

(51) Int.Cl.: **A 61 K 39/00 (2006.01)** **C 07 K 16/46 (2006.01)** **A 61 P 35/00 (2006.01)** **C 07 K 16/28 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2024-10-21**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2024-08-07**

(86) Europæisk ansøgning nr.: **17752505.2**

(86) Europæisk indleveringsdag: **2017-06-14**

(87) Den europæiske ansøgnings publiceringsdag: **2019-04-17**

(86) International ansøgning nr.: **US2017037555**

(87) Internationalt publikationsnr.: **WO2017218707**

(30) Prioritet: **2016-06-14 US 201662350145 P** **2016-06-22 US 201662353511 P**
2016-11-10 US 201662420500 P

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV**
MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(73) Patenthaver: **Xencor, Inc., 465 North Halstead Street , Suite 200, Pasadena, CA 91107, USA**

(72) Opfinder: **BERNETT, Matthew, c/o Xencor Inc., 111 West Lemon Avenue, Monrovia, CA 91016, USA**
MOORE, Gregory, c/o Xencor Inc., 111 West Lemon Avenue, Monrovia, CA 91016, USA
DESJARLAIS, John, c/o Xencor Inc., 111 West Lemon Avenue, Monrovia, CA 91016, USA
HEDVAT, Michael, c/o Xencor Inc., 111 West Lemon Avenue, Monrovia, CA 91016, USA
BONZON, Christine, c/o Xencor Inc., 111 West Lemon Avenue, Monrovia, CA 91016, USA
NISTHAL, Alex, c/o Xencor Inc., 111 West Lemon Avenue, Monrovia, CA 91016, USA
MUCHHAL, Umesh, S., 252 May Ave, Monrovia, CA 91016, USA

(74) Fuldmægtig i Danmark: **Novagraaf Brevets, Bâtiment O2, 2 rue Sarah Bernhardt CS90017, F-92665 Asnières-sur-Seine cedex, Frankrig**

(54) Benævnelse: **BISPECIFIKKE CHECKPOINT-HÆMMER-ANTISTOFFER**

(56) Fremdragne publikationer:
WO-A1-2014/209804
WO-A1-2015/103072
WO-A1-2015/149077
P. A. OTT ET AL: "CTLA-4 and PD-1/PD-L1 Blockade: New Immunotherapeutic Modalities with Durable Clinical Benefit in Melanoma Patients", CLINICAL CANCER RESEARCH, vol. 19, no. 19, 1 October 2013 (2013-10-01), pages 5300 - 5309, XP055200528, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-13-0143
STEFANI SPRANGER ET AL: "Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment", JOURNAL FOR IMMUNOTHERAPY OF CANCER, BIOMED CENTRAL LTD, LONDON, UK, vol. 2, no. 1, 18 February 2014 (2014-02-18), pages 3, XP021177250, ISSN: 2051-1426, DOI: 10.1186/2051-1426-2-

3

MATTHEW J BERNETT ET AL: "Multiple Bispecific Checkpoint Combinations Promote T cell activation", 12 November 2016 (2016-11-12), XP055410926, Retrieved from the Internet
<URL:http://files.shareholder.com/downloads/AMDA-2B2V8N/0x0x916283/67AE1A8B-40E8-4316-9F79-384D06B2C395/XNCR_SITC_2016_PD1xCTLA4_Poster126_12Nov2016.pdf> [retrieved on 20170928]

MICHAEL HED ET AL: "Dual Blockade of PD-1 and CTLA-4 with Bispecific Antibodies Promotes Human T cell Activation and Proliferation", 11 November 2016 (2016-11-11), XP055410925, Retrieved from the Internet
<URL:http://files.shareholder.com/downloads/AMDA-2B2V8N/0x0x916284/D8084990-61EC-4DFE-8B76-60CF58B8C06F/CPI_bispecifics.pdf> [retrieved on 20170928]

GURUNADHR CHICHILI ET AL: "Co-targeting of PD-1 and CTLA-4 Inhibitory Pathways with Bispecific DART and TRIDENT(TM) Molecules", 4 April 2017 (2017-04-04), XP055411290, Retrieved from the Internet
<URL:http://ir.macrogenics.com/common/download/download.cfm?companyid=AMDA-278VRP&fileid=935572&filekey=8CC86417-40BA-41C0-935D-EF1B7DB0B5BB&filename=AACR_2017_-_Co-targeting_PD-1_and_CTL4_Inhibitory_Pathways_with_DART_and_TRIDENT_Molecules.pdf> [retrieved on 20170929]

DESCRIPTION

Description

CROSS REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0001] Checkpoint receptors such as CTLA-4, PD-1 (programmed cell death 1), TIM-3 (T cell immunoglobulin and mucin domain 3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T cell immunoreceptor with Ig and ITIM domains), and others, inhibit the activation, proliferation, and/or effector activities of T cells and other cell types. Guided by the hypothesis that checkpoint receptors suppress the endogenous T cell response against tumor cells, preclinical and clinical studies of anti-CTLA4 and anti-PD1 antibodies, including nivolumab, pembrolizumab, ipilimumab, and tremelimumab, have indeed demonstrated that checkpoint blockade results in impressive anti-tumor responses, stimulating endogenous T cells to attack tumor cells, leading to long-term cancer remissions in a fraction of patients with a variety of malignancies. Unfortunately, only a subset of patients responds to these therapies, with response rates generally ranging from 10 to 30% and sometimes higher for each monotherapy, depending on the indication and other factors. Therapeutic combination of these agents, for example ipilimumab plus nivolumab, leads to even higher response rates, approaching 60% in some cases. Preclinical studies have shown additional synergies between anti-PD-1 antibodies and/or anti-CTLA-4 antibodies with blockade of more recently identified checkpoint receptors, including LAG-3, TIM-3, BTLA and TIGIT. While the potential of multiple checkpoint blockade is very promising, combination therapy with such agents is expected to carry a high financial burden. Moreover, autoimmune toxicities of combination therapies, for example nivolumab plus ipilimumab, are significantly elevated compared to monotherapy, causing many patients to halt the therapy.

[0002] A number of studies (Ahmadzadeh et al., Blood 114:1537 (2009), Matsuzaki et al., PNAS 107(17):7875-7880 (2010), Fourcade et al., Cancer Res. 72(4):887-896 (2012) and Gros et al., J. Clinical Invest. 124(5):2246 (2014)) examining tumor-infiltrating lymphocytes (TILs) have shown that TILs commonly express multiple checkpoint receptors. Moreover, it is likely that TILs that express multiple checkpoints are in fact the most tumor-reactive. In contrast, non-tumor reactive T cells in the periphery are more likely to express a single checkpoint. Checkpoint blockade with monospecific full-length antibodies is likely nondiscriminatory with regards to de-repression of tumor-reactive TILs versus autoantigen-reactive single expressing T cells that are assumed to contribute to autoimmune toxicities.

WO2014/209804 describes a bispecific single chain antibody for CTLA-4 and PD-1. WO2015/103072 describes a bispecific antibody, namely an anti CTLA-4/PD-1 Fabs-in-tandem immunoglobulin. Ott et al. (DOI: 10.1158/1078-0432.CCR-13-0143) describes a CTLA-4 and PD-1/PD-L1 blockade as a new immunotherapeutic modality in melanoma patients. Spranger et al. (DOI: 10.1186/2051-1426-2-3) describes that mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. Any reference to a method of treatment on the human or animal body is to be interpreted as substances or compositions for use in such treatments.

I. BRIEF SUMMARY OF THE INVENTION

[0003] The invention is a heterodimeric antibody consisting of:

1. a) a first monomer having the amino acid sequence of SEQ ID NO: 23576;
2. b) a second monomer having the amino acid sequence of SEQ ID NO: 23581; and
3. c) a third monomer having the amino acid sequence of SEQ ID NO: 23591.

II. BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The invention is as defined in the claims. Any of the following Figures that do not fall within the scope of the claims do not form part of the invention and are provided for comparative purposes only.

Figure 1A to I depict several formats of the antibodies described. The first is the "bottle" opener" format, with a first and a second anti-antigen binding domain. Additionally, mAb-Fv, mAb-scFv, Central-scFv, Central-Fv, one armed central-scFv, one scFv-mAb, scFv-mAb and a dual scFv format are all shown. For all of the scFv domains depicted, they can be either N-to C-terminus variable heavy-(optional linker)-variable light, or the opposite. In addition, for the one armed scFv-mAb, the scFv can be attached either to the N-terminus of a heavy chain monomer or to the N-terminus of the light chain.

Figure 2 (Fig. 2A, 2B, 2C and 2D) depicts the antigen sequences for a number of antigens of use in the disclosure, including both human and cynomolgus monkey in many cases, to facilitate the development of antigen binding domains that bind to both for ease of clinical development.

Figure 3A-3F depict useful pairs of heterodimerization variant sets (including skew and pl variants). On Figure 3E, there are variants for which there are no corresponding "monomer 2" variants; these are pl variants which can be used alone on either monomer, or included on the Fab side of a bottle opener, for example, and an appropriate charged scFv linker can be used

on the second monomer that utilizes a scFv as the second antigen binding domain. Suitable charged linkers are shown in Figure 7.

Figure 4 depict a list of isosteric variant antibody constant regions and their respective substitutions. $\text{pI}_{-}(-)$ indicates lower pI variants, while $\text{pI}_{+}(+)$ indicates higher pI variants. These can be optionally and independently combined with other heterodimerization variants of the disclosure (and other variant types as well, as outlined herein).

Figure 5 depict useful ablation variants that ablate Fc γ R binding (sometimes referred to as "knock outs" or "KO" variants). Generally, ablation variants are found on both monomers, although in some cases they may be on only one monomer.

Figure 6 show two particularly useful examples, that can be used for either the format of Figure 1A or Figure 1F. For the Figure 1A format, the "non-Fv" components of this embodiment are shown in Figure 37A, although the other formats of can be used as well (and that of Figure 38 as well).

Figure 7 depicts a number of charged scFv linkers that find use in increasing or decreasing the pI of heterodimeric antibodies that utilize one or more scFv as a component. The (+H) positive linker finds particular use herein, particularly with anti-CD3 vI and vh sequences shown herein. A single prior art scFv linker with a single charge is referenced as "Whitlow", from Whitlow et al., Protein Engineering 6(8):989-995 (1993). It should be noted that this linker was used for reducing aggregation and enhancing proteolytic stability in scFvs.

Figure 8 depicts a list of engineered heterodimer-skewing Fc variants with heterodimer yields (determined by HPLC-CIEX) and thermal stabilities (determined by DSC). Not determined thermal stability is denoted by "n.d.".

Figure 9A to E depict a select number of PD-1 ABDs, with additional anti-PD-1 ABDs being listed as SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146. The CDRs are underlined, the scFv linker is double underlined (in the sequences, the scFv linker is a positively charged scFv (GKPGS)₄ linker (SEQ ID NO: 37755), although as will be appreciated by those in the art, this linker can be replaced by other linkers, including uncharged or negatively charged linkers, some of which are depicted in Figure 7), and the slashes indicate the border(s) of the variable domains. In addition, the naming convention illustrates the orientation of the scFv from N- to C-terminus. That is, "H1.279 _L1.194" shows that the orientation is vh -scFv linker- vI (from N- to C-terminus, with optional domain linkers on one or both sides, depending on the format used), although these sequences may also be used in the opposite orientation, (from N- to C-terminus) vI -linker- vh . Similarly, "L1.194_H1.279" shows that the orientation is vI -scFv linker- vh (from N- to C-terminus, again with optional domain linkers), with the opposite orientation also included within the invention. As noted herein and is true for every sequence herein containing CDRs, the exact identification of the CDR locations may be slightly different depending on the numbering used as is shown in Table 1, and thus included herein are not only the CDRs that are underlined but also CDRs included within the vh and vI domains using other numbering systems. Furthermore, as for all the sequences in the Figures, these vh and vI sequences can

be used either in a scFv format or in a Fab format.

Figure 10A to PP depict a number of CTLA-4 ABDs, with additional anti-CTLA-4 ABDs being listed as SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416. The CDRs are underlined, the scFv linker is double underlined (in the sequences, the scFv linker is a positively charged scFv (GKPGS)₄ linker (SEQ ID NO: 37755), although as will be appreciated by those in the art, this linker can be replaced by other linkers, including uncharged or negatively charged linkers, some of which are depicted in Figure 7), and the slashes indicate the border(s) of the variable domains. As above, the naming convention illustrates the orientation of the scFv from N- to C-terminus; in the sequences listed in this figure, they are all oriented as vh-scFv linker-vl (from N- to C-terminus), although these sequences may also be used in the opposite orientation, (from N- to C-terminus) vl-linker-vh; additionally, some of the sequences in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416 are in the opposite orientation. As noted herein and is true for every sequence herein containing CDRs, the exact identification of the CDR locations may be slightly different depending on the numbering used as is shown in Table 1, and thus included herein are not only the CDRs that are underlined but also CDRs included within the vh and vl domains using other numbering systems. Furthermore, as for all the sequences in the Figures, these vh and vl sequences can be used either in a scFv format or in a Fab format. In particular, many of the the figures include the XENP identifier for both the scFv format as well as the Fab format; see for example Figure 10A, that shows that XENP19235 is the molecule using the Fab format and XENP19769 is the scFv molecule.

Figure 11A to N depict a number of LAG-3 ABDs, with additional anti-LAG-3 ABDs being listed as SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002. The CDRs are underlined, the scFv linker is double underlined (in the sequences, the scFv linker is a positively charged scFv (GKPGS)₄ linker, although as will be appreciated by those in the art, this linker can be replaced by other linkers, including uncharged or negatively charged linkers, some of which are depicted in Figure 7), and the slashes indicate the border(s) of the variable domains. As above, the naming convention illustrates the orientation of the scFv from N- to C-terminus; in the sequences listed in this figure, they are all oriented as vh-scFv linker-vl (from N- to C-terminus), although these sequences may also be used in the opposite orientation, (from N- to C-terminus) vl-linker-vh; additionally, some of the sequences in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002 are in the opposite orientation. As noted herein and is true for every sequence herein containing CDRs, the exact identification of the CDR locations may be slightly different depending on the numbering used as is shown in Table 1, and thus included herein are not only the CDRs that are underlined but also CDRs included within the vh and vl domains using other numbering systems. Furthermore, as for all the sequences in the Figures, these vh and vl sequences can be used either in a scFv format or in a Fab format.

Figure 12A to C depict a number of BTLA ABDs, with additional anti-BTLA ABDs being listed as SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738. The CDRs are underlined, the scFv linker is double underlined (in the sequences, the scFv linker is a positively charged scFv

(GKPGS)₄ linker, although as will be appreciated by those in the art, this linker can be replaced by other linkers, including uncharged or negatively charged linkers, some of which are depicted in Figure 7), and the slashes indicate the border(s) of the variable domains. As above, the naming convention illustrates the orientation of the scFv from N- to C-terminus; in the sequences listed in this figure, they are all oriented as vh-scFv linker-vl (from N- to C-terminus), although these sequences may also be used in the opposite orientation, (from N- to C-terminus) vl-linker-vh; additionally, some of the sequences in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738 are in the opposite orientation. As noted herein and is true for every sequence herein containing CDRs, the exact identification of the CDR locations may be slightly different depending on the numbering used as is shown in Table 1, and thus included herein are not only the CDRs that are underlined but also CDRs included within the vh and vl domains using other numbering systems. Furthermore, as for all the sequences in the Figures, these vh and vl sequences can be used either in a scFv format or in a Fab format.

Figure 13A to I depict a number of TIM-3 ABDs, with additional anti-TIM-3 ABDs being listed as SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706. The CDRs are underlined, the scFv linker is double underlined (in the sequences, the scFv linker is a positively charged scFv (GKPGS)₄ linker, although as will be appreciated by those in the art, this linker can be replaced by other linkers, including uncharged or negatively charged linkers, some of which are depicted in Figure 7), and the slashes indicate the border(s) of the variable domains. As above, the naming convention illustrates the orientation of the scFv from N- to C-terminus; in the sequences listed in this figure, they are all oriented as vh-scFv linker-vl (from N- to C-terminus), although these sequences may also be used in the opposite orientation, (from N- to C-terminus) vl-linker-vh; additionally, some of the sequences in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706 are in the opposite orientation. As noted herein and is true for every sequence herein containing CDRs, the exact identification of the CDR locations may be slightly different depending on the numbering used as is shown in Table 1, and thus included herein are not only the CDRs that are underlined but also CDRs included within the vh and vl domains using other numbering systems. Furthermore, as for all the sequences in the Figures, these vh and vl sequences can be used either in a scFv format or in a Fab format.

Figure 14A-I depicts the amino acid sequences of specific anti-CTLA-4 X anti-PD-1 antibodies in the bottle opener format (Fab-scFv-Fc). The antibodies are named using the Fab variable region first and the scFv variable region second, separated by a dash, followed by the chain designation (Fab-Fc heavy chain, scFv-Fc heavy chain or light chain). CDRs are underlined and slashes indicate the border(s) of the variable regions. The scFv domain has different orientations (N- to C-terminus) of either vh-linker-vl or vl-linker-vh as indicated, although this can be reversed. In addition, each sequence outlined herein can include or exclude the M428L/N434S variants in one or preferably both Fc domains, which results in longer half-life in serum.

Figure 15A-I depicts the amino acid sequences of specific anti-LAG-3 X anti-PD-1 Fab-scFv-Fc bispecific antibodies. The antibodies are named using the Fab variable region first and the scFv variable region second, separated by a dash, followed by the chain designation (Fab-Fc

heavy chain, scFv-Fc heavy chain or light chain). CDRs are underlined and slashes indicate the border(s) of the variable regions. The scFv domains have the orientation (N- to C-terminus) *vl-linker-vh*, although this can be reversed. In addition, each sequence outlined herein can include or exclude the M428L/N434S variants in one or preferably both Fc domains, which results in longer half-life in serum.

Figure 16 depicts the amino acid sequences of specific anti-BTLA X anti-PD-1 Fab-scFv-Fc bispecific antibodies. The antibodies are named using the Fab variable region first and the scFv variable region second, separated by a dash, followed by the chain designation (Fab-Fc heavy chain, scFv-Fc heavy chain or light chain). CDRs are underlined and slashes indicate the border(s) of the variable regions. The scFv domains have the orientation (N- to C-terminus) *vl-linker-vh*, although this can be reversed. In addition, each sequence outlined herein can include or exclude the M428L/N434S variants in one or preferably both Fc domains, which results in longer half-life in serum.

Figure 17 depicts the amino acid sequences of specific anti-LAG-3 X anti-CTLA-4 Fab-scFv-Fc bispecific antibodies. The antibodies are named using the Fab variable region first and the scFv variable region second, separated by a dash, followed by the chain designation (Fab-Fc heavy chain, scFv-Fc heavy chain or light chain). CDRs are underlined and slashes indicate the border(s) of the variable regions. The scFv domains have the orientation (N- to C-terminus) *vh-linker-vl*, although this can be reversed. In addition, each sequence outlined herein can include or exclude the M428L/N434S variants in one or preferably both Fc domains, which results in longer half-life in serum.

Figure 18 shows the results of some anti-LAG-3 hybridoma screening. 1 μ g of human LAG-3-hlg in 10 μ L was mixed with 50 μ L of hybridoma supernatant (diluted 2-fold, 8 times in RPMI media with 10% FBS) for 20 minutes at room temperature. 40 μ L of Daudi or Ramos cells (which endogenously express MHC-II) were added and incubated at 4°C for 30 minutes. The cells were then washed and incubated with anti-human-Fc-Alexa647 secondary antibody for 30 minutes. Cells were then washed and analyzed by FACS for Alexa647.

Figure 19A and B depict cytokine release assays (A:IL-2, B: IFN γ) after SEB stimulation of human PBMCs and treatment with an anti-CTLA-4 X anti-PD-1 bispecific antibody.

Figure 20A- C depict CD45+ events and CD8+ events on Day 14 after human PBMCs were engrafted into NSG mice on Day 0 followed by dosing with the indicated test articles on Day 1.

Figure 21A and B depicts T cell binding in an SEB-stimulated PBMC assay by chimeric antibodies generated from anti-TIM-3 hybridomas.

Figure 22 depicts some anti-TIM-3 antigen binding domain engineering data from three experiments. This depicts XENP code for bivalent embodiments, the derivative clone, the designations of the *vh* and *vl* engineered domains, the KD binding constant, association constant and dissociation constant against human TIM-3 as measured by Octet.

Figure 23A to N depicts some anti-PD-1 antigen binding domain engineering data. This depicts the XENP code for the bivalent and scFv embodiments, the designation of the *vh* and *vl*

engineered domains, the scFv orientation (N- to C-terminal), the KD binding constant against human PD-1 as measured by Octet, and the Tm of the scFv.

Figure 24A to G depicts the results of some anti-CTLA-4 Fab screening. This depicts the XENP code for the Fab and scFv examples, the designation of the vh and vl engineered domains, the KD binding constant against human and cyno CTLA-4 as measured by Octet, and the Tm of the scFv and Fab. Additionally, the number of sequence 9-mers that were an exact match to at least one human VH or VL germline are depicted as a measure of humanness for the variable regions of both Fabs and scFvs.

Figure 25A and B depict a mixed lymphocyte reaction looking enhancement of IL-2 release by nivolumab (anti-PD-1 monoclonal antibody, marketed as Opdivo[®]) alone, ipilimumab alone (anti-CTLA-4 monoclonal antibody, marketed as Yervoy[®]), a prototype anti-CTLA-4 x anti-PD-1 bispecific based on the nivolumab and ipilimumab arms, and a "one-armed" combination control.

Figure 26 depicts mixed lymphocyte reaction looking at enhancement of IL-2 release by anti-CTLA-4 x anti-PD-1 bispecific antibodies with variant anti-CTLA-4 Fab arms and variant anti-PD-1 scFv arms, as well as nivolumab alone, ipilimumab alone, and a prototype anti-CTLA-4 x anti-PD-1 bispecific based on the nivolumab and ipilimumab arms as controls.

Figure 27 shows that anti-CTLA-4 x anti-PD-1 bispecifics enhance engraftment (as measured by human CD45 counts) in human PBMC-engrafted NSG mice. Enhancement is greater than that seen with nivolumab (XENP16432) alone (dashed line).

Figure 28 depicts the correlation between body weight and CD45 cell count in Graft-versus-Host disease, demonstrating that CD45 cell levels are predictive of disease.

Figure 29 depicts the correlation between CD45 cell count and IFNy release in the study depicted in Figure 27.

Figure 30 shows that anti-CTLA-4 x anti-PD-1 bispecifics enhance engraftment (as measured by human CD45 counts) in human PBMC-engrafted NSG mice. Enhancement is greater than that seen with nivolumab (XENP16432) alone (dashed line).

Figure 31 depicts the correlation between CD45 cell count and IFNy release in the study depicted in Figure 30.

Figure 32 shows the comparison of test article effects between the studies depicted in Figures 27 and 30 demonstrating the consistent superiority of anti-PD-1 x anti-CTLA-4 bispecific checkpoint antibodies over nivolumab alone.

Figure 33A and B show the results of mixed lymphocyte reactions to evaluate anti-CTLA-4 x anti-PD-1, anti-LAG-3 x anti-PD-1, and anti-LAG-3 x anti-CTLA-4 bispecifics. Analyte levels were normalized to those induced by nivolumab alone (values greater than one represent an enhancement relative to nivolumab).

Figure 34 shows SEB reactions to evaluate anti-LAG-3 x anti-CTLA-4 bispecifics. The anti-LAG-3 x anti-CTLA-4 bispecific itself enhances the IL-2 response relative to control, although it is inferior to nivolumab alone. However, the anti-LAG-3 x anti-CTLA-4 bispecific combined with nivolumab leads to significantly higher IL-2 response than either alone.

Figure 35 Anti-CTLA-4 x anti-PD-1, anti-LAG-3 x anti-PD-1, anti-BTLA x anti-PD-1, and anti-LAG-3 x anti-CTLA-4 bispecifics enhance engraftment (as measured by human CD45 counts) in human PBMC-engrafted NSG mice. Enhancement is greater than that seen with nivolumab (XENP 16432) alone. Also, the anti-LAG-3 x anti-CTLA-4 bispecific combines with nivolumab to yield the highest engraftment levels.

Figure 36A and B show that the anti-BTLA x anti-PD-1 bispecifics require disruption of the HVEM/BTLA interaction to possess equivalent de-repressive activity as nivolumab.

Figure 37A -E shows the sequences of several useful bottle opener format backbones based on human IgG1, without the Fv sequences (e.g. the scFv and the vh and vl for the Fab side). Bottle opener backbone 1 is based on human IgG1 (356E/358M allotype), and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains. Bottle opener backbone 2 is based on human IgG1 (356E/358M allotype), and includes different skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains. Bottle opener backbone 3 is based on human IgG1 (356E/358M allotype), and includes different skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains. Bottle opener backbone 4 is based on human IgG1 (356E/358M allotype), and includes different skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains. Bottle opener backbone 5 is based on human IgG1 (356D/358L allotype), and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains. Bottle opener backbone 6 is based on human IgG1 (356E/358M allotype), and includes the S364K/E357Q : L368D/K370S skew variants, N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains, as well as an N297A variant on both chains. Bottle opener backbone 7 is identical to 6 except the mutation is N297S. Alternative formats for bottle opener backbones 6 and 7 can exclude the ablation variants E233P/L234V/L235A/G236del/S267K in both chains. Backbone 8 is based on human IgG4, and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains, as well as a S228P (EU numbering, this is S241P in Kabat) variant on both chains that ablates Fab arm exchange as is known in the art. Alternative formats for bottle opener backbone 8 can exclude the ablation variants E233P/L234V/L235A/G236del/S267K in both chains Backbone 9 is based on human IgG2, and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side. Backbone 10 is based on

human IgG2, and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side as well as a S267K variant on both chains.

[0005] As will be appreciated by those in the art and outlined below, these sequences can be used with any vh and vl pairs outlined herein, with one monomer including a scFv (optionally including a charged scFv linker) and the other monomer including the Fab sequences (e.g. a vh attached to the "Fab side heavy chain" and a vl attached to the "constant light chain"). That is, any Fv sequences outlined herein for anti-CTLA-4, anti-PD-1, anti-LAG-3, anti-TIM-3, anti-TIGIT and anti-BTLA, whether as scFv (again, optionally with charged scFv linkers) or as Fabs, can be incorporated into these Figure 37 backbones in any combination. The constant light chain depicted in Figure 37A can be used for all of the constructs in the figure, although the kappa constant light chain can also be substituted.

[0006] It should be noted that these bottle opener backbones find use in the Central-scFv format of Figure 1F, where an additional, second Fab (vh-CH1 and vl-constant light) with the same antigen binding as the first Fab is added to the N-terminus of the scFv on the "bottle opener side".

[0007] Included within each of these backbones are sequences that are 90, 95, 98 and 99% identical (as defined herein) to the recited sequences, and/or contain from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 additional amino acid substitutions (as compared to the "parent" of the Figure, which, as will be appreciated by those in the art, already contain a number of amino acid modifications as compared to the parental human IgG1 (or IgG2 or IgG4, depending on the backbone). That is, the recited backbones may contain additional amino acid modifications (generally amino acid substitutions) in addition to the skew, pl and ablation variants contained within the backbones of this figure.

[0008] Figure 38A to D shows the sequences of a mAb-scFv backbone of use in the disclosure, to which the Fv sequences described are added. mAb-scFv backbone 1 is based on human IgG1 (356E/358M allotype), and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains. Backbone 2 is based on human IgG1 (356D/358L allotype), and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains. Backbone 3 is based on human IgG1 (356E/358M allotype), and includes the S364K/E357Q : L368D/K370S skew variants, N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains, as well as an N297A variant on both chains. Backbone 4 is identical to 3 except the mutation is N297S. Alternative formats for mAb-scFv backbones 3 and 4 can exclude the ablation variants E233P/L234V/L235A/G236del/S267K in both chains. Backbone 5 is based on human IgG4,

and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side and the E233P/L234V/L235A/G236del/S267K ablation variants on both chains, as well as a S228P (EU numbering, this is S241P in Kabat) variant on both chains that ablates Fab arm exchange as is known in the art. Backbone 6 is based on human IgG2, and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side. Backbone 7 is based on human IgG2, and includes the S364K/E357Q : L368D/K370S skew variants, the N208D/Q295E/N384D/Q418E/N421D pl variants on the Fab side as well as a S267K variant on both chains.

[0009] As will be appreciated by those in the art and outlined below, these sequences can be used with any vh and vl pairs outlined herein, with one monomer including both a Fab and an scFv (optionally including a charged scFv linker) and the other monomer including the Fab sequence (e.g. a vh attached to the "Fab side heavy chain" and a vl attached to the "constant light chain"). That is, any Fv sequences outlined herein for anti-CTLA-4, anti-PD-1, anti-LAG-3, anti-TIM-3, anti-TIGIT and anti-BTLA, whether as scFv (again, optionally with charged scFv linkers) or as Fabs, can be incorporated into this Figure 38 backbone in any combination. The monomer 1 side is the Fab-scFv pl negative side, and includes the heterodimerization variants L368D/K370S, the isosteric pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, (all relative to IgG1). The monomer 2 side is the scFv pl positive side, and includes the heterodimerization variants S364K/E357Q. However, other skew variant pairs can be substituted, particularly [S364K/E357Q : L368D/K370S]; [L368D/K370S : S364K]; [L368E/K370S : S364K]; [T411T/E360E/Q362E : D401K]; [L368D/K370S : S364K/E357L], [K370S : S364K/E357Q], [T366S/L368A/Y407V : T366W] and [T366S/L368A/Y407V/Y394C : T366W/S354C].

[0010] The constant light chain depicted in Figure 38A can be used for all of the constructs in the figure, although the kappa constant light chain can also be substituted.

[0011] It should be noted that these mAb-scFv backbones find use in the both the mAb-Fv format of Figure 1H (where one monomer comprises a vl at the C-terminus and the other a vh at the C-terminus) as well as the scFv-mAb format of Figure 1E (with a scFv domain added to the C-terminus of one of the monomers).

[0012] Included within each of these backbones are sequences that are 90, 95, 98 and 99% identical (as defined herein) to the recited sequences, and/or contain from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 additional amino acid substitutions (as compared to the "parent" of the Figure, which, as will be appreciated by those in the art, already contain a number of amino acid modifications as compared to the parental human IgG1 (or IgG2 or IgG4, depending on the backbone). That is, the recited backbones may contain additional amino acid modifications (generally amino acid substitutions) in addition to the skew, pl and ablation variants contained within the backbones of this figure.

Figure 39A and B depicts a matrix of possible combinations for the bispecific checkpoint

antibodies. In Figure 39A, the combinations are not bound by format, and any format of Figure 1 can be used. An "A" in a box means that the CDRs from the first ABD (listed on the X axis) can be combined with the CDRs of the second ABD (listed on Y axis). A "B" in the box means the vh and vl chains from the first ABD can be combined with the vh and vl chains from the second ABD. A "C" in the box means that the CDRs from the first ABD can be combined with the vh and vl chains from the second ABD. A "D" in the box means that the vh and vl chains from the first ABD can be combined with the CDRs from the second ABD. An "E" in the box means that the PD-1 ABD is selected from the group of 1G6_H1.279_L1.194; 1G6_H1.280_L1.224; 1G6_L1.194_H1.279; 1G6_L1.210_H1.288; and 2E9_H1L1. An "F" in the box means that the CTLA-4 ABD is selected from the group of [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; 0[CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67; and [CTLA-4]_H3_L0.74. A "G" in the box means that the TIM-3 ABD is selected from the group of 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0; and 7C2_H0L0. An "H" in the box means that the LAG-3 ABD is selected from the group of identifiers 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1. An "I" in box means that A "J" in the box means that the BTLA ABD is selected from the group 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1. Figure 39B is identical to Figure 39A except that Figure 39B is specific to the bottle opener format. In B, when the first ABD binds PD-1, the first ABD is the scFv monomer, and the other ABD (CTLA-4, LAG-3, TIGIT, TIM-3 and BTLA) are in the Fab monomer. In B, when the first ABD binds CTLA-4, it is in the scFv monomer (except when combined with PD-1, when it is the Fab side), with the other ABD (CTLA-4, LAG-3, TIGIT, TIM-3 and BTLA) are in the Fab monomer.

Figure 40 depicts a matrix of possible bottle opener format combinations. A "Q" in the box means that the first ABD domain (again, listed on the X axis) is the scFv and the second ABD (again, listed on the Y axis) is the Fab side. An "R" in the box means that the first ABD is the Fab side and the second ABD is the scFv. An "S" in the box means that the first ABD is anti-PD-1 and is the scFv side. A "T" in the box means that the first ABD is anti-CTLA-4 and is the scFv side. A "U" in the box means that the first ABD is anti-TIM-3 and is the scFv side. A "V" in

the box means that the first ABD is anti LAG-3 and is the scFv side. A "W" in the box means that the first ABD is anti TIGIT and is the scFv side. An "X" in the box means that the first ABD is anti-BTLA and is the scFv side. In addition, each combination outlined in Figure 39 can use the CDRs, scFvs and vh and vl combinations of Figure 38. In addition, particular examples of the bottle opener backbones of Figure 39 are the sequences of Figure 36.

Figure 41A and B depicts a schematic associated with the benefit that a bispecific checkpoint antibody can provide over combination therapies using two different antibodies or drugs.

Figure 42 depicts a similar schematic, showing that because tumor TILs co-express multiple checkpoints, a bivalent binding increases avidity, enhancing anti-tumor activity and avoiding peripheral toxicity.

Figure 43 shows that bispecific checkpoint antibodies described herein (e.g. anti-LAG-3 x anti-CTLA-4) can be combined with other monospecific checkpoint antibodies (e.g. nivolumab, pembrolizumab).

Figure 44 shows that PD-1 and CTLA-4 are coexpressed in a variety of tumor types, including bladder, breast, colon, prostate, lung, melanoma and ovarian cancer.

Figure 45A - C depicts a comparison of the enhancement of IL-2 B) by anti-PD-1 bivalent and anti-CTLA-4 x anti-PD-1 and C) and one-arm anti-PD-1 + one-arm anti-CTLA-4 and anti-CTLA-4 x anti-PD-1 in an SEB-stimulated PBMC assay as well as C) a control experiment without SEB stimulation.

Figure 46A and B depicts blocking of PD-1 to ligands PD-L1 and PD-L2 by an exemplary anti-CTLA-4 x anti-PD-1 bispecific in comparison to one-arm anti-PD-1 and one-arm anti-CTLA-4 antibodies.

Figure 47 depicts T cell binding in an SEB-stimulated PBMC assay by an exemplary anti-CTLA-4 x anti-PD-1 bispecific antibody.

Figure 48 shows that anti-CTLA-4 x anti-PD-1 bispecifics enhance engraftment (as measured by human CD45 counts) in human PBMC-engrafted NSG mice. Enhancement is greater than that seen with nivolumab (XENP16432) alone.

Figure 49 shows that the anti-BTLA x anti-PD-1 bispecific candidates bind more avidly to T cells compared to "one-armed" controls in an SEB-stimulated PBMC assay.

Figure 50A and B show that anti-BTLA x anti-PD-1 chimeric bispecific promotes IL-2 secretion from SEB stimulated PBMCs. PBMCs were stimulated with 10 ng/mL SEB for 3 days with indicated test articles. Cell supernatants were collected and assayed with MSD for indicated analyte. A: 20 µg/mL test article; B 5 µg/mL test article.

Figure 51A and B show that anti-BTLA x anti-PD-1 chimeric bispecific promotes IFNy secretion from SEB stimulated PBMCs. PBMCs were stimulated with 10 ng/mL SEB for 3 days with indicated test articles. Cell supernatants were collected and assayed with MSD for indicated analyte. A: 20 µg/mL test article; B 5 µg/mL test article.

Figure 52A and B shows that anti-BTLA x anti-PD-1 bispecific antibodies (chimeric and with humanized/optimized anti-BTLA Fab arms) promotes IL-2 secretion and IFN- γ from SEB stimulated PBMCs. Both panels were PBMCs stimulated with 10 ng/mL SEB for 3 days with indicated 20 μ g/mL test articles. Cell supernatants were collected 72 hours later and assayed for indicated analyte.

Figure 53A - F shows the time course (Days 10, 14 and 22) enhancement in CD45 cell counts and IFN γ secretion by an exemplary anti-BTLA x anti-PD-1 bispecific antibody in a GVHD study.

Figure 54 depicts some 9C6 anti-BTLA antigen binding domain engineering data. This depicts XENP code for bivalent examples , the designations of the vh and vl engineered domains, and the KD binding constant against human BTLA as measured by Octet.

Figure 55A-E depicts some 2A11 anti-LAG-3 antigen binding domain engineering data. This depicts XENP code for Fab examples , the designations of the vh and vl engineered domains, the KD binding constant against human LAG-3 as measured by Octet and the Tm of the Fab.

Figure 56A-K depicts some 7G8 anti-LAG-3 antigen binding domain engineering data. This depicts XENP code for Fab examples , the designations of the vh and vl engineered domains, the KD binding constant against human LAG-3 as measured by Octet and the Tm of the Fab.

Figure 57A and B depicts the Kds for anti-LAG-3 X anti-CTLA-4 bispecific, heterodimeric bottle opener formats based on either optimized 2A11 or 7G8 anti-LAG-3 Fab arms as measured by Octet.

Figure 58 shows that anti-LAG-3 (7G8) x anti-CTLA-4 and anti-LAG-3 (2A11) x anti-CTLA-4 bispecifics bind more avidly than one-armed anti-LAG-3 controls. PBMCs were stimulated with 100 ng/mL SEB for 3 days. Cells were then treated with the indicated test articles for 30 min at 4C degrees and washed twice. Cells were then treated with an anti-CD3-FITC and anti-human-Fc-APC antibody. Cells were then washed twice and analyzed by flow cytometry.

Figure 59A and B shows that 7G8 based anti-LAG-3 x anti-CTLA-4 bispecifics exhibit more selective function on PBMCs than 2A11 based anti-LAG-3 x anti-CTLA-4 bispecifics as indicated by enhancement in IL-2 and IFN γ release. PBMCs were stimulated with 500 ng/mL of SEB for 2 days. Cells were then washed twice in culture medium and stimulated with 500 ng/mL SEB in combination with the indicated amounts of test articles. Cells were assayed for the indicated analyte (either IL-2 or IFN- γ) 24 hours after treatment. Each point represents a unique donor tested in technical singlet.

Figure 60A and B depicts mixed lymphocyte reactions (MLRs) with anti-LAG-3 X anti-CTLA-4 bispecific antibodies. 40 unique MLR reactions were made in the presence of 20 μ g/mL of indicated test articles. Cell supernatants were then assayed by MSD 6 days after treatment for A: IL-2 and B: IFN γ .

Figure 61A and B shows enhancement of IL-2 and IFN γ release by additional anti-LAG-3 X

anti-CTLA-4 candidates in the SEB assays. PBMCs were stimulated with 500 ng/mL SEB for 2 days. Cells were then washed twice in culture medium and stimulated with 500 ng/mL SEB in combination with indicated amounts of test articles. Cells were assayed for indicated analyte (either IL-2 or IFN- γ) 24 hours after treatment. Each point represents a unique donor tested in technical singlet.

Figure 62A and B depicts the Kds for anti-LAG-3 X anti-PD-1 bispecific, heterodimeric bottle opener formats based on either optimized 2A11 or 7G8 anti-LAG-3 Fab arms as measured by Octet.

Figure 63A and 63B depicts the ability of humanized/optimized 7G8 and 2A11 anti-LAG-3 clones to block LAG-3 binding to Daudi cells endogenously expressing MHC-II.

Figure 64A and B depicts anti-LAG-3 x anti-PD-1 candidate function on SEB stimulated T cells. PBMCs were stimulated with 500 ng/ml SEB for 2 days. Cells were then washed twice in culture medium and stimulated with 500 ng/mL SEB in combination with indicated amounts of test articles. Cells were assayed for indicated analyte 24 h after treatment. Each point represents a unique donor tested in technical singlet.

Figure 65 are graphs, showing that tumor infiltrating lymphocytes (TILs) co-express multiple checkpoint receptors in various tumors. In particular, the graphs show that various tumors coexpress PD-1 and CTLA-4, PD-1 and BTLA, PD-1 and LAG-3; and LAG-3 and CTLA-4. The results shown are based upon data generated by the TCGA Research network: <http://cancergenome.nih.gov/>

Figure 66 shows that subject bispecific antibodies provided herein selectively target dual-checkpoint positive T cells. Bispecific PD-1 x LAG-3 antibodies are used to show PD-1 and LAG-3 receptor occupancy in CD3+ T-cells stimulated with staphylococcal enterotoxin B (SEB) as compared to a negative control.

Figure 67A-F are graphs showing that component antibody domains of the subject antibodies provided herein are capable of blocking checkpoint receptor/ligand interactions. In particular, a bispecific antibody comprising a 1G6 anti-PD-1 scFv arm is capable of blocking PD-1/PD-L1 and PD-1/PD-L2 interactions; 7G8 anti-LAG-3 one arm is capable of blocking LAG-3/MHC II interaction; a bispecific antibody comprising an exemplary anti-PD-1 Fab arm is capable of blocking CTLA-4/CD80 and CTLA-4/CD86 interactions; and a bispecific antibody comprising a 9C6 anti-BTLA Fab arm is capable of blocking BTLA/HVEM interaction.

Figure 68 compares the enhancement of IL-2 release by an exemplary anti-CTLA-4 x anti-PD-1 bispecific antibody and nivolumab.

Figure 69 compares the enhancement of IL-2 release by an exemplary anti-LAG-3 x anti-CTLA-4 bispecific antibody, the same bispecific antibody in combination with nivolumab, and nivolumab alone.

Figure 70 compares the enhancement of IL-2 release by an exemplary anti-LAG-3 x anti-PD-1 bispecific antibody and nivolumab.

Figure 71 compares the enhancement of IL-2 release by an exemplary anti-BTLA x anti-PD-1 bispecific antibody and nivolumab.

Figure 72 compares the enhancement of GVHD (as indicated by CD45 cell count) by an exemplary anti-PD-1 x anti-CTLA-4 bispecific antibody, nivolumab alone, and nivolumab in combination with ipilimumab.

Figure 73 compares the enhancement of GVHD (as indicated by CD45 cell count) by an exemplary anti-BTLA x anti-PD-1 bispecific antibody and nivolumab.

Figure 74 compares the enhancement of GVHD (as indicated by CD45 cell count) by an exemplary anti-LAG-3 x anti-CTLA-4 bispecific antibody, the same bispecific antibody in combination with nivolumab, and nivolumab alone.

Figure 75 compares the enhancement of GVHD (as indicated by CD45 cell count) by an exemplary anti-LAG-3 x anti-PD-1 bispecific antibody and nivolumab.

Figures 76A-D depicts two studies, showing that anti-CTLA-4 x anti-PD-1 bispecific antibodies can promote *in vivo* T cell mediated anti-tumor efficacy. KG1a-luc cancer cells were engrafted into mice. Twenty-one days later, huPMCs were engrafted into the same mice and weekly antibody treatments (anti-CTLA-4 x anti-PD-1 bispecific antibodies; anti-PD-1 bivalent antibodies; or anti-PD-1 bivalent antibody + anti-CTLA-4 bivalent antibody) were administered. IVIS cancer cell imaging was conducted on the mice to assess tumor size, as determined by change in tumor flux.

III. DETAILED DESCRIPTION OF THE INVENTION

[0013] Reference is made to the accompanying sequence listing as following: anti-PD-1 sequences suitable for use as ABDs include SEQ ID NOs: 6209-11464 (PD-1 scFv sequences, although the Fv sequences therein can be formatted as Fabs), SEQ ID NOs: 11465-17134 (PD-1 Fab sequences, although the Fv sequences therein can be formatted as scFvs), SEQ ID NOs: 33003-33072 (additional PD-1 Fab sequences, although the Fv sequences therein can be formatted as scFvs), SEQ ID NOs: 33073-35394 (additional PD-1 scFv sequences, although the Fv sequences therein can be formatted as Fabs) and SEQ ID NOs: 36127-36146 (PD-1 bivalent constructs, which can be formatted as either scFvs or Fabs). Anti-CTLA-4 sequences suitable for use as ABDs include SEQ ID NOs: 21-2918 (CTLA-4 scFv sequences, although the Fv sequences therein can be formatted as Fabs), SEQ ID NOs: 2919-6208 (CTLA-4 Fab sequences, although the Fv sequences therein can be formatted as scFvs), SEQ ID NOs: 36739-36818 (additional CTLA-4 Fab sequences, although the Fv sequences therein can be formatted as scFvs) and SEQ ID NOs: 35395-35416 (CTLA-4 one armed constructs, which can be formatted as either Fabs or scFvs). Anti-LAG-3 sequences suitable for use as ABDs include SEQ ID NOs: 17135-20764 (LAG-3 Fabs, although the Fv sequences therein can

be formatted as scFvs), SEQ ID NOs: 36819-36962 (additional LAG-3 Fabs although the Fv sequences therein can be formatted as scFvs), SEQ ID NOs: 35417-35606 (additional LAG-3 Fabs although the Fv sequences therein can be formatted as scFvs), SEQ ID NOs: 25194-32793 (additional LAG-3 Fabs although the Fv sequences therein can be formatted as scFvs) and SEQ ID NOs: 32794-33002 (one armed LAG-3 constructs which can be formatted as either Fabs or scFvs). Anti-TIM-3 sequences suitable for use as ABDs include SEQ ID NOs: 20765-20884 (TIM-3 Fabs, although the Fv sequences therein can be formatted as scFvs), SEQ ID NOs: 37587-37698 (additional TIM-3 Fabs, the Fv sequences therein can be formatted as scFvs) and SEQ ID NOs: 36347-36706 (bivalent TIM-3 constructs which can be formatted as either Fabs or scFvs). Anti-BTLA sequences suitable for use as ABDs include SEQ ID NOs: 20885-21503 (BTLA Fabs although the Fv sequences therein can be formatted as scFvs) and SEQ ID NOs: 36707-36738 (additional BTLA Fabs although the Fv sequences therein can be formatted as scFvs). Anti-TIGIT sequences suitable for use as ABDs include SEQ ID NOs: 21504-21523 (TIGIT Fab although the Fv sequences therein can be formatted as scFvs) and SEQ ID NOs: 37435-37586 (additional TIGIT Fabs although the Fv sequences therein can be formatted as scFvs).

[0014] Bispecific antibodies of the disclosure include LAG3 X CTLA4 constructs of SEQ ID NOs: 35607-35866 and SEQ ID NOs: 21524-22620. PD-1 X CTLA4 constructs include those listed as SEQ ID NOs: 36167-36346 and SEQ ID NOs: 23316-23735. PD-1 X TIM3 constructs include those listed as SEQ ID NOs: 25174-25193. PD-1 X LAG3 constructs include those listed as SEQ ID NOs: 35867-36126 and SEQ ID NOs: 23736-25133. PD-1 X TIGIT constructs include those listed as SEQ ID NOs: 25134-25173. PD-1 X BTLA constructs include those listed as SEQ ID NOs: 22724-23315 and SEQ ID NOs: 36147-36166. CTLA4 X BTLA constructs include those listed as SEQ ID NOs: 22624-22723. Finally, the names for XENP23552, XENP22841, XENP22842, XENP22843, XENP22844, XENP22845, XENP22846, XENP22847, XENP22848, XENP22849, XENP22850, XENP22851, XENP22852, XENP22858, XENP22854, XENP22855 all should have included the "M428L/N434S" notation in the title, which were inadvertently left off.

B. Overview

[0015] Therapeutic antibodies directed against immune checkpoint inhibitors such as PD-1 are showing great promise in limited circumstances in the clinic for the treatment of cancer. Cancer can be considered as an inability of the patient to recognize and eliminate cancerous cells. In many instances, these transformed (e.g. cancerous) cells counteract immunosurveillance. There are natural control mechanisms that limit T-cell activation in the body to prevent unrestrained T-cell activity, which can be exploited by cancerous cells to evade or suppress the immune response. Restoring the capacity of immune effector cells-especially T cells-to recognize and eliminate cancer is the goal of immunotherapy. The field of immuno-oncology, sometimes referred to as "immunotherapy" is rapidly evolving, with several recent approvals of T cell checkpoint inhibitory antibodies such as Yervoy, Keytruda and Opdivo. These antibodies are generally referred to as "checkpoint inhibitors" because they block normally negative

regulators of T cell immunity. It is generally understood that a variety of immunomodulatory signals, both costimulatory and coinhibitory, can be used to orchestrate an optimal antigen-specific immune response.

[0016] Generally, these monoclonal antibodies bind to checkpoint inhibitor proteins such as CTLA-4 and PD-1, which under normal circumstances prevent or suppress activation of cytotoxic T cells (CTLs). By inhibiting the checkpoint protein, for example through the use of antibodies that bind these proteins, an increased T cell response against tumors can be achieved. That is, these cancer checkpoint proteins suppress the immune response; when the proteins are blocked, for example using antibodies to the checkpoint protein, the immune system is activated, leading to immune stimulation, resulting in treatment of conditions such as cancer and infectious disease.

[0017] However, as discussed above, studies have shown that TILs commonly express multiple checkpoint receptors; this may suggest that single checkpoint blockade could be insufficient to promote a complete T cell response. Moreover, it is likely that TILs that express multiple checkpoints are in fact the most tumor-reactive, thus suggesting that therapies that engage more than one checkpoint antigen could be very useful.

[0018] Accordingly, the present disclosure provides bispecific checkpoint antibodies, that bind to cells expressing the two antigens and methods of activating T cells and/or NK cells to treat diseases such as cancer and infectious diseases, and other conditions where increased immune activity results in treatment.

[0019] Thus, the disclosure is directed, in some instances, to solving the issue of toxicity and expense of administering multiple antibodies by providing bispecific antibodies that bind to two different checkpoint inhibitor molecules on a single cell and advantageously requiring administration of only one therapeutic substance.

[0020] Bispecific antibodies, which can bind two different targets simultaneously, offer the potential to improve the selectivity of targeting TILs vs peripheral T cells, while also reducing cost of therapy. The bivalent interaction of an antibody with two targets on a cell surface should - in some cases - lead to a higher binding avidity relative to a monovalent interaction with one target at a time. Because of this, normal bivalent antibodies tend to have high avidity for their target on a cell surface. With bispecific antibodies, the potential exists to create higher selectivity for cells that simultaneously express two different targets, utilizing the higher avidity afforded by simultaneous binding to both targets.

[0021] Accordingly, the present disclosure is directed to novel constructs to provide heterodimeric antibodies that allow binding to more than one checkpoint antigen or ligand, e.g. to allow for bispecific binding. Hence, for example, an anti-PD1 x anti-CTLA4 (PD1 x CTLA4) bispecific antibody is expected to be more selective for PD1+CTLA4+ double positive TILs versus single positive PD1-only or CTLA4-only T cells. Selective blockade of double-positive TILs versus single positive T cells is therefore expected to improve the therapeutic index of

combined checkpoint blockade. This is similarly true for the other possible combinations as outlined herein. Accordingly, suitable bispecific antibodies of the invention bind PD-1 and CTLA-4, PD-1 and TIM-3, PD-1 and LAG-3, PD-1 and TIGIT, PD-1 and BTLA, CTLA-4 and TIM-3, CTLA-4 and LAG-3, CTLA-4 and TIGIT, CTLA-4 and BTLA, TIM-3 and LAG-3, TIM-3 and TIGIT, TIM-3 and BTLA, LAG-3 and TIGIT, LAG-3 and BTLA and TIGIT and BTLA. Note that generally these bispecific antibodies are named "anti-PD-1 X anti-CTLA-4", or generally simplistically or for ease (and thus interchangeably) as "PD-1 X CTLA-4", etc. for each pair.

[0022] The heterodimeric bispecific checkpoint antibodies of the invention are useful to treat a variety of types of cancers. As will be appreciated by those in the art, in contrast to traditional monoclonal antibodies that bind to tumor antigens, or to the newer classes of bispecific antibodies that bind, for example, CD3 and tumor antigens (such as described in US 2016-0355608 A1 for example), checkpoint antibodies are used to increase the immune response but are not generally tumor specific in their action. That is, the bispecific checkpoint antibodies of the invention inhibit the suppression of the immune system, generally leading to T cell activation, which in turn leads to greater immune response to cancerous cells and thus treatment. Such antibodies can therefore be expected to find utility for treatment of a wide variety of tumor types. For example, the FDA recently approved Keytruda®, an anti-PD-1 monospecific antibody on the basis of a genetic feature, rather than a tumor type.

[0023] As discussed below, there are a variety of ways that T cell activation can be measured. Functional effects of the bispecific checkpoint antibodies on NK and T-cells can be assessed in vitro (and in some cases in vivo, as described more fully below) by measuring changes in the following parameters: proliferation, cytokine release and cell-surface makers. For NK cells, increases in cell proliferation, cytotoxicity (ability to kill target cells as measured by increases in CD107a, granzyme, and perforin expression, or by directly measuring target cells killing), cytokine production (e.g. IFN- γ and TNF), and cell surface receptor expression (e.g. CD25) is indicative of immune modulation, e.g. enhanced killing of cancer cells. For T-cells, increases in proliferation, increases in expression of cell surface markers of activation (e.g. CD25, CD69, CD137, and PD1), cytotoxicity (ability to kill target cells), and cytokine production (e.g. IL-2, IL-4, IL-6, IFN- γ , TNF- α , IL-10, IL-17A) are indicative of immune modulation, e.g. enhanced killing of cancer cells. Accordingly, assessment of treatment can be done using assays that evaluate one or more of the following: (i) increases in immune response, (ii) increases in activation of $\alpha\beta$ and/or $\gamma\delta$ T cells, (iii) increases in cytotoxic T cell activity, (iv) increases in NK and/or NKT cell activity, (v) alleviation of $\alpha\beta$ and/or $\gamma\delta$ T-cell suppression, (vi) increases in pro-inflammatory cytokine secretion, (vii) increases in IL-2 secretion; (viii) increases in interferon- γ production, (ix) increases in Th1 response, (x) decreases in Th2 response, (xi) decreases in cell number and/or activity of at least one of regulatory T cells and cells (xii) increases of tumor immune infiltrates.

[0024] Described herein is the use of bispecific checkpoint antibodies to perform one or more of the following in a subject in need thereof: (a) upregulating pro-inflammatory cytokines; (b) increasing T-cell proliferation, expansion or tumor infiltration; (c) increasing interferon- γ , TNF- α and other cytokine production by T-cells; (d) increasing IL-2 secretion; (e) stimulating antibody

responses; (f) inhibiting cancer cell growth; (g) promoting antigenic specific T cell immunity; (h) promoting CD4+ and/or CD8+ T cell activation; (i) alleviating T-cell suppression; (j) promoting NK cell activity; (k) promoting apoptosis or lysis of cancer cells; and/or (l) cytotoxic or cytostatic effect on cancer cells.

[0025] Disclosed herein are bispecific, heterodimeric checkpoint antibodies. The heterodimeric antibody constructs are based on the self-assembling nature of the two Fc domains of the heavy chains of antibodies, e.g. two "monomers" that assemble into a "dimer". Heterodimeric antibodies are made by altering the amino acid sequence of each monomer as more fully discussed below. Thus, the present disclosure is generally directed to the creation of heterodimeric antibodies, which can co-engage checkpoint antigens in several ways, relying on amino acid variants in the constant regions that are different on each chain to promote heterodimeric formation and/or allow for ease of purification of heterodimers over the homodimers.

[0026] Thus, the present disclosure provides bispecific checkpoint antibodies. An ongoing problem in antibody technologies is the desire for "bispecific" antibodies that bind to two (or more) different antigens simultaneously, in general thus allowing the different antigens to be brought into proximity and resulting in new functionalities and new therapies. In general, these antibodies are made by including genes for each heavy and light chain into the host cells (generally, in the present invention, genes for two heavy chain monomers and a light chain as outlined herein). This generally results in the formation of the desired heterodimer (A-B), as well as the two homodimers (A-A and B-B). However, a major obstacle in the formation of bispecific antibodies is the difficulty in purifying the heterodimeric antibodies away from the homodimeric antibodies and/or biasing the formation of the heterodimer over the formation of the homodimers.

[0027] To solve this issue, there are a number of mechanisms that can be used to generate the heterodimers of the present invention. In addition, as will be appreciated by those in the art, these mechanisms can be combined to ensure high heterodimerization. Thus, amino acid variants that lead to the production of heterodimeric antibodies are referred to as "heterodimerization variants". As discussed below, heterodimerization variants can include steric variants (e.g. the "knobs and holes" or "skew" variants described below and the "charge pairs" variants described below) as well as "pl variants", which allows purification of homodimers away from heterodimers.

[0028] One mechanism, generally referred to in the art as "knobs and holes" ("KIH") or sometimes herein as "skew" variants, referring to amino acid engineering that creates steric and/or electrostatic influences to favor heterodimeric formation and disfavor homodimeric formation can also optionally be used, as described in Ridgway et al., Protein Engineering 9(7):617 (1996); Atwell et al., J. Mol. Biol. 1997 270:26; US Patent No. 8,216,805, US 2012/0149876.

[0029] The Figures identify a number of "monomer A - monomer B" pairs that include "knobs

and holes" amino acid substitutions. In addition, as described in Merchant et al., *Nature Biotech.* 16:677 (1998), these "knobs and hole" mutations can be combined with disulfide bonds to skew formation to heterodimerization. Of use are T366S/L368A/Y407V paired with T366W, as well as this variant with a bridging disulfide, T366S/L368A/Y407V/Y349C paired with T366W/S354C, particularly in combination with other heterodimerization variants including pl variants as outlined below.

[0030] An additional mechanism that finds use in the generation of heterodimeric antibodies is sometimes referred to as "electrostatic steering" or "charge pairs" as described in Gunasekaran et al., *J. Biol. Chem.* 285(25):19637 (2010).

[0031] This is sometimes referred to herein as "charge pairs". In this example, electrostatics are used to skew the formation towards heterodimerization. As those in the art will appreciate, these may also have an effect on pl, and thus on purification, and thus could in some cases also be considered pl variants. However, as these were generated to force heterodimerization and were not used as purification tools, they are classified as "steric variants". These include, but are not limited to, D221E/P228E/L368E paired with D221R/P228R/K409R (e.g. these are "monomer corresponding sets) and C220E/P228E/368E paired with C220R/E224R/P228R/K409R and others shown in the Figures.

[0032] In some examples, pl variants are used to alter the pl of one or both of the monomers and thus allowing the isoelectric separation of A-A, A-B and B-B dimeric proteins.

[0033] There are several basic mechanisms that can lead to ease of purifying heterodimeric proteins; one relies on the use of pl variants, such that each monomer has a different pl, thus allowing the isoelectric purification of A-A, A-B and B-B dimeric proteins. Alternatively, some scaffold formats, such as the "triple F" format, also allows separation on the basis of size. As is further outlined below, it is also possible to "skew" the formation of heterodimers over homodimers. Thus, a combination of steric heterodimerization variants and pl or charge pair variants find particular use herein. Additionally, as more fully outlined below, scaffolds that utilize scFv(s) such as the Triple F format can include charged scFv linkers (either positive or negative), that give a further pl boost for purification purposes. As will be appreciated by those in the art, some Triple F formats are useful with just charged scFv linkers and no additional pl adjustments, although the disclosure does provide the use of skew variants with charged scFv linkers as well (and combinations of Fc, FcRn and KO variants discussed herein).

[0034] In the present disclosure that utilizes pl as a separation mechanism to allow the purification of heterodimeric proteins, amino acid variants can be introduced into one or both of the monomer polypeptides; that is, the pl of one of the monomers (referred to herein for simplicity as "monomer A") can be engineered away from monomer B, or both monomer A and B can be changed, with the pl of monomer A increasing and the pl of monomer B decreasing. As is outlined more fully below, the pl changes of either or both monomers can be done by removing or adding a charged residue (e.g. a neutral amino acid is replaced by a positively or negatively charged amino acid residue, e.g. glycine to glutamic acid), changing a charged

residue from positive or negative to the opposite charge (e.g. aspartic acid to lysine) or changing a charged residue to a neutral residue (e.g. loss of a charge; lysine to serine). A number of these variants are shown in the Figures. In addition, suitable pI variants for use in the creation of heterodimeric antibodies herein are those that are isotypic, e.g. importing pI variants from different IgG isotypes such that pI is changed without introducing significant immunogenicity; see Figure 29 from US Publication No. 20140288275.

[0035] Accordingly, in this example, the disclosure provides for creating a sufficient change in pI in at least one of the monomers such that heterodimers can be separated from homodimers. As will be appreciated by those in the art, and as discussed further below, this can be done by using a "wild type" heavy chain constant region and a variant region that has been engineered to either increase or decrease it's pI (wt A+B or wt A - -B), or by increasing one region and decreasing the other region (A+ -B- or A- B+).

