多变量过程控制系统，例如自适应 MPC 过程控制系统，包括具有过程模型和自适应系统的多变量过程控制器，该过程模型由一组两个或更多个 SISO 模型组成，或者以其为特征，并且该自适应系统使该多变量过程模型进行自适应。一般来说，自适应系统包括监督器，其检测足以开始自适应循环的过程输入中的变化，并且当检测到该变化时，收集执行自适应所需的过程输入和输出数据。接下来，监督器可以确定多变量过程模型内应该自适应的 SISO 模型子集，由此使该多变量过程模型自适应。可以通过确定哪些过程输入与实际过程(测得的)过程输出和由多变量过程模型为每一个过程输出得出的过程输出之间的误差最相关，并且选择将高度相关的输入关联到发生建模误差的过程输出的 SISO 模型来选择 SISO 模型。如果需要，也可以仅选择与经历了预定量的变化的输入相关联的 SISO 模型以进行自适应。

自适应系统然后执行标准的或者已知的模型切换和参数插值技术，来使
每一个选择的SISO模型自适应。在一个或多个SISO模型的自适应之后，通过确定经过自适应的多变量过程模型(即：包括经过自适应的和未经自适应的SISO模型的过程模型)是否作用于相同的过程输入和输出数据而提供比当前的或者未经自适应的多变量过程模型更好的控制和/或将建模误差减少了预定量，验证所得到的多变量过程模型。如果经过自适应的多变量过程模型比当前的多变量过程模型运行得要好，就将经过自适应的多变量过程模型(或者与之相关的经过自适应的SISO模型)变换成由多变量控制器使用的形式，然后被提供用于多变量过程控制系统以控制过程。

当然，如果必要或者需要的话，可以重复自适应过程，例如在足够量的过程输入或输出中检测到变化发生之后，在过程输入或输出中发生的强加的改变之后等。更进一步，在任何特定的自适应过程中，可以使任何期望数量的SISO模型自适应，从而使得能够根据过程的复杂度和须满足的计算要求改变自适应过程的速度。

可以利用基于参数的SISO模型如阶跃并联时间模型或者利用非参数型模型如阶跃或脉冲响应模型来应用在此所述的多变量自适应过程。在后者的情况下，自适应过程可以利用模型切换和模型属性插值(其中模型参数插值是一个子集)来形成或者自适应每一个选择的过程模型。在这种情况下，代替变更或者修改基于参数的模型的一个或多个参数，如增益、时间常数和模型的空载时间，可以改变非参数模型的属性，如非参数化模型的直到第一次观察到响应的时间、缩放比例、斜率等，并且可以基于这些属性改变来执行插值操作，从而确定新的或者经过自适应的非参数模型。

附图说明

图1是自适应多变量控制系统的功能方框图，其操作基于过程模型参数或者属性的插值。

图2是多输入多输出过程控制器的概念图；
图3是可以使用一组单输入单输出模型以形成多输入多输出过程模型的输出的方式的概念图；和
图4是示出可以用模型属性插值技术使非参数模型如阶跃响应模型进行自适应的方式的图。
具体实施方式

图 1 示出了示例的自适应多变量过程控制系统 8，其使用模型预测控制(MPC)在过程 10 中提供多变量控制。控制系统 8 在设计上与美国专利 No. 6,577,908 中公开的反馈/前馈(FB/FC)PID 控制系统有些相似，该专利的公开文本在此全部引述作为参考。事实上，控制系统 8 可以使用美国专利 No. 6,577,908 中公开的 PID 控制系统的部件，这一点将在这里进行详细的讨论。

