发明名称
基于负序功率正反馈的孤岛检测方法

摘要
本发明公开了属于分布式发电系统检测技术领域的一种基于负序功率正反馈的孤岛检测方法。该方法在DG控制中加入负序功率正反馈回路，当微网并入电网并网未能正常运行时，微网电压通过正反馈回路与逆变器输出电流相互作用，使负序功率增大，因此，通过对负序功率的成分H进行分析，即可检测出孤岛。首先，计算微网中DG输出负序功率的平方根H。设定H的阈值ε，然后判断是否发生孤岛，根据H的定值大小判断是否发生孤岛。该方法原理简单，适用范围广，在各种故障条件下及在恶劣情况下都能有效地检测出孤岛，且不受到孤岛的影响，能够满足现场的应用要求，具有工程实际意义。
1. 一种基于负序功率正反馈的孤岛检测方法，所谓孤岛运行是并网运行的分布式电源DG在发生大电网故障的情况下，与大电网DW断开并继续向本地负载RL供电。独立运行的情况称为孤岛运行。在DG控制系统中加入负序功率正反馈回路，当微网由并网运行转为孤岛运行时，微网电压通过正反馈回路与逆变器输出电流相互作用，使负序功率增大，通过对负序功率的平方根为进行的测量、分析，即可判断微网的孤岛运行状态，其特征在于，具体步骤如下：

首先，计算微网中DG输出负序功率的平方根为公式为：

\[H = \sqrt{S} = \sqrt{U^2 - I^2} \]

式中，\(s \) 表示微网负序功率；电压\(U \) 采集量为微网电压的负序分量，采用对称分量法测量；电流\(I \) 采集量为微网中DG的输出电流的负序分量，采用对称分量法测量。

其次，设定为的阈值为\(\epsilon_1 \)。

然后判断是否发生孤岛，根据的定值大小判断是否发生孤岛，判据如下：

(1) 当不在预先设定的阈值为\(\epsilon_1 \)内，则判定孤岛未发生；

(2) 当超过预先设定的阈值为\(\epsilon_1 \)，且在超过阈值20ms后不小于阈值为\(\epsilon_1 \)，则判定孤岛发生；

(3) 当超过预先设定的阈值为\(\epsilon_1 \)后，且超过阈值20ms后远小于阈值为\(\epsilon_1 \)，则判定孤岛未发生，出现的为孤岛。

2. 根据权利1所述的基于负序功率正反馈的孤岛检测方法，其特征在于，所述的预先设定的负序功率的平方根为阈值为\(\epsilon_1 \)选取为0.01。
基于负序功率正反馈的孤岛检测方法

技术领域
[0001] 本发明涉及分布式发电系统检测技术领域，特别涉及一种基于负序功率正反馈的孤岛检测方法。

背景技术
[0002] 并网运行的分布式电源 (distributed generation, DG) 在发生大电网故障等情况下，与大电网断开并继续向本地负载 RL 供电。独立运行的情况称为孤岛运行。孤岛检测作为微网（局部供电）运行模式转换的必要环节，受到越来越多的关注。
[0003] 孤岛检测方法大致分为三类：(1) 被动检测方法，即检测电压、频率以及功率输出等电气量变化特征，来判断孤岛状态的发生。该方法的优点是原理简单，对电能质量无影响；缺点是存在检测盲区。（2）主动检测法，即在微网中人为加入干扰信号造成扰动，通过检测某些信号的变化来检测孤岛。其特点是可减少或消除孤岛检测盲区，但其引入的有源扰动对电能质量产生负面影响，因此该类方法大都具有破坏性。（3）开关状态检测法，即利用通信联络来检测孤岛，该类方法原理简单，盲区较小，但设备花费较高，结构设计复杂，在孤岛检测中未得到广泛应用。