[0036] Thus, in general, a component of some examples of the present disclosure are amino acid variants in the constant regions of antibodies that are directed to altering the isoelectric point (pI) of at least one, if not both, of the monomers of a dimeric protein to form "pI heterodimers" (when the protein is an antibody, these are referred to as "pI antibodies") by incorporating amino acid substitutions ("pI variants" or "pI substitutions") into one or both of the monomers. As shown herein, the separation of the heterodimers from the two homodimers can be accomplished if the pIs of the two monomers differ by as little as 0.1 pH unit, with 0.2, 0.3, 0.4 and 0.5 or greater all finding use in the present invention.

[0037] As will be appreciated by those in the art, the number of pI variants to be included on each or both monomer(s) to get good separation will depend in part on the starting pI of the scFv and Fab of interest. That is, to determine which monomer to engineer or in which "direction" (e.g. more positive or more negative), the Fv sequences of the two target antigens are calculated and a decision is made from there. As is known in the art, different Fvs will have different starting pIs which are exploited in the present invention. In general, as outlined herein, the pIs are engineered to result in a total pI difference of each monomer of at least about 0.1 logs, with 0.2 to 0.5 being preferred as outlined herein.

[0038] Furthermore, as will be appreciated by those in the art and outlined herein, in some cases (depending on the format) heterodimers can be separated from homodimers on the basis of size (e.g. molecular weight). For example, as shown in some embodiments of Figure 1, some formats result in homodimers and heterodimers with different sizes (e.g. for bottle openers, one homodimer is a "dual scFv" format, one homodimer is a standard antibody, and the heterodimer has one Fab and one scFv).

[0039] In addition, as depicted in Figure 1, it will be recognized that it is possible that some antigens are bound bivalently (e.g. two antigen binding sites to a single antigen). As will be appreciated, any combination of Fab and scFvs can be utilized to achieve the desired result and combinations.

[0040] In the case where pI variants are used to achieve purified heterodimers over homodimers, by using the constant region(s) of the heavy chain(s), a more modular approach to designing and purifying multispecific proteins, including antibodies, is provided. Thus, in some examples, heterodimerization variants (including skew and purification heterodimerization variants) are not included in the variable regions, such that each individual antibody must be engineered. In addition, in some examples, the possibility of immunogenicity resulting from the pI variants is significantly reduced by importing pI variants from different IgG isotypes such that pI is changed without introducing significant immunogenicity. Thus, an additional problem to be solved is the elucidation of low pI constant domains with high human sequence content, e.g. the minimization or avoidance of non-human residues at any particular position.

[0041] A side benefit that can occur with this pI engineering is also the extension of serum half-life and increased FcRn binding. That is, as described in US 2012-0028304 A1, lowering the pI of antibody constant domains (including those found in antibodies and Fc fusions) can lead to longer serum retention in vivo. These pI variants for increased serum half life also facilitate pI changes for purification.

[0042] In addition, it should be noted that the pI variants of the heterodimerization variants give an additional benefit for the analytics and quality control process of bispecific antibodies, as the ability to either eliminate, minimize and distinguish when homodimers are present is significant. Similarly, the ability to reliably test the reproducibility of the heterodimeric protein production is important.

[0043] As will be appreciated by those in the art and discussed more fully below, the heterodimeric fusion proteins of the present disclosure can take on a wide variety of configurations, as are generally depicted in Figure 1. Some figures depict "single ended" configurations, where there is one type of specificity on one "arm" of the molecule and a different specificity on the other "arm". Other figures depict "dual ended" configurations, where there is at least one type of specificity at the "top" of the molecule and one or more different specificities at the "bottom" of the molecule. Thus, the present disclosure is directed to novel immunoglobulin compositions that co-engage a first and a second antigen. First and second antigens of the invention are herein referred to as antigen-1 and antigen-2 respectively (or "checkpoint-1" and "checkpoint-2").

[0044] One heterodimeric scaffold that finds particular use in the present disclosure is the "triple F" or "bottle opener" scaffold format as depicted in Figure 1A. In this example, one heavy chain of the antibody contains a single chain Fv ("scFv", as defined below) and the other heavy chain is a "regular" FAb format, comprising a variable heavy chain and a light chain. This structure is sometimes referred to herein as "triple F" format (scFv-FAb-Fc) or the "bottle-opener" format, due to a rough visual similarity to a bottle-opener (see Figure 1A). The two chains are brought together by the use of amino acid variants in the constant regions (e.g. the Fc domain and/or the hinge region) that promote the formation of heterodimeric antibodies as is described more fully below.

[0045] There are several distinct advantages to the present "triple F" format. As is known in the art, antibody analogs relying on two scFv constructs often have stability and aggregation problems, which can be alleviated in the present invention by the addition of a "regular" heavy and light chain pairing. In addition, as opposed to formats that rely on two heavy chains and two light chains, there is no issue with the incorrect pairing of heavy and light chains (e.g. heavy 1 pairing with light 2, etc.)

[0046] Furthermore, as outlined herein, additional amino acid variants may be introduced into the bispecific antibodies of the disclosure, to add additional functionalities. For example, amino acid changes within the Fc region can be added (either to one monomer or both) to facilitate increased ADCC or CDC (e.g. altered binding to Fcy receptors) as well as to increase binding to FcRn and/or increase serum half-life of the resulting molecules. As is further described herein and as will be appreciated by those in the art, any and all of the variants outlined herein can be optionally and independently combined with other variants.

[0047] Similarly, another category of functional variants are "Fey ablation variants" or "Fc knock out (FcKO or KO) variants. For some therapeutic applications, it is desirable to reduce or remove the normal binding of the Fc domain to one or more or all of the Fcy receptors (e.g. FcyR1, FcyRIIa, FcyRIIb, FcyRIIIa, etc.) to avoid additional mechanisms of action. That is, for example, it is generally desirable to ablate FcyRIIIa binding to eliminate or significantly reduce ADCC activity. Suitable ablation variants are shown in Figure 5.

C. Nomenclature

[0048] The bispecific antibodies of the disclosure are listed in several different formats. Each polypeptide is given a unique "XENP" number, although as will be appreciated in the art, a longer sequence might contain a shorter one. For example, the heavy chain of the scFv side monomer of a bottle opener format for a given sequence will have a first XENP number, while the scFv domain will have a different XENP number. Some molecules have three polypeptides, so the XENP number, with the components, is used as a name. Thus, the molecule XENP20717, which is in bottle opener format, comprises three sequences, generally referred to as "XENP20717 HC-Fab", XENP20717 HC-scFv" and "XENP20717 LC" or equivalents, although one of skill in the art would be able to identify these easily through sequence alignment. These XENP numbers are in the sequence listing as well as identifiers, and used in the Figures. In addition, one molecule, comprising the three components, gives rise to multiple sequence identifiers. For example, the listing of the Fab monomer has the full length sequence, the variable heavy sequence and the three CDRs of the variable heavy sequence; the light chain has a full length sequence, a variable light sequence and the three CDRs of the variable light sequence; and the scFv-Fc domain has a full length sequence, an scFv sequence, a variable light sequence, 3 light CDRs, a scFv linker, a variable heavy sequence and 3 heavy CDRs; note that all molecules herein with a scFv domain use a single charged scFv linker (+H), although others can be used. In addition, the naming nomenclature of

particular variable domains uses a "Hx.xx_Ly.yy" type of format, with the numbers being unique identifiers to particular variable chain sequences. Thus, the variable domain of the Fab side of XENP22841 is "7G8_H3.30_L1.34", which indicates that the variable heavy domain H3.30 was combined with the light domain L1.34. In the case that these sequences are used as scFvs, the designation "7G8_H3.30_L1.34", indicates that the variable heavy domain H3.30 was combined with the light domain L1.34 and is in vh-linker-vl orientation, from N- to C-terminus. This molecule with the identical sequences of the heavy and light variable domains but in the reverse order would be named "7G8_L1.34_H3.30". Similarly, different constructs may "mix and match" the heavy and light chains as will be evident from the sequence listing and the Figures.

D. Definitions

[0049] In order that the application may be more completely understood, several definitions are set forth below. Such definitions are meant to encompass grammatical equivalents.

[0050] By "ablation" herein is meant a decrease or removal of activity. Thus for example, "ablating Fc_yR binding" means the Fc region amino acid variant has less than 50% starting binding as compared to an Fc region not containing the specific variant, with more than 70-80-90-95-98% loss of activity being preferred, and in general, with the activity being below the level of detectable binding in a Biacore, SPR or BLI assay. Of particular use in the ablation of Fc_yR binding are those shown in Figure 5, which generally are added to both monomers.

[0051] By "ADCC" or "antibody dependent cell-mediated cytotoxicity" as used herein is meant the cell-mediated reaction wherein nonspecific cytotoxic cells that express Fc_yRs recognize bound antibody on a target cell and subsequently cause lysis of the target cell. ADCC is correlated with binding to Fc_yRIIIa; increased binding to Fc_yRIIIa leads to an increase in ADCC activity.

[0052] By "ADCP" or antibody dependent cell-mediated phagocytosis as used herein is meant the cell-mediated reaction wherein nonspecific phagocytic cells that express Fc_yRs recognize bound antibody on a target cell and subsequently cause phagocytosis of the target cell.

[0053] By "antigen binding domain" or "ABD" herein is meant a set of six Complementary Determining Regions (CDRs) that, when present as part of a polypeptide sequence, specifically binds a target antigen as discussed herein. Thus, a "checkpoint antigen binding domain" binds a target checkpoint antigen as outlined herein. As is known in the art, these CDRs are generally present as a first set of variable heavy CDRs (vhCDRs or VHCDRs) and a second set of variable light CDRs (vlCDRs or VLCDRs), each comprising three CDRs: vhCDR1, vhCDR2, vhCDR3 for the heavy chain and vlCDR1, vlCDR2 and vlCDR3 for the light. The CDRs are present in the variable heavy and variable light domains, respectively, and together form an Fv region. (See Table 1 and related discussion above for CDR numbering schemes). Thus, in some cases, the six CDRs of the antigen binding domain are contributed by a variable heavy

and a variable light domain. In a "Fab" format, the set of 6 CDRs are contributed by two different polypeptide sequences, the variable heavy domain (vh or VH; containing the vhCDR1, vhCDR2 and vhCDR3) and the variable light domain (vl or VL; containing the vlCDR1, vlCDR2 and vlCDR3), with the C-terminus of the vh domain being attached to the N-terminus of the CH1 domain of the heavy chain and the C-terminus of the vl domain being attached to the N-terminus of the constant light domain (and thus forming the light chain). In a scFv format, the vh and vl domains are covalently attached, generally through the use of a linker (a "scFv linker") as outlined herein, into a single polypeptide sequence, which can be either (starting from the N-terminus) vh-linker-vl or vl-linker-vh, with the former being generally preferred (including optional domain linkers on each side, depending on the format used (e.g. from Figure 1). In general, the C-terminus of the scFv domain is attached to the N-terminus of the hinge in the second monomer.

[0054] By "modification" herein is meant an amino acid substitution, insertion, and/or deletion in a polypeptide sequence or an alteration to a moiety chemically linked to a protein. For example, a modification may be an altered carbohydrate or PEG structure attached to a protein. By "amino acid modification" herein is meant an amino acid substitution, insertion, and/or deletion in a polypeptide sequence. For clarity, unless otherwise noted, the amino acid modification is always to an amino acid coded for by DNA, e.g. the 20 amino acids that have codons in DNA and RNA.

[0055] By "amino acid substitution" or "substitution" herein is meant the replacement of an amino acid at a particular position in a parent polypeptide sequence with a different amino acid. In particular, in some embodiments, the substitution is to an amino acid that is not naturally occurring at the particular position, either not naturally occurring within the organism or in any organism. For example, the substitution E272Y refers to a variant polypeptide, in this case an Fc variant, in which the glutamic acid at position 272 is replaced with tyrosine. For clarity, a protein which has been engineered to change the nucleic acid coding sequence but not change the starting amino acid (for example exchanging CGG (encoding arginine) to CGA (still encoding arginine) to increase host organism expression levels) is not an "amino acid substitution"; that is, despite the creation of a new gene encoding the same protein, if the protein has the same amino acid at the particular position that it started with, it is not an amino acid substitution.

[0056] By "amino acid insertion" or "insertion" as used herein is meant the addition of an amino acid sequence at a particular position in a parent polypeptide sequence. For example, -233E or 233E designates an insertion of glutamic acid after position 233 and before position 234. Additionally, -233ADE or A233ADE designates an insertion of AlaAspGlu after position 233 and before position 234.

[0057] By "amino acid deletion" or "deletion" as used herein is meant the removal of an amino acid sequence at a particular position in a parent polypeptide sequence. For example, E233- or E233#, E233() or E233del designates a deletion of glutamic acid at position 233. Additionally, EDA233- or EDA233# designates a deletion of the sequence GluAspAla that

begins at position 233.

[0058] By "variant protein" or "protein variant", or "variant" as used herein is meant a protein that differs from that of a parent protein by virtue of at least one amino acid modification. The protein variant has at least one amino acid modification compared to the parent protein, yet not so many that the variant protein will not align with the parental protein using an alignment program such as that described below. In general, variant proteins (such as variant Fc domains, etc., outlined herein, are generally at least 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% identical to the parent protein, using the alignment programs described below, such as BLAST.

[0059] As described below, in some examples the parent polypeptide, for example an Fc parent polypeptide, is a human wild type sequence, such as the heavy constant domain or Fc region from IgG1, IgG2, IgG3 or IgG4, although human sequences with variants can also serve as "parent polypeptides", for example the IgG1/2 hybrid of US Publication 2006/0134105 can be included. The protein variant sequence herein will preferably possess at least about 80% identity with a parent protein sequence, and most preferably at least about 90% identity, more preferably at least about 95-98-99% identity. Accordingly, by "antibody variant" or "variant antibody" as used herein is meant an antibody that differs from a parent antibody by virtue of at least one amino acid modification, "IgG variant" or "variant IgG" as used herein is meant an antibody that differs from a parent IgG (again, in many cases, from a human IgG sequence) by virtue of at least one amino acid modification, and "immunoglobulin variant" or "variant immunoglobulin" as used herein is meant an immunoglobulin sequence that differs from that of a parent immunoglobulin sequence by virtue of at least one amino acid modification. "Fc variant" or "variant Fc" as used herein is meant a protein comprising an amino acid modification in an Fc domain as compared to an Fc domain of human IgG1, IgG2 or IgG4.

[0060] The Fc variants of the present disclosure are defined according to the amino acid modifications that compose them. Thus, for example, N434S or 434S is an Fc variant with the substitution serine at position 434 relative to the parent Fc polypeptide, wherein the numbering is according to the EU index. Likewise, M428L/N434S defines an Fc variant with the substitutions M428L and N434S relative to the parent Fc polypeptide. The identity of the WT amino acid may be unspecified, in which case the aforementioned variant is referred to as 428L/434S. It is noted that the order in which substitutions are provided is arbitrary, that is to say that, for example, N434S/M428L is the same Fc variant as M428L/N434S, and so on. For all positions discussed in the present invention that relate to antibodies, unless otherwise noted, amino acid position numbering is according to the EU index. The EU index or EU index as in Kabat or EU numbering scheme refers to the numbering of the EU antibody. Kabat et al. collected numerous primary sequences of the variable regions of heavy chains and light chains. Based on the degree of conservation of the sequences, they classified individual primary sequences into the CDR and the framework and made a list thereof (see SEQUENCES OF IMMUNOLOGICAL INTEREST, 5th edition, NIH publication, No. 91-3242, E.A. Kabat et al.). See also Edelman et al., 1969, Proc Natl Acad Sci USA 63:78 - 85. The modification can be an addition, deletion, or substitution.

[0061] By "protein" herein is meant at least two covalently attached amino acids, which includes proteins, polypeptides, oligopeptides and peptides. In addition, polypeptides that make up the antibodies of the disclosure may include synthetic derivatization of one or more side chains or termini, glycosylation, PEGylation, circular permutation, cyclization, linkers to other molecules, fusion to proteins or protein domains, and addition of peptide tags or labels.

[0062] By "residue" as used herein is meant a position in a protein and its associated amino acid identity. For example, Asparagine 297 (also referred to as Asn297 or N297) is a residue at position 297 in the human antibody IgG1.

[0063] By "Fab" or "Fab region" as used herein is meant the polypeptide that comprises the VH, CH1, VL, and CL immunoglobulin domains, generally on two different polypeptide chains (e.g. VH-CH1 on one chain and VL-CL on the other). Fab may refer to this region in isolation, or this region in the context of a bispecific antibody of the invention. In the context of a Fab, the Fab comprises an Fv region in addition to the CH1 and CL domains.

[0064] By "Fv" or "Fv fragment" or "Fv region" as used herein is meant a polypeptide that comprises the VL and VH domains of an ABD. Fv regions can be formatted as both Fabs (as discussed above, generally two different polypeptides that also include the constant regions as outlined above) and scFvs, where the vl and vh domains are combined (generally with a linker as discussed herein) to form an scFv.

[0065] By "single chain Fv" or "scFv" herein is meant a variable heavy domain covalently attached to a variable light domain, generally using a scFv linker as discussed herein, to form a scFv or scFv domain. A scFv domain can be in either orientation from N-to C-terminus (vh-linker-vl or vl-linker-vh). In the sequences depicted in the sequence listing and in the figures, the order of the vh and vl domain is indicated in the name, e.g. H.X_L.Y means N- to C-terminal is vh-linker-vl, and L.Y_H.X is vl-linker-vh.

[0066] By "IgG subclass modification" or "isotype modification" as used herein is meant an amino acid modification that converts one amino acid of one IgG isotype to the corresponding amino acid in a different, aligned IgG isotype. For example, because IgG1 comprises a tyrosine and IgG2 a phenylalanine at EU position 296, a F296Y substitution in IgG2 is considered an IgG subclass modification.

[0067] By "non-naturally occurring modification" as used herein is meant an amino acid modification that is not isotypic. For example, because none of the human IgGs comprise a serine at position 434, the substitution 434S in IgG1, IgG2, IgG3, or IgG4 (or hybrids thereof) is considered a non-naturally occurring modification.

[0068] By "amino acid" and "amino acid identity" as used herein is meant one of the 20 naturally occurring amino acids that are coded for by DNA and RNA.

[0069] By "effector function" as used herein is meant a biochemical event that results from the interaction of an antibody Fc region with an Fc receptor or ligand. Effector functions include but are not limited to ADCC, ADCP, and CDC.

[0070] By "IgG Fc ligand" as used herein is meant a molecule, preferably a polypeptide, from any organism that binds to the Fc region of an IgG antibody to form an Fc/Fc ligand complex. Fc ligands include but are not limited to FcγRIs, FcγRIIs, FcγRIIIs, FcRn, C1q, C3, mannan binding lectin, mannose receptor, staphylococcal protein A, streptococcal protein G, and viral FcγR. Fc ligands also include Fc receptor homologs (FcRH), which are a family of Fc receptors that are homologous to the FcγRs (Davis et al., 2002, *Immunological Reviews* 190:123-136). Fc ligands may include undiscovered molecules that bind Fc. Particular IgG Fc ligands are FcRn and Fc gamma receptors. By "Fc ligand" as used herein is meant a molecule, preferably a polypeptide, from any organism that binds to the Fc region of an antibody to form an Fc/Fc ligand complex.

[0071] By "Fc gamma receptor", "FcγR" or "FcγR" as used herein is meant any member of the family of proteins that bind the IgG antibody Fc region and is encoded by an FcγR gene. In humans this family includes but is not limited to FcγRI (CD64), including isoforms FcγRIa, FcγRIb, and FcγRIc; FcγRII (CD32), including isoforms FcγRIIa (including allotypes H131 and R131), FcγRIIb (including FcγRIIb-1 and FcγRIIb-2), and FcγRIIc; and FcγRIII (CD16), including isoforms FcγRIIIa (including allotypes V158 and F158) and FcγRIIIb (including allotypes FcγRIIIb-NA1 and FcγRIIIb-NA2) (Jefferis et al., 2002, *Immunol Lett* 82:57-65), as well as any undiscovered human FcγRs or FcγR isoforms or allotypes. An FcγR may be from any organism, including but not limited to humans, mice, rats, rabbits, and monkeys. Mouse FcγRs include but are not limited to FcγRI (CD64), FcγRII (CD32), FcγRIII (CD16), and FcγRIII-2 (CD16-2), as well as any undiscovered mouse FcγRs or FcγR isoforms or allotypes.

[0072] By "FcRn" or "neonatal Fc Receptor" as used herein is meant a protein that binds the IgG antibody Fc region and is encoded at least in part by an FcRn gene. The FcRn may be from any organism, including but not limited to humans, mice, rats, rabbits, and monkeys. As is known in the art, the functional FcRn protein comprises two polypeptides, often referred to as the heavy chain and light chain. The light chain is beta-2-microglobulin and the heavy chain is encoded by the FcRn gene. Unless otherwise noted herein, FcRn or an FcRn protein refers to the complex of FcRn heavy chain with beta-2-microglobulin. A variety of FcRn variants used to increase binding to the FcRn receptor, and in some cases, to increase serum half-life. An "FcRn variant" is one that increases binding to the FcRn receptor, and suitable FcRn variants are shown below.

[0073] By "parent polypeptide" as used herein is meant a starting polypeptide that is subsequently modified to generate a variant. The parent polypeptide may be a naturally occurring polypeptide, or a variant or engineered version of a naturally occurring polypeptide. Accordingly, by "parent immunoglobulin" as used herein is meant an unmodified immunoglobulin polypeptide that is modified to generate a variant, and by "parent antibody" as used herein is meant an unmodified antibody that is modified to generate a variant antibody. It

should be noted that "parent antibody" includes known commercial, recombinantly produced antibodies as outlined below. In this context, a "parent Fc domain" will be relative to the recited variant; thus, a "variant human IgG1 Fc domain" is compared to the parent Fc domain of human IgG1, a "variant human IgG4 Fc domain" is compared to the parent Fc domain human IgG4, etc.

[0074] By "Fc" or "Fc region" or "Fc domain" as used herein is meant the polypeptide comprising the CH2-CH3 domains of an IgG molecule, and in some cases, inclusive of the hinge. In EU numbering for human IgG1, the CH2-CH3 domain comprises amino acids 231 to 447, and the hinge is 216 to 230. Thus the definition of "Fc domain" includes both amino acids 231-447 (CH2-CH3) or 216-447 (hinge-CH2-CH3), or fragments thereof. An "Fc fragment" in this context may contain fewer amino acids from either or both of the N- and C-termini but still retains the ability to form a dimer with another Fc domain or Fc fragment as can be detected using standard methods, generally based on size (e.g. non-denaturing chromatography, size exclusion chromatography, etc.) Human IgG Fc domains are of particular use in the present invention, and can be the Fc domain from human IgG1, IgG2 or IgG4.

[0075] A "variant Fc domain" contains amino acid modifications as compared to a parental Fc domain. Thus, a "variant human IgG1 Fc domain" is one that contains amino acid modifications (generally amino acid substitutions, although in the case of ablation variants, amino acid deletions are included) as compared to the human IgG1 Fc domain. In general, variant Fc domains have at least about 80, 85, 90, 95, 97, 98 or 99 percent identity to the corresponding parental human IgG Fc domain (using the identity algorithms discussed below, with one examples utilizing the BLAST algorithm as is known in the art, using default parameters). Alternatively, the variant Fc domains can have from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acid modifications as compared to the parental Fc domain. Additionally, as discussed herein, the variant Fc domains herein still retain the ability to form a dimer with another Fc domain as measured using known techniques as described herein, such as non-denaturing gel electrophoresis.

[0076] By "heavy chain constant region" herein is meant the CH1-hinge-CH2-CH3 portion of an antibody (or fragments thereof), excluding the variable heavy domain; in EU numbering of human IgG1 this is amino acids 118-447 By "heavy chain constant region fragment" herein is meant a heavy chain constant region that contains fewer amino acids from either or both of the N- and C-termini but still retains the ability to form a dimer with another heavy chain constant region.

[0077] By "position" as used herein is meant a location in the sequence of a protein. Positions may be numbered sequentially, or according to an established format, for example the EU index for antibody numbering.

[0078] By "target antigen" as used herein is meant the molecule that is bound specifically by the antigen binding domain comprising the variable regions of a given antibody. As discussed below, in the present case the target antigens are checkpoint inhibitor proteins.

[0079] By "strandedness" in the context of the monomers of the heterodimeric antibodies of the invention herein is meant that, similar to the two strands of DNA that "match", heterodimerization variants are incorporated into each monomer so as to preserve the ability to "match" to form heterodimers. For example, if some pI variants are engineered into monomer A (e.g. making the pI higher) then steric variants that are "charge pairs" that can be utilized as well do not interfere with the pI variants, e.g. the charge variants that make a pI higher are put on the same "strand" or "monomer" to preserve both functionalities. Similarly, for "skew" variants that come in pairs of a set as more fully outlined below, the skilled artisan will consider pI in deciding into which strand or monomer one set of the pair will go, such that pI separation is maximized using the pI of the skews as well.

[0080] By "target cell" as used herein is meant a cell that expresses a target antigen.

[0081] By "host cell" in the context of producing a bispecific antibody according to the invention herein is meant a cell that contains the exogenous nucleic acids encoding the components of the bispecific antibody and is capable of expressing the bispecific antibody under suitable conditions. Suitable host cells are discussed below.

[0082] By "variable region" or "variable domain" as used herein is meant the region of an immunoglobulin that comprises one or more Ig domains substantially encoded by any of the V κ , V λ , and/or VH genes that make up the kappa, lambda, and heavy chain immunoglobulin genetic loci respectively, and contains the CDRs that confer antigen specificity. Thus, a "variable heavy domain" pairs with a "variable light domain" to form an antigen binding domain ("ABD"). In addition, each variable domain comprises three hypervariable regions ("complementary determining regions," "CDRs") (vhCDR1, vhCDR2 and vhCDR3 for the variable heavy domain and vLCDR1, vLCDR2 and vLCDR3 for the variable light domain) and four framework (FR) regions, arranged from amino-terminus to carboxy-terminus in the following order: FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4.

[0083] By "wild type or WT" herein is meant an amino acid sequence or a nucleotide sequence that is found in nature, including allelic variations. A WT protein has an amino acid sequence or a nucleotide sequence that has not been intentionally modified.

[0084] The invention provides a number of antibody domains that have sequence identity to human antibody domains. Sequence identity between two similar sequences (e.g., antibody variable domains) can be measured by algorithms such as that of Smith, T.F. & Waterman, M.S. (1981) "Comparison Of Biosequences," Adv. Appl. Math. 2:482 [local homology algorithm]; Needleman, S.B. & Wunsch, C.D. (1970) "A General Method Applicable To The Search For Similarities In The Amino Acid Sequence Of Two Proteins," J. Mol. Biol. 48:443 [homology alignment algorithm], Pearson, W.R. & Lipman, D.J. (1988) "Improved Tools For Biological Sequence Comparison," Proc. Natl. Acad. Sci. (U.S.A.) 85:2444 [search for similarity method]; or Altschul, S.F. et al, (1990) "Basic Local Alignment Search Tool," J. Mol. Biol. 215:403-10 , the "BLAST" algorithm, see <https://blast.ncbi.nlm.nih.gov/Blast.cgi>. When using

any of the aforementioned algorithms, the default parameters (for Window length, gap penalty, etc) are used. In one example, sequence identity is done using the BLAST algorithm, using default parameters

[0085] The antibodies of the present invention are generally isolated or recombinant. "Isolated," when used to describe the various polypeptides disclosed herein, means a polypeptide that has been identified and separated and/or recovered from a cell or cell culture from which it was expressed. Ordinarily, an isolated polypeptide will be prepared by at least one purification step. An "isolated antibody," refers to an antibody which is substantially free of other antibodies having different antigenic specificities. "Recombinant" means the antibodies are generated using recombinant nucleic acid techniques in exogenous host cells, and they can be isolated as well.

[0086] "Specific binding" or "specifically binds to" or is "specific for" a particular antigen or an epitope means binding that is measurably different from a non-specific interaction. Specific binding can be measured, for example, by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. For example, specific binding can be determined by competition with a control molecule that is similar to the target.

[0087] Specific binding for a particular antigen or an epitope can be exhibited, for example, by an antibody having a KD for an antigen or epitope of at least about 10^{-4} M, at least about 10^{-5} M, at least about 10^{-6} M, at least about 10^{-7} M, at least about 10^{-8} M, at least about 10^{-9} M, alternatively at least about 10^{-10} M, at least about 10^{-11} M, at least about 10^{-12} M, or greater, where KD refers to a dissociation rate of a particular antibody-antigen interaction. Typically, an antibody that specifically binds an antigen will have a KD that is 20-, 50-, 100-, 500-, 1000-, 5,000-, 10,000- or more times greater for a control molecule relative to the antigen or epitope.

[0088] Also, specific binding for a particular antigen or an epitope can be exhibited, for example, by an antibody having a KA or Ka for an antigen or epitope of at least 20-, 50-, 100-, 500-, 1000-, 5,000-, 10,000- or more times greater for the epitope relative to a control, where KA or Ka refers to an association rate of a particular antibody-antigen interaction. Binding affinity is generally measured using a Biacore, SPR or BLI assay.

E. Antibodies

[0089] The present disclosure relates to the generation of bispecific checkpoint antibodies that bind two different checkpoint antigens as discussed herein. As is discussed below, the term "antibody" is used generally. Antibodies that find use in the present disclosure can take on a number of formats as described herein, including traditional antibodies as well as antibody derivatives, fragments and mimetics, described herein and depicted in the figures.

[0090] Traditional antibody structural units typically comprise a tetramer. Each tetramer is typically composed of two identical pairs of polypeptide chains, each pair having one "light" (typically having a molecular weight of about 25 kDa) and one "heavy" chain (typically having a molecular weight of about 50-70 kDa). Human light chains are classified as kappa and lambda light chains. The present disclosure is directed to bispecific antibodies that generally are based on the IgG class, which has several subclasses, including, but not limited to IgG1, IgG2, IgG3, and IgG4. In general, IgG1, IgG2 and IgG4 are used more frequently than IgG3. It should be noted that IgG1 has different allotypes with polymorphisms at 356 (D or E) and 358 (L or M). The sequences depicted herein use the 356E/358M allotype, however the other allotype is included herein. That is, any sequence inclusive of an IgG1 Fc domain included herein can have 356D/358L replacing the 356E/358M allotype.

[0091] In addition, many of the antibodies herein have at least one of the cysteines at position 220 replaced by a serine; generally this is on the "scFv monomer" side for most of the sequences depicted herein, although it can also be on the "Fab monomer" side, or both, to reduce disulfide formation. Specifically included within the sequences herein are one or both of these cysteines replaced (C220S).

[0092] Thus, "isotype" as used herein is meant any of the subclasses of immunoglobulins defined by the chemical and antigenic characteristics of their constant regions. It should be understood that therapeutic antibodies can also comprise hybrids of isotypes and/or subclasses. For example, as shown in US Publication 2009/0163699, the present disclosure the use of human IgG1/G2 hybrids.

[0093] The hypervariable region generally encompasses amino acid residues from about amino acid residues 24-34 (LCDR1; "L" denotes light chain), 50-56 (LCDR2) and 89-97 (LCDR3) in the light chain variable region and around about 31-35B (HCDR1; "H" denotes heavy chain), 50-65 (HCDR2), and 95-102 (HCDR3) in the heavy chain variable region; Kabat et al., SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991) and/or those residues forming a hypervariable loop (e.g. residues 26-32 (LCDR1), 50-52 (LCDR2) and 91-96 (LCDR3) in the light chain variable region and 26-32 (HCDR1), 53-55 (HCDR2) and 96-101 (HCDR3) in the heavy chain variable region; Chothia and Lesk (1987) J. Mol. Biol. 196:901-917. Specific CDRs of the invention are described below.

[0094] As will be appreciated by those in the art, the exact numbering and placement of the CDRs can be different among different numbering systems. However, it should be understood that the disclosure of a variable heavy and/or variable light sequence includes the disclosure of the associated (inherent) CDRs. Accordingly, the disclosure of each variable heavy region is a disclosure of the vhCDRs (e.g. vhCDR1, vhCDR2 and vhCDR3) and the disclosure of each variable light region is a disclosure of the vLCDRs (e.g. vLCDR1, vLCDR2 and vLCDR3). A useful comparison of CDR numbering is as below, see Lafranc et al., Dev. Comp. Immunol. 27(1):55-77 (2003):

TABLE 1

	Kabat+ Chothia	IMGT	Kabat	AbM	Chothia	Contact	Xencor
vhCDR1	26-35	27-38	31-35	26-35	26-32	30-35	27-35
vhCDR2	50-65	56-65	50-65	50-58	52-56	47-58	54-61
vhCDR3	95-102	105-117	95-102	95-102	95-102	93-101	103-116
vlCDR1	24-34	27-38	24-34	24-34	24-34	30-36	27-38
vlCDR2	50-56	56-65	50-56	50-56	50-56	46-55	56-62
vlCDR3	89-97	105-117	89-97	89-97	89-97	89-96	97-105

[0095] Throughout the present specification, the Kabat numbering system is generally used when referring to a residue in the variable domain (approximately, residues 1-107 of the light chain variable region and residues 1-113 of the heavy chain variable region) and the EU numbering system for Fc regions (e.g, Kabat et al., *supra* (1991)).

[0096] Another type of Ig domain of the heavy chain is the hinge region. By "hinge" or "hinge region" or "antibody hinge region" or "hinge domain" herein is meant the flexible polypeptide comprising the amino acids between the first and second constant domains of an antibody. Structurally, the IgG CH1 domain ends at EU position 215, and the IgG CH2 domain begins at residue EU position 231. Thus for IgG the antibody hinge is herein defined to include positions 216 (E216 in IgG1) to 230 (p230 in IgG1), wherein the numbering is according to the EU index as in Kabat. In some cases, a "hinge fragment" is used, which contains fewer amino acids at either or both of the N- and C-termini of the hinge domain. As noted herein, pl variants can be made in the hinge region as well.

[0097] The light chain generally comprises two domains, the variable light domain (containing the light chain CDRs and together with the variable heavy domains forming the Fv region), and a constant light chain region (often referred to as CL or Ck).

[0098] Another region of interest for additional substitutions, outlined below, is the Fc region.

[0099] The present disclosure provides a large number of different CDR sets. In this case, a "full CDR set" comprises the three variable light and three variable heavy CDRs, e.g. a vlCDR1, vlCDR2, vlCDR3, vhCDR1, vhCDR2 and vhCDR3. These can be part of a larger variable light or variable heavy domain, respectfully. In addition, as more fully outlined herein, the variable heavy and variable light domains can be on separate polypeptide chains, when a heavy and light chain is used (for example when Fabs are used), or on a single polypeptide chain in the case of scFv sequences.

[0100] The CDRs contribute to the formation of the antigen-binding, or more specifically, epitope binding site of antibodies. "Epitope" refers to a determinant that interacts with a specific antigen binding site in the variable region of an antibody molecule known as a paratope.

Epitopes are groupings of molecules such as amino acids or sugar side chains and usually have specific structural characteristics, as well as specific charge characteristics. A single antigen may have more than one epitope.

[0101] The epitope may comprise amino acid residues directly involved in the binding (also called immunodominant component of the epitope) and other amino acid residues, which are not directly involved in the binding, such as amino acid residues which are effectively blocked by the specifically antigen binding peptide; in other words, the amino acid residue is within the footprint of the specifically antigen binding peptide.

[0102] Epitopes may be either conformational or linear. A conformational epitope is produced by spatially juxtaposed amino acids from different segments of the linear polypeptide chain. A linear epitope is one produced by adjacent amino acid residues in a polypeptide chain. Conformational and nonconformational epitopes may be distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents.

[0103] An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Antibodies that recognize the same epitope can be verified in a simple immunoassay showing the ability of one antibody to block the binding of another antibody to a target antigen, for example "bining." As outlined below, the disclosure not only includes the enumerated antigen binding domains and antibodies herein, but those that compete for binding with the epitopes bound by the enumerated antigen binding domains.

[0104] Thus, the present disclosure provides different antibody domains. As described herein and known in the art, the heterodimeric antibodies of the disclosure comprise different domains within the heavy and light chains, which can be overlapping as well. These domains include, but are not limited to, the Fc domain, the CH1 domain, the CH2 domain, the CH3 domain, the hinge domain, the heavy constant domain (CH1-hinge-Fc domain or CH1-hinge-CH2-CH3), the variable heavy domain, the variable light domain, the light constant domain, Fab domains and scFv domains.

[0105] Thus, the "Fc domain" includes the -CH2-CH3 domain, and optionally a hinge domain (-H-CH2-CH3). In the embodiments herein, when a scFv is attached to an Fc domain, it is the C-terminus of the scFv construct that is attached to all or part of the hinge of the Fc domain; for example, it is generally attached to the sequence EPKS which is the beginning of the hinge. The heavy chain comprises a variable heavy domain and a constant domain, which includes a CH1-optional hinge-Fc domain comprising a CH2-CH3. The light chain comprises a variable light chain and the light constant domain. A scFv comprises a variable heavy chain, an scFv linker, and a variable light domain. In most of the constructs and sequences outlined herein, the C-terminus of the variable heavy chain is attached to the N-terminus of the scFv linker, the C-terminus of which is attached to the N-terminus of a variable light chain (N-vh-linker-vl-C) although that can be switched (N-vl-linker-vh-C).

[0106] Some embodiments of the disclosure comprise at least one scFv domain, which, while

not naturally occurring, generally includes a variable heavy domain and a variable light domain, linked together by a scFv linker. As outlined herein, while the scFv domain is generally from N-to C-terminus oriented as vh-scFv linker-vl, this can be reversed for any of the scFv domains (or those constructed using vh and vl sequences from Fabs), to vl-scFv linker-vh, with optional linkers at one or both ends depending on the format (see generally Figure 1).

[0107] As shown herein, there are a number of suitable linkers (for use as either domain linkers or scFv linkers) that can be used to covalently attach the recited domains, including traditional peptide bonds, generated by recombinant techniques. In some examples, the linker peptide may predominantly include the following amino acid residues: Gly, Ser, Ala, or Thr. The linker peptide should have a length that is adequate to link two molecules in such a way that they assume the correct conformation relative to one another so that they retain the desired activity. In one embodiment, the linker is from about 1 to 50 amino acids in length, preferably about 1 to 30 amino acids in length. In one embodiment, linkers of 1 to 20 amino acids in length may be used, with from about 5 to about 10 amino acids finding use in some examples. Useful linkers include glycine-serine polymers, including for example (GS)_n, (GSGGS)_n (SEQ ID NO: 37756), (GGGGS)_n (SEQ ID NO: 37757), and (GGGS)_n (SEQ ID NO: 37758), where n is an integer of at least one (and generally from 3 to 4), glycine-alanine polymers, alanine-serine polymers, and other flexible linkers. Alternatively, a variety of nonproteinaceous polymers, including but not limited to polyethylene glycol (PEG), polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol, may find use as linkers.

[0108] Other linker sequences may include any sequence of any length of CL/CH1 domain but not all residues of CL/CH1 domain; for example the first 5-12 amino acid residues of the CL/CH1 domains. Linkers can be derived from immunoglobulin light chain, for example C κ or C λ . Linkers can be derived from immunoglobulin heavy chains of any isotype, including for example Cy1, Cy2, Cy3, Cy4, Ca1, Ca2, C δ , C ϵ , and C μ . Linker sequences may also be derived from other proteins such as Ig-like proteins (e.g. TCR, FcR, KIR), hinge region-derived sequences, and other natural sequences from other proteins.

[0109] In some examples, the linker is a "domain linker", used to link any two domains as outlined herein together. For example, in Figure 1F, there may be a domain linker that attaches the C-terminus of the CH1 domain of the Fab to the N-terminus of the scFv, with another optional domain linker attaching the C-terminus of the scFv to the CH2 domain (although in many embodiments the hinge is used as this domain linker). While any suitable linker can be used, many examples utilize a glycine-serine polymer as the domain linker, including for example (GS)_n, (GSGGS)_n (SEQ ID NO: 37756), (GGGGS)_n (SEQ ID NO: 37757), and (GGGS)_n (SEQ ID NO: 37758), where n is an integer of at least one (and generally from 3 to 4 to 5) as well as any peptide sequence that allows for recombinant attachment of the two domains with sufficient length and flexibility to allow each domain to retain its biological function. In some cases, and with attention being paid to "strandedness", as outlined below, charged domain linkers, as used in some embodiments of scFv linkers can be used.

[0110] In some embodiments, the linker is a scFv linker, used to covalently attach the vh and vl domains as discussed herein. In many cases, the scFv linker is a charged scFv linker, a number of which are shown in

[0111] Figure 7. Accordingly, the present disclosure further provides charged scFv linkers, to facilitate the separation in pl between a first and a second monomer. That is, by incorporating a charged scFv linker, either positive or negative (or both, in the case of scaffolds that use scFvs on different monomers), this allows the monomer comprising the charged linker to alter the pl without making further changes in the Fc domains. These charged linkers can be substituted into any scFv containing standard linkers. Again, as will be appreciated by those in the art, charged scFv linkers are used on the correct "strand" or monomer, according to the desired changes in pl. For example, as discussed herein, to make triple F format heterodimeric antibody, the original pl of the Fv region for each of the desired antigen binding domains are calculated, and one is chosen to make an scFv, and depending on the pl, either positive or negative linkers are chosen.

[0112] Charged domain linkers can also be used to increase the pl separation of the monomers of the disclosure as well, and thus those included in Figure 7 can be used in any embodiment herein where a linker is utilized.

[0113] In particular, the formats depicted in Figure 1 are antibodies, usually referred to as "heterodimeric antibodies", meaning that the protein has at least two associated Fc sequences self-assembled into a heterodimeric Fc domain and at least two Fv regions, whether as Fabs or as scFvs.

F. Chimeric and Humanized Antibodies

[0114] In certain examples, the antibodies of the disclosure comprise a heavy chain variable region from a particular germline heavy chain immunoglobulin gene and/or a light chain variable region from a particular germline light chain immunoglobulin gene. For example, such antibodies may comprise or consist of a human antibody comprising heavy or light chain variable regions that are "the product of" or "derived from" a particular germline sequence. A human antibody that is "the product of" or "derived from" a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the human antibody to the amino acid sequences of human germline immunoglobulins and selecting the human germline immunoglobulin sequence that is closest in sequence (i.e., greatest % identity) to the sequence of the human antibody (using the methods outlined herein). A human antibody that is "the product of" or "derived from" a particular human germline immunoglobulin sequence may contain amino acid differences as compared to the germline sequence, due to, for example, naturally-occurring somatic mutations or intentional introduction of site-directed mutation. However, a humanized antibody typically is at least 90% identical in amino acids sequence to an amino acid sequence encoded by a human germline immunoglobulin gene and contains amino acid residues that identify the antibody as being derived from human

sequences when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences). In certain cases, a humanized antibody may be at least 95, 96, 97, 98 or 99%, or even at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the amino acid sequence encoded by the germline immunoglobulin gene. Typically, a humanized antibody derived from a particular human germline sequence will display no more than 10-20 amino acid differences from the amino acid sequence encoded by the human germline immunoglobulin gene (prior to the introduction of any skew, pl and ablation variants herein; that is, the number of variants is generally low, prior to the introduction of the variants of the invention). In certain cases, the humanized antibody may display no more than 5, or even no more than 4, 3, 2, or 1 amino acid difference from the amino acid sequence encoded by the germline immunoglobulin gene (again, prior to the introduction of any skew, pl and ablation variants herein; that is, the number of variants is generally low, prior to the introduction of the variants of the disclosure).

[0115] In one example, the parent antibody has been affinity matured, as is known in the art. Structure-based methods may be employed for humanization and affinity maturation, for example as described in USSN 11/004,590. Selection based methods may be employed to humanize and/or affinity mature antibody variable regions, including but not limited to methods described in Wu et al., 1999, J. Mol. Biol. 294:151-162; Baca et al., 1997, J. Biol. Chem. 272(16):10678-10684; Rosok et al., 1996, J. Biol. Chem. 271(37): 22611-22618; Rader et al., 1998, Proc. Natl. Acad. Sci. USA 95: 8910-8915; Krauss et al., 2003, Protein Engineering 16(10): 753-759. Other humanization methods may involve the grafting of only parts of the CDRs, including but not limited to methods described in US 2001-0035606A1, Tan et al., 2002, J Immunol. 169:1119-1125; De Pascalis et al., 2002, J. Immunol. 169:3076-3084.

IV. Heterodimeric Antibodies

[0116] Accordingly, in some embodiments the present disclosure provides heterodimeric checkpoint antibodies that rely on the use of two different heavy chain variant Fc sequences, that will self-assemble to form heterodimeric Fc domains and heterodimeric antibodies.

[0117] The present disclosure is directed to novel constructs to provide heterodimeric antibodies that allow binding to more than one checkpoint antigen or ligand, e.g. to allow for bispecific binding. The heterodimeric antibody constructs are based on the self-assembling nature of the two Fc domains of the heavy chains of antibodies, e.g. two "monomers" that assemble into a "dimer". Heterodimeric antibodies are made by altering the amino acid sequence of each monomer as more fully discussed below. Thus, the present disclosure is generally directed to the creation of heterodimeric checkpoint antibodies which can co-engage antigens in several ways, relying on amino acid variants in the constant regions that are different on each chain to promote heterodimeric formation and/or allow for ease of purification of heterodimers over the homodimers.

[0118] Thus, the present disclosure provides bispecific antibodies. An ongoing problem in

antibody technologies is the desire for "bispecific" antibodies that bind to two different antigens simultaneously, in general thus allowing the different antigens to be brought into proximity and resulting in new functionalities and new therapies. In general, these antibodies are made by including genes for each heavy and light chain into the host cells. This generally results in the formation of the desired heterodimer (A-B), as well as the two homodimers (A-A and B-B (not including the light chain heterodimeric issues)). However, a major obstacle in the formation of bispecific antibodies is the difficulty in purifying the heterodimeric antibodies away from the homodimeric antibodies and/or biasing the formation of the heterodimer over the formation of the homodimers.

[0119] There are a number of mechanisms that can be used to generate the heterodimers of the present invention. In addition, as will be appreciated by those in the art, these mechanisms can be combined to ensure high heterodimerization. Thus, amino acid variants that lead to the production of heterodimers are referred to as "heterodimerization variants". As discussed below, heterodimerization variants can include steric variants (e.g. the "knobs and holes" or "skew" variants described below and the "charge pairs" variants described below) as well as "pl variants", which allows purification of homodimers away from heterodimers. As is generally described in WO2014/145806,

and specifically as below for the discussion of "heterodimerization variants", useful mechanisms for heterodimerization include "knobs and holes" ("KIH"; sometimes herein as "skew" variants (see discussion in WO2014/145806), "electrostatic steering" or "charge pairs" as described in WO2014/145806, pl variants as described in WO2014/145806, and general additional Fc variants as outlined in WO2014/145806 and below.

[0120] In the present disclosure, there are several basic mechanisms that can lead to ease of purifying heterodimeric antibodies; one relies on the use of pl variants, such that each monomer has a different pl, thus allowing the isoelectric purification of A-A, A-B and B-B dimeric proteins. Alternatively, some scaffold formats, such as the "triple F" format, also allows separation on the basis of size. As is further outlined below, it is also possible to "skew" the formation of heterodimers over homodimers. Thus, a combination of steric heterodimerization variants and pl or charge pair variants find particular use in the disclosure.

[0121] In general, embodiments of particular use in the present disclosure rely on sets of variants that include skew variants, which encourage heterodimerization formation over homodimerization formation, coupled with pl variants, which increase the pl difference between the two monomers to facilitate purification of heterodimers away from homodimers.

[0122] Additionally, as more fully outlined below, depending on the format of the heterodimer antibody, pl variants can be either contained within the constant and/or Fc domains of a monomer, or charged linkers, either domain linkers or scFv linkers, can be used. That is, scaffolds that utilize scFv(s) such as the Triple F format can include charged scFv linkers (either positive or negative), that give a further pl boost for purification purposes. As will be appreciated by those in the art, some Triple F formats are useful with just charged scFv linkers and no additional pl adjustments, although the disclosure does provide pl variants that are on

one or both of the monomers, and/or charged domain linkers as well. In addition, additional amino acid engineering for alternative functionalities may also confer pl changes, such as Fc, FcRn and KO variants.

[0123] In the present disclosure that utilizes pl as a separation mechanism to allow the purification of heterodimeric proteins, amino acid variants can be introduced into one or both of the monomer polypeptides; that is, the pl of one of the monomers (referred to herein for simplicity as "monomer A") can be engineered away from monomer B, or both monomer A and B change be changed, with the pl of monomer A increasing and the pl of monomer B decreasing. As discussed, the pl changes of either or both monomers can be done by removing or adding a charged residue (e.g. a neutral amino acid is replaced by a positively or negatively charged amino acid residue, e.g. glycine to glutamic acid), changing a charged residue from positive or negative to the opposite charge (e.g. aspartic acid to lysine) or changing a charged residue to a neutral residue (e.g. loss of a charge; lysine to serine.). A number of these variants are shown in the Figures.

[0124] Accordingly, this example of the present disclosure provides for creating a sufficient change in pl in at least one of the monomers such that heterodimers can be separated from homodimers. As will be appreciated by those in the art, and as discussed further below, this can be done by using a "wild type" heavy chain constant region and a variant region that has been engineered to either increase or decrease its pl (wt A+B or wt A - -B), or by increasing one region and decreasing the other region (A+ -B- or A- B+).

[0125] Thus, in general, a component of some examples of the present disclosure are amino acid variants in the constant regions of antibodies that are directed to altering the isoelectric point (pl) of at least one, if not both, of the monomers of a dimeric protein to form "pl antibodies" by incorporating amino acid substitutions ("pl variants" or "pl substitutions") into one or both of the monomers. As shown herein, the separation of the heterodimers from the two homodimers can be accomplished if the pls of the two monomers differ by as little as 0.1 pH unit, with 0.2, 0.3, 0.4 and 0.5 or greater all finding use in the present disclosure.

[0126] As will be appreciated by those in the art, the number of pl variants to be included on each or both monomer(s) to get good separation will depend in part on the starting pl of the components, for example in the triple F format, the starting pl of the scFv and Fab of interest. That is, to determine which monomer to engineer or in which "direction" (e.g. more positive or more negative), the Fv sequences of the two target antigens are calculated and a decision is made from there. As is known in the art, different Fvs will have different starting pls which are exploited in the present disclosure. In general, as outlined herein, the pls are engineered to result in a total pl difference of each monomer of at least about 0.1 logs, with 0.2 to 0.5 being preferred as outlined herein.

[0127] Furthermore, as will be appreciated by those in the art and outlined herein, in some examples , heterodimers can be separated from homodimers on the basis of size. As shown in Figure 1 for example, several of the formats allow separation of heterodimers and homodimers

on the basis of size.

A. Heterodimerization Variants

[0128] The present disclosure provides heterodimeric proteins, including heterodimeric antibodies in a variety of formats, which utilize heterodimeric variants to allow for heterodimeric formation and/or purification away from homodimers.

[0129] There are a number of suitable pairs of sets of heterodimerization skew variants. These variants come in "pairs" of "sets". That is, one set of the pair is incorporated into the first monomer and the other set of the pair is incorporated into the second monomer. It should be noted that these sets do not necessarily behave as "knobs in holes" variants, with a one-to-one correspondence between a residue on one monomer and a residue on the other; that is, these pairs of sets form an interface between the two monomers that encourages heterodimer formation and discourages homodimer formation, allowing the percentage of heterodimers that spontaneously form under biological conditions to be over 90%, rather than the expected 50% (25 % homodimer A/A:50% heterodimer A/B:25% homodimer B/B).

B. Steric Variants

[0130] In some examples, the formation of heterodimers can be facilitated by the addition of steric variants. That is, by changing amino acids in each heavy chain, different heavy chains are more likely to associate to form the heterodimeric structure than to form homodimers with the same Fc amino acid sequences. Suitable steric variants are included in the Figures.

[0131] One mechanism is generally referred to in the art as "knobs and holes", referring to amino acid engineering that creates steric influences to favor heterodimeric formation and disfavor homodimeric formation can also optionally be used; this is sometimes referred to as "knobs and holes", as described in Ridgway et al., Protein Engineering 9(7):617 (1996); Atwell et al., J. Mol. Biol. 1997 270:26; US Patent No. 8,216,805. The Figures identify a number of "monomer A - monomer B" pairs that rely on "knobs and holes". In addition, as described in Merchant et al., Nature Biotech. 16:677 (1998), these "knobs and hole" mutations can be combined with disulfide bonds to skew formation to heterodimerization.

[0132] An additional mechanism that finds use in the generation of heterodimers is sometimes referred to as "electrostatic steering" as described in Gunasekaran et al., J. Biol. Chem. 285(25):19637 (2010). This is sometimes referred to herein as "charge pairs". In this example, electrostatics are used to skew the formation towards heterodimerization. As those in the art will appreciate, these may also have an effect on pI, and thus on purification, and thus could in some cases also be considered pI variants. However, as these were generated to force heterodimerization and were not used as purification tools, they are classified as "steric

variants". These include, but are not limited to, D221E/P228E/L368E paired with D221R/P228R/K409R (e.g. these are "monomer corresponding sets) and C220E/P228E/368E paired with C220R/E224R/P228R/K409R.

[0133] Additional monomer A and monomer B variants that can be combined with other variants, optionally and independently in any amount, such as pl variants outlined herein or other steric variants that are shown in Figure 37 of US 2012/0149876.

[0134] In some examples, the steric variants outlined herein can be optionally and independently incorporated with any pl variant (or other variants such as Fc variants, FcRn variants, etc.) into one or both monomers, and can be independently and optionally included or excluded from the proteins of the invention.

[0135] A list of suitable skew variants is found in Figure 3 and Figure 8 showing some pairs of particular utility in many examples. Of particular use

are the pairs of sets including, but not limited to, S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q and T366S/L368A/Y407V : T366W (optionally including a bridging disulfide, T366S/L368A/Y407V/Y349C : T366W/S354C). In terms of nomenclature, the pair "S364K/E357Q : L368D/K370S" means that one of the monomers has the double variant set S364K/E357Q and the other has the double variant set L368D/K370S; as above, the "strandedness" of these pairs depends on the starting pl.

C. pl (Isoelectric point) Variants for Heterodimers

[0136] In general, as will be appreciated by those in the art, there are two general categories of pl variants: those that increase the pl of the protein (basic changes) and those that decrease the pl of the protein (acidic changes). As described herein, all combinations of these variants can be done: one monomer may be wild type, or a variant that does not display a significantly different pl from wild-type, and the other can be either more basic or more acidic. Alternatively, each monomer is changed, one to more basic and one to more acidic.

[0137] Preferred combinations of pl variants are shown in Figure 4. As outlined herein and shown in the figures, these changes are shown relative to IgG1, but all isotypes can be altered this way, as well as isotype hybrids. In the case where the heavy chain constant domain is from IgG2-4, R133E and R133Q can also be used.

[0138] In one instance for example in the Figure 1A, E, F, G, H and I formats, a preferred combination of pl variants has one monomer (the negative Fab side) comprising 208D/295E/384D/418E/421D variants (N208D/Q295E/N384D/Q418E/N421D when relative to human IgG1) and a second monomer (the positive scFv side) comprising a positively charged scFv linker, including (GKPGS)₄ (SEQ ID NO: 37755). However, as will be appreciated by those in the art, the first monomer includes a CH1 domain, including position 208. Accordingly, in

constructs that do not include a CH1 domain (for example for antibodies that do not utilize a CH1 domain on one of the domains, for example in a dual scFv format or a "one armed" format such as those depicted in Figure 1B, C or D), a preferred negative pI variant Fc set includes 295E/384D/418E/421D variants (Q295E/N384D/Q418E/N421D when relative to human IgG1).

[0139] Accordingly, in some instances, one monomer has a set of substitutions from Figure 4 and the other monomer has a charged linker (either in the form of a charged scFv linker because that monomer comprises an scFv or a charged domain linker, as the format dictates, which can be selected from those depicted in Figure 7).

1. Isotypic Variants

[0140] In addition, many instances of the disclosure rely on the "importation" of pI amino acids at particular positions from one IgG isotype into another, thus reducing or eliminating the possibility of unwanted immunogenicity being introduced into the variants. A number of these are shown in Figure 21 of US Publ. 2014/0370013.

[0141] That is, IgG1 is a common isotype for therapeutic antibodies for a variety of reasons, including high effector function. However, the heavy constant region of IgG1 has a higher pI than that of IgG2 (8.10 versus 7.31). By introducing IgG2 residues at particular positions into the IgG1 backbone, the pI of the resulting monomer is lowered (or increased) and additionally exhibits longer serum half-life. For example, IgG1 has a glycine (pI 5.97) at position 137, and IgG2 has a glutamic acid (pI 3.22); importing the glutamic acid will affect the pI of the resulting protein. As is described below, a number of amino acid substitutions are generally required to significant affect the pI of the variant antibody. However, it should be noted as discussed below that even changes in IgG2 molecules allow for increased serum half-life.

[0142] In other instances, non-isotypic amino acid changes are made, either to reduce the overall charge state of the resulting protein (e.g. by changing a higher pI amino acid to a lower pI amino acid), or to allow accommodations in structure for stability, etc. as is more further described below.

[0143] In addition, by pI engineering both the heavy and light constant domains, significant changes in each monomer of the heterodimer can be seen. As discussed herein, having the pIs of the two monomers differ by at least 0.5 can allow separation by ion exchange chromatography or isoelectric focusing, or other methods sensitive to isoelectric point.

D. Calculating pI

[0144] The pI of each monomer can depend on the pI of the variant heavy chain constant

domain and the pI of the total monomer, including the variant heavy chain constant domain and the fusion partner. Thus, in some examples, the change in pI is calculated on the basis of the variant heavy chain constant domain, using the chart in the Figure 19 of US Pub. 2014/0370013. As discussed herein, which monomer to engineer is generally decided by the inherent pI of the Fv and scaffold regions. Alternatively, the pI of each monomer can be compared.

E. pI Variants that also confer better FcRn in vivo binding

[0145] In the case where the pI variant decreases the pI of the monomer, they can have the added benefit of improving serum retention in vivo.

[0146] Although still under examination, Fc regions are believed to have longer half-lives in vivo, because binding to FcRn at pH 6 in an endosome sequesters the Fc (Ghetie and Ward, 1997 Immunol Today. 18(12): 592-598). The endosomal compartment then recycles the Fc to the cell surface. Once the compartment opens to the extracellular space, the higher pH, ~7.4, induces the release of Fc back into the blood. In mice, Dall' Acqua et al. showed that Fc mutants with increased FcRn binding at pH 6 and pH 7.4 actually had reduced serum concentrations and the same half life as wild-type Fc (Dall' Acqua et al. 2002, J. Immunol. 166:5171-5180).

The increased affinity of Fc for FcRn at pH 7.4 is thought to forbid the release of the Fc back into the blood. Therefore, the Fc mutations that will increase Fc's half-life in vivo will ideally increase FcRn binding at the lower pH while still allowing release of Fc at higher pH. The amino acid histidine changes its charge state in the pH range of 6.0 to 7.4. Therefore, it is not surprising to find His residues at important positions in the Fc/FcRn complex.

[0147] Recently it has been suggested that antibodies with variable regions that have lower isoelectric points may also have longer serum half-lives (Igawa et al., 2010 PEDS. 23(5): 385-392). However, the mechanism of this is still poorly understood. Moreover, variable regions differ from antibody to antibody. Constant region variants with reduced pI and extended half-life would provide a more modular approach to improving the pharmacokinetic properties of antibodies, as described herein.

F. Additional Fc Variants for Additional Functionality

[0148] In addition to pI amino acid variants, there are a number of useful Fc amino acid modification that can be made for a variety of reasons, including, but not limited to, altering binding to one or more FcγR receptors, altered binding to FcRn receptors, etc.

[0149] Accordingly, the proteins of the disclosure can include amino acid modifications, including the heterodimerization variants outlined herein, which includes the pI variants and

steric variants. Each set of variants can be independently and optionally included or excluded from any particular heterodimeric protein.

G. FcyR Variants

[0150] Accordingly, there are a number of useful Fc substitutions that can be made to alter binding to one or more of the FcyR receptors. Substitutions that result in increased binding as well as decreased binding can be useful. For example, it is known that increased binding to FcyRIIIa results in increased ADCC (antibody dependent cell-mediated cytotoxicity; the cell-mediated reaction wherein nonspecific cytotoxic cells that express FcyRs recognize bound antibody on a target cell and subsequently cause lysis of the target cell). Similarly, decreased binding to FcyRIIb (an inhibitory receptor) can be beneficial as well in some circumstances. Amino acid substitutions that find use in the present disclosure include those listed in US 2006-0024298 A1 (particularly figure 41) US2006-0121032 A1, US2006-0235208 A1, US 2007-0148170 A1

specifically for the variants disclosed therein. Particular variants that find use include, but are not limited to, 236A, 239D, 239E, 332E, 332D, 239D/332E, 267D, 267E, 328F, 267E/328F, 236A/332E, 239D/332E/330Y, 239D, 332E/330L, 243A, 243L, 264A, 264V and 299T.

