A2

2/3723

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

10 May 2002 (10.05.2002)

(10) International Publication Number

WO 02/37230 A2

(51
@

22

(25
(26)

(30

7

(72)

(74

International Patent Classification’: GO6F

International Application Number: PCT/US01/48121

International Filing Date:
1 November 2001 (01.11.2001)

Filing Language: English
Publication Language: English
Priority Data:

60/244,846 1 November 2000 (01.11.2000) US

Applicant: METIS TECHNOLOGIES, INC. [US/US];
116 John St., 26th floor, New York, NY 10038 (US).

Inventors: TRABARIS, Zissis; 68064 Yellowstone Bou-
velard, Apt. B-63, Forest Hills, NY 11375 (US). LEE, Ira;
123-35 82nd Rd., Kew Gardens, NY 11415 (US).

Agents: BRAINARD, Charles, R. et al.; Kenyon &
Kenyon, One Broadway, New York, NY 10004 (US).

31

84

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD AND SYSTEM FOR APPLICATION DEVELOPMENT AND A DATA PROCESSING ARCHITEC-
—) TURE UTILIZING DESTINATIONLESS MESSAGING

(57) Abstract: The present invention provides a data processing architecture and application development paradigm, which facili-
tates dynamic reconfiguration, code reuse, interoperability, performance, availability and manageability. The application architecture
according to the present invention includes a combination of discrete and autonomous program processes each capable of generating
destinationless data elements, one or more data repositories for the storage of data elements generated by the program processes
and configuration information for each program process. The ocnfiguration information for each program process may associate a
program process with one or more data repositories in either a read or write configuration. The application is made operative through
the combination of the autonomous behavior of each program process and an exchange of data elements or communication pathways
between program processes.

10

15

20

25

30

35

WO 02/37230 PCT/US01/48121

A METHOD AND SYSTEM FOR APPLICATION
DEVELOPMENT AND A DATA PROCESSING
ARCHITECTURE UTILIZING DESTINATIONLESS MESSAGING

PRIOR PROVISIONAL PATENT APPLICATION
The present application claims the benefit under 35 U.S.C. § 119(e) of U.S.
Provisional Application No. 60/244,846 filed November 1, 2000.

FIELD OF THE INVENTION

The present invention relates to the areas of information systems and

information networks. In particular, the present invention provides a data processing:
system and a method and system for application development utilizing destinationless

messaging.

BACKGROUND INFORMATION

The complexity of applications network infrastructures places new demands

on efficient application program development. The programming environment
available to application developers and computer programmers is often determinative
of development efficiency as well as the robustness of developed code and data
structures. In particular, an application environment should facilitate flexible code .
reusability and reconfiguration, means for efficient re-deployment of developed code
to provide dynamic load balancing and/or to adapt to changes in network structure or
intermittent faults within portions of a network. In general, ideally a programming
environment should facilitate arbitrary distribution of program elements to maximize.
the use of available core processing infrastructure. Furthermore, redistribution of
processing tasks should be achievable at runtime to accommodate shifting network
load and faults. Moreover, ideally application programmers should be liberated from
concerns of network deployment and other runtime issues during the development
stage in order to promote code within a myriad of diverse application environments.

The notion of object oriented programming languages and environments is a
well known concept. However, honoring the object-oriented paradigm is often
complicated due to the fact that the modern notion of information systems is a hybrid- -
of pure processing tasks and communication tasks. Developing code for any

networked application, which is a necessity in modern information systems, typically

1

10

15

20

25

30

WO 02/37230 PCT/US01/48121

requires the developer to concentrate heavily on communication functionality (i.e.
networking and protocol issues as well as scalability and high-availability
requirements) during code development, which may promote inefficiency in focusing
on the core behavioral and processing attributes of the developed code. Furthermore,
the application developer is often required to interweave communication functionality
alongside the core behavioral and processing code development. This often results in
code that is not easily reusable outside of the idiosyncratic networking environment
for which the code was originally intended.

Ultimately, the inherency of protocol/communications functionality to core
functional development, which characterizes traditional development environments
results in less efficient applications, long development and reconfiguration cycles and
reduced code reusability. Because the developer most focus upon protocol and
communication issues during development; attention to the underlying logic, data
flow and code efficiency may be sacrificed. .

In particular, one example where the efficiency of distributed applications
becomes critical is providing eBusiness and Internet applications. The Internet and
new technology standards and products make building distributed eBusiness
applications a challenging proposition. Most companies rely on existing systems for
company-specific functions such as data lookup and transaction processing.
Rebuilding these core application systems to adapt them for eBusiness requireménts is
not feasible. Nor is rebuilding existing network infrastructures. To take advantage of
the opportunities offered by the Internet, companies must be able to bridge the gap
between the existing business systems and new Web-based systems, application
components and services.

Early attempts to do this are proving more difficult than at first anticipated,
resulting in escalating costs, unwieldy implementations and frequently, changes to the
business requirements to meet the abilities of the available technologies. With limited
resources, little in-house.experience and tight time.constraints, companies are forced
to build solutions that are very specific to the immediate problem, without takihg
adaptability or scalability for future needs into consideration.

eBusinesss applications create significant constraints for data processing
systems. eBusiness applications must communicate-across a wide range of-

incompatible systems, networks, protocols, platforms, and underlying technologies.

10

15

20

25

30

WO 02/37230 PCT/US01/48121

Furthermore, eBusiness applications require new levels of scalability. Any
component of any application must be able to be individually scaled up to handle
hundreds of thousands or even millions of users, transactions or deyice connections as
demand increases. In addition, eBusiness applications must be very high
performance, regardless of the physical environment within which they execute.
Furthermore, if companies are going to use the Internet as a true business platform,
eBusiness applications must have enterprise-class availability, security, fault
tolerance, and failover recovery.

Known solutions for developing distributed computing solutions are deficient
in that they do not provide for a decoupling of logic coding and communication
protocol coding that allows distributed components to communicate with one another.
This deficiency is directly related to the paradigm that traditional approaches employ.
FIG. 34 illustrates a traditional distributed computing paradigm. A plurality of
distributed processing elements 3410(1)-3410(N) communicate within computing
environment 121 via a centralized controller 3405.

Utilizing the approach depicted in FIG. 34, each distributed computing
element (3410(1)-3410(N)) must be made aware of the existence of the others. Ifit is
desired that two computing elements communicate or exchange information, this must
be established during the coding of the functional elements. Effectively, distributed
elements 3410(1)-3410(N) must be “hard-wired” together via the operation of
centralized controller 3405, which makes reconfiguration of an application very
inefficient post-development.

For example, Tibco Software, Inc. provides a distributed computing
environment, constructed upon a.central messaging bus.. Messages transmitted upon
the bus are self-describing, that may be mapped via a rule set. Various distributed
processes are executed within a computing environment, wherein each process
communicates with one another over the central messaging bus. The Tibco product
also provides an adaptor functionality to allow different network protocols and third- .
party integration to the messaging bus. A major deficiency of the Tibco system arises
from the central bus architecture, which inhibits direct communication between
communicating processes. Furthermore, utilization of centralized bus architecture
creates.-bottleneck and efficiency issues as multiple processes are forced to compete -

for bandwidth on the bus.

10

15

20

25

30

WO 02/37230 PCT/US01/48121

IBM Corporation provides a distributed computing environment referred to as
MQ series, which is a queue-based system utilizing cursor based access and
committed and non-committed reads. Multiple processes are provided access to
queues, which enables an exchange of messages between processes. A significant
limitation of MQ series technology arises due to the fact that queue access must be
configured and established during a development phase and thus remains fixed
thereafter. Once a queue configuration has been coded, it essential remains hard-
wired unless an application developer revisits the development environment to alter a
queue configuration. Furthermore, MQ series requires a separate process to be
executed on each host to facilitate access to the queues. This requirement limits
flexibility and direct communication between processes. Furthermore, MQ series
does not provide control functionality to allow separate processes to control one
another since the process is disconnected from communication functionality.

Corba (“Common Object Request Brokering Architecture”) provided by the
Object Management Group (“OMG”) provides a system for remote access to server
based objects. The server based objects represent interfaces to various services that
are executed on a backend processing environment. Corba relies on the concept of an
ORB (“Object Request Broker”), which handles all aspects of communication and
control. In particular, Corba allows users to query the ORB to discover objects,
which are stored in a centralized repository system. In addition, it provides locator
services to attach or bind to these objects. Once a process has bound to a particular
object, it may then invoke the remote methods of the object.

A significant limitation with the Corba paradigm arises due to the fact that
remote method invocation serves as the sole form of communication between entities.
Thus, various processes are not capable of controlling one another, except indirectly
by accessing pre-defined methods of objects stored in the centralized repository.

Another known technology, Forte, enables rapid integration of applications
into a larger information system that may span heterogeneous environments.. Forte
relies upon a publish-subscribe model] utilizing a centralized messaging bus. Each
application communicates to the bus by means of a proxy, which utilizes an XML
(“Extensible Markup Language”) communication interface. Forte requires
deployment of a backbone infrastructure within a computing-environment in order-to- -

access its features. Furthermore, applications that cannot communicate. via XML

10

15

20

25

30

WO 02/37230 PCT/US01/48121

require fusion connectors that server as a translation layer between an application’s
native protocol and XML.

The Forte technology suffers from inherent lirhitations similar to the other
prior art technologies discussed. In particular, Forte relies upon a hierarchical
centralized communication architecture, which inhibits direction communication
between processes and typically creates bandwidth and bottleneck issues in large
applications. Furthermore, Forte requires significant overhead relating to the
deployment of the infrastructure code itself.

Thus, although a number of known systems have attempted to provide an
object oriented development environment for application development, these
technologies suffer from significant overhead, indirect communication between
remote processes, limited ability for control between processes and/or rigid interfaces
and protocol requirements. Furthermore, known technologies do not provide dynamic
reconfiguration, which may be realized at deployment alone; instead known systems
for application development require application redevelopment in order to reconfigure
applications to function within a computing environment. These limitations are
particularly severe in light of the sophisticated computing platforms currently being
developed to provide real-time or near real-time processing such as transaction
environments such as those designed to be accessed over information networks such
as the Internet and World Wide Web. Typically, such sophisticated applications
require rapid reconfiguration ability to perform functions such as load balancing
and/or to rapidly react to system faults and overloads.

In particular, it would be desirable if differences between platforms, operating -
systems and communication protocols could be abstracted out of the application.
Application components should know nothing about the networks on which they will
run or the protocols with which they will communicate. In general, it would be
desirable if integration and extension of applications could be achievable by ‘wiring’
together application.components without rebuilding the applications or changing the
application code. It would be further desirable if the scaling of applications could be
achieved as a matter of distributing copies of individual components to make better
use of resources, not reproducing entire application infrastructures.

Thus, a new-paradigm for building and deploying distributed applications is- -
necessary for achieving the goals of dynamic reconfiguration, code reuse,

interoperability; performance, availability and manageability.

10

15

20

25

30

WO 02/37230 PCT/US01/48121

SUMMARY OF THE INVENTION

The present invention provides a data processing architecture and application
development paradigm, which facilitates dynamic reconfiguration, code reuse,
interoperability, performance, availability and manageability. The present invention
provides a system and method for application development, deployment and runtime
monitoring which significantly fosters code reuse and dynamic reconfiguration of
developed applications.

According to the present invention, mechanisms for an exchange of data
within the application and by discrete elements of the application are entirely
decoupled from the processing tasks of discrete elements of the application. This
paradigm facilitates dynamic reconfiguration of an application at any time even after
runtime has commenced. The paradigm of the present invention promotes attention to
functional behavior of code, efficient logic design, control and logic flow based upon
a programming specification. Furthermore, the development environment
significantly reduces development and reconfiguration time, significantly fosters code
reusability, reduces the frequency of design errors and promotes heightened
performance through more efficient code design.

The application architecture according to the present invention includes a
combination of discrete and autonomous program processes each capable of
generating destinationless data elements, one or more data repositories for the storage
of data elements generated by the program processes and configuration information

for each program process. The configuration information for each program process

' may associate a program process with one or more data repositories in either a read.or

write configuration. The application is made operative through the combination of
the autonomous behavior of each program process and an exchange of data elements
or communication pathways between program processes.

The exchange of data between program processes.is achieved through an
association of modules with channels in either a read or write capacity and does not
rely upon a centralized controller operator. Instead, program processes are
autonomous and incognizant of other program processes and therefore exchange of
data and information is net achieved by a coupling of processes either in-a coding or-
runtime stage.. The exchange of data between processes is achieved by the combined -

individual-functional operation of each program process and the read/write behavior

10

15

20

25

30

WO 02/37230 PCT/US01/48121

of each program process with respect to the data repositories, which collectively
function as a conduit for an exchange of data between processes. The architecture
provides significant benefits for distributed computing applications in dyhamic
reconfiguration, code reuse, interoperability, performance, availability and
manageability. |

According to one embodiment, the data processing architecture of the present
invention provides for the development of a programming application utilizing a
plurality of discrete functional processes herein referred to as modules. According to
the present invention, modules are discrete self-contained collaborative entities, each
of which is designed to perform a narrowly defined range of tasks within a
programming application. Modules have the capacity of responding to a stimulus,
which may be generated by other modules. Furthermore modules may initialize,
terminate or reconfigure other modules. Because modules are coded as autonomous
entities of specialized and limited functionality, the modules belonging to the same
application have no built-in knowledge of each other’s behavior nor the contribution -
that each makes to the whole. Each module functions in a collaborative fashion with
respect to the entire application..

Modules are also characterized in their ability to generate structured
destinationless messages. Messages may be structured into any of number of fields to
include any information desired by the application developer and according to one
embodiment are implemented utilizing BLOBs (“Binary Large Objects™). According
to the present invention, messages are destinationless, meaning that they do not
include any information in their fields or otherwise that relates to an intended
recipient. Instead, modules generate messages typically to report the results of some
computational behavior of the module. However, the consumer of messages
generated by modules is not known or explicitly indicated in a modules functional
code.

Each module is associated with configuration parameters (which may be
modified even during runtime) that includes various configuration data related to
operation and initialization of the associated modules.

The programming architecture according to the present invention includes at
least one data repository, wherein adata repository receives-and stores destinationless-
messages generated by modules. The data repositories, which are herein referred to

as channels, provide a conduit for an exchange of messages between modules.

10

.15

20

25

30

WO 02/37230 PCT/US01/48121

Modules may write to particular channels or read for particular channels as defined by
the application developer. According to one embodiment, channels are implemented
utilizing FIFO (“First In First Out”) buffers, which may be implemented utilizing
memory mapped page files for example on hard disk or in RAM (“Random Access
Memory™).

The application architecture comprises a plurality of modules, module
conﬁguration parameters and channels. Among other things, module configuration
parameteré associate a module with one or more channels in either a write or a read
capacity. The combined set of configuration parameters for the modules comprising
an application achieves a communication binding between the modules.

The present invention provides an abstraction layer for develbpment of an
application using modules, channels and messages utilizing a plurality of API’s
(“Application Program Interfaces™). According to one embodiment of the present
invention, a module API includes a plurality of function calls that allow the definition,
initialization and termination of modules. A channel API includes a plurality of
function calls for opening, closing, reading and writing from channels. A message
API includes a plurality of function calls for the structuring of destinationless
messages, namely the definition of a field structure for messages according to the
design requirements of the developer.

The APIs function within an application development paradigm, which
includes a module coding step, an assembly step, and a deployment/managing step.

During the module coding step, one or more modules are defined for an
application. According to the present invention a module comprises a discrete
element of code exhibiting a functional behavior. In particular, a module is a set of
program instructions in any programming language, which incorporates a selection of
API function calls — that is function calls relating to module definition, channel access
and messaging definition.

According to one embodiment, each module is generated by creating a module
source code file that includes a predefined structure. In particular, each module source
code file includes an initialization function, a work function and a termination
function which respectively include code to initialize the module, code to cause the
module to exercise its characteristic behavior-and code to terminate or kill operation. -
of the module. The initialization, work and termination.functions serve as callback

functions, whichpermit remote control of module functions. In particular, modules-

8

10

15

20

25

30

WO 02/37230 PCT/US01/48121

may control one another by causing the initialization, termination or reconfiguration
of other modules, which is effected by calling the respective initialization, work or
termination function.

In the assembly step, among other things an interaction between modules is
defined in the form of a schema that delineates one or more communication pathways
between the modules for an exchange of messages. These communication pathways
are virtual because modules do not directly communicate with one another. Channels
provide the conduit for the exchange of messages between modules. Thus, during the
assembly step, the associations between modules in a read or write capacity are
achieved such that the configuration information for each module with respect to
channelé is set. According to one embodiment, a GUI (“Graphical User Interface”) -
tool provides the application developer with a convenient input mechanism for
defining communication pathways.

In a deployment step, the defined application is deployed and configured
within a computing environment such as a network, which may include any set of
generalized processing entities (e.g., hosts). In particular, the modules included
within the application are distributed to one or more hosts within the computing
environment. During the deployment step, the interaction scheme specified in the
assembly step is preserved although modules included within the application may be
distributed among multiple hosts throughout the computing environment. According
to one embodiment, in order to commence the deployment step, the application
developer defines one or more components from the application. A component
defines one or more modules designated to reside on a single host. Components are
then deployed on respective hosts within computing environment in a manner that the
communication pathways defined in the application building step are preserved (this
is accomplished even if interacting modules span multiple hosts).

According to one embodiment of the present invention, a GUI tool provides the
deployment of an application within a computing environment. .

According to one embodiment of the present invention, during the deployment
step, defined communication pathways are ultimately resolved into a structure herein
referred to as channel, which serves as a conduit to facilitate an interaction between
modules included within an application based upon the interaction scheme defined -
during the application building step. According to one embodiment, a channel

provides a pathway for an exchange of messages between modules: Messages are

10

15

20

25

30

WO 02/37230 PCT/US01/48121

self-describing data entities utilizing a particular structure. According to one
embodiment, a channel is implemented as a memory mapped data structure referred to
herein as a page file. Page files may be implemented as memory mapped files on a
given host so that data (i.e., messages) stored within the page files may be accessed
using a convenient and fast memory pointer scheme. According to this scheme, a
block of RAM (“Random Access Memory”) is reserved to correspond to a particular
block of disk storage space so that data written to RAM corresponds to particular
physical storage space on a non-volatile memory device such as a hard disk.
According to an alternative embodiment, page files be implemented entirely in RAM
using shared-memory facility on host 114. Each page file is associated with one or
more read cursors and one or more write cursors.

During the deployment step, modules comprising an application are deployed
to a computing environment based upon a deployment scheme. In order for an
application to run within a computing environment, a runtime environment must be
installed on each host in the computing environment in which one or more modules
from the application will reside. According to one embodiment, a runtime
environment includes a module manager module, a router module, a communications
module, a reference retriever module, an authorization module and a file operations
module. Consistent with the paradigm provided by the present invention, each
module included within the runtime is structured like any other module included
within an application (i.e., it utilizes a structured code paradigm as described above,
and thus is associated with an initialization function, a work function and a
termination function).

‘ " The module manager module 201 provides functionality for starting,
suspending, stopping and cloning modules running on a host 114 on which the
module manager has been deployed. Cloning of modules 201 involves invoking

identical instances of running modules 201, which all share the same input and output

channels.

A router module included within the runtime environment is tasked with
dynamic routing of messages between modules. Conditional routing of messages may
be accomplished utilizing a routing table (not shown) as defined within a
configuration file. Routing may also be effected dynamically such that rules may.be -
added or removed during runtime. A communications module included within the

runtime environment provides-a conduit for the deployment of modules including a

10

10

15

20

25

30

WO 02/37230 PCT/US01/48121

runtime environment itself on hosts within the computing environment. A reference
retriever module included within the runtime environment performs functions for
resolving remote file access and reference requests. An authorization module
included within the runtime en\;ironment provides functionality for permissioning,
authentication and authorization related to the runtime operation of an application.