发明内容
[0004] 本发明的目的在于克服现有技术存在的不足，提供一种基于负序功率正反馈的孤岛检测方法，所谓孤岛运行是分布式电源（DG）在发生大电网故障的情况下，与大电网断开并继续向本地负载 RL 供电。独立运行的情况下称为孤岛运行。该检测方法在 DG 控制系统中，加入负序功率正反馈回路，当微电网并网运行转入孤岛运行时，微电网电压通过正反馈回路与逆变器输出电流相互作用，使负序功率增大，通过对负序功率的平方根 H 进行的测量、分析，即可判断微网的孤岛运行状态，其特征在于：
[0005] 首先，计算微电网中 DG 输出负序功率的平方根 H；所述的负序功率的平方根 H 的计算公式为：
$$H = \sqrt{S} = \sqrt{U^* \times I},$$

式（1）中，S 表示微电网负序功率；电压 U 表示微电网电压的负序分量，采用对称分量法测量；电流 I 为微电网中 DG 的输出电流的负序分量，采用对称分量法测量；
[0006] 其次，设定 H 的阈值 ε₁，
[0007] 然后判断是否发生孤岛，根据 H 的定值大小判断是否发生孤岛，判据如下：
[0008] （1）当 H 不超过预先设定的阈值 ε₁，则判定微电网未发生孤岛；
[0009] （2）当 H 超过预先设定的阈值 ε₁，且在超过阈值 20ms 后不小于阈值 ε₁，则判定微电网发生孤岛；
[0010] （3）当 H 超过预先设定的阈值 ε₁，且在超过阈值 20ms 后远小于阈值 ε₁，则判定孤岛未发生，出现的为伪孤岛状态。
[0011] （4）微电网并网运行时，微电网电压与频率由大电网决定，引入负序功率正反馈回路，不会影响逆变器输出电流频率，微电网控制器依然能正常运行，并且三相电相位依然为理想
条件下互差 120°，引入负序功率正反馈回路，微电网并网运行的三相电流表达式 (2) 所示，

$$\begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \sqrt{H^2 + I_m^2 - HI_m} \begin{bmatrix} \cos(\omega t + \theta_a) \\ \cos(\omega t + \theta_b) \\ \cos(\omega t + \theta_c) \end{bmatrix} \tag{2}$$

[0014] 其中，i_a、i_b 和 i_c 分别为微电网并网运行时输出的 a、b、c 三相电流；I_m 为输出电流的幅值；H 为负序功率的平方根；

[0015] 按照国家标准 GB/T 15543-1995 规定，电力系统公共耦合点 PCC 正常工作电压不平衡度允许值为 2%，短时不超过 4%，因此，正常情况下电压负序分量很小，负序功率分量也很小，正反馈回路对逆变器输出电流影响不大，电能质量不会遭受破坏；

[0016] 当微电网并网运行转为孤岛运行时，DG 仍为恒功率控制，但微电网电抗不再由大电网决定，此时控制原理如图 1 (b) 所示，) 微电网电压的表达式式 (3) 所示：

$$\begin{bmatrix} u_{oa} \\ u_{ob} \\ u_{oc} \end{bmatrix} = \begin{bmatrix} Z_{oa} i_a \\ Z_{ob} i_b \\ Z_{oc} i_c \end{bmatrix} = \begin{bmatrix} \frac{|Z_a| (I_m + H) \cos(\omega t + \phi_1)}{\sqrt{H^2 + I_m^2 - HI_m} \cos(\omega t + \theta + \phi_1)} \\ \frac{|Z_b| (I_m + H) \cos(\omega t + \phi_2)}{\sqrt{H^2 + I_m^2 - HI_m} \cos(\omega t + \theta + \phi_2)} \\ \frac{|Z_c| (I_m + H) \cos(\omega t + \phi_3)}{\sqrt{H^2 + I_m^2 - HI_m} \cos(\omega t + \theta + \phi_3)} \end{bmatrix} \tag{3}$$