如图 1 所示，自适应多变量控制系统 8 包括标准或典型的 MPC 系统 12，该 MPC 系统具有与 MPC 控制器 16 连接的过程模型块 14，该 MPC 控制器 16 产生用来控制过程 10 的操纵变量(MV)信号。一般来说，过程模型块 14 包括可以由一组单输入 - 单输出(SISO)模型组成的多变量过程模型 14a，每一个单输入 - 单输出模型可以是参数模型，如一阶加权时间模型，或者是非参数模型，如阶跃响应曲线。每一个 SISO 模型定义也称作控制变量(CV)或辅助变量(AV)的过程输出之一对过程输入即由 MPC 控制器 16 形成的 CV 之一和测得的扰动变量(DV)的响应或者其间的距离。在运行期间，过程模型块 14 接收 MV 和测得的 DV，并且利用其中的多变量过程模型 14a 产生预测或将来的输出轨迹信号，其定义过程 10 的预测将来响应(将来 CV 和 AV)，将这一预测的输出轨迹信号传送到向量加法器 18。

MPC 控制系统 12 还包括设置点预测单元或块 20，其接收过程设置点信号 SP，过程设置点信号 SP 可以包括一个或多个过程输出(CV 和 AV)中每一个的单独设置点信号，并且产生定义预测将来设置点的设置点轨迹信号。例如，SP 预测单元 20 可以连接到优化器(未示出)，其为过程 10 提供将来设置点变化的指示。还把由 SP 预测单元 20 形成的设置点轨迹信号供给给向量加法器 18，向量加法器 18 计算定义预测的过程输出轨迹与预测的设置点轨迹信号之间的差值的误差轨迹信号。将这一误差轨迹信号提供给 MPC 控制器 16 的输入端，其以已知的方式利用误差轨迹信号产生操纵变量(MV)，反过来又将操纵变量(MV)提供给过程 10 的输入端来控制过程 10。

典型的是，将包括控制变量(CV)和需要时的辅助变量(AV)的过程 10 的输出往回提供给加法器 22，在加法器 22 中，将它们与同时的预测模型输出(由多变量过程模型 14a 产生)进行组合来形成当前模型输出误差。然后，将这一模型输出误差传送回到过程模型块 14，其中以标准的方式利用该模型输出误差来校正过程模型块 14 的预测输出。
可以理解，MPC 控制系统 12 在本领域内是典型且公知的。因而，对本领域普通技术人员来说，也可以用公知的方式产生或修改 MPC 控制系统 12 来提供对过程 10 的 MPC 或其它多变量控制。此外，虽然在此所述的自适应技术用于 MPC 控制器的上下文中，但是它也可以在基于其它模型的多变量过程控制系统中使用。

重新参考图 1，模型自适应网络 30 可以用来利用模型切换和/或参数(或者模型属性)插值技术在 MPC 控制系统 12 中使用的多变量过程模型 14a 进行自适应，而在那之前，模型切换和/或参数(或者模型属性)插值技术只限于在基于单输入单输出(SISO)模型的控制系中使用。

如图 1 所示，模型自适应网络 30 包括：监督器 32，其通常控制自适应过程；模型组 34，其通常存储能够被估算以在多变量过程模型 14a 中使用的一组不同的可能模型；以及模型估算块 36，其估算组块 34 中的模型，以确定要在自适应过程中使用的模型参数或者属性加权。模型自适应网络 30 还包括：参数/属性插值块 38，其确定要在多变量过程模型 14a 的各部件中使用的模型参数或属性的值；模型验证块 40，其可以用来验证新的多变量过程模型在被自适应时的操作，但是在将新模型替换到过程模型块 14 中之前；以及模型变换块 42，其将新的或者经过自适应的过程模型变换成由过程模型块 14 使用的形式，以便用于 MPC 控制系统 12 中。

通过首先描述块 14 内的多变量过程模型 14a 为了对典型 MPC 应用中的过程 10 进行建模而工作的方式，自适应网络 30 的操作将会得到更好的理解。为此，图 2 显示了多变量过程模型 14a 的一般形式，其具有多个输入 IN(i=1 到 j)和多个输出 OUT(i=1 到 n)。输入 INi 可以是操纵变量(MV1、MV2 等)或测得的扰动变量(DV1、DV2 等)，而输出 OUTi 可以是控制变量(CV1、CV2 等)和辅助变量(AV1、AV2 等)的预测值。