[0151] In addition, there are additional Fc substitutions that find use in increased binding to the FcRn receptor and increased serum half life, as specifically disclosed in US 2009-0163699 A1, including, but not limited to, 434S, 434A, 428L, 308F, 259I, 428L/434S, 259I/308F, 436I/428L, 436I or V/434S, 436V/428L and 259I/308F/428L.

H. Ablation Variants

[0152] Similarly, another category of functional variants are "FcyR ablation variants" or "Fc knock out (FcKO or KO)" variants. In these examples, for some therapeutic applications, it is desirable to reduce or remove the normal binding of the Fc domain to one or more or all of the Fcy receptors (e.g. FcyR1, FcyRIIa, FcyRIIb, FcyRIIIa, etc.) to avoid additional mechanisms of action. That is, for example, in many instances, particularly in the use of bispecific checkpoint antibodies desirable to ablate FcyRIIIa binding to eliminate or significantly reduce ADCC activity such that one of the Fc domains comprises one or more Fcy receptor ablation variants. These ablation variants are depicted in Figure 5, and each can be independently and optionally included or excluded, with preferred aspects utilizing ablation variants selected from the group consisting of G236R/L328R, E233P/L234V/L235A/G236del/S239K, E233P/L234V/L235A/G236del/S267K, E233P/L234V/L235A/G236del/S239K/A327G, E233P/L234V/L235A/G236del/S267K/A327G and E233P/L234V/L235A/G236del. It should be noted that the ablation variants referenced herein ablate FcyR binding but generally not FcRn binding.

[0153] As is known in the art, the Fc domain of human IgG1 has the highest binding to the Fcγ receptors, and thus ablation variants can be used when the constant domain (or Fc domain) in the backbone of the heterodimeric antibody is IgG1. Alternatively, or in addition to ablation variants in an IgG1 background, mutations at the glycosylation position 297 (generally to A or S) can significantly ablate binding to FcγRIIIa, for example. Human IgG2 and IgG4 have naturally reduced binding to the Fcγ receptors, and thus those backbones can be used with or without the ablation variants.

I. Combination of Heterodimeric and Fc Variants

[0154] As will be appreciated by those in the art, all of the recited heterodimerization variants (including skew and/or pI variants) can be optionally and independently combined in any way, as long as they retain their "strandedness" or "monomer partition". In addition, all of these variants can be combined into any of the heterodimerization formats.

[0155] In the case of pI variants, while instances finding particular use are shown in the Figures, other combinations can be generated, following the basic rule of altering the pI difference between two monomers to facilitate purification.

[0156] In addition, any of the heterodimerization variants, skew and pI, are also independently and optionally combined with Fc ablation variants, Fc variants, FcRn variants, as generally outlined herein.

V. Useful Formats of the Disclosure

[0157] As will be appreciated by those in the art and discussed more fully below, the bispecific heterodimeric antibodies of the present disclosure can take on a wide variety of configurations, as are generally depicted in Figure 1. Some figures depict "single ended" configurations, where there is one type of specificity on one "arm" of the molecule and a different specificity on the other "arm". Other figures depict "dual ended" configurations, where there is at least one type of specificity at the "top" of the molecule and one or more different specificities at the "bottom" of the molecule. Thus, the present disclosure is directed to novel immunoglobulin compositions that co-engage a different first and a second antigen.

[0158] As will be appreciated by those in the art, the heterodimeric formats of the disclosure can have different valencies as well as be bispecific. That is, heterodimeric antibodies of the invention can be bivalent and bispecific, wherein one checkpoint target is bound by one ABD and the other checkpoint target is bound by a second ABD. The heterodimeric antibodies can also be trivalent and bispecific, wherein the first antigen is bound by two ABDs and the second antigen by a second ABD.

A. Bottle opener format

[0159] One heterodimeric scaffold that finds particular use in the present invention is the "triple F" or "bottle opener" scaffold format as shown in Figure 1A. In this embodiment, one heavy chain of the antibody contains a single chain Fv ("scFv", as defined below) and the other heavy chain is a "regular" Fab format, comprising a variable heavy chain and a light chain. This structure is sometimes referred to herein as "triple F" format (scFv-Fab-Fc) or the "bottle-opener" format, due to a rough visual similarity to a bottle-opener (see Figure 1A). The two chains are brought together by the use of amino acid variants in the constant regions (e.g. the Fc domain, the CH1 domain and/or the hinge region) that promote the formation of heterodimeric antibodies as is described more fully below.

[0160] There are several distinct advantages to the present "triple F" format. As is known in the art, antibody analogs relying on two scFv constructs often have stability and aggregation problems, which can be alleviated in the present invention by the addition of a "regular" heavy and light chain pairing. In addition, as opposed to formats that rely on two heavy chains and two light chains, there is no issue with the incorrect pairing of heavy and light chains (e.g. heavy 1 pairing with light 2, etc.).

[0161] The examples outlined herein rely in general on the bottle opener format that comprises a first monomer comprising an scFv, comprising a variable heavy and a variable light domain, covalently attached using an scFv linker (charged, in many but not all instances), where the scFv is covalently attached to the N-terminus of a first Fc domain usually through a domain linker (which, as outlined herein can either be un-charged or charged and can be exogenous or endogenous (e.g. all or part of the native hinge domain). The second monomer of the bottle opener format is a heavy chain, and the composition further comprises a light chain.

[0162] In addition, the Fc domains of the bottle opener format comprises skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being S364K/E357Q : L368D/K370S;), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0163] The bottle opener format includes skew variants, pl variants, and ablation variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some embodiments), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and an Fv that binds to a checkpoint receptor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/ G236del/S267K, and a variable heavy domain that, with the variable light

domain, makes up an Fv that binds to a second checkpoint receptor as outlined herein; and c) a light chain. In this particular example, suitable monomer Fv pairs include (fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3. LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA. In this particular embodiment, a bottle opener with these variants have the scFv side comprising the ABD 1G6_L1. 194_H1.279 that binds to PD-1 finds particular use. In this particular embodiment, a bottle opener with these variants have the scFv side comprising the [CTLA-4]_H3.23_L0.129 ABD that binds to CTLA-4 finds particular use.

[0164] Of particular use in some examples, particularly in the bottle opener format, are CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, TIM-3 X PD-1 and LAG-3 X CTLA-4.

[0165] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0166] In some examples, the bottle opener format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some embodiments include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some embodiments), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. In this particular example suitable Fv pairs include (fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3. LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA. In this particular embodiment, a bottle opener with these variants have the scFv side comprising the ABD 1G6_L1.194_H1.279 that binds to PD-1 finds particular use. In this particular embodiment, a bottle opener with these variants have the scFv side comprising the [CTLA-4]_H3.23_L0. 129 ABD that binds to CTLA-4 finds particular use.

[0167] Of particular use in some examples, particularly in the bottle opener format, are CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, TIM-3 X PD-1 and LAG-3 X CTLA-4.

[0168] Specifically, Figure 37 shows some bottle opener "backbone" sequences that are missing the Fv sequences that can be used in the present invention. That is, Fv sequences for the scFv portion and the Fab portion can be used from any combination of PD-1 and CTLA-4, PD-1 and TIM-3, PD-1 and LAG-3, PD-1 and TIGIT, PD-1 and BTLA, CTLA-4 and TIM-3, CTLA-4 and LAG-3, CTLA-4 and TIGIT, CTLA-4 and BTLA, TIM-3 and LAG-3, TIM-3 and TIGIT, TIM-3 and BTLA, LAG-3 and TIGIT, LAG-3 and BTLA and TIGIT and BTLA. The sequences can be any of those disclosed herein in the sequence listing and/or in Figures 9 to 13.

[0169] For bottle opener backbone 1 from Figure 37, specific Fv combinations of use in the present invention include PD-1 and CTLA-4, PD-1 and TIM-3, PD-1 and LAG-3, PD-1 and TIGIT, PD-1 and BTLA, CTLA-4 and TIM-3, CTLA-4 and LAG-3, CTLA-4 and TIGIT, CTLA-4 and BTLA, TIM-3 and LAG-3, TIM-3 and TIGIT, TIM-3 and BTLA, LAG-3 and TIGIT, LAG-3 and BTLA and TIGIT and BTLA. The sequences can be any of those disclosed herein in the sequence listing and/or in Figures 9 to 13.

[0170] For bottle opener backbone 1 from Figure 37, specific Fv combinations of use in the present disclosure include CTLA-4 (Fab) X PD-1 (scFv), PD-1 (Fab) X CTLA-4 (scFv), LAG-3 (Fab) X PD-1 (scFv), BTLA (Fab) X PD-1 (scFv) and LAG-3 (Fab) X CTLA-4 (scFv).

[0171] For bottle opener backbone 1 from Figure 37 (optionally including the 428L/434S variants), specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9_H1L1, as well as those listed in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146.

[0172] For bottle opener backbone 1 from Figure 37 (optionally including the 428L/434S variants), specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416.

[0173] For bottle opener backbone 1 from Figure 37 (optionally including the 428L/434S

variants), specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0LO; ; 2A11_H1.125_L2.113; 2A_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002.

[0174] For bottle opener backbone 1 from Figure 37 (optionally including the 428L/434S variants), specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0LO; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738.

[0175] For bottle opener backbone 1 from Figure 37 (optionally including the 428L/434S variants), specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0LO; 1D12_H0LO; 3H3_H1_L2.1; 6C8_H0LO; 6D9_H0_1D12_L0; 7A9_H0LO; 7B11_H0LO; 7B11var_H0LO and 7C2_H0LO, as well as those listed in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706.

[0176] Specific bottle opener examples are outlined below.

B. mAb-Fv format

[0177] One heterodimeric scaffold that finds particular use in the present disclosure is the mAb-Fv format shown in Figure 1H. In this instance, the format relies on the use of a C-terminal attachment of an "extra" variable heavy domain to one monomer and the C-terminal attachment of an "extra" variable light domain to the other monomer, thus forming a third antigen binding domain, wherein the Fab portions of the two monomers bind one checkpoint target and the "extra" scFv domain binds a different checkpoint target.

[0178] In this instance, the first monomer comprises a first heavy chain, comprising a first variable heavy domain and a first constant heavy domain comprising a first Fc domain, with a first variable light domain covalently attached to the C-terminus of the first Fc domain using a domain linker (vh1-CH1-hinge-CH2-CH3-[optional linker]-vl2). The second monomer comprises a second variable heavy domain of the second constant heavy domain comprising a second Fc domain, and a third variable heavy domain covalently attached to the C-terminus of the second Fc domain using a domain linker (vh1-CH1-hinge-CH2-CH3-[optional linker]-vh2). The two C-terminally attached variable domains make up a scFv. This instance further utilizes a common light chain comprising a variable light domain and a constant light domain, which associates with the heavy chains to form two identical Fabs. As for many of the embodiments herein, these constructs include skew variants, pl variants, ablation variants, additional Fc

variants, etc. as desired and described herein. In this instance, suitable Fv pairs include (Fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3, LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA.

[0179] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0180] In addition, the Fc domains of the mAb-Fv format comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0181] In some instances, the mAb-Fv format includes skew variants, pl variants, and ablation variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. Of particular use in some embodiments in this format, are (Fab-scFv order) CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0182] In some instances, the mAb-Fv format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants

E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. Of particular use in some embodiments in this format, are (Fab-scFv order) CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0183] For mAb-Fv sequences that are similar to the mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9_H1L1, as well as those listed in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146.

[0184] For mAb-Fv sequences that are similar to the mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416.

[0185] For mAb-Fv sequences that are similar to the mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002.

[0186] For mAb-Fv sequences that are similar to the mAb-scFv backbone 1 (optionally

including M428L/N434S) from Figure 38, specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738.

[0187] For mAb-Fv sequences that are similar to the mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0 and 7C2_H0L0, as well as those listed in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706.

C. mAb-scFv

[0188] One heterodimeric scaffold that finds particular use in the present disclosure is the mAb-scFv format shown in Figure 11. In this instance, the format relies on the use of a C-terminal attachment of an scFv to one of the monomers, thus forming a third antigen binding domain, wherein the Fab portions of the two monomers bind one checkpoint target and the "extra" scFv domain binds a different checkpoint target.

[0189] In this instance, the first monomer comprises a first heavy chain (comprising a variable heavy domain and a constant domain), with a C-terminally covalently attached scFv comprising a scFv variable light domain, an scFv linker and a scFv variable heavy domain in either orientation (vh1-CH1-hinge-CH2-CH3-[optional linker]-vh2-scFv linker-vl2 or vh1-CH1-hinge-CH2-CH3-[optional linker]-vl2-scFv linker-vh2). This embodiment further utilizes a common light chain comprising a variable light domain and a constant light domain, which associates with the heavy chains to form two identical Fabs that bind one of the target antigens. As for many of the instances herein, these constructs include skew variants, pl variants, ablation variants, additional Fc variants, etc. as desired and described herein. In this embodiment, suitable Fv pairs include (Fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3, LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA.

[0190] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0191] In addition, the Fc domains of the mAb-scFv format generally comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and

T366S/L368A/Y407V/Y349C : T366W/S354C), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0192] In some instances, the mAb-scFv format includes skew variants, pl variants, and ablation variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. Of particular use in some instances in this format, are (Fab-scFv order) CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0193] In some instances, the mAb-scFv format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. In mAb-scFv formats, specific Fv combinations of use in the present invention include CTLA-4 (Fab) X PD-1 (scFv), PD-1 (Fab) X CTLA-4 (scFv), LAG-3 (Fab) X PD-1 (scFv), BTLA (Fab) X PD-1 (scFv) and LAG-3 (Fab) X CTLA-4 (scFv).

[0194] In mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9 _H1L1, as well as those listed in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146.

[0195] In mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-

4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOS: 21-2918, SEQ ID NOS: 2919-6208, SEQ ID NOS: 36739-36818 and SEQ ID NOS: 35395-35416.

[0196] In mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOS: 17135-20764, SEQ ID NOS: 36819-36962, SEQ ID NOS: 35417-35606, SEQ ID NOS: 25194-32793 and SEQ ID NOS: 32794-33002.

[0197] In mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID NOS: 20885-21503 and SEQ ID NOS: 36707-36738.

[0198] In mAb-scFv backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0 and 7C2_H0L0, as well as those listed in SEQ ID NOS: 20765-20884, SEQ ID NOS: 37587-37698 and SEQ ID NOS: 36347-36706.

D. Central scFv

[0199] One heterodimeric scaffold that finds particular use in the present disclosure is the Central-scFv format shown in Figure 1F. In this example, the format relies on the use of an inserted scFv domain thus forming a third antigen binding domain, wherein the Fab portions of the two monomers bind one checkpoint target and the "extra" scFv domain binds another. The scFv domain is inserted between the Fc domain and the CH1-Fv region of one of the

monomers, thus providing a third antigen binding domain.

[0200] In this example, one monomer comprises a first heavy chain comprising a first variable heavy domain, a CH1 domain (and optional hinge) and Fc domain, with a scFv comprising a scFv variable light domain, an scFv linker and a scFv variable heavy domain. The scFv is covalently attached between the C-terminus of the CH1 domain of the heavy constant domain and the N-terminus of the first Fc domain using optional domain linkers (vh1-CH1-[optional linker]-vh2-scFv linker-vl2-[optional linker including the hinge]-CH2-CH3, or the opposite orientation for the scFv, vh1-CH1-[optional linker]-vl2-scFv linker-vh2-[optional linker including the hinge]-CH2-CH3). The other monomer is a standard Fab side. This example further utilizes a common light chain comprising a variable light domain and a constant light domain, which associates with the heavy chains to form two identical Fabs that bind a checkpoint inhibitor. As for many of the examples herein, these constructs include skew variants, pl variants, ablation variants, additional Fc variants, etc. as desired and described herein. In this example, suitable Fv pairs include (Fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3, LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA.

[0201] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0202] In addition, the Fc domains of the central scFv format generally comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0203] In some examples, the central scFv format includes skew variants, pl variants, and ablation variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain

forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. In this example, suitable Fv pairs include (Fabs listed first, scFvs second) CTLA-4 X PD-1, PD-1 X CTLA-4, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0204] In some examples, the central scFv format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. In this example, suitable Fv pairs include (Fabs listed first, scFvs second) CTLA-4 X PD-1, PD-1 X CTLA-4, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0205] For central-scFv sequences that are similar to/utilize the bottle opener backbone 1 of Figure 37 (optionally including M428L/N434S), specific Fv combinations of use in the present disclosure include CTLA-4 (Fab) X PD-1 (scFv), PD-1 (Fab) X CTLA-4 (scFv), LAG-3 (Fab) X PD-1 (scFv), BTLA (Fab) X PD-1 (scFv) and LAG-3 (Fab) X CTLA-4 (scFv).

[0206] For central-scFv sequences that are similar to/utilize the bottle opener backbone 1 of Figure 37, (optionally including M428L/N434S), specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9_H1L1, as well as those listed in SEQ ID NOS: 6209-11464, SEQ ID NOS: 11465-17134, SEQ ID NOS: 33003-33072, SEQ ID NOS: 33073-35394 and SEQ ID NOS: 36127-36146.

[0207] For central-scFv sequences that are similar to/utilize the bottle opener backbone 1 of Figure 37 (optionally including M428L/N434S), specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]

4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416.

[0208] For central-scFv sequences that are similar to/utilize the bottle opener backbone 1 of Figure 37 (optionally including M428L/N434S), specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002.

[0209] For central-scFv sequences that are similar to/utilize the bottle opener backbone 1 of Figure 37 (optionally including M428L/N434S), specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738.

[0210] For central-scFv sequences that are similar to/utilize the bottle opener backbone 1 of Figure 37 (optionally including M428L/N434S), specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0 and 7C2_H0L0, as well as those listed in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706.

E. Central-Fv format

[0211] One heterodimeric scaffold that finds particular use in the present disclosure is the Central-Fv format shown in Figure 1G. In this instance, the format relies on the use of an inserted scFv domain thus forming a third antigen binding domain, wherein the Fab portions of the two monomers bind one checkpoint target and the "extra" scFv domain binds another. The scFv domain is inserted between the Fc domain and the CH1-Fv region of the monomers, thus providing a third antigen binding domain, wherein each monomer contains a component of the scFv (e.g. one monomer comprises a variable heavy domain and the other a variable light domain).

[0212] In this instance, one monomer comprises a first heavy chain comprising a first variable heavy domain, a CH1 domain, and Fc domain and an additional variable light domain. The light domain is covalently attached between the C-terminus of the CH1 domain of the heavy constant domain and the N-terminus of the first Fc domain using domain linkers (vh1-CH1-[optional linker]-vl2-hinge-CH2-CH3). The other monomer comprises a first heavy chain

comprising a first variable heavy domain, a CH1 domain and Fc domain and an additional variable heavy domain (vh1-CH1-[optional linker]-vh2-hinge-CH2-CH3). The light domain is covalently attached between the C-terminus of the CH1 domain of the heavy constant domain and the N-terminus of the first Fc domain using domain linkers. This instance further utilizes a common light chain comprising a variable light domain and a constant light domain, that associates with the heavy chains to form two identical Fabs that bind a TTA. As for many of the instances herein, these constructs include skew variants, pl variants, ablation variants, additional Fc variants, etc. as desired and described herein. In this embodiment, suitable Fv pairs include (Fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3. LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA.

[0213] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0214] In central-scFv formats, specific Fv combinations of use in the present invention include CTLA-4 (Fab) X PD-1 (scFv), PD-1 (Fab) X CTLA-4 (scFv), LAG-3 (Fab) X PD-1 (scFv), BTLA (Fab) X PD-1 (scFv) and LAG-3 (Fab) X CTLA-4 (scFv).

[0215] In central-scFv formats, specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9 _H1L1, as well as those listed in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146.

[0216] In central-scFv formats, specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416.

[0217] In central-scFv formats, specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0L0; ; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002.

[0218] In central-scFv formats, specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738.

[0219] In central-scFv formats, specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0 and 7C2_H0L0, as well as those listed in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706.

F. One armed central-scFv

[0220] One heterodimeric scaffold that finds particular use in the present disclosure is the one armed central-scFv format shown in Figure 1C. In this instance, one monomer comprises just an Fc domain, while the other monomer uses an inserted scFv domain thus forming the second antigen binding domain. In this format, either the Fab portion binds one checkpoint target and the scFv binds another. The scFv domain is inserted between the Fc domain and the CH1-Fv region of one of the monomers.

[0221] In this instance, one monomer comprises a first heavy chain comprising a first variable heavy domain, a CH1 domain and Fc domain, with a scFv comprising a scFv variable light domain, an scFv linker and a scFv variable heavy domain. The scFv is covalently attached between the C-terminus of the CH1 domain of the heavy constant domain and the N-terminus of the first Fc domain using domain linkers. The second monomer comprises an Fc domain. This instance further utilizes a light chain comprising a variable light domain and a constant light domain, that associates with the heavy chain to form a Fab. As for many of the instances herein, these constructs include skew variants, pl variants, ablation variants, additional Fc variants, etc. as desired and described herein. In this instance, suitable Fv pairs include (Fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3, LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and

TIGIT, and TIGIT and BTLA.

[0222] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0223] In addition, the Fc domains of the one armed central-scFv format generally comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0224] In some instances, the one armed central-scFv format includes skew variants, pl variants, and ablation variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. In this instance, suitable Fv pairs include (Fabs listed first, scFvs second) CTLA-4 X PD-1, PD-1 X CTLA-4, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0225] In some instances, the one armed central-scFv format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. In this instance, suitable Fv pairs include (Fabs listed first, scFvs second) CTLA-4 X PD-1, PD-1 X CTLA-4, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0226] In one armed central-scFv formats, specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9_H1L1, as well as those listed in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146.

[0227] In one armed central-scFv formats, specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416.

[0228] In one armed central-scFv formats, specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002.

[0229] In one armed central-scFv formats, specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738.

[0230] In one armed central-scFv formats, specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0 and 7C2_H0L0, as well as those listed in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706.

G. One armed scFv-mAb

[0231] One heterodimeric scaffold that finds particular use in the present disclosure is the one armed scFv-mAb format shown in Figure 1D. In this instance, one monomer comprises just an Fc domain, while the other monomer uses a scFv domain attached at the N-terminus of the heavy chain, generally through the use of a linker: vh-scFv linker-vl-[optional domain linker]-CH1-hinge-CH2-CH3 or (in the opposite orientation) vl-scFv linker-vh-[optional domain linker]-CH1-hinge-CH2-CH3. In this format, either the Fab portion binds one checkpoint target and the scFv binds another. This instance further utilizes a light chain comprising a variable light domain and a constant light domain, that associates with the heavy chain to form a Fab. As for many of the instances herein, these constructs include skew variants, pl variants, ablation variants, additional Fc variants, etc. as desired and described herein. In this instance, suitable Fv pairs include (Fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3, LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA.

[0232] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0233] In addition, the Fc domains of the comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0234] In some instances, the one armed scFv-mAb format includes skew variants, pl variants, and ablation variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/ G236del/S267K, and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. In this embodiment, suitable Fv pairs include (Fabs listed first, scFvs second) CTLA-4 X PD-1, PD-1 X CTLA-4,

LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0235] In some instances, the one armed scFv-mAb format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. In this instance, suitable Fv pairs include (Fabs listed first, scFVs second) CTLA-4 X PD-1, PD-1 X CTLA-4, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0236] In one armed scFv-mAb formats, specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9_H1L1, as well as those listed in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146.

[0237] In one armed scFv-mAb formats, specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416.

[0238] In one armed scFv-mAb formats, specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2;

2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002.

[0239] In one armed scFv-mAb formats, specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738.

[0240] In one armed scFv-mAb formats, specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0 and 7C2_H0L0, as well as those listed in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706.

H. scFv-mAb format

[0241] One heterodimeric scaffold that finds particular use in the present disclosure is the mAb-scFv format shown in Figure 1E. In this instance, the format relies on the use of a N-terminal attachment of a scFv to one of the monomers, thus forming a third antigen binding domain, wherein the Fab portions of the two monomers bind one checkpoint target and the "extra" scFv domain binds a different checkpoint target.

[0242] In this instance, the first monomer comprises a first heavy chain (comprising a variable heavy domain and a constant domain), with a N-terminally covalently attached scFv comprising a scFv variable light domain, an scFv linker and a scFv variable heavy domain in either orientation ((vh1-scFv linker-vl1-[optional domain linker]- vh2-CH1-hinge-CH2-CH3) or (with the scFv in the opposite orientation) ((vl1-scFv linker-vh1-[optional domain linker]-vh2-CH1-hinge-CH2-CH3)). This instance further utilizes a common light chain comprising a variable light domain and a constant light domain, that associates with the heavy chains to form two identical Fabs that bind one of the target antigens. As for many of the instance herein, these constructs include skew variants, pl variants, ablation variants, additional Fc variants, etc. as desired and described herein. In this embodiment, suitable Fv pairs include (Fabs listed first, scFvs second) PD-1 and CTLA-4, CTLA-4 and PD-1, PD-1 and TIM-3, TIM-3 and PD-1, PD-1 and LAG-3, LAG-3 X PD1, PD-1 and TIGIT, TIGIT and PD-1, PD-1 and BTLA, BTLA and PD-1, CTLA-4 and TIM-3, TIM-3 and CTLA-4, CTLA-4 and LAG-3, LAG-3 and CTLA-4, CTLA-4 and TIGIT, TIGIT and CTLA-4, CTLA-4 and BTLA, BTLA and CTLA-4, TIM-3 and LAG-3, LAG-3 and TIM-3, TIM-3 and TIGIT, TIGIT and TIM-3, TIM-3 and BTLA, BTLA and TIM-3. LAG-3 and TIGIT, TIGIT and LAG-3, LAG-3 and BTLA, BTLA and LAG-3, BTLA and TIGIT, and TIGIT and BTLA.

[0243] The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0244] In addition, the Fc domains of the scFv-mAb format comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0245] In some instances, the mAb-scFv format includes skew variants, pl variants, and ablation variants. Accordingly, some embodiments include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. Of particular use in some embodiments in this format, are (Fab-scFv order) CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0246] In some instances, the mAb-scFv format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. Of particular use in some instances in this format, are (Fab-scFv order) CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0247] For the mAb-scFv format backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9_H1L1, as well as

those listed in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146.

[0248] For the mAb-scFv format backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human CTLA-4 include, but are not limited to, [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; [CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67 and [CTLA-4]_H3_L0.74, as well as those listed in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416.

[0249] For the mAb-scFv format backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human LAG-3 include, but are not limited to, 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1, as well as those listed in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002.

[0250] For the mAb-scFv format backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human BTLA include, but are not limited to, 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1, as well as those listed in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738.

[0251] For the mAb-scFv format backbone 1 (optionally including M428L/N434S) from Figure 38, specific ABDs that bind human TIM-3 include, but are not limited to, 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0 and 7C2_H0L0, as well as those listed in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706.

I. Dual scFv formats

[0252] The present disclosure also provides dual scFv formats as are known in the art and shown in Figure 1B. In this instance, the heterodimeric bispecific antibody is made up of two scFv-Fc monomers (both in either (vh-scFv linker-vl-[optional domain linker]-CH2-CH3) format or (vl-scFv linker-vh-[optional domain linker]-CH2-CH3) format, or with one monomer in one orientation and the other in the other orientation.

[0253] In this case, all ABDs are in the scFv format, with any combination of PD-1 and CTLA-4, PD-1 and TIM-3, PD-1 and LAG-3, PD-1 and TIGIT, PD-1 and BTLA, CTLA-4 and TIM-3, CTLA-4 and LAG-3, CTLA-4 and TIGIT, CTLA-4 and BTLA, TIM-3 and LAG-3, TIM-3 and TIGIT, TIM-3 and BTLA, LAG-3 and TIGIT, LAG-3 and BTLA and TIGIT and BTLA being useful. The ABD sequences for these combinations can be as disclosed in the sequence listing or as shown in Figures 9 to 13, and in any combination as shown in Figure 39 and Figure 40.

[0254] In addition, the Fc domains of the dual scFv format comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C), optionally ablation variants (including those shown in Figure 5), optionally charged scFv linkers (including those shown in Figure 7) and the heavy chain comprises pl variants (including those shown in Figure 4).

[0255] In some instances, the dual scFv format includes skew variants, pl variants, and ablation variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. Of particular use in some instances in this format, are (Fab-scFv order) CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

[0256] In some instances, the dual scFv format includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer that comprises the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain of the light chain, makes up an Fv that binds to a first checkpoint inhibitor, and a second variable heavy domain; b) a second monomer that comprises the skew variants L368D/K370S, the pl variants

N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a first variable heavy domain that, with the first variable light domain, makes up the Fv that binds to the first checkpoint inhibitor as outlined herein, and a second variable light chain, that together with the second variable heavy chain forms an Fv (ABD) that binds a second checkpoint inhibitors; and c) a light chain comprising a first variable light domain and a constant light domain. Of particular use in some embodiments in this format, are (Fab-scFv order) CTLA-4 X PD-1, LAG-3 X PD-1, BTLA X PD-1, and LAG-3 X CTLA-4.

J. Non-heterodimeric bispecific antibodies

[0257] As will be appreciated by those in the art, the Fv sequences outlined herein can also be used in both monospecific antibodies (e.g. "traditional monoclonal antibodies") or non-heterodimeric bispecific formats.

[0258] Suitable non-heterodimeric bispecific formats are known in the art, and include a number of different formats as generally depicted in Spiess et al., Molecular Immunology (67):95-106 (2015) and Kontermann, mAbs 4:2, 182-197 (2012).

K. Monospecific, monoclonal antibodies

[0259] As will be appreciated by those in the art, the novel Fv sequences outlined herein can also be used in both monospecific antibodies (e.g. "traditional monoclonal antibodies") or non-heterodimeric bispecific formats. Accordingly, the present disclosure provides monoclonal (monospecific) antibodies comprising the 6 CDRs and/or the vh and vl sequences from the figures, generally with IgG1, IgG2, IgG3 or IgG4 constant regions, with IgG1, IgG2 and IgG4 (including IgG4 constant regions comprising a S228P amino acid substitution) finding particular use in some instances. That is, any sequence herein with a "H L" designation can be linked to the constant region of a human IgG1 antibody.

VI. Antigen Binding Domains to Target Antigens

[0260] The bispecific antibodies of the invention have two different antigen binding domains (ABDs) that bind to two different target checkpoint antigens ("target pairs"), in either bivalent, bispecific formats or trivalent, bispecific formats as generally shown in figure 1. Suitable target checkpoint antigens include human (and sometimes cyno) PD-1, CTLA-4, TIM-3, LAG-3, TIGIT and BTLA, the sequences of which are shown in Figure 2. Accordingly, suitable bispecific antibodies bind PD-1 and CTLA-4, PD-1 and TIM-3, PD-1 and LAG-3, PD-1 and TIGIT, PD-1 and BTLA, CTLA-4 and TIM-3, CTLA-4 and LAG-3, CTLA-4 and TIGIT, CTLA-4 and BTLA, TIM-3 and LAG-3, TIM-3 and TIGIT, TIM-3 and BTLA, LAG-3 and TIGIT, LAG-3 and BTLA and

TIGIT and BTLA. Note that generally these bispecific antibodies are named "anti-PD-1 X anti-CTLA-4", or generally simplistically or for ease (and thus interchangeably) as "PD-1 X CTLA-4", etc. for each pair. Note that unless specified herein, the order of the antigen list in the name does not confer structure; that is a PD-1 X CTLA-4 bottle opener antibody can have the scFv bind to PD-1 or CTLA-4, although in some cases, the order specifies structure as indicated.

[0261] As is more fully outlined herein, these combinations of ABDs can be in a variety of formats, as outlined below, generally in combinations where one ABD is in a Fab format and the other is in an scFv format. As discussed herein and shown in Figure 1, some formats use a single Fab and a single scFv (Figure 1A, C and D), and some formats use two Fabs and a single scFv (Figure 1E, F, G, H and I).

A. Antigen Binding Domains

[0262] As discussed herein, the bispecific checkpoint heterodimeric antibodies of the invention include two antigen binding domains (ABDs), each of which bind to a different checkpoint protein. As outlined herein, these heterodimeric antibodies can be bispecific and bivalent (each antigen is bound by a single ABD, for example, in the format depicted in Figure 1A), or bispecific and trivalent (one antigen is bound by a single ABD and the other is bound by two ABDs, for example as depicted in Figure 1F).

[0263] In addition, in general, one of the ABDs comprises a scFv as outlined herein, in an orientation from N- to C-terminus of vh-scFv linker-vl or vl-scFv linker-vh. One or both of the other ABDs, according to the format, generally is a Fab, comprising a vh domain on one protein chain (generally as a component of a heavy chain) and a vl on another protein chain (generally as a component of a light chain).

[0264] The disclosure provides a number of ABDs that bind to a number of different checkpoint proteins, as outlined below. As will be appreciated by those in the art, any set of 6 CDRs or vh and vl domains can be in the scFv format or in the Fab format, which is then added to the heavy and light constant domains, where the heavy constant domains comprise variants (including within the CH1 domain as well as the Fc domain). The scFv sequences contained in the sequence listing utilize a particular charged linker, but as outlined herein, uncharged or other charged linkers can be used, including those depicted in Figure 7.

[0265] In addition, as discussed above, the numbering used in the Sequence Listing for the identification of the CDRs is Kabat, however, different numbering can be used, which will change the amino acid sequences of the CDRs as shown in Table 1.

[0266] For all of the variable heavy and light domains listed herein, further variants can be made. As outlined herein, in some embodiments the set of 6 CDRs can have from 0, 1, 2, 3, 4 or 5 amino acid modifications (with amino acid substitutions finding particular use), as well as changes in the framework regions of the variable heavy and light domains, as long as the

frameworks (excluding the CDRs) retain at least about 80, 85 or 90% identity to a human germline sequence selected from those listed in Figure 1 of U.S. Patent No.7,657,380, which Figure and Legend. Thus, for example, the identical CDRs as described herein can be combined with different framework sequences from human germline sequences, as long as the framework regions retain at least 80, 85 or 90% identity to a human germline sequence selected from those listed in Figure 1 of U.S. Patent No.7,657,380. Alternatively, the CDRs can have amino acid modifications (e.g. from 1, 2, 3, 4 or 5 amino acid modifications in the set of CDRs (that is, the CDRs can be modified as long as the total number of changes in the set of 6 CDRs is less than 6 amino acid modifications, with any combination of CDRs being changed; e.g. there may be one change in vICDR1, two in vhCDR2, none in vhCDR3, etc.)), as well as having framework region changes, as long as the framework regions retain at least 80, 85 or 90% identity to a human germline sequence selected from those listed in Figure 1 of U.S. Patent No.7,657,380.

B. PD-1 Antigen Binding Domains

[0267] In some instances, one of the ABDs binds PD-1. Suitable sets of 6 CDRs and/or vh and vl domains, as well as scFv sequences, are depicted in SEQ ID NOS: 6209-11464, SEQ ID NOS: 11465-17134, SEQ ID NOS: 33003-33072, SEQ ID NOS: 33073-35394 and SEQ ID NOS: 36127-36146. ABD sequences of particular interest in some instances are shown in Figure 9 and include those sequences in the sequence listing with the identifiers 1G6_H1.279_L1.194; 1G6_H1.280_L1.224; 1G6_L1.194_H1.279; 1G6_L1.210_H1.288; and 2E9_H1L1.

[0268] As will be appreciated by those in the art, suitable anti-PD-1 ABDs can comprise a set of 6 CDRs as depicted in these sequences and Figures, either as they are underlined or, in the case where a different numbering scheme is used as described herein and as shown in Table 1, as the CDRs that are identified using other alignments within the vh and vl sequences of SEQ ID NOS: 6209-11464, SEQ ID NOS: 11465-17134, SEQ ID NOS: 33003-33072, SEQ ID NOS: 33073-35394 and SEQ ID NOS: 36127-36146. Suitable ABDs can also include the entire vh and vl sequences as depicted in these sequences and Figures, used as scFvs or as Fabs. In many of the instances herein that contain an Fv to PD-1, it is the scFv monomer that binds PD-1. As discussed herein, the other of the target pair when PD-1 is one of the antigens is selected from CTLA-4 (suitable sequences are depicted in SEQ ID NOS: 21-2918, SEQ ID NOS: 2919-6208, SEQ ID NOS: 36739-36818 and SEQ ID NOS: 35395-35416 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), TIM-3 (suitable sequences are depicted in SEQ ID NOS: 20765-20884, SEQ ID NOS: 37587-37698 and SEQ ID NOS: 36347-36706 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), LAG-3 (suitable sequences are depicted in SEQ ID NOS: 17135-20764, SEQ ID NOS: 36819-36962, SEQ ID NOS: 35417-35606, SEQ ID NOS: 25194-32793 and SEQ ID NOS: 32794-33002 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), BTLA (suitable sequences are depicted in SEQ ID NOS: 20885-21503 and SEQ ID NOS: 36707-36738 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), and TIGIT (suitable sequences are depicted in SEQ ID NOS: 21504-21523 and SEQ ID NOS: 37435-37586 (which

can be scFv sequences, CDR sequence sets or vh and vl sequences)).

[0269] Particularly useful ABDs that bind human PD-1 include, but are not limited to, 1G6_H1.279_L1.194, 1G6_H1.280_L1.224; 1G6_L1.194_H1.279, 1G6_L1.210_H1.288 and 2E9_H1L1.

[0270] In addition to the parental CDR sets disclosed in the sequence listing that form an ABD to PD-1, the disclosure provides variant CDR sets. In one instance, a set of 6 CDRs can have 1, 2, 3, 4 or 5 amino acid changes from the parental CDRs, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many instances.

[0271] In addition to the parental variable heavy and variable light domains disclosed herein that form an ABD to PD-1, the disclosure provides variant vh and vl domains. In one instance, the variant vh and vl domains each can have from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid changes from the parental vh and vl domain, as long as the ABD is still able to bind to the target antigen, as measured at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many instances. In another instance, the variant vh and vl are at least 90, 95, 97, 98 or 99% identical to the respective parental vh or vl, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many instances.

[0272] Specific preferred examples include the 1G6_L1.194_H1.279 anti-PD-1 Fv, in a scFv format, included within any of the bottle opener format backbones of Figure 37.

[0273] Specific preferred examples include the 1G6_L1.194_H1.279 anti-PD-1 Fv, in a scFv format, included within any of the mAb-scFv format backbones of Figure 38.

C. CTLA-4 Antigen Binding Domains

[0274] In some instances, one of the ABDs binds CTLA-4. Suitable sets of 6 CDRs and/or vh and vl domains, as well as scFv sequences, are depicted in SEQ ID NOS: 21-2918, SEQ ID NOS: 2919-6208, SEQ ID NOS: 36739-36818 and SEQ ID NOS: 35395-35416. ABD sequences of particular interest in some instances are shown in Figure 10 and also include those sequences in the sequence listing with the identifiers [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; 0[CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118;

[CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67; and [CTLA-4]_H3_L0.74.

[0275] As will be appreciated by those in the art, suitable anti-CTLA-4 ABDs can comprise a set of 6 CDRs as depicted in these sequences and Figures, either as they are underlined or, in the case where a different numbering scheme is used as described herein and as shown in Table 1, as the CDRs that are identified using other alignments within the vh and vl sequences of SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416. Suitable ABDs can also include the entire vh and vl sequences as depicted in these sequences and Figures, used as scFvs or as Fabs. In many of the instances herein that contain an Fv to CTLA-4, it is the scFv monomer that binds CTLA-4. As discussed herein, the other of the target pair when CTLA-4 is one of the antigens is selected from PD-1 (suitable sequences are depicted in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), TIM-3 (suitable sequences are depicted in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), LAG-3 (suitable sequences are depicted in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), BTLA (suitable sequences are depicted in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), and TIGIT (suitable sequences are depicted in SEQ ID NOs: 21504-21523 and SEQ ID NOs: 37435-37586 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)).

[0276] In addition to the parental CDR sets disclosed in the sequence listing that form an ABD to CTLA-4, the disclosure provides variant CDR sets. In one instance, a set of 6 CDRs can have 1, 2, 3, 4 or 5 amino acid changes from the parental CDRs, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many instances.

[0277] In addition to the parental variable heavy and variable light domains disclosed herein that form an ABD to CTLA-4, the invention provides variant vh and vl domains. In one instance, the variant vh and vl domains each can have from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid changes from the parental vh and vl domain, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many instances. In another instance, the variant vh and vl are at least 90, 95, 97, 98 or 99% identical to the respective parental vh or vl, as long as the ABD is still able to bind to the

target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many instances.

[0278] Specific preferred examples include the [CTLA-4]_H3_L0.22 anti-CTLA-4 Fv, in a Fab format, included within any of the bottle opener format backbones of Figure 37.

[0279] Specific preferred instances include the [CTLA-4]_H3_L0.22 anti-CTLA-4 Fv, in a scFv format, included within any of the bottle opener format backbones of Figure 37.

[0280] Specific preferred instances include the [CTLA-4]_H3_L0.22 anti-CTLA-4 Fv, in a scFv format, included within any of the mAb-scFv format backbones of Figure 38.

[0281] Specific preferred instances include the [CTLA-4]_H3_L0.22 anti-CTLA-4 Fv, in a Fab format, included within any of the mAb-scFv format backbones of Figure 38.

D. TIM-3 Antigen Binding Domains

[0282] In some examples, one of the ABDs binds TIM-3. Suitable sets of 6 CDRs and/or vh and vl domains, as well as scFv sequences, are depicted SEQ ID NOS: 20765-20884, SEQ ID NOS: 37587-37698 and SEQ ID NOS: 36347-36706. ABD sequences of particular interest in some examples include those sequences in the sequence listing with the identifiers 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0; and 7C2_H0L0.

[0283] As will be appreciated by those in the art, suitable anti-TIM-3 ABDs can comprise a set of 6 CDRs as depicted in these sequences and Figures, either as they are underlined or, in the case where a different numbering scheme is used as described herein and as shown in Table 1, as the CDRs that are identified using other alignments within the vh and vl sequences of SEQ ID NOS: 20765-20884, SEQ ID NOS: 37587-37698 and SEQ ID NOS: 36347-36706. Suitable ABDs can also include the entire vh and vl sequences as depicted in these sequences and Figures, used as scFvs or as Fabs. In many of the examples herein that contain an Fv to TIM-3, it is the Fab monomer that binds TIM-3. As discussed herein, the other of the target pair when TIM-3 is one of the antigens is selected from PD-1 (suitable sequences are depicted in SEQ ID NOS: 6209-11464, SEQ ID NOS: 11465-17134, SEQ ID NOS: 33003-33072, SEQ ID NOS: 33073-35394 and SEQ ID NOS: 36127-36146 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), CTLA-4 (suitable sequences are depicted in SEQ ID NOS: 21-2918, SEQ ID NOS: 2919-6208, SEQ ID NOS: 36739-36818 and SEQ ID NOS: 35395-35416 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), LAG-3 (suitable sequences are depicted in SEQ ID NOS: 17135-20764, SEQ ID NOS: 36819-36962, SEQ ID NOS: 35417-35606, SEQ ID NOS: 25194-32793 and SEQ ID NOS: 32794-33002 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), BTLA (suitable sequences are depicted in SEQ ID NOS: 20885-21503 and SEQ ID NOS: 36707-36738 (which

can be scFv sequences, CDR sequence sets or vh and vl sequences)), and TIGIT (suitable sequences are depicted in SEQ ID NOs: 21504-21523 and SEQ ID NOs: 37435-37586 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)).

[0284] In addition to the parental CDR sets disclosed in the sequence listing that form an ABD to TIM-3, the disclosure provides variant CDR sets. In one example, a set of 6 CDRs can have 1, 2, 3, 4 or 5 amino acid changes from the parental CDRs, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples.

[0285] In addition to the parental variable heavy and variable light domains disclosed herein that form an ABD to TIM-3, the disclosure provides variant vh and vl domains. In one example, the variant vh and vl domains each can have from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid changes from the parental vh and vl domain, as long as the ABD is still able to bind to the target antigen, as measured at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples. In another example the variant vh and vl are at least 90, 95, 97, 98 or 99% identical to the respective parental vh or vl, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples.

LAG-3 Antigen Binding Domains

[0286] In some examples, one of the ABDs binds LAG-3. Suitable sets of 6 CDRs and/or vh and vl domains, as well as scFv sequences, are depicted SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002. ABD sequences of particular interest in some examples are shown in Figure 11 and also include those sequences in the sequence listing with the identifiers 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1.

[0287] As will be appreciated by those in the art, suitable anti-LAG-3 ABDs can comprise a set of 6 CDRs as depicted in these sequences and Figures, either as they are underlined or, in the case where a different numbering scheme is used as described herein and as shown in Table 1, as the CDRs that are identified using other alignments within the vh and vl sequences of SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002. Suitable ABDs can also include the entire

vh and vl sequences as depicted in these sequences and Figures, used as scFvs or as Fabs. In many of the examples herein that contain an Fv to LAG-3, it is the Fab monomer that binds LAG-3. As discussed herein, the other of the target pair when LAG-3 is one of the antigens is selected from PD-1 (suitable sequences are depicted in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), CTLA-4 (suitable sequences are depicted in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), TIM-3 (suitable sequences are depicted in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), BTLA (suitable sequences are depicted in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), and TIGIT (suitable sequences are depicted in SEQ ID NOs: 21504-21523 and SEQ ID NOs: 37435-37586 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)).

[0288] In addition to the parental CDR sets disclosed in the sequence listing that form an ABD to LAG-3, the disclosure provides variant CDR sets. In one example, a set of 6 CDRs can have 1, 2, 3, 4 or 5 amino acid changes from the parental CDRs, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples .

[0289] In addition to the parental variable heavy and variable light domains disclosed herein that form an ABD to LAG-3, the invention provides variant vh and vl domains. In one example, the variant vh and vl domains each can have from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid changes from the parental vh and vl domain, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples. In another example, the variant vh and vl are at least 90, 95, 97, 98 or 99% identical to the respective parental vh or vl, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples.

[0290] Specific preferred examples include the 7G8_H3.30_L1.34 anti-LAG-3 Fv, in a Fab format, included within any of the bottle opener format backbones of Figure 37.

[0291] Specific preferred examples include the 7G8_H3.30_L1.34 anti-LAG-3 Fv, in a scFv format, included within any of the bottle opener format backbones of Figure 37.

E. BTLA Antigen Binding Domains

[0292] In some examples, one of the ABDs binds BTLA. Suitable sets of 6 CDRs and/or vh and vl domains, as well as scFv sequences, are depicted in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738. ABD sequences of particular interest in some examples are shown in Figure 12 and also include those sequences in the sequence listing with the identifiers 9C6_H0L0; 9C6_H1.1_L1; and 9C6_H1.11_L1.

[0293] As will be appreciated by those in the art, suitable anti-BTLA ABDs can comprise a set of 6 CDRs as depicted in these sequences and Figures, either as they are underlined or, in the case where a different numbering scheme is used as described herein and as shown in Table 1, as the CDRs that are identified using other alignments within the vh and vl sequences SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738. Suitable ABDs can also include the entire vh and vl sequences as depicted in these sequences and Figures, used as scFvs or as Fabs. In many of the examples herein that contain an Fv to BTLA, it is the Fab monomer that binds BTLA. As discussed herein, the other of the target pair when LAG-3 is one of the antigens is selected from PD-1 (suitable sequences are depicted in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), CTLA-4 (suitable sequences are depicted in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), TIM-3 (suitable sequences are depicted in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), LAG-3 (suitable sequences are depicted in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), and TIGIT (suitable sequences are depicted in SEQ ID NOs: 21504-21523 and SEQ ID NOs: 37435-37586 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)).

[0294] In addition to the parental CDR sets disclosed in the sequence listing that form an ABD to BTLA, the disclosure provides variant CDR sets. In one example, a set of 6 CDRs can have 1, 2, 3, 4 or 5 amino acid changes from the parental CDRs, as long as the ABD is still able to bind to the target antigen, as measured at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples.

[0295] In addition to the parental variable heavy and variable light domains disclosed herein that form an ABD to BTLA, the disclosure provides variant vh and vl domains. In one example, the variant vh and vl domains each can have from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid changes from the parental vh and vl domain, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples. In another example, the variant vh and vl are at least 90, 95, 97, 98 or 99% identical to the respective parental vh or vl, as long as the ABD is still able to bind to the target antigen, as measured by at least one of a Biacore, surface plasmon resonance (SPR)

and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples.

[0296] Specific preferred examples include the 9C6_H1.1_L1 anti-LAG-3 Fv, in a Fab format, included within any of the bottle opener format backbones of Figure 37.

[0297] Specific preferred examples include the 7G8_H3.30_L1.34 anti-LAG-3 Fv, in a scFv format, included within any of the bottle opener format backbones of Figure 37.

F. TIGIT Antigen Binding Domains

[0298] In some examples, one of the ABDs binds TIGIT. Suitable sets of 6 CDRs and/or vh and vl domains, as well as scFv sequences, are depicted in SEQ ID NOs: 21504-21523 and SEQ ID NOs: 37435-37586.

[0299] As will be appreciated by those in the art, suitable anti- TIGIT ABDs can comprise a set of 6 CDRs as depicted in these sequences and Figures, either as they are underlined or, in the case where a different numbering scheme is used as described herein and as shown in Table 1, as the CDRs that are identified using other alignments within the vh and vl sequences of SEQ ID NOs: 21504-21523 and SEQ ID NOs: 37435-37586. Suitable ABDs can also include the entire vh and vl sequences as depicted in these sequences and Figures, used as scFvs or as Fabs. In many of the examples herein that contain an Fv to TIGIT, it is the Fab monomer that binds TIGIT. As discussed herein, the other of the target pair when LAG-3 is one of the antigens is selected from PD-1 (suitable sequences are depicted in SEQ ID NOs: 6209-11464, SEQ ID NOs: 11465-17134, SEQ ID NOs: 33003-33072, SEQ ID NOs: 33073-35394 and SEQ ID NOs: 36127-36146 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), CTLA-4 (suitable sequences are depicted in SEQ ID NOs: 21-2918, SEQ ID NOs: 2919-6208, SEQ ID NOs: 36739-36818 and SEQ ID NOs: 35395-35416 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), TIM-3 (suitable sequences are depicted in SEQ ID NOs: 20765-20884, SEQ ID NOs: 37587-37698 and SEQ ID NOs: 36347-36706 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), LAG-3 (suitable sequences are depicted in SEQ ID NOs: 17135-20764, SEQ ID NOs: 36819-36962, SEQ ID NOs: 35417-35606, SEQ ID NOs: 25194-32793 and SEQ ID NOs: 32794-33002 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)), and BTLA (suitable sequences are depicted in SEQ ID NOs: 20885-21503 and SEQ ID NOs: 36707-36738 (which can be scFv sequences, CDR sequence sets or vh and vl sequences)).

G. Specific Bispecific Examples

[0300] The disclosure provides a number of particular bispecific antibodies as outlined below.

1. LAG-3 X CTLA-4

[0301] In some instances, the disclosure provides bispecific heterodimeric antibodies comprising a first ABD that binds human LAG-3 and a second ABD that binds human CTLA-4, and can be in any format shown in Figure 1. Most of the disclosure refers to a bottle opener format with the Fab being the LAG-3 side and the CLTA-4 side being the scFv side, but this can be reversed for all of the examples herein.

[0302] In one instance, the LAG-3 X CTLA-4 bispecific antibody is in the bottle opener format of Figure 1A, wherein the CTLA-4 ABD is the scFv. In another instance, the LAG-3 X CTLA-4 bispecific antibody is in the central-scFv format of Figure 1F, with the LAG-3 ABD being the Fab components. In another instance, the LAG-3 X CTLA-4 bispecific antibody is in the central-scFv format of Figure 1F, with the CTLA-4 ABD being the scFv.

[0303] The LAG-3 X CTLA-4 bispecific antibodies (in either the bottle opener format or the central-scFv format) generally include skew variants, pl variants and ablation variants as outlined herein. That is, in either format, the Fc domains of the two monomers can comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8), optionally ablation variants (including those shown in Figure 5), and the monomer comprising the Fab side (e.g. the heavy chain constant domain) comprises pl variants (including those shown in Figure 4).

[0304] In some instances, the LAG-3 X CTLA-4 bispecific antibody comprises Fc domains with skew variants, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C.

[0305] In some instances the LAG-3 X CTLA-4 antibody includes skew variants, pl variants, and ablation variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some embodiments), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example utilizes the LAG-3 Fab 7G8_H3.30_L1.34 and the CTLA-4 scFv [CTLA-4]_H3.23_L0.129, although any of the CTLA-4 or LAG-3 Fvs in the sequence listing can be paired in any combination and used.

[0306] In some instances, the LAG-3 X CTLA-4 antibody includes skew variants, pl variants,

ablation variants and FcRn variants. Accordingly, some instances include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some embodiments), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/ G236del/S267K, the FcRn variants M428L/N434S and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example of this embodiment utilizes the LAG-3 Fab 7G8_H3.30_L1.34 and the CTLA-4 scFv [CTLA-4]_H3.23_L0.129, although any of the CTLA-4 or LAG-3 Fvs in the sequence listing can be paired in any combination and used.

[0307] Additional instances include any of the backbones from Figure 37 with the LAG-3 Fab 7G8_H3.30_L1.34 and the CTLA-4 scFv [CTLA-4]_H3.23_L0.129.

[0308] Additional instances include any of the backbones from Figure 38 with the LAG-3 Fab 7G8_H3.30_L1.34 and the CTLA-4 scFv [CTLA-4]_H3.23_L0.129.

[0309] In some instances, for LAG-3 X CLTA-4 bispecific antibodies, the Fv for the LAG-3 Fab side is selected from those sequences in the sequence listing with the identifiers 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1. The Fv for the CTLA-4 scFv side is selected from those sequences in the sequence listing with the identifiers [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; 0[CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67; and [CTLA-4]_H3_L0.74.

[0310] In some instances, the LAG-3 X CTLA-4 bispecific antibody is selected from those constructs listed in SEQ ID NOs: 35607-35866 and SEQ ID NOs: 21524-22620.

[0311] In some instances, the LAG-3 X CTLA-4 bispecific antibody is selected from XENP20206, XENP21582, XENP21584, XENP21588, XENP22123, XENP22124, XENP22125, XENP22604, XENP22672, XENP22847, XENP22847, XENP22841 and XENP22849.

2. BTLA X PD-1

[0312] In some instances, the disclosure provides bispecific heterodimeric antibodies comprising a first ABD that binds human BTLA and a second ABD that binds human PD-1, and can be in any format shown in Figure 1. Most of the disclosure refers to a bottle opener format with the Fab being the BTLA side and the PD-1 side being the scFv side, but this can be reversed for all of the instances herein.

[0313] In one example, the BTLA X PD-1 bispecific antibody is in the bottle opener format of Figure 1A, wherein the PD-1 ABD is the scFv. In another instance, the BTLA X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the BTLA ABD being the Fab components. In another instance, the BTLA X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the PD-1 ABD being the scFv.

[0314] The BTLA X PD-1 bispecific antibodies (in either the bottle opener format or the central-scFv format) generally include skew variants, pl variants and ablation variants as outlined herein. That is, in either format, the Fc domains of the two monomers can comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8), optionally ablation variants (including those shown in Figure 5), and the monomer comprising the Fab side (e.g. the heavy chain constant domain) comprises pl variants (including those shown in Figure 4).

[0315] In some instances, the BTLA X PD-1 bispecific antibody comprises Fc domains with skew variants, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C.

[0316] In some examples, the BTLA X PD-1 antibody includes skew variants, pl variants, and ablation variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some examples), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example of this example utilizes the BTLA Fab 9C6_H1.1_L1 and the PD-1 scFv 1G6_L1.194

_H1.279 although any of the BTLA or PD-1 Fvs in the sequence listing can be paired in any combination and used.

[0317] In some examples, the BTLA X PD-1 antibody includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some examples), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example utilizes the BTLA Fab 9C6_H1.1_L1 and the PD-1 scFv 1G6_L1.194_H1.279 although any of the BTLA or PD-1 Fvs in the sequence listing can be paired in any combination and used.

[0318] Additional examples include any of the backbones from Figure 37 with the BTLA Fab 9C6_H1.1_L1 and the PD-1 scFv 1G6_L1.194_H1.279.

[0319] Additional examples include any of the backbones from Figure 38 with the BTLA Fab 9C6_H1.1_L1 and the PD-1 scFv 1G6_L1.194_H1.279.

[0320] In some examples, for BTLA X PD-1 bispecific antibodies, the Fv for the BTLA Fab side is selected from those sequences in the sequence listing with the identifiers 9C6_H0L0, 9C6_H1.1_L1, 9C6_H1.11_L1. The Fv for the PD-1 scFv side is selected from those sequences in the sequence listing with the identifiers 1G6_H1.279_L1.194; 1G6_H1.280_L1.224; 1G6_L1.194_H1.279; 1G6_L1.210_H1.288; and 2E9_H1L1.

[0321] In some examples, the BTLA X PD-1 bispecific antibody is selected from constructs include those listed as SEQ ID NOs: 22724-23315 and SEQ ID NOs: 36147-36166.

[0322] In some examples, the BTLA X PD-1 bispecific antibody is selected from XENP20895, XENP21220, XENP21221 and XENP22858.

3. CTLA-4 X PD-1

[0323] In some instances, the invention provides bispecific heterodimeric antibodies comprising a first ABD that binds human CTLA-4 and a second ABD that binds human PD-1, and can be in any format shown in Figure 1. Most of the disclosure refers to a bottle opener format with the Fab being the CTLA-4 side and the PD-1 side being the scFv side, but this can be reversed for all of the embodiments herein.

[0324] In one embodiment, the CTLA-4 X PD-1 bispecific antibody is in the bottle opener format of Figure 1A, wherein the PD-1 ABD is the scFv. In another instance, the CTLA-4 X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the CTLA-4 ABD being the Fab components. In another instance, the CTLA-4 X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the PD-1 ABD being the scFv.

[0325] The CTLA-4 X PD-1 bispecific antibodies (in either the bottle opener format or the central-scFv format) generally include skew variants, pl variants and ablation variants as outlined herein. That is, in either format, the Fc domains of the two monomers can comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8), optionally ablation variants (including those shown in Figure 5), and the monomer comprising the Fab side (e.g. the heavy chain constant domain) comprises pl variants (including those shown in Figure 4).

[0326] In some instances, the CTLA-4 X PD-1 bispecific antibody comprises Fc domains with skew variants, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C.

[0327] In some embodiments, the CTLA-4 X PD-1 antibody includes skew variants, pl variants, and ablation variants. Accordingly, some embodiments include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some embodiments), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example of this embodiment utilizes the CTLA-4 Fab [CTLA-4]_H3_L0.22 and the PD-1 scFv 1G6_L1.194_H1.279 although any of the CTLA-4 or PD-1 Fvs in the sequence listing can be paired in any combination and used.

[0328] In some embodiments, the CTLA-4 X PD-1 antibody includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some embodiments include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some embodiments), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint

inhibitor as outlined herein; and c) a light chain. A specific example of this embodiment utilizes the CTLA-4 Fab [CTLA-4]_H3_L0.22 and the PD-1 scFv 1G6_L1.194_H1.279 although any of the CTLA-4 or PD-1 Fvs in the sequence listing can be paired in any combination and used.

[0329] Additional examples include any of the backbones from Figure 37 with the CTLA-4 Fab [CTLA-4]_H3_L0.22 and the PD-1 scFv 1G6_L1.194_H1.279.

[0330] Additional examples include any of the backbones from Figure 38 with the CTLA-4 Fab [CTLA-4]_H3_L0.22 and the PD-1 scFv 1G6_L1.194_H1.279.