According to one embodiment, a number of facilitator modules are defined
that aid in the deployment and operation of application including sender and receiver
modules 201, multiplexer and demultiplexer modules 201, data mapper modules 201,
a load balance module 201 and a router module 201 specifically configured to
multiplex messages unconditionally to a set of channels.

In order to achieve interaction between modules deployed on separate hosts

within a computing environment, sender modules and receiver modules may be

deployed on separate respective hosts. A sender module and a receiver module may
interact and exchange messages across separate hosts coupled together on a network.
In particular, a sender module and a receiver module may communicate-over a
network utilizing a particular network protocol such as TCP/IP (“Transmission
Control Protocol/Internet Protocol”).

A multiplexer module and demultiplexer module may be deployed to extend
and preserve multiple physical channels across a single channel divide. A
multiplexer module performs (as its work function) the operation of combining
messages arriving from multiple channels so that they can be transported over a single
channel. A demultiplexer module performs the function of demultiplexing messages
arriving over a single channel into separate channels.

A data mapper module performs the task of transforming message formats- -
based upon conditional rules. Message data may be re-mapped or aggregated.

According to one embodiment of the present invention an application
development and network deployment tool is provided, which facilitates the
development process by providing automated functions and graphical user interfaces
(“GUT”) for performing the packaging step, the application building step and the
deployment step. According to one embodiment, the ADNDT provides a GUI
environment through which an application developer may define and deploy an
application within-a computing environment. As a function of input received through
the GUI, ADNDT automatically populates associated configuration files for modules
included within an application 405. ADNDT provides functionality for building an

11

10

15

20

25

30

WO 02/37230 PCT/US01/48121

application by allowing an application developer to select desired modules from a
module repository to perform an application building step.

After runtime has commenced, the performance of the application may be
monitored to evaluate its performance. Even during runtime, applications may be
reconfigured dynamically to respond to temporal variations within a computing
environment such as shifting load and/or faults. The development environment
provided by the present invention obviates developer focus upon protocol and
communication issues within an intended computing environment during the

development phase.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1, which is prior art, illustrates a traditional application developrhent
environment.

FIGTZa illustrates an application design paradigm and methodology according
to one embodiment of the present invention.

FIG. 2b illustrates a runtime monitoring function provided by the present
invention.

FIG. 3a illustrates an operation of a module according to one embodiment of
the present invention.

FIG. 3b illustrates a relationship between a first module, a second module and
a message according to one embodiment of the present invention.

FIG. 3c illustrates a remote iniﬁalization of a module according to one
embodiment of the present invention.

FIG. 3d illustrates a remote termination of a module according to one
embodiment of the present invention.

FIG. 3e illustrates a remote reconfiguration of a module according to one
embodiment of the present invention

FIG. 3f illustrates a communications between a number of exemplary modules -
utilizing a number of communications channels according to one embodiment of the
present invention.

FIG. 3g shows an exemplary relationship between a number of
communication pathways and a corresponding set of channels.

FIG. 4a depicts an application including a number of modules and an

interaction scheme..

12

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIG. 4b depicts a resolution of the communication pathways for a set of
modules residing on a single device into a number of channels.

FIG. 5a depicts a component according to one embodiment of the present
invention.

FIG. 5b depicts an exemplary segmentation of an application into a number of
components according to one embodiment of the present invention.

FIG. 6 depicts a number of application tools including application
prograrﬁming interfaces and a network deployment tool according to one embodiment
of the present invention.

FIG. 7 is a flow diagram that shows a process for creating a module and a
number of programming elements and data structures included in a module package
according to one embodiment of the present invention.

FIG. 8 depicts the structure of a module repository according to one
embodiment of the present invention.

FIG. 9a depicts the structure of a module code file according to one
embodiment of the present invention.

FIG. 9b is a flowchart depicting a typical series of steps executed by a
initialization function 910 according to one embodiment.

FIG. 9c is a flowchart depicting a typical series of steps executed by a work
function according to one embodiment of the present invention.

FIG. 9d is a flowchart depicting a typical series of steps executed by a
termination function according to one embodiment of the present invention.

FIG. 10 depicts the structure of a message according to one embodiment of the
present invention.

FIG. 11 depicts the structure of a configuration file according to one
embodiment of the present invention.

FIG. 12a depicts the structure of a dictionary data structure according to one
embodiment of the present invention.

FIG. 12b further illustrates an orientation of a dictionary data structure
according to one embodiment of the present invention.

FIG. 12c illustrates a portion of an exemplary dictionary data structure
generated from the configuration:file described.above a{ccording' to one embodiment.- .

of the present invention.

13

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIG. 13a depicts a relationship between a number of channels and
corresponding page files and a channel file according to one embodiment of the
present invention.

F 1G. 13b further depicts the structure of a page file according to one
embodiment of the present invention.

FIG. 13c further depicts the structure of a page file according to one
embodiment of the present invention.

FIG. 13d depicts a data structure for storing a WriteMsgStruct object
according to one embodiment of the present invention.

FIG. 13e depicts a data structure for storing a PageStruct data object according
to one embodiment of the present invention. ‘

FIG. 13f depicts a data structure for representing a PageIndexStruct object
according to one embodiment of the present invention.

FIG. 13g depicts the structure of a RecordHeaderStruct object according to
one embodiment of the present invention.

FIG. 13h depicts the structure of a MasterPageStruct object for storing path
and memory mapped data pertaining to a page file according to one embodiment of
the present invention. |

FIG. 131 depicts the structure of a MasterPageIndexStruct according to one
embodiment of the present invention. |

FIG. 13j depicts the organization of a page file according to one embodiment
of the present invention

FIG. 14a depicts a data structure for representing a ChanloStruct object
according to one embodiment of the present-invention.

FIG. 14b depicts a data structure for representing a ChannelFileStruct object
according to one embodiment of the present invention.

FIG. 14c depicts the structure of a ChannelObjStruct object according to one
embodiment of the present invention.

FIG. 14d depicts the structure of a ChannelFileStruct object according to one
embodiment of the present invention.

FIG. 14e depicts the structure of a ChannelFileHdrStruct object according to
one embodiment of the present invention. -

FIG. 14f depicts the structure of a ChannelFileObjectStruct object according

to one embodiment of the present invention.

14

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIG. 14g depicts the structure of a ChanInfoStruct object according to one
embodiment of the present invention.

FIG. 14h depicts the organization of a channel file according to one
embodiment of the present invention.

FIG. 15 depicts a core runtime environment package according to one
embodiment of the present invention.

FIG. 16 depicts an exemplary operation of a module manager module
according to one embodiment of the present invention.

FIG. 17 is a flowchart depicting various steps included in an initialization
function, work function and termination function of a module manager according to
one embodiment of the present invention. |

FIG. 18 is a flowchart that depicts the algonthmw structure of a module starter
process.

FIG. 19 schematically depicts the operation of a router module according to
one embodiment of the present invention.

FIG. 20 schematically depicts the operation of a sender and receiver module
201 according to one embodiment of the present invention.

FIG. 21 depicts the operation of a multiplexer and demultiplexer module
according to one embodiment of the present invention.

FIG. 22 is a flowchart depicting the work function operation of a multiplexer
module according to one embodiment of the present invention.

FIG. 23 is a flowchart depicting the work function operation of a
demultiplexer module according to one embodiment of the present invention.

FIG. 24 depicts the operation of a communications module according to one -
embodlment of the present invention.

FIG. 25 depicts the operation of a data mapper module according to one
embodiment of the present invention. l

FIG. 26 depicts the operation of a reference retriever module according to one
embodiment of the present invention. |

FIG. 27 depicts the operation of an authorization module according to one
embodiment of the present invention.

FIG. 28 graphically illustrates a set of steps for the development and
deployment of an application utilizing an application development and network

deployment tool.

15

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIG. ‘29 graphically depicts a set of steps for the resolution of a default input
channel and a default output channel by an application development and network
deployment tool for modules deployed on the same host according to one embodiment
of the present invention. ‘

FIG. 30 graphically depicts a set of steps for the resolution of a default input
channel and a default output channel by an application development and network
deployment tool for modules deployed on separate hosts according to one
embodiment of the present invention.

FIG. 31 further illustrates an exemplary deployment configuration for modules
residing on separate hosts according to one embodiment of the present invention.

FIG. 32 further illustrates an exemplary deployment configuration for modules
residing on separate hoéts according to one embodiment of the present invention.

FIG. 33 depicts the operation of a system monitor module and channel
monitor module according to one embodiment of the present invention.

FIG. 34 illustrates a traditional distributed computing paradigm.

FIG. 35 depicts a data processing system according to one embodiment of the
present invention.

FIG. 36 depicts a mechanism for an exchange of data elements between
program processes according to one embodiment of the present invention.

FIG. 37 depicts a paradigm for application development according to one

embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 35 depicts a data processing system-according:to one embodiment of the -

present invention. As shown in FIG. 35, data processing system 3540 includes a
plurality of discrete and autonomous program processes 3550(1)-3550(N) each of
which is associated with a respective configuration information 3520(1)-3520(N).
Application 3540 further includes-and one or more data repositories 3505(1)-3505(N). -
Program processes 3550(1)-3550(N) are autonomous in that they each perform a
discrete functional behavior. According to one embodiment of the present invention,
program processes 3550(1)-3550(N) are modules, the structure and function of which
are described in detail below.

Each program process 3550(1)-3550(N) is capable of generating

destinationless data elements 3560, which are generic in nature. Data repositories

16

10

15

20

25

30

WO 02/37230 PCT/US01/48121

3505(1)-3505(N) function to receive and store data elements 3560 generated by
program processes 3550(1)-3550(N). Furthermore, program processes 3550(1)-
3550(N) may read data elements 3560 from data repositories 3505(1)-3505(N) as
described in detail below. According to one embodiment of the present invention,
data repositories 3505(1)-3505(N) are channels, the structure and function of which
are described in detail below.

In order to achieve an exchange of data elements 3560 between program
processes 3550(1)-3550(N), the configuration information 3520(1)-3520(N) for each
program process 3550(1)-3550(N) may associate a program process with one or more
data repositories 3505(1)-3505(N) in either a read or write configuration. That is,
certain program processes 3550(1)-3550(IN) may be associated with particular data
repositories 3505(1)-3505(N) for reading data elements. Certain program processes
3550(1)-3550(N) may be associated with particular data repositories 3505(1)-3505(N)
for writing data elements. The application is made~ operative through the combination
of the autonomous behavior of each program process 3550(1)-3550(N) and an
exchange of data elements 3560 between program processes via data repositories
3505(1)-3505(N).

Note that the exchange of data elements 3560 between program processes
3550(1)-3550(N) is achieved through an association of modules with data repositories
3505(1)-3505(N) in either a read or write capacity and does nof rely upon a
centralized controller. Further, because program processes 3550(1)-3550(N) are
autonomous and inéognizant of other program processes and therefore exchange of
data elements 3560 is not achieved by a coupling of program processes 3550(1)-
3550(N) either in a coding or runtime stage. Instead, the exchange of data between
program processes 3550(1)-3550(N) is achieved by the combined individual
functional operation of each program process 3550(1)-3550(NN) and the read/write
behavior of each program process with respect to data repositories 3505(1)-3505(N),
which collectively function as a conduit for an exchange of data elements 3560.

FIG. 36 depicts a mechanism for an exchange of data elements between
program processes according to one embodiment of the present invention. As shown
in FIG. 36, program process 3550(1) is configured via configuration information
3520(1)-to write data elements 3560 to data repository 3505. Program process
3550(2) is configured via configuration information 3520(2) to read data elements

3560 from data repository 3505. Thus, program processes 3505(1) and 3505(2) are

17

10

15

20

25

30

WO 02/37230 PCT/US01/48121

configured to exchange data elements 3560 via configuration information 3520(1) and
3520(2). Note, however, that the simple data flow depicted in FIG. 36 could easily be
altered, for example, by changing the configuration information 3520(1) for program

-process 3550(1) to read data elements 3560 from data repository 3550 and changing
the configuration information 3520(2) for program process 3550(2) to write data
elements 3560 to data repository. In this way, data elements would effectively flow in
the reverse direction than what is shown. Also, note that configuration information
3520(1)-3520(2) is decoupled from the actual functional behavior of program
processes 3550(1)-3550(2) such that the data flow may be reconfigured independently
of the coding of.

FIG. 37 depicts a paradigm for application development according to one
embodiment of the present invention. Note that according to the paradigm, behavior
development 3710 is decoupled from communication development 3720. In
particular, in coding step, a plurality of modules program processes 3450(1)-3550(N)
are defined. Program processes 3550(1)-3550(N) each perform a program task
(respectively 3730(1)-3730(N)) and have capability for the generation of
destinationless data elements 3560. According to one embodiment of the present
invention, program processes 3550(1)-3550(N) are modules and data repositories
3505(1)-3505(N) are channels, the structure and function of which are described in
detail below. Data elements 3560 generated by program processes 3550(1)-3550(N)
are characterized as being destinationless (i.e., program processes 3550(1)-3550(N)
do not generate data elements 3560, which are pre-defined to be received or
consumed by other particular program processes 3550(1)-3550(N)). According to one
embodiment, data elements 3560 are messages the structure and function of which are
described in detail below. Moreover, according to the programming paradigm of the
present invention, program processes 3550(1)-3550(N) are not made cognizant of the
existence or operation of other program processes 3550(1)-3550(N).

During assembly step 3715, program processes 3550(1)-3550(NN) are
associated with message repositories 3505(1)-3505(N) in such a way to define one or
more communication pathways between program processes 3550(1)-3550(N).
According to one embodiment of the present invention, during assembly step 3715,
the definition of communication pathways.between program. processes 3550(1)-
3550(N) is reflected in configuration information 3520(1)-3520(N) for each program

process.

18

10

15

20

25

30

WO 02/37230 PCT/US01/48121

In deployment step 3720, a plurality of data repositories 3405(1)-3405(N) are
created as a function of configuration information 3520(1)-3520(N). Further, during
deployment step 3720, program processes 3550(1)-3550(N) are associated with data
repositories 3405(1)-3405(N) in one of a read and write capacity as a function of
configuration information 3720(1)-3720(N) defined for each program process
3550(1)-3550(N) in assembly step 3715.

Note that data elements 3560 generated by program processes 3550(1)-
3550(N) are not directed to a particular recipient (they are destinationless) and
therefore do not refer to a destination program process. Data elements 3560 generated
by a particular program process 3550(1)-3550(N) are simply written to a particular
message repository 3505 associated with the program process 3550 and may be
consumed (read) by other program processes 3550 by associating particular program
processes 3550 to perform a read function with respect to the data repository 3505 to
which the data elements are written. A

FIG. 1, which is prior art, illustrates a traditional application development .
environment. As shown in FIG. 1a, the development process is initiated with
application specification 105, which sets forth a desired overall function and
operation of an application. For example, application specification 105 may provide
desired overall behavior of the application, required outputs, available inputs,
performance specifications such as timing requirements, available processing
resources, required processing efficiency with respect to CPU load, etc. In step 171,
application specification 105 is analyzed to generate one or more functional elements
107(1) — 107(N), which collectively operate in conjunction to achieve the desired
behavior specified by application specification 105. Functional elements 107 may
represent various programming classes or functions.

Note that the generation of particular functional elements 107 from application
specification 105 is determined based upon network topology/protocol information
133. That is, the determination of particular functional elements 107 and their
relationship to one another is based at least in part on consideration of a network
topology 121 where the application is to be deployed and the various protocols
resident within the network topology 121. As shown in FIG 1a, network topology
information-133 includes data regarding a number. of host processing devices 114 and
the manner in which they are coupled together within network topology 121. In
particular, provided-a knowledge of network topology 121, functional elements are

19

10

15

20

25

30

WO 02/37230 PCT/US01/48121

designed to collectively operate within network topology 121 and the determi:iation
of a set of functional elements 107 is typically designed to be deployed in a particular
configuration within network topology.

Thﬁs, with conventional application developments such as that depicted in
FIG 1, the developer is typically required to perform application development
simultaneously or in conjunction with design of deployment of the application within
network topology 121. The design limitation is illustrated in step 181 in which each
of the defined functional elements 107 is coded to generate a corresponding functional
code element 110 and a required communications/protocol code element 117.
Functional code element 110 includes code designed to carry out the intended _
function of the functional element 107. Communication/protocol code element 117 is
designed to perform communications and/or protocol negotiation with other
functional elements 107 generated from application specification 105.

In step 191, functional code elements 110 and associated
communication/protocol code element 117 are deployed within network topology
121. That is, functional code elements 110 and associated communication/protocol
element 117 are installed on particular processing hosts 114 within network topology.
Note that communication/protocol elements 117 allow for communication between
functional elements 107 within network topology 121 and are each designed for the
particular configuration in which functional elements 107 are deployed within
network topology 121. However, note that if variations in network load, load faults or
other temporal variations required redesign and/or redistribution of the application
within network topology 121, communipation i)rotocol elements 117 and potentially
functional code elements 110 would require redesign for adaptation to the new
configuration. This redesign would typically require substantial design cycle time.

FIG.2a illustrates an application design paradigm and methodology according
to one embodiment of the present invention. According to one embodiment of the
present invention, application development includes a coding step 231, a packaging
step 233, an application build step 241 and a deployment stép 251. Incoding step
231, application specification 105 is analyzed to generate one or more modules 201.
During coding step 231, the application developer defines one or more modules
(201(1)-201¢1)), which-function as discrete entities each performing a behavior. The-
generation of a module 201 and its structure will become evident as the invention is

further described. However, it should be noted that each module 201 is an automaton

20

10

15

20

25

30

WO 02/37230

PCT/US01/48121

processing the capability of responding to a stimulus or reacting independently of any
centralized controller. The collective behavior of all modules 201(1)-201(N) achieves
the desired behavior and functionality specified in application specification 105.

During coding step 231, the application developer may provide the code to
effect the logical behavior of each module 201 to be included within an application
405. During coding step 231, the application developer relies upon the assumption of
an interaction between modules 201, which may be achieved by the
delivery/consumption of messages between modules 201. During coding step 231,
the application developer utilizes one or more APIs (“Application Programming
Interfaces™) to determine the operation and behavior of each module 201. In
particular, APIs provide a multitude of function calls that may be embedded in a
module’s code to effect a desired behavior.

In packaging step 233, the application developer may define and describe
various parameters relating to potential interaction between modules 201 such as the
delivery/consumption of messages by particular modules 201 over defined or known
pathways. During packaging step 233, the application developer may define active
pathways and messages used within the code to facilitate application build step 241.
During packaging step 231, the application developer may also define restrictions on
module interaction. Packaging step 233 also allows the application developer to
define properties of files being packaged (i.e., operating system compatibility,
versioning, compiler compatibility, etc.).

Packaging step 233 importaﬁtly serves to define a set of associated physical
files — each with associated compatibility properties required fro smart deployment.
Packaging step 233 also allows specification of information pertaining to versioning
and change-control

In application building step 241, the application developer defines an
application 405. Application 405 defines an aggregate of modules 201, each module

. 201 exhibiting a specific functional behavior and an interaction scheme defining how .. .

modules 201 may interact (this interaction may be a function of message exchange) in
application 280. According to one embodiment of the present invention, an
interaction scheme may be defined by delineating one or more communications
pathways between modules:201. These communications pathways define a conduit -
for an exchange of messages between modules 201 upon deployment. Mechanisms

for interaction and exchange of messages between modules 201 are described in detail

21

10

15

20

25

30

WO 02/37230 PCT/US01/48121

below. During application building step 241, various parameters may be adjusted to
customize runtime behavior of modules 201(1)-201(N) and their interaction. Note
that duﬁng application building step 241, the defined interaction scheme between
modules 201(1)-201(N) is allowed or restricted by the packaging options defined in
packaging step 233.