一种对各种输入信号 IN(i=1 到 j)影响或产生预测输出信号 OUT(i=1 到 n)的方式进行建模的技术是首先为每个输入/输出对定义不同的单输入单输出(SISO)模型，从而将每一个输出信号 OUTi 的响应关联到每一个输入信号 INi。因而，在图 2 的过程模型中，将有 j×n 个 SISO 模型，每一个 SISO 模型定义输出 OUTi 中的一个对输入信号 INi 中的一个且仅一个的响应。这里，SISO 模型称为 Model(In, Out)，其中变量 “In” 的范围从 1 到 j(输入的总数)并且其中变量 “Out” 的范围从 1 到 n(输出的总数)。因而，定义输出信号 OUT2
对输入信号 \(I_{N1} \) 的时间响应的 SISO 模型为 Model(3, 2)。

接下来，如图 3 所示，可以作为每一个 SISO 模型 Model(In, i) 的输出和未确定特定输出信号 \(OUT_i \)，其中 In=1 到 j。换言之，一种对多变量线性过程进行建模的方法是假定过程输出是定义每一个过程输入和过程输出之间的关系的 SISO 模型输出的叠加 (求和)。可以理解，可以以这种方式对所有的过程输出 \(OUT_i (i=1\) 到 n) 进行建模。其中每一个 \(OUT_i \) 信号和每一个 \(I_{N1} \) 信号可以是时间相关信号。该信号定义在特定时间周期如达到稳态的时间 (time to steady state) 内的关系。因而，图 1 的多变量过程模型块 14 的输出定义了轨迹信号或者向量。其定义每一个 \(OUT \) 信号在一定范围的时间内的值。

一般来说，图 3 所示的 SISO 模型 Model(In, Out) 可以是基于参数的模型或者参数模型，如一阶加残差时间模型 (或者任何其它的参数模型)，或者可以是非参数模型，如阶跃响应模型，其定义随着时间的变化响应于相关的输入信号的变化的输出信号的值。当然，也可以使用其它类型的参数模型和非参数模型 (例如，脉冲模型、斜坡模型等)，或者用其代替在描述的模型。

重新参考图 1，自适应系统 30 运行以使在多变量过程模型 14a 中使用的一个或多个 SISO 模型进行自适应，从而产生要在 MPC 控制器系统 12 中使用的新的多变量过程模型。一般来说，在每一次自适应循环或者扫描期间，基于每一个 SISO 模型对过程 10 的预测过程输出 (由多变量过程模型 14a 形成) 和实际 (或者测得) 输出之间的误差的贡献，自适应系统 30 首先确定若有的话应该使哪一个 SISO 模型进行自适应。然后，自适应系统 30 利用模型组 34、模型估算块 36 和参数/属性插值块 38 在每一个被识别要进行自适应的 SISO 模型上执行过程建模正 (centering)。这一模型找正可以以模型参数或者属性插值技术的形式实现。该技术确定对每一个所识别的 SISO 模型进行修改或改变的方式。在该过程中或者其结束时，自适应系统 30 可以利用模型验证块 40 验证新自适应的 SISO 模型以确保该自适应的 SISO 模型 (由此通过自适应的 SISO 模型的组合而得到的自适应的多变量过程模型) 比当前正由 MPC 控制系统 12 使用的多变量过程模型 14a 运行得更好。

当新的或者自适应的多变量过程模型或者组成多变量过程模型的 SISO 模型中的一个或多个已被验证为提供在过程模型块 14 内使用的当前多变量过程模型 14a 更小的建模误差时，模型变换块 42 将自适应的多变量过程模型或者组成自适应多变量过程模型的自适应 SISO 模型变换为可以由过程模
型块 14 使用的形式。因而，例如，模型变换块 42 可以将参数型 SISO 模型变
换成阶跃响应模型，并且将该阶跃响应模型提供给过程模型块 14，以便在
MPC 控制系统 12 中使用。