[0331] In some examples, for CTLA-4 X PD-1 bispecific antibodies, the Fv for the CTLA-4 Fab side is selected from those sequences in the sequence listing with the identifiers with the identifiers [CTLA-4]_H0.25_L0; [CTLA-4]_H0.26_L0; [CTLA-4]_H0.27_L0; [CTLA-4]_H0.29_L0; [CTLA-4]_H0.38_L0; [CTLA-4]_H0.39_L0; 0[CTLA-4]_H0.40_L0; [CTLA-4]_H0.70_L0; [CTLA-4]_H0_L0.22; [CTLA-4]_H2_L0; [CTLA-4]_H3.21_L0.124; [CTLA-4]_H3.21_L0.129; [CTLA-4]_H3.21_L0.132; [CTLA-4]_H3.23_L0.124; [CTLA-4]_H3.23_L0.129; [CTLA-4]_H3.23_L0.132; [CTLA-4]_H3.25_L0.124; [CTLA-4]_H3.25_L0.129; [CTLA-4]_H3.25_L0.132; [CTLA-4]_H3.4_L0.118; [CTLA-4]_H3.4_L0.119; [CTLA-4]_H3.4_L0.12; [CTLA-4]_H3.4_L0.121; [CTLA-4]_H3.4_L0.122; [CTLA-4]_H3.4_L0.123; [CTLA-4]_H3.4_L0.124; [CTLA-4]_H3.4_L0.125; [CTLA-4]_H3.4_L0.126; [CTLA-4]_H3.4_L0.127; [CTLA-4]_H3.4_L0.128; [CTLA-4]_H3.4_L0.129; [CTLA-4]_H3.4_L0.130; [CTLA-4]_H3.4_L0.131; [CTLA-4]_H3.4_L0.132; [CTLA-4]_H3.5_L2.1; [CTLA-4]_H3.5_L2.2; [CTLA-4]_H3.5_L2.3; [CTLA-4]_H3_L0; [CTLA-4]_H3_L0.22; [CTLA-4]_H3_L0.44; [CTLA-4]_H3_L0.67; and [CTLA-4]_H3_L0.74.. The Fv for the PD-1 scFv side is selected from those sequences in the sequence listing with the identifiers identifiers 1G6_H1.279_L1.194; 1G6_H1.280_L1.224; 1G6_L1.194_H1.279; 1G6_L1.210_H1.288; and 2E9_H1L1.

[0332] In some examples, the CTLA-4 X PD-1 bispecific antibody is selected from those listed as SEQ ID NOs: 36167-36346 and SEQ ID NOs: 23316-23735.

[0333] In some examples, the CTLA-4 X PD-1 bispecific antibody is selected from XENP19738, XENP19739, XENP19741, XENP20053, XENP20066, XENP20130, XENP20146, XENP20717 and XENP22836.

4. LAG-3 X PD-1

[0334] In some instances, the disclosure provides bispecific heterodimeric antibodies comprising a first ABD that binds human LAG-3 and a second ABD that binds human PD-1, and can be in any format shown in Figure 1. Most of the disclosure refers to a bottle opener format with the Fab being the LAG-3 side and the PD-1 side being the scFv side, but this can be reversed for all of the examples herein.

[0335] In one examples, the LAG-3 X PD-1 bispecific antibody is in the bottle opener format of

Figure 1A, wherein the PD-1 ABD is the scFv. In another instance, the LAG-3 X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the LAG-3 ABD being the Fab components. In another instance, the LAG-3 X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the PD-1 ABD being the scFv.

[0336] The LAG-3 X PD-1 bispecific antibodies (in either the bottle opener format or the central-scFv format) generally include skew variants, pl variants and ablation variants as outlined herein. That is, in either format, the Fc domains of the two monomers can comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8), optionally ablation variants (including those shown in Figure 5), and the monomer comprising the Fab side (e.g. the heavy chain constant domain) comprises pl variants (including those shown in Figure 4).

[0337] In some instances, the LAG-3 X PD-1 bispecific antibody comprises Fc domains with skew variants, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C.

[0338] In some examples, the LAG-3 X PD-1 antibody includes skew variants, pl variants, and ablation variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some examples), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/ G236del/S267K, and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example of this example utilizes the LAG-3 Fab 7G8_H3.30_L1.34 and the PD-1 scFv 1G6_L1.194_H1.279 although any of the LAG-3 or PD-1 Fvs in the sequence listing can be paired in any combination and used.

[0339] In some examples, the LAG-3 X PD-1 antibody includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some examples), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/ G236del/S267K, the FcRn variants M428L/N434S and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example of this example utilizes the LAG-3 Fab 7G8_H3.30_L1.34 and the PD-1 scFv 1G6_L1.194_H1.279

although any of the LAG-3 or PD-1 Fvs in the sequence listing can be paired in any combination and used.

[0340] Additional examples include any of the backbones from Figure 37 with the LAG-3 Fab 7G8_H3.30_L1.34 and the PD-1 scFv 1G6_L1.194_H1.279.

[0341] Additional examples include any of the backbones from Figure 38 with the LAG-3 Fab 7G8_H3.30_L1.34 and the PD-1 scFv 1G6_L1.194_H1.279.

[0342] In some examples, for LAG-3 X PD-1 bispecific antibodies, the Fv for the LAG-3 Fab side is selected from those sequences in the sequence listing with the identifiers 2A11_H0L0; 2A11_H1.125_L2.113; 2A11_H1.144_L2.142; 2A11_H1_L2.122; 2A11_H1_L2.123; 2A11_H1_L2.124; 2A11_H1_L2.25; 2A11_H1_L2.47; 2A11_H1_L2.50; 2A11_H1_L2.91; 2A11_H1_L2.93; 2A11_H1_L2.97; 2A11_H1L1; 2A11_H1L2; 2A11_H2L2; 2A11_H3L1; 2A11_H3L2; 2A11_H4L1; 2A11_H4L2; 7G8_H0L0; 7G8_H1L1; 7G8_H3.18_L1.11; 7G8_H3.23_L1.11; 7G8_H3.28_L1; 7G8_H3.28_L1.11; 7G8_H3.28_L1.13; 7G8_H3.30_L1.34; 7G8_H3.30_L1.34; and 7G8_H3L1. The Fv for the PD-1 scFv side is selected from those sequences in the sequence listing with the identifiers 1G6_H1.279_L1.194; 1G6_H1.280_L1.224; 1G6_L1.194_H1.279; 1G6_L1.210_H1.288; and 2E9_H1L1.

[0343] In some examples, the LAG-3 X PD-1 bispecific antibody is selected from constructs include those listed as SEQ ID NOs: 35867-36126 and SEQ ID NOs: 23736-25133.

[0344] In some examples, the LAG-3 X PD-1 bispecific antibody is selected from XENP20206, XENP21582, XENP21584, XENP21588, XENP22123, XENP22124, XENP22125, XENP22604, XENP22672, XENP22847, XENP22847 and XENP22849

5. TIGIT X PD-1

[0345] In some examples, the TIGIT X PD-1 bispecific antibody is selected from those constructs listed in SEQ ID NOs: 25134-25173.

6. TIM-3 X PD-1

[0346] In some instances, the disclosure provides bispecific heterodimeric antibodies comprising a first ABD that binds human TIM-3 and a second ABD that binds human PD-1, and can be in any format shown in Figure 1. Most of the disclosure refers to a bottle opener format with the Fab being the TIM-3 side and the PD-1 side being the scFv side, but this can be reversed for all of the examples herein.

[0347] In one example, the TIM-3 X PD-1 bispecific antibody is in the bottle opener format of

Figure 1A, wherein the PD-1 ABD is the scFv. In another instance, the TIM-3 X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the TIM-3 ABD being the Fab components. In another instance, the TIM-3 X PD-1 bispecific antibody is in the central-scFv format of Figure 1F, with the PD-1 ABD being the scFv.

[0348] The TIM-3 X PD-1 bispecific antibodies (in either the bottle opener format or the central-scFv format) generally include skew variants, pl variants and ablation variants as outlined herein. That is, in either format, the Fc domains of the two monomers can comprise skew variants (e.g. a set of amino acid substitutions as shown in Figure 3 and Figure 8), optionally ablation variants (including those shown in Figure 5), and the monomer comprising the Fab side (e.g. the heavy chain constant domain) comprises pl variants (including those shown in Figure 4).

[0349] In some instances, the TIM-3 X PD-1 bispecific antibody comprises Fc domains with skew variants, with particularly useful skew variants being selected from the group consisting of S364K/E357Q : L368D/K370S; L368D/K370S : S364K; L368E/K370S : S364K; T411T/E360E/Q362E : D401K; L368D/K370S : S364K/E357L, K370S : S364K/E357Q, T366S/L368A/Y407V : T366W and T366S/L368A/Y407V/Y349C : T366W/S354C.

[0350] In some examples, the TIM-3 X PD-1 antibody includes skew variants, pl variants, and ablation variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some examples), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/G236del/S267K, and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/Q418E/N421D, the ablation variants E233P/L234V/L235A/ G236del/S267K, and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example of this example utilizes the PD-1 scFv 1G6_L1.194_H1.279 although any of the TIM-3 or PD-1 Fvs in the sequence listing can be paired in any combination and used.

[0351] In some examples, the TIM-3 X PD-1 antibody includes skew variants, pl variants, ablation variants and FcRn variants. Accordingly, some examples include bottle opener formats that comprise: a) a first monomer (the "scFv monomer") that comprises a charged scFv linker (with the +H sequence of Figure 7 being preferred in some examples), the skew variants S364K/E357Q, the ablation variants E233P/L234V/L235A/ G236del/S267K, the FcRn variants M428L/N434S and an Fv that binds to a checkpoint inhibitor as outlined herein; b) a second monomer (the "Fab monomer") that comprises the skew variants L368D/K370S, the pl variants N208D/Q295E/N384D/ Q418E/N421D, the ablation variants E233P/L234V/L235A/G236del/S267K, the FcRn variants M428L/N434S and a variable heavy domain that, with the variable light domain, makes up an Fv that binds to a second checkpoint inhibitor as outlined herein; and c) a light chain. A specific example of this embodiment utilizes the PD-1 scFv 1G6_L1.194_H1.279 although any of the TIM-3 or PD-1 Fvs in the sequence

listing can be paired in any combination and used.

[0352] Additional examples include any of the backbones from Figure 37 with a TIM-3 Fab side and the PD-1 scFv 1G6_L1.194_H1.279.

[0353] Additional examples include any of the backbones from Figure 38 with TIM-3 Fab side and the PD-1 scFv 1G6_L1.194_H1.279.

[0354] In some examples, for TIM-3 Fab side X PD-1 bispecific antibodies, the Fv for the TIM-3 Fab side Fab side is selected from those sequences in the sequence listing with the identifiers 1D10_H0L0; 1D12_H0L0; 3H3_H1_L2.1; 6C8_H0L0; 6D9_H0_1D12_L0; 7A9_H0L0; 7B11_H0L0; 7B11var_H0L0; and 7C2_H0L0. The Fv for the PD-1 scFv side is selected from those sequences in the sequence listing with the identifiers identifiers 1G6_H1.279_L1.194; 1G6_H1.280_L1.224; 1G6_L1.194_H1.279; 1G6_L1.210_H1.288; and 2E9_H1L1.

[0355] In addition, the antibodies of the disclosure include those that bind to either the same epitope as the antigen binding domains outlined herein, or compete for binding with the antigen binding domains outlined herein. In some embodiments, the bispecific checkpoint antibody can contain one of the ABDs outlined herein and a second ABD that competes for binding with one of the ABDs outlined herein. In some examples both ABDs compete for binding with the corresponding ABD outlined herein. Binding competition is generally determined using at least one of a Biacore, surface plasmon resonance (SPR) and/or BLI (biolayer interferometry, e.g. Octet assay) assay, with the latter finding particular use in many examples.

VII. Useful Examples

[0356] In one instance, a particular combination of skew and pl variants that finds use in the present disclosure is T366S/L368A/Y407V : T366W (optionally including a bridging disulfide, T366S/L368A/Y407V/Y349C : T366W/S354C) with one monomer comprises Q295E/N384D/Q418E/N481D and the other a positively charged scFv linker (when the format includes an scFv domain). As will be appreciated in the art, the "knobs in holes" variants do not change pl, and thus can be used on either monomer.

VIII. Nucleic acids of the Disclosure

[0357] The disclosure further provides nucleic acid compositions encoding the bispecific antibodies of the invention (or, in the case of "monospecific" antibodies, nucleic acids encoding those as well).

[0358] As will be appreciated by those in the art, the nucleic acid compositions will depend on the format and scaffold of the heterodimeric protein. Thus, for example, when the format requires three amino acid sequences, such as for all the formats depicted in Figure 1 except for the dual scFv format, three nucleic acid sequences can be incorporated into one or more expression vectors for expression. Similarly, some formats (e.g. dual scFv formats such as disclosed in Figure 1) only two nucleic acids are needed; again, they can be put into one or two expression vectors.

[0359] As is known in the art, the nucleic acids encoding the components of the invention can be incorporated into expression vectors as is known in the art, and depending on the host cells used to produce the heterodimeric antibodies of the invention. Generally the nucleic acids are operably linked to any number of regulatory elements (promoters, origin of replication, selectable markers, ribosomal binding sites, inducers, etc.). The expression vectors can be extra-chromosomal or integrating vectors.

[0360] The nucleic acids and/or expression vectors of the disclosure are then transformed into any number of different types of host cells as is well known in the art, including mammalian, bacterial, yeast, insect and/or fungal cells, with mammalian cells (e.g. CHO cells), finding use in many embodiments.

[0361] In some examples, nucleic acids encoding each monomer and the optional nucleic acid encoding a light chain, as applicable depending on the format, are each contained within a single expression vector, generally under different or the same promoter controls. In examples of particular use in the present disclosure, each of these two or three nucleic acids are contained on a different expression vector.

[0362] Different vector ratios can be used to drive heterodimer formation. That is, surprisingly, while the proteins comprise first monomer: second monomer:light chains (in the case of many of the embodiments herein that have three polypeptides comprising the heterodimeric antibody) in a 1:1:2 ratio, these are not the ratios that give the best results.

[0363] The heterodimeric antibodies of the disclosure are made by culturing host cells comprising the expression vector(s) as is well known in the art. Once produced, traditional antibody purification steps are done, including an ion exchange chromatography step. As discussed herein, having the pls of the two monomers differ by at least 0.5 can allow separation by ion exchange chromatography or isoelectric focusing, or other methods sensitive to isoelectric point. That is, the inclusion of pl substitutions that alter the isoelectric point (pl) of each monomer so that such that each monomer has a different pl and the heterodimer also has a distinct pl, thus facilitating isoelectric purification of the "triple F" heterodimer (e.g., anionic exchange columns, cationic exchange columns). These substitutions also aid in the determination and monitoring of any contaminating dual scFv-Fc and mAb homodimers post-purification (e.g., IEF gels, cIEF, and analytical IEX columns).

IX. Biological and Biochemical Functionality of the Heterodimeric Checkpoint

Antibodies

[0364] Generally the bispecific checkpoint antibodies of the invention are for administration to patients with cancer, and efficacy is assessed, in a number of ways as described herein. Thus, while standard assays of efficacy can be run, such as cancer load, size of tumor, evaluation of presence or extent of metastasis, etc., immuno-oncology treatments can be assessed on the basis of immune status evaluations as well. This can be done in a number of ways, including both in vitro and in vivo assays. For example, evaluation of changes in immune status (e.g. presence of ICOS+ CD4+ T cells following ipi treatment) along with "old fashioned" measurements such as tumor burden, size, invasiveness, LN involvement, metastasis, etc. can be done. Thus, any or all of the following can be evaluated: the inhibitory effects of the checkpoints on CD4+ T cell activation or proliferation, CD8+ T (CTL) cell activation or proliferation, CD8+ T cell-mediated cytotoxic activity and/or CTL mediated cell depletion, NK cell activity and NK mediated cell depletion, the potentiating effects of the checkpoints on Treg cell differentiation and proliferation and Treg- or myeloid derived suppressor cell (MDSC)-mediated immunosuppression or immune tolerance, and/or the effects of the checkpoints on proinflammatory cytokine production by immune cells, e.g., IL-2, IFN- γ or TNF- α production by T or other immune cells.

[0365] In some instances, assessment of treatment is done by evaluating immune cell proliferation, using for example, CFSE dilution method, Ki67 intracellular staining of immune effector cells, and 3H-Thymidine incorporation method,

[0366] In some instances, assessment of treatment is done by evaluating the increase in gene expression or increased protein levels of activation-associated markers, including one or more of: CD25, CD69, CD137, ICOS, PD1, GITR, OX40, and cell degranulation measured by surface expression of CD107A.

[0367] In general, gene expression assays are done as is known in the art.

[0368] In general, protein expression measurements are also similarly done as is known in the art.

[0369] In some instances, assessment of treatment is done by assessing cytotoxic activity measured by target cell viability detection via estimating numerous cell parameters such as enzyme activity (including protease activity), cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. Specific examples of these assays include, but are not limited to, Trypan Blue or PI staining, 51Cr or 35S release method, LDH activity, MTT and/or WST assays, Calcein-AM assay, Luminescent based assay, and others.

[0370] In some instances, assessment of treatment is done by assessing T cell activity

measured by cytokine production, measure either intracellularly in culture supernatant using cytokines including, but not limited to, IFNy, TNFa, GM-CSF, IL2, IL6, IL4, IL5, IL10, IL13 using well known techniques.

[0371] Accordingly, assessment of treatment can be done using assays that evaluate one or more of the following: (i) increases in immune response, (ii) increases in activation of $\alpha\beta$ and/or $\gamma\delta$ T cells, (iii) increases in cytotoxic T cell activity, (iv) increases in NK and/or NKT cell activity, (v) alleviation of $\alpha\beta$ and/or $\gamma\delta$ T-cell suppression, (vi) increases in pro-inflammatory cytokine secretion, (vii) increases in IL-2 secretion; (viii) increases in interferon- γ production, (ix) increases in Th1 response, (x) decreases in Th2 response, (xi) decreases or eliminates cell number and/or activity of at least one of regulatory T cells (Tregs).

Assays to measure efficacy

[0372] In some instances, T cell activation is assessed using a Mixed Lymphocyte Reaction (MLR) assay as is known in the art. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0373] In one instance, the signaling pathway assay measures increases or decreases in immune response as measured for an example by phosphorylation or dephosphorylation of different factors, or by measuring other post translational modifications. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0374] In one instance, the signaling pathway assay measures increases or decreases in activation of $\alpha\beta$ and/or $\gamma\delta$ T cells as measured for an example by cytokine secretion or by proliferation or by changes in expression of activation markers like for an example CD137, CD107a, PD1, etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0375] In one instance, the signaling pathway assay measures increases or decreases in cytotoxic T cell activity as measured for an example by direct killing of target cells like for an example cancer cells or by cytokine secretion or by proliferation or by changes in expression of activation markers like for an example CD137, CD107a, PD1, etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0376] In one instance, the signaling pathway assay measures increases or decreases in NK and/or NKT cell activity as measured for an example by direct killing of target cells like for an example cancer cells or by cytokine secretion or by changes in expression of activation markers like for an example CD107a, etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0377] In one instance, the signaling pathway assay measures increases or decreases in $\alpha\beta$ and/or $\gamma\delta$ T-cell suppression, as measured for an example by cytokine secretion or by

proliferation or by changes in expression of activation markers like for an example CD137, CD107a, PD1, etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0378] In one instance, the signaling pathway assay measures increases or decreases in pro-inflammatory cytokine secretion as measured for example by ELISA or by Luminex or by Multiplex bead based methods or by intracellular staining and FACS analysis or by Alisport etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0379] In one instance, the signaling pathway assay measures increases or decreases in IL-2 secretion as measured for example by ELISA or by Luminex or by Multiplex bead based methods or by intracellular staining and FACS analysis or by Alisport etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0380] In one instance, the signaling pathway assay measures increases or decreases in interferon- γ production as measured for example by ELISA or by Luminex or by Multiplex bead based methods or by intracellular staining and FACS analysis or by Alisport etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0381] In one instance, the signaling pathway assay measures increases or decreases in Th1 response as measured for an example by cytokine secretion or by changes in expression of activation markers. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0382] In one instance, the signaling pathway assay measures increases or decreases in Th2 response as measured for an example by cytokine secretion or by changes in expression of activation markers. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0383] In one instance, the signaling pathway assay measures increases or decreases cell number and/or activity of at least one of regulatory T cells (Tregs), as measured for example by flow cytometry or by IHC. A decrease in response indicates immunostimulatory activity. Appropriate decreases are the same as for increases, outlined below.

[0384] In one instance, the signaling pathway assay measures increases or decreases in M2 macrophages cell numbers, as measured for example by flow cytometry or by IHC. A decrease in response indicates immunostimulatory activity. Appropriate decreases are the same as for increases, outlined below.

[0385] In one instance, the signaling pathway assay measures increases or decreases in M2 macrophage pro-tumorigenic activity, as measured for an example by cytokine secretion or by changes in expression of activation markers. A decrease in response indicates

immunostimulatory activity. Appropriate decreases are the same as for increases, outlined below.

[0386] In one instance, the signaling pathway assay measures increases or decreases in N2 neutrophils increase, as measured for example by flow cytometry or by IHC. A decrease in response indicates immunostimulatory activity. Appropriate decreases are the same as for increases, outlined below.

[0387] In one instance, the signaling pathway assay measures increases or decreases in N2 neutrophils pro-tumorigenic activity, as measured for an example by cytokine secretion or by changes in expression of activation markers. A decrease in response indicates immunostimulatory activity. Appropriate decreases are the same as for increases, outlined below.

[0388] In one instance, the signaling pathway assay measures increases or decreases in inhibition of T cell activation, as measured for an example by cytokine secretion or by proliferation or by changes in expression of activation markers like for an example CD137, CD107a, PD1, etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0389] In one instance, the signaling pathway assay measures increases or decreases in inhibition of CTL activation as measured for an example by direct killing of target cells like for an example cancer cells or by cytokine secretion or by proliferation or by changes in expression of activation markers like for an example CD137, CD107a, PD1, etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0390] In one instance, the signaling pathway assay measures increases or decreases in $\alpha\beta$ and/or $\gamma\delta$ T cell exhaustion as measured for an example by changes in expression of activation markers. A decrease in response indicates immunostimulatory activity. Appropriate decreases are the same as for increases, outlined below.

[0391] In one instance, the signaling pathway assay measures increases or decreases $\alpha\beta$ and/or $\gamma\delta$ T cell response as measured for an example by cytokine secretion or by proliferation or by changes in expression of activation markers like for an example CD137, CD107a, PD1, etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0392] In one instance, the signaling pathway assay measures increases or decreases in stimulation of antigen-specific memory responses as measured for an example by cytokine secretion or by proliferation or by changes in expression of activation markers like for an example CD45RA, CCR7 etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0393] In one instance, the signaling pathway assay measures increases or decreases in apoptosis or lysis of cancer cells as measured for an example by cytotoxicity assays such as for an example MTT, Cr release, Calcine AM, or by flow cytometry based assays like for an example CFSE dilution or propidium iodide staining etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0394] In one instance, the signaling pathway assay measures increases or decreases in stimulation of cytotoxic or cytostatic effect on cancer cells. as measured for an example by cytotoxicity assays such as for an example MTT, Cr release, Calcine AM, or by flow cytometry based assays like for an example CFSE dilution or propidium iodide staining etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0395] In one instance, the signaling pathway assay measures increases or decreases direct killing of cancer cells as measured for an example by cytotoxicity assays such as for an example MTT, Cr release, Calcine AM, or by flow cytometry based assays like for an example CFSE dilution or propidium iodide staining etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0396] In one instance, the signaling pathway assay measures increases or decreases Th17 activity as measured for an example by cytokine secretion or by proliferation or by changes in expression of activation markers. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0397] In one instance, the signaling pathway assay measures increases or decreases in induction of complement dependent cytotoxicity and/or antibody dependent cell-mediated cytotoxicity, as measured for an example by cytotoxicity assays such as for an example MTT, Cr release, Calcine AM, or by flow cytometry based assays like for an example CFSE dilution or propidium iodide staining etc. An increase in activity indicates immunostimulatory activity. Appropriate increases in activity are outlined below.

[0398] In one instance, T cell activation is measured for an example by direct killing of target cells like for an example cancer cells or by cytokine secretion or by proliferation or by changes in expression of activation markers like for an example CD137, CD107a, PD1, etc. For T-cells, increases in proliferation, cell surface markers of activation (e.g. CD25, CD69, CD137, PD1), cytotoxicity (ability to kill target cells), and cytokine production (e.g. IL-2, IL-4, IL-6, IFNy, TNF-a, IL-10, IL-17A) would be indicative of immune modulation that would be consistent with enhanced killing of cancer cells.

[0399] In one instance, NK cell activation is measured for example by direct killing of target cells like for an example cancer cells or by cytokine secretion or by changes in expression of activation markers like for an example CD107a, etc. For NK cells, increases in proliferation, cytotoxicity (ability to kill target cells and increases CD107a, granzyme, and perforin expression), cytokine production (e.g. IFNy and TNF), and cell surface receptor expression

(e.g. CD25) would be indicative of immune modulation that would be consistent with enhanced killing of cancer cells.

[0400] In one instance, $\gamma\delta$ T cell activation is measured for example by cytokine secretion or by proliferation or by changes in expression of activation markers.

[0401] In one instance, Th1 cell activation is measured for example by cytokine secretion or by changes in expression of activation markers.

[0402] Appropriate increases in activity or response (or decreases, as appropriate as outlined above), are increases of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98 to 99% percent over the signal in either a reference sample or in control samples, for example test samples that do not contain an antibody of the invention. Similarly, increases of at least one-, two-, three-, four- or five-fold as compared to reference or control samples show efficacy.

X. Treatments

[0403] Once made, the compositions of the invention find use in a number of oncology applications, by treating cancer, generally by inhibiting the suppression of T cell activation (e.g. T cells are no longer suppressed) with the binding of the bispecific checkpoint antibodies of the invention.

[0404] Accordingly, the heterodimeric compositions of the invention find use in the treatment of these cancers.

XI. Combination Therapies

[0405] In some instances, when the bispecific checkpoint does not include an anti-PD-1 antigen binding domain, the bispecific antibody can be co-administered with a separate anti-PD-1 antibody such as pembrolizumab (Keytruda[®]) or nivolumab (Opdivo[®]). Co-administration can be done simultaneously or sequentially, as will be appreciated by those in the art.

[0406] That is, a CTLA-4 X LAG-3 bispecific checkpoint antibody disclosed herein, or such as any of those that incorporate anti-LAG-3 sequences and anti-CTLA-4 sequences from the sequence listing, and in particular XENP22602, XENP 22675, XENP22841 or XENP 22843, can be co-administered with an anti-PD-1 antibody.

[0407] Similarly, a BTLA X CTLA-4 bispecific checkpoint disclosed herein, or such as any of those that incorporate anti-BTLA sequences and anti-CTLA-4 sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0408] A CTLA-4 X TIM-3 bispecific checkpoint antibody such as any of those that incorporate anti-TIM-3 sequences and anti-CTLA-4 sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0409] A CTLA-4 and TIGIT bispecific checkpoint antibody such as any of those that incorporate anti-CTLA-4 and anti-TIGIT sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0410] A TIM-3 and LAG-3 bispecific checkpoint antibody such as any of those that incorporate anti-TIM-3 sequences and anti-LAG-3 sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0411] A TIM-3 and TIGIT bispecific checkpoint antibody such as any of those that incorporate anti-TIM-3 sequences and anti-TIGIT sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0412] A TIM-3 and BTLA bispecific checkpoint antibody such as any of those that incorporate anti-TIM-3 and anti-BTLA sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0413] A LAG-3 and TIGIT bispecific checkpoint antibody such as any of those that incorporate anti-LAG-3 sequences and anti-TIGIT sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0414] A LAG-3 and BTLA bispecific checkpoint antibody such as any of those that incorporate anti-LAG-3 sequences and anti-BTLA sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

[0415] A TIGIT and BTLA bispecific checkpoint antibody such as any of those that incorporate anti-TIGIT sequences and anti-BTLA sequences from the sequence listing, can be co-administered with an anti-PD-1 antibody.

XII. Antibody Compositions for In Vivo Administration

[0416] Formulations of the antibodies used in accordance with the present disclosure are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (as generally outlined in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. [1980]), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, buffers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or

benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).

Administrative modalities

[0417] The antibodies and chemotherapeutic agents of the disclosure are administered to a subject, in accord with known methods, such as intravenous administration as a bolus or by continuous infusion over a period of time.

Treatment modalities

[0418] In the methods of the disclosure, therapy is used to provide a positive therapeutic response with respect to a disease or condition. By "positive therapeutic response" is intended an improvement in the disease or condition, and/or an improvement in the symptoms associated with the disease or condition. For example, a positive therapeutic response would refer to one or more of the following improvements in the disease: (1) a reduction in the number of neoplastic cells; (2) an increase in neoplastic cell death; (3) inhibition of neoplastic cell survival; (5) inhibition (i.e., slowing to some extent, preferably halting) of tumor growth; (6) an increased patient survival rate; and (7) some relief from one or more symptoms associated with the disease or condition.

[0419] Positive therapeutic responses in any given disease or condition can be determined by standardized response criteria specific to that disease or condition. Tumor response can be assessed for changes in tumor morphology (i.e., overall tumor burden, tumor size, and the like) using screening techniques such as magnetic resonance imaging (MRI) scan, x-radiographic imaging, computed tomographic (CT) scan, bone scan imaging, endoscopy, and tumor biopsy sampling including bone marrow aspiration (BMA) and counting of tumor cells in the circulation.

[0420] In addition to these positive therapeutic responses, the subject undergoing therapy may experience the beneficial effect of an improvement in the symptoms associated with the disease.

[0421] Treatment according to the present disclosure includes a "therapeutically effective

amount" of the medicaments used. A "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result.

[0422] A therapeutically effective amount may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the medicaments to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the antibody or antibody portion are outweighed by the therapeutically beneficial effects.

[0423] A "therapeutically effective amount" for tumor therapy may also be measured by its ability to stabilize the progression of disease. The ability of a compound to inhibit cancer may be evaluated in an animal model system predictive of efficacy in human tumors.

[0424] Alternatively, this property of a composition may be evaluated by examining the ability of the compound to inhibit cell growth or to induce apoptosis by in vitro assays known to the skilled practitioner. A therapeutically effective amount of a therapeutic compound may decrease tumor size, or otherwise ameliorate symptoms in a subject. One of ordinary skill in the art would be able to determine such amounts based on such factors as the subject's size, the severity of the subject's symptoms, and the particular composition or route of administration selected.

[0425] Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. Parenteral compositions may be formulated in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.

[0426] The specification for the dosage unit forms of the present invention are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.

[0427] The efficient dosages and the dosage regimens for the bispecific antibodies used in the present invention depend on the disease or condition to be treated and may be determined by the persons skilled in the art.

[0428] An exemplary, non-limiting range for a therapeutically effective amount of an bispecific antibody used in the present invention is about 0.1-100 mg/kg.

EXAMPLES

[0429] The invention is as defined in the claims. Any of the following Examples that do not fall within the scope of the claims do not form part of the invention and are provided for comparative purposes only.

[0430] Examples are provided below to illustrate the present invention.

[0431] For all constant region positions discussed in the present invention, numbering is according to the EU index as in Kabat (Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th Ed., United States Public Health Service, National Institutes of Health, Bethesda). Those skilled in the art of antibodies will appreciate that this convention consists of nonsequential numbering in specific regions of an immunoglobulin sequence, enabling a normalized reference to conserved positions in immunoglobulin families. Accordingly, the positions of any given immunoglobulin as defined by the EU index will not necessarily correspond to its sequential sequence.

[0432] General and specific scientific techniques are outlined in US Publications 2015/0307629, 2014/0288275 and WO2014/145806.

A. Example 1: TILs from multiple cancer types co-express immune checkpoint receptors

[0433] To investigate potential associations between PD-1, CTLA-4, LAG-3, and BTLA, RNA sequencing data from The Cancer Genome Atlas project (TCGA) were used for analysis. V2 RSEM data were downloaded from FireBrowse (<http://firebrowse.org/>). Analysis was performed using R with custom routines. The correlation between PD-1 and CTLA-4 expression is depicted in Figure 66, along with calculated R² values (Figure 1; square of the Pearson correlation coefficient). Figure 66 further shows the correlation between PD-1 and LAG-3 expression, PD-1 and BTLA expression, and LAG-3 and CTLA-4 expression.

[0434] Figure 44 shows that PD-1 and CTLA-4 were co-expressed in cancers including bladder, breast, colon, prostate, melanoma, ovarian and lung cancer, shows that the sets PD-1 and CTLA-4, PD-1 and LAG-3, PD-1 and BTLA, and LAG-3 and CTLA-4 were co-expressed in cancers including bladder, breast, colon, head & neck, kidney, lung-adeno, lung squamous, ovarian, pancreatic, prostate, and melanoma cancer.

B. Example 2: Bispecific immune checkpoint antibodies are superior to monospecific immune checkpoint antibodies

[0435] Prototype immune checkpoint antibodies (e.g. nivolumab and ipilimumab) and bispecific immune checkpoint antibodies based on the prototype antibodies were produced to

demonstrate the effect of dual checkpoint blockades. Unless otherwise stated, bispecifics are named herein using the Fab variable region first and the scFv variable region second. Amino acid sequences for the prototype antibodies are listed in the sequence listing. DNA encoding the heavy and light chains were generated by gene synthesis (Blue Heron Biotechnology, Bothell, Wash.), subcloned using standard molecular biology techniques into the expression vector pTT5 containing bivalent or bispecific constant regions and transiently transfected in HEK293E cells. Antibodies were purified by Protein A chromatography (and cation exchange chromatography for bispecific antibodies). Purity was assessed by size exclusion chromatography, analytical cation exchange chromatography and capillary isoelectric focusing.

1. Double-positive cells are selectively occupied by bispecific immune checkpoint antibodies

[0436] Selective targeting of tumor-reactive TILs expressing multiple immune checkpoint receptors (as shown in Example 1) over non-tumor reactive T cells expressing single immune checkpoint receptors could enhance anti-tumor activity while avoiding peripheral toxicity (as depicted in Figure 42).

[0437] An SEB-stimulated PBMC assay was used to investigate binding of bispecific immune checkpoint antibodies to T cells. The SEB-stimulated PBMC assay is an in vitro method for assaying T helper (TH) cell proliferation and for generating a population of cytotoxic T lymphocytes (CTLs). When PBMCs are stimulated with staphylococcal enterotoxin B (SEB), TH cell populations expand, followed by expansion of a CTL population. PBMCs were stimulated with 100 ng/mL SEB for 3 days and then treated with a prototype anti-LAG-3 x anti-PD-1 bispecific antibody and a negative control (Numax bivalent) for 30 minutes at 4°C. Following treatment, cells were incubated with APC-labelled one-arm anti-LAG-3 antibody, FITC-labelled one-arm anti-PD-1 antibody and BV605-labelled anti-CD3 antibody for 30 minutes at 4°C. Scatter plots of the CD3⁺ T cells are depicted in Figure 67. The data show that double-positive cells expressing both PD-1 and LAG-3 are selectively occupied by the anti-LAG-3 x anti-PD-1 bispecific demonstrating that bispecific immune checkpoint antibodies selectively target T cells expressing multiple checkpoint receptors.

2. Anti-CTLA-4 x anti-PD-1 bispecific enhances IL-2 response in a mixed lymphocyte reaction

[0438] Prototype immune checkpoint antibodies XENP16432 (nivolumab) and XENP16433 (ipilimumab), bispecific immune checkpoint antibody XENP16004 based on nivolumab and ipilimumab, and a one-arm (monospecific, monovalent) combination control were tested in a mixed-lymphocyte reaction (also known as a mixed-leukocyte reaction or MLR). The MLR is another in vitro method for assaying T helper (TH) cell proliferation and for generating a population of cytotoxic T lymphocytes (CTLs). When allogeneic (different MHC haplotype)

lymphocytes are cultured together, TH cell populations expand, followed by expansion of a CTL population. Interleukin-2 (IL-2) secretion was used to monitor T cell activation.

[0439] Different sets of human PBMCs were purified from leukapheresis of different anonymous healthy volunteers (HemaCare, VanNuys, CA) using Ficoll-Paque™ Plus density gradients. PBMCs from two donors were mixed and then treated with 20 µg/mL of the indicated test articles. Supernatant was collected and concentration of IL-2 was measured using an IL-2 ELISA and data are shown in depicts the results of some anti-CTLA-4 Fab screening. This depicts the XENP code for the Fab and scFv embodiments, the designation of the vh and vl engineered domains, the KD binding constant against human and cyno CTLA-4 as measured by Octet, and the Tm of the scFv and Fab. Additionally, the number of sequence 9-mers that were an exact match to at least one human VH or VL germline are depicted as a measure of humanness for the variable regions of both Fabs and scFvs.

[0440] Figure 25A. For each column, each data point is a separate reaction with a different donor-donor combination.

[0441] The data show that the prototype anti-PD-1 x anti-CTLA-4 bispecific antibody enhanced IL-2 response to a greater extent than nivolumab and ipilimumab alone. Notably, the one-arm combination (each monovalent arm of the bispecific added separately) is inferior to the anti-PD-1 x anti-CTLA-4 bispecific, suggesting more avid binding of the bispecific to double-positive PD-1+CTLA-4+ cells which is consistent with the finding depicted in Figure 67 for an anti-LAG-3 x anti-PD-1 bispecific antibody.

3. Additional bispecific immune checkpoint antibodies enhance IL-2 response in a mixed lymphocyte reaction

[0442] Additional prototype immune checkpoint antibodies and bispecific immune checkpoint antibodies directed towards additional immune checkpoint receptors were tested in a MLR assay as described above. Two sets of MLRs were created where 20 donors were targeting 1 recipient donor and another set of 20 donors targeting another 1 recipient donor totaling 40 MLR reactions. Reactions were incubated with 20 µg/mL of indicated test articles for 6 days. Data depicting fold increase of IL-2 and IFNy (as assayed by ELISA) following treatment with the indicated test articles over treatment with anti-PD-1 bivalent (XENP16432) are shown in Figure 32. The data show that additional bispecific immune checkpoint antibodies were also superior to nivolumab alone in activating T cells.

4. Triple immune checkpoint blockade - anti-PD-1 bivalent and anti-LAG-3 x anti-CTLA-4 bispecific antibodies are synergistic in enhancing IL-2 response in an SEB-stimulated PBMC assay

[0443] It was hypothesized that a triple immune checkpoint blockade such as with an anti-PD-1 bivalent and an anti-LAG-3 x anti-CTLA-4 bispecific as depicted in Figure 43 would provide additional benefit in enhancing T cell activation. To test the hypothesis, prototype immune checkpoint antibodies XENP16432 (nivolumab), prototype bispecific anti-LAG-3 x anti-CTLA-4 immune checkpoint antibody XENP16430 based on 25F7 and ipilimumab, and a combination of XENP16432 and XENP16430 were tested in a SEB-stimulated PBMC assay.

[0444] Human PBMCs from multiple donors were stimulated with 10 ng/ml of SEB for 72 h with 20 μ g/mL of indicated test articles. Following treatment, cell supernatants were assayed for IL-2 by ELISA. Data are shown in Figure 33 for fold increase in IL-2 over Numax bivalent. Each point indicates a donor represented in technical singlet.

[0445] The data show that the anti-LAG-3 x anti-CTLA-4 bispecific checkpoint antibody (XENP16430) alone enhanced the IL-2 response relative to control (Numax bivalent), although enhancement is lower than nivolumab (XENP 16432) alone. However, the anti-CTLA-4 x anti-LAG-3 bispecific in combination with nivolumab leads to significantly higher IL-2 response than either alone.

5. Blocking of checkpoint receptor/ligand interaction is necessary for T cell activation

[0446] Prototype anti-BTLA antibodies 4A7, E8D9 and 8D5 were screened for their ability to block BTLA interaction with its ligand HVEM using Octet, a BioLayer Interferometry (BLI)-based method. Experimental steps for Octet generally included the following: Immobilization (capture of ligand or test article onto a biosensor); Association (dipping of ligand- or test article-coated biosensors into wells containing serial dilutions of the corresponding test article or ligand); and Dissociation (returning of biosensors to well containing buffer) in order to determine the monovalent affinity of the test articles. A reference well containing buffer alone was also included in the method for background correction during data processing. 500 nM of each anti-BTLA antibody and 100 nM BTLA-Fc were incubated for over an hour. Anti-Penta-HIS (HIS 1K) biosensors were used to capture HVEM-Fc-His and then dipped into antibody/BTLA mixture to measure residual BTLA/HVEM binding. As depicted in Figure 35B, 8D5 did not block BTLA/HVEM interaction while 4A7 and E8D9 blocked BTLA/HVEM interaction.

[0447] The prototype anti-BTLA antibodies and anti-BTLA x anti-PD-1 bispecific antibodies with anti-BTLA Fab arms based on the prototype antibodies were tested in an SEB-stimulated PBMC assay. Specifically, human PBMCs were stimulated with 20 ng/mL of SEB for 72 hours with 20 μ g/mL of indicated test articles. Following treatment, cell supernatant were assayed for IL-2 by ELISA. Data are shown in Figure 35A for fold increase of IL-2 over Numax bivalent (each point represents an individual PBMC donor tested in singlet). The data show that bispecific antibody with the non-blocking 8D5 anti-BTLA Fab arm induced IL-2 significantly less than nivolumab indicating that blocking the BTLA/HVEM interaction is necessary for enhancing T cell activation.

6. Bispecific immune checkpoint antibodies enhance engraftment and disease activity in human PBMC-engrafted NSG mice

[0448] Bispecific checkpoint antibodies were evaluated in a Graft-versus-Host Disease (GVHD) model conducted in NSG (NOD-SCID-gamma) immunodeficient mice. When the NSG mice were injected with human PBMCs, the human PBMCs developed an autoimmune response against mouse cells. Treatment of NSG mice injected with human PBMCs followed by treatment with immune checkpoint inhibitors de-repress the engrafted T cells and enhances engraftment.

[0449] 10 million human PBMCs were engrafted into NSG mice via IV-OSP on Day 0 followed by dosing with the indicated test articles (5 mg/kg or as indicated) on Day 1. CD45+ events were measured on Day 14 (Figure 34). While the GVHD can be measured directly, increased CD45+ cell levels correlate with decreased body weight (depict a mixed lymphocyte reaction looking enhancement of IL-2 release by nivolumab (anti-PD-1 monoclonal antibody, marketed as Opdivo[®]) alone, ipilimumab alone (anti-CTLA-4 monoclonal antibody, marketed as Yervoy[®]), a prototype anti-CTLA-4 x anti-PD-1 bispecific based on the nivolumab and ipilimumab arms, and a "one-armed" combination control.

[0450] Figure 26B) and are predictive of disease.

[0451] The data show that the bispecific checkpoint antibodies of the invention enhance proliferation of CD45+ cells in human PBMC-engrafted NSG mice as compared to control (PBS + PBMC). Further, enhancement is greater using antibodies of the invention than that seen with nivolumab (XENP16432) alone. Furthermore, the anti-CTLA-4 x anti-LAG-3 bispecific (XENP16430) in combination with nivolumab yielded the highest engraftment levels consistent with the data in Example 2D.

C. Example 3: Hybridomas

1. Hybridoma Generation

[0452] To develop PD-1, LAG-3 and BTLA targeting arms for bispecific immune checkpoint antibodies of the invention, monoclonal antibodies were first generated by hybridoma technology through ImmunoPrecise, either through their Standard Method or Rapid Prime Method.

[0453] For the Standard Method, antigen(s) was injected into 3 BALB/c mice. 7-10 days before being sacrificed for hybridoma generation, the immunized mice received an antigen boost.

Antibody titre is evaluated by ELISA on the antigen and the best responding mice are chosen for fusion. A final antigen boost is given 4 days prior to fusion. Lymphocytes from the mice are pooled, purified then fused with SP2/0 myeloma cells. Fused cells are grown on HAT selective Single-Step cloning media for 10-12 days at which point the hybridomas were ready for screening.

[0454] For the Rapid Prime method, antigen(s) was injected into 3 BALB/c mice. After 19 days, lymphocytes from all the mice are pooled, purified then fused with SP2/0 myeloma cells. Fused cells are grown on HAT selective Single-Step cloning media for 10-12 days at which point the hybridomas were ready for screening.

[0455] For generation of anti-PD-1 hybridomas, the Standard and Rapid Prime methods were used and the antigen(s) used were mouse Fc fusion of human PD-1 (huPD-1-mFc), mouse Fc fusion of cyno PD-1 (cynoPD-1-mFc), His-tagged human PD-1 (huPD-1-His), His-tagged cyno PD-1 (cynoPD-1-His) or mixtures thereof.

[0456] For generation of anti-BTLA hybridomas, the Standard and Rapid Prime methods were used and antigen used were mouse Fc fusion of human BTLA (huBTLA-mFc), mouse Fc fusion of cyno BTLA (cynoBTLA-mFc), His-tagged human BTLA (huBTLA-His), or mixture of huBTLA-mFc and cynoBTLA-mFc.

[0457] For generation of anti-LAG-3 hybridomas, the Rapid Prime method was used and antigen used were mouse Fc fusion of human LAG-3 (huLAG-3-mFc), mouse Fc fusion of cyno LAG-3 (cynoLAG-3-mFc), His-tagged human LAG-3 (huLAG-3-His), mixture of huLAG-3-mFc and cynoLAG-3-mFc, or mixture huLAG-3-His and cynoLAG-3-His.

[0458] For generation of anti-TIM-3 hybridomas, the Standard and Rapid Prime methods were used and antigen(s) used were mouse Fc fusion of human TIM-3 (huTIM-3-mFc), mouse Fc fusion of cyno TIM-3 (cynoTIM-3-mFc), His-tagged human TIM-3 (huTIM-3-His), His-tagged cyno TIM-3 (cynoTIM-3-His) or mixtures thereof.

2. Screening anti-PD-1 hybridoma clones

[0459] Anti-PD-1 hybridoma clones generated as described above were subject to two rounds of screening using Octet. For the first round, anti-mouse Fc (AMC) biosensors were used to capture the clones with dips into 500 nM of bivalent human and cyno PD-1-Fc-His. For the second round, clones identified in the first round that were positive for both human and cyno PD-1 were captured onto AMC biosensors and dipped into 500 nM monovalent human and cyno PD-1-His. Sequences for exemplary anti-PD-1 antibodies are in the sequence listing.

3. Screening anti-BTLA hybridoma clones

[0460] Anti-BTLA hybridoma clones generated as described above were subject to two rounds of screening using Octet. For the first round, AMC biosensors were used to capture the clones with dips into multiple concentrations of human and cyno BTLA-His to determine KD. For the second round, a blocking assay was used to identify clones which blocked BTLA/HVEM interaction. Anti-Penta-HIS (HIS1K) biosensors were used to capture HVEM-Fc-His and dipped into 25 nM BTLA-Fc alone or 25 nM BTLA-Fc + 1:1 dilution of hybridoma samples to measure residual BTLA/HVEM binding. Sequences for exemplary anti-BTLA antibodies are in the sequence listing.

4. Screening anti-LAG-3 hybridoma clones

[0461] Anti-LAG-3 hybridoma clones generated as described above were subject to several rounds of screening to identify clones with high affinity, which block LAG-3 binding to Ramos cells endogenously expressing MHC-II, and which bind a different epitope than 25F7 mAb.

[0462] Affinity was determined using Octet. AMC biosensors were used to capture clones with dips into single concentration of human LAG-3-Fc and cyno LAG-3-Fc. To identify clones which block LAG-3/MHC-II interaction, 1 µg of human LAG-3-hlg in 10 µL was mixed with 50 µL of hybridoma supernatant (diluted 2-fold, 8 times in RPMI media with 10% FBS) for 20 minutes at room temperature. 40 µL of Daudi or Ramos cells (which endogenously express MHC-II) were added and incubated at 4°C for 30 minutes. The cells were then washed and incubated with anti-human-Fc-Alexa647 secondary antibody for 30 minutes. Cells were then washed and analyzed by FACS for Alexa647. The data is depicted in Figure 62. To identify clones which bind a different epitope than 25F7 mAb, AMC biosensors were used to capture clones with dips into 100 nM human LAG-3-hFc or 100 nM LAG-3-hFc with 500 nM 25F7 to measure residual binding. Sequences for exemplary anti-LAG-3 antibodies are in the sequence listing.

5. Screening anti-TIM-3 hybridoma clones

[0463] Anti-TIM-3 hybridoma clones generated as described above were subject to two rounds of screening. The first round was divided into screens for IgG samples and IgM clones. For IgG clones, AMC biosensors were used to capture the clones and were dipped into multiple concentrations of human and cyno TIM-3-His. For IgM clones, anti-IgM mAbs were coupled using AR2G onto biosensors which were dipped into multiple concentrations of human and cyno TIM-3-His. None of the IgM samples produced binding singals higher than baseline. Following the first round of screening, IgG clones which bound both human and cyno TIM-3 were rescreened with bivalent versions of bivalent human and cyno TIM-3-Fc. Sequences for exemplary anti-TIM-3 antibodies are in the sequence listing.

[0464] Several of the clones were chimerized and assessed for T cell binding in an SEB-stimulated PBMC assay. Human PBMCs were stimulated with 100 ng/mL SEB for 3 days.

Following stimulation, cells were treated with indicated test articles for 30 minutes at 4 degrees. Binding on CD3⁺ cells was detected with an anti-human-Fc secondary antibody and depicted in Figure 21.

6. Component antibody domains derived from hybridomas block checkpoint receptor/ligand interactions

[0465] As described in Example 2E, blocking of checkpoint receptor/ligand interaction is necessary for T cell activation. The blocking ability of exemplary antibodies comprising domains derived from hybridomas were investigated using either cell binding assays or Octet as depicted in are graphs showing that component antibody domains of the subject antibodies provided herein are capable of blocking checkpoint receptor/ligand interactions. In particular, a bispecific antibody comprising a 1G6 anti-PD-1 scFv arm is capable of blocking PD-1/PD-L1 and PD-1/PD-L2 interactions; 7G8 anti-LAG-3 one arm is capable of blocking LAG-3/MHC II interaction; a bispecific antibody comprising an exemplary anti-PD-1 Fab arm is capable of blocking CTLA-4/CD80 and CTLA-4/CD86 interactions; and a bispecific antibody comprising a 9C6 anti-BTLA Fab arm is capable of blocking BTLA/HVEM interaction.

Figure 68.

[0466] Incubation of HEK293T exogenously expressing PD-1 with XENP20717 prevented binding by PD-L1 and PD-L2 to PD-1 in a dose dependent manner. Incubation of LAG-3 with XENP22606 prevented its binding to Daudi cells endogenously expressing MHC-II. Incubation of CTLA-4 with XENP20066 prevented residual binding to CD80 and CD86. Incubation of BTLA with XENP20895 prevented residual binding to HVEM.

D. Example 4: Affinity and stability optimization

1. Anti-PD-1 mAbs 1G6 and 2E9

[0467] The anti-PD-1 hybridoma clones 1G6 and 2E9 generated in Example 3 were engineered to have optimal affinity and stability in the context of scFv or Fab for use in a bispecific immune checkpoint inhibitor. The clones were first humanized using string content optimization (see, e.g., U.S. Patent No. 7,657,380, issued February 2, 2010). DNA encoding the heavy and light chains were generated by gene synthesis (Blue Heron Biotechnology, Bothell, Wash.) and subcloned using standard molecular biology techniques into the expression vector pTT5. The C-terminus of the scFv included a polyhistidine tag. A library of Fv variants was constructed by standard mutagenesis (QuikChange, Stratagene, Cedar Creek,

Tx.) in the full-length bivalent, Fab-His and/or scFv-His formats. Bivalent mAbs were purified by standard protein A chromatography and Fab-His and scFv-His were purified by Ni-NTA chromatography. Sequences for exemplary 1G6 and 2E9 bivalent antibodies, Fabs and scFvs of the invention are listed in the sequence listing (although the polyhistidine tags have been removed for Fabs and scFvs). After the initial screen, combinations were made of variants of interest, and these were expressed, purified, and re-examined for affinity and stability.

[0468] Affinity screens of bivalent antibodies were performed using Octet. Anti-human Fc (AHC) biosensors were used to capture the test articles and dipped in multiple concentrations of PD-1-His for KD determination. Stability of scFv-His were evaluated using Differential Scanning Fluorimetry (DSF). DSF experiments were performed using a Bio-Rad CFX Connect Real-Time PCR Detection System. Proteins were mixed with SYPRO Orange fluorescent dye and diluted to 0.2 mg/mL in PBS. The final concentration of SYPRO Orange was 10X. After an initial 10 minute incubation period of 25°C, proteins were heated from 25 to 95°C using a heating rate of 1°C/min. A fluorescence measurement was taken every 30 sec. Melting temperatures (T_m) were calculated using the instrument software. The affinity and stability results are shown in Figure 23.

2. Anti-CTLA-4 mAb

[0469] The parental variable region of an anti-CTLA-4 antibody was engineered for use as a component of various bispecifics. Two approaches were taken to attempt to identify variants with improved properties: (1) single, double, and triple amino acids substitutions were made via QuikChange (Stratagene, Cedar Creek, Tx.) mutagenesis, and (2) re-grafted sequences with their framework exchanged with alternative human germlines (IGHV3-7, IGHV3-13, IGHV3-21, IGHV3-64, IGKV3D-20, IGKV3-15) were constructed by DNA synthesis and subcloning. Variant Fabs and scFvs were designed, expressed, and purified. Affinities for human and cyno CTLA-4 were measured for Fabs using Octet. AHC biosensors were used to capture Fc fusions of human or cyno CTLA-4 and dipped into multiple concentrations of Fab test articles for KD determination. Thermal stabilities were measured for both Fabs and scFvs using DSF. Additionally, the number of sequence 9-mers that were an exact match to at least one human VH or VL germline were counted as a measure of humanness (see, e.g., U.S. Patent No. 7,657,380, issued February 2, 2010) for the variable regions of both Fabs and scFvs. After the initial screen, combinations were made of variants of interest, and these were expressed, purified, and re-examined for affinity and stability. Results are summarized in Figure 24. Several variants possessed increased thermal stability over that of the parental variable region while retaining a similar affinity for both human and cyno CTLA-4. Additionally, increases in sequence humanness as measured by the number of human germline matching sequence 9-mers were identified for several variants. Preferred variants include: H0.25_L0, H0.26_L0, H0.27_L0, H0.29_L0, H0.38_L0, H0.39_L0, H0.40_L0, H0.70_L0, H0_L0.22, H2_L0, H3_L0, H3_L0.22, H3_L0.67, H3_L0.74, H3_L0.44, H3.4_L0.118, H3.4_L0.119, H3.4_L0.120, H3.4_L0.121, H3.4_L0.122, H3.4_L0.123, H3.4_L0.124, H3.4_L0.125, H3.4_L0.126, H3.4_L0.127, H3.4_L0.128, H3.4_L0.129, H3.4_L0.130, H3.4_L0.131, H3.4_L0.132,

H3.5_L2.1, H3.5_L2.2, H3.5_L2.3, H3.21_L0.124, H3.21_L0.129, H3.21_L0.132, H3.23_L0.124, H3.23_L0.129, H3.23_L0.132, H3.25_L0.124, H3.25_L0.129, and H3.25_L0.132.

3. Anti-BTLA mAb 9C6

[0470] The anti-BTLA hybridoma clone 9C6 generated in Example 3 was humanized and engineered to have optimal affinity and stability in bivalent antibody format as generally described above in Example 4A. Sequences for exemplary anti-BTLA bivalent antibodies of the invention are listed in the sequence listing.

[0471] Affinity screens for the variant bivalent antibodies were performed using Octet. AHC biosensors were used to capture the test articles and dipped into wells with multiple concentrations of BTLA-His for KD determination (shown in A and B show that anti-BTLA x anti-PD-1 chimeric bispecific promotes IFNy secretion from SEB stimulated PBMCs. PBMCs were stimulated with 10 ng/mL SEB for 3 days with indicated test articles. Cell supernatants were collected and assayed with MSD for indicated analyte. A: 20 μ g/mL test article; B 5 μ g/mL test article.

Figure 52).

4. Anti-LAG-3 mAbs 7G8 and 2A11

[0472] The anti-LAG-3 hybridoma clones 7G8 and 2A11 generated in Example 3 were humanized and engineered to have optimal affinity and stability in the context of a Fab for use in a bispecific immune checkpoint inhibitor as generally described above in Example 4A. Sequences for exemplary anti-LAG-3 bivalent antibodies and Fabs of the invention are listed in the sequence listing.

[0473] Affinity and stability for variant anti-LAG-3 Fabs were determined as generally described above in Example 4A. AMC biosensors were used to capture mouse Fc fusions of human LAG-3 and dipped into wells containing multiple concentrations of the test articles to determine KD. The results are shown in Figure 53 for 2A11 variants and Figure 54 for 7G8 variants.

[0474] Exemplary variant 2A11 and 7G8 anti-LAG-3 bivalent antibodies were further screened for their ability to block LAG-3 binding to Daudi cells endogenously expressing MHC-II. 1 μ g of LAG-3-mFc was mixed with indicated concentrations of mAb for 30 minutes at room temperature. Daudi cells were then added and incubated for 30 minutes at 4°C. LAG-3-mFc binding was detected with an anti-murine-Fc secondary antibody. The data is depicted in Figure 63.

5. Anti-TIM-3 mAbs

[0475] Anti-TIM-3 hybridoma clones generated in Example 3 were humanized and engineered to have optimal affinity and stability in bivalent antibody format as generally described above in Example 4A. Sequences for exemplary anti-TIM-3 bivalent antibodies of the invention are listed in the sequence listing.

[0476] Affinity screens for the variant bivalent antibodies were performed using Octet. AHC biosensors were used to capture the test articles and dipped into wells with multiple concentrations of TIM-3-His for KD determination (shown in Figure 22).

[0477] Optimized variants were also tested for T cell binding in an SEB-stimulated PBMC assay. Human PBMCs were stimulated with 100 ng/mL SEB for 72 hours. Following stimulation, cells were treated with the indicated test articles. Binding of 3H3_H1_L2.1 (XENP21189) on CD3⁺ cells was detected with an anti-human-Fc secondary antibody and depicted in Figure 21. Binding of 7B11_HJ1_L1.1 (XENP21196) on CD3⁺ cells was detected with an anti-human-IgG-APC secondary antibody and depicted in Figure 21.

6. Affinity screens of variant anti-LAG-3 x anti-CTLA-4 Fab-scFv bispecific antibodies

[0478] Bispecific antibodies comprising anti-LAG-3 Fabs derived from the optimized anti-LAG-3 bivalent antibodies described in Example 4D and an exemplary anti-CTLA-4 scFv described in Example 4B were screened for affinity using Octet as generally described above. Specifically, AMC or HIS1K biosensors were used to capture mouse Fc fusion of human LAG-3 or His-Avi tagged TEV-Fc fusion of human LAG-3 and dipped into well containing the test articles to determine KD. Results are shown in Figure 55.

7. Affinity screens of variant anti-LAG-3 x anti-PD-1 Fab-scFv bispecific antibodies.

[0479] Bispecific antibodies comprising anti-LAG-3 Fabs derived from the optimized anti-LAG-3 bivalent antibodies described in Example 4D and an exemplary anti-PD-1 scFv described in Example 4A were screened for affinity using Octet as generally described above. Specifically, AMC or HIS1K biosensors were used to capture mouse Fc fusion of human LAG-3 or His-Avi tagged TEV-Fc fusion of human LAG-3 and dipped into well containing the test articles to determine KD. Results are shown in Figure 61.

E. Example 5: In vitro assessment of bispecific immune checkpoint antibodies with affinity and stability optimized arms

1. Anti-PD-1 x anti-CTLA-4 bispecific antibodies

a. Bispecific anti-PD-1 x anti-CTLA-4 bispecific antibody blocks PD-1 interaction with PD-L1 and PD-L2

[0480] HEK293T cells expressing PD-1 were incubated with XENP20717 (anti-PD-1 x anti-CTLA-4) and one-arm anti-PD-1 and anti-CTLA-4 controls (respectively XENP20111 and XENP20059) for 30 minutes at 4°C. Following incubation, PD-L1-mFc or PD-L2-mFc was added and allowed to further incubate for 30 minutes at 4°C. PD-L1-mFc and PD-L2-mFc were detected with anti-murine-IgG secondary antibody.

[0481] Figure 45 show that XENP20717 was able to block the binding of PD-1 to ligands PD-L1 and PD-L2 in a dose dependent manner. XENP20111 was also able to block the binding of PD-1 to ligands PD-L1 and PD-L2, while XENP20559 did not block PD-1 binding to its ligands.

b. T cell binding of bispecific anti-CTLA-4 x anti-PD-1 bispecific antibody on CD3⁺ cells

[0482] Human PBMCs were stimulated with 500 ng/mL SEB for 3 days, washed twice in culture medium and then re-stimulated with 500 ng/mL SEB for an additional 24 hours. The PBMCs were then treated with XENP20717 (anti-CTLA-4 x anti-PD-1) for 30 minutes at 4°C. Following treatment, PBMCs were washed and incubated with anti-human-Fc-(Fab fragment specific)-APC secondary antibody (Jackson Labs) on CD3⁺ cells with an anti-CD3-FITC (UCHT1) mAb. PBMCs were then washed twice and analyzed by flow cytometry. Figure 45 depicts the average MFI of 7 unique PBMC donors and shows binding of XENP20717 on CD3⁺ T cells and that binding was in a dose-dependent manner.

c. Assessment of variant anti-CTLA-4 x anti-PD-1 bispecifics on T cell activation

[0483] Anti-CTLA-4 x anti-PD-1 bispecific antibodies with variant anti-CTLA-4 Fab arms were tested in an MLR assay. Mixed PBMCs were treated with 69.5 nM of bivalent antibodies (e.g. nivolumab) or 139 nM of bispecific antibodies (e.g. XENP16004) for equimolar PD-1 binding concentrations. The data depicted in depicts the results of some anti-CTLA-4 Fab screening. This depicts the XENP code for the Fab and scFv embodiments, the designation of the vh and vl engineered domains, the KD binding constant against human and cyno CTLA-4 as measured by Octet, and the Tm of the scFv and Fab. Additionally, the number of sequence 9-mers that were an exact match to at least one human VH or VL germline are depicted as a measure of humanness for the variable regions of both Fabs and scFvs.