[0018] 其中，u_{oa}、u_{ob}、u_{oc} 分别为微电网孤岛运行时 a、b、c 三相电压；

[0019] Z_a、Z_b、Z_c 分别为 a、b、c 三相负载等效阻抗；

[0020] L、R、C 分别为等效串联电感、电阻与电容；

[0021] ϕ 为各相等值阻抗的相位角，$\phi = \arctan \left(\frac{R}{\omega L} \right)$

[0022] 由式 (3) 可知，微电网中 DG 输出负序功率将通过正反馈回路与逆变器输出电流相互作用，使负序功率的平方根 H 增大。

[0023] 所述的负序功率的平方根 H 阈值 ε 取为 0.01。

[0024] 孤岛发生后，逆变器控制模式未发生改变，依然为恒功率控制，且无调压措施。

[0025] 本发明有益效果是利用负序功率提供了孤岛检测的方法具有以下优点：

[0026] （1）能在 IEEE Std. 1547 标准中所定义的最恶劣情况下快速有效的检测出孤岛；

[0027] （2）孤岛检测过程中，电能质量未遭受破坏，具有无盲区非破坏性的特点；

[0028] （3）检测所需时间短，能在 50ms 内迅速检测出孤岛建运行状态，为后续 DG 控制模式的平滑切换提供了强有力的保证；

[0029] （4）在不对称断路情况下，仍能进行孤岛检测；

[0030] （5）当孤岛现象发生时，该方法不会造成误判。

[0031] 该方法原理简单，适用范围广，在各种故障条件及其他恶劣情况下均能有效地检测出孤岛，且不受孤岛的影响，能够满足现场的应用要求，具有工程实际意义。

附图说明

[0032] 图 1 为应用于本发明的控制系统原理图，(a) 为微电网并网运行时，控制系统原理图；(b) 为微电网孤岛运行时，控制系统原理图。图中：$F(S)$ 为负序功率正反馈函数，i 与 i^* 分别为 DG 输出电流的实测值和参考值，U 为微电网电压的实测值，$Z(S)$ 为负载等效阻抗（每
相分别为 Zα、Zβ、Zc，K 组为逆变器的调制比，G(s) 为并网电流控制环的传递函数，\(\frac{1}{Ls + R} \) 为逆变器所连接的滤波器模型。

[0033] 图 2 为应用于本发明的主系统电路图。图中：PL+Q 为电网中本地负荷的视在功率，P+jQ 为电网中 DG 的输出视在功率，ΔP+jΔQ 为电网流向配电网的视在功率。

[0034] 图 3 为三相断路对称故障下发生孤岛的检测各特征量波形图，其中，(a) 为负序分量 H 曲线图；(b) 为电网电压波形图；(c) 为电网电压幅值曲线图；(d) 为逆变器输出电流波形图；(e) 为电网频率曲线图。

[0035] 图 4 为非对称故障下发生孤岛的检验孤岛的负序功率的平方根 H 曲线图，其中，(a) 为单相断路情况下负序分量 H 曲线图；(b) 为两相断路情况下负序分量 H 曲线图。

[0036] 图 5 为非对称故障情况下，本发明检测孤岛的各特征波形图，其中，(a) 为电网电压波形图；(b) 为负序分量 H 曲线图。

具体实施方式

[0037] 本发明提出基于负序功率正反馈的孤岛检测方法，下面结合附图和实施例对本发明予以详细说明。

[0038] 在 DG 控制系统中加入负序功率正反馈回路，如图 1(a) 和 1(b) 所示。在并网运行时，电网中 DG 处于恒功率控制状态，电网电压由大电网 DW 决定，引入负序功率正反馈回路，不会影响逆变器输出电流频率，并网控制器仍然能正常运行，并且三相电流相位依然为理想条件下互差 120°，引入负序功率正反馈回路，微电网并网运行的三相电流表达式 (2) 所示，因此，负序功率不大，负序功率正反馈回路对输出电流影响很小，电能质量不会遭受破坏。而当 DG 与电网运行转为孤岛运行时，DG 仍为恒功率控制，但微电网电压不再由大电网决定，此时控制原理如图 1(b) 所示，微电网电压的表达式如式 (3) 所示，微电网电压将通过正反馈回路与逆变器输出电流相互作用，使负序功率增大，因此，通过对负序功率的平方根 H 进行分析，即可检测出孤岛。