在过程 10 的运行期间，图 1 中的监督器 32 接收 CV、AV、DV 和 MV
信号的每一个的指示，并且运行以检测过程输出(CV 和 AV)、过程输入(MV)
和扰动输入(DV)的变化。如果任何过程输入(如 MV 或 DV)的变化超过最低级
别，则监督器 32 开始模型估算过程，以确定与多变量过程模型 14a 相关的任
何 SISO 模型是否需要自适应。检测到的变化可以是瞬时的，即在一个扫描周
期内，或者可以是逐渐的，并且在预定时间周期(或者控制器扫描次数)内被检
测到。事实上，在多变量过程中，变化通常同时发生在几个输入和输出上，
对于这里所述的自适应过程的操作而言，这是理想的。

在检测到过程输入中的一个或多个预定量变化(需要时，该预定量可以根据
据正被监测的信号而变化)之后，监督器 32 在特定时间周期(例如达到稳态)
的时间内收集并存储过程输入和输出数据。如果导致启动自适应过程的所检测
变化在性质上是逐渐的，即在多次扫描内发生，监督器 32 可能需要收集与变
化的开头相关的输入和输出数据，即使该变化还没有到达开始自适应过程所
需的预定量，也如此，从而具有在自适应过程期间分析自适应的多变量过程
模型的操作所需的数据。

无论如何，在收集到过程输入和输出数据并且将它们存储到存储器(图 1
中未显示)之后，监督器 32 接下来可以基于测量出或者收集到的对过程
输入 10 的输入，估算过程模型块 14 中使用的当前过程模型 14a 和过程 10 的实际
测量输出之间的误差，以确定若有的话多变量过程模型 14a 内的哪些 SISO 模
型需要自适应。因而，尽管每一个 SISO 模型都可以在任何特定的自适应过程
中进行自适应，但这可能不是必要的，并且事实上，这可能会导致较长的自
适应循环。相反，监督器 32 可以首先确定要对其应用下述自适应过程的 SISO
模型子集，其中这一子集要少于过程模型 14a 内的所有 SISO 模型。因而，可
以使多变量过程模型(在过程模型块 14 中使用的所有 SISO 模型的组合)进行
完全自适应或者进行仅仅部分自适应。当在某些输出上的误差可忽略时，当
特定输出上的建模误差与一个或多个过程输入之间不相关时，或者当在一些过
程输入中的变化可忽略时，进行部分自适应比较有利。这些情形在 MPC 控制
的过程中是很典型的。因而，在特定自适应循环或者过程期间，部分自适应
即少于所有 SISO 模型的自适应可能是普遍的。

要执行 SISO 模型选择，多变量自适应过程可以实现模型选择过程，其首先定义自适应模型配置，即要自适应的多变量模型部分(例，特定 SISO 模型)。该模型选择过程可以包括在收集输入和输出数据的期间每一次扫描时

为每一个输出 OUT，计算模型输出误差。事实上，这一误差典型地在普通 MPC 控制器中作为模型输出“偏移”来计算，并且用于根据过程测量调整模型输出。无论如何，可以如下计算这一误差:

\[e' (t) = y'(t) - \hat{y}' (t) \]

其中:

\[e' (t) \] 是时刻 \(t \) 的模型输出误差；
\[y'(t) \] 是时刻 \(t \) 的测量过程输出；而
\[\hat{y}' (t) \] 是由多变量过程模型形成的时刻 \(t \) 的预测过程输出。

接下来，可以利用下面的方程式计算误差 \(\varepsilon' (t) \) 与每一个过程输入 \(u'(t) \) 之间的互相关 \(r_N (\tau) \):

\[r_N (\tau) = \frac{1}{N} \sum_{t=1}^{N} u(t-\tau)e(t) \]