Note that during coding step 231, packaging step 233 and application building
step 241 the developer is required only to focus on the logical and data flow aspects of
modules 201 and their interaction to produce a desired behavior of application 405.
The application developer is not required to consider network, protocol or deployment
issues relating to a computing environment topology 121 in which application 405
will be deployed.

In deployment step 251, application 405 is deployed and configured within a
computing environment 121. Computing environment 121 may be a network or any
generalized collection of processing entities or (e.g., hosts 114) sharing
communication means. - In particular; the plurality of modules 201 included within
application 405 are distributed to one or more hosts 114 included within computing
environment 121. During deployment step 251, the interaction scheme designed in
application building step 241 is preserved although modules 201 included within
application 405 may be distributed among multiple hosts 114 throughout computing
environment 121. For example, and as described in detail below, during deployment
step 251, communications pathways between devices are upheld via auto-deployment
of facilitator modules such as sender and receiver modules 201 that may transfer
messages across hosts 114 (described below). The structure and function of sender
and receiver modules 201 will become evident as the invention.is further described...
As a preliminary step in deployment step 251, accofding to one embodiment, the
application developer defines one or more components 505 from application 405. A
component 505 defines one or more modules 201 designated to reside on a single host
114. Components 505 are then deployed on respective hosts 114 within computing
environment 121. The structure and function of components 505 is described in
detail below.

FIG. 2b illustrates a runtime monitoring function provided by the present
invention. During runtime of an application 405, a monitor host 114x may perform -
monitoring of application performance and generate various text or graphical reports

relating to the performance. For example, runtime host 114 may generate reports

22

10

15

20

25

30

WO 02/37230 PCT/US01/48121

relating to machine up time, number of users, average load, number of processes
(running/sleeping), etc. . |

FIGS. 3a-3e¢ illustrate various attributes, behaviors and functionalities
associated with modules 201 according to one embodiment of the present invention.
In particular, modules 201 exhibit a functional behavior possibly in response to a
stimulus. Furthermore, modules 201 may interact with one another over a
communications channel utilizing messages. Modules 201 may also exhibit remote
control over one another to perform such functions as initialization, termination and
reconfiguration.

FIG. 3a illustrates an operation of a module according to one embodiment of
the present invention. Module 201 receives as input stimulus 305 and produces
behavior 307 as output . As will become evident as the invention is further described,
stimulus 305 may be messages representing self-describing data, requests for
processing,_events or signals, data files, executable code or some other signal received
by module 201. Thus, modules 301 may generate stimulus 305, which affects other
modules 301. Stimulus 305 may a self-describing message, an input variable, vector
or some other signal. Methods for exchange of messages 305 between modules 201
will become evident as the invention is further described. Stimulus 305 may be an
output variable, vector or other signal generated by module 201 itself, in which case
module 201 would be arranged in a feedback configuration. Typically behavior 307
is realized as a result-of some processing performed by module 201, typically as a
function of stimulus 305. However, it should be noted that according to one
embodiment, module 201 might not receive a stimulus 305 at all. However, such a
module 201 decoupled from a stimulus 305 may still exhibit a behavior as a function
of processing, such as processing based upon internal data or variables decoupled
from an external stimulus 305.

Note that it is also possible for the input stimuli 305 to come from a module-
internal source, e.g., the basis for the processing done by the module 201 may be
internal data or variables.

FIG. 3b illustrates a relationship between a first module, a second module and

a message according to one embodiment of the present invention. Referring to FIG.

3b, module 201a generates message-305 and transmits it to module 201b over channel

380. The structure and function of messages 305 and channels 380 will become

_evident as the invention is further described.

23

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIGS. 3c-3e illustrate various remote control functions carried out by a
module according to one embodiment of the present invention. As will become
evident, as the invention is further described modules 201 may reside on a particular
host 114, but may exist in a dormant or active state. It may be desirable, for example,
to perform activation, termination of a module on a dynamic basis, for example, based
upon temporal variations within computing environment 121 such as changes within
network load, etc. For example, FIG. 3¢ shows module 201a causing remote
initialization of module 201b according to one embodiment of the present invention.
FIG. 3d shows module 201a causing remote termination of module 201b according to
one embodiment of the present invention. Each module 201 is associated with a
configuration file 715 that stores various default attributes related to the module 201.
For example, configuration file 715 may store parameters such as a default input
channel from which a module 201 will write. Configuration file 715 may include a
myriad of other internal variables and vectors necessitated to carry out the processing,
initialization or termination functions associated with the module 201. An exemplary
configuration file structure is described in detail below.

FIG. 3fillustrates a communications between modules utilizing a number of
channels according to one embodiment of the present invention. In particular, as
shown in FIG 3f, module 201a transmits messages 305b to module 201b via message
pathway 380b. Module 201a receives messages 305a via channel 380a. Although
FIG. 3f depicts only two modules (201a-201b), it is assumed that module 201a
receives messages 305a via channel 380a from one or more other modules 201 not
shown in FIG. 3f. Similarly, module 201b transmits messages 305c via channel 380c
to one or.more other modules 201 not shown in FIG. 3f. The structure and function of
channels 380 and messages 305 will become evident as the invention is further
described.

During application building step 241, the application developer defines one or
more communication pathways between modules 201 as a function of parameters
defined in packaging step 233. Communication pathways define an interaction
between modules 201 included in an application. During deployment step 251,
communication pathways are ultimately resolved into channels 380, which are a
physical realization for effecting interaction between modules201. During-

FIG. 3g shows an exemplary relationship between a number of

communication pathways and a corresponding set of channels. In particular, during

24

10

15

20

25

30

WO 02/37230 PCT/US01/48121

application building step 241 communication pathway 314a is defined between
modules 201c and 201a, communication pathway 314b is defined between modules
201a and 201b and communication pathway 314c is defined between module 201b
and module 201f. This definition of communication pathways 314 defines the
intention for messages 305a to be transmitted between modules 201c¢ and 201,
messages 305b to be transmitted between modules 201a and 201b and messages 305¢
to be transmitted between modules 201b and 201f. .

According to one embodiment of the present iﬁvention, a communications
pathway 314 defined in application build step 241 is ultimately resolved into one or
more channels 380, which are a physical realization of an interaction between
modules 201. The structure and function of a channel 380 will become evident as the
invention is further described. In some circumstances, such as where two modules
201 reside on a single host 114, a one-to-one correspondence may be established
between a communication pathway 314 and a channel 380. For example, referring to
the bottom halfof FIG. 3g, communication pathway 314a between modules 201¢ and
201a, which reside on a single host 114a, is resolved into channel 380a. Similarly,
message pathway 314c between modules 201b and 201f, which reside on a single host
114b, is resolved into channel 380d.

However, if a communication pathway 314 is defined between two modules
201 that reside on separate hosts 114, the communication pathway 314 may be
resolved into multiple channels 380. For example, note that communication pathway
314b is defined between modules 201a and 201b, which reside on separate respective
hosts 114a and 114b. Message pathway 314b between modules 201a and 201b is
effected utilizing channels 380b and 380c, communications modules 201d and 201e .
and communications interface 375. The resolution of a communication pathway 314
into channels 380 is described in detail below.

According to one embodiment of the present invention, each module 201 may
be associated with a default input channel 380 and a default output channel 380,
which is typically defined in the module’s configuration file 715. According to this
embodiment, to establish a communication pathway 314 between a first module 201
and a second module 201, the default input channel 380 of the first module 201 is set
to the default output channel-380.of the second module. ‘

According to one embodiment, the physical realization of channel 380 is

established using-a disk or memory based (e.g., RAM)-queue data structure.

25

10

15

20

25

30

WO 02/37230 PCT/US01/48121

Exemplary implementations of channels 380 will become evident as the invention is
further described.

FIG. 4a depicts an application including a number of modules and an
interaction scheme. As described above, during application building step 241, the
application developer determines the modules 201 to be included within application
405 and generates an interaction scheme, which determines how modules 201 will
interact with one another. According to one embodiment of the present invention, the
application developer defines an interaction between two modules by establishing a
communication pathway 314 between them. Communication pathway 314 represents
a placeholder that modules 201 will interact during runtime. Ultimately,
communication pathway 314 is resolved into one or more channels 380 during
deployment step 251. Interaction of modules 201 includes exchanges between them
via messages 305, which may include any combination of self-described data,
requests for action, a signal event, executable code, reference to a file.

In particular, referring to FIG. 4a, module 201a interacts with module 201h via
communication pathway 314a, module 201d interacts with module 201c via
communication pathway 314b, module 201c¢ interacts with module 201b via message
pathway 314c, module 201b interacts with module 201f via communication pathway
314d, module 201f interacts with module 2011 via communication pathway 314e,
module 2011 interacts with module 201m via communication pathway 314f, module
201j interacts with module 201e via communication pathway 314g, and module 201e
interacts with module 201k via communication pathway 314h.

As described above with respect to FIG. 3g, note that the communication
pathways are ultimately resolved into one or more channels 380 as a function of a
deployment configuration defined by the developer. FIG. 4b depicts a resolution of
the communication pathways established in FIG. 4a for a set of modules 201 residing
on a single device into a number of channels 380. In particular, as shown in FIG. 4b,
message pathways 314a-314f are resolved into.respective channels 380a-380f. In
order to establish an interaction scheme between a number of modules 201 such as the
exemplary applications shown in FIG. 4a-4b, appropriate default input and output
channels 380 for each module 201 in the application 405 are set to establish the
interaction scheme. For example, in order to establish the interaction scheme for
application 405 shown in FIGS. 4a-4b, the following relationship between default
input channels of modules 201a-2011 is established:

26

10

15

WO 02/37230

Module Default Input Channel Default Output Channel
201a X 380a
201b 380c 380d
201c 380b 380c
201d X 380b
201e : 380g 380h
201f 380d 380e
201g . X X
201h 380a X
201i 380e X
201j X 380g
201k - 380h X
2011 X 380f
201m 380f X

Upon completion of application building step 241, a deployment step 251 is
commenced in which the application 405 is deployed to computing environment 121.
In particular, the plurality of modules 201 included within application 405 are
distributed to one or more hosts 114 included within computing environment 121.
During deployment step 251, the interaction scheme designed in application building
step 241 is preserved although modules 201 included within application 405 may be
distributed among multiple hosts 114 throughout computing environment 121. For
example, and as described in detail below, during deployment step 251,
communication pathways 314 between modules spanning separate hosts 114 are
upheld via auto-deployment of facilitator modules such as sender and receiver '
modules 201 that may transfer messages across hosts 114 (described below). The
structure and function of sender and receiver modules 201 will become evident as the
invention is further described. As a preliminary step in deployment step 251,
according to one embodiment, the application developer defines one or more
components 505 from application-405." A component 505 defines one or more-

modules 201 designated to reside on a single host 114. Components 505 are then

27

PCT/US01/48121

10

15

20

25

30

WO 02/37230 PCT/US01/48121

deployed on respective hosts 114 within computing environment 121. The structure
and function of components 505 is described in detail below.

FIG. 5a depicts a component according to one embodiment of the present
invention. Component 505 represents a logical grouping of one or more modules 210
to be deployed on a single host 114. Thus, as shown in FIG. 5a, component 505
includes a logical grouping of one or more modules 210(1)-210(N) to be deployed on
host 114.

FIG. 5b depicts an exemplary definition of a number of components from an
application according to one embodiment of the present invention. For consistency,
FIG. 5b shows a component definition based upon the same application interaction

scheme exemplified in FIG. 4a. Referring to FIG. 5b, as described above, application

| 405 includes modules 201a-201m and an interaction scheme, which defines how

modules 201 may interact with one another. FIG. 5b shows segmentation of
application 405 into three components 505a-505¢, which are to be deployed
respectively on hosts 114a-114c. Hosts 114a-114c are coupled together viaa
computing environment 121, which may be a network. Component 505a includes
modules 201d, 201c, 201b and 2011, component 505b includes modules 201g, 2011,
201m and 201a and component 505¢ includes modules 2011, 201e, 201h, 201j and
201k. Note that segmentation of application 405 into components 505a-505¢ does not
require inclusion of all interacting modules 201 within a single component 505 (i.e.,
to be deployed on a single host 114). For example, module 201f interacts with
module 2011, yet module 201f and module 201i are assigned to separate components,
namely 505a and 505c respectively and are therefore to be deployed on hosts 114a
and 114c respectively. As will be described below, preservation of interaction
between interacting modules 201 deployed on separate hosts may be effected utilizing
specialized sender, receiver, multiplexer and/or demultiplexer modules 201 (described
below).

According to one embodiment, the present invention provides a number of
APIs for application development. FIG. 6 shows module API 610a, message API
610b, Field API 610c, channel I/O API 610d, dictionary API 610e, file access API
610f, directory utility API 610g and compression API 610h. Each API includes a
plurality of function calls for-controlling various aspects of an application 405
including messaging, etc. During coding step 231, the application developer may

utilize any function calls defined by particular APIs to control various aspects of the

28

10

15

20

25

30

WO 02/37230 PCT/US01/48121

application 405. APIs 610a-610h provide functionality for initializing and controlling
various elements of an application 405 including modules 201, channels 380,
messages 305, etc.

Module API 610a provides functionality for initializing, controlling, and
terminating modules 201. In particular, module API 610a provides an interface for
module programming. Message API 620 provides functionality for initializing
messages 305, reading messages. Field API 610c provides further functionality
related to messages 305 including. Channel I/O API 610d provides functionality for
reading and writing to channels. Channel I/O API 610d provides a framework for
opening and creating channels and associating names with them including sending
and receiving messages on different channels. Specific functionality provided by
channel I/O API 610d will become evident as the structure and function of channels is
developed herein. Dictionary API 610e provides functionality for initializing and
maintaining a data structure referred to herein as a dictionary 620. A dictionary 620
provides a container for storing and parsing configuration data related to a particular .
module 201. The structure of a dictionary 620 will become evident as the invention is
further described. File access API 610g and directory utility API 610h provide
functionality for reading, writing and performing other maintenance tasks for simple
data files. Compression API 610h provides functionality for compressing and
decompressing files. |

Prior to application building step 241 and deployment step 251, it is necessary
to create and define modules 201 to be included within an application 405. FIG. 7 is a
flow diagram that shows a process for creating a module and a number of
programming elements and data structures included in a module package according to
one embodiment of the present invention. As shown in FIG. 7, module package 760
includes shared object file 740 (“SO file”), configuration file 720 and icon file 745.
SO file 740 includes object code, which may be dynamically linked at executed at
run-time. SO file 740 is generated from module code file 730. In particular, compiler
710b receives module code file 730, generated by the application developer, and
processes module code file to generate SO file 740. The structure of module code file
730 is described in detail below with reference to FIG. 8.

Configuration file- 720 includes various configuration.data related to operation. -

and initialization of the associated module 201. The structure of configuration file .

© 720 is described below. ‘Custom configuration GUI 735 receives configuration data

29

10

15

20

25 -

30

WO 02/37230 PCT/US01/48121

715 generated by the application developer and produces as output configuration ﬁie
720, which stores configuration information for module 201. Icon file 745 includes
data representative of a graphical image, which may be utilized by a GUI tool such as
application development tool (described in detail below) to assist an application
developer in the generation of an application 405.

FIG. 7 also shows the relationship between dictionary 620 and configuration
file 720. In particular, dictionary 620 provides a container utilizing a specific data
structure for storage by a module 201 of data from a configuration file related to
module 201. The structure of dictionary 620 is described in detail below.

According to one embodiment, module packages 760 may be aggregated into
a central repository, where they may be retrieved, modified, and/or reviewed, for
example, as part of a deployment step utilizing an application development tool
(described in detail below). FIG. 8 depicts the structure of a module repository
according to one embodiment of the present invention. Module repository 810
includes at least one module package 760, each module package 760 including
respective SO file 740, configuration file 720 and graphical icon file 745. According
to one embodiment, a generic repository may be defined to store data relating to
applications 405, components 505 and other objects, etc.

FIG. 9a depicts the structure of a module code file according to one
embodiment of the present invention. A module code file 730 includes an
initialization function 910, a work function 920 and a termination function 930.
According to one embodiment of the present invention, initialization function 910,
work function 920 and termination function 930 are each callback functions, which
may be called and executed by a remote process (e.g., another module 201).

For example, according to one embodiment, initialization, work and
termination functions (910-930) are effected as callback functions utilizing the
following prototypes:
typedef int (*MCPModInitCB)(MCPModHandle mod)
typedef int (*MCPModWork CB)(MCPModHandle mod)
typedef int (*MCPModTermCB)(MCPModHandle mod)

These prototype function pointers upon compilation into SO file 740 serve as entry
points.respectively for initialization function 910, work function 920 and termination.. "

function 930.

30

5

10

15

20

25

30

WO 02/37230 PCT/US01/48121

Initialization function 910 performs startup routines for a module 201 such as
setup of local data, reading configuration information, registration with a runtime
environment and establishing channels and cursors to be used for module interaction.

According to one embodiment, during module initialization all or some of the
following actions nearly always occur:

¢ the data to be used by the module 305 are identified;

the module's configuration file is identified;

e the module 305 is named/registered in (made known to) the processing

environment;
e space is allocated for the module data;
o the data allocated are explicitly associated with the module 305;
) :che module's default inbound and outbound channels are created/identified;

‘e the module is 305 configured by consulting the configuration file. - -

FIG. 9b is a flowchart depicting a typical series of steps executed by a
initialization function 910 according to one embodiment. Note, however, that the
steps shown in FIG. 9b are merely exemplary and a module 201 may effect any
number of initialization routines. Referring again to FIG. 9b, the initialization
function is commenced in step 931. In step 933, local data is stored and initialized on
the host 114 on which the module 201 resides. In step 934, the initialization function
reads data from the associated configuration file 720 and stores the data in a
dictionary 620 data structure. In step 935, initialization function 910 performs a
registration process, which is related to a runtime environment in which an
application 405 may run. In step 937, the initialization function 910 initializes and
establishes channels 380 and cursors on which it will read and write messages 305.
The nature of channels 380 and cursors will be described in detail below. The
initialization process ends in step 939.

FIG. 9c is a flowchart depicting a typical series of steps executed by a work
function according to one embodiment of the present invention. Work function 920
performs the behavior associated with a module 201. Typically, work function 920 -
receives messages 305 from an input channel 380, processes received messages 305

and exhibits some behavior (i.e., function) based upon the received messages 305.

31

10

15

20

25

30

35

WO 02/37230 PCT/US01/48121

Thus, as shown in FIG. 9c, work function 920 is initiated in step 941. In step 943, a
next message 305 is retrieved from a default input channel 380. In step 945, the
message 305 is processed and based upon the message 305 a behavior 307 is effected.
The nature of the behavior 307 is dependent upon the particular module 201 and the
work it is intended to perform.

FIG. 9d is a flowchart depicting a typical series of steps executed by a
termination function according to one embodiment of the present invention. In step
951, the termination function is initiated. In step 953, cleanup functions are
performed. The process ends in step 959.

In general, the task of coding the above module functions (init, work and term)
has two independent but complementary facets. On the one hand, there is the task of
selecting from among the functions presented by the API exactly those functions that
are compatible with the design and purpose of the given application. On the other
hand, there is the task of embedding and manipulating the selected functions within
the context of a specific programming language in a manner that allows the
application to achieve its goals.