[0484] Figure 25B show that a number of the bispecific antibodies enable IL-2 induction superior to nivolumab alone.

[0485] In an SEB-stimulated PBMC assay, PBMCs were treated with 500 ng/mL SEB for 2 days. Cells were then washed and treated with 20 μ g/mL of XENP16432 (nivolumab) or XENP20717 and 500 ng/mL SEB. Supernatant was assayed for IL-2 as an indicator of T cell activation. The data depicted in Figure 69 show that the anti-CTLA-4 x anti-PD-1 bispecific induces significantly more IL-2 release than nivolumab alone.

[0486] In another study, XENP16432, XENP20717 and one-arm combination control were tested in an SEB-stimulated PBMC assay. PBMCs were stimulated with 500 ng/mL SEB for 2 days. Cells were then washed once with PBS and then culture medium with 20 μ g/mL of indicated test articles and 500 ng/mL SEB was added. Supernatants were collected after 24 hours and assayed for IL-2. In a control experiment without SEB stimulation, PBMCs were treated with indicated test articles for 3 days before supernatant was assayed for IL-2. The fold-change in IL-2 concentration is depicted in Figure 45A-C. As shown in Figure 45B, XENP20717 enhanced IL-2 secretion significantly more than nivolumab did. The data show that XENP20717 activates T cells more potently than both anti-PD-1 bivalent alone as well as a combination of one-arm anti-PD-1 and one-arm anti-CTLA-4 demonstrating the advantage of selectively activating T cells expressing multiple immune checkpoint receptors. Notably, and consistent with the findings described in Example 2B, the bispecific XENP20717 enhanced IL-2 secretion to a greater extent than did the combination of one-arm antibodies derived from XENP20717.

[0487] An additional bispecific antibody targeting CTLA-4 and PD-1 with an anti-CTLA-4 scFv arm and a variant 2E9 anti-PD-1 Fab arm and control test articles were tested in an SEB-stimulated PBMC assay. Human PBMCs were stimulated with 100 ng/mL SEB for 2 days. Cells were washed and restimulated with 100 ng/mL SEB in combination with 20 μ g/mL of the indicated test articles. Supernatants were assayed for IL-2 and IFNy 24 hours after treatment (depicted respectively in Figure 19A and B).

2. In vitro assessment of anti-LAG-3 x anti-PD-1 bispecific checkpoint antibodies

a. Assessment of variant anti-LAG-3 x anti-PD-1 bispecifics on T cell activation

[0488] In an SEB-stimulated PBMC assay, PBMCs were treated with 500 ng/mL SEB for 2 days. Cells were then washed and treated with 20 μ g/mL of XENP16432 (nivolumab) or XENP22604 and 500 ng/mL SEB. Supernatant was assayed for IL-2 as an indicator of T cell activation (depicted in Figure 69).

[0489] Additional anti-LAG-3 x anti-PD-1 bispecific antibodies with optimized 2A11 anti-LAG-3 Fab arms (derived from variant mAbs generated as described in Example 4) were also assessed for T cell activation in an SEB-stimulated PBMC assay. Human PBMCs from multiple donors were stimulated with 500 ng/ml of SEB for 2 days. Cells were then washed twice in culture medium and stimulated with 500 ng/mL SEB in combination with 10 µg/mL of indicated test articles. 24 hours after treatment, cell supernatants were assayed for IL-2 and IFNy. Data are shown in Figure 64 for fold increase in IL-2 and IFNy over Numax bivalent. Each point indicates a donor represented in technical singlet.

[0490] The data shows that a number of the anti-LAG-3 x anti-PD-1 bispecific antibodies activate T cells more potently than either nivolumab alone or anti-LAG-3 bivalent alone.

3. In vitro assessment of anti-BTLA x anti-PD-1 bispecific checkpoint antibodies

a. T cell binding of bispecific anti-BTLA x anti-PD-1 bispecific antibodies on CD3⁺ cells

[0491] Anti-BTLA x anti-PD-1 bispecific antibodies with optimized anti-BTLA Fab arms (derived from variants mAbs generated as described in Example 4) were assessed for binding on T cells. Human PBMCs were stimulated with 100 ng/mL SEB for 3 days, after which the PBMCs were treated with the indicated test articles for 30 minutes at 4°C. PBMCs were then incubated with anti-human-Fc secondary antibody for 30 minutes at 4°C. Figure 47 shows the binding of the indicated test articles on CD3⁺ cells.

[0492] The data show that the anti-PD-1 x anti-BTLA bispecific checkpoint antibodies of the invention (e.g. XENP20895, XENP21220 and XENP21221) bind more avidly to T-cells compared to one-armed controls (e.g. XENP21446 and XENP16011). This demonstrates that binding to human T cells is generally better with bispecific antibodies, each arm monovalently binding a different antigen, than monovalent, monospecific antibodies such as the one-armed controls.

b. Assessment of variant anti-BTLA x anti-PD-1 bispecifics on T cell activation

[0493] Anti-BTLA x anti-PD-1 bispecific antibodies with prototype anti-BTLA (e.g. 4C7, 8D5 and E8D9) and 9C6 Fab arms were assessed for T cell activation in an SEB-stimulated PBMC assay. Human PBMCs from multiple donors were stimulated with 10 ng/ml of SEB for 72 h with 5 µg/mL or 20 µg/mL as indicated of test articles. Following treatment, cell supernatants were assayed for IL-2 and IFNy by ELISA, depicted respectively in Figures 1J and 1K. The data show that bispecific antibodies comprising the 9C6 hybridoma derived arm enhanced T cell activation not only greater than anti-PD-1 bivalent alone did but also greater than did the bispecifics with the prototype anti-BTLA Fab arms.

[0494] An exemplary anti-BTLA x anti-PD-1 XENP21220 and XENP16432 (nivolumab) were assessed in an SEB-stimulated PBMC assay. PBMCs were treated with 500 ng/mL SEB for 2 days. Cells were then washed and treated with 20 μ g/mL of XENP16432 or XENP21220 and 500 ng/mL SEB. Supernatant was assayed for IL-2 as an indicator of T cell activation (depicted in Figure 69).

[0495] Additional anti-BTLA x anti-PD-1 bispecifics with variant 9C6 anti-BTLA Fab arms and one-arm variant 9C6 antibodies (alone and in combination with one-arm anti-PD-1 antibody) were assessed for T cell activation in an SEB-stimulated PBMC assay as described above. Data are shown in Figure 1L for fold increase in IL-2 and IFN γ secretion over treatment with PBS.

4. In vitro assessment of anti-LAG-3 x anti-CTLA-4 bispecific checkpoint antibodies

a. T cell binding of bispecific anti-BTLA x anti-PD-1 bispecific antibodies on CD3 $^{+}$ cells

[0496] Anti-LAG-3 x anti-CTLA-4 bispecifics with variant anti-LAG-3 Fab arms and one-arm variant anti-LAG-3 antibodies were assessed for binding on T cells. Human PBMCs were stimulated with 100 ng/mL SEB for 3 days, after which the PBMCs were treated with the indicated test articles for 30 minutes at 4°C. Following treatment, PBMCs were incubated with anti-CD3-FITC and anti-human-Fc-APC antibodies for 30 minutes at 4°C. PBMCs were then washed twice and analyzed by flow cytometry. Figure 56 shows the binding of the indicated test articles on CD3 $^{+}$ T cells.

[0497] The data show that a number of the anti-LAG-3 x anti-CTLA-4 bispecific checkpoint antibodies of the invention (e.g. XENP22505 and XENP21896) bind more avidly to T-cells compared to one-armed controls (e.g. XENP22516). This demonstrates that binding to human T cells can be better with bispecific antibodies, each arm monovalently binding a different antigen, than monovalent, monospecific antibodies such as the one-armed controls.

b. T cell activation by anti-LAG-3 x anti-CTLA-4 bispecific antibodies

[0498] Anti-LAG-3 x anti-CTLA-4 bispecific antibodies were assessed for T cell activation in MLR and SEB-stimulated PBMC assays.

[0499] 40 MLR reactions were made in the presence of 20 μ g/mL of the indicated test articles, and cell supernatant were assayed 6 days after treatment for IL-2 and IFN γ . Figure 59 depicts fold induction in IL-2 and IFN γ over anti-RSV bivalent (XENP 15074).

[0500] In an SEB-stimulated PBMC assay, PBMCs were treated with 500 ng/mL SEB for 2 days. Cells were then washed and treated with 20 μ g/mL of XENP16432 (nivolumab), XENP22602 or a combination of XENP16432 and XENP22602 and 500 ng/mL SEB. Supernatant was assayed for IL-2 as an indicator of T cell activation (depicted in Figure 69).

[0501] In another SEB-stimulated PBMC assays, additional anti-LAG-3 x anti-CTLA-4 bispecific were assessed. Human PBMCs from multiple donors were stimulated with 500 ng/ml of SEB for 2 days. Cells were then washed twice in culture medium and stimulated with 500 ng/mL SEB in combination with 20 μ g/mL of indicated test articles. 24 hours after treatment, cell supernatants were assayed for IL-2 and IFNy. Data are shown in Figure 57 and Figure 58 and Figure 60 for fold increase in IL-2 and IFNy over Numax bivalent. Each point indicates a donor represented in technical singlet.

[0502] The data is consistent with Example 2D in showing that a combination of anti-PD-1 bivalent and anti-LAG-3 x anti-CTLA-4 bispecific exerts synergistic effect in T cell activation. Further, the data show that 7G8 based anti-LAG-3 x anti-CTLA-4 bispecific antibodies exhibit more selective function on PBMCs than 2A11 based anti-LAG-3 x anti-CTLA-4 bispecific antibodies

F. Example 6: In vivo assessment of bispecific immune checkpoint antibodies

1. Anti-CTLA-4 x anti-PD-1 bispecifics enhance engraftment and disease activity in human PBMC-engrafted NSG mice

[0503] In several GVHD studies, exemplary anti-CTLA-4 x anti-PD-1 bispecific antibodies of the invention were shown to enhance engraftment and disease activity in human PBMC-engrafted NSG mice.

[0504] In a first study, 10 million human PBMCs were engrafted into NSG mice via IV-OSP on Day 0. On day 1, the mice were dosed with XENP16432 (2.89 mg/kg), XENP20053 (2 mg/kg) and a combination of XENP16432 and XENP16433 (2.89 + 2.92 mg/kg). CD45+ cell counts were measured on Day 14 (depicted in Figure 70).

[0505] Additional anti-CTLA-4 x anti-PD-1 bispecifics with variant anti-CTLA-4 Fab and anti-PD-1 scFv arms were assessed. 10 million human PBMCs were engrafted into NSG mice via IV-OSP on Day 0 followed by dosing with the indicated test articles (5 mg/kg or as indicated) on Day 1. CD45+ cell counts were measured on Day 14 (Figure 1QA, Figure 1RA and Figure 1S). IFNy levels were also measured as an additional indicator of GVHD and plotted against CD45+ cell levels (depicts mixed lymphocyte reaction looking at enhancement of IL-2 release by anti-CTLA-4 x anti-PD-1 bispecific antibodies with variant anti-CTLA-4 Fab arms and variant anti-PD-1 scFv arms, as well as nivolumab alone, ipilimumab alone, and a prototype anti-CTLA-4 x

anti-PD-1 bispecific based on the nivolumab and ipilimumab arms as controls.

[0506] Figure 27 and Figure 30).

[0507] The data show that the anti-PD-1 x anti-CTLA-4 bispecific checkpoint antibodies of the invention enhance proliferation of CD45+ cells in human PBMC-engrafted NSG mice as compared to control (PBS + PBMC). Further, enhancement is greater using antibodies of the invention than that seen with nivolumab (XENP16432) alone. Figure 31 shows the comparison of test article effect on CD45+ cell proliferation between studies 160314 (presented in Figure 26) and 160331 (presented in Figure 29). Both studies consistently demonstrate superiority of anti-PD-1 x anti-CTLA-4 bispecific checkpoint antibodies over nivolumab alone.

[0508] In another study, an anti-CTLA-4 x anti-PD-1 bispecific antibody with Xtend Fc was assessed. PBMC-engrafted mice were dosed with indicated test articles at indicated concentrations and CD45+, CD4+ and CD8+ events were measured on Day 14 (depicted in Figure 20).

2. Anti-BTLA x anti-PD-1 bispecifics enhance engraftment and disease activity in human PBMC-engrafted NSG mice

[0509] In a first study, 10 million human PBMCs were engrafted into NSG mice via IV-OSP on Day 0. On day 1, the mice were dosed with XENP16432 (2.89 mg/kg) and XENP20895 (5 mg/kg). CD45+ cell counts were measured on Day 14 (depicted in Figure 70).

[0510] Anti-BTLA x anti-PD-1 bispecific XENP20895 was assessed in a second GVHD study. 10 million human PBMCs were engrafted into NSG mice via IV-OSP on Day 0 followed by dosing with the indicated test articles (at concentrations as indicated) on Day 1. CD45+ cell counts and IFNy were measured on Days 10, 14 and 22 (depicted respectively in Figure 51).

3. Anti-LAG-3 x anti-PD-1 bispecifics enhance engraftment and disease activity in human PBMC-engrafted NSG mice

[0511] In a GVHD, 10 million human PBMCs were engrafted into NSG mice via IV-OSP on Day 0. On day 1, the mice were dosed with XENP16432 (2.89 mg/kg) and XENP22672 (5 mg/kg). CD45+ cell counts were measured on Day 14 (depicted in Figure 70).

[0512] In the second study described in Example 6A, another exemplary anti-LAG-3 x anti-PD-1 (XENP22847) was also assessed (Figure 20C).

4. Anti-LAG-3 x anti-CTLA-4 bispecifics enhance engraftment and disease activity in human PBMC-engrafted NSG mice

[0513] In a GVHD, 10 million human PBMCs were engrafted into NSG mice via IV-OSP on Day 0. On day 1, the mice were dosed with XENP16432 (2.89 mg/kg), XENP22675 (5 mg/kg) and a combination of XENP 16432 and XENP22675 (5 + 5 mg/kg). CD45+ cell counts were measured on Day 14 (depicted in Figure 70).

[0514] The data shows that XENP22675 enhances engraftment and disease activity over dosing with nivolumab alone. Notably, XENP22675 in combination with nivolumab acts synergistically to further enhance engraftment.

G. Example 7: Anti-PD-1 x anti-CTLA-4 Bispecific Antibodies Exhibit Anti-tumor Activity in NSG Mice Engrafted with KG1A-luc Cancer Cells and Human PBMCs

[0515] NOD SCID gamma (NSG) mice were engrafted with KG1A-luc cancer cells on Day 0. On Day 21, human PBMCs were engrafted into the intraperitoneally into the mice. After PBMC engraftment, indicated test articles were dosed weekly by intraperitoneal injection (control mice were dosed with PBS). Tumor growth was monitored by measuring total flux per mouse using an in vivo imaging system (IVIS® Lumina III) and data are shown (days post 1st dose) in Figure 71.

REFERENCES CITED IN THE DESCRIPTION

Cited references

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO2014209804A [0002]
- WO2015103072A [0002]
- US20160355608A1 [0022]
- US8216805B [0028] [0131]
- US20120149876A [0028] [0133]

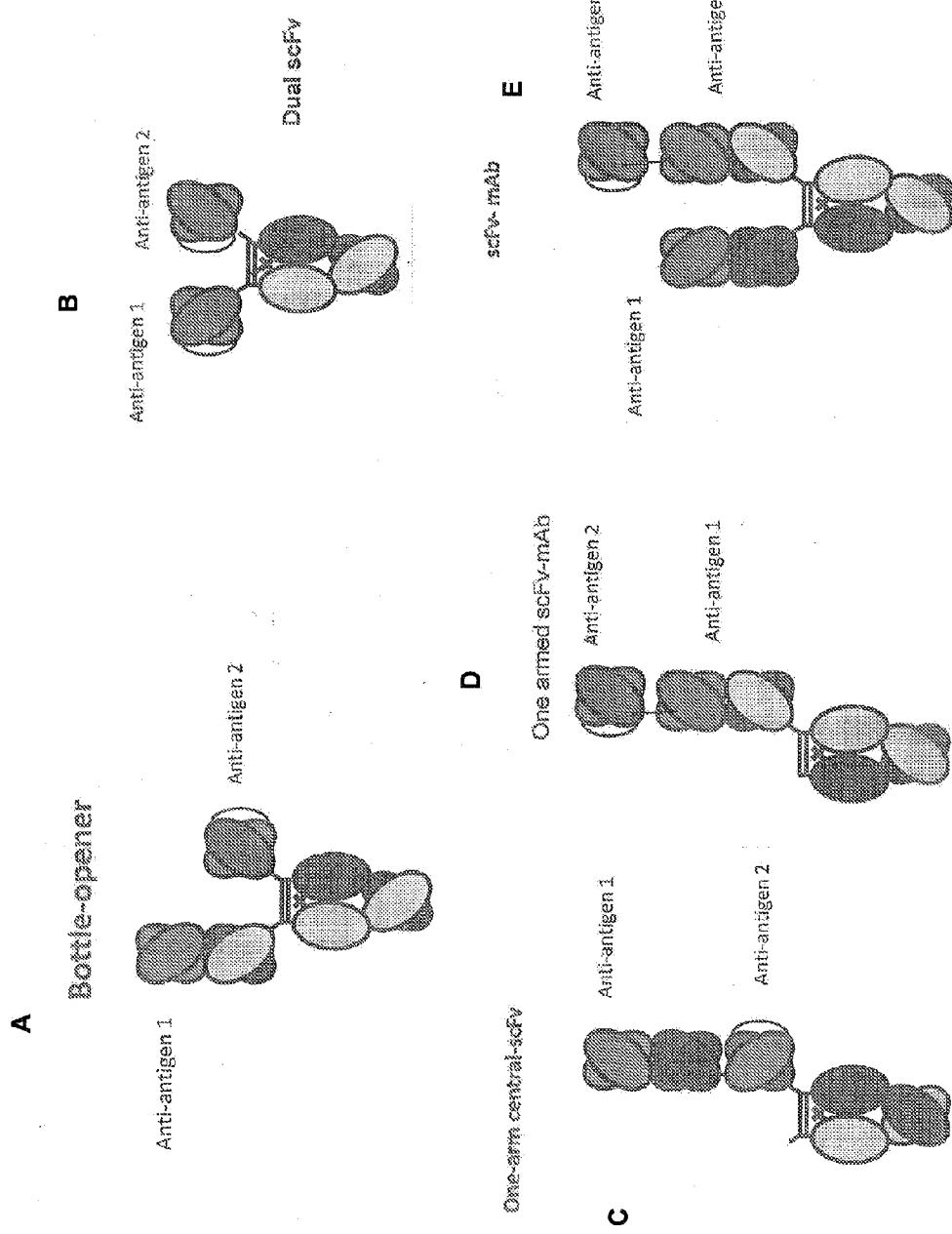
- US20140288275A [0034] [0432]
- US20120028304A1 [0041]
- US20060134105A [0059]
- US20090163699A [0092]
- US004590 [0115]
- US20010035606A1 [0115]
- WO2014145806A [0119] [0119] [0119] [0119] [0119] [0432]
- US20140370013A [0140] [0144]
- US20060024298A1 [0150]
- US20060121032A1 [0150]
- US20060235208A1 [0150]
- US20070148170A1 [0150]
- US20090163699A1 [0151]
- US7657380B [0266] [0266] [0266] [0467] [0469]
- US20150307629A [0432]

Non-patent literature cited in the description

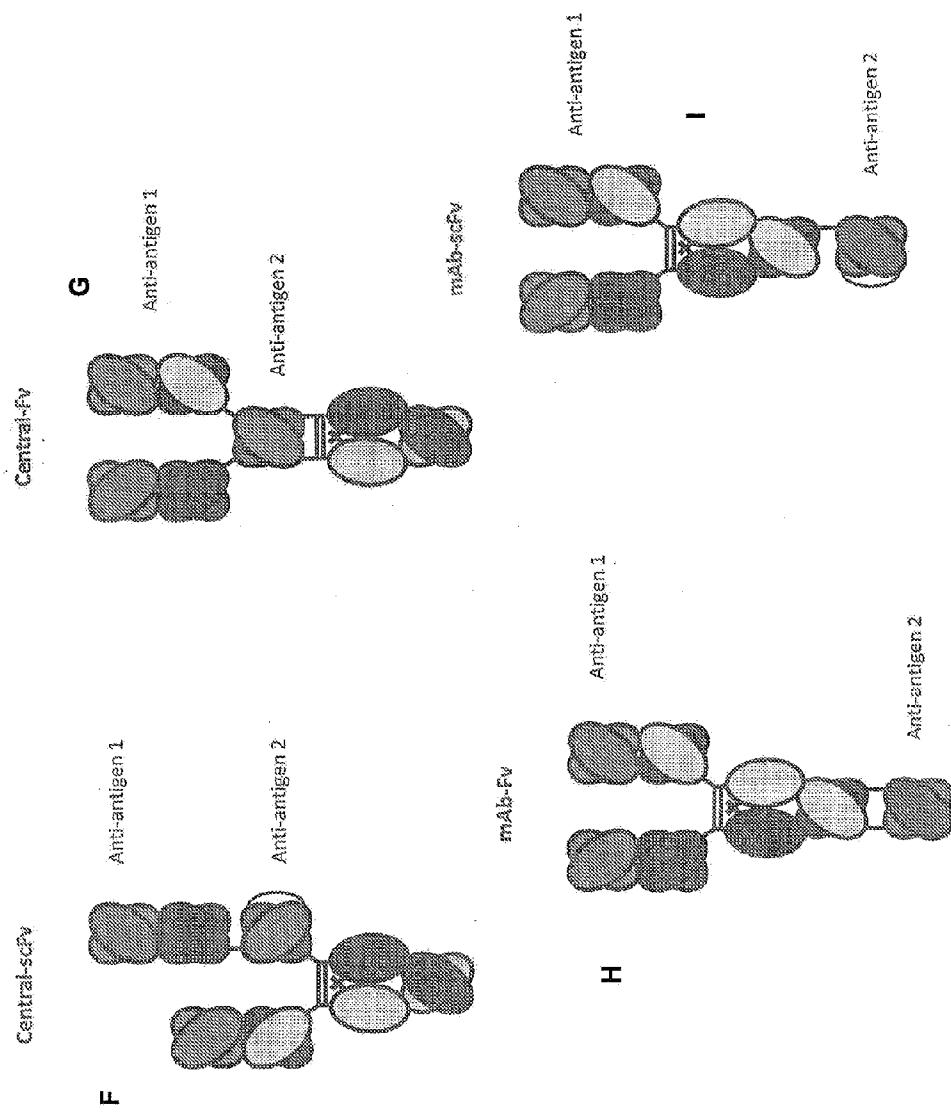
- **AHMADZADEH et al.** Blood, 2009, vol. 114, 1537- [0002]
- **MATSUZAKI et al.** PNAS, 2010, vol. 107, 177875-7880 [0002]
- **FOURCADE et al.** Cancer Res., 2012, vol. 72, 4887-896 [0002]
- **GROS et al.** J. Clinical Invest, 2014, vol. 124, 52246- [0002]
- **WHITLOW et al.** Protein Engineering, 1993, vol. 6, 8989-995 [0004]
- **RIDGWAY et al.** Protein Engineering, 1996, vol. 9, 7617- [0028] [0131]
- **ATWELL et al.** J. Mol. Biol., 1997, vol. 270, 26- [0028] [0131]
- **MERCHANT et al.** Nature Biotech., 1998, vol. 16, 677- [0029] [0131]
- **GUNASEKARAN et al.** J. Biol. Chem., 2010, vol. 285, 2519637- [0030] [0132]
- **KABATSEQUENCES OF IMMUNOLOGICAL INTEREST** [0060]
- **EDELMAN et al.** Proc Natl Acad Sci USA, 1969, vol. 63, 78-85 [0060]
- **DAVIS et al.** Immunological Reviews, 2002, vol. 190, 123-136 [0070]
- **JEFFERIS et al.** Immunol Lett, 2002, vol. 82, 57-65 [0071]
- **SMITH, T.F. WATERMAN, M.S.** Comparison Of BiosequencesAdv. Appl. Math., 1981, vol. 2, 482- [0084]
- **NEEDLEMAN, S. BWUNSCH, CDA** General Method Applicable To The Search For Similarities In The Amino Acid Sequence Of Two ProteinsJ. Mol. Biol, 1970, vol. 48, 443- [0084]
- **PEARSON, W.R. LIPMAN, D.J.** Improved Tools For Biological Sequence ComparisonProc. Natl. Acad. Sci. (U.S.A.), 1988, vol. 85, 2444- [0084]
- **ALTSCHEL, S.F. et al.** Basic Local Alignment Search ToolJ. Mol. Biol., 1990, vol. 215, 403-10 [0084]

- CHOTHIALESKJ. Mol. Biol., 1987, vol. 196, 901-917 [0093]
- LAFRANC et al. Dev. Comp. Immunol., 2003, vol. 27, 155-77 [0094]
- WU et al. J. Mol. Biol., 1999, vol. 294, 151-162 [0115]
- BACA et al. J. Biol. Chem., 1997, vol. 272, 1610678-10684 [0115]
- ROSOK et al. J. Biol. Chem., 1996, vol. 271, 3722611-22618 [0115]
- RADER et al. Proc. Natl. Acad. Sci. USA, 1998, vol. 95, 8910-8915 [0115]
- KRAUSS et al. Protein Engineering, 2003, vol. 16, 10753-759 [0115]
- TAN et al. J Immunol., 2002, vol. 169, 1119-1125 [0115]
- DE PASCALIS et al. J. Immunol., 2002, vol. 169, 3076-3084 [0115]
- GHETIEWARDImmunol Today., 1997, vol. 18, 12592-598 [0146]
- DALL' ACQUA et al. J. Immunol., 2002, vol. 166, 5171-5180 [0146]
- IGAWA et al. PEDS, 2010, vol. 23, 5385-392 [0147]
- SPIESS et al. Molecular Immunology, 2015, 6795-106 [0258]
- KONTERMANNmAbs, 2012, vol. 4, 2182-197 [0258]
- Remington's Pharmaceutical Sciences19800000 [0416]
- KABAT et al. Sequences of Proteins of Immunological InterestUnited States Public Health Service19910000 [0431]

BISPECIFIKKE CHECKPOINT-HÆMMER-ANTISTOFFER


PATENTKRAV

1. Heterodimert antistof mod PD-1 og CTLA-4 bestående af
 - a) en første monomer med aminosyresekvensen af SEQ ID NO: 23576;
 - 5 b) en anden monomer med aminosyresekvensen af SEQ ID NO: 23581; og
 - c) en tredje monomer med aminosyresekvensen af SEQ ID NO: 23591.


DRAWINGS

FIGURES 1A-1E

Drawing

FIGURES 1F-1I

Figure 2A**antigen sequences****Human PD-1 sequence**

```
>sp|Q15116 SEQ ID NO: 1
MQIPQAPWPVVAVLQLGWRPGWFLDSPDRPNPPTFSALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAPFEDR
SQPGQDCRFRVTQLPGRDFHMSVVRARRNDSGTYLCGAIISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQTLVVG
VVGGLLGSLLVLLVWVLAIVCSRAARGTIGARRTGQPLKEDFSAVPVFSVDYGELDFQWREKTPPEPPVPCVPEQTEYATIVFPGMG
TSSPARRGSADGPRSAQPLRPEDGHCSWPL
```

Human PD-1 sequence, extracellular domain

```
>sp|Q15116|21-170 SEQ ID NO: 2
PGWFLDSPDRPNPPTFSALLVVTEGDNATFTCSFSNTSESFVLNWYRMSPSNQTDKLAAPFEDRSQPGQDCRFRVTQLPGRDF
HMSVVRARRNDSGTYLCGAIISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQTLV
```

Macaca fascicularis PD-1 sequence

```
>tr|B0LAJ3 SEQ ID NO: 3
MQIPQAPWPVVAVLQLGWRPGWFLDSPDRPNAPTFSPALLVVTEGDNATFTCSFSNASESFVLNWYRMSPSNQTDKLAAPFEDR
SQPGQDCRFRVTQLPGRDFHMSVVRARRNDSGTYLCGAIISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQALVVG
VVGGLLGSLLVLLVWVLAIVCSRAAQGTIEARRTGQPLKEDFSAVPVFSVDYGELDFQWREKTPPEPPAPCVPEQTEYATIVFPGLG
TSSPARRGSADGPRSPRPLRPEDGHCSWPL
```

Macaca fascicularis PD-1 sequence, extracellular domain (predicted)

```
>tr|B0LAJ3|21-170 SEQ ID NO: 4
PGWFLESPDRPNAPTFSPALLVVTEGDNATFTCSFSNASESFVLNWYRMSPSNQTDKLAAPFEDRSQPGQDCRFRVTLPGRDF
HMSVVRARRNDSGTYLCGAIISLAPKAQIKESLRAELRVTERRAEVPTAHPSPSPRPAGQFQALV
```

Human CTLA-4 sequence

```
>sp|P16410 SEQ ID NO: 5
MACLGFQRHKAQNLATRTWPCTLLFFLIFIPVFCKAMHVAQPAVVLASSRGIASFVCEYASPGKATEVRVTVLQRQADSVQTEVCA
ATYMMGNELTFLDDSICTGTSQGNQVNLTIQGLRAMDTGLYICKVELMYPYYYLGIGNGTQIYVIDPEPCPDSDLWILAAVSS
GLFFYSFLTAVSLSKMLKRSPLTCVYVKMPPTEPECEKQFQPYFIPIN
```

Human CTLA-4 sequence, extracellular domain

```
>sp|P16410|36-161 SEQ ID NO: 6
KAMHVAQPAVVLASSRGIASFVCEYASPGKATEVRVTVLQRQADSVQTEVCAATYMMGNELTFLDDSICTGTSQGNQVNLTIQGLRA
MDTGLYICKVELMYPYYYLGIGNGTQIYVIDPEPCPDSD
```

Figure 2B**Macaca fascicularis CTLA-4 sequence**

```
>tr|G7PL88 SEQ ID NO: 7
MACLGQQRHKARLNIAATRTRPYTLLFIPVFSKAMHVAQPAVVLANSRGIAFVCEYASPGKATEVRVTVLRQADSQVTEVCA
ATYMMGNELTFLDDSTCTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPYYMIGNGTQIYVIDPEPCPDSDFLWILAAVSS
GLFFYSFLTAVSLSKMLKRSPLTTGVYVKMPPTEPECEKQFQPYFIPIN
```

Macaca fascicularis CTLA-4 sequence, extracellular domain (predicted)

```
>tr|G7PL88 SEQ ID NO: 8
KAMHVAQPAVVLANSRGIAFVCEYASPGKATEVRVTVLRQADSQVTEVCAATYMMGNELTFLDDSTCTGTSSGNQVNLTIQGLRA
MDTGLYICKVELMYPPYYMIGNGTQIYVIDPEPCPDSD
```

Human LAG-3 sequence

```
>sp|P18627 SEQ ID NO: 9
MWEAQFLGLLFQPLWVAPVKPLQPGAEVPVVAQEGAPAQLPCSPTIPLQDLSLLRRAGVTWQHQPDSGPAAAPGHPLAPGPHP
AAPSSWGPRLPRRYTVLSVGPGGLRSGRPLQPRVQLDERGRQRGDFSLWLPRARRADAGEYRAAVHLRDRALSCRLRLRGQASMT
ASPPGSLRTSDWVILNCSFSRPDRPASVHWFNRNQGRVPEVRESPHHHLAESFLFLPQVSPMDSGPVGCIILTYRDGFNVSIMYNLT
VLGLEPPTPLTVYAGAGSRVGLPCRLPAGVGTRSLTAKWTPPGGGEDLLVTGDNGDFTLRLLEDVSQAQAGTYTCHIHLQEQQLNA
TVTLAIITVTPKSFGSPGSLGKLLCEVTPVSGQERFVWSSLDTPSQRSFSGFWLEAQEAQLLSQPWQCQLYQGERLLGAAVYFTEL
SSPGAQRSGRAPGALPAGHLLFLILGVLSLLLVTGAFGFHLWRRQWRPRRFSALEQGIHPPQAOQSKIEELEQEPEPEPEPEPE
EPEPEPEQL
```

Human LAG-3 sequence, extracellular domain

```
>sp|P18627|29-450 SEQ ID NO: 10
VFVVAQEGAPAQLPCSPTIPLQDLSLLRRAGVTWQHQPDSGPAAAPGHPLAPGPHPAAAPSSWGPRLPRRYTVLSVGPGGLRSGR
PLQPRVQLDERGRQRGDFSLWLPRARRADAGEYRAAVHLRDRALSCRLRLRGQASMTASPPGSLRASDWVILNCSFSRPDRPASV
HWFRNRQGRVPEVRESPHHHLAESFLFLPQVSPMDSGPVGCIILTYRDGFNVSIMYNLTVLGLEPPTPLTVYAGAGSRVGLPCRLPA
GVGTRSLTAKWTPPGGGPDLLVTGDNGDFTLRLLEDVSQAQAGTYTCHIHLQEQQLNATVTLAIITVTPKSFGSPGSLGKLLCEVTP
VSGQERFVWSSLDTPSQRSFSGPWLEAQEAQLLSQPWQCQLYQGERLLGAAVYFTELSSPGAQRSGRAPGALPAGHLL
```

Macaca fascicularis LAG-3 sequence (predicted)

```
>gi|544467815|ref|XP_005570011.1 SEQ ID NO: 11
MWEAQFLGLLFQPLWVAPVKPPQGAEISVVVAQEGAPAQLPCSPTIPLQDLSLLRRAGVTWQHQPDSGPAAAPGHPPVPGH
AAPSSWGPRLPRRYTVLSVGPGGLRSGRPLQPRVQLDERGRQRGDFSLWLPRARRADAGEYRATVHLRDRALSCRLRLRGQASMT
ASPPGSLRTSDWVILNCSFSRPDRPASVHWFNRNQGRVPEVRESPHHHLAESFLFLPQVSPMDSGPVGCIILTYRDGFNVSIMYNLT
VLGLEPPTPLTVYAGAGSRVGLPCRLPAGVGTRSLTAKWTPPGGGPDLLVTGDNGDFTLRLLEDVSQAQAGTYTCHIHLQEQQLNA
TVTLAIITVTPKSFGSPGSLGKLLCEVTPVSGQERFVWSSLNTPSQRSFSGFWLEAQEAQLLSQPWQCQLYQGERLLGAAVYFTEL
SSPGAQRSGRAPGALRAGHPLFLILGVLFLLLVTGAFGFHLWRRQWRPRRFSALEQGIHPPQAOQSKIEELEQEPELEPEPE
ELGPEPEPGPEPEPEQL
```

Figure 2C**Macaca fascicularis LAG-3 sequence, extracellular domain (predicted)**

```
>gi|544467815|ref|XP_005570011.1|29-450 SEQ ID NO: 12
ISVVWAQEGAPAQLPCSPTIPLQDLSLLRAGVTWQHQPDSGPPAXAPGHPPVPGHRRPAAPYSWGPRPRRTVLSVPGGLRSGL
PLQPRVQDLERGRQRGDFSLWLRPARRADAGEYRATVHLRDRALSCRRLRVCQASMTASPGSIRTSDWILNCSFSRPDRPASV
HWFRSRGQGRPVQGSPPHHHLAESFLFLPHVGPMDSGLWGCILTYRDGFNVSIMYNLTVLGLEPATPLTVYAGAGSRVELPCRLPP
AVGTQSFLTAWKAPPGGPDLLVAGDNCFTLRLEDVSQAQAGTYICHIRLQGQQLNATVTLAIITVTPKSFGSPGSLGKLLCEVT
PASGQEHFVWSPLNTPSQRSFSGPYLEAQEAQQLSQWPQCQLHQGERLLGAAVYFTELSSPGAQRSGRAPGALRAGHL
```

Human BTLA sequence

```
>sp|Q7Z6A9| SEQ ID NO: 13
MKTLPAMLGTGKLFWVFFLIPYLDIWINIHGKESCDVQLYIKRQSEHSILAGDPFELECPVKYCANRPHVTWCKLNGLTTCVKLEDRQ
TSWKEEKKNISFFILHFEPLNDSYRCSANFQSNLIESHSTTLYVTDVKSASERPSKDEMASRPWLLYRLLPLGGLPLLITTCF
CLFCCLRRHQGKQNELSDTAGREINLDAHLKSEQTEASTRQNSQVLLSETGTIYDNDPDLCFRMQEGSEVYSNPCLEENKPGIVYA
SLNHHSVIGPNSRLARNVKEAPTEYASICVRS
```

Human BTLA sequence, extracellular domain

```
>sp|Q7Z6A9|31-157 SEQ ID NO: 14
KESCDVQLYIKRQSEHSILAGDPFELECPVKYCANRPHVTWCKLNGLTTCVKLEDRQTSWKEEKKNISFFILHFEPLNDSYRC
ANFQSNLIESHSTTLYVTDVKSASERPSKDEMASRPWLLYR
```

Macaca fascicularis BTLA sequence (predicted)

```
>gi|355746406|gb|EHH51020.1 SEQ ID NO: 15
MKTLPAMLGSGRLFWVVFLIPYLDIWINIHGKESCDVQLYIKRQSYHSIFAGDRFKLECPVKYCAHRPQVTWCKLNGLTTCVKLEGRH
TSWQKEKNLSEFFILHFEPLNDSYRCSANFLSAIIESHSTTLYVTDVKSASERPSKDEMASRPWLLYRLLPLGGLPLLITTCF
CLFCFLRRHQGKQNELSDTTREITLVDVPFKSEQTEASTRQNSQVLLSETGTIYDNEPDFCFRMQEGSEVYSNPCLEENKPGIYA
SLNHSTIGLNRQARNVKEAPTEYASICVRS
```

Macaca fascicularis BTLA sequence, extracellular domain (predicted)

```
>gi|355746406|gb|EHH51020.1|31-157 SEQ ID NO: 16
KESCDVQLYIKRQSYHSIFAGDRFKLECPVKYCAHRPQVTWCKLNGLTTCVKLEGRHTSWKQEKNLSSFFILHFEPLNDSYRC
ANFLSAIIESHSTTLYVTDVKSASERPSKDEMASRPWLLYR
```

Human TIM-3 sequence

```
>sp|Q8TPQ0| SEQ ID NO: 17
MFSHLPFDCCVLLLLLLLRLTRSSVEVEYRAEVGQNAFLPCFYTPAAPGNLVPVCWKGACPVFECGNVVLRTDERDNYWTSRYWTNG
DFRKGDVSLTIENVTLIADSGIYCCRIQIPGIMNDEKFLNLKIVKPAKTPAPTRQRDFTAAPRMLTTRGHGPATQTLGSLPDIN
LTQISTLANELRDSRIANDLIRDSGATIRIGIYIGAGICAGLALALIFGALIFKWHSHSKEKIQNLSSLISLANLPPSGLANAVAEGI
RSEENIYTIEENVYEVEEPNEYCYVSSRQQPSQPLGCRFAM
```

Figure 2D**Human TIM-3 sequence, extracellular domain**

>sp|Q8TDQ0|22-202 SEQ ID NO: 18
SEVEYRAEVGQNAYLPCFYTPAAPGNLVPVCWKGACPVFCGNVVLRTDERDVNYWTSRYWLNGDFRKGDVS1T1ENVTLADSGI
YCCRIQIPGIMNDEKFNKLKVVIKPAKVTAPTRQRDFTAAFPRLTTRGHGPAETQTLGSLPDINLTQISTLANELRDSRLANDLR
DSGATIRIG

Macaca fascicularis TIM-3 sequence (predicted)

>gi|355750365|gb|EHH54703.1 SEQ ID NO: 19
MFSHLPFDCVLLLLLLLRLSSEVEYIAEVGQNAYLPCSYTPAPPGNLVPVCWKGACPVFDGSNVVLRTDNRDVNDRTSGRYWLK
GDFHKGDVSLT1ENVTLADSGVYCCRIQIPGIMNDEKHNVKLVVIKPAKVTAPTLQRDLTSAFPRLTGEHGPATQTPGSLPD
VNLTVSNNFCELQIIFTLTNEELRDSGATIRTAIYIAAGISAGLALALIFGALIFKWYSHSKEKTQNLSLISLANIPPSCLANAVAEG
IRSEENIYTIEDDVYEVEEPNEYYCYVSSGQQPSQPLGCRVAMP

Macaca fascicularis TIM-3 sequence, extracellular domain (predicted)

>gi|355750365|gb|EHH54703.1|22-203 SEQ ID NO: 20
SEVEYIAEVGQNAYLPCSYTPAPPGNLVPVCWKGACPVFCGNVVLRTDERDVNYWTSRYWLNGDFRKGDVS1T1ENVTLADSG
VYCCRIQIPGIMNDEKHNVKLVVIKPAKVTAPTLQRDLTSAFPRLTGEHGPATQTPGSLPDVNLTVSNNFCELQIIFTLTNE
LADSGATIRTA

II. Figure 3A skew variants

Monomer 1	Monomer 2
F405A	T394F
S364D	Y349K
S364E	L368K
S364E	Y349K
S364F	K370G
S364H	Y349K
S364H	Y349T
S364Y	K370G
T411K	K370E
V397S/F405A	T394F
K370R/T411K	K370E/T411E
L351E/S364D	Y349K/L351K
L351E/S364E	Y349K/L351K
L351E/T366D	L351K/T366K
P395T/V397S/F405A	T394F
S364D/K370G	S364Y/K370R
S364D/T394F	Y349K/F405A
S364E/F405A	Y349K/T394F
S364E/F405S	Y349K/T394Y
S364E/T411E	Y349K/D401K
S364H/D401K	Y349T/T411E
S364H/F405A	Y349T/T394F
S364H/T394F	Y349T/F405A
Y349C/S364E	Y349K/S354C
L351E/S364D/F405A	Y349K/L351K/T394F
L351K/S364H/D401K	Y349T/L351E/T411E
S364E/T411E/F405A	Y349K/T394F/D401K
S364H/D401K/F405A	Y349T/T394F/T411E
S364H/F405A/T411E	Y349T/T394F/D401K

Figure 3B

Monomer 1	Monomer 2
K370E/T411D	T411K
L368E/K409E	L368K
Y349T/T394F/S354C	S364H/F405A/Y349C
T411E	D401K
T411E	D401R/T411R
Q347E/K360E	Q347R
L368E	S364K
L368E/K370S	S364K
L368E/K370T	S364K
L368E/D401R	S364K
L368E/D401N	S364K
L368E	E357S/S364K
L368E	S364K/K409E
L368E	S364K/K409V
L368D	S364K
L368D/K370S	S364K
L368D/K370S	S364K/E357L
L368D/K370S	S364K/E357Q
T411E/K360E/Q362E	D401K
K370S	S364K
L368E/K370S	S364K/E357Q
K370S	S364K/E357Q
T411E/K360D	D401K
T411E/K360E	D401K
T411E/Q362E	D401K
T411E/N390D	D401K
T411E	D401K/Q347K
T411E	D401K/Q347R
T411E/K360D/Q362E	D401K

Figure 3C

Monomer 1	Monomer 2
K392D/K409D	E356K/D399K
K370D/K392D/K409D	E356K/E357K/D399K
I199T/N203D/K247Q/R355Q/N384S/K392N/V397M/Q419E/K447_	Q196K/I199T/P217R/P228R/N276K
I199T/N203D/K247Q/R355Q/N384S/K392N/V397M/Q419E/K447_	Q196K/I199T/N276K
N384S/K392N/V397M/Q419E	N276K
D221E/P228E/L368E	D221R/P228R/K409R
C220E/P228E/L368E	C220R/E224R/P228R/K409R
F405L	K409R
T366I/K392M/T394W	F405A/Y407V
T366V/K409F	L351Y/Y407A
T366A/K392E/K409F/T411E	D399R/S400R/Y407A
L351K	L351F
I199T/N203D/K247Q/R355Q/Q419E/K447_	Q196K/I199T/P217R/P228R/N276K
I199T/N203D/K247Q/R355Q/Q419E/K447_	Q196K/I199T/N276K
I199T N203D K274Q R355Q N384S K392N V397M Q419E DEL447	
N208D Q295E N384D Q418E N421D	
N208D Q295E Q418E N421D	
Q196K I199T P217R P228R N276K	
Q196K I199T N276K	
E269Q E272Q E283Q E357Q	
E269Q E272Q E283Q	
E269Q E272Q	
E269Q E283Q	
E272Q E283Q	
E269Q	

Figure 3D

Monomer 1	Monomer 2
T411E/K360E/N390D	D401K
T411E/Q362E/N390D	D401K
T411E/Q347R	D401K/K360D
T411E/Q347R	D401K/K360E
T411E/K360	D401K/Q347K
T411E/K360D	D401K/Q347R
T411E/K360E	D401K/Q347K
T411E/K360E	D401K/Q347R
T411E/S364K	D401K/K370S
T411E/K370S	D401K/S364K
Q347E	E357Q
Q347E	E357Q/Q362K
K360D/Q362E	Q347R
K360D/Q362E	D401K
K360D/Q362E	Q347R/D401K
K360E/Q362E	Q347R
K360E/Q362E	D401K
K360E/Q362E	Q347R/D401K
Q362E/N390D	D401K
Q347E/K360D	D401N
K360D	Q347R/N390K
K360D	N390K/D401N
K360E	Y349H
K370S/Q347E	S364K
K370S/E357L	S364K
K370S/E357Q	S364K
K370S/Q347E/E357L	S364K
K370S/Q347E/E357Q	S364K

Figure 3E

Monomer 1	Monomer 2
L368D/K370S/Q347E	S364K
L368D/K370S/E357L	S364K
L368D/K370S/E357Q	S364K
L368D/K370S/Q347E/E357L	S364K
L368D/K370S/Q347E/E357Q	S364K
L368E/K370S/Q347E	S364K
L368E/K370S/E357L	S364K
L368E/K370S/E357Q	S364K
L368E/K370S/Q347E/E357L	S364K
L368E/K370S/Q347E/E357Q	S364K
L368D/K370T/Q347E	S364K
L368D/K370T/E357L	S364K
L368D/K370T/E357Q	S364K
L368D/K370T/Q347E/E357L	S364K
L368D/K370T/Q347E/E357Q	S364K
L368E/K370T/Q347E	S364K
L368E/K370T/E357L	S364K
L368E/K370T/E357Q	S364K
L368E/K370T/Q347E/E357L	S364K
T411E/Q362E	D401K/T411K
T411E/N390D	D401K/T411K
T411E/Q362E	D401R/T411R
T411E/N390D	D401R/T411R
Y407T	T366Y
F405A	T394W
T366Y/F405A	T394W/Y407T
Y407A	T366W
T366S/L368A/Y407V	T366W

Figure 3F

Monomer 1	Monomer 2
T366S/L368A/Y407V/Y349C	T366W/S354C
K392D/K409D	E356K/D399K
K370D/K392D/K409D	E356K/E357K/D399K
I199T/N203D/K247Q/R355Q/N384S/K392N/V397M/Q419E/K447_	Q196K/I199T/P217R/P228R/N276K
I199T/N203D/K247Q/R355Q/N384S/K392N/V397M/Q419E/K447_	Q196K/I199T/N276K
N384S/K392N/V397M/Q419E	N276K
D221E/P228E/L368E	D221R/P228R/K409R
C220E/P228E/L368E	C220R/E224R/P228R/K409R
F405L	K409R
T366I/K392M/T394W	F405A/Y407V
T366V/K409F	L351Y/Y407A
T366A/K392E/K409F/T411E	D399R/S400R/Y407A
L351K	L351E
I199T/N203D/K247Q/R355Q/Q419E/K447_	Q196K/I199T/P217R/P228R/N276K
I199T/N203D/K247Q/R355Q/Q419E/K447_	Q196K/I199T/N276K
I199T N203D K274Q R355Q N384S K392N V397M Q419E DEL447	
N208D Q295E N384D Q418E N421D	
Q295E N384D Q418E N421D	
N208D Q295E Q418E N421D	
Q295E Q418E N421D	
Q196K I199T P217R P228R N276K	
Q196K I199T N276K	
E269Q E272Q E283Q E357Q	
E269Q E272Q E283Q	
E269Q E272Q	
E269Q E283Q	
E272Q E283Q	
E269Q	

III. Figure 4 π I variants

<u>Variant constant region</u>	<u>Substitutions</u>
π I_ISO(-)	I199T N203D K274Q R355Q N384S K392N V397M Q419E DEL447
π I_(-)_isosteric_A	N208D Q295E N384D Q418E N421D
π I_(-)_isosteric_A-Fc only	Q295E N384D Q418E N421D
π I_(-)_isosteric_B	N208D Q295E Q418E N421D
π I_(-)_isosteric_B-Fc only	Q295E Q418E N421D
π I_ISO(+RR)	Q196K I199T P217R P228R N276K
π I_ISO(+)	Q196K I199T N276K
π I_(_+)_isosteric_A	E269Q E272Q E283Q E357Q
π I_(_+)_isosteric_B	E269Q E272Q E283Q
π I_(_+)_isosteric_E269Q/E272Q	E269Q E272Q
π I_(_+)_isosteric_E269Q/E283Q	E269Q E283Q
π I_(_+)_isosteric_E272Q/E283Q	E272Q E283Q
π I_(_+)_isosteric_E269Q	E269Q

IV. Figure 5: Ablation variants

Variant	Variant(s), cont.
G236R	P329K
S239G	A330L
S239K	A330S/P331S
S239Q	I332K
S239R	I332R
V266D	V266D/A327Q
S267K	V266D/P329K
S267R	S267R/A327Q
H268K	S267R/P329K
E269R	G236R/L328R
299R	E233P/L234V/L235A/G236del/S239K
299K	E233P/L234V/L235A/G236del/S267K
K322A	E233P/L234V/L235A/G236del/S239K/A327G
A327G	E233P/L234V/L235A/G236del/S267K/A327G
A327L	E233P/L234V/L235A/G236del
A327N	S239K/S267K
A327Q	267K/P329K
L328E	
L328R	
P329A	
P329H	

Figure 6A useful combinations

scFv monomer (+)	Fab monomer (-)
Heterodimer pl variants S364K/E357Q	Heterodimerization pl variants L368D/K370S
Optional scFv charged linker including but not limited to (GKPGS) ₄ (SEQ ID NO: 37755)	Isosteric pl substitutions N208D/Q295E/N384D/Q418E/N421D
FcKO E233P/L234V/L235A/G236del/S267K	FcKO E233P/L234V/L235A/G236del/S267K
± 428L/434S for FcRn	± 428L/434S for FcRn
scFv of ABD of a checkpoint inhibitor	Fv/Fab of the other of ABD of a checkpoint inhibitor

Figure 6B

scFv monomer	Fab monomer
Heterodimer pl variants S364K/E357Q	Heterodimerization pl variants L368D/K370S
Optional scFv charged linker including, but not limited to (GKPGS) ₄ (SEQ ID NO: 37755)	pl substitutions I199T N203D K274Q R355Q Q419E K447del
FcKO E233P/L234V/L235A/G236del/S267K	FcKO E233P/L234V/L235A/G236del/S267K
± 428L/434S for FcRn (optional)	± 428L/434S for FcRn (optional)
scFv of a checkpoint inhibitor	Fv/Fab of the other of ABD of a checkpoint inhibitor

Figure 7A Linkers**Positive charged scFv linkers**

Name	Sequence	Length	Charge	SEQ ID NO:
Gly-Ser 15	GGGGSGGGGSGGGS	15	0	37699
Whitlow linker	GSTSGSGKPGSGEGSTKG	18	+1	37700
6paxA_1 (+A)	IRPRAIGGSKPRVA	14	+4	37701
+B	GKGGSGKGGSGKGGS	15	+3	37702
+C	GGKGSGGKGSGGGKGS	15	+3	37703
+D	GGGKSGGGKSGGGKGS	15	+3	37704
+E	GKGKSGKGKSGKGKS	15	+6	37705
+F	GGGKSGKGSGKGGS	15	+3	37706
+G	GKPGSGKPGSGKPGS	15	+3	37707
+H	GKPGSGKPGSGKPGSGKPGS	20	+4	37708
+I	GKGKSGKGKSGKGKGKS	20	+8	37709

Negative charged scFv linkers

Name	Sequence	Length	Charge	SEQ ID NO:
Gly-Ser 15	GGGGSGGGGSGGGSGGGS	20	0	37710
3hsc_2 (-A)	STAGDTHLGGEDFD	14	-4	37711
-B	GEGGSGEGGSGEGGS	15	-3	37712
-C	GGEGSGGEGSGGEGS	15	-3	37713
-D	GGGESGGGESGGES	15	-3	37714
-E	GEGESGEGESGESES	15	-6	37715
-F	GGGESGGEGSGEGGS	15	-3	37716
-G	GEGESGEGESGESES	20	-8	37717

Figure 7B**scFv linkers**

GGGGSGGGGSGGGS (SEQ ID NO: 37718)

GGGGSGGGGSGGGS (SEQ ID NO: 37719)

GSTSGSGKPGSGEGSTKG (SEQ ID NO: 37720)

PRGASKSGSASQTGSAPGS (SEQ ID NO: 37721)

GTAAAGAGAAGGAAAGAAG (SEQ ID NO: 37722)

GTSGSSGSGGGSGSGGG (SEQ ID NO: 37723)

GKPGSGKPGSGKPGSGKPGS (SEQ ID NO: 37724)

VII. Figure 8 Tms of skews

XENP	Heterodimer-skewing variant, Chain 1	Heterodimer-skewing variant, Chain 2	Heterodimer Yield (%)	CH3 Tm (°C)
12757	none	none	52.7	83.1
12758	L368D/K370S	S364K	94.4	76.6
12759	L368D/K370S	S364K/E357L	90.2	77.2
12760	L368D/K370S	S364K/E357Q	95.2	77.5
12761	T411E/K360E/Q362E	D401K	85.6	80.6
12496	L368E/K370S	S364K	91.5	n.d.
12511	K370S	S364K	59.9	n.d.
12840	L368E/K370S	S364K/E357Q	59.5	n.d.
12841	K370S	S364K/E357Q	90.4	n.d.
12894	L368E/K370S	S364K	41.0	n.d.
12895	K370S	S364K	49.3	n.d.
12896	L368E/K370S	S364K/E357Q	73.9	n.d.
12901	K370S	S364K/E357Q	87.9	n.d.