其中:

\(N \) 为在由达到稳态的时间定义的周期内采集的样本的数目；而
\[\tau = \theta + 0.5 \tau_c \] 其为模型空载时间加上模型时间常数的一半。该值实质上

是输入和输出之间的近似时间偏移，在此处，输出对输入的变化最灵敏，因此相关函数为最大值。

现在，对于与每一个输出 OUT，相关的 \(j \) 个 SISO 模型来说，可以选择与具有相对于输出误差的最高互相关的输入相关的个或多个模型作为自适应候选者。需要时，可以选择与具有最高或最大互相关的输入相关的 SISO 模型作为自适应候选者，可以选择具有高于预定量的互相关值的每一个 SISO 模型作为自适应候选者，或者基于其它的互相关标准来选择 SISO 模型作为自适应候选者。

虽然可以选择任何特定 SISO 模型作为自适应候选者，但是所有选择的 SISO 模型实际上可能不是最适于自适应的模型。特别是，如果与特定 SISO 模型相关的输入在自适应期间内没有改变显著量或者至少最小量，即使其互
相关值很高，这一模型也可能不是好的自适应候选者，因为在实质上，输入中的变化没有大得足以依靠互相关计算作为如下指示：该 SISO 模型在输出误差中所起的作用比与改变了显著量但具有较低的互相关值的其它输入相关的 SISO 模型所起的作用大。因此，所选模型的输入变化应该满足以下条件：

\[\max(Input(i)) - \min(Input(i)) \geq \Delta \]

如果正常操作数据中的变化小，MPC 控制器 12 可以在所选的过程输入中插入阶跃脉冲，或者在所选的过程输出上进行设置点改变，以迫使输入中的变化超过预定量，从而形成自适应能够发生的条件。如果优化器是活动的，则优化器应在将这样的阶跃脉冲提供给输入之后自动地使过程输出回到原始值(最佳值)。相反地，如果 MPC 控制器没有优化器，MPC 控制器可以在一段时间(脉冲持续时间)后自动地将输入设置回初始位置。输入和输出的最佳脉冲持续时间被启发式地确定为约等于所考虑输出的显性(dominant)滞后时间。

无论如何，监督器 32 可以确定与每一个所识别的 SISO 模型相关的输入在自适应期间(数据收集期间)是否已经改变了预定量或最小量。如果输入没有改变预定量，则不选择该 SISO 模型作为实际上要自适应的模型。在这种情况下，需要时，可以按与这样的输入相关联的 SISO 模型，其中该输入与输出具有最小互相关，并且可以检查该模型的该输入，以确定该输入是否已经改变了预定量或最小量。可以为特定输出的每一个输入继续这一过程，从而为该输出确定至少一个要自适应的 SISO 模型。然而，在某些情况下，因为每一个输入与该输出的输入误差具有低的互相关，因为每一个 SISO 模型与在自适应期间(例如，数据收集期间)没有发生足够变化的输入相关联，或者因为首先的低输出误差计算，所以最终没有把特定输出的任何 SISO 模型确定为应该自适应的模型。

当特定输出 OUTi 的至少一个 SISO 模型已被确定为需要自适应时，分析该输出 OUTi 的其它未被选择进行自适应的 SISO 模型，以计算这些未被选择的模型对模型过程输出的贡献。然后从过程输出测量数据中减去这一贡献，以获得实际上与正被自适应的一个或多个 SISO 模型相关联(或由其产生)的输出测量数据部分。这一过程使得自适应系统 30 能够将特定 SISO 模型对实际过程输出的预期贡献分离出来，从而能够确定预期的贡献与由正被自适应
的模型产生的实际贡献(输出)之间的误差。

可以理解，为每一个过程输出重复或者分别执行 SISO 模型自适应选择过程，从而，一般来说(尽管不一定总是如此)，为过程 10 的每一个输出 OUTj 选择至少一个 SISO 模型来进行自适应。