Once the module code is completed, the code is Compile the code into a
shared library, ensuring that the following definitions are part of the compiled code:

J A definition of the prototype of the module initialization, work and
termination functions as follows:

typedef int *MCPModInitCB)(MCPModHandle mod)

typedef int (*MCPModWorkCB)(MCPModHandle mod)

typedef int *MCPModTermCB)(MCPModHandle mod)

J A definition of the data type MCPLinkInfoStruct, which will be used

to create an array of module entries — see the next step.

typedef struct

{ _
char moduleName;
MCPModInitCB initFn;
MCPModWorkCB workFn;
MCPModTermCB termFn;

}IMCPLinkInfoStruct, *MCPLinkInfoPtr;
In a next step, a file named LinkInfo.c is created with the following contents:

MCPLinkInfoStruct MCPModules[] = {
{

"module name",

32

10

15

20

25

30

35

WO 02/37230 PCT/US01/48121

ModInit,
ModWork,
ModTerm

{

{

NULL,
NULL
NULL
NULL

}

}

Each entry in the array MCPModules[Jrepresents a module (i.e., a module is
an instance of the structure of type MCPLinkInfoStruct). The first item in a module
entry is the name of a particular module while the remaining items point to the
module's initialization, work and termination functions. During the module startup
process, the module name (the first item in the module entry) is compared with value
of the configuration file parameter CodeEntrySym (discussed in the next step). They
must match for the module to load successfully.

In a further step, a configuration file is created for the module 201. The
configuration file associated with a module determines the module's behavior. The

information contained in a configuration file includes the definition of the following

items:
o module linking information
. debugging information
. processing threads
. channels
and so on.

The entries in the configuration file conform to a special format, exemplified
in the following fragment:

TestMod|CodeEntryFile lib/libMTLogger_r.so

TestMod|CodeEntrySym Logger

TestModModVerbose 1

TestMod|ChannelFileInfo|PATH queues/ChannelFile

TestMod|ChannelFileInfo|SIZE 1024000

TestMod|ChannelFileInfol ACCESS O_APPEND

33

10

15

20

WO 02/37230 PCT/US01/48121

TestMod|ChannelFileInfo| LOCKTYPE PROCESS_SAFE
TestMod|ChannelFileInfo MEMTYPE MMAP
TestMod|Alias| TestMod|DefInNAME TestModIn
TestMod|Alias|TestMod|DefIn|PATH queues/TestModIn

The configuration file is organized as a lefi-to-right oriented tree of nodes and
node values. The above fragment, for example, contains the root node TestMod which
contains the subnodes CodeEntryFile, CodeEntrySym, ModVerbose, ChannelFilelnfo
and Alias. A vertical bar ('|') in front of a token identifies it as a subnode. The
subnodes Alias and ChannelFileInfo expand into further subnodes, which in turn
contain additional subnodes. The subnode Alias, for instance, contains the subnode
TestMod, which has a subnode of ifs own, Defln, which branches off into the
subnodes NAME-and PATH. Associated with a node may be a value. In the above
tree, for example, each of the subnodes branching off ChannelFileInfo has an
associated value. Thus, the subnode SIZE has 1024000 as its value while the subnode
MEMTYPE has the value MMAP. (These node values specify that a memory-mapped
channel file of size 1024 MB must be created for the module TestMod.)

The following table lists the events that typically occur during a module's

initialization phase and exemplary API functions, which are used to implement them:

Module MCP API or C Library Function
Initialization Phase
Events

The module's MCPModRegisterModuleName
name is registered in the
environment.

The module's MCPModGetModName

name is obtained from its
configuration file.

Space is allocated Malloc
for the module.

Space allocated Memset
for the module is
cleared/initialized.

The module's data MCPModSetDataPt
structure is attached to
the module handle/API.

34

WO 02/37230 PCT/US01/48121

Module MCP API or C Library Function
Initialization Phase
Events

A structure for MCPModGetChanlo

accessing the module's
channels is created.

The name of the MCPModGetOutBoundChannelName
module's outbound
channel is obtained from
the configuration
dictionary.

The name of the MCPModGetInBoundChannelName
module's inbound
channel is obtained from
the configuration
dictionary.

A pointer is set to MCPChanloCreateCurs
the inbound channel.

| Must be performed for
each channel.

The module's MCPModGetConfig
configuration dictionary '
is accessed.

As noted above, in general, the work that a module 201 does during its work
phase involves messaging, i.e., receiving and/or sending messages 305. The basic
framework for messaging includes the function MCPModGetDataPtr and either one

5 or both of the functions MCPChanloGetNextMsg and MCPChanloSendMsg.

Module Work Phase MCP API or C Library
Events Function

Get data pointer; access - - MCPModGetDataPtr - :
the local data structure.

Read 2 message from the MCPChanloGetNextMsg
indicated channel.

Write the message to the MCPChanloSendMsg
indicated channel.

According to one embodiment, some modules do nothing but receive
(MCPChanloGetNextMsg) and-send (MCPChanloSendMsg) messages; most modules-
perform a wide variety of message processing and other tasks between the events of

10 receiving and sending messages.

35

10

15

20

25

30

WO 02/37230 PCT/US01/48121

During module termination, according to one embodiment, the following two

API functions are typically called:

Module Termination MCP API or C Library
Phase Events Function

Get data pointer. MCPModGetDataPtr

Free the resource(s). - free

According to one embodiment, the messages 305 generated by modules 201
are self-describing — i.e., each message 305 incorporates a description of how it is
encoded. A message consists of a message header and a data block. According to one
embodiment, the message header is made up of eight fields, which provide the
following information:

e Protocol version of the message API under which the current message was
created

e Message code

e Time '

e GMT offset

e MCP license

¢ Unique identifier (for routing purposes)

¢ Bit flags (for spebial functionality)

e Name of the module generating the ﬁlessage

According to one embodiment, the message header is created internally by the
application.

The data block of the message, which is accessible to the module programmer,
includes a set of offset fields followed by a null field followed by a set of data fields. -
Each data field is actually of a pair of fields, the first of which contains an identifier
describing the type of the data in the second field of the pair. The number of the offset
fields is identical to the number of data fields (i.e., an identifier field followed by a
data field). The value in the offset field indicates the distance in bytes to the
corresponding data field.

. In accordance with the discrete self-contained nature of the module;the: ..

messages 305 generated by a module 201 do not contain an identifier for the

36

10

15

20

25

30

WO 02/37230 PCT/US01/48121

destination module. The routing of messages to their destinations is not an issue that

~needs to be resolved at the module coding stage, where the modules are treated as

separate isolated entities that have no knowledge of what is beyond their own
boundaries.

FIG. 10 depicts the structure of a message according to one embodiment of the
present invention. According to one embodiment, messages are self-describing. As
shown in FIG. 10a, meésage 305 includes header 1010 and field data block 1010.
Header 1010 includes 4-byte version field 1010a, 4-byte message code field 1010b, 4-
byte time field 1010c, 4-byte GMT offset field 1010d, 4-byte license hash field 1010e,
4-byte unique identifier field 1010f, 1-byte bit flag 1010g and null terminated module
name field 1010h. Message code field 1010a stores a code representing a protocol
version for message API 610b. Message code field 1010b stores a 4-byte integer
representing a message code. GMT offset field 1010d stores a 4-byte integer
representing a GMT offset value. License hash field 1010e stores a 4-byte code
representing a license for licensing purposes. Unique identifier field 1010f stores a 4-
byte number utilized for routing purposes. Bit flags field 1010g stores a 1-byte value
used for special functionality such as reference fields, etc. Module name field 1010h
stores a name of an associated module that generated the message 305. According to
one embodiment of the present invention, module name field 1010h stores a digital
signature, which is assigned in configuration file 720 during deployment step 251 and
output during running during API calls. Note that messages 305 are destinationless.
That is, messages 305 do not require or include a field for a destination module
predetermined to receive the message 305. The destinationless character of messages
305 provides for significant ability for dynamic reconfiguration of an application 405
post-deployment (i.e., during runtime).

Field data block 1020 includes an arbitrary number of offset fields 1020a-
1020e, which are separated from a corresponding number of identifier/data pair fields
(i.e., 1020g/1020h, 1020i/1020j and 1020k/10201) by null field 1020f. Each offset
field (i.e., 1020a-1020d) stores an offset value in bytes to a corresponding
identifier/data pair field (e.g., 1020g/1020h). Each identifier field (i.e. fields 1020g,
1020i and 1020Kk) stores a 4 byte type field describing a corresponding data object.
Each data field (i.e., 1020h, 1020j and 10201) stores a data object of a particular type. -

As described above messages 305-do not include destination module 201

identifiers. Messages 201 within the environment include source module identifiers

37

10

15

20

25

30

WO 02/37230 PCT/US01/48121

1010h inside the header 101 which uniquely identify the originating module 201
within an application 201 for a particular network deployment. According to one
embodiment, a function referred to herein as “Respond To Message” is provided,
which allows a module 201 to make a response to a request and have the system direct
the response message back to the module 201 that made the original request.
Modules 201 that send a message 305 and expect a response for a given message
provide an identifier in the message 305 as a “request” and optionally determine
which of its input channels 380 the response is expected on. Reply messages 305
make use of reserved “system-level” fields to store information so that a response
message 305 may be delivered to the requester. Request messages 305 may
optionally mark fields as “copyback” fields, to tag one or more fields to be copied into
the response message 305.

In particular, modules 201 may mark a message 305 as a “Request” before
sending it out. Additionally, the requesting module 305 may specify a set of
“respondOn” channels 380 that it desires the response to be delivered on.

According to one embodiment, a module 201 desiring to deliver a message 305
(responding to a request) builds the message 305 and then calls a function named
RespondToMsg() to deliver the response. This function inspects the original request
message 305 to obtain the source module’s unique id and inserts this as a special field
in the response message 305 such that the response message 305 may be routed to the
requesting module 201. For delivery of the response, the RespondToMsg() function
checks if the requesting module 201 resides locally (i.e., on the same host as the
requesting module 201). If it does, then the message 305 gets written directly to the

(12

requesting module’s “respondOn” channels 380. Ifit does not reside locally, the -
message is written to its DefResponse output channel, which is sent (via special
sender/receiver modules 201 described below) to the requester module 201 on another
host 201.

According to one embodiment each module 201 is associated with a
configuration file 720, which contains information about the module 201 such as its
name (and possible aliases), its location in the shared memory, its communication
channels 380 and their characteristics (size, location, implementation, etc.), and so on.

Also, the messages 305 that the module 201 handles may be defined-in the -

configuration file 720.

38

10

15

20

25

30

WO 02/37230 PCT/US01/48121

According to one embodiment, configuration file 720 is a text file consisting
of a set of statements (entries) that describe selected properties of a specific module
201. The statements in configuration file 70 are presented in the form of a tres, i.e., a
hierarchically organized collection of nodes. The nodes of the tree are arranged in a
left-to-right fashion. The lefimost item of the tree is the root (node)of the tree. This is
always the name of the module to which the configuration pertains. Branching off the
root node is a set of subnodes (also called child nodes). A subnode may divide into
further subnodes (child nodes). The subnodes of the tree are identified with a vertical
bar (|') in front of the node name. Associated with each node of the tree may be one or
more values. A node's value is written to the right of the node with a space in front of
it (multiple node values are also separated with a space from each other).

According to one embodiment, the configuration file entries are constructed
according to the following schema:
root_node|subnode; val;|subnode; val, vals . . . [subnode, val,

While the root node of a configuration entry is always the name of the module with
which the configuration file is associated, the tokens representing subnodes and node
values may be literals, variables or members of predefined inventories. For instance,
in the case of describing the properties of a module's communication channels, the
configuration entries are constructed according to the following variant schema:
root_node|"Alias"|alias_name|"Chan"|"DefIn" (or "DefOut")|parameter value

In this schema, the items (subnodes) in quotes are literals that must be used exactly as
indicated (though without quotes). The tokens representing the subnode parameter as
well as the values associated with that node must be drawn from a predefined
inventory. Likewise, the name of the fourth subnode must be either DefIn or DefOut.

The entries in a configuration file mziy include:

* Module linking information (information specifying where the module code

resides in memory);
e Module aliases (alternative names or aliases for the module);

¢ Communication channels (A typical module uses one inbound and one outbound -
- channel. Hence, equally-many channel definitions must be-entered in the -

configuration file);

39

10

15

20

WO 02/37230 PCT/US01/48121

e Channel file — (for each module a channel file is defined to keep track of all

. channels in use);

Debugging information ~ (statements controlling the amount of debugging

information to be written to the console of an application)

According to one embodiment, module linking information is conveyed by the values
associated with the subnodes (parameters) CodeEntryFile and CodeEntrySym.

The CodeEntryFile parameter takes as its value a path statement indicating the
location in shared memory of the module code. The CodeEntrySym parameter takes
as its value a module name, which must match the module name specified in the entry
for the module in the MCPModules array. The two subnodes must occur immediately
to the right of the root node (conveying the name of the module), as shown in the
following fragment from the configuration file of a module named Blaster:
BlasterlCocieEntryFile lib/libMTBlaster_r.so

Blastér|CodeEntrySym Blaster

In the above example, the parameter CodeEntryFile has the value
lib/libMTBlaster_r.so (this is where the Blaster module is on disk) and the parameter
CodeEntrySym has the value Blaster (this name must match the module name in the
entry for the module in the MCPModules array in the shared memory—see the
section "Module Building Process at a Glance," above).

According to one example, configuration entries for the channel file are of the
following format:

root_node|"ChannelFileInfo"|parameter value

where
root_node Specifies the name of the module.
"ChannelFileInfo" Specifies the literal ChannelFileInfo.
parameter value The subnode parameter may be specified with a

token designating a category of channel file
properties. The following tokens (categories) are

available:

PATH
SIZE

40

WO 02/37230

PCT/US01/48121

ACCESS
LOCKTYPE
MEMTYPE

The subnodes value may be specified as follows:

PATH The path where the channel file
resides in the file system. For

example, PATH /tmp/foo.
SIZE The size of the channel file.
ACCESS Indicates how the channel file is to be

treated upon being opened.

Specify the value as O_APPEND if
the messages already registered in the -
channel file are to be retained, i.e.,
new message arriving in the channel,
will be appended to those already
there.

Specify O_TRUNC if the messages
already registered in the channel file
are to be deleted, i.e., the channel file
will record only new messages.

LOCKTYPE Manages the contention for a channel.
Specify PROCESS_SAFE (recommended) to

prevent contention among processes.

"Specify THREAD_SAFE to prevent

contention among threads.

Specify KERNEL_SAFE to use the kernel
locking mechanisms to prevent the processes
on the same CPU from contending for the same
channel resource.

Specify LOCK_STATE_NO_LOCK

to indicate that no locking mechanism

41

WO 02/37230 PCT/US01/48121

is used to control contention for the channel.

MEMTYPE Determines how the channel file is

implemented.

Specify DATA_Q_MMP if the channel file is

‘tobe realized as a memory-mapped entity.

Specify DATA_Q_SHM if the channel file is

tobe implemented in shared memory.

For example, a channel file definition for a module named TestMod might be written

as follows::

TestMod|ChannelFileInfo|PATH queues/ChannelFile
TestMod|ChannelFileInfo|SIZE 1024000
TestMod|ChannelFileInfo]ACCESS O_APPEND
TestMod|ChannelFileInfolLOCKTYPE PROCESS_SAFE
TestMod|ChannelFileInfoMEMTYPE DATA_Q MMAP

According to one embodiment, module communication channels are defined

10 with statements of the following format:

root_node|" Alias"|alias name|channel specifier|parameter value

where

root_name Specifies the name of the module.
"Alias" Specifies the literal Alias.
alias name Specifies an alternative name for the module
designated by root_name. If the module does not have
an alias, the 'real' name of the module must be
specified.
channel specifier . Specifies a channel as being either inbound or
outbound.
Use DefIn for an inbound channel and DefOut for an
outbound channel.
parameter value The subnode parameter may be specified with a token

designating a category of channel properties. The

42

WO 02/37230 PCT/US01/48121

following tokens (categories) are available:

NAME
PATH

SIZE

MODE
LOCKTYPE
MEMTYPE
MAXSIZE
MAXPAGES

The subnodes value may be specified as follows:

NAME The name of the inbound or outbound
channel, e.g., NAME BlasterIn.
Once the channel has been initialized,

the current ~ program or another can call

MCPChanloOpenChannel to open the channel
using this channel name. The user of
MCPChanloOpenChannel must
be using the same channel file as
defined under the
ChannelFileInfo config node. See
MCPChanloOpenChannel in Chanlo.h.

In MCPModRegisterModuleName it is
used as the channelName argument when
calling
MCPChanJoCreateChannel.
PATH The path where the channel resides in
the file system.

MAXSIZE The maximum size of the channel.

MODE Indicates how a channel is to be treated

upon being opened.

43

WO 02/37230

PCT/US01/48121

Specify the value as O_APPEND if the
messages already in the channel are to
be retained, 1.e., new messages arriving
in the channel will be appended to those
already there.

Specify O_TRUNC if the messages
already in the channel are to be deleted,
i.e., the channel will contain only new

messages.
LOCKTYPE Manages the contention for a channel.
Specify PROCESS_SAFE (recommended) to

prevent contention among processes.

Specify THREAD_SAFE to prevent contention

among threads.

Specify KERNEL_SAf E to use the kernel
locking mechanisms to prevent the processes on
the same CPU from contending for the same
channel resource.

Specify LOCK_STATE _NO _LOCK to
indicate that no locking mechanism is used to

control contention for the channel.

MEMTYPE Determihes how the channels are

implemented.

Specify DATA_Q_MMP if the channels are to
be realized as memory-mapped entities.

Specify DATA_Q_SHM if the channels are to
be implemented in shared memory.
MAXPAGES Specifies the maximum number of pages

that a channel can use.

For example,-sample channel definitions for-a module named:Blaster might be written

as:

Blaster|Alias|Blaster|DefIn|[NAME BlasterIn

44

10

15

20

25

30

WO 02/37230 PCT/US01/48121

Blaster|Alias|Blaster|Defln|[PATH queues/BlasterInput
Blaster|Alias|Blaster{Defiln]MAXSIZE 1024000
Blaster|Alias|Blaster|Defln] LOCKTYPE PROCESS_SAFE
Blaster|AliasBlaster|Deflnf MEMTYPE DATA_Q _MMAP
Blaster|Alias/Blaster|DefIn MAXPAGES 6
Blaster|Alias/Blaster|Defln MODE O_APPEND
Blaster|Alias/Blaster|DefOutNAME LoggerIn
Blaster|Alias/Blaster|DefOut|PATH queues/LoggerInput
Blaster|Alias/Blaster|DefOutfMAXSIZE 1024000
Blaster|Alias|Blaster|DefOut|LOCKTYPE PROCESS_SAFE
Blaster|Alias/Blaster|DefOutMEMTYPE DATA_Q_MMAP
Blaster|Alias|Blaster| DefOutMAXPAGES 6 |
Alternative names, if any,' that a module may have are specified with
statements of the same format.as the module’s communication channels:
root_node|" Alias"|alias name|channel specifier|parameter value
In the case of a module that does not have an alias, the above schema is instantiated so
that root_node (the module name) is identical with alias name:
Blaster|Alias|Blaster|DefInNAME BlasterIn
Blaster|Alias/BlasterfDefIn|PATH queues/Blasterlnput

However, if a module does have an alternative name (e.g., Abcd), it will appear as the
third subnode in the configuration entries for the module:
Blaster|Alias|Abcd|DefIn]NAME Abcd
Blaster]Alias]Abcd|DefIn[PATH queues/AbcdIn

FIG. 11 depicts the structure of a configuration file according to one’
embodiment of the present invention. - Configuration file 720 includes configuration -
entries 1110a(1)-1110Z(N). The structure and relationship of configuration entries
1110 within configuration file 720 defines a hierarchical relationship between
configuration entries 1110, from which, a series of nodes comprising a dictionary data

structure 620 may be generated. A dictionary data structure 620 is described below

‘with reference to FIGS. 12a-12b.