Figure 9A XENP19690 1G6_H1.279_L1.194 anti-PD-1 Fv sequences

What	sequence	SEQ ID NO:
Vh domain	EVQLEVEGGGLYKPGGSLRLSCVAVSGFTESNYWNWVRQAPGKGLIEWVAEIRLYSNNTATHYAESVKGRTIISRDSSKSTLYLQMN NYWN	11376
vhCDR1	NIKTEDTGVVYCTRYVNYGGYEDWGRGLTVVSS	37760
vhCDR2	EIRLYSNNTATHYAESVKG	37761
vhCDR3	YYGNYGYFDV	37762
scFv linker	GKPGSGKPGSKPGSKPGS	37708
Vl domain	EIVLTQSPATLSASPGERVLTCEASQSVERDVAYWQOKPQAPRLLINYASHRYTGVPDFTGSYGTEFILTISVQSEDGVY YCQCDFSSPRTEGGTPKEIK	11377
vlCDR1	RASOSVGNIDVA	37764
vlCDR2	YASHRYT	37765
vlCDR3	QQDESSPRT	37766
scFv	EVQLEVEGGGLYKPGGSLRLSCVAVSGFTESNYWNWVRQAPGKGLIEWVAEIRLYSNNTATHYAESVKGRTIISRDSSKSTLYLQMN NIKTEDTGVVYCTRYVNYGGYEDWGRGLTVVSS (SKEEGSGKPGSKPGSKPGS) EIVLTQSPATLSASPGERVLTCTRASQS VGNDVAWYQQKPGQAPRLLINYASHRYTGVPDFTGSYGTEFILTISVQSEDGVYQQDIFSPRTEGGTPKEIK/	37767

Figure 9B 1G6_H1.280_L1.224 anti-PD-1 Fv sequences

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLEVEGGGLYKPGGSLRLSCVAVSGFTESNYWNWVRQAPGKGLIEWVAEIRLYSNNTATHYAESVKGRTIISRDSSKSTLYLQMN NYWN	37768
vhCDR1	NIKTEDTGVVYCTRYVNYGGYEDWGRGLTVVSS	37769
vhCDR2	EIRLYSNNTATHYAESVKG	37770
vhCDR3	YYGNYGYFDV	37771
scFv linker	GKPGSGKPGSKPGSKPGS	37708
Variable light (vl) domain	EIVLTQSPATLSASPGERVLTCEASQSVERDVAYWQOKPQAPRLLINYASHRYTGVPDFTGSYGTEFILTISVQSEDGVY YCQDWSASRTFGGGTKEIK	37772
vlCDR1	RASOSVGNIDVA	37773
vlCDR2	YASHRYT	37774
vlCDR3	QQDWSSPRT	37775
scFv	EVQLEVEGGGLYKPGGSLRLSCVAVSGFTESNYWNWVRQAPGKGLIEWVAEIRLYSNNTATHYAESVKGRTIISRDSSKSTLYLQMN NIKTEDTGVVYCTRYVNYGGYEDWGRGLTVVSS (GKPGSGKPGSKPGSKPGS) EIVLTQSPATLSASPGERVLTCTRASQS VGNDVAWYQQKPGQAPRLLINYASHRYTGVPDFTGSYGTEFILTISVQSEDGVYQQDWSASRTFGGGTKEIK	37776

Figure 9C XENP19692 1G6 H1.194 H1.279 anti-PD-1 Fv sequences

What	sequence	SEQ ID NO:
Variable light (Vl) domain	ELVLU <u>QSPATL</u> SASP <u>GERV</u> IL <u>U</u> <u>CRASQSV</u> ENDVA <u>Y</u> <u>QCKEGQ</u> APR <u>LIN</u> YASH <u>RV</u> <u>TGVPDR</u> <u>E</u> <u>U</u> <u>U</u> <u>SSVQ</u> SE <u>UD</u> <u>GV</u> Y <u>QQCDESSPRT</u> <u>FGGG</u> IKVEIK	37777
VLCDR1	RASQSVANDVA	37778
VLCDR2	<u>YASH</u> <u>RV</u>	37779
VLCDR3	<u>QDESSPRT</u>	37780
scFv linker	GKPGSGKGSGKPGSGKFGS	37708
Variable heavy (Vh) domain	EVQLV <u>ESGG</u> SLV <u>KPGG</u> S <u>U</u> <u>RLSCV</u> TA <u>QSGF</u> TF <u>SYW</u> <u>WV</u> <u>VRCA</u> <u>FGK</u> GLE <u>WVA</u> E <u>IRL</u> <u>Y</u> <u>SNNY</u> <u>ATHY</u> <u>PE</u> <u>SV</u> <u>KG</u> <u>RF</u> <u>T</u> <u>I</u> <u>S</u> <u>DD</u> <u>S</u> <u>K</u> <u>T</u> <u>L</u> <u>Y</u> <u>L</u> <u>Q</u> <u>N</u>	37781
VhCDR1	<u>NYWMN</u>	37782
VhCDR2	EIRL <u>Y</u> <u>SNNY</u> <u>ATHY</u> <u>AE</u> <u>SV</u> <u>KG</u>	37783
VhCDR3	YYGN <u>Y</u> <u>SNNY</u> <u>FG</u> <u>EDV</u>	37784
scFv	EIVLU <u>QSPATL</u> SASP <u>GERV</u> IL <u>U</u> <u>CRASQSV</u> ENDVA <u>Y</u> <u>QCKEGQ</u> APR <u>LIN</u> YASH <u>RV</u> <u>TGVPDR</u> <u>E</u> <u>U</u> <u>U</u> <u>SSVQ</u> SE <u>UD</u> <u>GV</u> Y <u>QQCDESSPRT</u> <u>FGGG</u> IKVEIK/ <u>SKPGSGKGSGKPGSGKFGS</u> /EVQLV <u>ESGG</u> SLV <u>KPGG</u> S <u>U</u> <u>RLSCV</u> AS <u>GF</u> <u>E</u> <u>SYW</u> <u>WV</u> <u>VRCA</u> <u>FGK</u> GLE <u>WVA</u> E <u>IRL</u> <u>Y</u> <u>SNNY</u> <u>ATHY</u> <u>PE</u> <u>SV</u> <u>KG</u> <u>RF</u> <u>T</u> <u>I</u> <u>S</u> <u>DD</u> <u>S</u> <u>K</u> <u>T</u> <u>L</u> <u>Y</u> <u>L</u> <u>Q</u> <u>N</u>	37785

Figure 9D XENP19669 1G6 H1.210 H1.288 anti-PD-1 Fv sequences

Figure 9E XENP20162 2E9_H1L1 anti-pD-1 Fv sequences

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLVQSGATVKKPGASVVKVSCKASGYAFTNYWLGVWRAAPGQGLEMWGNFYPGSSNTYNEKEH <u>Q</u> GRVTMTADKSI STAVMEELSRRLRSDDTAVYFCARHYGINYRYFDWAGTIVVSS	37795
vhCDR1	NYWL <u>G</u>	37796
vhCDR2	NEPGSSNTYYNEKE <u>Q</u> Q	37797
vhCDR3	HYGTINRYFDV	37798
scFv linker	GKEPGSGKPGSKPGS <u>Q</u> Q	37798
Variable light (vl) domain	DIVLTOQSPETLTSI <u>SP</u> GERATLSCRASQSOSVSNNDVAWYQ <u>Q</u> RFQSPRLLIYASNR <u>T</u> GYVDRFTGSGYGTDFTLTIS	37799
vlCDR1	RASQSTNSNDVA	37800
vlCDR2	YASNR <u>T</u>	37801
vlCDR3	Q <u>Q</u> DYSSP <u>T</u>	37802
scFv	QVQLVQSGA <u>E</u> VKKPGASVVKVSCKASGYAFTNYWLGVWRAAPGQGLEMWGNFYPGSSNTYNEKEH <u>Q</u> GRVTMTADKSI STAVMEELSRRLRSDDTAVYFCARHYGINYRYFDWAGTIVVSS, GKE <u>Q</u> SGSKPGSKPGS <u>Q</u> SPGT L <u>SL</u> SPG <u>R</u> ATLSCRASQSOSVSNNDVAWYQ <u>Q</u> RFQSPRLLIYASNR <u>T</u> GYVDRFTGSGYGTDFTLTISRLEPEDEVY FCCQQD <u>Y</u> SSSPYTFGGTKVEIK	37803

Figure 10A [CTLA-4]_HO.25_10 Anti-CTLA-4 Fv sequences (XENP19235 Fab, XENP19769 scFv)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QWQLVEGGGVVQPGRSIRLSCAASGFTFSS ² AMHWVRAAPGKGLEWVTEFISYDGNNKYADSVKGRFTISRDNSKNTL YIQLQNSLRAE ¹ DTAIIYCAR ² TGWLIGPFDYWGQGTIVTVSS	37804
vhCDR1	SYAMH	37805
vhCDR2	FISYDGNNKYADSVKG	37806
vhCDR3	TGWLIGPFDY	37807
scFv linker	GKPGSGKPGSGKPGSGKPGS	37708
Variable light (vl) domain	EIVITQSPGTISLSPGERATLSCRAQS ² YSSYLA ³ WYQK ⁴ KGQAPRLLIYGAESRAIGIPDRFSGSGTDFITLITSLR	37808
vlCDR1	EPEDAVIYQQYGSSEATFQGQTKEIK	37809
vlCDR2	RASOSVGSYIA	37810
vlCDR3	QXQGSEWT	37811
scFv	QWQLVEGGGVVQPGRSIRLSCAASGFTFSSYAMHWVRAAPGKGLEWVTEFISYDGNNKYADSVKGRFTISRDNSKNTL YIQLQNSLRAE ¹ DTAIIYCAR ² TGWLIGPFDYWGQGTIVTVSS GKP ³ GS ⁴ SGKPGSGKPGS/EIVITCSPGTISLSPGER ATLSCRAQS ² YSSYLA ³ WYQK ⁴ KGQAPRLLIYGAESRAIGIPDRFSGSGTDFITLITSLRLEPEDI ⁵ AVYIC ⁶ QIG ⁷ GS ⁸ EW TFCGQTKEIK/	37812

Figure 10B [CTLA-4]_HO.26_10 Anti-CTLA-4 Fv sequences (XENP19236 Fab, XENP19770 scFv)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QWQLVEGGGVVQPGRSIRLSCAASGFTFSSYGMHWVRAAPGKGLEWVTEFISYDGNNKYADSVKGRFTISRDNSKNTL YIQLQNSLRAE ¹ DTAIIYCAR ² TGWLIGPFDYWGQGTIVTVSS	37813
vhCDR1	SYGMH	37814
vhCDR2	FISYDGNNKYADSVKG	37815
vhCDR3	TGWLIGPFDY	37816
scFv linker	GKPGSGKPGSGKPGSGKPGS	37708
Variable light (vl) domain	EIVITQSPGTISLSPGERATLSCRAQS ² YSSYLA ³ WYQK ⁴ KGQAPRLLIYGAESRAIGIPDRFSGSGTDFITLITSLR	37817
vlCDR1	EPEDAVIYQQYGSSEATFQGQTKEIK	37818
vlCDR2	RASOSVGSYIA	37819
vlCDR3	QXQGSEWT	37820
scFv	QWQLVEGGGVVQPGRSIRLSCAASGFTFSSYGMHWVRAAPGKGLEWVTEFISYDGNNKYADSVKGRFTISRDNSKNTL YIQLQNSLRAE ¹ DTAIIYCAR ² TGWLIGPFDYWGQGTIVTVSS GKP ³ GS ⁴ SGKPGSGKPGS/EIVITCSPGTISLSPGER ATLSCRAQS ² YSSYLA ³ WYQK ⁴ KGQAPRLLIYGAESRAIGIPDRFSGSGTDFITLITSLRLEPEDI ⁵ AVYIC ⁶ QIG ⁷ GS ⁸ EW TFCGQTKEIK/	37821

Figure 10C [CTLA-4]_H0.27_10 Anti-CTLA-4 Fv sequences (XENP19237 Fab, XENP19771 scFv)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLVETGGVVQPGERSLRLSCMASGFTSSYSMHIVRQAPGKGLEWVTFISYDGNNKKYADSYKGRFTI3RDNSKNT IYLQMNSLRAEDTAYYCARTGMIGPFDWQGCTIVTVSS	37822
vhCDR1	SYSMH	37823
vhCDR2	EISYDGNNKKYADSYKGRFTI3RDNSKNT	37824
vhCDR3	TGWLGPFDY	37825
scFv linker	GKPGSGKPKSSGKPKSSKPGS	37708
Variable light (vl) domain	EIVLTQSPPELSSLSPGERATLSCRASQSYSSYIAYWQREGQAFRLTYGAFSRATGIPDRFSGSGSTDETLTSR IPEPDEAVYVCGQYSSSPWTFGQGTRVEIK	37826
vlCDR1	RASOSVGSSYLA	37827
vlCDR2	GAFSRAT	37828
vlCDR3	SCQGSSPEWT	37829
scFv	QYOLVESGGGVVOGRERSLRLSCMASGFTSSYSMHIVRQAPGKGLEWVTFISYDGNNKKYADSYKGRFTI3RDNSKNT IYLQMNSLRAEDTAYYCARTGMIGPFDWQGCTIVTVSS/GEPGSKPKSSGKPKSSKPGS/EIVLTQSPGTLSLSPG EIAATLSCMASQSYSSYIAYWQOKPGQAFRLTYGAFSRATGIPDRFSGSGSTDETLTSRLEPDEAVYVCGQYGS SPWTFGQGTRVEIK	37830

Figure 10D [CTLA-4]_H0.29_10 Fab XENP19773, scFv XENP19239

What	sequence	SEQ ID NO:
Variable heavy (vh) domain		
vhCDR1		
vhCDR2		
vhCDR3		
scFv linker	GKPGSGKPKSSGKPKSSKPGS	37708
Variable light (vl) domain		
vlCDR1		
vlCDR2		
vlCDR3		
scFv	QYOLVESGGGVVOGRERSLRLSCMASGFTSSYMMWVRQAPGKGLEWVTFISYDGNNKKYADSYKGRFTI3RDNSKNT IYLQMNSLRAEDTAYYCARTGMIGPFDWQGCTIVTVSS/GEPGSKPKSSGKPKSSKPGS/EIVLTQSPGTLSLSPG EIAATLSCMASQSYSSYIAYWQOKPGQAFRLTYGAFSRATGIPDRFSGSGSTDETLTSRLEPDEAVYVCGQYGS SPWTFGQGTRVEIK	37831

Figure 10E [CTLA-4]_H0.38_L0 (Fab XENP19248, scFv XENP19782)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QYQLVETGGGVVQPGRSRLRSCAASGFTESSYTMHWYRQAPGKGLIEWVAFISYDGNNNKYADSVKRAFTISRDNSKNTL YLQMNSLRAEFTAIYCCARTGWLGPFDIYQGQTLTVSS	37832
vhCDR1	SYTMH	37833
vhCDR2	EISYDGNNNKYADSVKG	37834
vhCDR3	TGWLGPFDY	37835
scFv linker	GKPGSSKPGSSCPGSSKPGSS	37708
Variable light (vl) domain	EIVLTQSPGTISSLSPGEFTALSCRASQVGSSYLAWYQOKPGQAPRLITYGAESRATGIPDRFSGSGSGTDFLTISRL EPIDFAVYCCQYGSPPWFGQGTKEIK	37836
vlCDR1	RAQSQVGSSTLA	37837
vlCDR2	GAFSRAT	37838
vlCDR3	QYIGSSSPW	37839
scFv	QYOLVETGGGVVQPGRSRLRSCAASGFTESSYTMHWYRQAPGKGLIEWVAFISYDGNNNKYADSVKRAFTISRDNSKNTL YLQMNSLRAEFTAIYCCARTGWLGPFDIYQGQTLTVSS GKPGSQKPGSGSGKPGSEIVLQSPGTLSLSPGER AULSCRASQVGSSYLAWYQOKPGQAPRLITYGAESRATGIPDRFSGSGSGTDFLTISRLPEFDAVYCCQYGS SPW TFCQGTKEIK/	37840

Figure 10F [CTLA-4]_H0.39_L0 (Fab XENP19249, scFv XENP19783)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QYQLVETGGGVVQPGRSRLRSCAASGFTESSYTMHWYRQAPGKGLIEWVAFISYDGNNNKYADSVKRAFTISRDNSKNTL YLQMNSLRAEFTAIYCCARTGWLGPFDIYQGQTLTVSS	37841
vhCDR1	SYTMH	37842
vhCDR2	EISYDGNNNKYADSVKG	37843
vhCDR3	TGWLGPFDY	37844
scFv linker	GKPGSSKPGSSCPGSSKPGSS	37708
Variable light (vl) domain	EIVLTQSPGTISSLSPGEFTALSCRASQVGSSYLAWYQOKPGQAPRLITYGAESRATGIPDRFSGSGSGTDFLTISRL EPIDFAVYCCQYGSPPWFGQGTKEIK	37845
vlCDR1	RAQSQVGSSTLA	37846
vlCDR2	GAFSRAT	37847
vlCDR3	QYIGSSSPW	37848
scFv	QYOLVETGGGVVQPGRSRLRSCAASGFTESSYTMHWYRQAPGKGLIEWVAFISYDGNNNKYADSVKRAFTISRDNSKNTL YLQMNSLRAEFTAIYCCARTGWLGPFDIYQGQTLTVSS GKPGSQKPGSGSGKPGSEIVLQSPGTLSLSPGER AULSCRASQVGSSYLAWYQOKPGQAPRLITYGAESRATGIPDRFSGSGSGTDFLTISRLPEFDAVYCCQYGS SPW TFCQGTKEIK	37849

Figure 10G [CTLA-4]_H0.40_L0 (Fab XENP19250, scFv XENP19784)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLVEGGVVQPGRSIIRLSCAASGFTSSYTMHWVQAPGKGLEMWSEFISYDGNNKKYYADSVKGRTTISRDNSKNTL	37850
vhCDR1	SYTMH	37851
vhCDR2	FIISYDGNNKKYYADSVKG	37852
vhCDR3	TGWLIGPFDY	37853
scFv linker	GRPSSEKPGSKPGSKKGSS	37708
Variable light (vl) domain	EIVITQSPGTLSLSPGERATLSCBASQSSYLTAWYQCKPGQAPRLLYGAESRATGIPDRESGCCSCTDFTLTISRL	37834
vlCDR1	RASQSVGSSYLA	37855
vlCDR2	GAESRAT	37856
vlCDR3	QOYGSSPWT	37857
scFv	QVQLVEGGVVQPGRSIIRLSCAASGFTSSYTMHWVROAPGRGLEMWSEFISYDGNNKKYYADSVKGRTTISRDNSKNTL IYQNSLRAEINTAIYYCARTGWLIGPFDYWGQTLTVSS GKEGSCKEKGSSKGKPS/EIVITQSPGTLSLSPGER ATISBASQSVGSSYLAQYQKPGQAPRLLYGAESRATGIPDRESGCCSCTDFTLTISRLPEFDEAVYQOYGSSEW TEFGCCTKVEIK	37858

Figure 10H [CTLA-4]_H0.70_L0 (Fab XENP19280, scFv XENP19818)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLVEGGVVQPGRSIIRLSCAASGFTSSYTMHWVQAPGKGLEMWSEFISYDGNNKKYYADSVKGRTTISRDNSKNTL	37859
vhCDR1	SYTMH	37860
vhCDR2	FIISYDGNNKKYYADSVKG	37861
vhCDR3	TGWLIGPFDY	37862
scFv linker	GRPSSEKPGSKPGSKKGSS	37708
Variable light (vl) domain	EIVITQSPGTLSLSPGERATLSCBASQSSYLTAWYQCKPGQAPRLLYGAESRATGIPDRESGCCSCTDFTLTISRL PEFDEAVYQOYGSSEWTFGOSTKVEIK	37863
vlCDR1	RASQSVGSSYLA	37864
vlCDR2	GAESRAT	37865
vlCDR3	QOYGSSPWT	37866
scFv	QVQLVEGGVVQPGRSIIRLSCAASGFTSSYTMHWVQAPGKGLEMWSEFISYDGNNKKYYADSVKGRTTISRDNSKNTL IYQNSLRAEINTAIYYCARTGWLIGPFDYWGQTLTVSS GKEGSCKEKGSSKGKPS/EIVITQSPGTLSLSPGER ATISBASQSVGSSYLAQYQKPGQAPRLLYGAESRATGIPDRESGCCSCTDFTLTISRLPEFDEAVYQOYGSSEW TFWTFGOSTKVEIK	37867

Figure 10I [CTLA-4]_H0_L0.22 (Fab XENP19437, scFv XENP19910)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLVESEGGVVQPGSLRLSCAASGETTSSYTMHWVRAFGKLEWVTFISYDGANNKYYADSVKGRFT-SRDNSKNT LYLQMNNSLAAEDTAYYCARTCWLGPFDWQGQTLTVSS	37868
vhCDR1	SYTMH	37869
vhCDR2	EISYDGANNKYYADSVKKG	37870
vhCDR3	TOWLGPFEDY	37871
scFv linker	GPGSGKPGKPGSGKPGKGS	37708
Variable light (vl) domain	EIVLITQSPRTLSSLSPGERATLSCRASQSSSYLAWYQQKPGQAPRILTYGAFSRATGIPDRFSGSGGIDFTLTISR LYLQMNNSLRAEDTAYYCARTCWLGPFDWQGQTLTVSS	37872
vlCDR1	RASQSSSYLAA	37873
vlCDR2	GAFSRAT	37874
vlCDR3	QYGGSSPWT	37875
scFv	EVQLVESEGGVVQPGSLRLSCAASGETTSSYTMHWVRAFGKLEWVTFISYDGANNKYYADSVKGRFT-SRDNSKNT LYLQMNNSLRAEDTAYYCARTCWLGPFDWQGQTLTVSS/GREGSGKPGKPGSGKPGS/EIVLITQSPRTLSSLSPG ERATLSCRASQSSSYLAWYQQKPGQAPRILTYGAFSRATGIPDRFSGSGGIDFTLTISRLEDFAVYYCQYGS SEWTFGOGTKVEIK	37876

Figure 10J [CTLA-4]_H2_L0 (Fab XENP19545 scFv XENP19552)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESEGGVVQPGSLRLSCAASGETTSSYTMHWVRAFGKLEWVTFISYDGANNKYYFGSYKGRFT-SRENAKNS LYLQMNNSLRAEDTAYYCARTCWLGPFDWQGQTLTVSS	37877
vhCDR1	SYTMH	37878
vhCDR2	EISYDGANNKYYFGSYKKG	37879
vhCDR3	TOWLGPFEDY	37880
scFv linker	GPGSGKPGKPGKPGSGKPGS	37708
Variable light (vl) domain	EIVLITQSPRTLSSLSPGERATLSCRASQSSSYLAWYQQKPGQAPRILTYGAFSRATGIPDRFSGSGGIDFTLTISR LYLQMNNSLRAEDTAYYCARTCWLGPFDWQGQTLTVSS	37881
vlCDR1	RASQSSSYLAA	37882
vlCDR2	GAFSRAT	37883
vlCDR3	QYGGSSPWT	37884
scFv	EVQLVESEGGVVQPGSLRLSCAASGETTSSYTMHWVRAFGKLEWVTFISYDGANNKYYFGSYKGRFT-SRENAKNS LYLQMNNSLRAEDTAYYCARTCWLGPFDWQGQTLTVSS/EKPGSGKPGKPGSGKPGS/EIVLITQSPRTLSSLSPG ERATLSCRASQSSSYLAWYQQKPGQAPRILTYGAFSRATGIPDRFSGSGGIDFTLTISRLEDFAVYYCQYGS SEWTFGOGTKVEIK	37885

Figure 10K [CTLA-4]I_H3_21_I0_124 (Fab XENP20422, scFv XENP20431)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVSEGGGLVPRGGSIRLSCAASFTFSSYTMHWVRQAPGKGLEWVSSFLSYDGNTRKYADSVVKGRFTISRDNAKNS LYLQMNSLRAIDTAVYYCARGTIGPFDLWQGQTMVYVSS	37886
vhCDR1	SYTMH	37887
vhCDR2	FISYDGNTRKYADSVVKGRFTISRDNAKNS	37888
vhCDR3	GGLGFLD ¹	37889
scFv linker	GKPGSKEKPGSKPGSKPGS	37708
Variable light (vl) domain	EIVLITQSPATLSPGERATLSCRASQVGSSTLAWYQORPGQAPRILYGASSRATGIPDRESGSSTGDTFTLITISR	37890
vlCDR1	RASQSGSSSYLA ¹	37891
vlCDR2	GASSRA ¹	37892
vlCDR3	QOYGSSEWT	37893
scFv	EVQLVSEGGGLVPRGGSIRLSCAASFTFSSYTMHWVRQAPGKGLEWVSSFLSYDGNTRKYADSVVKGRFTISRDNAKNS LYLQMNSLRAIDTAVYYCARGLIGPFDLWQGQTMVYVSS / GKEGSSKPGSKPGSKPGS / EIVLITQSPATLSPGERATLSCRASQVGSSTLAWYQORPGQAPRILYGASSRATGIPDRESGSSTGDTFTLITISRLEPDEFAVYYCQOYGS SPWTFQGTVKELK	37894

Figure 10L [CTLA-4]I_H3_21_I0_129 (Fab XENP20423, scFv XENP20432)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVSEGGGLVPRGGSIRLSCAASFTFSSYTMHWVRQAPGKGLEWVSSFLSYDGNTRKYADSVVKGRFTISRDNAKNS LYLQMNSLRAIDTAVYYCARGTIGPFDLWQGQTMVYVSS	37895
vhCDR1	SYTMH	37896
vhCDR2	FISYDGNTRKYADSVVKGRFTISRDNAKNS	37897
vhCDR3	GGLGFLD ¹	37898
scFv linker	GKPGSKEKPGSKPGSKPGS	37708
Variable light (vl) domain	EIVLITQSPATLSPGERATLSCRASQVGSSTLAWYQORPGQAPRILYGASSRATGIPDRESGSSTGDTFTLITISR	37899
vlCDR1	RASQSGSSSYLA ¹	37900
vlCDR2	GASSRA ¹	37901
vlCDR3	QOYGSSPW ¹	37902
scFv	EVQLVSEGGGLVPRGGSIRLSCAASFTFSSYTMHWVRQAPGKGLEWVSSFLSYDGNTRKYADSVVKGRFTISRDNAKNS LYLQMNSLRAIDTAVYYCARGLIGPFDLWQGQTMVYVSS / GKEGSSKPGSKPGSKPGS / EIVLITQSPATLSPGERATLSCRASQVGSSTLAWYQORPGQAPRILYGASSRATGIPDRESGSSTGDTFTLITISRLEPDEFAVYYCQOYGS SPWTFQGTVKELK	37903

Figure 10M [CTLA-4]_H3.21_I0.132 (Fab XENP20424, scFv XENP20433)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESSGGLVKPGGLSRLSCAASGFTTSSYTMHWVQAPGKGLEWVSEISYDGNTKYYADSVKGRFTISRDNAKNS LYLQMNNSRAEDTAVYCARGLLGPFDLWGGTNTVSS	37904
vhCDR1	SYTMH	37905
vhCDR2	FTSYDGNKYYADSVKG	37906
vhCDR3	GGHLGPFDL	37907
scFv linker	GPGSGKPGSGKPGSGKPGSG	37708
Variable light (vl) domain	EVVLQSPATLSSLSPGERATLSCRASOVS SSY YAWQKPGQAPRLLYGASSRATGIPDRESGSGGTDFTLTISR LEPDEFAYVYQQGSSPWTNGQGTYEIK	37908
vlCDR1	RASQSVSSSYLA	37909
vlCDR2	GASSRAT	37910
vlCDR3	QOYGSSSPWT	37911
scFv	EVOLVESSGGLVKPGGLSRLSCAASGFTTSSYTMHWVQAPGKGLEWVSEISYDGNTKYYADSVKGRFTISRDNAKNS LYLQMNNSRAEDTAVYCARGLLGPFDLWGGTNTVSS/GKPGSGKPGSGKPGSGKPGSGS/EIVLTQSPATLSSLSG ERATLSSLSCRASQSVSSYLAWYQQKPGQAPRLLYGASSRATGIPDRESGSGGTDFTLTISRLEPDEFAYVYQQGSS SPWTNGQGTYEIK	37912

Figure 10N [CTLA-4]_H3.23_I0.124 (Fab XENP20425, scFv XENP20434)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESSGGLVKPGGLSRLSCAASGFTTSSYTMHWVQAPGKGLEWVSEISYDGNTKYYADSVKGRFTISRDNAKNS LYLQMNNSRAEDTAVYCARGLLGPFDLWGGTNTVSS	37913
vhCDR1	SYTMH	37914
vhCDR2	FTSYDGNKYYADSVKG	37915
vhCDR3	GGHLGPFDL	37916
scFv linker	GPGSGKPGSGKPGSGKPGSG	37708
Variable light (vl) domain	EVVLQSPATLSSLSPGERATLSCRASOVS SSY YAWYQQKPGQAPRLLYGASSRATGIPDRESGSGGTDFTLTISR LEPDEFAYVYQQGSSPWTNGQGTYEIK	37917
vlCDR1	RASQSVSSSYLA	37918
vlCDR2	GASSRAT	37919
vlCDR3	QOYGSSSPWT	37920
scFv	EVOLVESSGGLVKPGGLSRLSCAASGFTTSSYTMHWVQAPGKGLEWVSEISYDGNTKYYADSVKGRFTISRDNAKNS LYLQMNNSRAEDTAVYCARGLLGPFDLWGGTNTVSS/GKPGSGKPGSGKPGSGS/EIVLTQSPATLSSLSG ERATLSSLSCRASQSVSSYLAWYQQKPGQAPRLLYGASSRATGIPDRESGSGGTDFTLTISRLEPDEFAYVYQQGSS SPWTNGQGTYEIK	37921

Figure 10O [CTLA-4]_H3.23_I0.129 (Fab XENP20426, scFv XENP20435)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESEGGGLVKGPGSLRLSCAASGFTFESSYTHWVRQAPEGKLEAVSFISYDGNYKYYADSVKGRFTISRDNAKNS LYLQMNSSLRAEDTAVYYCARGCHLGPFLWQGIMIVVSS	37922
vhCDR1	SYTMH	37923
vhCDR2	EISYDGNYKYYADSVKG	37924
vhCDR3	GGHLGPFLI	37925
scFv linker	GKPGSGKPGKPGKPGKPGES	37708
Variable light (vl) domain	EIVLTIQSPATLISLPGERATLSCRASQSSYI AWYQQKPGQAPRLLYGASSEATGIPDRFSGGGSGTDFTLTTSR LEPDEVAVYCOQYGSF WTFQGKIVLIK	37926
vlCDR1	RASQSVSSSYLA	37927
vlCDR2	GASSRAT	37928
vlCDR3	QYQGSSSPATI	37929
scFv	EVQLVESEGGGLVKGPGSLRLSCAASGFTFESSYTHWVRQAPEGKLEAVSFISYDGNYKYYADSVKGRFTISRDNAKNS LYLQMNSSLRAEDTAVYYCARGCHLGPFLWQGIMIVVSS /GKPGSGKPGKPGS EIVLTIQSPATLISLPG ERATLSCRASQSSYI AWYQQKPGQAPRLLYGASSEATGIPDRFSGGGSGTDFTLTTSR SPWTFGQQTKEVLIK	37930

Figure 10P [CTLA-4]_H3.23_I0.132 (Fab XENP20427, scFv XENP20436)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESEGGGLVKGPGSLRLSCAASGFTFESSYTHWVRQAPEGKLEAVSFISYDGNYKYYADSVKGRFTISRDNAKNS LYLQMNSSLRAEDTAVYYCARGCHLGPFLWQGIMIVVSS	37931
vhCDR1	SYTMH	37932
vhCDR2	EISYDGNYKYYADSVKG	37933
vhCDR3	GGHLGPFLI	37934
scFv linker	GKPGSGKPGKPGKPGS	37708
Variable light (vl) domain	EIVLTIQSPATLISLPGERATLSCRASQSSYI AWYQQKPGQAPRLLYGASSEATGIPDRFSGGGSGTDFTLTTSR LEPDEVAVYCOQYGSF WTFQGKIVLIK	37935
vlCDR1	RASQSVSSSYLA	37936
vlCDR2	GASSRAT	37937
vlCDR3	QYQGSSSPATI	37938
scFv	EVQLVESEGGGLVKGPGSLRLSCAASGFTFESSYTHWVRQAPEGKLEAVSFISYDGNYKYYADSVKGRFTISRDNAKNS LYLQMNSSLRAEDTAVYYCARGCHLGPFLWQGIMIVVSS /GKPGSGKPGKPGS EIVLTIQSPATLISLPG ERATLSCRASQSSYI AWYQQKPGQAPRLLYGASSEATGIPDRFSGGGSGTDFTLTTSR SPWTFGQQTKEVLIK	37939

Figure 10Q [CTLA-4] H3.25 L0.124 (Fab XENP20428, scFv XENP20437)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESGGLVKPGSLRLSCAASGF <small>FS</small> SYINHWRQA <small>P</small> GKGLWVSEI S YDNYKYYADSVKGRFTIISDNAKNS	37940
vhCDR1	<u>SYTMH</u>	37941
vhCDR2	<u>EISYDGNKTYYADSVKGRFTIISDNAKNS</u>	37942
vhCDR3	<u>GGLLGPFDL</u>	37943
scFv linker	<u>GKPGSCKPGSCKPGSCK2G8</u>	37708
Variable light (vl) domain	EIVLTQSPATLSSVGERATLSSCRASQVGSSYLAWYQQKPGQAPRLLYGASSRATGIPDRESGSGSTDFTLTSR	37944
vlCDR1	<u>RASQSVGSSYLA</u>	37945
vlCDR2	<u>GASSRAT</u>	37946
vlCDR3	<u>QOYGSSEWT</u>	37947
scFv	EVQLVSEGGGLVKPQEGSLRLSCAASGF <small>FS</small> SYINHWRQA <small>P</small> GKGLWQGGMNTVSS <u>GKPGSCKPGSCKPGS</u> ERATLSSCASAQSQVGSSYLA <small>WYQQKPGQAPRLLYAS</small> SRASTGIPDRESGSGSTDFTLTSR <small>LEPFD</small> AVYCCQYGS	37948

Figure 10R [CTLA-4] H3.25 L0.129 (Fab XENP20429, scFv XENP20438)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESGGLVKPGSLRLSCAASGF <small>FS</small> SYINHWRQA <small>P</small> GKGLWVSEI S YDNYKYYADSVKGRFTIISDNAKNS	37949
vhCDR1	<u>SYTMH</u>	37950
vhCDR2	<u>EISYDGNKTYAISVKG</u>	37951
vhCDR3	<u>GGLLGPFDL</u>	37952
scFv linker	<u>GKPGSCKPGSCKPGSCKPGS</u>	37708
Variable light (vl) domain	EIVLTQSPATLSSVGERATLSSCRASQVGSSYLAWYQQKPGQAPRLLYGASSRATGIPDRESGSGSTDFTLTSR	37953
vlCDR1	<u>RASQSVGSSYLA</u>	37954
vlCDR2	<u>GASSRAT</u>	37955
vlCDR3	<u>QOYGSSEWT</u>	37956
scFv	EVQLVSEGGGLVKPQEGSLRLSCAASGF <small>FS</small> SYINHWRQA <small>P</small> GKGLWQGGMNTVSS <u>GKPGSCKPGSCKPGS</u> ERATLSSCASAQSQVGSSYLA <small>WYQQKPGQAPRLLYAS</small> SRASTGIPDRESGSGSTDFTLTSR <small>LEPFD</small> AVYCCQYGS	37957

Figure 10S [CTLA-4]_H3.25_L0.132 (Fab XENP20430, scFv XENP20439)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQVESSGGLVKPGSLRLSCAASGF <small>FESSYTMHWRQAPGKLEWVSEFISYDGNKYYADSVKGRTFISRDNAKNS</small>	37958
vhCDR1	SSYTMH	
vhCDR2	ELSYDGNKYYADSVKG	37959
vhCDR3	GGILGPFDL	37960
scFv linker	GKPGSGKPGSGKPGS	37961
Variable light (vl) domain	EIVLITOSPTLSSLSPGERATLSCRASQSSSYLAWYQKEGQAPELLTYGASSERZTGIPDRFSGSGSTDFTLTISR	37962
VICDR1	LEPEDFAVYCOQZGSSPWFQGQTKVETK	37963
VICDR2	RASQSVSSSYLA	37964
VICDR3	QYQGSSPWT	37965
scFv	EIVLITOSGGLVKPGSLRLSCAASGF <small>FESSYTMHWRQAPGKLEWVSEFISYDGNKYYADSVKGRTFISRDNAKNS</small>	37966
	LYLQMNISRAEDDAVYCAAGGLGPFDLWQGGMVTVSS GKPGSQGPGSQGPGS_EIVLITOSPTLSSLSPG	
	ERATLSCRASQSYSSYLAWYQKEGQAPELLTYGASSRATGIPDRFSGSGSTDFLTISRLPEDFAVYCOQYGS	
	SPWTEFGQGKTVETK	

Figure 10T [CTLA-4]_H3.4_L0.118 (Fab XENP20341, scFv XENP20378)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQVESSGGLVKPGSLRLSCAASGF <small>FESSYTMHWRQAPGKLEWVSEFISYDGNKYYADSVKGRTFISRDNAKNS</small>	37967
vhCDR1	SSYTMH	
vhCDR2	ELSYDGNKYYADSVKG	37968
vhCDR3	TGHLGPFDL	37969
scFv linker	GKPGSGKPGSGKPGSCKEGS	
Variable light (vl) domain	EIVLITOSPTLSSLSPGERATLSCRASQSSSYLAWYQKEGQAPELLTYGASSERZTGIPDRFSGSGSTDFTLTISR	37971
VICDR1	LEPEDFAVYCOQYGSSTPWFQGQTKVETK	
VICDR2	RASQSVSSSYLA	
VICDR3	QYQGSSPWT	
scFv	EIVLITOSGGLVKPGSLRLSCAASGF <small>FESSYTMHWRQAPGKLEWVSEFISYDGNKYYADSVKGRTFISRDNAKNS</small>	37975
	LYLQMNISRAEDDAVYCAAGGLGPFDLWQGGMVTVSS GKPGSQGPGSQGPGS_EIVLITOSPTLSSLSPG	
	ERATLSCRASQSYSSYLAWYQKEGQAPELLTYGASSRATGIPDRFSGSGSTDFLTISRLPEDFAVYCOQYGS	
	SPWTEFGQGKTVETK	

Figure 10U [CTLA-4] H3.4_10.119 (Fab XENP20342, scFv XENP20379)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVLESGGGLVKPGSLSRLSCAASGFTESSYTHWVRQAPSGKLEWVSETSYDGRHKKYADSVKGRFTISRDNAKNSLYQIN	37976
vhCDR1	SYTMH	37977
vhCDR2	ETSYDGNHKKYADSTKG	37978
vhCDR3	TGHLGPFDL	37979
scFv linker	GKPGSGKPGSGKPGS	37708
Variable light (vl) domain	EIVLTIQSPGTLISLGERATLSCRASQSVGSSYIAWYQQKPGCQAFLILYGAESRATGIPDRFSGSGSETDFTLTISRLPEDF	37980
vlCDR1	AVYYCQGQGSSPWTQGQTKVEIK	37981
vlCDR2	RASQSVGSSYLA	37982
vlCDR3	QQYGSSPWT	37983
scFv	EVQLVLESGGGLVKPGSLSRLSCAASGFTESSYTHWVRQAPSGKLEWVSETSYDGRHKKYADSVKGRFTISRDNAKNSLYQIN	37984
	SLRAEDTAVYYCARTGHLGPFDLWQGQTMVTVSS	
	GKPGSGKPGSGKPGS	
	EIVLTIQSPGTLISLGERATLSCRASQSVGSSYIAWYQQKPGCQAFLILYGAESRATGIPDRFSGSGSETDFTLTISRLPEDF	
	AVYYCQGQGSSPWTQGQTKVEIK	

Figure 10V [CTLA-4] H3.4_10.12 (Fab XENP20071, scFv XENP20078)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVLESGGGLVKPGSLSRLSCAASGFTESSYTHWVRQAPSGKLEWVSETSYDGRHKKYADSVKGRFTISRDNAKNSLYQIN	37985
vhCDR1	SYTMH	37986
vhCDR2	ETSYDGNHKKYADSTKG	37987
vhCDR3	TGHLGPFDL	37988
scFv linker	GKPGSGKPGSGKPGS	37708
Variable light (vl) domain	EIVLTIQSPGTLISLGERATLSCRASQSVGSSYIAWYQQKPGCQAFLILYGAESRATGIPDRFSGSGSETDFTLTISRLPEDF	37989
vlCDR1	RASQSVGSSYLA	37990
vlCDR2	GAFSRAI	37991
vlCDR3	QQYGSSPWT	37992
scFv	EVQLVLESGGGLVKPGSLSRLSCAASGFTESSYTHWVRQAPSGKLEWVSETSYDGRHKKYADSVKGRFTISRDNAKNSLYQIN	37993
	SLRAEDTAVYYCARTGHLGPFDLWQGQTMVTVSS	
	GKPGSGKPGSGKPGS	
	EIVLTIQSPGTLISLGERATLSCRASQSVGSSYIAWYQQKPGCQAFLILYGAESRATGIPDRFSGSGSETDFTLTISRLPEDF	
	AVYYCQGQGSSPWTQGQTKVEIK	

Figure 10W [CTLA-4]_H3.4_10.121 (Fab XENP20344, scFv XENP20381)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESGGGLVVKPGSIRLSCAASGFTESSYTMH AVRQAPGKGLEWVFSIYDGNHKKYADSVVKGRFTISRDNAKNSLYQMN	37994
vhCDR1	<u>SYTMH</u>	
vhCDR2	<u>FISYDGNHKKYADSYKG</u>	37995
vhCDR3	<u>TGHIGPFDL</u>	37996
scFv linker	<u>SKPGSGKPGSKPGSKPGS</u>	37997
Variable light (vl) domain	EIVLTIQSPATLSSGERATLSCRA SQVGSSYTA WYQQKPGPQQAPRLLYGA SFRATGIPDIFSGSGSTDFTLTISRLPEDE F	37998
vlCDR1	<u>3ASQSVGSSYLA</u>	
vlCDR2	<u>GAFSRAT</u>	37999
vlCDR3	<u>QQYGSPEWT</u>	38000
scFv	EIVLTIQSPATLSSGERATLSCRA SQVGSSYTA WYQQKPGPQQAPRLLYGA SFRATGIPDIFSGSGSTDFTLTISRLPEDE F	38001
	<u>YGSYTLAWQQKPGFQQAPRLLYGASFRATGIPDIFSGSGSTDFTLTISRLPEDEDAVYCCQYGSPEWTGQGKVEIK</u>	38002

Figure 10X [CTLA-4]_H3.4_10.122 (Fab XENP20345, scFv XENP20382)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESGGGLVVKPGSIRLSCAASGFTESSYTMH AVRQAPGKGLEWVFSIYDGNHKKYADSVVKGRFTISRDNAKNSLYQMN	38003
vhCDR1	<u>SYTMH</u>	
vhCDR2	<u>FISYDGNHKKYADSYKG</u>	38004
vhCDR3	<u>TGHIGPFDL</u>	38005
scFv linker	<u>SKPGSGKPGSKPGSKPGS</u>	
Variable light (vl) domain	EIVLTIQSPATLSSGERATLSCRA SQVGSSYTA WYQQKPGPQQAPRLLYGA SFRATGIPDIFSGSGSTDFTLTISRLPEDE F	38007
vlCDR1	<u>3ASQSVGSSYLA</u>	
vlCDR2	<u>GAFSRAT</u>	38008
vlCDR3	<u>QQYGSPEWT</u>	38009
scFv	EIVLTIQSPATLSSGERATLSCRA SQVGSSYTA WYQQKPGPQQAPRLLYGA SFRATGIPDIFSGSGSTDFTLTISRLPEDE F	38010
	<u>VGSSYTLAWQQKPGFQQAPRLLYGASFRATGIPDIFSGSGSTDFTLTISRLPEDEDAVYCCQYGSPEWTGQGKVEIK</u>	38011

Figure 10Y [CTLA-4] H3.4_L0.123 (Fab XENP20346, scFv XENP20383)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLESGGLVKGSSLRISCAASGFTESSYTHWVRQAPKGLEWYSFISYDGNHKKYAADSVVKGRFTISRDNAKNSLYQMN	38012
vhCDR1	SYTMH	
vhCDR2	EISYDGNHKKYAADSVKG	38013
vhCDR3	TGHLGPFDL	38014
scFv linker	GKPGSGKPGSGKPGSG	38015
Variable light (vl) domain	EIVLTOSPATLSVSGERATLSCRASQSVSSSYI AWYQQKPSQAFRILYGAESRATGIPDRFGSGSTDFTLTTSRLEP DF	37708
vlCDR1	RASQSVSSSYLA	38016
vlCDR2	GAFSRAT	38017
vlCDR3	QQYGSSPWT	38018
scFv	EVQLESGGLVKGSSLRISCAASGFTESSYTHWVRQAPKGLEWYSFISYDGNHKKYAADSVVKGRFTISRDNAKNSLYQMN	38019
	SLRAEDTAVYCARIGHLGPFDLWQQTIVTVSS_GKPGSGKPGSGKPGS_EIVLTOSPATLSVSGERATLSCRASQSVSSSYI AWYQQKPSQAFRILYGAESRATGIPDRFGSGSTDFTLTTSRLEP DF AVYYCQGGSPWT FGQFKEIK	38020

Figure 10Z [CTLA-4] H3.4_L0.124 (Fab XENP20347, scFv XENP20384)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLESGGLVKGSSLRISCAASGFTESSYTHWVRQAPKGLEWYSFISYDGNHKKYAADSVVKGRFTISRDNAKNSLYQMN	38021
vhCDR1	SYTMH	38022
vhCDR2	EISYDGNHKKYAADSVKG	38023
vhCDR3	TGHLGPFDL	38024
scFv linker	GKPGSGKPGSGKPGSG	37708
Variable light (vl) domain	EIVLTOSPATLSVSGERATLSCRASQSVSSSYI AWYQQKPSQAFRILYGAESRATGIPDRFGSGSTDFTLTTSRLEP DF	38025
vlCDR1	RASQSVSSSYLA	38026
vlCDR2	GASSRA ^{WT}	38027
vlCDR3	QQYGS ^{WT} SPWT	38028
scFv	EVQLESGGLVKGSSLRISCAASGFTESSYTHWVRQAPKGLEWYSFISYDGNHKKYAADSVVKGRFTISRDNAKNSLYQMN	38029
	SLRAEDTAVYCARIGHLGPFDLWQQTIVTVSS_GKPGSGKPGSGKPGS_EIVLTOSPATLSVSGERATLSCRASQSVSSSYI AWYQQKPSQAFRILYGAESRATGIPDRFGSGSTDFTLTTSRLEP DF AVYYCQGGSPWT FGQFKEIK	

Figure 10AA [CTLA-4]_H3.4_10.125 (Fab XENP20348, scFv XENP20385)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVLESGGGLVVKPGESLRLSCAASGFTESSYTMWVRQAPGRGLEWYSFISYDGNHKKYAADSVVKCRAFTISRDNAKNSLYQVN SILRAEDTAVYYCARTCHLGFEDLWQGIMNTVSS	38030
vhCDR1	SYTMH	38031
vhCDR2	ETSYDGNHKKYAADSVKG	38032
vhCDR3	TGHLGPFDL	38033
scFv linker	GRESGKEESCKEGSGKPGS	37708
Variable light (vl) domain	EIVLTQSPGTLSLSPGERATLSCRASOSVSSYIAWYQQKPGQAPRLLIYGAESATGIPDRSGSGGDFLTISRLPEDE	38034
vlCDR1	RASQSVSSSYLA	38035
vlCDR2	GAFSRAT	38036
vlCDR3	QQYGSSPWT	38037
scFv	EVQLVLESGGGLVVKPGESLRLSCAASGFTESSYTMWVRQAPGRGLEWYSFISYDGNHKKYAADSVVKCRAFTISRDNAKNSLYQVN SILRAEDTAVYYCARTCHLGFEDLWQGIMNTVSS / GKPGSGKPGSGKPGS / EIVLTQSPGTLSLSPGERATLSCRASOS VSSYIAWYQQKPGQAPRLLIYGAESATGIPDRSGSGGDFLTISRLPEDE / DAVYYCQYGSSEPTFGQGTKEIK	38038

Figure 10BB [CTLA-4]_H3.4_10.126 (Fab XENP20349, scFv XENP20386)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVLESGGGLVVKPGESLRLSCAASGFTESSYTMWVRQAPGRGLEWYSFISYDGNHKKYAADSVVKCRAFTISRDNAKNSLYQVN SILRAEDTAVYYCARTCHLGFEDLWQGIMNTVSS	38039
vhCDR1	SYTMH	38040
vhCDR2	ETSYDGNHKKYAADSVKG	38041
vhCDR3	TGHLGPFDL	38042
scFv linker	SKPGSGKPGSGKPGS / EIVLTQSPGTLSLSPGERATLSCRASOSVSSYIAWYQQKPGQAPRLLIYGAESATGIPDRSGSGGDFLTISRLPEDE	37708
Variable light (vl) domain	EIVLTQSPGTLSLSPGERATLSCRASOSVSSYIAWYQQKPGQAPRLLIYGAESATGIPDRSGSGGDFLTISRLPEDE	38043
vlCDR1	RASQSVSSSYLA	38044
vlCDR2	GASSRAT	38045
vlCDR3	QQYGSSPWT	38046
scFv	EVQLVLESGGGLVVKPGESLRLSCAASGFTESSYTMWVRQAPGRGLEWYSFISYDGNHKKYAADSVVKCRAFTISRDNAKNSLYQVN SILRAEDTAVYYCARTCHLGFEDLWQGIMNTVSS / GKPGSGKPGSGKPGS / EIVLTQSPGTLSLSPGERATLSCRASOS VSSYIAWYQQKPGQAPRLLIYGAESATGIPDRSGSGGDFLTISRLPEDE / DAVYYCQYGSSEPTFGQGTKEIK	38047

Figure 10CC [CTLA-4]_H3.4_L0.127 (Fab XENP20350, scFv XENP20387)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVSEGGGLVPRGSSLRLSCAASGFTFSSYMEWVROAPGKGGLEWYSFISYDGNHKKYADSVKGREFTISRDNAANSLYLQVN	38048
vhCDR1	SYTMH	38049
vhCDR2	EISYDGNHKKYADSVKG	38050
vhCDR3	TGHLGPFED ₄	38051
scFv linker	<u>GREGSGKGPSSGKGPSS</u>	37708
Variable light (vl) domain	EIVLTQSPATLSLSEGERATLSCRASOSVSSSYLAWYQQKPGQAPRLLY <u>GASSRATGIPDFESGSGSTDDFTLTISRLPEPDFT</u>	38052
VICDR1	RASQSVSSSYIA	38053
VICDR2	GAFSRAT	38054
VICDR3	QQYGSSEPTT	38055
scFv	EIVLTQSEGGGLVPRGSSLRLSCAASGFTFSSYMEWVROAPGKGGLEWYSFISYDGNHKKYADSVKGREFTISRDNAANSLYLQVN	38056

Figure 10DD [CTLA-4]_H3.4_L0.128 (Fab XENP20351, scFv XENP20388)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVSEGGGLVPRGSSLRLSCAASGFTFSSYMEWVROAPGKGGLEWYSFISYDGNHKKYADSVKGREFTISRDNAANSLYLQVN	38057
vhCDR1	SYTMH	38058
vhCDR2	EISYDGNHKKYADSVKG	38059
vhCDR3	TGHLGPFED ₄	38060
scFv linker	<u>GREGSGKGPSSGKGPSS</u>	37708
Variable light (vl) domain	EIVLTQSPATLSLSEGERATLSCRASOSVSSSYLAWYQQKPGQAPRLLY <u>GASSRATGIPDFESGSGSTDDFTLTISRLPEPDFT</u>	38061
VICDR1	RASQSVSSSYIA	38062
VICDR2	GAFSRAT	38063
VICDR3	QQYGSSEPTT	38064
scFv	EIVLTQSEGGGLVPRGSSLRLSCAASGFTFSSYMEWVROAPGKGGLEWYSFISYDGNHKKYADSVKGREFTISRDNAANSLYLQVN	38065

Figure 10EE [CTLA-4] H3.4 L0.129 (Fab XENP20352, scFv XENP20389)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain		
vhCDR1		
vhCDR2		
vhCDR3		
scFv linker	<u>GKPGSGKPGSGKPGSGKPGS</u>	37708
Variable light (vl) domain	EYQIVESGGGLVKPGSSLRLSCAASGFTIYSSYIWMVRQAPGKGLEWV <u>SEISYDGNHKKYAADSVVKGRFTIISRDNAKNSLYLQM</u> NSLRAED-AVYYCATGHLGPDLMWGQCTMVTSS	38066
vlCDR1	SYTMH	38067
vlCDR2	EISYDGNHKKYAADSVKG	38068
vlCDR3	TGHIGPFDL	38069
scFv	EYQIVESGGGLVKPGSSLRLSCAASGFTIYSSYIWMVRQAPGKGLEWV <u>SEISYDGNHKKYAADSVVKGRFTIISRDNAKNSLYLQM</u> NSLRAED-AVYYCATGHLGPDLMWGQCTMVTSS <u>GKPGSGKPGSGKPGS</u> ETIVITQSPATLS <u>SPGERATLSCRAS</u> QSVSSSYLAWYQQEGQAPRLLIYGASSRATGIPDREFSGSGSQTDFLTISRLPEPFDAYVCCQYGSSEPTFEGQSTKVEIK	38070

Figure 10FF [CTLA-4] H3.4 L0.130 (Fab XENP20353, scFv XENP20390)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EYQIVESGGGLVKPGGSTRLSCAASGFTIYSSYIWMVRQAPGKGLEWV <u>SEISYDGNHKKYAADSVVKGRFTIISRDNAKNSLYLQM</u> NSLRAED-AVYYCATGHLGPDLMWGQCTMVTSS	38071
vhCDR1	SYTMH	38072
vhCDR2	EISYDGNHKKYAADSVKG	38073
vhCDR3	TGHIGPFDL	38074
scFv linker	<u>GKPGSGKPGSGKPGSGKPGS</u>	37708
Variable light (vl) domain	EIVITQSPATLSVSGERATLSCRASQVS <u>SSYYIAWYQQKPGQAPRLLIYGASSRATGIPDREFSGSGSQTDFLTISRLPEPFDAYVCCQYGSSEPTFEGQSTKVEIK</u>	38075
vlCDR1	RASQVS <u>SSYYLA</u>	38076
vlCDR2	<u>GASSRAT</u>	38077
vlCDR3	<u>QYGS SPPT</u>	38078
scFv	EYQIVESGGGLVKPGSSLRLSCAASGFTIYSSYIWMVRQAPGKGLEWV <u>SEISYDGNHKKYAADSVVKGRFTIISRDNAKNSLYLQM</u> NSLRAED-AVYYCATGHLGPDLMWGQCTMVTSS <u>GKPGSGKPGSGKPGS</u> ETIVITQSPATLS <u>SPGERATLSCRAS</u> QSVSSSYLAWYQQEGQAPRLLIYGASSRATGIPDREFSGSGSQTDFLTISRLPEPFDAYVCCQYGSSEPTFEGQSTKVEIK	38079

Figure 10GG [CTLA-4] H3.4_10.131 (Fab XENP20354, scFv XENP20391)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQVLVESEGGGLVKGPGSLRISCAASGETFESSYMEWVRAQPGGLEWVSEFISYDGNHKKYAADSVVKGRFTISRDNAKNSLYLQM NSLRAEDTAVYYCARTGHGLGPFDLWQGTMVTVSS	38080
vhCDR1	SYTMH	38081
vhCDR2	FISYDGNHKKYAADSVKG	38082
vhCDR3	TGHLGFDL	38083
scFv linker	SGEGSGKPGSKPGSKPGS	37708
Variable light (vl) domain	EIVLTQSPATLSISGERATLSCRASQVSSSYLAWYQKPGGAERLLTYGASSRATGIPDREFSGSGSTDFTLITSLRLEPD FAVYYCQQGSSPWTFGQGTKEIK	38084
vlCDR1	RASQVSSSYLA	38085
vlCDR2	GASSRAT	38086
vlCDR3	QOYGSSEWT	38087
scFv	EIVLTQSPATLSISGERATLSCRASQVSSSYLAWYQKPGGAERLLTYGASSRATGIPDREFSGSGSTDFTLITSLRLEPD FAVYYCQQGSSPWTFGQGTKEIK NSLRAEDTAVYYCARTGHGLGPFDLWQGTMVTVSS GKPQGSPRGSGRGSGKPGS/EIVLTQSPATLSISGERATLSCRAS QSVSSSYLAWYQKPGQGPKLILYGAASRATGIPDREFSGSGSTDFTLITSLRLEPDFAVYYCQQGSSPWTFGQGTKEIK	38088

Figure 10HH [CTLA-4] H3.4_10.132 (Fab XENP20355, scFv XENP20392)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQVLVESEGGGLVKGPGSLRISCAASGETFESSYMEWVRAQPGGLEWVSEFISYDGNHKKYAADSVVKGRFTISRDNAKNSLYLQM NSLRAEDTAVYYCARTGHGLGPFDLWQGTMVTVSS	38089
vhCDR1	SYTMH	38090
vhCDR2	FISYDGNHKKYAADSVKG	38091
vhCDR3	TGHLGFDL	38092
scFv linker	SGEGSGKPGSKPGSKPGS	37708
Variable light (vl) domain	EIVLTQSPATLSISGERATLSCRASQVSSSYLAWYQKPGGAERLLTYGASSRATGIPDREFSGSGSTDFTLITSLRLEPD FAVYYCQQGSSPWTFGQGTKEIK	38093
vlCDR1	RASQVSSSYLA	38094
vlCDR2	GASSRAT	38095
vlCDR3	QOYGSSEWT	38096
scFv	EIVLTQSPATLSISGERATLSCRASQVSSSYLAWYQKPGGAERLLTYGASSRATGIPDREFSGSGSTDFTLITSLRLEPD FAVYYCQQGSSPWTFGQGTKEIK NSLRAEDTAVYYCARTGHGLGPFDLWQGTMVTVSS GKPQGSPRGSGRGSGKPGS/EIVLTQSPATLSISGERATLSCRAS QSVSSSYLAWYQKPGQGPKLILYGAASRATGIPDREFSGSGSTDFTLITSLRLEPDFAVYYCQQGSSPWTFGQGTKEIK	38097

Figure 10II [CTLA-4] H3.5 L2.1 (Fab XENP20357, scFv XENP20394)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESEGGGLVKEPGSLRLSCAASGFTESSYTMWVROAPEGKLEWYSFISYDENTKYAADSVKGRETISRDNAKNSLYQM NSLRAEDTAVYYCARTCHLGPFDLWQGTMVTVSS	38098
vhCDR1	SYTMH	
vhCDR2	FISYDENTKYAADSVKG	38099
vhCDR3	TGHLGFDL	38100
scFv linker	GKPGSKPGKPGKPGS	38101
Variable light (vl) domain	ELVMTQSPATLVSYSGERATLSCRAASCVGSSYI_LAWYQKPGCAPRLLIYGA_FSTATGIPARFSGSGSTEFTLTISLQED FAVYYCQYGSSEPTFQGQTKVEIK	37708
vlCDR1	RASQVSSESYLA	38102
vlCDR2	GASSRAT	38103
vlCDR3	QOYGSSEPT	38104
scFv	EVQLVESEGGGLVKEPGSLRLSCAASGFTESSYTMWVROAPEGKLEWYSFISYDENTKYAADSVKGRETISRDNAKNSLYQM NSLRAEDTAVYYCARTCHLGPFDLWQGTMVTVSS/GKPGSKPGKPGS/GKPGS/EIYMTQSPATLVSYSGERATLSCRAS QSVGSSYLAWYQKPGCAPRLLIYGA_FSTATGIPARFSGSGSTEFTLTISLQED/FAVYYCQYGSSEPTFQGQTKVEIK	38105

Figure 10IJ [CTLA-4] H3.5 L2.2 (Fab XENP20358, scFv XENP20395)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESEGGGLVKEPGSLRLSCAASGFTESSYTMWVROAPEGKLEWYSFISYDENTKYAADSVKGRETISRDNAKNSLYQM NSLRAEDTAVYYCARTCHLGPFDLWQGTMVTVSS	38107
vhCDR1	SYTMH	
vhCDR2	FISYDENTKYAADSVKG	38108
vhCDR3	TGHLGFDL	38109
scFv linker	GKPGSKPGKPGKPGS	
Variable light (vl) domain	ELVMTQSPATLVSYSGERATLSCRAASCVGSSYI_LAWYQKPGCAPRLLIYGA_FSTATGIPARFSGSGSTEFTLTISLQED FAVYYCQYGSSEPTFQGQTKVEIK	37708
vlCDR1	RASQVSSESYLA	38111
vlCDR2	GASSRAT	38112
vlCDR3	QOYGSSEPT	38113
scFv	EVQLVESEGGGLVKEPGSLRLSCAASGFTESSYTMWVROAPEGKLEWYSFISYDENTKYAADSVKGRETISRDNAKNSLYQM NSLRAEDTAVYYCARTCHLGPFDLWQGTMVTVSS/GKPGSKPGKPGS/GKPGS/EIYMTQSPATLVSYSGERATLSCRAS QSVGSSYLAWYQKPGCAPRLLIYGA_FSTATGIPARFSGSGSTEFTLTISLQED/FAVYYCQYGSSEPTFQGQTKVEIK	38114

Figure 10KK [CTLA-4]_H3.5_L2.3 (Fab XENP20359, scFv XENP20396)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESGGGLVKP G SLR L CAAS G FT F SSY M HWVRQAP G GLEW V SETSYD G NT T YYADSV K G R FT I SD R DN A NS K NS L Y Q M	38116
vhCDR1	SYTMH	38117
vhCDR2	EISYD G NU K YYADSV K G	38118
vhCDR3	TGHLG F DL	38119
scFv linker	GR G SG K PG S KG K PG S KG K PG S	37708
Variable light (vl) domain	ETVNT T SPATL S GERATL S RA S OSV S SY L AWY Q KP G QAP R L I Y G ASSRAT G FT I PA R E S SG G ST F LT I TI S Q L Q E SD	38120
vlCDR1	RASQ V SSSYLA	38121
vlCDR2	GAS R AT	38122
vlCDR3	Q Y GS S PWT	38123
scFv	EVOLVESGGGLVKP G SLR L CAAS G FT F SSY M HWVRQAP G GLEW V SETSYD G NT T YYADSV K G R FT I SD R DN A NS K NS L Y Q M	38124

Figure 10LL [CTLA-4]_H3_L0 (Fab XENP19546, scFv XENP19553)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESGGGLVKP G SLR L CAAS G FT F SSY M HWVRQAP G GLEW V SETSYD G NT T YYADSV K G R FT I SD R DN A NS K NS L Y Q M	38125
vhCDR1	SYTMH	38126
vhCDR2	EISYD G NU K YYADSV K G	38127
vhCDR3	TGHLG F DL	38128
scFv linker	GR G SG K PG S KG K PG S KG K PG S	37708
Variable light (vl) domain	ETVNT T SPOTL S GERATL S RA S OSV S Y L AWY Q KP G QAP R L I Y G ASSRAT G FT I PA R E S SG G ST F LT I TI S Q L Q E SD	38129
vlCDR1	RASQ V SSSYLA	38130
vlCDR2	GAF R AT	38131
vlCDR3	Q Y GS S PWT	38132
scFv	EVOLVESGGGLVKP G SLR L CAAS G FT F SSY M HWVRQAP G GLEW V SETSYD G NT T YYADSV K G R FT I SD R DN A NS K NS L Y Q M	38133

Figure 10MM [CTLA-4] H3 L0.22 (Fab XENP20011)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESGGGLVPEPGSSRLSCAASGTTSSYTMHWVROAPGKLEWVSEIISYDGNKYYADSVKGRFTISRDNIAKNSLYLQNSL	38134
vhCDR1	SYTMH	38135
vhCDR2	FISYDGNKYYADSVKG	38136
vhCDR3	TGWLGPDTY	38137
scFv linker	GREGSGKGSGEKSGKPGS	37708
Variable light (vl) domain	EIVLTOPTGLSLSPGERATLSCRASSSVSSSYLAWYQOKPQAPRLLIYGAFA RATGIPDRFSGSGTDFITLITSLRLEPEFAV	38138
vlCDR1	RASCSVSSSYLA	38139
vlCDR2	GAFSRAT	38140
vlCDR3	QQYGSSEWT	38141
scFv	EVQLVESGGGLVPEPGSSRLSCAASGTTSSYTMHWVROAPGKLEWVSEIISYDGNKYYADSVKGRFTISRDNIAKNSLYLQNSL GKPGSGKPGSGKGSCKPGS/FIVLQSPGTLSLSPGERATLSCRASOSVSSSYLAWYQOKPQAPRLLIYGAFA RATGIPDRFSGSGTDFITLITSLRLEPEFAVYQOQGSSPWFQGKTVIK	38142

Figure 10NN [CTLA-4] H3 L0.44 (Fab XENP20052)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESGGGLVPEPGSSRLSCAASGTTSSYTMHWVROAPGKLEWVSEIISYDGNKYYADSVKGRFTISRDNIAKNSLYLQNSL	38143
vhCDR1	SYTMH	38144
vhCDR2	FISYDGNKYYADSVKG	38145
vhCDR3	TGWLGPDTY	38146
scFv linker	GKPGSGKPGSGKGSCKPGS	37708
Variable light (vl) domain	EIVLTOPTGLSLSPGERATLSCRASSSVSSSYLAWYQOKPQAPRLLIYGAFA RATGIPDRFSGSGTDFITLITSLRLEPEFAV	38147
vlCDR1	RASQSYGSSEWLS	38148
vlCDR2	GAFSRAT	38149
vlCDR3	QQYGSSEWT	38150
scFv	EVQLVESGGGLVPEPGSSRLSCAASGTTSSYTMHWVROAPGKLEWVSEIISYDGNKYYADSVKGRFTISRDNIAKNSLYLQNSL YLSWTQOKPQAPRLLIYGAFA RATGIPDRFSGSGTDFITLITSLRLEPEFAVYQOQSSSPWTGQGKTVIK	38151