在已经确定了一个或多个 SISO 模型作为应该自适应的模型之后，自适应系统 30 可以串行或并行地将任何公知的或期望的自适应过程应用到这些 SISO 模型。在一个实施例中，可以将美国专利 No. 6,577,908 中描述的模型自适应过程应用到被选进行自适应的每一个 SISO 模型。可选择地，可以使用在此引入作为参考的美国专利申请序列号 10/419,582 中描述的模型自适应过程来执行 SISO 模型自适应。

虽然这里不重复这些过程，但是一般来说，这些自适应过程为待自适应的模型定义了一个模型组，其中该模型组存储在图 1 的模型组块 34 中。当模型为参数模型时，模型组 34 可以包括多个单独的子模型，每一个子模型具有与该模型相关的不同参数值。因而，如果模型具有三个参数，并且每一个参数可取三个可能值，那么该模型组实质上包括 27 个不同的子模型。可利用所收集的数据对每一个子模型进行分析，以确定每一个参数的哪些参数值与过程 10 的实际输出的比较中的最低误差相关联。这一误差确定过程在图 1 中被表示为由加法器 48 来执行，加法器 48 确定模型组 34 内的特定模型的输出与过程 10 的实际输出之间的差值，虽然图 1 所示的与加法器 48 的连接示出了模型组 34 和过程 10 的输出之间的比较是实时进行的，但是这些比较操作实际上(一般都是)是在自适应过程开始时基于由监督器 32 先前收集并存储的过程输入和输出数据进行的。

从美国专利 No. 6,577,908 可以理解，为正被自适应的 SISO 模型设立一组模型，其包括多个模型子集，这些模型子集可以采用任何期望的预定切换规则进行自动选择。每一个单独的模型可以包括多个参数，每一个参数具有从与该参数对应的一组预定初始化值中选择的相应值。模型组 34 中各个模型的估算包括计算模型平方误差或模方(norm)。将模方赋值给被估算的模型中的表示的每一个参数。随着重复执行模型估算，为每一个参数计算累加模方，该累加模方是在模型估算过程中被赋值给该参数的所有模方之和。接下来，为每一个参数计算自适应参数值，该自适应参数值为被赋值给相应参数的初始化值的加权平均值。
如美国专利申请序列号 10/419,582 所述，模型组或组成部分也可以包括一个状态变量，其定义多个过程区域和分组到该多个过程区域中的多个过程模型。在这种情况下，每一个过程模型也可以包括多个参数，每一个参数具有从多个被赋值给相应参数的一组预定初始值中选择的值。每一个区域可以包括一组（不同的）用于该区域定义的标准参数值。在这种情况下，模型计算块 36 分析表示模型组 34 内的过程模型的输出和过程 10 的输出之间的差值的模型误差信号，并且可以计算与该过程模型对应的模型的预期误差，以便在该模型计算块 36 内的模型误差归因为该模型中所表示的参数值。参数/属性插值器 38 全面地连接到模型计算块 36，并且为过程模型中所表示的参数（或属性）计算自适应过程参数值（或模型属性）。

在任何情况下，可以理解，模型计算块 36 为产生最低误差的模型组的模型内的每一个参数（或者其它属性）决定加权值。如美国专利 No. 6,577,908 所述，可以基于由每一个不同的可能参数值对该误差的贡献来计算这些加权值。此外，如美国专利 No. 6,577,908 所述，算出的参数可以定义具有中心参数值 $P_k(a)(k = 1, \ldots, m)$ 的新模型组，参数的范围随设计时假定的值变化。变化范围可以方便地被定义为±aΔ%。在该范围内，应该最少定义两个参数。实际上，在参数 $P_k(a)$ 周围，可以定义两个附加的参数 $P_k(a) + \Delta \% P_k(a)/100$ 和 $P_k(a) - \Delta \% P_k(a)/100$. 每一个参数定义了自适应的上限和下限，并且如果参数 $P_k(a)$ 超过了该界线，则将其固定（clamp）到该界线。当然，每一个模型最好由最少数目的参数来表示。已经确定一阶加权时间过程模型适于利用这种技术对很多过程进行建模。