45

10

15

20

25

30

WO 02/37230 PCT/US01/48121

T

The following is an excerpt from an exemplary configuration file according to one

embodiment of the present invention.

#CodeEntryFile and CodeEntrySym specify the module code to run
The name at the beginning of each line is the module name.
ModMan|CodeEntryFile lib/libMTModMan _r.so
ModMan|CodeEntrySym ModMan

ModMan|VERBOSE 2

ModMan|SHOWMSG 1

ModMan|ChannelFileInfo|PATH queues/ChannelFile
ModMan|ChannelFileInfo|SIZE 1024000
ModMan|ChannelFileInfo] ACCESS O_APPEND
ModMan|ChannelFileInfo]LOCKTYPE PROCESS SAFE
ModMan|ChanneiFilelnfo[MEMTYPE MMAP
ModMan|AliasModMan|DefIlnNAME ModManlIn
ModMan|Aliasi]ModMan|DefIn|PATH queues/ModManIn
ModMan|AliasModMan|Defln MAXSIZE 1024000
ModMan|AliasiModMan|DefIn]LOCKTYPE PROCESS_SAFE
ModMan|AliasModMan|DefIfMEMTYPE DATA_ Q MMAP
ModMan|AliasfModMan|DeflnMAXPAGES 6
ModMan|AliasjModMan|DefIn|MODE O_APPEND
ModMan|AliasModMan|DefOut]NAME LogModMan
ModMan|AliasiModMan|DefOut|PATH queues/LogModMan
ModMan|AliasiModMan|DefOutMAXSIZE 1024000
ModMan|AliasfModMan|DefOut|LOCKTYPE PROCESS_SAFE
ModMan|AliasModMan|DefOut MEMTYPE DATA Q MMAP
ModMan|AliasjModMan|DefOutMAXPAGES 6
ModMan|AliasModMan|DefOutMODE O APPEND
ModMan|AliasiModMan|deployld 0

ModMan|ConfFileDir queues

ModMan|AdminChanInfo[PATH queues
ModMan|AdminChanInfo| MAXSIZE 1024000
ModMan|AdminChanInfolLOCKTYPE PROCESS_SAFE
ModMan|AdminChanInfo MEMTYPE DATA_Q MMAP

46

10

15

20

25

30

WO 02/37230 PCT/US01/48121

ModMan|AdminChanInfoMAXPAGES 6
ModMan|AdminChanInfo]MODE O_APPEND

Each configuration entry 1110 may be associated with a string value or vector of
string values, which are also loaded into a dictionary data structure 620. For example,
the configuration file entry

ModMan|CodeEntrySym ModMan

associates the string “ModMan” with a child node “CodeEntrySym” that is a child
node of “ModMan.”

FIG. 12a depicts the structure of a dictionary data structure according to one
embodiment of the present invention. Dictionary data structure 620 is a hierarchical
data structure, which includes reference node pointers for efficient search and
wildcard specification of resources. Data is stored for each node 1210 in the form of
entries in a vector. The vector exists for every node, whether or not data exists. Data
entries read from the dictionary are stored as strings. According to one embodiment
of the present invention, dictionary data structure 620 utilizes a modified tree-like
structure of nodes 1210, each node 1210 specifying a string value or a vector of string
values. All nodes 1210 have pointers to sibling nodes 1210, parent nodes 1210 and
one first child node 1210. Referring to FIG. 12a, shows nodes 12110a1-12110zN.
Note that node 1210al is parent node of node 12110b1. Furthermore, each node 1210
may be associated with a full node name or node key. Nodes may be referred using
their respective keys (i.e., full node name).

FIG. 12b further illustrates an orientation of a dictionary data structure
according to one embodiment of the present invention. The node including the data
value data_2 is also referred to as node “foojbar.” The full node name or node key of
the node containing the data value data 2 is “foolbar.” The node to the left of node
“foolbar” is “foo|barjmisc.” Nodes “foofbar misc,” “foo|barlinfo,” and
“foo|bar|moreinfo,” are subnodes of “foolbar.” The nodeup from node “foolbar’ is
“foolness.” The node down from “foolbar” is node “foolness.” The node left of node
“foolness” is node “foo.” The node left of node “foolstuff” is node “foo.” There
exists no node up from node “foolness.” There exists no node down from node
“foolstuff.” Nodes “foolbar” and “foo|barjmisc” are subnodes of node “foo.” Note the

node “foo|stuff” includes no data elements (i.e., its data vector stores 0 elements).

47

10

15

20

25

30

WO 02/37230 PCT/US01/48121

Node “foolstufflinfo includes one data element, namely “data_7.” Node
“foo|barjmoreinfo” stores two data elements, “data 5" and “data 6.”

FIG. 12c illustrates a portion of an exemplary dictionary data structure
generated from the configuration file described above according to one embodiment
of the present invention. Note that node modmanl 1210(1) is associated with five
child nodes, CodeEntryFile 1210(2), CodeEntrySym 1210(3), VERBOSE 1210(4),
ChannelFile 1210(5) and Alias 1210(6). Node “Modman|CodeEntryFile” stores a
path to a shared object file for the module 201, in this case “lib\libModmanMt.so”
This path information may be utilized to start or stop the module 201 (i.e., by calling
the respective initialization 920 or termination function 930. The node
Modman|ChannelFile 1210(5) designates-information pertaining to channel files
associated with the module 205 and is associated with five child nodes 1210(7)-
1210(11). Node Modman|ChannelFile[Path 1210(8) stores path information for
channels associated with the module 20 (“/queues/Channelfile”). Note that the
identifiers shown in FIG. 12c¢ and are merely exemplary.- A dictionary data structure
620 may store a configuration file 720 including any type of data required to control
operation of a module 201.

As noted above, a channel 380 is an example of a data repository 3505 that
serves as a physical implementation of a communication pathway 314 between two
modules. According to one embodiment, channels 380 are realized as memory
mapped data structures or page files stored on a permanent but erasable storage
medium such hard disk. The page files are mapped into RAM. When data are written
to a page file mapped into RAM the event is mirrored in the corresponding page file
on hard disk.

The page files store the messages 305 generated by the moduléé 201.
Associated with each page file (i.e., channel) is one or more read and/or write cursors,
which are essentially pointers to the messages stored in a particular page file
(channel).. A read cursor.points to a.position within the channel from which a message-
is being read while a write cursor points to a page file position into which a message
is being written. Once a message 305 has been read or written, the cursor is advanced
to the next read or write position in the page file. The channels 380 implemented
between the modules 201 of an application are listed in a special channel- file.

According to one embodiment of the present invention, channels 380 are

physically realized utilizing a memory mapped data structure referred to herein as a

48

10

15

20

25

30

WO 02/37230 PCT/US01/48121

page file. FIG. 13a depicts a relationship between a number of channels and
corresponding page files and a channel file according to one embodiment of the
present invention. As shown in FIG. 13a, each channel 380a-380c is associated with
arespective page file 1310a-1310c. Page files 1310 function as a physical realization
of channels 380. Note that page files 1310 store one or more messages 305 generated
by modules 201. For example, messages 305a(1)-305a(N) reside in page file 1310a,
messages 305b(1)-305b(N) reside in page file 1310b and messages 305¢c(1)-305¢(N)
reside in page file 1310c. According to one embodiment, page files 1310 are stored
upon a permanent but erasable storage medium such as hard disk 1350. Page files
1310 may be implemented as memory mapped files on a given host 114 so that data
(1.e., messages 305) stored within page files 1310 may be accessed using a convenient
and fast memory pointer scheme. According to this scheme, a block of RAM
(“Random Access.Memory”) is reserved to correspond to a particular block of disk
storage space so that data written to RAM corresponds to particular physical storage
space on hard disk 1350. According to an alternative embodiment, page files 1310
may be implemented using the system’s shared-memory facility in RAM on host 114.

Each page file 1310 is associated with one or more read cursors 1375 and one
or more write cursors 1376. Read cursors 1375 point to a current position within a
pagé file 1310 from which a thread is currently reading. Write cursors 1376 point to a
current position within a page file 1310 from which a thread is currently reading. As
noted, any number of read cursors 1375 and/or write cursors 1376 may be opened for
a channel 380 (i.e., page file 1310). Upon a read operation for a given read cursor
1375, data pointed to by the cursor 1375 is read by a module and the read cursor 1375
is then updated to point to the next read position.within the page file 1310. Similarly, -
upon a write operation, data to be written for an associated write cursor 1376 is
written to the position pointed to the write cursor 1376 and the write cursor 1376 is
then updated to point to the next available write position within page file 1310.

Thus, for example page file 1310a is associated with channel. 380a. Thereby,
module 201a reads messages 305a(1)-305(N), which reside within page file 1310a
and module 201a would open a read cursor 1375 with respect to page file 1310a.
Page file 1310b is associated with channel 380b. Because module 201a interacts with
module 201b (i.e. passes-messages 305 to module 201b-over channel 380b), the -
default output channel of module 201a, 380b, is set as the default input channel, 380b,

of module 201b. Inaddition, module 201a would typically open one or more write

49

10

15

20

25

30

WO 02/37230 PCT/US01/48121

cursors 1376 with respect to page file 1310b. Similarly, module 201b would typically
open one or more read cursors 1375 with respect to page file 1310b. Page file 1310c
is associated with channel 380c. Module 201c¢ thereby would open a write cursor
1376 with respect to page file 1310c.

Channel file 1320, which resides on hard disk 1350 or in RAM (not shown),
stores ‘a master list of all channels 380 that have been opened for all applications 405
currently running on host 114. Among other things, channel file 1320 provides a
centralized repository of opened channels 380 so that modules 201 included within an
application 405 may be made aware of previously opened channels 380 and related
information.

FIG. 13b further depicts the structure of a page file according to one
embodiment of the present invention. In particular, FIG. 13b illustrates an exemplary
page file 1310 and a relationship between a number of messages 305, read cursors
1375 and write cursors 1376. According to one embodiment of the present invention,
modules 201 may read and write from channels 380 (i.e., page files 1310) in either a
committed or non-commited fashion. During a non-commited write operation, a
message 305 is queued to be written to a channel 380. However, a message 305 is not
physically written to the associated page file 1310 until a commit operation is
executed.

In a non-commited read operation, a module 201 may read a message 305
from a channel 380. After the read, the read message 305 remains available on the
channel 380 (i.e., page file 1310), and thus may be read at a later time by other
threads that have opened read cursors 1375 on the channel 380. However, in a
committed read operation, upon reading a message 305 from channel 380, the read .
message 305 may no longer be read at a later time by other threads that have opened
read cursors 1375 on the channel 380.

FIG. 13b illustrates a distinction between committed and non-commited read
operations, by showing committed read operations as dimmed message symbols. In.
particular, FIG. 13b illustrates two read cursors 1375(1) and 1375(2) and two write
cursors 1376(1) and 1376(2) associated with page file 1310. Thus, note that messages
305(2) and 305(9) were read in a committed fashion from page file 1310 at a previous
time (indicated by-dimming). o

FIG. 13c further depicts the structure of a page file according to one

embodiment of the present invention. In order to maximize the efficiency of writing'

50

10

15

20

25

30

WO 02/37230 PCT/US01/48121

and reading from page file 1310, page file 1310 is segmented into one or more pages
1349(1)-1349(N). The number and size of pages 1349 associated with a page file
1310 are user defined as described below. Note that aggregate of pages 1349
included within page file 1310 function as a single file. Thus, note read cursors
1375(1)-1375(M) and write cursors 1376(1)-1376(N) traverse all pages 1349 within
page file 1310.

According to one embodiment of the present invention, channels 380 are
implemented utilizing an internal API (herein referred to as “DataQ”) to write
physical records to a public data resource. For example, according to one
embodiment the public data resource is a memory-mapped file.

FIG. 13d depicts a data structure for storing a WriteMsgStruct object
according to one embodiment of the present invention. WriteMsgStruct objects 1330
are stored in memory prior to being written to a page file and are managed as a singly
linked list. The DataQ API controls WriteMsgStruct objects 1330. In particular, a
WriteMsgStruct object 1330 represents a datastructure used to hold a linked list of .
uncommitted records managed by the DataQ API. WriteMsgStruct 1330 includes
members buffer 1331, buffersize 1332 and nextMsg 1333. Buffer 1331 is a pointer
pointing to a character array. BufferSize is a long 32-bit data type that stores the size
of a message. NextMsg 1333 is a pointer to a next WriteMsgStruct object in a linked
list.

The following is an exemplary sequence of API calls to perform committed
writes of WriteMsgStruct objects 1330 to a page file 1310 according to one
embodiment of the present invention£

ChanloCommitWrite()

MTWriteCursToQ
The ChanloCommitWrite() command commits all uncommitted messages 305. The
MTWriteCursToQ command copies all of the records from the "buffer” within
WriteMsgStruct into a memory mapped page file 1310. According to one
embodiment, an API call ChanloSendMsg() function is used to write (send) a
message 305 through a channel 380. This function has a flag that can be set to
commit or not commit the record. If the flag is set to not commit, then the messége
will simply sit in the DataQ within a linked list of WriteMsgStruct records - until the
ChanloCommitWrite() function is called.

51

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIG. 13e depicts a data structure for storing a PageStruct data object according
to one embodiment of the present invention. The PageStruct data object shown in
FIG. 13e includes a process level data structure for tracking page files 1310. As
shown in FIG. 13e, PageStruct 1340 is an object including member variables self
1341, pagePath 1342, pageindex 1343, object 1344, pageData 1345, pageNumber
1346 and memtype 1347. Self 1341 is a reflexive reference to the PageStruct object.
PagePath 1342 is a pointer to a character array that stores a path name where an
associated page ﬁle 1310 resides. Pagelndex 1343 is a pointer to a PageIndexStruct
object 1340, which is the header of the page file 1310. Object 1344 stores a handle to
a shared memory or memory mapped file object. PageData 1345 stores a pointer to
the page file’s data. PageNumber 1346 stores a long value that uniquely identifies the
page file 1346. MemType 1347 stores a data object indicating whether the page file
1310 is stored as an operating system file object or purely in system memory.

Each page file 1310 includes a header with a data structure represented in a
PageIndexStruct object. 1350. FIG. 13f depicts a data structure for representing a
PageIndexStruct object according to one embodiment of the present invention. Each
Pagelndexstruct object 1350 includes members nextReadPosition 1351,
nextWritePosition 1352, pagesize 1353 and pageFullState 1354. NextReadPosition
1351 is an unsigned long value that holds the position in the page file of the next
record to be read. NextWritePostion 1352 is an unsigned long value that stores the
position in the page file of the next record to be written. PageSize 1353 stores a long
value that determines the maximum number of records to be written to a page file
1310. PégeFullstate 1354 stores a long value that indicates whether a page file 1310
contains its maximum number of records.)

After the header, each data record is preceded with a record hea;der, which is
represented by a RecordHeaderStruct data object. FIG. 13g depicts the structure of a
RecordHeaderStruct object according to one embodiment of the present invention. As
shown in FIG. 13g, each RecordHeaderstruct object 1360 includes CommitFlag 1361,
sequenceNumber 1362, realBuffersize 1363 and userBuffersize 1364. CommitFlag
1361 is a character value that indicates whether the record it to be automatically added
to a page file queue or staged in a cursor. SequenceNumber 1362 stores an unsigned
long value that indicates the position of the record within the-page file 1310.

RealBufferSize 1363 stores a long value pertaining to the size of the data buffer

52

10

15

20

25

30

WO 02/37230 PCT/US01/48121

adjusted for padding. UserBuffer size 1364 stores a long value that represents the
amount of data in bytes included in the record’s buffer.

According to one embodiment, a MasterPageStruct object stores a path to all
of the memory mapped data corresponding to a page file 1310. FIG. 13h depicts the
structure of a MasterPageStruct object for storing path and memory mapped data
pertaining to a page file according to one embodiment of the present invention. As
shown in FIG. 13h, MasterPageStruct object 1370 includes self member 1371,
pagePath member 1372, object member 1373, masterPageIndex member 1374, wlock
member 1375, rlock member 1376, readPage member 1377, writePage member 1378,
memType member 1379, maxPages member 1379a, pageSize member 1379b and
lockState member 1379c. |

Self 1371 is a reflexive reference to the MasterPageStruct object 1370.
PagePath 1372 stores a character pointer, which points to the path/name of the
mapped master page index file. Object 1373 is a memhandle object.
MasterPageIndex 1374 stores a reference to the master page index file. Wlock 1375
stores a LOCK_NODE _PTR, which is a pointer to a lock object used for guarding
writes to the data queue. Rlock 1376 stores a LOCK._NODE_PTR object that points
to the lock object used for guarding reads from the data queue. ReadPage 1377 stores
a PageStruct pointer. WritePage 1378 stores a PageStruct pointér. MemType 1379
stores a DATA_Q MEM TYPE object that indicates the memory storage mode of
the master page index file. This may be mapped to an operating system file or stored
in system memory. MaxPages 1379a stores a long value that specifies the maximum
number of page files 1310 to be used by the DataQ API. PageSize 1379b stores a
long value that specifies the maximum size of a page file 1310. LockState 1379¢c -
stores a LOCK_STATE parameter that indicates the level of synchronization that will
be provided by the locking mechanism (i.e., process, thread or kernel).

According to one embodiment of the present invention, a data
MasterPagelndexStruct data structure is maintained in memory as a memory mapping
that stores information relating to a master page index file. FIG. 13i depicts the
structure of a MasterPageIlndexStruct according to one embodiment of the present
invention. As shown in FIG. 13i, each MasterPageIndexStruct 1380 includes
members firstPageNumber-1381, lastPageNumber 1382, pagesize 1383, maxPages '
1384, readPageState 1385, writePageState 1386, recordswritten 1387 and

recordsRead 1388. FirstPageNumber 1381 stores a long value and is used to maintain

53

10

15

20

25

30

WO 02/37230 PCT/US01/48121

an index of the first page file 1310 (i.e., used to keep track of the head of the page file
set as the window of the page rolls forward). LastPageNumber 1382 stores a long
value that represents an index of the last page file 1310 (i.e., used to keep track of the
tail end of the page file set as the window of pages rolls forward). PageSize 1383
stores a long value that represents the maximum page file size. This value is copied
from the MasterPageStruct object. MaxPages 1384 stores a long value that represents
the maximum number of page files 1310. This value is copied from the
MasterPageStruct object. ReadPageState 1385 stores a READ PAGE_STATE
parameter. WritePageState 1386 stores a WRITE_PAGE_STATE parameter.
RecordsWritten 1387 stores an unsigned long value that tracks the number of records
written to the associated page file. RecordsRead 1388 stores an unsigned long value
that tracks the number of committed reads against the associated page file 1310.

FIG. 13j depicts the organization of a page file according to one embodiment
of the presént invention. As shown in FIG. 13i, each page file 1310 includes a file
header 1305, which is represented by a PageIndexStruct object 1350. The remainder
of the page file 1310 is a structured set of data elements 1307(1)-1307(N). Data
elements 1307(1)-1307(N) are structured to include a records header 1310(1)-1310(N)
and a data portion 1320(1)-1320(N). Each records header 1310(1)-1310(N) is
represented by a RecordHeaderStruct object 1360 according to one embodiment of
the present invention. Data portioné 1320(1)-1320(N) store actual messages 305,
which have been written to the page file 1310 (i.e., message 305 includes header 1010
and field data block 1020).