Figure 1000 [CTLA-4] H3_10.67 (Fab XENP20018)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESSGGIVKPGGSLRLSCAASGGTTESSYTMHWRQAPGKGLIEWVSEIYSTGNNKYYADSVKGRFTISRDNAKNSLY-QMNSL	38152
vhCDR1	SYTMH	
vhCDR2	EISYDGNKYYAASVKG	38153
vhCDR3	TGWLGPFDY	38154
scFv linker	GKEGSGKPGSGKPGS	38155
Variable light (vl) domain	EIVLTQSPGTLSLSPGERATLSCRASQVGSSYIAYQKPGQAPRLLIYDAEFSRATGIPDRFSGSGTDFITLTISRLPEPDFAV	38156
vlCDR1	RASQSYSSSYLA	
vlCDR2	DAFSRAT	38157
vlCDR3	QQYGSSTWT	38158
scFv	EVOLVESSGGIVKPGGSLRLSCAASGGTTESSYTMHWRQAPGKGLIEWVSEIYSTGNNKYYADSVKGRFTISRDNAKNSLY-QMNSL RAEDTAVYTCARTGWLGPFDYWGQQTIVVSS GKEGSGKPGSGKPGS/ EIVLTQSPGTLSLSPGERATLSCRASQVGSSYIAYQKPGQAPRLLIYDAEFSRATGIPDRFSGSGTDFITLTISRLPEPDFAV YYCQOIGSSPWTFGQGTIVELK	38159 38160

Figure 10PP [CTLA-4] H3_10.74 (Fab XENP20020)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESSGGIVKPGGSLRLSCAASGGTTESSYTMHWRQAPGKGLIEWVSEIYSTGNNKYYADSVKGRFTISRDNAKNSLY-QMNSL	38161
vhCDR1	SYTMH	
vhCDR2	EISYDGNKYYAASVKG	38162
vhCDR3	TGWLGPFDY	38163
scFv linker	GKEGSGKPGSGKPGS	38164
Variable light (vl) domain	EIVLTQSPGTLSLSPGERATLSCRASQVGSSYIAYQKPGQAPRLLIYGAYSRATGIPDRFSGSGTDFITLTISRLPEPDFAV YYCQYGSSEWINGQGTIVELK	38165
vlCDR1	RASQSYSSSYLA	
vlCDR2	GAYSRAT	38166
vlCDR3	QQYGSSTWT	38167
scFv	EVOLVESSGGIVKPGGSLRLSCAASGGTTESSYTMHWRQAPGKGLIEWVSEIYSTGNNKYYADSVKGRFTISRDNAKNSLY-QMNSL RAEDTAVYTCARTGWLGPFDYWGQQTIVVSS GKEGSGKPGSGKPGS/ EIVLTQSPGTLSLSPGERATLSCRASQVGSSYIAYQKPGQAPRLLIYGATSRATGIPDRFSGSGTDFITLTISRLPEPDFAV YYCQOIGSSPWTFGQGTIVELK	38168 38169

Figure 11A
7G8_H3.30_L1.34 (Fab XENP22594)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQIVESCGGLVQPGGSLRLUSCQASGFTFDAMMSWYDQAFGKGLEWMVAELISTKANNHATYYAESSVK	38170
vhCDR1	GRETTISRDDS SKSSYVLOMNSLRAEDTAVYYC TRLATMWWYEDW Q QTTTVSS	38171
vhCDR2	EISTKANNHATYYAESSVK	38172
vhCDR3	LATWDWYEDV	38173
Variable light (vl) domain	DIVLIGQSPSSLSASVGDRVITITCRASQSVDYDGDSSYNNWYQORPGKP PKL LIYARSELESGIPARFS	38174
vlCDR1	GSSGSGTDFITLTISL Q PEDFATYYCQDSNEDPFTEGSGT K LEIK	38175
vlCDR2	RASQSYDYGDSYNN	38176
vlCDR3	AAASFLES	38177
	QQSNE DPF T	

Figure 11B
2A11_H1.144_L2.142 (Fab XENP22656)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQIVQSGAEVVKPGATIVKVISCKASGFNIKDYEMH WYQ QAFGKGLEWMGNWIDPEL G TEYAPK E QGR	38178
vhCDR1	VITIADT S INTAYMELSS Y RS E DTAVYYC Y ARGV T QAL Y W G Q T LV V SS	38179
vhCDR2	DYF M H	38180
vhCDR3	WIDPEL G DT E YAPK E Q G	
Variable light (vl) domain	RGVYQ A DY V Q A LF S VT P GE V Y T ITC Q ASQ D IGNYLN W FO Q K P Q T V K L L IY F T S Y L H S C V P S R F S G S C S	38181
vlCDR1	DIQMTQSP A FL S VT P GE V Y T ITC Q ASQ D IGNYLN W FO Q K P Q T V K L L IY F T S Y L H S C V P S R F S G S C S	38182
vlCDR2	GT C Y T PT S LEAD A AT T YFC Q Q N T L PY T GG T AE V IK	38183
vlCDR3	QASQD T GN Y LN	38184
	FTSY Y HS	38185
	QQGNT L PY T	

Figure 11C
7G8_H3.18_L1.11 (Fab XENP21670)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EYQI VE SGGGI V QPGG S TRLSCAASG F TD D AMMDWYRQ P GKGLEWVAE I STKANNHATYYAE S V K G R FTISR D DSKSSY V IQMNSIR A EDTAVYYC T RLATWDYF E DW G Q T TV V S	38186
vhCDR1	DAWMD	38187
vhCDR2	E I RTKANNHATYYAE S V K	38188
vhCDR3	LA N WDYF D V	38189
Variable light (vl) domain	DT V LT O SP S SL S AS V GD R V T ITCR A SQ V YD G D S Y M WYQ K P G K P K L Y A SE E LS G IP A R L S	38190
vlCDR1	G S SG G TD E FTL E ISS Q OPED F ATYYC Q QS N ED P FT F GS G TK I E I K	38191
vlCDR2	A A SE E LS	38192
vlCDR3	Q Q S N ED P FT	38193

Figure 11D
2A11_H010 (Fab XENP20930)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EYK I E S GGGGI V QPGG S MLSCAASG F TF S DA M MDWYRQ P S E PKGLEWVAE I RTKANNHATYYAE S V K G R FTISR D DSKSSY V IQMNSIR A EDT G I Y Y C TR A N W Y F D W G Q T TV V S	38194
vhCDR1	DAWMD	38195
vhCDR2	E I RTKANNHATYYAE S V K	38196
vhCDR3	LA N WDYF D V	38197
Variable light (vl) domain	DT V LT O SP S PL S Q R AT I S K ASQ V YD G D S Y M WYQ K P G Q P K L Y A AS N LE S IP A R L S	38198
vlCDR1	G S SG G TD E FTL E ISS Q OPED F ATYYC Q QS N ED P FT F GS G TK I E I K	38199
vlCDR2	A A SE E LS	38200
vlCDR3	Q Q S N ED P FT	38201

Figure 11E
2A11_H1.125_L2.113 (Fab XENP21921)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVQSGAEVKPGATVKISCKASGFNIKDYMMWQQAPGKGLEWMGWLDP <u>YGDTEYAPKFGQR</u>	38202
vhCDR1	HYFMH	38203
vhCDR2	WIDPY <u>I.GDTEYAPKFGQG</u>	38204
vhCDR3	RGVYQALDY	38205
Variable light (vl) domain	DIQM <u>TQSPAFLSVTPGEKVITCQASQDIGNYLNW<u>QDQFQKPDQT</u>VKL<u>IYFTSYLHS<u>3GVP</u>SRESFGSGS</u></u>	38206
vlCDR1	GT <u>DYTFETISSLEADAATYFCQGNTLFP<u>YEGG</u>GT<u>KV</u>EIK</u>	38207
vlCDR2	QASD <u>IGNYLN</u>	38208
vlCDR3	FTSYLHS	38209
	QQGNTLFP <u>T</u>	

Figure 11F
2A11_H1L2 (Fab XENP20847)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVQSGAEVKPGATVKISCKASGFNIKDYMMWQQAPGKGLEWMGWLDP <u>ENGDT</u> EYAPKFGQR	38210
vhCDR1	DYYMH	38211
vhCDR2	WIDP <u>ENGDT</u> EYAPKFGQG	38212
vhCDR3	RGV <u>YQALDY</u>	38213
Variable light (vl) domain	DIQM <u>TQSPAFLSVTPGEKVITCQASQDIGNYLNW<u>QDQFQKPDQT</u>VKL<u>IYFTSYLHS<u>3GVP</u>SRESFGSGS</u></u>	38214
vlCDR1	GT <u>DYTFETISSLEADAATYFCQGNTLFP<u>YEGG</u>GT<u>KV</u>EIK</u>	38215
vlCDR2	QASD <u>IGNYLN</u>	38216
vlCDR3	FTSYLHS	38217
	QQGNTLFP <u>T</u>	

Figure 11G
2A11_H1_L2.25 (Fab XENP21372)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVQSGAEVKKPGATVKSCKASGENIKDYMMWQDAFGKGLEMWGWDPENSTEYAPKEQGR	38218
vhCDR1	DYYMH	38219
vhCDR2	WIDPENGDTTEYAPKFQG	38220
vhCDR3	RGVROALDY	38221
Variable light (vl) domain	DIQMTOSPAFLSVTPGKRYTITC QASQDIGNH LNWFOOKP Q TVKL LYT TSRILHS G VPSRFSGSGS	38222
vlCDR1	GTIDYTF TT SSLEA D ATY Y FCQGNTL P Y T FGGGT K Y E K	38223
vlCDR2	YTSRILHS	38224
vlCDR3	QOGNTL P YT	38225

Figure 11H
2A11_H1_L2.47 (Fab XENP21394)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVQSGAEVKKPGATVKSCKASGENIKDYMMWQDAFGKGLEMWGWDPENSTEYAPKEQGR	38226
vhCDR1	DYYMH	38227
vhCDR2	WIDPENGDTTEYAPKFQG	38228
vhCDR3	RGVROALDY	38229
Variable light (vl) domain	DIQMTOSPAFLSVTPGKRYTITC QASQDIGNY LNWFOOKP Q TVKL LYT TSRILHS G VPSRFSGSGS	38230
vlCDR1	GTIDYTF TT SSLEA D ATY Y FCQGNTL P Y T FGGGT K Y E K	38231
vlCDR2	YTSRILHS	38232
vlCDR3	QOGNTL P YT	38233

Figure 11:
2A11_H1_L2.50 (Fab XENP21401)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVQSGAEVKKPGATVKTISKASGFDNIKDYMMWQDAFGKGLEMGWIDPENGTEYAPKFQGR VTTADTSTNTAYMELSSLRSEDTAVYYCARGVRQALYWGQGTLVTVSS	38234
vhCDR1	DYYMH	38235
vhCDR2	WIDPENGTEYAPKFQG	38236
vhCDR3	RGVFRQALDY	38237
Variable light (vl) domain	DIQMTOQSPAFLSVTPGERKVTTITCQASQDIGNYLNWFEQKPDQTVKLIIYTTSYLHSGVPSRSFGSGS GTDYTFITSSLEADAATYFCQGQNTLPTFEGGTKEYIK	38238
vlCDR1	QASODIGNYLN	38239
vlCDR2	YTSYIHS	38240
vlCDR3	QOGNTLIPYT	38241

Figure 11:
2A11_H1L2 (Fab XENP20847)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVQSGAEVKKPGATVKTISKASGFDNIKDYMMWQDAFGKGLEMGWIDPENGTEYAPKFQGR VTTADTSTNTAYMELSSLRSEDTAVYYCARGVRQALYWGQGTLVTVSS	38242
vhCDR1	DYYMH	38243
vhCDR2	WIDPENGTEYAPKFQG	38244
vhCDR3	RGVFRQALDY	38245
Variable light (vl) domain	DIQMTOQSPAFLSVTPGERKVTTITCQASQDIGNYLNWFEQKPDQTVKLIIYTTSYLHSGVPSRSFGSGS GTDYTFITSSLEADAATYFCQGQNTLPTFEGGTKEYIK	38246
vlCDR1	QASODIGNYLN	38247
vlCDR2	YTSRHS	38248
vlCDR3	QOGNTLIPYT	38249

Figure 11K
7G8_H3.23_L1.11 (fab XENP211670)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVOLVESSGGGLYQPGGSLRLSCAASGFTEDDAWMWYRQAGXGLEWAEITSIKANNHATYYAESVK GRITLISRDDSXKSSVYQMNSELRAEDTAVYCYTRIATWMYEDVWQGQTIVTVSS	38250
vhCDR1	DAWMD	38251
vhCDR2	EISTKANNHATYYAESVKG	38252
vhCDR3	IAWDMWYEDV	38253
Variable light (vl) domain	DIVLTQSPSSL-SASVGDRVTITCRASQSVVDYDDGSYNNWYQKPGKPPKLIIYAASELESGIPARLS GSSGCTDFLTLSQPEDATYYCQDSNEDEPTFGSCTKLEIK	38254
vlCDR1	RASOSYDYGDSYNN	38255
vlCDR2	AAASLIES	38256
vlCDR3	QOSNEDPFT	38257

Figure 11L 7G8 H3.28 L1 (Fab XENP71897)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQIVLESGGGLVQPGGSLRLSCAASGFTFDDAAMDWVROA FGKLEWAEI STRKAYNHTYYAESVK GRFTI SRDDSKSSVILQMN SLRAEDTAVYCT RLA WDMYFD DWQGIFT TVSS	38258
vhCDR1	DAWMD	38259
vhCDR2	EISTKAYNHTYYAESVKG	38260
vhCDR3	LATWDWYEDV	38261
Variable light (vl) domain	DIVVLTQSPSSL SASV GDEVTITCRASQSVDYDGDS YMNWYQQ KPGKPPKLI TYAASNL ESGTPARTS GSGSG EDFTL TISSL QEDF ATYYC QQS NEDP FTE GGT KIEIK	38262
vlCDR1	RASQSVDYDGDS YMNWYQQ	38263
vlCDR2	AASNL ES	38264
vlCDR3	QQSNEDP FT	38265

Figure 11M
7G8_H3.28_L1.11 (Fab XENP21893)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQIVESGGGVQPGGSILRSCAASGFTFD DAWMDWTR APGKGLEWVAE ISTKAYNHATYYAE SVK	38266
vhCDR1	DAWMD	38267
vhCDR2	EISTKAYNHATYYAE SVK	38268
vhCDR3	LATWDWYFDV	38269
Variable light (vl) domain	DIVLTQSPSSILSASVGDEVITITCRASQSV D YDGDSY M WQQKPGKPKL L IIYAA S SELES G IPARLS	38270
vlCDR1	GSGSGTDEFITL T ISLQPEDFATYYCQQSNEDDPFT F GS G TKLEIK	38271
vlCDR2	RASQSYDVGDS M N	38272
vlCDR3	AASELES	38273
	QQSNE D PF T	

Figure 11N
7G8_H3.28_L1.13 (Fab XENP21894)

What	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQIVESGGGVQPGGSILRSCAASGFTFD DAWMDWTR APGKGLEWVAE ISTKAYNHATYYAE SVK	38274
vhCDR1	DAWMD	38275
vhCDR2	EISTKAYNHATYYAE SVK	38276
vhCDR3	LATWDWYFDV	38277
Variable light (vl) domain	DIVLTQSPSSILSASVG R EVITITCRASQSV D YDGDSY M WQQKPGKPKL L IIYAA S SELES G IPARLS	38278
vlCDR1	GSGSGTDEFITL T ISLQPEDFATYYCQQSNEDDPFT F GS G TKLEIK	38279
vlCDR2	RASQSYDHD S Y M N	38280
vlCDR3	AASELES	38281
	QQSNE D PF T	

Figure 12A (anti-BTLA4 variable heavy and light chains + CDRs)

What: anti-BTLA XENP2269 9C6_Holo	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLKESCPCLVAPQSQTISITCTVSGFSLITGYGVNWVRFQFFGKGLEWLMGIWINGSTDYNSALKSRLSIN KDN SKS QVPTIKMANSIQTDDIARYYCARDPDRDGRAMDYWGQGTVVS	38282
vhCDR1	GYGVN	38283
vhCDR2	MWILDGSTDYNALKS	38284
vhCDR3	DRPDGRANDY	38285
Variable light (vl) domain	SI VMTQTPKFLVYSAQDRVTITCKASQSVSNDAVWYQQKPGQSPKLIYIYASNRYTGVPDFRTGSGYGT FTFTIISTWQAE DLAVVFCQDYSSSPTEFGGTKLTK	38286
vlCDR1	KASQSVSNDAV	38287
vlCDR2	YASNRYT	38288
vlCDR3	QQDYSSPT	38289

Figure 12B

What: anti-BTLA XENP20872 9C6_H1.11.1	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLKEAEEKKKPGASVVKVSKRVSCKVSGFSLITGYGVNWVRFQAPGQGLEWMGCMIWLDGSTDYNKSFQGRVNT KDN SKS QVPTIKMANSIQTDDIARYYCARDPDRDGRAMDYWGQGTVVS	38290
vhCDR1	GYGVN	38291
vhCDR2	MWILDGSTDYNNSKFQG	38292
vhCDR3	DRPDGRANDY	38293
Variable light (vl) domain	SI VMTQSPDSLAVSLGERATINCKASQSVSNDAVWYQQKPGQSPKLIYIYASNRYTGVPDFRTGSGYGT FTFTISSLQAEWVFCQDYSSSPTEFGGTKLTK	38294
vlCDR1	KASQSVSNDAV	38295
vlCDR2	YASNRYT	38296
vlCDR3	QQDYSSPT	38297

Figure 12C (anti BTLA4 variable heavy and light chains + CDRs)

What: anti-BTLA XENP020882.9C6_H1.111	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLVQSGAEVKEKEGVKVKVSKVSKVSGESITGEGVNWVROAPGQGIEWMGMWILDGSTDYN KDNGSSTIVYMELSSLIRSEDATAVYCARDRPDRGRAMDYWGQGMATVSS	38298
vhCDR1	GYGVN	38299
vhCDR2	MTWIDGSTDYNNSKEFQG	38300
vhCDR3	DREDRGRAMDY	38301
Variable light (vl) domain	SIYMFQSPDSDLAVSIGERATINCKASQSVSNNDVAYWQQKPGQSPKLITYASNRYTGVPDFETGSGYGT	38302
vlCDR1	ETLTTSISLQAEDVAYYECQDYSSEPTEGGGTKEIK	38303
vlCDR2	KASQSVSNNDVA	38304
vlCDR3	YASNRYT	38305
	QQDYSSSPT	

Figure 13A (anti-TIM3 variable heavy and light chains + CDRs)

What: anti-TIM3 XENP21503 1D10_HOLO	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESGGGLVPPGSLIKFSCASAASGFAFSSFDMSWVRQIPEKLEWVAYISSDGASTFVYEDTMKGRTTI SRDNAKNTLYLQMSLKLSEDAMYYCTRLGA W QGTIVTVSA	38306
vhCDR1	SFDM	38307
vhCDR2	YISSDGASTFYPDTMKG	38308
vhCDR3	LGAY	38309
Variable light (vl) domain	DVNTQTPPLTSVTTGQPASSISCKSSQSLIDSDEGKTYLNWILQRPQSPKRLLYLVSKLDSGVPDFRTGS GSGIDETLKIISRVEAEDLGVYYCWAQGTHFPYTFGGTKEIK	38310
vlCDR1	KSSQSLILDSDGKTYLN	38311
vlCDR2	VSKLDS	38312
vlCDR3	WQGTHEPYT	38313

Figure 13B

What: anti-TIM3 XENP21492 1D12_HOLO	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVQLVESGGGLVPPGSLIKFSCASAASGFAFSSFDMSWVRQIPEKLEWVAYISSDGASTFVYEDTMKGRTTI SRDNAKNTLYLQMSLKLSEDAMYYCTRLGA W QGTIVTVSA	38314
vhCDR1	SFDMS	38315
vhCDR2	YISSDGASTEYIDTMKG	38316
vhCDR3	LGAY	38317
Variable light (vl) domain	DIVLTQSPASAVSLIGQRTATISCRASESEVEYIGTSLQWYQOKPQPKLIIYAAASNEVSGVPARFSGSG SGTDFSLNIIHPEEDDIAMYFCQOSRKVFWTFEGSTKLEIK	38318
vlCDR1	RASEEVEYYGTSLQ	38319
vlCDR2	AASNEVES	38320
vlCDR3	QOSRKEVWT	38321

Figure 13C (anti-TIM3 variable heavy and light chains + CDRs)

What: anti-TIM3 XENP21189 3H3_H1L2.1	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVILKESGPVLYKPETELTLTCVSGFSLANGYGVNWVRQPPGKGLEWLMWGDSLTDYNSALKSRLTIS KDNKSKSQVNLITMNPVDTATYCARSYITSDEYWGQGLTVSS	38322
vhCDR1	GYGVN	38323
vhCDR2	MTWGEDSTDYNSALKS	38324
vhCDR3	SYTTSDEDY	38325
Variable light (vl) domain	DIVVTHQSPDLSLAVSLGERATINCKSSOSLINSRERKNYLAWQCKPGOSPKLIYWAESTRESGVPDFRTTG SGSGTIDFTTISSTLQAEDVAVYCKQSYSLSRTEGGTKVELK	38326
vlCDR1	KSSQSLINSRERKNYLA	38327
vlCDR2	WASTRES	38328
vlCDR3	KQSYSLRT	38329

Figure 13D

What: anti-TIM3 XENP21493 6C8_H0L0	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLIKESGPGLIVAPSQSLSTICVSGFSLANGYGVNWVRQPPGKGLEWLMGMIWGDSLTDYNSALKSRLSIS KDNKSKSQVFLANSLQTDITARYCARSYITSDEYWGQGLTVSA	38330
vhCDR1	GYGVN	38331
vhCDR2	MTWGEDSTDYNSALKS	38332
vhCDR3	SYTTSDEDY	38333
Variable light (vl) domain	DIVVTHQSQKENNSTSVDRVSTICKASQNGSNVYAWCQQPKPGOSPKALIYASAFRYSGVPDFRTGSGGTD FVLLTISNQSEDLAELYFCQQQNSYPYTFGGGTKEIK	38334
vlCDR1	KASQNGSNVA	38335
vlCDR2	SASPRYS	38336
vlCDR3	QQQNSYPYT	38337

Figure 13E (anti-TIM3 variable heavy and light chains + CDRs)

What: anti-TIM3 XENP21494 6D9H0_1D12_0	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLKQSGPGIVNQPSQSLSTCTVGSFLSTSQVHWRVQSPGKLEWLGVWWSGGSTEYNAFAFISRLSIS KDNRSQVFNMNSLQADDTATIYCARGLLSSFDYWGQGITITVSS	38338
vhCDR1	SYGVH	38339
vhCDR2	VTNSGGSTEYNAFAFIS	38340
vhCDR3	GGILSPFDY	38341
Variable light (vl) domain	DIVLTQSPASIAVSLGORATISCRASESVEIYVGTSLMOWYQOKPQPKLITYAASNVESGVPARFSGSG SGTDLSNIHPVEEDDIAMYFCOSSRKVWTFGGTKEIK	38342
vlCDR1	RASESVEIYGTSLMQ	38343
vlCDR2	AASNVES	38344
vlCDR3	Q2SRKVPWT	38345

Figure 13F

What: anti-TIM3 XENP21495 7A9_H0L0	sequence	SEQ ID NO:
Variable heavy (vh) domain	EVKLESGGGIVYQFGGLKLSCASGFDSRIVMSWVRQAPGKGLEWIGEINPDSSTINYPSLKDKFII SRDNAKNTLYLQMSKVRSEDITALYCARPNGYVGTIEPPFAYWQGQTLLTVSA	38346
vhCDR1	RYWMS	38347
vhCDR2	EINPDSSTINTPSLKD	38348
vhCDR3	ENGGYYVGTIEPPFAY	38349
Variable light (vl) domain	QAVVTOESALITSPGETVTLICRSSTGAVITTSNYANWQEKPDLFTGLIGGTTNNRAGVPARFSGSLIG DKRAALITTGAAQEDAIYFCALMYSNHWVFGGTKLTVLG	38350
vlCDR1	RSSNGAVITTSNYAN	38351
vlCDR2	GTNNRAP	38352
vlCDR3	AMWYSNHWV	38353

Figure 13G (anti-TIM3 variable heavy and light chains + CDRs)

What: anti-TIM3 XENP21496 /B11_HOLO	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLKQSGPGIVYQPSQSLSIITCTVSGFSLTSYAVNWVRQSPGKGLEWLGIVWGGSTDYNAAFISRLSIS KDNISKSQVEFMRNSLQADDITAIYCVSILYRIGFDYWGQGTIVTVSA	38354
vhCDR1	SYAVN	38355
vhCDR2	VIVSGCGSTDYNAAFIS	38356
vhCDR3	LYRYDGFDY	38357
Variable light (vl) domain	DIYLTQSQKELSTSVDRVSTICKASQNYGHIVARYQQKPGSPKALVYASRYSSGVDPDFTGSSGTD FTTITSNVQSEDLAELYFCQQNSYPLTEGGGTLEIK	38358
vlCDR1	KASQNVGTHVA	38359
vlCDR2	SASRYRS	38360
vlCDR3	QQNSYPLT	38361

Figure 13H

What: anti-TIM3 XENP21501_B11var_HOLO	sequence	SEQ ID NO:
Variable heavy (vh) domain	QVQLKQSGPGIVYQPSQSLSIITCTVSGFSLTSYAVNWVRQSPGKGLEWLGIVWGGSTDYNAAFISRLSIS KDNISKSQVEFMRNSLQADDITAIYCVSILYRIGFDYWGQGTIVTVSA	38362
vhCDR1	SYAVN	38363
vhCDR2	VIVSGCGSTDYNAAFIS	38364
vhCDR3	LYRYDGFDY	38365
Variable light (vl) domain	DIYLTQSQKELSTSVDRVSTICKASQNYGHIVARYQQKPGSPKALVYASRYSSGVDPDFTGSSGTD FTTITSNVQSEDLAELYFCQQNSYPLTEGGGTLEIK	38366
vlCDR1	KASQNVGTHVA	38367
vlCDR2	SASRYRS	38368
vlCDR3	QQNSYPLT	38369

Figure 131 (anti-TIM3 variable heavy and light chains + CDRs)

What: anti-TIM3	sequence	SEQ ID NO:
XENP21502_7C2_Holo		
Variable heavy (vh) domain	EVKYESEGGGLYKPGGLSLKLSCAASGFTFSRYAMS ^W RQTPERKLEWASISSGGSTIYPDSDVQGRTFIS RDNARNITYLQIQLSSRLRSEDITAMYCARGDYEG ^Z FDYWCGQTSLTVSS	38370
vhCDR1	RYAMS	38371
vhCDR2	SISSGGSTIYPDSDVQG	38372
vhCDR3	GD ^Y FGYFDY	38373
Variable light (vl) domain	DIWMTQSPSSLMVGQKV ^T MSCKSSQSLNSINQKNYLAWQQKPGQSPKLI ^L VYFASTRESGV ^P DRFIG SGSGTDEFTLTISVQAOEDLADYFCQHYS ^T PLIFGAGTK ^R IK	38374
vlCDR1	KSSQSLNSINQKNYL ^A	38375
vlCDR2	FASTRES	38376
vlCDR3	QQIYSTPLT	38377

Figure 14A (CTLA-4 X PD-1)

KENP19738

Figure 14B

XENP19739

Figure 14C (CTLA-4 x PD-1)

XENP19741

XENP019741 ipi1immunab_H310-1G6_L1_194_H1_279 Fab-Fc Heavy Chain (SEQ ID NOS 38418-38422) EVQLVEGGGLVKGEGSLRLSCEASGFTESSYIHWQAPGKLEWSSLTDIOPNKKYADSYVCKRPTGWLGFEDWGGCETLVYSS/ASTKGPSVFP LAPSSKSTSGTAALGCLVRYDFPEPVTVSNQGNGDQYDQYQPGQAPRLLNYASRHTYVTCRASQSYHITPAVLYQSGSLYLSVSVTVPSSLLGTYICNVNKHPSDTKVKDKVPEKSCDTHTCPC2APVAGSVFELPPKPDQTLMSRTP EYTCVQVVDYKHEDEPKVFKWYXVDGTEEVNRAKTKPPEEENSTYAVSVTIVLHQWLNGEYKCKVSNKALPAPERTTSKARGQPREPVYTLPPSREEMTRNQVSLTCDVSGFVPSDIAVEWESDQGPENNYKTKTPVLDSDGSFFLYSKLTVDKSRWEQDGVFSCSVVHQLHNYTQKSLSLSPGK

XENP019741 ipi1immunab_H310-1G6_L1_194_H1_279 scFv-Fc Heavy Chain (SEQ ID NOS 38423-38432, linker disclosed as SEQ ID NO: 37708) EYVLTQSPATLSSAPEGERTVILCQKQVYDQYQPGQAPRLLNYASRHTYVTCRASQSYHITPAVLYQSGSLYLSVSVTVPSSLLGTYICNVNKHPSDTKVKDKVPEKSCDTHTCPC2APVAGSVFELPPKPDQTLMSRTP EYTCVQVVDYKHEDEPKVFKWYXVDGTEEVNRAKTKPPEEENSTYAVSVTIVLHQWLNGEYKCKVSNKALPAPERTTSKARGQPREPVYTLPPSREEMTRNQVSLTCDVSGFVPSDIAVEWESDQGPENNYKTKTPVLDSDGSFFLYSKLTVDKSRWEQDGVFSCSVVHQLHNYTQKSLSLSPGK

XENP019741 ipi1immunab_H310-1G6_L1_194_H1_279 Light Chain (SEQ ID NOS 38433-38437) EYVLTQSPATLSSAPEGERTVILCQKQVYDQYQPGQAPRLLNYASRHTYVTCRASQSYHITPAVLYQSGSLYLSVSVTVPSSLLGTYICNVNKHPSDTKVKDKVPEKSCDTHTCPC2APVAGSVFELPPKPDQTLMSRTP EYTCVQVVDYKHEDEPKVFKWYXVDGTEEVNRAKTKPPEEENSTYAVSVTIVLHQWLNGEYKCKVSNKALPAPERTTSKARGQPREPVYTLPPSREEMTRNQVSLTCDVSGFVPSDIAVEWESDQGPENNYKTKTPVLDSDGSFFLYSKLTVDKSRWEQDGVFSCSVVHQLHNYTQKSLSLSPGK

Figure 14D

XENP20053

XENP020053 ipi1immunab_F310_22-1G6_L1_194_H1_279 Fab-Fc Heavy Chain (SEQ ID NOS 38438-38442) EVQLVEGGGLVKGEGSLRLSCEASGFTESSYIHWQAPGKLEWSSLTDIOPNKKYADSYVCKRPTGWLGFEDWGGCETLVYSS/ASTKGPSVFP LAPSSKSTSGTAALGCLVRYDFPEPVTVSNQGNGDQYDQYQPGQAPRLLNYASRHTYVTCRASQSYHITPAVLYQSGSLYLSVSVTVPSSLLGTYICNVNKHPSDTKVKDKVPEKSCDTHTCPC2APVAGSVFELPPKPDQTLMSRTP EYTCVQVVDYKHEDEPKVFKWYXVDGTEEVNRAKTKPPEEENSTYAVSVTIVLHQWLNGEYKCKVSNKALPAPERTTSKARGQPREPVYTLPPSREEMTRNQVSLTCDVSGFVPSDIAVEWESDQGPENNYKTKTPVLDSDGSFFLYSKLTVDKSRWEQDGVFSCSVVHQLHNYTQKSLSLSPGK

XENP020053 ipi1immunab_F310_22-1G6_L1_194_H1_279 scFv-Fc Heavy Chain (SEQ ID NOS 38443-38452, linker disclosed as SEQ ID NO: 37708) EYVLTQSPATLSSAPEGERTVILCQKQVYDQYQPGQAPRLLNYASRHTYVTCRASQSYHITPAVLYQSGSLYLSVSVTVPSSLLGTYICNVNKHPSDTKVKDKVPEKSCDTHTCPC2APVAGSVFELPPKPDQTLMSRTP EYTCVQVVDYKHEDEPKVFKWYXVDGTEEVNRAKTKPPEEENSTYAVSVTIVLHQWLNGEYKCKVSNKALPAPERTTSKARGQPREPVYTLPPSREEMTRNQVSLTCDVSGFVPSDIAVEWESDQGPENNYKTKTPVLDSDGSFFLYSKLTVDKSRWEQDGVFSCSVVHQLHNYTQKSLSLSPGK

XENP020053 ipi1immunab_H310_22-1G6_L1_194_H1_279 Light Chain (SEQ ID NOS 38453-38457) EYVLTQSPATLSSAPEGERTVILCQKQVYDQYQPGQAPRLLNYASRHTYVTCRASQSYHITPAVLYQSGSLYLSVSVTVPSSLLGTYICNVNKHPSDTKVKDKVPEKSCDTHTCPC2APVAGSVFELPPKPDQTLMSRTP EYTCVQVVDYKHEDEPKVFKWYXVDGTEEVNRAKTKPPEEENSTYAVSVTIVLHQWLNGEYKCKVSNKALPAPERTTSKARGQPREPVYTLPPSREEMTRNQVSLTCDVSGFVPSDIAVEWESDQGPENNYKTKTPVLDSDGSFFLYSKLTVDKSRWEQDGVFSCSVVHQLHNYTQKSLSLSPGK

Figure 14E (CTLA-4 X PD-1)

XENP20066

XENP020066 ipilimumab_H3_L0_22-1G6_H1_279_L1_194 Fab-Fc Heavy Chain (SEQ ID NOS 38462-38462)
 EVQLYSEGCGCLVKNGSLRISCAASGFTTSYTHAWVQAPGKLEWVSEISYDGNKYYADSVKGRFTISRAEDVLYCARTGWLGPFDYWGQGTIVTSS/ASTIGPSVTF
 LAPSSKSTSGCTRAIGCNYDKYFEPVTVWSNSGATSGVHTPEAVLQSSGLYSLSSVYTPSSSLTQTYICNVMKPSDKVYDKTMTCGCPAPVAGPSVLEPPRKDTIMSRP
 ETVCTVVDVYDHEPDKVNWYDGEVHEHAKTRKREEEYNSTRVVSTLVLQDNLWNGKEYCKVSKNKAALPALEKTSKAGQPREPQVTLPPREEMTKNQVSUTCDVSGFYPDSIAYMESDUGQ
 PENYKTTFVYDSDGSEFLYSKTEVRSKWEQDFSCSVMHEALNHYTQKSLSLPSFGK
 XENP020066 ipilimumab_H3_L0_22-1G6_H1_279_L1_194 scFv-Fc Heavy Chain (SEQ ID NOS 38463-38472, linker disclosed as SEQ ID NO: 37708)

Figure 14F

XEN 20130

XENF020130_ip11unum_H3_L0_22-166_L1_210_H1_288 scfv-rc Heavy Chain (seq ID nos 38483-38492, linker disclosed as seq ID NC: 37708)

XENPO201301p1_immb_H3_1G_22-1G_6_1I_210_H1_288 Light Chain (SEQ ID NOS 38493-38497)
EVTIQSQTGLSISSPGERATLSFRASGSVSSYIAYWQKPKQAPRLLYGAESFRATGIPDRESGSGTIDITLTISRLPDEFAVYCOOYGSSTPATEGGSTKVEIR/RTVAAPSVFLEPPSDEQLKS
GIASVCLNNYFREAKYQWVNDALGSNSSEVTEQDSRDTSYLSSTTLSDAYEKRIVYAEVTHGGLSSPATEENRGEC

Figure 14G (CTLA-4 X PD-1)

XENP20146

XENP020146 ipilimumab H3 LO 22-1G6 H1.280 L1.224 Fab-Fc Heavy Chain (SEQ ID NOS 38493-38502) EVOLVESSGGNYKPGGSILRLSCAASGFTTSYTMHWRQAPGKLEWNSFISVDCNNKYYADSKVGRFTISRDNAKNSLYQNSLRAEFTAVYCATGQIGPDEQYVCGOCTIVVS/ASTKGPSVF LAPSSKSTSGGGTYAALGCLVQKDYFPEPVYPSWNSGALISGVHIFPAVQGSGLYSLSSVTVPESSLGLQTYICNVNHEPESDTKVDKVEFERSCDTHTCPCPAFEGPSVVELPPKPKDFTLMSRT2 EVTCVYVVKHEDPEVENVWYDGVENVNAKTKPREFEYNNTYRVSYVSLTVLHQDWINGKEYKCKV3NKALPAFIEKTISKAKGQPREFOVYTLPPSREEMTRNQVSILCDVSGYPSIDIAVEMESDQ PENNYKTPFPVLDSDGSEFLYSRKLTVDSRWEQDFTSCSYBHEALTHYRQKLSLSPK

XENP020146 ipilimumab H3 LO 22-1G6 H1.280 L1.224 scFv-Fc Heavy Chain (SEQ ID NOS 38503-38512, linker disclosed as SEQ ID NO: 37708) EVOLVESSGGLYKPGGSILRLTCVAGFTFSNYNNWRAQPKGLEWAELLYSNNAKATHYAEVSKGRETISRDDSSTKSLYQMNLLKTEDGTVYCYTRYGNYGGYEDYMWGRGTLVTVSS/GKPGSG KPGGKESGGKGGS/EILITLQSPATLSSPGEVILCASSVGNDYQKPGQFRLINASRFTYVSDRQGSGYGFETLITSSYQDFAVYCOQDWWSSPRLFGGCKVEIK/EPKSSD KHTHTCPPAPAPVAGRYFLFPPKPKDFTLMSRTPEFTCWWYDVKHEPEVKENNNYQGVEVINKAKTPREEQYNNTYRVSYVSLTVLQDWLNKEKEYCKVSNKALPAFIEKTISKAKGQPREFOVYTL PFSREQMCANQVKLICLKGFPSDLAVWESQPNNYKTPVLDSDGSEFLYSRKLTVDSRWEQDFTSCSYBHEALTHYRQKLSLSPK

XENP020146 ipilimumab H3 LO 22-1G6 H1.280 L1.224 Light Chain (SEQ ID NOS 38513-38517) EIVLTQSPGTLISLSPGERATISCRASQSYSSSYLAWQKTFQAPRLLTYGASRATGIPDRSGSGTDFITISLPEDEPAVYCOQYGSSPFTFGQSTKVEIK/RTVAAPSVFIFPPSDEQIQLK GTASVVCILNNYFREAKQWQVDNALOSSNGNDSVTEQDSRDTSYSSITLTSKAKYACVTHQGHSSTPKSFNGEC

Figure 14H

XENP20717

XENP020717 ipilimumab H3 LO 22-1G6 H1.194 H1.279 M428L/N434S Fab-Fc Heavy Chain (SEQ ID NOS 23576-23580) EVOLVESSGGNYKPGGSILRLSCAASGFTTSYTMHWRQAPGKLEWNSFISVDCNNKYYADSKVGRFTISRDNAKNSLYQNSLRAEFTAVYCATGQIGPDEQYVCGOCTIVVS/ASTKGPSVF LAPSSRSTGGTAALGCLVQKDYFPEPVYPSWNSGALISGVHIFPAVQGSGLYSLSSVTVPESSLGLQTYICNVNHEPESDTKVDKVEFERSCDTHTCPCPAFEGPSVVELPPKPKDFTLMSRT2 EVTCVYVVKHEDPEVENVWYDGVENVNAKTKPREFEYNNTYRVSYVSLTVLHQDWINGKEYKCKV3NKALPAFIEKTISKAKGQPREFOVYTLPPSREEMTRNQVSILCDVSGYPSIDIAVEMESDQ PENNYKTPFPVLDSDGSEFLYSRKLTVDSRWEQDFTSCSYBHEALTHYRQKLSLSPK

XENP020717 ipilimumab H3 LO 22-1G6 H1.194 H1.279 M428L/N434S scFv-Fc Heavy Chain (SEQ ID NOS 23581-23590) Linker disclosed as SEQ ID NO: 37708) EVILITOPATLISASPGERTVLTICRASOSVGNDYAWYQXPQGAQPRLLNVAASHRTYGVPEFTGSGYCTEFTLITSSYQSEDFGVYCCODESSPRTFGGTRKVEIK/GKPGSGKPEGSGKGEGS/ EVQLVESSGGLYKPGGSILRLSCVASGFFSNWNWRAQPKGLEWAELLYSNNTYRVSYVSLTVLHQDWINGKEYKCKV3NKALPAFIEKTISKAKGQPREFOVYTLPPSREEMTRNQVSILCDVSGYPSIDIAVEMESDQ KHTHTCPPAPAPVAGRYFLFPPKPKDFTLMSRTPEFTCWWYDVKHEPEVKENNNYQGVEVINKAKTPREEQYNNTYRVSYVSLTVLQDWLNKEKEYCKVSNKALPAFIEKTISKAKGQPREFOVYTL PFSREQMCANQVKLICLKGFPSDLAVWESQPNNYKTPVLDSDGSEFLYSRKLTVDSRWEQDFTSCSYBHEALTHYRQKLSLSPK

XENP020717 ipilimumab H3 LO 22-1G6 H1.194 H1.279 M428L/N434S Light Chain (SEQ ID NOS 23591-23595) EIVLTQSPGTLISLSPGERATISCRASOSVSSSYLAWQKTFQAPRLLTYGASRATGIPDRSGSGTDFITISLPEDEPAVYCOQYGSSPFTFGQSTKVEIK/RTVAAPSVFIFPPSDEQIQLK GTASVVCILNNYFREAKQWQVDNALOSSNGNDSVTEQDSRDTSYSSITLTSKAKYACVTHQGHSSTPKSFNGEC

Figure 14 (CTLA-4 X PD-1)

XENP22836

XENP022836 2E9_H11_ Fab-[CTLA-4] H3.23 LO.129 scFv HC-Fab (SEQ ID NOS 38538-38542) QVQLYQGAEVKKGASVYKSCSKSGYRATNYWLGWRAPGQGLEWVYDPEPTVSMISGALTSGVITTPATLOSSGLYSSVTVTLYDGVETVNAKIKPREFEYNSYRVSITVLHQDWLNGKETKCKVSNKALFAPIEKTLSKAKQPRPEQVZTLPPSREEMTQNVSLLTCDVSGEYFPSDIAVEWSD

PELAPSSKSTSGGTAAAGCCUVDPEPTVSMISGALTSGVITTPATLOSSGLYSSVTVTLYDGVETVNAKIKPREFEYNSYRVSITVLHQDWLNGKETKCKVSNKALFAPIEKTLSKAKQPRPEQVZTLPPSREEMTQNVSLLTCDVSGEYFPSDIAVEWSD

TPETICVYVYDVKHEDPEVETNWWYDGVETVNAKIKPREFEYNSYRVSITVLHQDWLNGKETKCKVSNKALFAPIEKTLSKAKQPRPEQVZTLPPSREEMTQNVSLLTCDVSGEYFPSDIAVEWSD

QOPENNYKRTTPFLVLDGSFFLYSKLTVDKSRNEQDVYFESCSYVHEALNHYTORSLSLSPGR

XENP022836 2E9_H11_ Fab-[CTLA-4] H3.23 LO.129 scFv HC-scFv (SEQ ID NOS 38543-38552) linker disclosed as SEQ ID NO: 377087

EVQLVEGGGLVKGPGSLIUSCAGFTSSATYHWRQAPGKLEWVYDPEPTVSMISGALTSGVITTPATLOSSGLYSSVTVTLYDGVETVNAKIKPREFEYNSYRVSITVLHQDWLNGKETKCKVSNKALFAPIEKTLSKAKQPRPEQVZTLPPSREEMTQNVSLLTCDVSGEYFPSDIAVEWSD

GKPGESGKPGS/ETVITQSPRTLSUSPGERATLSCRASQSVGSSYIAWTQOKPGQAPRLLIGASSRATGPDRTSGGGSTDFLTISRLPEDFAYYCQYGSVWFGQGPKVELK/EPKSSDKEKTCPPCPAPVYQFVLEPPKPKETLMISRTPEVYCVVYDVKHEDPEVETVNAKIKPREFEYNSYRVSITVLHQDWLNGKETKCKVSNKALFAPIEKTLSKAKQPRPEQVZTLPPSREEMTQNVSLLTCDVSGEYFPSDIAVEWSD

XENP022836 2E9_H11_ Fab-[CTLA-4] H3.23 LO.129 scFv Light Chain (SEQ ID NOS 38553-38557)

DIVITQSPGILSLSPGERATLSCRASQSVSNDYAWYQPGQSPRILYYASNNYXTGTDRETSGGGDTETLTISRLPEDFAYFCQDYSPPYTFGGGTKEYELK/RTVAAPSVEF1FPPSDEQ1KSG

TASVVCILNNFYPREAKVQKVNIALQSGNSQEVTEQDSKDTSYLSSTLTSKADYBKKVYACEVTHQGLISSEVTKSENRECG

Figure 15A (LAG-3 X PD-1)

XENP20206

XENP020206 2A11_H1.L2-1G6_L1.194_H1.279 Fab-Fc Heavy Chain (SEQ ID NOS 38558-38562) EQVLYQSAEVKPGATVKISCKASGTIKYKHMHQQAPEKGLENWIDENGDDPEYAPKGRTTITATISTNTSYMLLESDTAVVYCYARGYRQALDYAGGCTIVYVS/ASTKGPSVPEVTCVYVVKHEPEVKENWVYDGVENAKTPEPEFVNVKAPLIEKTIKCKVSSNKALPAPLIEKTIKAKGQPREFOVYIPEPSREMTKNOVSLICDVSQFYPSDIAVEWESDQGPENNYKTPFVLDSDGSSFLYSLKLTIVDKSRWEQDVFCSYMEALHNHYTQKSLSLSGK

XENP020206 2A11_H1L2-1G6_L1.194_H1.279 scFv-Fc Heavy Chain (SEQ ID NOS 38563-38572) Linker disclosed as SEQ ID NO: 37708) EIVLTQSATL3ASPGERTVLTTRASQYGNDDYAWYQKPGQAPRLLNYASRHTGPDRTGIGEFTTISQSEDEFGGYCODEFESSRTFEGGTKEYV/GEFGSGRGSGRGSGRGS/ EYQLVESGGIYSPGGSRSLSCYASGETTSNLYNNWRAQPEGLNWAETIRLYSNNAVATHYASVKGKETLISDESDSTYLQMNNTKTEDTGYCYCRYIYGGYEWYWRGTLVTVSS/EPRSSD KTHTCPPAPPPAPVPGPSVFLFPPKPKDLMISLTPVCKVYDVKHEDEVKENWVYDGVENAKTPEPEFVNVKAPLIEKTIKCKVSSNKALPAPLIEKTIKAKGQPREFOVYIPEPSREMTKNOVSLICLWKGFLPEAKYQKLVNFTQKSLSLSGK

XENP020206 2A11_H1L2-1G6_L1.194_H1.279 Light Chain (SEQ ID NOS 38573-38577) DICQNTQSAFLSYTPGMVTTICQASQIGNYINWECQKPDQTVKLLIYTTSLHSGCPSRFSSGSDTDFLTSLEADAATYFCQGNTLPEYFGGTKEYV/TKRTVTAAPSVFTEPPSDEQIKSGTASVVCINNFYPREAKYQKVDNALQSSNSOEVSYEDSKDSTYSITSLTSLRADYKHKVTAZEVTHQGLSSPVTKSFRNGEC

Figure 15B

XENP21582

XENP021582 2A11_H1_L2.91 Fab-1G6_L1.194_H1.279 Fab-Fc Heavy Chain (SEQ ID NOS 38578-38582) EQVLYQSAEVKPGATVKISCKASGTIKYKHMHQQAPEKGLENWIDENGDDPEYAPKGRTTITATISTNTYAMELSSLRSDETDATVYCYARGYRQALDYAGGCTIVYVS/ASTKGPSVFP LAESSKSKTSSGGTAALGCVKDYFPEPVIVSWNGRASGVHIFPAVQCSGGLYSSVYTPSSSLGTYICNVNHPKSDTIVDKKTPKSCDTHTCPPCPKPTTMSRTP EYVTCVYVVKHEDEPEVKENWVYDGVENAKTPEPEFVNVKAPLIEKTIKCKVSSNKALPAPLIEKTIKAKGQPREFOVYIPEPSREMTKNOVSLICDVSQFYPSDIAVEWESDQGPENNYKTPFVLDSDGSSFLYSLKLTIVDKSRWEQDVFCSYMEALHNHYTQKSLSLSGK

XENP021582 2A11_H1_L2.91 Fab-1G6_L1.194_H1.279 scFv-Fc Heavy Chain (SEQ ID NOS 38583-38592) Linker disclosed as SEQ ID NO: 37708) EIVLTQSATL3ASPGERTVLTTRASQYGNDDYAWYQKPGQAPRLLNYASRHTGPDRTGIGEFTTISQSEDEFGGYCODEFESSRTFEGGTKEYV/GEFGSGRGSGRGS/ EYQLVESGGIYSPGGSRSLSCYASGETTSNLYNNWRAQPEGLNWAETIRLYSNNAVATHYASVKGKETLISDESDSTYLQMNNTKTEDTGYCYCRYIYGGYEWYWRGTLVTVSS/EPRSSD KTHTCPPAPPPAPVPGPSVFLFPPKPKDLMISLTPVCKVYDVKHEDEVKENWVYDGVENAKTPEPEFVNVKAPLIEKTIKCKVSSNKALPAPLIEKTIKAKGQPREFOVYIPEPSREMTKNOVSLICLWKGFLPEAKYQKLVNFTQKSLSLSGK

XENP021582 2A11_H1_L2.91 Fab-1G6_L1.194_H1.279 Light Chain (SEQ ID NOS 38593-38597) DICQNTQSAFLSYTPGMVTTICQASQIGNYINWECQKPDQTVKLLIYTTSLHSGCPSRFSSGSDTDFLTSLEADAATYFCQGNTLPEYFGGTKEYV/TKRTVTAAPSVFTEPPSDEQIKSGTASVVCINNFYPREAKYQKVDNALQSSNSOEVSYEDSKDSTYSITSLTSLRADYKHKVTAZEVTHQGLSSPVTKSFRNGEC

Figure 15C (LAG-3 X PD-1)

XENP21584

XENB21588

Figure 15E (LAG-3 X PD-1)

XENP22123

XENP022123 2A1_H1_L2_122 Fab-1G6_L1_194_H1_279 Fab-FC Heavy Chain (SEQ ID NOS 38638-38642)
 EVQLVQSAEVKKRGATVKSRSAGENIDYINWQAPGKLEWWYIDPENGADTEAPKEGVITLADISTNAMELSLRSEDTAVVYCYARGVROALDWGQETLYVVS/ASTKGPSVFP
 LAPESKSTGGTAAIGCLVYDYPEPVYTSNSGALTSSVHTPAVLOSGLYSLSSVTPSSILGTYICAVNHNKPDLVKVKEVKSCUDTHTCPCPAPVAGSVLELPKPKDTLMISRTP
 EVTCVVDVKHEDPEVKTMWVQDGVENAKTKEEEENSTRVSVLTLHQDLNGKEYKCKVSKNKLAPATEKTTISAKGQPREPVYLISSPRTEMTKNQSYSLTCVSGYPSDIAVEWSGDQ
 PENNYKTKTPVLD3GSSFFLYSKLTVDKSWEQDyFS-SYMHALHNHYTQKSLSLSPK

XENP022123 2A1_H1_L2_122 Fab-1G6_L1_194_H1_279 scFv-FC Heavy Chain (SEQ ID NOS 38643-38652, linker disclosed as SEQ ID NO: 37768)

EIVLTOSPATLSASPGERTYVLTICRASOSVGNDAWYQKPGQAPRLINYASHRTGYPDRFTGSCYCEPFTITISSVQSEDFGYYCQDESSPRTFGGTYKEIK/GKPGSGKPGSGKPGS/
 EVQIVESGGGLVAPGGSLSLSCVAGFTSNSYWNWQAPGKLEWWAEIRLYSNNAATHYASVKGRTISRDSSKSTLYLQNLNLKEDIGVYCCRYGNYGGYFDWGRGTLVTVSS/EPSSD
 KTHACPPCPAPPVAGPSVLEPPEKDTLMISRPEVTCVWVQDVKHEDPEVKENWVQDGEVHNAKTKPREEQNSTMTRVSVLTLHQDLNGKEYKCKVSKNKLAPATEKTTISAKGQPREPVYTL
 PPSREQMTKRNQVKLTCVQKTLQVGFYPSFLYSLKTYDKEWQOGNFECSVMMHEALHNHYTQKSLSLSPK

XENP022123 2A1_H1_L2_122 Fab-1G6_L1_194_H1_279 Light Chain (SEQ ID NOS 38653-38657)
 DIQMTQSPAFLSVTPGEKVTITCQASDIGNYLNWQQKPGQTPLKLYITSRLEFSRSGSSGDTYFTLSSBLRDAATYFCOOGNLTIPYTFGGTYKEIK/RTVAAPSVEIFPPSDEQLQSG
 TASVVCILNNFYREAK2MKVDAQNSQSYTED2SKDSTYSLSSSLTTSKADYERKHYTACEVHQLSSPVTKSFRNGC

Figure 15F

XENP22124

XENP022124 2A1_H1_L2_123 Fab-1G6_L1_194_H1_279 Fab-FC Heavy Chain (SEQ ID NOS 38663-38662)
 EVQLVQSAEVKKRGATVKSRSAGENIDYINWQAPGKLEWWYIDPENGADTEAPKEGVITLADISTNAMELSLRSEDTAVVYCYARGVROALDWGQETLYVVS/ASTKGPSVFP
 LAPESKSTGGTAAIGCLVYDYPEPVYTSNSGALTSSVHTPAVLOSGLYSLSSVTPSSILGTYICAVNHNKPDLVKVKEVKSCUDTHTCPCPAPVAGSVLELPKPKDTLMISRTP
 EVTCVVDVKHEDPEVKTMWVQDGVENAKTKEEEENSTRVSVLTLHQDLNGKEYKCKVSKNKLAPATEKTTISAKGQPREPVYLISSPRTEMTKNQSYSLTCVSGYPSDIAVEWSGDQ
 PENNYKTKTPVLD3GSSFFLYSKLTVDKSWEQDyFS-SYMHALHNHYTQKSLSLSPK

XENP022124 2A1_H1_L2_123 Fab-1G6_L1_194_H1_279 scFv-FC Heavy Chain (SEQ ID NOS 38663-38672, linker disclosed as SEQ ID NO: 37768)

EIVLTOSPATLSASPGERTYVLTICRASOSVGNDAWYQKPGQAPRLINYASHRTGYPDRFTGSCYCEPFTITISSVQSEDFGYYCQDESSPRTFGGTYKEIK/GKPGSGKPGSGKPGS/
 EVQIVESGGGLVAPGGSLSLSCVAGFTSNSYWNWQAPGKLEWWAEIRLYSNNAATHYASVKGRTISRDSSKSTLYLQNLNLKEDIGVYCCRYGNYGGYFDWGRGTLVTVSS/EPSSD
 KTHACPPCPAPPVAGPSVLEPPEKDTLMISRPEVTCVWVQDVKHEDPEVKENWVQDGEVHNAKTKPREEQNSTMTRVSVLTLHQDLNGKEYKCKVSKNKLAPATEKTTISAKGQPREPVYTL
 PPSREQMTKRNQVKLTCVQKTLQVGFYPSFLYSLKTYDKEWQOGNFECSVMMHEALHNHYTQKSLSLSPK

XENP022124 2A1_H1_L2_123 Fab-1G6_L1_194_H1_279 Light Chain (SEQ ID NOS 38673-38677)
 DIQMTQSPAFLSVTPGEKVTITCQASDIGNYLNWQQKPGQTPLKLYITSRLEFSRSGSSGDTYFTLSSBLRDAATYFCOOGNLTIPYTFGGTYKEIK/RTVAAPSVEIFPPSDEQLQSG
 TASVVCILNNFYREAK2MKVDAQNSQSYTED2SKDSTYSLSSSLTTSKADYERKHYTACEVHQLSSPVTKSFRNGC

Figure 15G (LAG-3 X PD-1)

XENP22125

Figure 15H

XENP22604

Figure 151 (LAG-3 X PD-1)

XENP22672

XENPO22672.ZA1..H1..144..L2..142..Fab-LG6..L1..194..H1..279..Fab-FC Heavy Chain (SEQ ID NO: 38718-38722)
EVQLYSGEVRKGVATVLSCTSGENIKDPMHWWQFPGLENGWALDELGDEYAPFEGRTITADTSINTAYMELLSRSEDAVYCYARGYQALDNGQGLTVSS/ASTKGPSSFP
EVPICTTSSTGTAALGCLVDRYDPEVTVSWNSLTSALGVSYHETPAVOLGGISQYLSLSSTVTPRSSLGTQTYTCVNPKPSDTKVKDKEVEPKCDEHTCPCPA2PVAGPSVLEPPEPKDTLMISRP
PENNYKTTT2VLDGDSFLYSKLVLDSRWEQDVISCSYMEALINHYTCQSLSSPGK

XEN022672 2A11_H1.144_L2.142_Fab-1G6_LL.194_HL.279 scfv-Fc Heavy Chain (SEQ ID NOS 38723-38732, linker disclosed as SEQ ID NO: 37708)

XEN022672 2A11_H1_144 L2_142 Fab-1G6 H1_194 H1_279 Light Chain (SEQ ID NOS 38733-33737) D1QTSQPLSPVTPGKVEITTCQDGNYIINQEQKVKLIIYEVSSPREFGSQGSDYFXTTAEALDNTYPCQGNTLYPTFEGG6TKVETK/RTVAAAPSVEFTEPPSDEQLKSG

Figure 15j

EXP22847

XENP022847 768_H3_30_21_34_Fab-166_11_194_H1_279_scFv M428/M434S Fab-2c Heavy Chain (SEQ ID NO: 38738-38742)
 EYQVYFESGCGVYDGGSLRISCAASGTTEDAMSWRQPRGIGRIVWAIISTKANHATYASVKGKRETLSDQSKSSTYLOMNSLRADTAIAYCYTRMLTWAYGGSTIVVSS/ASTKGESVFLAPSSKSSTSGGTA
 AALGCLVQDSEPEVIVSWNSGATISGRTPAVYQGSGLTSLSVTTVPSLQTYCQVNUKESTKVKVEPCKGTCRHTCPCP2PFPVAGESVLFPKPKDMLSPAEVIVCIVTYDVKHEDEVENNTYDVEVHN
 LAKTR-BEEYNTSYRNUVSLTQHQWINGKCNKRSKALLAEKTSRKGOREPQVYLPFPREEMTNQSLTCUDVSFPISSDAVEKESDQPPRNKRTPPVLDGSPFTYSKMTVDSKSIWEGDQFSCSVLHEA

XENPRO22847 768 H3 .30 .11 .34 Fab-16E11.194.H1.279 scfv M428L/N434S Light Chain (SEQ ID NOS: 38753-38757)

Figure 15K (LAG-3 X PD-1)

XENP22849

Figure 16A (BTLA X PD-1)

XENP20895

Figure 16B

וְעַד אֶל-מִזְרָחָךְ

Figure 16C (BTIA X PD-1)

XENP21221

XENP021221 9C5_H1_11_L1-1G6_H1_194_H1_279 Fab-Fc Heavy Chain (SEQ ID NOS 38818-38822) OYOLVOSEAEVKRSPGASRSTKVSCHVSGFELITCYVNNWRQAPGQGLEWMGMIWIDGSTYNSKTRGRISSNKDKSSTYMEIISURSEDTAVYCARIDPDRGADMWGGTMYVVS/ASTKGPSVYF LAPSSKSTSGGTAALGCLKDYPEFVTVWNGALISGVHIFPAVLOSGSIYSSVTVFSSLGCTYICVNHKPSDTVDKREPKSCDRTHTCPCPAEPVAGSVLEPPKPKDTIMISRTPEVTCVYVVKHEIPEVKNNWVYIGVEVNAKTRPREEYNSPFRVSVTIVLHQDWMNGKEYKCKVSNKALPAPIEKTISKAGQTRFQVYIILPSSREEMTRKNQVSLICDVSGYFPSDIAVEWESDGQ PENNYKTPVLDSDGSFLYSLKLTVDRSWEQDVFSYHEALHNYTOKSLSLSGK