在模型计算块 36 确定了参数的加权之后，运行参数/属性插值器 38 来定义新的或者自适应的过程模型，该过程模型具有利用由模型计算块 36 确定的参数加权形成的参数值。

在为特定的过程输出选择的所有 SISO 模型的自适应之后，选择下一个过程输出并且重复该过程，直到为被选择要进行自适应的每一个 SISO 模型执行了参数插值操作为止。此后，可以分别为每一个输出验证由经过自适应和未经自适应的 SISO 模型组成的多变量模型。模型验证块 40 执行验证过程，并且接受或拒绝该自适应结果。如果需要，可以设置两极标准来确定是否应该接受自适应的多变量过程模型。在这种情况下，自适应的模型中的输出误差应该小于预定值，并且自适应的模型中的输出误差应该小于当前模型中的
输出误差。可以理解，在分析当前模型和自适应模型时应该使用相同的数据集。

在验证并接受了多变量模型之后，必要时，模型变换块 42 可以将自适应的模型变换为 MPC 控制器实际使用的形式。因而，如果 MPC 控制器使用阶跃响应模型（这在 MPC 控制器中是典型的），应该将参数模型变换为阶跃响应模型。可选择地，如果 MPC 控制器使用参数模型，可以将阶跃响应模型变换为参数模型。当然，然后使用变换后的模型来取代在过程模型块 14 中使用的当前多变量过程模型 14a。在这种情况下，可以取代整个多变量过程模型 14a，或者仅仅在过程模型块 14 中取代在自适应过程中自适应的 SISO 模型。

尽管上面已经描述了多变量过程模型自适应过程，并且在此使用并在美国专利 No. 6,577,908 中描述的 SISO 模型自适应过程已被描述为利用参数模型，其中执行参数插值，但是也可以利用这里描述的技术使用并且自适应非参数模型形式的 SISO 模型，如阶跃响应模型。图 4 示出了非参数阶跃响应模型 50，其作为可以在非参数模型上执行 SISO 模型自适应的方式的例子。具体地说，代替通过将一个个参数按预定量变来分析参数模型，可以以预定方式修改与非参数模型相关的模型属性，以定义不同的非参数模型，以便在自适应过程中考虑。

因而，关于图 4 的阶跃响应模型 50，通过在图 4 的阶跃响应曲线的一部分或者在整个曲线上改变该曲线的某些方面或者属性，可以定义模型组 34(图 1)中所要考虑的不同模型。在一个例子中，如图 4 的线 52 所示，通过使每一个阶跃系数增加或减小相同的比值，可以定义两个附加的阶跃响应。这一变化是对阶跃响应曲线的缩放比例的变化，其与改变一阶加空载时间参数模型的增益类似。类似地，如图 4 的线 54 所示，在图 4 的阶跃响应中第一次看到输出中的响应的时间可以在时间上向左或向右移动。这一模型属性变更与改变（增加或者减小）一阶响应加空载时间参数模型的空载时间类似。此外，通过向左或者向右移动阶跃响应值可以修改阶跃明显滞后，该值由阶跃响应上升的点所定义的斜率（通过增加或者减小斜率）来定义具有不同滞后或响应时间的阶跃响应。这一修改与增加或者减小一阶加空载时间参数模型的时间常数类似。