FIG. 14a depicts a data structure for representing a ChanloStruct object
according to one embodiment of the present invention. The ChanloStruct object 1430
is a channel I/O stream abstraction. It maintains references to configuration
information stored in the dictionary 620 and a master list of channels 380 and
translation objects. ChanloStruct object 1430 is allocated and initialized by an API
call to CMPChanlolnit().

As shown in FIG. 14a, ChanloStruct object 1430 includes members self 1431,
dictionary 1433, chanFileInfo 1435, message 1437, channels 1438 and translist 1439.
Self 1431 is a pointer to the ChanloStruct object 1430 itself. Dictionary 1433 stores a
pointer to an associative data structure-used to store channel configuration .
information. ChanfileInfo 1435 stores a pointer to the channel file’s path, size and

access type (i.e., memory mapped or-shared memory). Message member 1437 stores

54

10

15.

20

25

30

WO 02/37230 PCT/US01/48121

a MsgHandle data structure. A MsgHandle is a data structure used to send and
retrieve messages from channels 380. Channels 1438 stores a pointer to a vector of
channels 380 to be managed. Translist member 1439 stores a list of translation

obj ects:.

FIG. 14b depicts a data structure for representing a ChannelFileStruct object
according to one embodiment of the present invention. A ChannelFileStruct object
1440 is used when creating a channel file. An instance of ChannelFileStruct 1440 is
allocated as a member of ChanloStruct 1430 in the call to MCPChanloInit().
ChannelFileStruct object 1440 includes path member 1441, access member 1443 and
size member 1445. Path member 1441 stores a pointer to a character string of a
directory path to a channel file. Access 1443 stores a switch variable
ChannelFileAccessType that designates whether the channel file is to be stored in a
file mapping or in a shared memory object. Size member 1445 stores a long data type
that specifies a size of the channel table file.

FIG. 14c depicts the structure of a ChannelObjStruct object according to one
embodiment of the present invention. ChannelOBj Struct 1450 associates a channel
with a DataQ. ChannelObjStruct 1450 includes members ChannelName 1451,
channeled 1453 and type 1455. A call to MCPChanloCreateChannel() allocates and
initializes a ChannelObjStruct object. ChannelName 1451 stores a pointer to a
channel name passed to the API call MCPChanloCreateChannel(). Channel ID 1453
stores a reference to an associated DataQ object. Type 1455 stores an indication of
the channel type (user, default, inbound or default outbound).

FIG. 14d depicts the structure of a ChannelFileStruct object according to one
embodiment of the present invention.. Each ChannelFileStruct object 1460 includes
members handle 1461, header 1463, currentObj 1465, lastObj 1467, access 1468 and
lock 1469. Handle 1461 stores a reference to an underlying memory object. Header
1463 stores a local mapping of either the shared memory or memory mapped object.
CurrentObj 1465 stores a pointer to the position within the channel file of the next
available ChannelFileStruct object 1460. LastObj 1467 stores a pointer to the
position of the last valid ChannelFileObjectStruct record 1460 in the channel file.
Access 1468 stores the storage mode for the channel file (i.e., shared memory or
memory mapping). Lock 1469 is a data structure, which supports process and thread

synchronization.

55

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIG. 14e depicts the structure of a ChannelFileHdrStruct object according to
one embodiment of the present invention. ChannelFileHdrStruct 1470 includes
members version 1471, records 1473 and checksum 1475. Version 1471 stores the
channel file version. NumRecords 1473 stores the number of
ChannelFileObjectStruct records 1460 in the channel file. CheckSum 1475 is
generated when the channel file is first initialized.

FIG. 14f depicts the structure of a ChannelFileObjectStruct object according
to one embodiment of the present invention. Each ChannelFileObjectStruct object
1480 includes members ChanInfo 1481, ChannelName 1483, ChannelPath 1485,
ChannelOwner 1487 and ChannelPermAuth 1489. Chanlnfo 1481 stores a pointer to
a ChanInfoStruct (described below). ChannelName 1483 stores a channel name.
ChannelPath 1484 stores a path to a channel. ChannelOwner 1487 stores a module id
of a channel owner. ChannelPermAuth 1489 stores the name of a resource within the
authorizati(;n facility when looking for channel permission table requests.

FIG. 14g depicts the structure of a ChanInfoStruct object according to one
embodiment of the present invention. Each ChanInfoStruct object 1490 includes
members maxPageSize 1491, maxPages 1493, lockState 1495 and memType 1497.
MaxPageSize 1491 stores a maximum page file size. MaxPages 1493 stores a
maximum number of pages. LockState 1495 stores a synchronization mode
parameter. MemType 1497 stores a parameter relating to a storage node for the page
file 1310.

FIG. 14h depicts the organization of a channel file according to one
embodiment of the present invention. As shown in FIG. 14h, each channel file 1320
includes a file header structure 1405, which is represented by a ChannelFileHdrStruct
object 1470. The remainder of the channel file 1320 is a structured sei of data
elements 1407(1)-1407(N). Data elements 1407(1)-1407(N) are structured to include
a records header 1410(1)-1410(N) and a data portion 1420(1)-1420(N). Each records
header 1410(1)-1410(N) is represented by a ChannelFileObjectStruct object 1480. - -
Data portions 1420(1)-1420(N) store ChanFileInforStruct objects 1490.

During deployment step 241, modules 201 comprising an application 405 are
deployed to a computing environment based upon a deployment scheme. In order for
an application 405 to run within a computing environment, a runtime environment
must be installed on each host 114 in the computing environment 121 in which one or

more modules 201 from the application 405 will reside.

56

10

15

20

25

30

WO 02/37230 PCT/US01/48121

FIG. 15 depicts a core runtime environment package according to one
embodiment of the present invention. Core runtime environment package 1520
includes module manager module 201a, router module 201b, communications module
201c, reference retriever module 201d, authorization module 201e and file operations
module 201f. According to one embodiment, as part of a deployment step for an
application, which is described in detail below, one or more modules 201 included
within core runtime environment package 1520 may be installed upon hosts 114
within a computing environment 121. Note that each module included within core
runtime environment package 1520 (i.e. modules 201a-201f) utilizes a structured
code paradigm as described above, and thus is associated with an initialization
function 910, work function 920 and termination function 930.

Module manager 201a provides functionality for starting, suspending,
stopping and cloning modules running on a host 114 on which module manager 201a
has been deployed. Cloning of modules 201 is a method of balancing the load of a
given module 201 and involves invoking identical instances of the running module -
code, which all share the same input and output channels 380. According to one
embodiment, module manager 201a is associated with one or more child modules,
which defines other modules 201 that module manger module 201a is to control on
the same host 114 as module manager 201a. ’

FIG. 16 depicts an exemplary operation of a module manager module
according to one embodiment of the present invention. As shown in FIG. 16, module
manager 201a controls operations of one or more other modules 201 associated with a
particular host 114 (i.e., the child modules 201 of module manager 201). Thus,
referring to FIG. 16, module:manager.201a controls operation-of child modules
201a1-201a5. In particular, module manager 201a may start, stop, clone or suspend
modules 201a1-201a5. In addition, module manager 201a may dynamically change
configuration file 720 information for particular child modules 201a1-201a5 in order
to control operation of those modules 201. For example, FIG. 16 illustrates module -
manager 201a altering configuration information for modules 201al, 201a2 and
201a3. Also, as exemplified in FIG. 16, module manager 201a causes initialization of
module 201a2 and termination of module 201a3.

According to one embodiment of the present invention, module manager 201a
effects initialization, suspension, cloning and/or termination of modules 201 by

causing the respective initialization 910 and/or termination functions 930 of those

57

10

15

20

25

30

WO 02/37230 PCT/US01/48121

modules 201 to be called. According to one embodiment, this is accomplished via
module starter process 1705.

FIG. 17 is a flowchart depicting various steps included in an initialization
function, work function and termination function of a module manager according to
one embodiment of the present invention. The process is initiated in step 1705. Steps
1710-1735 are executed as part of an initialization function 910. Specifically, in step
1710, internal storage is allocated and initialized. In steb 1715, configuration file 720
is read into a dictionary structure 620 including default channels and the module
configuration. In step 1720, the module name for module manager 201a is registered
with the environment. In step 1730, channels and cursors are opened and initialized.
In step 1735, all configuration information for all children modules 201 are read into a
vector. According to one embodiment, this is accomplished by reading data from the
configuration file.

Steps 1740 and 1745 are executed as part of a work function 920 of module
manager 201 according to one embodiment. Specifically, in step 1740 the
initialization and work functions (910, 920) are executed for all children modules 201.
In step 1745, a process loop is entered in which each incoming message is processed
and an appropriate function executed as a result. For example, module manager 201a
may receive messages to stop, suspend or start one or more children modules 1745
As module manager 201a has retrieved configuration information for children
modules 201 and stored this information within a vector, module manager 201 may
call iniﬁalization, work and/or termination functions 910, 920 and 930 of children
modules 201.

Steps 1750 and 1755 are executed as part of a termination function 930 of
module manager 201 according to one embodiment of the present invention. In step
1750, module manager 201 transmits a stop message 305 to each child module 201.
In step 1655, module manager 201 performs garbage collection. The process ends in
step 1760. ‘

According to one embodiment, a module starter process performs the startup
(i.e., initialization of modules 201). According to one embodiment, the module starter
is started with the following command:

modstarter file://filepath

58

10

15

20

25

30

WO 02/37230 PCT/US01/48121

In this command, modstarter (module starter) is the name of a bootstrap

function/program that initiates module execution and filepath denotes the location of

the module's configuration file in the file system.

After the modstarter command has been submitted, the following events take place:

1. The module starter loads the configuration file into memory and looks in it

for two parameters, one labeled CodeEntryFile and the other
CodeEntrysym. (As explained in the preceding section, the value of the
CodeEntryFile parameter points to the shared library which contains the
module code itself, the definitions of the module initialization, work and
termination functions, the definition of the MCPLinkInfoStruct data type
and the array MCPModules[]. The CodeEntrySym parameter contains the

name of the module to be run.)

2. 1fthe module starter finds the two entries in the configuration file, it loads
the shared library referred to by CodeEntryFile and loops through the
MCPModules[] array, trying to locate in it a module name matching the
value of the CodeEntrySym parameter.

3. Ifthe array entry with NULL data members is reached first, no match was
found for CodeEntrySym and the startup process is aborted. However, if
the value of the CodeEntrySym parameter is matched, the module starter

loads the module.

4. Next, with a call to the module's initialization function, the module begins

to execute.

FIG. 18isa ﬂchhan that depicts the.algorithmic structure of a module starter
process. As described above with reference to FIG. 17, according to one embodiment
of the present invention, a module starter 1505 is an executable file that resides on a
particular host also occupied by a module manager module 201. The module manager
module 201 utilizes the module starter executable 1505 to start a module 201.
Specifically, referring to FIG. 18, the module starter process is initiated in step 1805
by a call from a module manager 201 including configuration resource arguments.
Specifically, the configuration resource argument includes configuration data related
to how the module 201 should be started. In step 1810 a function call is made to
MCPModInit (a function call in module API 610a) to start the module 201. In step

59

10

15

20

25

30

WO 02/37230 PCT/US01/48121

1815 an associated configuration resource and additional configuration data is read.
In step 1820 the module 201 referenced in the configuration is loaded. In step 1830
the initialization function 910 is called for the module 201. In step 1835 it is
determined whether the initialization attempt did not return a zero value. If not (‘no’
branch of step 1835) flow continues with step 1840 and the work function 920 for the
module 201 is called. If so (“yes’ branch of step 1835) flow continues with step 1850

~ and the module terminate function 930 is called. In step 1845 it is determined

whether the attempt to call the module work function 290 did not return the value
zero. If so (“yes’ branch of step 1845), flow continues with step 1850 and the module
terminate function 930 is called. If not (“no’ branch of step 1845), flow continues
with step 1840 and another attempt is made to call the module work function 920. In
step 1860 the module 201 is unloaded. The process ends in step 1870.

FIG. 19 schematically depicts the operation of a router module according to -
one embodiment of the present invention. A router module 201 is tasked with
dynamic routing of messages 305 between modules 201. Conditional routing of
messages 305 may be accomplished utilizing a routing table (not shown) as defined
within a configuration file 720. Routing may also be effected dynamically such that
rules may be added or removed during runtime. As shown in FIG. 19, router module
201x performs routing of messages received from module 201d to modules 201a-
201c. According to one embodiment, router module 201x utilizes a routing table (not
shown) stored in the configuration file 720 for the router module 201x that provides
routing information for performing routing of modules to modules (e.g., 201a-201c).
Furthermore, routing rules stored in a routing table may be edited and reconfigured at
runtime..

Thus, for example, as ghown in FIG. 19, the default output chahnel of module
201d is connected to the default input channel of router module 201x. Utilizing
routing information, module 201d may send messages 305 to modules 201a, 201b
and/or 201c.

According to one embodiment of the present invention, interaction between

modules 201 deployed on separate hosts 114 may be affected by utilizing a sender

- module 201 and receiver module 201. A sender module 201 maps a particular

channel 380 to a particular physical or virtual communications port. FIG. 20
schematically depicts the operation of a sender and receiver module 201 according to

one embodiment of the present invention. Note that modules 201a and 201b are

60

10

15

20

25

30

WO 02/37230 PCT/US01/48121

deployed on separate respective hosts 114a and 114b. Application 405 (not shown)
including modules 201a and 201b requires interaction between module 201a and
modulé 201b as if modules 201a and 201b were coupled together via channel 380
(shown on top portion of FIG. 20). In order to achieve interaction between modules
201 deployed oﬁ separate hosts, sender modules 201 and receiver modules 201 may
be deployed on separate respective hosts 114. A sender module 201 and a receiver
module 201 may interact and exchange messages 305 across separate hosts coupled
together on a network 121. In particular, a sender module 201 and a receiver module
201 may communicate over a network 121 utilizing a particular network protocol
such as TCP/IP (“Transmission Control Protocol/Internet Protocol”). Returning to the
example shown in FIG. 20, module 201a deployed on host 114a is coupled to sender
module 201x via channel 380a. Similarly, on host 114b, module 201b is coupled to
receiver module 201y via channel 380b. Module 2012 deployed on host 114a may
thus interact with module 201b deployed on host 114b by sending messages 305 to
sender module 201x via channel 380b. Messages.305 received by sender module
201x from module 201a on default input channel 380a are transmitted over network
121 to receiver module 201y on host 114b. Receiver module 201y then transmits
received messages 305 on default output channel 380b to module 201b.

A multiplexer module 201 and demultiplexer module 201 may be deployed to
extend and preserve multiple physical channels 380 across a single channel divide. A
multiplexer module 201 performs (as its work function 920) the operation of
combining messages 305 arriving from multiple channels 380 so that they can be
transported over a single channel 380. A demultiplexer module 201 performs the
function of demultiplexing messages 305 arriving over a single channel 380 into..
separate channels 380. According to one embodiment, information encoded with
each multiplexed message 305 is read by demﬁltiplexer module 201 to determine the
appropriate channel 305 to divide multiplexed messages 305.

FIG. 21 depicts the operation of a multiplexer and demultiplexer module
according to one embodiment of the present invention. As shown in FIG. 21, itis
assumed that it is desired for modules 201a, 201b and 201c to interact with modules
201al, 201b1 and 201c1 respectively. Typically, the interaction scheme just
described would require three separate channels 380 respectively coupling module
201a to module 201al, module 201b to module 201b1 and module 201¢ to module

201cl. However, the same interaction may be achieved by utilizing multiplexer

61

10

15

20

25

30

WO 02/37230 PCT/US01/48121

module 201x and demultiplexer module 201y. In particular, modules 201a, 201b and
201c respectively transmit messages to multiplexer module 201x via channels 380a,
380b and 380c. Multiplexer module 201x combines messages arriving on channels
380a, 380b and 380c and transmits these messages 305 to default output channel
380x. Demultiplexer module 201y receives multiplexed messages 305 arriving on
default input channel 380x and demultiplexes the messages 305 into respective
default output channels 380a1, 380a2 and 380a3, which are respectively coupled to
modules 201al, 201b1 and 201cl. Thus, it is assumed under this example that
messages 305 bound for module 201al from module 201a are demultiplexed to
channel 380al, messages 305 bound for module 201b1 from module 201b are
demultiplexed to channel 380b1 and messages 305 bound for module 201c1 from
module 201c are demultiplexed to channel 380c1.

FIG. 22 is a flowchart depicting the work function operation of a multiplexer
module according to one embodiment of the present invention. The process is .
initiated in step 2205. In step 2210, multiplexer module 201 reads a message from. - -
one of its configured input channels 380. In step 2215, multiplexer module 201 tags
the message 305 with a corresponding channel identifier. According to one
embodiment, this is accomplished by appending a channel identifier of the channel

380 being multiplexed to a list within a field named _MuxChan. In step 2220,
multiplexer module forwards the message to its default output channel 380.

FIG. 23 is a flowchart depicting the work function operation of a
demultiplexer module according to one embodiment of the present invention. The
process is initiated in step 2305. In step 2310, demultiplexer module 201 reads a
tagged message 305 from its default input channel 380. In step 2315, demultiplexer
module 201 finds the MuxChannel field value. In step 2320, demultiplexer module
forwards the message to the appropriate output channel 380 as a function of the
_MuxChannel field value.

FIG. 24 depicts the operation of a communications module according to one
embodiment of the present invention. As described below, the present invention
provides for the automated deployment of modules 201 included within an application
to any number of hosts 114 within a computing environment 121. Referring to FIG. |
24, it is desired to deploy components 505(1)-505¢N) comprising an application 405
within a computing environment 121 including hosts 114(1)-114(N). In order to

accomplish this, a respective communications module 201(1)-201(N) is deployed

62

10

A5

20

25

30

WO 02/37230 PCT/US01/48121

upon each respective host 114(1)-114(N). A communications module 201 provides a
conduit for the deployment of modules 201 including a runtime environment itself
1520 on a host 114. Accordingly, host 114x is also equipped with a communications
module 201x. Communications module 201x on host 114x performs transmission of
modules 201 to hosts 114(1)-114(N) where application 405 will be installed and
executed.

FIG. 25 depicts the operation of a data mapper module according to one
embodiment of the present invention. A data mapper module performs the task of
transforming message formats based upon conditional rules. Message data may be re-
mapped or aggregated. As shown in FIG. 25, data mapper module 201 receives
message 305a and performs a rule look-up utilizing mapping rules vector 2505. In
particular, mapping rules vector 2505 stores mapping rules for actions (i.e., mappings)
to be undertaken with respect to certain message types or formats. If a match is found
in mappings rules vector, a data mapping and/or transformation for the niessage 305a
is performed to generate message 305b. If no match is found, data mapper module
201 simply outputs the message 305a without any alteration. Note that a data mapper
module 201 may map on a one-to-one, many-to-one or many-to-many basis.

In order to run an application 405 where modules 201 may be distributed
across multiple hosts 114, it may become necessary for a particular host 114 to
retrieve or gain access to particular files that may reside on a remote host. In
particular, the present invention provides functional to define large data references
such as fields, files and vectors within a message. According to one embodiment, a
specially designed module 201 referred to herein as a reference retriever module
performs functions for resolving remote file access and reference requests. FIG. 26
depicts the operation of a reference retriever module according to one embodiment of
the present invention. A reference retriever module 201 receives requests to initialize
file references, to resolve file references from remote hosts 114 and to make copies of
file references.