[0039] 本发明的具体实施过程：在一台采用 TI 公司 DSP/TMS320F240 做主控芯片的逆变电源上进行实验，系统示意图如图 2 所示。DG 的逆变电源主电路为三相逆变电路，直流输入电压为 800V，输出并网电流指令为 0.11kA，本地负载 RL 为阻性负载 (R = 2.904 Ω，L = 3.698 mH，C = 2740.2 μF)，系统通过变压器接入 220V 的市电电网 DW。

[0040] 负序功率平方根 H 值 \(\xi \) 取为 0.01，我国国家标准 GB/T 15543-1995 规定，电力系统公共耦合点 PCC 正常工作电压不平衡度允许值为 2%，瞬时值不超过 4%。在微网正常并网运行情况下，式 (2) 中负序功率平方根 H 很小，正反馈回路对逆变器输出电流、电能质量、电网电压、频率等影响不大。孤岛发生后，在未改变控制模式的前提下，由式 (3) 可知，微电网电压将通过正反馈回路与逆变器输出电流相互作用，使负序功率平方根 H 增大。通过对各种运行状态下负序功率平方根 H 大小进行分析，判断当前系统是否发生孤岛。

[0041] 图 2 所示的系统实验开始时，DG 与大电网 DW 连接，处于并网运行状态，采用恒功率控制模式，微电网电压由电网侧决定。300ms 时刻断开三相断路器，DG 与并网运行状态转为孤岛运行状态，但控制模式仍为恒功率控制，应用本发明进行检测，正反馈回路将使负序功率分量的增益 H 逐渐增加，并在 347ms 超过预设值，孤岛检测成功，如图 3(a) 所示。孤岛检
测过程中，微网的频率与电压幅值均处于国家标准允许范围内，且输出电流波形几乎未发生改变，如图 3(b)～3(e) 所示。因此本发明采用的负序功率正反馈孤岛检测方法不会对电能质量造成破坏，本方法可以实现非破坏性和无盲区检测。

[0042] 图 4 所示的为对称故障下，应用本发明的负序功率平方根 H 曲线图，其中，图 4(a) 为单相断路情况下负序功率平方根 H 曲线图；图 4(b) 为两相断路情况下负序功率平方根 H 曲线图。由图 4 可以看出，在微网与主网之间联络线上公共连接点 (point of common coupling,PCC) 处断路器出现一相或者两相断开这两种情况，与三相断路器断开情况类似，300ms 断开后，由于电网的不平衡状态，负序功率平方根 H 均能在短时间内超出阈值，且在超出阈值 20ms 后，仍然高于阈值，成功检测出孤岛。这就表明本方法能够实现非全相运行情况下的孤岛检测。

[0043] 微网并网运行时，由于电机类负荷的突然启动，可能造成电压降落的暂态现象。对于风电机组，要求具有低电压穿越技术。当电压降低到额定值的 15% 时，要求 DG 能继续运行 625ms，因此，要求孤岛检测中排除类似这种伪孤岛的干扰。图 5 所示的为伪孤岛情况下，应用本发明进行检测，各特征量波形图。图 5(a) 为电网电压波形图，如图所示，0.3s 时刻微网电压突然降低到额定值的 15%，微网仍然与系统侧连接，出现伪孤岛现象。负序功率分量的增益 H 放经历一个两周波的暂态过渡过程，之后迅速衰减，并一直保持在远低于预设值的状态，如图 5(b) 所示。由此可以判断并非真正发生孤岛，准确排除了伪孤岛的干扰。

[0044] 图 4～图 5 表明本发明所提供的基于负序功率正反馈的孤岛检测方法在电压和频率均处于正常范围的情况下，可快速有效地检测出孤岛的发生，在电网单相及两相断路情况下仍然有效，且不受伪孤岛问题的影响。能够实现非破坏性无盲区孤岛检测，原理简单，具有良好的工程实用性。

[0045] 以上所述仅为本发明的优选实施例而已，并不用于限制本发明，对于本领域的技术人员来说，本发明可以有各种更改和变化。凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图 3
图4

图5