这一方法的优点是使得能够对不能用参数表示的较复杂的 SISO 模型进
行修改和自适应，从而使得能够对利用非参数模型或者其它复杂的过程模型的多变量过程模型进行自适应。当然，虽然这展示出了对阶跃响应系数属性的三个特定改变，但对阶跃响应系数的其它属性进行其它的改变，并且对其它非参数模型的属性进行相同或者不同的改变也可适用，从而定义不同的模型，以在这里描述的自适应过程中考虑。更进一步，可以理解，当利用这里讨论的属性修改来执行非参数模型 SISO 模型自适应时，图 1 的自适应系统 30 在属性设置而非参数设置之间进行插值来执行模型自适应。结果，当对非参数模型执行自适应时，以与模型组 34 存储 SISO 参数模型的预设参数值并且在它们之间进行切换同样的方式，模型组 34 可以存储两个或更多不同的属性值并且在它们之间进行切换。

尽管本发明是参考旨在讲授和阐述本发明的特定示例性实施例来描述的，但是所公开的自适应多变量控制器不限于这些实施例。本领域的技术人员可以实现各种修改、改进和补充，并且这些修改、改进和补充将不脱离本发明的范围。

例如，如上所述，控制器自适应是以参数或属性的统计插值为基础的，这些参数或属性用于构造控制之下的过程的数学模型。尽管过程的特征在于三个参数或属性，并且可以向每一个参数赋予三个值，但是所公开的自适应多变量控制器无疑可扩展成不同数目的参数(或属性)，其中每一个都可能包括不同数目的所赋值。此外，需要时，参数/属性插值器 38 可以在参数(或属性)的子集之间如在具有最小关联误差的两个参数之间执行插值，而不是基于由模型估算块 36 定义的参数或属性的加权所有参数或属性之间执行插值。这可以减少与每一个 SISO 模型自适应相关联的插值时间与计算次数。

同样，自适应系统 30 可以基于参数模型的所有或仅仅一部分参数或者基于非参数模型的所有或仅仅一部分属性来执行自适应。具体地说，在自适应过程中，自适应系统 30 可以集中在任何特定模型内(模型组 34 内)的一个或多个“重要”参数或属性上，而不自适应或改变一个或多个其它的参数或属性。这一参数或属性选择技术能够极大地减少自适应系统 30 自适应特定 SISO 模型的时间，这一点在具有大量需要自适应的 SISO 模型的多变量过程中是很重要的。

此外，模型估算和参数插值已被阐述为以模型组 24、模型估算块 36、监督器 32、参数/属性插值器 38、模型验证块 40 和模型变换块 42 标识的各个
部件。本领域的技术人员应当理解，负责控制器实现和操作的技术人员可以任意地划分各个部件，并且所有这些功能可以以任何期望的方式实现。此外，尽管这里描述的自适应多变量过程控制器系统最好采用软件实现，但是该系统或者其中的一部分也可以采用硬件、固件等实现，并且可以通过与过程控制系统相关的任何其它处理器来实现。因而，需要时，这里描述的这些单元可以在标准的多功能 CPU 中实现，或者在专门设计的硬件或固件如专用集成电路(ASIC)或者其它硬连线装置上实现。当以软件形式实现时，该软件例程可以存储在任何计算机可读存储器如磁盘、光盘(如 CD、DVD 等)或者其它存储介质上，存储在计算机或处理器的 ROM 或 RAM 中，或者存储在任何数据库中等。同样，可以通过任何公知或者期望的传送方法，例如包括在计算机可读盘，智能卡存储器、或其它可移动计算机存储机构上或者通过通信信道如电话线、因特网等(这些都视为与通过移动式存储介质提供这些软件的方式是相同或可互换的)，将该软件传送给用户或加工厂。

还可以认识到，这里描述的特定方法代表本发明的实施例而实质上脱离上述本发明的实施例。因而，权利要求被适当地解释为涵盖落在本发明的实质精神和范围之内的所有修改、变化和改进，以及其次质等价物。因此，尽管在这里没有具体地进行描述，本发明的其它实施例仍然落在本发明的范围内。

对相关申请的交叉引用

图 1
图 4