According to one embodiment the present invention provides a mechanism for
transferring files by reference. Consistent with the general paradigm of the
invention, a reference retriever module is employed for this purp.ose. A file reference
is a type that provides the capability of transferring files between environments via .
messages without overburdening channels 380. This is achieved by passing a

reference to the file on a remote system, which is automatically resolved by

63

10

15

20

25

30

WO 02/37230 PCT/US01/48121

employing a reference retriever module that transfers va copy of the remote file onto a
local system through an independent mechanism (i.e., not via message data over
channels). When a file reference is encountered within a message in the environment,
a reference retriever module 201 (which is deployed as part of runtime environment
1520) is called upon to resolve the remote reference to the file on the local system.
The reference retriever module 201 acts as both a client and a server for out-of-
channel file transfers. The local reference retriever 201 (acting as a client) uses this
information to connect to the reference retriever (acting as a file server) and obtain a
copy of the file, which it places onto the local file system.

FIG. 26 depicts the operation of a reference retriever module according to one
embodiment of the present invention. Note that module 201a, sender module 201x
and reference retriever module 201v are deployed on host 114a. Module 201a
interacts with sender module via channel 380. Module 201b, receiver module 201y
and reference retriever module 201w are deployed on host 201w. Receiver module
201y interacts with module 201b via channel 380b. Sender module 201x
communicates with receiver module 201y via computing environment 121 over a
specific network port. For purposes of this example, it is assumed that a message 305
is transmitted from module 201a on host 114a to module 201b on host 114b. When
the message 305 with the file reference reaches receiver module 201y on host 114b, a
request to resolve the reference into a local file is sent to reference retriever module
201w on host 114b. The file reference has all of the required information to contact
reference retriever 201v on host 114a to copy the file from host 114a to 114b. When
module 201b receives the original message, the reference information points to a local
copy of the original file on host 114b. . »

According to one embodiment, a special module 201 referred to as an

authorization module 201 may be deployed as part of a runtime environment 1520.

- The function of an authorization module 201 is to provide authentication of users (or

groups) for performing actions on objects. An authorization module 201 receives
authorization requests from its default input channel 380. According to one
embodiment, an authorization request includes information regarding a user, an object
and an action to be taken with respect to that object. According to one embodiment,
an authorization module 201 makes use.of the RespondToMsg() function described..

above to respond to authorization requests. In particular, authorization module 201

)

64

10

15

20

25

30

WO 02/37230 PCT/US01/48121

responds with an allow/deny response as a function of the user, object and requested
action.

According to one embodiment, an authorization module 201 stores
information regarding actions, objects, users and groups are named entities in the
authorization module’s persistent configuration file 720. Sets of actions on objects
are used to define roles, which are applied to users and/or groups.

According to one embodiment, an authorization module 201 also has the capability of
assigning tokens that may be used to authenticate actions on objects.

FIG. 27 depicts the operation of an authorization module according to one
embodiment of the present invention. Allows for authenticated administration of
authenticated objects. FIG. 27 shows authorization module 201x and modules 201a-
201c. It is assumed that authorization module 201x and modules 201a-201c reside on
a single host 114. Modules 2012-201c may generate “Respond To Message” requests
by transmitting messages 305 on input channel 380a of authorization module 201x.
Messages 305 generated by modules 201a-201c and transmitted to authorization
module 201x relate to permissions and authentication for various objects including
writes to channels 380, etc. Authorization module 201x generates response messages
305 for each authorization request generated by modules 201a-201c¢ such that the
response messages 305 are directly placed on the respective “respondTo” channel 380
specified by each module 201a. Accordingly, authorization module 201x places
response messages 305 for module 201a directly on channel 380a, response messages
305 for module 201b directly on channel 380b, response message 305 for module
201c directly on channel 380c and response messages for module 201 directly on
channel 380d.

FIG. 28 illustrates the functionality of an application development and
network deployment tool according to one embodiment of the present invention.
Application development and network deployment tool (“ADNDT”’) 2815 provides
functionality for module packaging 233, application building 241 and deployment
251. The functions of ADNDT 2815 may be combined in a single functional entity or
may be separated into multiple entities.

According to one embodiment, ADNDT provides a GUI environment through
which anapplication developer may define and deploy an application 405 within a
computing environment 121. As a function of input received through the GUI,
ADNDT automatically populates associated configuration files 720 for modules 201

65

10

15

20

25

30

WO 02/37230 PCT/US01/48121

included within an application 405. ADNDT 2815 provides functionality for building
an application 405 by allowing an application developer to select desired modules 201
from a module repository 810 to perform an application build step 241 and a deploy
step 251 for the application. In addition, ADNDT 2815 provides functionality to
allow an application developer to perform a packaging step 233 on previously coded
modules 201. The development environment permits the application developer to
utilize any tools of choice for performing coding step 231.

FIG. 28 graphically illustrates a set of steps for the development and
deployment of an application 405 utilizing ADNDT 2815. According to one
embodiment, ADNDT provides a GUI by which the application developer may select
graphical icons indicating desired modules 201. In step 2807, the application
developer provides configuration data for selected modules 201 necessary for
successful implementation of the application 405. Configuration data may be entered
manually or may be updated automatically as an application developer builds an
application 405. Configuration data may include names of default input and output
channels 380, setting of pre-defined switches related to a module’s behavior, etc.
According to one embodiment, a GUI is provided by which the application developer
may edit configuration data by selecting a desired module 201 with a pointing device
such as a mouse or keyboard. In particular, ADNDT 2815 provides an interface for
creating and editing a configuration file 720 associated with a module 201. Thus,
ADNDT provides a GUI through which an application developer may build an
application using a drag and drop approach and through which configuration files for
modules 205 are updated automatically as a function of the application developer’s
interaction with the GUI.

In application build step 241, the application developer defines
communi;:ation pathways 314 between modules 201 selected for inclusion within the
application 405. During step 2810, ADNDT 2815 provides automated functionality
for dynamically populating configuration files 720 associated with modules 201
within the application 405 as a function of the application developer’s indication of a
particular interaction between modules 201. According to one embodiment, this is
accomplished using a GUI provided by ADNDT, which dynamically edits
bonﬁguration data within configuration file 720 as a function of the application
developer’s selection of an interaction relationship between modules 201. For

example, according to one embodiment, the application developer may graphically

66

10

15

20

25

30

WO 02/37230 PCT/US01/48121

connect two modules 201 for which an interaction is desired by drawing a graphical
line between them using the GUL Upon this input, ADNDT stores a named
placeholder (e.g., “SPATH_1”) within the relevant configuration files 720 of each
respective module 201. At this point, the communication pathway 314 between the
modules 201 is undefined and further definition will require input from the
application developer regarding the particular host 114 or hosts 114 upon which each
respective module will be deployed. A number of exemplary situations are described
below relating to the resolution of communications information for modules 201.

In deployment step 251a, the application developer defines one or more
components 505 from the application 405, which designate particular hosts 114 on
which each mbdule 201 included in the application is to be installed. ADNDT 2815
further provides a GUI for component 505 definition. Furthermore, according to one
embodiment ADNDT 2815 automatically collects data regarding all hosts 114 within
computing environment 121 including protocol specific data. The application
developer is presented with a graphical depiction of the computing environment 121
and related hosts 121 and may install components 505 by simply dragging groups of
modules 201 to desired hosts 114. Furthermore, as ADNDT 2815 may automatically
collect information regarding protocol implementations on various hosts 114 within
computing environment 121, channel resolution and establishment of communication
314 pathways between modules 201 within an application 405 is automated. This
process is described in detail below.

In deployment step 251b, the application developer may issue a command to
ADNDT 2815, which causes deployment of application 405 to the computing
environment 121. In particular, during this step ADNDT 2815 causes all components.
505 for the defined application 405 to be remotely installed on respective hosts 405.
As a preliminary step, ADNDT 2815 remotely installs a runtime environment 1520 on
each host 114 defined in the deployment configuration for the application 405. Other
than essential runtime entities as described above, the application developer is
presented with the choice of runtime entities to be deployed to each particular host
114 in the computing environment 121.

During deployment step 251a, the application developer assigns components
505 to specific network hosts 114. According to-one embodiment, when a component
505 is assigned to a host 114, as part of the deployment step 251a, ADNDT 2830

performs a step of transferring all files associated with each module 201 included

67

10

15

20

25

30

WO 02/37230 PCT/US01/48121

within each component 505 to the respective host 114. This may be accomplished,
for example, by utilizing a communications module 201 as described above. In
addition, ADNDT 2830 performs appropriate steps and configuration procedures to
insure that network connectivity between all modules 201 across computing
environment 121 is achieved. According to one embodiment, ADNDT 2815 achieves
the appropriate network configuration by pre-configuring and deploying appropriate
support modules such as sender and receiver modules 201 required to achieve the
desired interaction between modules 201 that may be deployed on separate hosts114
(using the required respective protocols for those hosts 114).

FIG. 29 graphically depicts a set of steps for the resolution of a default input
channel and a default output channel by an ADNDT 2815 for modules deployed on
the same host according to one émbodiment of the present invention. Step 2905,
shows modules 201a and 201b that have not been related to one another through a
communica-tion pathway 314. For example, modules 201a and 201b may have been
previously defined and may simply be defined such that they reside in a module
repository 810. Note at this step, configuration files 720a and 720b corresponding
respectively to modules 201a and 201b hold undefined channel entries. A

In step 2910, the application developer provides input to ADNDT 2815 (e.g.,
through a graphical input device) 2815 that module 201a is to interact with module
201b (i.e., by graphically drawing a communications pathway between modules 201a
and 201b. In this step, ADNDT 2815 stores a named placeholder string (e.g.,
$PATH_ 1) for the yet unresolved commmunication pathway 314 as the default output
channel 380 for module 201a and the default input channel 380 of module 201b. Note
that at step 2910, the communications pathway 314 is undefined since the application
developer has not indicated whether modules 201a and 201b will reside on the same
host or separate hosts 114.

In step 2915, the application developer provides input to ADNDT 2815
indicating precisely where modules 201a and 201b are to reside within cdmputing
environment 121 (i.e., the particular hosts 114 on which these modules 201 will be
deployed). This definition may be effected as part of a component 505 definition.
Upon this input from the application developer, ADNDT 2815 will set appropriate
parameters in respective configuration files720a and 720b so that the default output
channel 380 of module 201a corresponds to the default input channel 380 of module

201b. In the particular example depicted in FIG. 29, it is assumed that the application

68

10

15

20

25

30

WO 02/37230 PCT/US01/48121

developer has indicated that modules 201a and 201b are to reside on the same host
114. In this case, the default output channel 380 of module 201a is set to the default
input channel of module 201b. This is accomplished by modifying respective
configuration files 720a and 720b of modules 201a and 201b. In this particular
example, the default input channel 380 of module 201b and the default output channel
of module 201a are set to the name“Path1Dep1Host1.”

FIG. 30 graphically depicts a set of steps for the resolution of a default input
channel and a default output channel by an ADNDT for modules deployed on-
separate hosts according to one embodiment of the present invention. Step 3005,
shows modules 201a and 201b that have not been related to one another through a
communication pathway 314. For example, modules 201a and 201b may have been
previously defined and may simply be defined such that they reside in a module
repository 810. Note at this step, configuration files 720a and 720b corresponding
respectively to modules 201a and 201b hold undefined channel entries.

In step 3010, the application developer provides input to ADNDT 2815.(e.g.,
through a graphical input device) 2815 that module 201a is to interact with module
201b (i.e., by graphically drawing a communications pathway between modules 201a
and 201b. In this step, ADNDT 2815 stores a named placeholder string (e.g.,
$PATH._1) for the yet unresolved communication pathway 314 as the default output
channel 380 for module 201a and the default input channel 380 of module 201b. Note
that at step 2910, the communications pathway 314 is undefined since the application
developer has not indicated whether modules 201a and 201b will reside on the same
host or separate hosts 114.

In step 3015, the application developer provides input to ADNDT 2815.
indicating precisely where modules 201a and 201b are to reside within computing
environment 121 (i.e., the particular hosts 114 on which these modules 201 will be
deployed). This definition may be effected as part of a component 505 definition.
Upon this input from the application developer, ADNDT 2815 will set appropriate
parameters in respective configuration files 720a and 720b so that the default output
channel 380 of module 201a corresponds to the default input channel 380 of module
201b. In the particular example depicted in FIG. 29, it is assumed that the application
developer has indicated that modules 201a and 201b are to reside on separate hosts
114a and 114. In this case, ADNDT 2815 causes facilitator modules 201x and 201y,

which are respectively sender and receiver modules 201 to be deployed respectively

69

10

15

20

25

30

WO 02/37230 PCT/US01/48121

to host 114a and host 114b. The default output channel of module 201a is set to the
default input channel of module 201b via configuration file 720a. Similarly, the
default output channel of receiver module 201y is set to the default input channel of
module 201b.

ADNDT 2815 also provides for the application developer to deploy a single
component within an application 405 onto a set of more than one host 114. In such a
case, the application developer is prompted to specify the intention of the deployment:
scalability or high-availability. If the application developer chooses scalability, a load
balancing module 201 (not shown) is automatically deployed in front of input
channels 380 of the component 505. A load balancing module 201 routes messages
305 from its input conditionally to one of its set of outputs and may be configured
with a policy (e.g., round robin messaging or use of a rule set). All of the outputs for
the duplicate components 505 are directed to similar outputs. Ifit is a high-
availability deployment, messages 305 arriving at the inputs of the set of component
duplicates 505 are optionally duplicated using a router module 201, which is specially
configured to unconditionally copy all messages 305 to all components 505. Other
messages 305 may be throttled with a switch (with corresponding configuration GUI)
to select which of the components 505 is to be the primary (active) runtime instance.

FIG. 31 further illustrates an exemplary deployment configuration for modules
residing on separate hosts according to one embodiment of the present invention.

FIG. 31 corresponds to a situation in which module 201a outputs messages to a router
module 201w that conditionally outputs the messages to modules 201b, 201¢ and
201d. It is desired to deploy module 201a on host 114a and router module 201w,
module 201b, module 201c and module 201d on host 114b. In order to effect this
deployment, module 201a is deployed on host 114a along with sender module 201x.
Receiver module 201y is deployed on host 114b along with router module 201w and
modules 201b-201d. Furthermore, the default output channel of module 201a is set to
the default input channel of sender module 201x on host 114a while the default output
channel of receiver module 201y is set to the default input channel of router 201w on
host 114b. Under this deployment example, only a single channel (i.e, betweeﬁ
sender module 201x and receiver module 201y) must be extended across hosts 114a
and 114b.

FIG. 32 further illustrates an exemplary deployment configuration for modules

residing on separate hosts according to one embodiment of the present invention. As

70

10

15

20

25

30

WO 02/37230 PCT/US01/48121

in FIG. 31, it is desired for module 201a to communicate with modules 201b-201d. In
order to effect this interaction, module 201a is deployed on host 114a along with
router module 201w and sender module 201x. Default output channel 380a of module
201a is set to the default input channel 380a of router module 201w. Router module
201w is coupled to sender module 201x via custom channels 380x, 380y and 380z.
Receiver modules 201v and 201w are deployed on host 114b along with modules
201b and 201c. The default output channel of receiver module 201w is set to the
default input channel of module 201c (380b) and the default input channel of module
201b (380c) is set to the default output channel of receiver module 201(v). Module
201d and receiver module 201u are deployed on host 114c. The default output
channel of receiver module 201u (380d) is set to the default input channel of module
201d. Itis assumed that during deployment, the application developer specified that
each module connection should go over a unique network port. Thus, module 201a
may interact with modules 201b-201d on hosts 114b-114c.

According to one embodiment, upon deployment of an application 405 to a
computing environment 121, a monitoring function is available to monitor
performance of the application. In accordance with the paradigm of the invention, a
system monitor module 201 and a channel monitor module 201 are employed for this
purpose. FIG. 33 depicts the operation of a system monitor module and channel
monitor module according to one embodiment of the present invention. It is assumed
that an application 405 has been deployed to hosts 114a and 114b and is running.
Thus, components 505a and 505b have been deployed to hosts 114a and 114b
respectively. In addition, runtime environments 1520a and 1520b have been deployed
to hosts 114a and 114b respectively. In addition, note that runtime support modules
201x1 and 201y1 and runtime support modules 201x2 and 201y2 have been
respectively deployed to hosts 114a and 114b. Runtime support modules 201x1 and
201x2 perform channel monitoring functionality to report criteria related to channel
use. Runtime support modules 201yl and 201y2 perform system monitoring related
to disk usage, CPU usage, etc.

Note that monitoring host 114x has communications module 201z.
Monitoring host 114x may receive information and data generated by runtime support
modules 201x1-201x2 and 201y1-201y2 via communication module 201z-and
respective communication modules deployed on hosts 114a and 114b and included in

runtime environment packages 1520a and 1520b. Application performance may be

71

10

15

20

WO 02/37230 PCT/US01/48121

analyzed and reported using any combination of graphical or text output. Based upon
this information, applications 405 may be reconfigured and/or redeployed to achieve
various performance metrics.

A method and system for application development has been described. The
present invention provides a system and method for application development,
deployment and runtime monitoring which significantly fosters code reuse and
dynamic reconfiguration of developed applications. The development environment
includes a module coding step, a packaging step, an application building step and a
deployment step, in which an application is deployed (i.e., installed) in a computing
environment (e.g., computer network). After runtime has commenced, the
performance of the application may be monitored to evaluate its performance. During
runtime, applications may be reconfigured dynamically to respond to temporal
variations within a computing environment such as shifting load and/or faults. The
development environment provided by the present invention obviates developer focus
upon protocol and communication issues within an intended computing environment - -
during the development phase. Instead, the paradigm promotes attention to functional
behavior of code, efficient logic design, control and logic flow based upon a
programming specification and desired overall functional behavior. Furthermore, the
development environment significantly reduced development and reconfiguration
time, code reusability, reduction in frequency of design errors and heightened

performance through more efficient code design.

72

WO 02/37230 PCT/US01/48121

WHAT IS CLAIMED IS:

1. A distributed processing system comprising:

(a) a plurality of discrete, autonomous program processes, wherein each
program process is capable of generating destinationless messages;

(b) at least one data repository for receiving and storing destinationless
messages generated by program processes;

wherein each program process is associated with configuration information,

which includes information for associating a program process with a data

repository in at least one of a read and write capacity.

2. The distributed processing system according to claim 1, wherein each

discrete autonomous program process is a module.

3. The distributed processing system according to claim 1, wherein each data

repository is a channel.

4. The distributed processing system according to claim 1, wherein the
configuration information for each program process is utilized at a runtime

step to establish one of a read and write relationship with a data repository.

5. A reconfigurable data processing system comprising:

(2) a plurality of discrete, autonomous program processes, wherein each
program process is capable of the generation of destinationless messages;

(b) at least one data repository for receiving and storing destinationless
messages generated by program processes;

(c) aplurality of configuration parameters.associating program processes with
at least one data repository in one of a read and write capacity, the

plurality of configuration parameters establishing a data flow mechanism.

6. A data processing system comprising: - -
(a) a plurality of modules, wherein a module is a discrete process and is

associated with a capability for generating destinationless messages;

73

WO 02/37230 PCT/US01/48121

(b) at least one data repository, wherein each data repository receives and
stores destinationless messages generated by modules;

(c) an API (“Application Program Interface”), wherein the API provides at
least one function for associating a read operation of a module with a data

repository and a write operation of a module with a data repository.

7. The data processing system according to claim 6, wherein each module
does not include programming instructions relating to an interaction with a

second module.

8. The data processing system according to-claim 6, wherein each module is
associated with configuration information, wherein the configuration
information includes information for associating the module with a data

repository for writing destinationless messages.

9. The data processing system according to claim 6, wherein each module is
associated with configuration information, wherein the configuration
information includes information for associating the module with a data

repository for reading destinationless messages.

10. The data processing system according to claim 6, further including a
second API for defining a module, wherein the module API includes at

least one of a function for initializing, working and terminating a module.

11. The data processing system according to claim 6, further including a third
API for defining a structure for a message, wherein the structure includes

at least one field.

12. The data processing system according to claim 6, wherein a destinationless

message is a BLOB (“Binary Large Object”).

13. The.data processing system according to claim 8, -wherein a-module is
associated with a data repository for writing messages at runtime utilizing

the configuration information.

74

WO 02/37230 PCT/US01/48121

14.

15.

16.

17.

18.

19.

© 20.

The data processing system according to claim 9, wherein a module is
associated with a data repository for reading destinationless messages at

runtime utilizing the configuration information.

The data processing system according to claim 6, wherein each of the data

repositories is a segment of memory.

The data processing system according to claim 6, wherein each module
includes a plurality of programming instructions including programming
instructions for at least one of remotely initializing the module and-
remotely terminating the module.

The data processing system according to claim 16, wherein the
programming instructions for remotely initializing the module include a

function pointer.

A system for application development, comprising:

(2) a module API wherein the module API includes a plurality of function
calls for defining a module, wherein a module is a discrete process that
includes a capability for a generation of destinationless messages;

(b) a channel API, wherein the channel API includes a plurality of
function calls for at least one of opening, writing to and reading from a
channel, wherein a channel stores destinationless messages generated
by modules;

(c) a message API, wherein the message API includes a plurality of

function calls for defining a structure of destinationless messages.

The system according to claim 18, wherein the module API, channel API

and message API are provided as statically linked libraries.

A method for developing a computer program comprising the steps-of:-

75

WO 02/37230 PCT/US01/48121

(a) defining a plurality of program modules, wherein each module includes a
process to perform an associated function, and wherein each module
includes a capability for generating destinationless messages;

(b) defining a plurality of communication pathways between the modules in
order to achieve a desired program behavior;

(c) at runtime, resolving the communication pathways to associate the
plurality of program modules with a plurality of data repositories, wherein

the data repositories receive and store messages.

21. The method according to claim 20, wherein each of the plurality of
program modules is associated with a data repository in one of a read and
write capacity.

22. The method according to claim 20, wherein step (c) further includes the
step“of specifying configuration information for each module with respect
to the plurality of data repositories in one of a read and write capacity as a

function of the communication pathways.

23. A method for application development comprising the steps of:

(a) defining at least one module, wherein a module includes a discrete
code element and performs a functional behavior;

(b) defining an interaction configuration between the at least one
module to achieve an application behavior, wherein the interaction
configuration includes re-configurable communication pathways
for an exchange of messages between a first module and a second
module;

(c) defining a deployment configuration for the application, wherein
the deployment configuration defines at least a relationship
between each module and one or more hosts within a computing
environment;

(d) deploying the modules to the computing environment as a function

of the deployment configuration; and,

76

WO 02/37230 PCT/US01/48121

(e) establishing the communication pathways between the at least one
module as a function of the interaction and the deployment

configuration.

24. The method according to claim 23, wherein step (e) further includes the
steps of:
® defining at least one decentralized channel; and, °
(ii) establishing communication between a first module and a
second module sharing a communication pathway by setting
the first module to exchange messages with the second module

on a decentralized channel.

25. The method according to claim 24, wherein a decentralized channel is a
shared memory resource including at least one of a resource on a storage

device and a random access memory (“RAM”).

26. The method according to claim 23, wherein computing environment is a

computer network.

27. The method according to claim 23, wherein step (e) further includes the
steps of:

(1) defining at least one decentralized channel;

(i) if a first module and a second module sharing a
communication pathway are designated to reside on
separate hosts as part of the deployment configuration,
deploying a sender module to a first host associated with
the first module and deploying a receiver module to a
second host associated with the second module, wherein the
sender module and the receiver modules perform
communications between the first and second host; and,

(i) establishing a communication between the first module and
the sender module and establishing a communication

between the second module and the receiver module.

77

WO 02/37230 PCT/US01/48121

28. A program module comprising:

29.

30.

31.

€)] an initialization function process, wherein the initialization
function process is executed upon an initialization of the
program module;

(b) a work function process, wherein the work function process
exhibits a behavior associated with the program module; and,

(c) a termination function process, wherein the termination
function process is executed upon a termination of the program

module.

The program module according to claim 28, wherein the initialization
function process, the work function process and the termination function

process are callback functions.

A distributed application development system comprising a processor,
wherein the processor is adapted to:
provide a graphical user interface (“GUI”) wherein the GUI:

(a) provides for a specification of a plurality of discrete, autonomous
program processes to be used in the application, and receives information

relating thereto;

(b) provides for a specification of a plurality of communication pathways
between the plurality of program processes and receives information
relating thereto; and,

(c) provides for a specification of a deployment configuration and receives
information relating thereto;

wherein the processor is further adapted to modify runtime configuration

information relating each of the program processes as a function of the

information received by the GUL

The distributed application development system according to claim 30,
wherein the runtime-configuration information of each program process
includes information relating to associating the program process with a

data repository in at least one of a read and write capacity.

78

WO 02/37230 PCT/US01/48121

32. The distributed application development system according to claim 31,
wherein the processor updates the configuration information of each
program process associating the program process with a data repository as

a function of the communication pathways specified in step (b).

79

WO 02/37230 PCT/US01/48121

>Functional Element
Definition 171

107(2)

_J
117(1) 117(2) 117(3) 117(N) Functional Elerni
Communication Pr(
Coding
nmne 181

Network

Topology

Protocal 133

Information

)
Deployment 191

121 FIG. 1

1/56

WO 02/37230 PCT/US01/48121

- = = 231
201(1 201(2

201 (3) 201(N)

Packagi
233

ém (1) 201(2) 2013) 201(4)

Deployment
505

Appiication Building 241

Application
>> 405

505 505

2/56

PCT/US01/48121

WO 02/37230

FIG. 2b

3/56

WO 02/37230 PCT/US01/48121

307

FIG. 3a

201a. 201b

FIG. 3b

4/56

WO 02/37230 PCT/US01/48121

201a 201b

- 201a

FIG. 3d

FIG. 3e

5/56

WO 02/37230 PCT/US01/48121

FIG. 3f

6/56

WO 02/37230 PCT/US01/48121

114b | 114b FIG. 39

7/56

WO 02/37230

201m

8/56

201a

PCT/US01/48121

L 405

FIG. 4a

WO 02/37230 PCT/US01/48121

> 405

201m

FIG. 4b

9/56

WO 02/37230 PCT/US01/48121

201(4) 201(3)

20HN)

FIG. 5a

10/56

WO 02/37230 PCT/US01/48121

405

201

0la

505¢
5052 505b

FIG. 5b

11/56

WO 02/37230 PCT/US01/48121

Message APl - Field APl 610c Channel /0 AP! Compression AP}
610b 610d 610h

Module AP| Flle Access AR! i Dictiomary AP!
610a 610f

201

FIG. 6

12/56

WO 02/37230 PCT/US01/48121

760

715

FIG. 7

13/56

WO 02/37230 PCT/US01/48121

760(2) 760(N)

810

FIG. 8

14/56

PCT/US01/48121

WO 02/37230

730

FIG. 9a

15/56

WO 02/37230

Initialization
Start 2
931

Setup Local Data B
933 :

ead
Configuration File J8
And Store In ;
Dictionary Data
Structure

Perform
Registration
935

Establish

Channels And

Cursors
937

End Initialization
939

16/56

PCT/US01/48121

FIG. 9b

WO 02/37230
PCT/US01/48121

Work Start X
941

Receive Next

Message From

——p Default input

Channel
943

Process Message i

And Perform

Behavior
945

FIG. 9c

17/56

WO 02/37230

Termination Start
951

Perform Cleanup J&
Functions o
953

End Termination '\,
959 ks

18/56

PCT/US01/48121

FIG. 9d

PCT/US01/48121

WO 02/37230

Qo or
Faads Q Qe or A ~ A IS
vwmwsw ~3222 Zp R o D 2 z
5 B By %% 2T %% g 2 2 2
“ _ 5 20z01 o
1020} 020} ...@ eor | w0zor | uozor | Bozo 1020} 020k | pozol ozol
NEEq N 1P| zeled | zwepi| Lewea| 1iuep| N | B3| Nwesso | 1Ndesso
=23 w w w @ W m o
83E 2 2 2 2 2 2
€8 % 8§ g 8 8 3 7
- ,
o | e | sy s0L01 POLOL | 20101 | d0LOL | E0LOL
oo | S | 1o SPliseH esusort |1esy0 LNO | WL #po0 DS | UoIsIoN
i
0zo} 0l01
¥o0ig Eleq plei sepesH
o £ T T

S0¢€

19/56

WO 02/37230

PCT/US01/48121

1110a(N)

1110b(N)

1110a(1) 1110b(2) 1110c(3)
1110b(1) 1110b(2) 1110b(3)
rs
4
&
1110Z(1) 1110Z(2) 1110Z(3)

1110Z(N)

20/56

FIG. 11

720

WO 02/37230 PCT/US01/48121

1210(al) 1210(b1) — — 1210(c1) I —] 1210(Z1)

121002) —

1210(8) —

1210(bN)
—1 | 1210(ZN)

620

FIG. 12a

21/56

WO 02/37230

PCT/US01/48121

FOO
1210(at)

620

NESS
(data_1)
1210(b1)

MISC
(data_3)
1210(c1)

BAR (data_2)
1210(b2)

info (data_4)
1210(c2)

moreinfo
(data_5,
data_6)

1210(CN)

STUFF
1210(b3)

info (data_7)

22/56

FIG. 12b

WO 02/37230

ModMan1
(no value)
1210(1)

CodeEntryFile
value=lib/
libMTModman.so
1210(2)

CodeEntrySym
value=modman
1210(3)

;

VERBOSE
value=1
1210(4)

ChannelFitelnfo
{no value)
1210(5)

v

 J Alias
{no value)
1210(6)

23/56

PATH
value=queues/
Channelfile
1210(7)

SIZE
value=1024000
1210(8)

i

ACCESS
value=O_APPEN
D

1210(9)

A

ACCESS
value=0O_APPEN
D

1210(9)

LOCKTYPE
value-
PROCESS_SAFE
1210(10}

ModMan
(no value)
1210(11)

PCT/US01/48121

FIG. 12C

WO 02/37230 PCT/US01/48121

) * 201 a

201a 1310b

1375b(1)

=)
(=]

[1875a(1)

i> 1376b(1) -@»
1375a(2]>

L}

=

|]

A\:m 0 13750(23)
L]
-
.

| 1376b(2) 1875¢(N)
1375a(N)]

L

1376a(N) | 1375b(N)

114

FIG. 13a

24/56

WO 02/37230 PCT/US01/48121

1310

FIG. 13b

25/56

WO 02/37230 PCT/US01/48121
I 1375(1) > 1349(1)
| 4
1310
1349\
’ FIG. 13c

26/56

WO 02/37230 PCT/US01/48121
WriteMsgStruct 1330
Member Type
buffer 1331 char*
buffersize 1332 long

nextMsg 1333

Chanlo..ChannelFileStruct

3 m

FIG. 13d

pagePath 1342

PageStruct 1340
Member Type
- self 1341 PageStruct*
char*

pagelndex 1343 PagelndexStruct*
object 1344 MemHandle
pageData 1345 char*
pageNumber 1346 long

memType 1347

DATA_Q_MEM_TYPE

FIG. 13e

PageindexStruct 1350

(\J

Member

Type

nextReadPostion 1351

unsigned long

nextWritePosition 1352

unsigned long

pagesize 1353

long

pageFullState 1354

long

27/56

FIG. 13f

WO 02/37230

PCT/US01/48121

RecordHeaderStruct 1360

f\J

Member

Type

commitFlag 1361

char

sequenceNumber 1362

unsigned long

realBuffersize 1363

long

userBuffersize 1364

long

FIG. 13g

MasterPageStruct 1370
Member Type
self 1371 MaSterPageStruct*
pagePath 1372 char*
MemHandle

_object 1373

masterPagelndex 1374

masterPagelndexStruct*

wlock 1375 LOCK_NODE_PTR
rlock 1376 LOCK_NODE_PTR
readPage 1377 PageStruct*
writePage 1378 PageStruct*
memType 1379 long
maxPages 1379a long
pageSize 1379b long

lockState 1379¢

LOCK_STATE

FIG. 13h

MasterPagelndexStruct

f—\) 1380

Member Type
firstPageNumber 1381 long
lastPageNumber 1382 long

pagesize 1383 fong
long

maxPages 1384

readPageState 1385

READ_PAGE_STATE

writePageState 1386

WRITE_PAGE_STATE

recordsWritten 1387

unsigned long

recordsRead 1388 -

unsigned long

28/56

FIG. 13i

WO 02/37230

PagelndexStruct

mextReadPosition:unsigned long
nextWritePosition: unsigned long
pageSize: long

pageFulState:long

PCT/US01/48121

File Header 1305 commitFlag:char

long

RecordHeaderStruct

sequenceNumber: unsigned

4 realBufferSize:long
userBufferSize: long

Field Data
Block
1020

305

Record Header 1310(2)
1307(2)

Data 1320(2)

Record Header 1310(1)
1307(1)
Data 1320(1)
be

Record Header 1310(3)

Data 1320(3)

L\/\

Record Header 1310(N)

Data 1320(N)

29/56

FIG. 13

WO 02/37230 PCT/US01/48121

ChanloStruct 1430
[~
Member Type
self 1431 _ ChanloStruct*
dictionary 1433 DictStruct*
ChanFilelnfo 1435 Chanlo..ChannelFileStruct
message 1437 MsgHandle
channels 1438 Vector*
translist 1439 Vector*

FIG. 14a

ChannelFileStruct 1440

[~
Member l Type
path 1441 char*
access 1443 ChannelFileAccessType
size 1445 long

FIG. 14b

ChannelObjStruct 1450

f\J

Member ' Type
ChannelName 1451 char*
channelld 1453 DataQHandle
type 1455 MCPChannelType

FIG. 14c

30/56

WO 02/37230

PCT/US01/48121

ChannelFileStruct 1460

f\/

Member Type
handie 1461 void*
header 1463 char*

currentObj 1465 void*
lastObj 1467 void*

access 1468

ChannelFileAccessType

lock 1469

LOCK_NODE_PTR

FIG. 14d

ChannelFileHdrStruct

f_/ 1470
Member Type -
version 1471 long a5
numRecords 1473 fong k
checkSum 1475 long

FIG. 14e

ChannelFileObjectStruct

1480
r_/
Member Type
chanlinfo 1481 ChanlinfoStruct
ChannelName][] 1483 char
ChannelPath[] 1485 char
ChannelOwner{] 1487 char

ChannelPermAuth[] 1489

char

31/56

WO 02/37230 PCT/US01/48121

ChaninfoStruct 1480
f_//
Member Type
maxPageSize 1491 Long
maxPages 1493 long
~lockState 1495 LOCK_STATE
memType 1497 Data_Q_MEM_TYPE

FIG. 149

32/56

WO 02/37230 PCT/US01/48121

ChannelFileHdrStruct

version: long
numRecords: long
4 checkSum: Long

% 1470

Channel File Header

1405
-~
: ChannelFileObjectStruct
Record Header 1410(1)
1407(1) < Chaninfo: ChaninfoStruct
ChannelNamel[}: char
Channel Data 1420(1) { ChannelPath[]: char
\ 1480
/
Record Header 1410(2)
1407(2) <

Channel Data 1420(2)

ChannelFilelnfoStruct
channelName[]: char
chanelPath[]: char
1490

Record Header 1420(3)

1407(3) <

Channel Data 1420(3)

Ll

Record Header 1410(N)

Channel Data 1420(N)

FIG. 14h

33/56

WO 02/37230 PCT/US01/48121

Communications
Module
201¢

Reference
Retriever Madule
201d

Authorization
Module 201e

Module Manager
201a

Router Module
201b

File Operations
Module 201f

34/56

WO 02/37230 PCT/US01/48121

201a

201a5

114

FIG. 16

35/56

WO 02/37230

Term
930

<

Init
910

Collection
1750

Send Each Child A g8

Perform Garbage

<

Stop M ge
1755

Allocate and
Initialize Intemal

Storage To Default :

Values
1710

ead

Configuration X8
(Default Channels I
and Modules
Configurations)

Perform
Registration
1720

Open Channels
And Create
Cursors
1730

Load
Configuration
Information Into
Vector

For Each Child

Module, Run Init -

And Work
1740

Process Incoming

Messages Which [

Translate To

Commands (.9., §&

start, stop
suspend)
1745

36/56

PCT/US01/48121

Work
920

FIG. 17

WO 02/37230

ModStarter
Invoked With
Configuration
Resource
Argument

Call MCPModinit
1810

Configuration
Resource And
Begin Reading

Load Module
Specified In
Configuration
1820

Calt Module init.
Function
1830

Module Ini
Return

Yes

ModStarter Exit
1870

Unload Module
1860

Call Module
Terminate

Function
1850

Yes

Code<>07?
1835

Function
1840

Module Wo
Return Code
<0
1845

37/56

1805 N

Configuration Data

Call Module Work %

PCT/US01/48121

FIG. 18

WO 02/37230 PCT/US01/48121

201a

FIG. 19

38/56

WO 02/37230 PCT/US01/48121

201a
380a

201b

FIG. 20

39/56

WO 02/37230 PCT/US01/48121

201at

FIG. 21

40/56

WO 02/37230

Read Message
From Set Of
Configured

Channels
2210

Tag Message With B§

Corresponding
Channel ID
2215

Foward Message @i
To Default Output

Channel
2220

41/56

PCT/US01/48121

FIG. 22

WO 02/37230

Read Tagged
Message From
Default Input
Channel
2310

Read Message
Tag
2315

Transmit Message B
To Approporiate [

Channel
2320

42/56

PCT/US01/48121

FIG. 23

WO 02/37230 PCT/US01/48121

505(1) 505(2) 505(N)

114(1) 1142) 114(N)

FIG. 24

43/56

WO 02/37230 PCT/US01/48121

201

FIG. 25

44/56

WO 02/37230 PCT/US01/48121

FIG. 26

45/56

WO 02/37230

380b

46/56

380x

201x

PCT/US01/48121

FIG. 27

WO 02/37230 PCT/US01/48121

47/56

WO 02/37230 PCT/US01/48121

Defin=<undefined

DefOut=<undefin
ed>

201a

2905

Defin=3PATH_1

DefOut=$PATH_1

2910

201b

2915 <

Defin=Path1Dep1
DefOut=PatDept

2915

FIG. 29

WO 02/37230

201a

DefOut=<undefin)
ed> 4 :] 720a

201a

PCT/US01/48121

20 b

3005

Defin=<undefined

&

DefCut=3PATH_1

49/56

Defln=$PATH_1

3015

WO 02/37230 PCT/US01/48121

201y

FIG. 31

50/56

WO 02/37230 PCT/US01/48121

201a

51/56

WO 02/37230 PCT/US01/48121

v 1
’\ Runtime Support Modules

Runtime Support Modules

201x1: ‘ 4////

201y1

FIG. 33

52/56

PCT/US01/48121

WO 02/37230

ve "Old

Gotve
FEe %)

24"

53/56

PCT/US01/48121

WO 02/37230

54/56

PCT/US01/48121

WO 02/37230

9¢ Ol

(2)ozse

096¢€

09ge

096¢

A

GOGE

096€

(1)osse

N

(1)ozse

55/56

PCT/US01/48121

WO 02/37230

(e)oeze

F

EGEER
vy

L

@

2)0ssE

(@)ocLe

'

=

(1)osse

| osze

'

T
g7

56/56

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