XENP021221 9C5_H1_11_L1-1G6_H1_194_H1_279 scFv-Fc Heavy Chain (SEQ ID NOS 38823-38832) Linker disclosed as SEQ ID NO: 37708) ELVLTQSPATLASPGERTVITCRASGSYGNIDAWYQCKPGQAPRLLINYASHRITYGVEDRFTSGYGETFTLITISSQSEDFVYTCQDFFSPTFEGGTKEIK/GKPGSGKPGSGKPGSG/ EVOLVESEGGIVYSPGGSLRLSCVAGTSFNSYNNWV7QAFGGLEWEAETRILYSSNNYATHYAEVKRFTISRDSSSTYLQMNNTKEDTGVYCTRYGGYFVNWGRSTLVYSS/EPKSSD KHTCPCPAPPVAGPSLEPKPKDLMISRTPEVTCVNDKHEPEVKNNYVQEVINAKTRPREEYNSPFRVSVTIVLHQDWMNGKEYKCKVSNKALPAPIEKTISKAGQPREFQVYIILPSSREQMTKNOV7K-TCLVGRFPEYSDIAVEWNSQOPENYKTRTEVLSDGFELYSLTUVDRSRWQDNFESCSVMEALHNYTOKSLSLSGK

XENP021221 9C5_H1_11_L1-1G6_H1_194_H1_279 Light Chain (SEQ ID NOS 38833-38837) STVNTQSEDSSLAVSLGEFATINCASQSYNSNDVAVYQCKPGUSPKLLYIASMYRTGVEDRFTSGYGETFTLITISSQSEDFVYFCQDYSSETFGGTKEIK/RTVAAPSVFIEPPSDEQIJKSGT ASVCLLNFYFREAKYQWVKDNALOSSNSQESVTEQSKDSTYSLSTLTSKADYKHKVIAZEVTHQGLSSPVTFSNRGEC

Figure 16D

XENP22858

XENP022858 9C6_H1_1_L1_Fab-1G6_H1_194_H1_279 scFv-Fc Heavy Chain (SEQ ID NOS 38838-38842) XENP022858 9C6_H1_1_L1_Fab-1G6_H1_194_H1_279 scFv-Fc Heavy Chain (SEQ ID NOS 38843-38852) Linker disclosed as SEQ ID NO: 37708) ELVLTQSPATLASPGERTVITCRASGSYGNIDAWYQCKPGQAPRLLINYASHRITYGVEDRFTSGYGETFTLITISSQSEDFVYTCQDFFSPTFEGGTKEIK/GKPGSGKPGSGKPGSG/ LAPSSKSTSGGTAALGCLKDYPEFVTVWNGALISGVHIFPAVLOSGSIYSSVTVFSSLGCTYICVNHKPSDTVDKREPKSCDRTHTCPCPAEPVAGSVLEPPKPKDTIMISRTPEVTCVYVVKHEIPEVKNNWVYIGVEVNAKTRPREEYNSPFRVSVTIVLHQDWMNGKEYKCKVSNKALPAPIEKTISKAGQPREFQVYIILPSSREEMTRKNQVSLICDVSGYFPSDIAVEWESDGQ PENNYKTPVLDSDGSFLYSLKLTVDRSWEQDVFSYHEALHNYTOKSLSLSGK

XENP022858 9C6_H1_1_L1_Fab-1G6_H1_194_H1_279 scFv-Fc Heavy Chain (SEQ ID NOS 38843-38852, Linker disclosed as SEQ ID NO: 37708) ELVLTQSPATLASPGERTVITCRASGSYGNIDAWYQCKPGQAPRLLINYASHRITYGVEDRFTSGYGETFTLITISSQSEDFVYTCQDFFSPTFEGGTKEIK/GKPGSGKPGSGKPGSG/ EVOLVESEGGIVYSPGGSLRLSCVAGTSFNSYNNWV7QAFGGLEWEAETRILYSSNNYATHYAEVKRFTISRDSSSTYLQMNNTKEDTGVYCTRYGGYFVNWGRSTLVYSS/EPKSSD KHTCPCPAPPVAGPSLEPKPKDLMISRTPEVTCVNDKHEPEVKNNYVQEVINAKTRPREEYNSPFRVSVTIVLHQDWMNGKEYKCKVSNKALPAPIEKTISKAGQPREFQVYIILPSSREQMTKNOV7K-TCLVGRFPEYSDIAVEWNSQOPENYKTRTEVLSDGFELYSLTUVDRSRWQDNFESCSVMEALHNYTOKSLSLSGK

XENP022858 9C6_H1_1_L1_Fab-1G6_H1_194_H1_279 scFv-Fc Heavy Chain (SEQ ID NOS 38853-38857) SIVMTQSDSSLAVSLGEFATINCASQSYNSNDVAVYQCKPGUSPKLLYIASMYRTGVEDRFTSGYGETFTLITISSQSEDFVYFCQDYSSETFGGTKEIK/RTVAAPSVFIEPPSDEQIJKSGT ASVCLLNFYFREAKYQWVKDNALOSSNSQESVTEQSKDSTYSLSTLTSKADYKHKVIAZEVTHQGLSSPVTFSNRGEC

Figure 17A

XENP20153

22>>>XNPB020153 2A1_H1J2-[C7CA-4]_H3_4_10-12 Light Chain (SEQ ID NOS: 38876-38877)

Figure 17B

ECONOMY

>XENP020833 768_H311_Fab- [CTLA-4] H3.23 LO-129 Fc-gc Heavy Chain (SEQ ID NOS 38878-38882)
>XENP020833 768_H311_Fab- [CTLA-4] H3.23 LO-129 scfv-FC Heavy Chain (SEQ ID NOS 38883-38892), linker disclosed as SEQ ID NO: 337708

Figure 17C

XENP21859

Figure 17D

VEND 31960

Figure 17E

XENP21895

```

>XENP021895 7G8_H3_18_L1-[CTLA-4]_H3_23_L0_129 Fab-Fc Heavy Chain (SEQ ID NOS 38938-38942)
ENQIVESEGGALVQPGSSLRISCAASGETFDADMDWVQPGKLEWEILSTRAHNATYKAESYKGRFTISRDSSKSSVYLNQNSLRAEDTAVYCAR
VFPFLAPSSRSTSCTGGTAALGCLVKDVKDFPE2TVSSNSGALTSGVITFPAVQGSSGLYSLSSSVVIVESSIGSTQTYCQVNCNNHKS
RTPEVTCVYDVKEDPEKEVNMYDGEVHNATKAPREEVNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPERTISAKQPREFQVTLPPS
DGQ2PNNYKTTTPVFLDSDGSEFLYSLTVTDKSRMEQGVFSCSYMEALHNHYTQKSLSPGK

>XENP021895 7G8_H3_18_L1-[CTLA-4]_H3_23_L0_129 scFv-Fc Heavy Chain (SEQ ID NOS 38943-38952, linker disclosed as SEQ ID NO: 37708)
EVQIVSEGGGLVQPGSSLRISCAASGETFSSYTMWHRQAPGKLEWEILSTRAHNATYKAESYKGRFTISRDSSKSSVYLNQNSLRAEDTAVYCAR
GKPGQAPRLLYGASRATIGPDRISGSSGSTDFTLISREPEDAVYTCQVYGSPPWTFQGQTVIEIK/BPKSSRDTI
TCPPCPAPPAVAGPSVFLPEPKPKTLMISRTPEEVNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPERTISAKQPREFQVTLPPS
REQMTKQVQLTCLVGFYPSDIAVEWESNGQPNNNYKTPVFLDSDGSEFLYSLTVTDKSRMEQGVFSCSYMEALHNHYTQKSLSPGK

>XENP021895 7G8_H3_18_L1-[CTLA-4]_H3_23_L0_129 Light Chain (SEQ ID NOS 38953-38957)
DTVLTQSPSSLSAVYGDRTVITCRASQSYDGSYMMWYQQKPGKPPKLIYASNLQEGIPANLGSSESGTDITLITSSLQPEDFATYCCOSNEDF
LKSGTASVCLNNFYPREAKVQWVNDALQSGNSQESVTEQDSKDSITSYLSSSLTSLKADYERHKVYACEVTHQGLSSPTKSENRCG

```

Figure 17F

XENP21896

```

>XENP021896 7G8_H3_18_L1_11-[CTLA-4]_H3_23_L0_129 Fab-Fc Heavy Chain (SEQ ID NOS 33258-38962)
EVQIVSECCGLVQPGSSLRISCAASGETFDADMDWVQPGKLEWEILSTRAHNATYKAESYKGRFTISRDSSKSSVYLNQNSLRAEDTAVYCAR
VFPFLAPSSRSTSCTGGTAALGCLVKDVKDFPEVTVSSNSGALTSGVITFPAVQGSSGLYSLSSSVVIVESSIGSTQTYCQVNCNNHKS
RTPEVTCVYDVKEDPEEVNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPERTISAKQPREFQVTLPPS
DGQ2PNNYKTTTPVFLDSDGSEFLYSLTVTDKSRMEQGVFSCSYMEALHNHYTQKSLSPGK

>XENP021896 7G8_H3_18_L1_11-[CTLA-4]_H3_23_L0_129 scFv-Fc Heavy Chain (SEQ ID NOS 38963-38972, linker disclosed as SEQ ID NO: 37708)
EVQIVSEGGGLVQPGSSLRISCAASGETFSSYTMWHRQAPGKLEWEILSTRAHNATYKAESYKGRFTISRDSSKSSVYLNQNSLRAEDTAVYCAR
GKPGQAPRLLYGASRATIGPDRISGSSGSTDFTLISREPEDAVYTCQVYGSPPWTFQGQTVIEIK/BPKSSRDTI
TCPPCPAPPAVAGPSVFLPEPKPKTLMISRTPEEVNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPERTISAKQPREFQVTLPPS
REQMTKQVQLTCLVGFYPSDIAVEWESNGQPNNNYKTPVFLDSDGSEFLYSLTVTDKSRMEQGVFSCSYMEALHNHYTQKSLSPGK

>XENP021896 7G8_H3_18_L1_11-[CTLA-4]_H3_23_L0_129 Light Chain (SEQ ID NOS 38973-38977)
DTVLTQSPSSLSAVYGDRTVITCRASQSYDGSYMMWYQQKPGKPPKLIYASNLQEGIPANLGSSESGTDITLITSSLQPEDFATYCCOSNEDF
LKSGTASVCLNNFYPREAKVQWVNDALQSGNSQESVTEQDSKDSITSYLSSSLTSLKADYERHKVYACEVTHQGLSSPTKSENRCG

```

Figure 17G

XENP21902

Figure 17H

XENP21904

Figure 171

XENP21905

>XENP021905 7G8_H3_28_L1_11-[CTLA-4]_H3_23_L0_129 Fab-Ec Heavy Chain (SEQ ID NOS 39018-39022)
 EVQIVESGGIVQPGSRLSCAAGTETDAMWDWQROAPGKLEWVLEISTRAHYAAYEVSKGRTISRDSSKSSYI_QMNSLRADETA
 VEP LAPSKSTS GGTAALGCLVKDFPEPVTSWNSGATJSGVTFPAVILQSSGYSVLTQTYCNHKEPSDKVDFCPCAPPA
 RTPEVTCVYDVKRHDEPEVKFNVYDGVYEVHNAKTKPREEEYNTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPETK
 DGQPPENNYKRTPEVLDSDGSEFLYSLKTVYDGSRCMGGYFSCSYVHNLHNTYQTSI_SLSPGK

>XENP021905 7G8_H3_28_L1_11-[CTLA-4]_H3_23_L0_129 scFv_Ec Heavy Chain (SEQ ID NOS 39023-39032, linker disclosed as SEQ ID NO: 37708)
 EVQIVESGGIVQPGSRLSCAAGTETSSYTMWROAPGKLEWVLEISTRAHYAAYEVSKGRTISRDNAKNSLYLQMN
 GKPGSGKPGS/EVILTOSEATLSPGERATLSSGKAPRILLYGASSRATIGEDRIFSGSGETDFLTISLQPEDEATY
 TCPICPAPPAVPGSVELFEPKPKDTMISRTPEVTCVYDVKIEDPEVKENWYDGVYEVHNAKTKPREEEYNT
 REQMTKRNQVKLTCIYKGGTIPVPLDSGSEFLYSLKTVYDGSRCMGGYFSCSYVHNLHNTYQTSI_SLSPGK

>XENP021905 7G8_H3_28_L1_11-[CTLA-4]_H3_23_L0_129 Light Chain (SEQ ID NOS 39033-39037)
 DTVITQSPSSLSASVYGDRTVITCQASOVDYDGNSYMMWYQQKGGKPKLILYQASELSEGLPARLSGSGTDFLT
 LKSC-TASVYCLNNFYPREAKVQWVNDNQLGSNSQEVTEQDSRDSIT2LSSEITLTSKADYERKHYVACEV
 TQGLSSPTVKSNRGC

Figure 171

XENP21906

>XENP021906 7G8_H3_28_L1_13-[CTLA-4]_H3_23_L0_129 Fab-Ec Heavy Chain (SEQ ID NOS 39038-39042)
 EVQIVESGGIVQPGSRLSCAAGTETDAMWDWQROAPGKLEWVLEISTRAHYAAYEVSKGRTISRDSSKSSYI_QMNSLRA
 VEP LAPSKSTS GGTAALGCLVKDFPEPVTSWNSGATJSGVTFPAVILQSSGYSVLTQTYCNHKEPSDKVDFCPCAPPA
 RTPEVTCVYDVKRHDEPEVKFNVYDGVYEVHNAKTKPREEEYNTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPETK
 DGQPPENNYKRTPEVLDSDGSEFLYSLKTVYDGSRCMGGYFSCSYVHNLHNTYQTSI_SLSPGK

>XENP021906 7G8_H3_28_L1_13-[CTLA-4]_H3_23_L0_129 scFv_Ec Heavy Chain (SEQ ID NOS 39043-39052, linker disclosed as SEQ ID NO: 37708)
 EVQIVESGGIVQPGSRLSCAAGTETSSYTMWROAPGKLEWVLEISTRAHYAAYEVSKGRTISRDNAKNSLYLQMN
 GKPGSGKPGS/EVILTOSEATLSPGERATLSSGKAPRILLYGASSRATIGEDRIFSGSGETDFLTISLQPEDEATY
 TCPICPAPPAVPGSVELFEPKPKDTMISRTPEVTCVYDVKIEDPEVKENWYDGVYEVHNAKTKPREEEYNT
 REQMTKRNQVKLTCIYKGGTIPVPLDSGSEFLYSLKTVYDGSRCMGGYFSCSYVHNLHNTYQTSI_SLSPGK

>XENP021906 7G8_H3_28_L1_13-[CTLA-4]_H3_23_L0_129 Light Chain (SEQ ID NOS 39053-39057)
 DTVITQSPSSLSASVYGDRTVITCQASOVDYDGNSYMMWYQQKGGKPKLILYQASELSEGLPARLSGSGTDFLT
 LKSC-TASVYCLNNFYPREAKVQWVNDNQLGSNSQEVTEQDSRDSIT2LSSEITLTSKADYERKHYVACEV
 TQGLSSPTVKSNRGC

Figure 17K

XENP22505

>XENP022505_2A11_H1_125_L0_129_Fab-[CTLA-4]_H3_23_L0_129_Fab-Fc Heavy Chain (SEQ ID NOS 39058-39062)
EVQIVQSGARVKKRKEATVVLISCGAGINNIKLYEHHWVQAPGKGELEWVATGKQFVQDPLDIDTAPKKGRTTADSTNTATMELSLRSEDTAVYCARVQALIYWGQTLVIVS/ASTKGPSFEP
LAFPSKTSKSGTAAIGCLVRYDYPPEVYTWSNSGATLSCGHTTFAVLOSSGGLYSLSSVTPSSILGTTQYICNVNHKPDTKVKVERSKCIRHTTCPCCPAPVAGSVFELPPKPKTLMISRTP
EVTCVYVVDYKEDDEVKMKVYDGVEMHNKTKRKEEENSTYRVSVLTVLHQDWLNGEYKCAVSKNKAFLAPIERTISAKGQPREPVYILFPREEMTKNQVSILCDVSGFYPSDIAWESDGO
PENNYKTFPVLDSGSFFLYSLKLTVDKSRWEQDGVFSCSYMEALHNHYTICKSLSLSPK

>XENP022505_2A11_H1_125_L2_113_Fab-[CTLA-4]_H3_23_L0_129_Fc Heavy Chain (SEQ ID NOS 39C63-39072, linker disclosed as SEQ ID NO: 37708)
EVQIVSGGGLVKGPSLRLSCAASGTTSSYTMHWRQAPGKLEWVSLISYDGNKYYADSYKGRFTISRDNAKNSLYLQNSLRAEDTAVYCARGGHGLGPFDLGGTMTVVS/GKPGSGKPGS
GKPGSGKPGS/EVLTQSPATLSSPGERATLSCASQEVGSSYLAWQKPGAPRLLYGAASSRATGIDPDRSGSGSTDTKVKTDFKSCDHTTFCPCPAPVAGSVFELPPKPKTLMISRTP
TCPCCPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGP
REQMTKQVQLTICLNGFVPSDIANEWNSNGOPENNHTKTPVLDSDGSF;FLYSRLLVRSRQGNYFSCSYMEALHNHYTORSLSLSFGK

Figure 17L
XENP22510

>XENP022510_2A11_H1_125_Fab-[CTLA-4]_H3_23_L0_129_Fab-Fc Heavy Chain (SEQ ID NOS 39073-39077)
EVQIVQSGARVKKRKEATVVLISCGAGINNIKLYEHHWVQAPGKGELEWVATGKQFVQDPLDIDTAPKKGRTTADSTNTATMELSLRSEDTAVYCARVQALIYWGQTLVIVS/ASTKGPSFEP
LAFPSKTSKSGTAAIGCLVRYDYPPEVYTWSNSGATLSCGHTTFAVLOSSGGLYSLSSVTPSSILGTTQYICNVNHKPDTKVKVERSKCIRHTTCPCCPAPVAGSVFELPPKPKTLMISRTP
EVTCVYVVDYKEDDEVKMKVYDGVEMHNKTKRKEEENSTYRVSVLTVLHQDWLNGEYKCAVSKNKAFLAPIERTISAKGQPREPVYILFPREEMTKNQVSILCDVSGFYPSDIAWESDGO
PENNYKTFPVLDSGSFFLYSLKLTVDKSRWEQDGVFSCSYMEALHNHYTICKSLSLSPK

>XENP022510_2A11_H1_12_25_Fab-[CTLA-4]_H3_23_L0_129_Fab-Fc Heavy Chain (SEQ ID NOS 39083-39092, linker disclosed as SEQ ID NO: 37708)
EVQIVSGGGLVKGPSLRLSCAASGTTSSYTMHWRQAPGKLEWVSLISYDGNKYYADSYKGRFTISRDNAKNSLYLQNSLRAEDTAVYCARGGHGLGPFDLGGTMTVVS/GKPGSGKPGS
GKPGSGKPGS/EVLTQSPATLSSPGERATLSCASQEVGSSYLAWQKPGAPRLLYGAASSRATGIDPDRSGSGSTDTKVKTDFKSCDHTTFCPCPAPVAGSVFELPPKPKTLMISRTP
TCPCCPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGPAPVAGP
REQMTKQVQLTICLNGFVPSDIANEWNSNGOPENNHTKTPVLDSDGSF;FLYSRLLVRSRQGNYFSCSYMEALHNHYTORSLSLSFGK

>XENP022510_2A11_H1_12_25_Fab-[CTLA-4]_H3_23_L0_129_Fab-Fc Heavy Chain (SEQ ID NOS 3C093-3C097)
DQMTQSAFSLSTPGERVHTCOASQDIGNHNMWQKXPDQTSVSLSTSKADYKVKYFACEVTHQGLSSPVTKSFRNGEC
"ASVYCLNNFYPREAKVQKVDNALQSENQESVTE2DSKDTSTYSLSTSKADYKVKYFACEVTHQGLSSPVTKSFRNGEC

Figure 17M

XENP22602

>XENP022602 768_H3.30_H1.34-[CTLA-4]_H3.23_L0.129 scfv-Fc Heavy Chain (SEQ ID NOS 39103-39112, linker disclosed as SEQ ID NO: 277661

Figure 17N

XENP22675

>XENE022675 2A11_H1.144_12.142_Fab-[ICLTA-4]_H3.23_L0.129 Light Chain (SEQ ID NO: 39133-39137)
DIQMTCSPLVFLSIWTFKVTICQASDGHYIQLNQKPGCIVKLLIYFQSYLHSQSGRDIYTFIISIADATYFCQGNTILEYFGGTKEIK/RIVAAFSVFLFPPSDEQLKSG

Figure 170

XENP22841

Figure 18

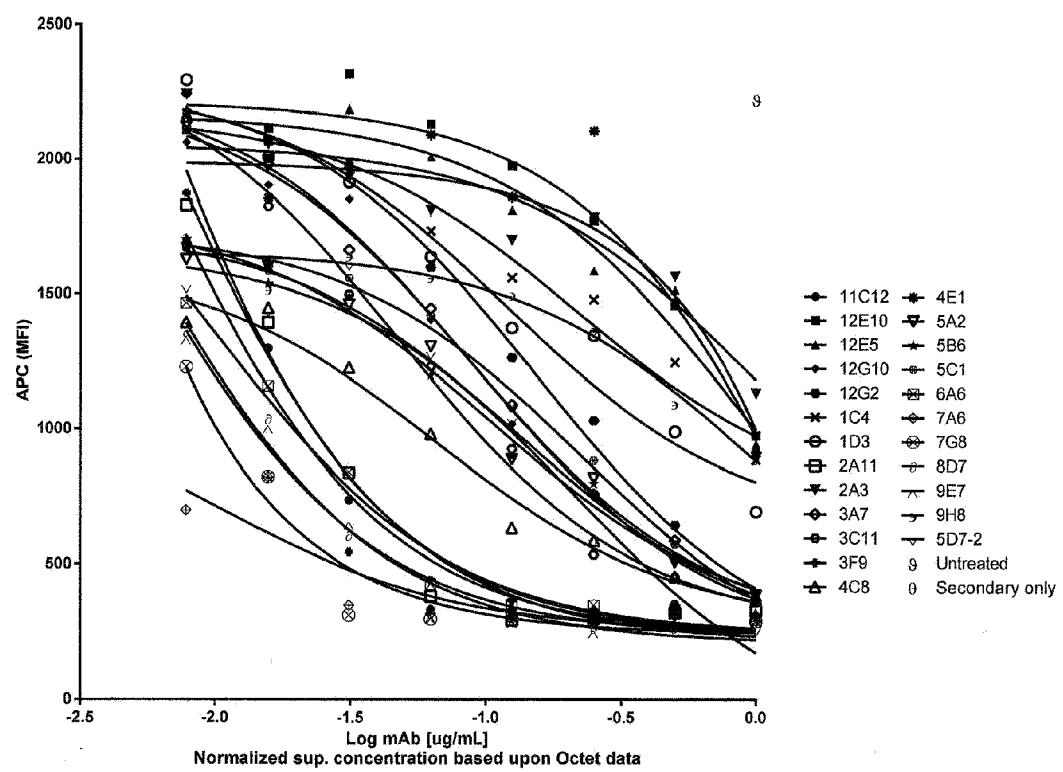


Figure 19

Figure 19A depict cytokine release assay (A: IL-2, G: IFN γ) after SEB stimulation of human PBMCs and treatment with an anti-PD-1 x anti-CTLA-4 bispecific antibody.

Figure 19A

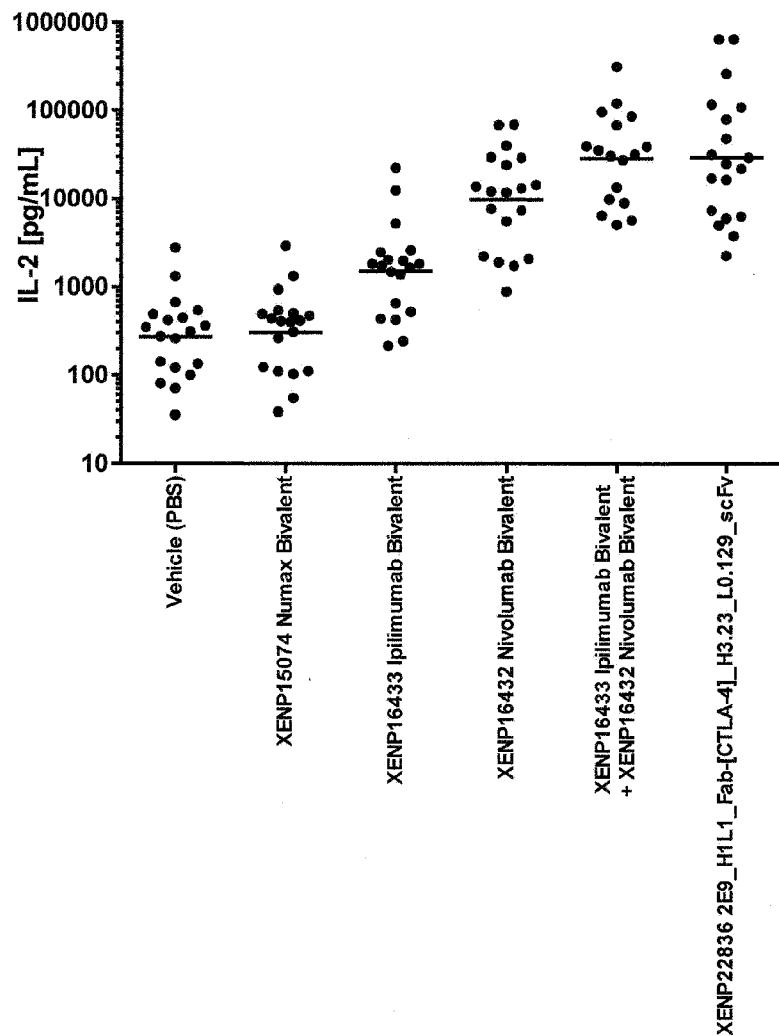


Figure 19B

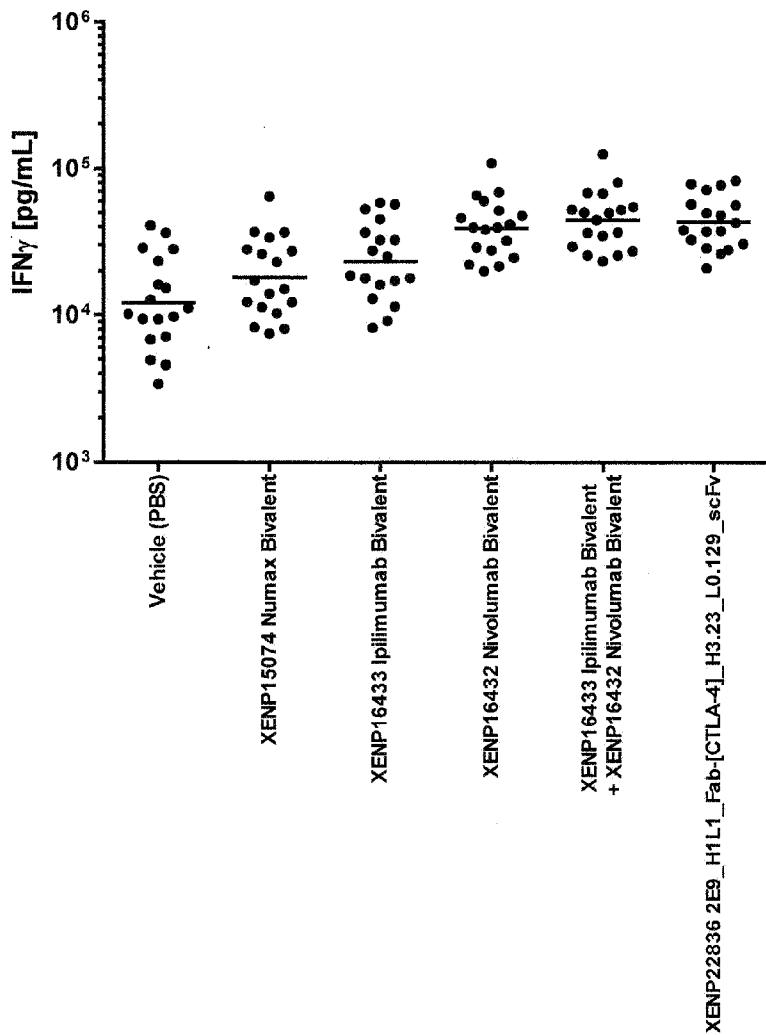


Figure 20

Figure 20A-C depicts CD45+ events, CD4+ events and CD8+ events on Day 14 after human PBMCs were engrafted into NSG mice on Day 0 followed by dosing with the indicated test articles on Day 1.

Figure 20A

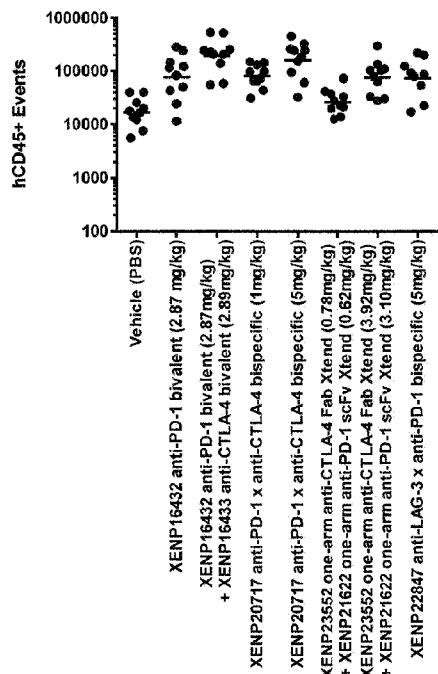


Figure 20B

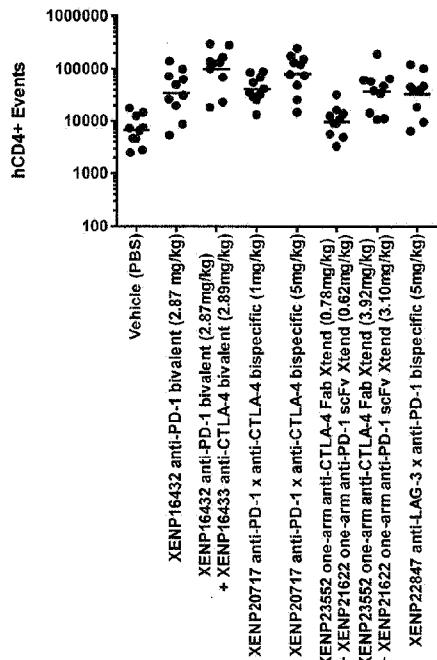


Figure 20C

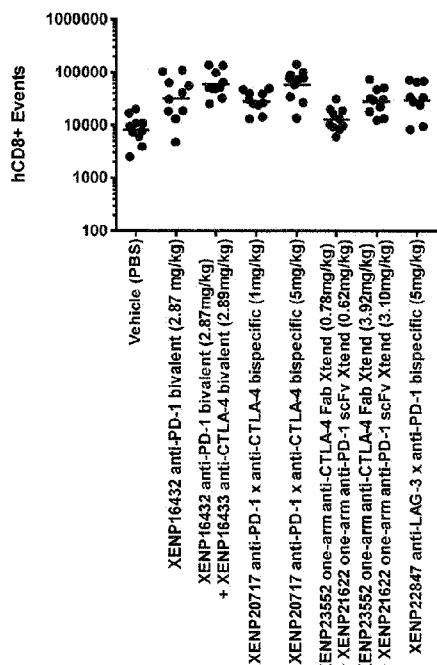


Figure 21A

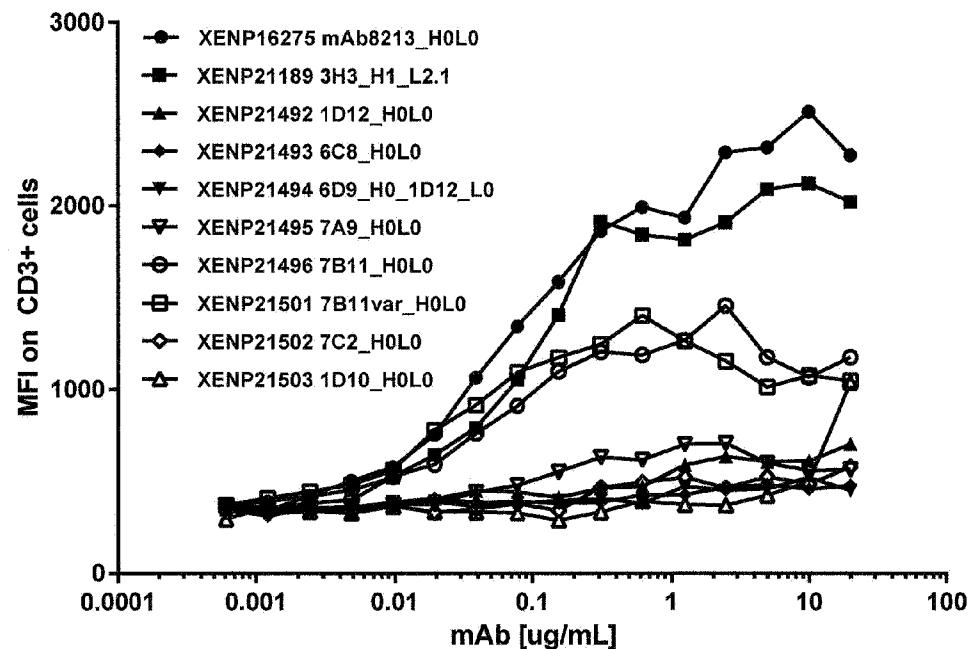


Figure 21B

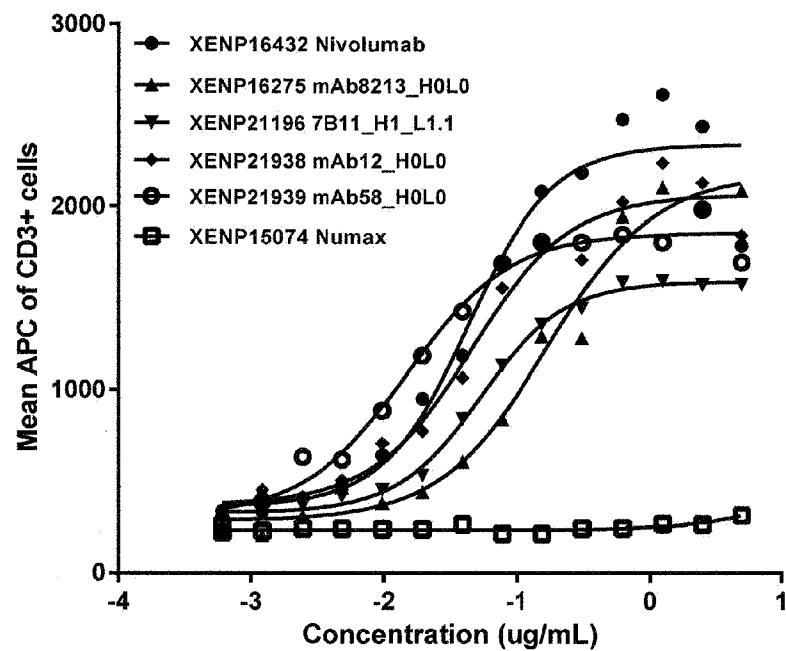


Figure 22

XENP	Clone	VH	VL	KD (M)	ka (1/Ms)	kd (1/s)
Experiment #1						
16275	mAb8213	H0	L0	4.94E-09; 5.93E-09	7.34E04; 8.63E04	3.63E-04; 5.12E-04
17973	ABTIM3	H0	L0	1.74E-09; 2.75E-09	1.45E05; 1.97E05	2.52E-04; 5.42E-04
20850	1D12	H1	L1	9.07E-09	2.45E05	2.22E-03
20851	1D12	H1	L2	2.84E-08	1.72E05	4.87E-03
20853	3H3	H1	L1	4.49E-09	1.04E05	4.66E-04
20854	3H3	H1	L2	7.64E-09	7.07E04	5.40E-04
20855	3H3	H2	L1	5.16E-09	1.97E05	1.02E-03
20856	3H3	H2	L2	1.30E-08	1.11E05	1.44E-03
20857	3H3	H3	L1	7.11E-09	1.04E05	7.39E-04
20858	3H3	H3	L2	1.57E-08	8.16E04	1.28E-03
20859	3H3	H4	L1	4.50E-09	1.53E05	6.88E-04
20860	3H3	H4	L2	8.20E-09	9.15E04	7.50E-04
20861	7B11	H1	L1	1.07E-08	2.86E05	3.06E-03
20862	7B11	H1	L2	1.24E-08	1.37E05	1.70E-03
20863	7B11	H2	L1	9.24E-09	2.77E05	2.56E-03
20864	7B11	H2	L2	1.85E-08	1.34E05	2.48E-03
20865	7C2	H1	L1	5.90E-09	3.01E05	1.78E-03
Experiment #2						
16275	mAb8213	H0	L0	8.37E-10	1.84E05	1.54E-04
21188	3H3	H1	L1.1	5.34E-09	1.38E05	7.35E-04
21189	3H3	H1	L2.1	2.61E-09	1.54E05	4.00E-04
21190	3H3	H2	L1.1	8.61E-09	2.93E05	2.52E-03
21191	3H3	H2	L2.1	6.90E-09	2.52E05	1.74E-03
21192	3H3	H3	L1.1	1.25E-08	1.14E05	1.42E-03
21193	3H3	H3	L2.1	6.32E-09	1.56E05	9.87E-04
21194	3H3	H4	L1.1	4.60E-09	1.80E05	8.26E-04
21195	3H3	H4	L2.1	2.50E-09	1.78E05	4.45E-04
21196	7B11	H1	L1.1	3.11E-08	4.32E05	1.34E-02
21201	7B11	H1	L2.1	3.76E-08	3.87E05	1.45E-02
21202	7B11	H2.1	L1.1	3.25E-08	5.00E05	1.63E-02
21203	7B11	H2.1	L2.1	2.66E-08	4.80E05	1.28E-02
21204	7C2	H1.1	L1.1	9.41E-10	1.56E06	1.47E-03
Experiment #3						
16275	mAb8213	H0	L0	8.50E-11	1.86E05	1.58E-05
21492	1D12	H0	L0	1.07E-07	1.97E05	2.11E-02
21495	7A9	H0	L0	3.06E-08	2.03E05	6.21E-03
21496	7B11	H0	L0	2.24E-08	2.61E05	5.84E-03
21501	7B11var	H0	L0	2.02E-08	2.90E05	5.84E-03
21502	7C2	H0	L0	6.43E-09	2.68E06	1.72E-02

Figure 23A

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
XENP	XENP					
17906	17922	H1	L1	VH-VL	1.49E-07	56.5
18094	18493	H1.1	L1	VH-VL	1.62E-07	56.5
18095	18494	H1.2	L1	VH-VL	1.59E-07	57.0
18096	18495	H1.3	L1	VH-VL	1.86E-07	55.0
18101	18496	H1.4	L1	VH-VL	1.66E-07	56.5
18102	18501	H1.5	L1	VH-VL	1.79E-07	56.0
18103	18502	H1.6	L1	VH-VL	1.43E-07	56.0
18104	18503	H1.7	L1	VH-VL	1.18E-07	56.0
18105	18504	H1.8	L1	VH-VL	1.21E-07	57.0
18106	18505	H1.9	L1	VH-VL	1.91E-07	54.5
18107	18506	H1.10	L1	VH-VL	2.80E-07	
18108	18507	H1.11	L1	VH-VL	1.22E-07	56.5
18109	18508	H1.12	L1	VH-VL	1.48E-07	56.0
18110	18509	H1.13	L1	VH-VL	1.65E-07	55.5
18111	18510	H1.14	L1	VH-VL	1.59E-07	55.5
18112	18511	H1.15	L1	VH-VL	1.30E-07	55.5
18113	18512	H1.16	L1	VH-VL	1.39E-07	55.0
18114	18513	H1.17	L1	VH-VL	5.15E-07	
18115	18514	H1.18	L1	VH-VL	1.20E-07	55.5
18116	18515	H1.19	L1	VH-VL	1.70E-07	56.0
18117	18516	H1.20	L1	VH-VL	1.47E-07	
18118	18517	H1.21	L1	VH-VL	2.04E-07	
18119	18518	H1.22	L1	VH-VL	1.24E-07	55.5
18120	18519	H1.23	L1	VH-VL	1.39E-06	
18121	18520	H1.24	L1	VH-VL	1.84E-07	
18122	18521	H1.25	L1	VH-VL	1.71E-07	
18123	18522	H1.26	L1	VH-VL	1.20E-07	54.5
18124	18523	H1.27	L1	VH-VL	2.02E-07	55.0
18125	18524	H1.28	L1	VH-VL	9.64E-08	56.0
18126	18525	H1.29	L1	VH-VL	1.51E-07	
18127	18526	H1.30	L1	VH-VL	2.01E-07	
18128	18527	H1.31	L1	VH-VL	1.83E-07	
18129	18528	H1.32	L1	VH-VL	2.53E-07	
18130	18529	H1.33	L1	VH-VL	1.87E-07	
18131	18530	H1.34	L1	VH-VL	1.45E-07	
18132	18531	H1.35	L1	VH-VL	2.19E-07	
18133	18532	H1.36	L1	VH-VL	2.18E-07	
18134	18533	H1.37	L1	VH-VL	2.63E-07	
18135	18534	H1.38	L1	VH-VL	2.12E-07	
18136	18535	H1.39	L1	VH-VL	1.90E-07	
18137	18536	H1.40	L1	VH-VL	3.78E-07	
18138	18537	H1.41	L1	VH-VL	1.60E-07	
18139	18538	H1.42	L1	VH-VL	1.74E-07	
18140	18539	H1.43	L1	VH-VL	1.64E-07	

Figure 23B

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
XENP	XENP					
18141	18540	H1.44	L1	VH-VL	Weak	55.0
18142	18541	H1.45	L1	VH-VL	1.34E-07	51.0
18143	18542	H1.46	L1	VH-VL	1.10E-07	56.5
18144	18543	H1.47	L1	VH-VL	1.11E-07	
18145	18544	H1.48	L1	VH-VL	9.01E-08	
18146	18545	H1.49	L1	VH-VL	1.33E-07	56.0
18147	18546	H1.50	L1	VH-VL	1.44E-07	56.5
18148	18547	H1.51	L1	VH-VL	1.17E-07	51.0
18149	18548	H1.52	L1	VH-VL	9.92E-08	57.0
18150	18549	H1.53	L1	VH-VL	1.36E-07	55.5
18151	18550	H1.54	L1	VH-VL	1.70E-07	
18152	18551	H1.55	L1	VH-VL	1.31E-07	
18153	18552	H1.56	L1	VH-VL	Weak	
18154	18553	H1.57	L1	VH-VL	3.66E-07	
18155	18554	H1.58	L1	VH-VL	Weak	
18156	18555	H1.59	L1	VH-VL	1.65E-06	
18157	18556	H1.60	L1	VH-VL	1.84E-07	
18158	18557	H1.61	L1	VH-VL	Weak	
18159	18558	H1.62	L1	VH-VL	1.37E-07	
18160	18559	H1.63	L1	VH-VL	1.00E-07	56.0
18161	18560	H1.64	L1	VH-VL	1.75E-07	
18162	18561	H1.65	L1	VH-VL	2.76E-07	
18163	18562	H1.66	L1	VH-VL	2.02E-07	
18164	18563	H1.67	L1	VH-VL	8.12E-07	
18165	18564	H1.68	L1	VH-VL	2.23E-07	
18166	18565	H1.69	L1	VH-VL	1.82E-07	
18167	18566	H1.70	L1	VH-VL	1.97E-07	
18168	18567	H1.71	L1	VH-VL	4.53E-07	
18169	18568	H1.72	L1	VH-VL	4.29E-07	
18170	18569	H1.73	L1	VH-VL	1.79E-07	54.5
18171	18570	H1.74	L1	VH-VL	1.45E-07	55.5
18172	18571	H1.75	L1	VH-VL	1.65E-07	53.0
18173	18572	H1.76	L1	VH-VL	1.41E-07	55.5
18174	18573	H1.77	L1	VH-VL	1.25E-07	54.0
18175	18574	H1.78	L1	VH-VL	1.09E-07	53.5
18176	18575	H1.79	L1	VH-VL	2.52E-07	
18177	18576	H1.80	L1	VH-VL	1.91E-07	
18178	18577	H1.81	L1	VH-VL	2.13E-07	
18179	18578	H1.82	L1	VH-VL	2.40E-07	
18180	18579	H1.83	L1	VH-VL	Weak	
18181	18580	H1.84	L1	VH-VL	1.03E-07	55.5
18182	18581	H1.85	L1	VH-VL	8.62E-08	55.0
18183	18582	H1.86	L1	VH-VL	8.39E-08	55.5
18184	18583	H1.87	L1	VH-VL	9.43E-08	54.0

Figure 23C

Full-length mAb	scFv	VH	VL	scFv	Human PD-1 orientation	mAb K _D (M)	scFv T _m (°C)
XENP	XENP						
18185	18584	H1.88	L1	VH-VL		8.51E-08	56.0
18186	18585	H1.89	L1	VH-VL		8.09E-08	54.5
18187	18586	H1.90	L1	VH-VL		7.54E-08	55.0
18188	18587	H1.91	L1	VH-VL		1.04E-07	54.5
18189	18588	H1.92	L1	VH-VL		1.07E-07	
18190	18589	H1.93	L1	VH-VL		1.21E-07	
18191	18590	H1.94	L1	VH-VL		8.46E-08	
18192	18591	H1.95	L1	VH-VL		9.15E-08	
18193	18592	H1.96	L1	VH-VL		6.42E-08	
18194	18593	H1.97	L1	VH-VL		8.23E-08	
18195	18594	H1.98	L1	VH-VL		2.41E-07	56.0
18196	18595	H1.99	L1	VH-VL		2.10E-07	56.5
18201	18596	H1.100	L1	VH-VL		2.51E-07	55.0
18202	18601	H1.101	L1	VH-VL		2.32E-07	58.0
18203	18602	H1.102	L1	VH-VL		2.15E-07	56.0
18204	18603	H1.103	L1	VH-VL		2.89E-07	
18205	18604	H1.104	L1	VH-VL		1.98E-07	56.0
18206	18605	H1.105	L1	VH-VL		2.57E-07	53.5
18207	18606	H1.106	L1	VH-VL		1.85E-07	54.5
18208	18607	H1.107	L1	VH-VL		2.33E-07	55.5
18209	18608	H1.108	L1	VH-VL		2.07E-07	55.0
18210	18609	H1.109	L1	VH-VL		2.38E-07	54.5
18211	18610	H1.110	L1	VH-VL		1.78E-07	56.0
18212	18611	H1.111	L1	VH-VL		1.56E-07	55.5
18213	18612	H1.112	L1	VH-VL		1.60E-07	55.0
18214	18613	H1.113	L1	VH-VL		1.65E-07	55.0
18215	18614	H1.114	L1	VH-VL		2.79E-07	55.0
18216	18615	H1.115	L1	VH-VL		1.93E-07	55.0
18217	18616	H1.116	L1	VH-VL		1.80E-07	54.0
18218	18617	H1.117	L1	VH-VL		1.80E-07	56.0
18219	18618	H1.118	L1	VH-VL		2.51E-07	55.0
18220	18619	H1.119	L1	VH-VL		1.57E-07	55.5
18221	18620	H1.120	L1	VH-VL		1.64E-07	54.0
18222	18621	H1.121	L1	VH-VL		1.53E-07	53.5
18223	18622	H1.122	L1	VH-VL		1.67E-07	54.5
18224	18623	H1.123	L1	VH-VL		1.71E-07	52.5
18225	18624	H1.124	L1	VH-VL		1.51E-07	53.0
18226	18625	H1.125	L1	VH-VL		1.88E-07	53.0
18227	18626	H1.126	L1	VH-VL		1.45E-07	53.5
18228	18627	H1.127	L1	VH-VL		1.60E-07	52.5
18229	18628	H1.128	L1	VH-VL		1.51E-07	55.0
18230	18629	H1.129	L1	VH-VL		1.81E-07	
18231	18630	H1.130	L1	VH-VL		1.41E-07	56.0
18232	18631	H1.131	L1	VH-VL		1.34E-07	55.5

Figure 23D

Full-length mAb XENP	scFv XENP	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
18233	18632	H1.132	L1	VH-VL	1.92E-07	
18234	18633	H1.133	L1	VH-VL	1.97E-07	55.5
18235	18634	H1.134	L1	VH-VL	2.20E-07	
18236	18635	H1.135	L1	VH-VL	1.53E-07	54.5
18237	18636	H1.136	L1	VH-VL	2.00E-07	
18238	18637	H1.137	L1	VH-VL	1.16E-07	57.0
18239	18638	H1.138	L1	VH-VL	1.42E-07	55.5
18240	18639	H1.139	L1	VH-VL	1.62E-07	56.5
18241	18640	H1.140	L1	VH-VL	1.18E-07	57.0
18242	18641	H1.141	L1	VH-VL	1.53E-07	55.5
18243	18642	H1.142	L1	VH-VL	1.70E-07	56.5
18244	18643	H1.143	L1	VH-VL	1.34E-07	
18245	18644	H1.144	L1	VH-VL	1.50E-07	55.0
18246	18645	H1.145	L1	VH-VL	1.42E-07	57.0
18247	18646	H1.146	L1	VH-VL	1.44E-07	54.0
18248	18647	H1.147	L1	VH-VL	1.28E-07	55.0
18249	18648	H1.148	L1	VH-VL	1.32E-07	56.0
18250	18649	H1.149	L1	VH-VL	1.27E-07	54.5
18251	18650	H1.150	L1	VH-VL	1.23E-07	55.5
18252	18651	H1.151	L1	VH-VL	1.12E-07	57.0
18253	18652	H1.152	L1	VH-VL	8.58E-08	56.5
18254	18653	H1.153	L1	VH-VL	1.66E-07	55.5
18255	18654	H1.154	L1	VH-VL	1.37E-07	56.5
18256	18655	H1.155	L1	VH-VL	9.70E-08	56.5
18257	18656	H1.156	L1	VH-VL	2.80E-07	
18258	18657	H1.157	L1	VH-VL	1.51E-07	57.0
18259	18658	H1.158	L1	VH-VL	1.32E-07	56.5
18260	18659	H1.159	L1	VH-VL	1.39E-07	56.0
18261	18660	H1.160	L1	VH-VL	1.28E-07	57.0
18262	18661	H1.161	L1	VH-VL	1.53E-07	56.5
18263	18662	H1.162	L1	VH-VL	2.78E-07	
18264	18663	H1.163	L1	VH-VL	1.07E-07	55.5
18265	18664	H1.164	L1	VH-VL	2.16E-07	
18266	18665	H1.165	L1	VH-VL	Weak	
18267	18666	H1.166	L1	VH-VL	2.43E-07	
18268	18667	H1.167	L1	VH-VL	Weak	
18269	18668	H1.168	L1	VH-VL	Weak	
18270	18669	H1.169	L1	VH-VL	7.90E-06	
18271	18670	H1.170	L1	VH-VL	Weak	
18272	18671	H1.171	L1	VH-VL	Weak	
18273	18672	H1.172	L1	VH-VL	Weak	
18274	18673	H1.173	L1	VH-VL	Weak	
18275	18674	H1.174	L1	VH-VL	Weak	
18276	18675	H1.175	L1	VH-VL	Weak	

Figure 23E

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
XENP	XENP					
18277	18676	H1.176	L1	VH-VL	1.32E-07	56.0
18278	18677	H1.177	L1	VH-VL	Weak	
18279	18678	H1.178	L1	VH-VL	Weak	
18280	18679	H1.179	L1	VH-VL	3.40E-07	
18281	18680	H1.180	L1	VH-VL	Weak	
18282	18681	H1.181	L1	VH-VL	Weak	
18283	18682	H1.182	L1	VH-VL	Weak	
18284	18683	H1.183	L1	VH-VL	Weak	
18285	18684	H1.184	L1	VH-VL	Weak	
18286	18685	H1.185	L1	VH-VL	Weak	
18287	18686	H1.186	L1	VH-VL	Weak	
18288	18687	H1.187	L1	VH-VL	Weak	
18289	18688	H1.188	L1	VH-VL	1.61E-07	56.5
18290	18689	H1.189	L1	VH-VL	Weak	
18291	18690	H1.190	L1	VH-VL	Weak	
18292	18691	H1.191	L1	VH-VL	Weak	
18293	18692	H1.192	L1	VH-VL	Weak	
18294	18693	H1.193	L1	VH-VL	Weak	
18295	18694	H1.194	L1	VH-VL	Weak	
18296	18695	H1.195	L1	VH-VL	5.81E-07	
18301	18696	H1.196	L1	VH-VL	Weak	
18302	18701	H1.197	L1	VH-VL	6.15E-07	
18303	18702	H1.198	L1	VH-VL	Weak	
18304	18703	H1.199	L1	VH-VL	Weak	
18305	18704	H1.200	L1	VH-VL	1.77E-07	
18306	18705	H1.201	L1	VH-VL	Weak	
18307	18706	H1.202	L1	VH-VL	Weak	
18308	18707	H1.203	L1	VH-VL	3.95E-07	
18309	18708	H1.204	L1	VH-VL	Weak	
18310	18709	H1.205	L1	VH-VL	Weak	
18311	18710	H1.206	L1	VH-VL	Weak	
18312	18711	H1.207	L1	VH-VL	Weak	
18313	18712	H1.208	L1	VH-VL	Weak	
18314	18713	H1.209	L1	VH-VL	Weak	
18315	18714	H1.210	L1	VH-VL	Weak	
18316	18715	H1.211	L1	VH-VL	1.40E-07	58.5
18317	18716	H1.212	L1	VH-VL	1.24E-07	
18318	18717	H1.213	L1	VH-VL	Weak	
18319	18718	H1.214	L1	VH-VL	Weak	
18320	18719	H1.215	L1	VH-VL	Weak	
18321	18720	H1.216	L1	VH-VL	Weak	
18322	18721	H1.217	L1	VH-VL	Weak	
18323	18722	H1.218	L1	VH-VL	Weak	
18324	18723	H1.219	L1	VH-VL	Weak	

Figure 23F

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
XENP	XENP					
18325	18724	H1.220	L1	VH-VL	Weak	
18326	18725	H1.221	L1	VH-VL	Weak	
18327	18726	H1.222	L1	VH-VL	Weak	
18328	18727	H1.223	L1	VH-VL	Weak	
18329	18728	H1.224	L1	VH-VL	Weak	
18330	18729	H1.225	L1	VH-VL	Weak	
18331	18730	H1.226	L1	VH-VL	Weak	
18332	18731	H1.227	L1	VH-VL	Weak	
18333	18732	H1.228	L1	VH-VL	Weak	
18334	18733	H1.229	L1	VH-VL	Weak	
18335	18734	H1.230	L1	VH-VL	Weak	
18336	18735	H1.231	L1	VH-VL	Weak	
18337	18736	H1.232	L1	VH-VL	Weak	
18338	18737	H1.233	L1	VH-VL	Weak	
18339	18738	H1.234	L1	VH-VL	Weak	
18340	18739	H1.235	L1	VH-VL	Weak	
18341	18740	H1.236	L1	VH-VL	Weak	
18342	18741	H1.237	L1	VH-VL	1.95E-07	
18343	18742	H1.238	L1	VH-VL	1.16E-07	57.0
18344	18743	H1	L1.1	VH-VL	1.11E-07	56.5
18345	18744	H1	L1.2	VH-VL	1.20E-07	54.5
18346	18745	H1	L1.3	VH-VL	1.07E-07	55.0
18347	18746	H1	L1.4	VH-VL	8.73E-08	57.0
18348	18747	H1	L1.5	VH-VL	1.02E-07	56.5
18349	18748	H1	L1.6	VH-VL	1.12E-07	57.0
18350	18749	H1	L1.7	VH-VL	1.40E-07	55.5
18351	18750	H1	L1.8	VH-VL	1.40E-07	56.0
18352	18751	H1	L1.9	VH-VL	1.24E-07	57.0
18353	18752	H1	L1.10	VH-VL	1.44E-07	54.5
18354	18753	H1	L1.11	VH-VL	1.46E-07	56.0
18355	18754	H1	L1.12	VH-VL	1.39E-07	58.0
18356	18755	H1	L1.13	VH-VL	1.46E-07	
18357	18756	H1	L1.14	VH-VL	9.95E-08	57.5
18358	18757	H1	L1.15	VH-VL	1.21E-07	56.5
18359	18758	H1	L1.16	VH-VL	2.86E-07	
18360	18759	H1	L1.17	VH-VL	1.13E-07	54.5
18361	18760	H1	L1.18	VH-VL	2.71E-07	
18362	18761	H1	L1.19	VH-VL	2.84E-07	
18363	18762	H1	L1.20	VH-VL	1.75E-07	
18364	18763	H1	L1.21	VH-VL	1.22E-07	58.0
18365	18764	H1	L1.22	VH-VL	3.33E-07	
18366	18765	H1	L1.23	VH-VL	8.20E-08	59.0
18367	18766	H1	L1.24	VH-VL	4.46E-07	
18368	18767	H1	L1.25	VH-VL	4.09E-07	

Figure 23G

Full-length mAb XENP	scFv XENP	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
18369	18768	H1	L1.26	VH-VL	Weak	
18370	18769	H1	L1.27	VH-VL	3.73E-07	
18371	18770	H1	L1.28	VH-VL	1.22E-07	
18372	18771	H1	L1.29	VH-VL	Weak	
18373	18772	H1	L1.30	VH-VL	Weak	
18374	18773	H1	L1.31	VH-VL	Weak	
18375	18774	H1	L1.32	VH-VL	7.36E-07	
18376	18775	H1	L1.33	VH-VL	Weak	
18377	18776	H1	L1.34	VH-VL	1.45E-06	
18378	18777	H1	L1.35	VH-VL	4.28E-07	
18379	18778	H1	L1.36	VH-VL	Weak	
18380	18779	H1	L1.37	VH-VL	Weak	
18381	18780	H1	L1.38	VH-VL	Weak	
18382	18781	H1	L1.39	VH-VL	5.45E-07	
18383	18782	H1	L1.40	VH-VL	Weak	
18384	18783	H1	L1.41	VH-VL	Weak	
18385	18784	H1	L1.42	VH-VL	Weak	
18386	18785	H1	L1.43	VH-VL	Weak	
18387	18786	H1	L1.44	VH-VL	Weak	
18388	18787	H1	L1.45	VH-VL	Weak	
18389	18788	H1	L1.46	VH-VL	2.19E-07	
18390	18789	H1	L1.47	VH-VL	1.06E-07	55.0
18391	18790	H1	L1.48	VH-VL	1.35E-07	
18392	18791	H1	L1.49	VH-VL	1.49E-07	
18393	18792	H1	L1.50	VH-VL	1.17E-07	57.0
18394	18793	H1	L1.51	VH-VL	1.09E-07	55.5
18395	18794	H1	L1.52	VH-VL	9.28E-08	54.0
18396	18795	H1	L1.53	VH-VL	1.46E-07	
18401	18796	H1	L1.54	VH-VL	4.49E-07	
18402	18801	H1	L1.55	VH-VL	Weak	
18403	18802	H1	L1.56	VH-VL	Weak	
18404	18803	H1	L1.57	VH-VL	Weak	
18405	18804	H1	L1.58	VH-VL	Weak	
18406	18805	H1	L1.59	VH-VL	Weak	
18407	18806	H1	L1.60	VH-VL	Weak	
18408	18807	H1	L1.61	VH-VL	Weak	
18409	18808	H1	L1.62	VH-VL	Weak	
18410	18809	H1	L1.63	VH-VL	Weak	
18411	18810	H1	L1.64	VH-VL	1.79E-07	
18412	18811	H1	L1.65	VH-VL	2.91E-07	
18413	18812	H1	L1.66	VH-VL	3.29E-07	
18414	18813	H1	L1.67	VH-VL	1.46E-07	54.0
18415	18814	H1	L1.68	VH-VL	1.60E-07	
18416	18815	H1	L1.69	VH-VL	Weak	

Figure 23H

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
XENP	XENP					
18417	18816	H1	L1.70	VH-VL	1.34E-07	
18418	18817	H1	L1.71	VH-VL	3.71E-07	
18419	18818	H1	L1.72	VH-VL	6.40E-07	
18420	18819	H1	L1.73	VH-VL	1.52E-07	
18421	18820	H1	L1.74	VH-VL	1.75E-07	
18422	18821	H1	L1.75	VH-VL	1.78E-07	
18423	18822	H1	L1.76	VH-VL	1.33E-07	56.5
18424	18823	H1	L1.77	VH-VL	3.78E-07	
18425	18824	H1	L1.78	VH-VL	Weak	
18426	18825	H1	L1.79	VH-VL	Weak	
18427	18826	H1	L1.80	VH-VL	Weak	
18428	18827	H1	L1.81	VH-VL	2.54E-07	
18429	18828	H1	L1.82	VH-VL	7.67E-08	
18430	18829	H1	L1.83	VH-VL	1.07E-05	
18431	18830	H1	L1.84	VH-VL	5.39E-07	
18432	18831	H1	L1.85	VH-VL	1.56E-07	
18433	18832	H1	L1.86	VH-VL	1.24E-07	55.5
18434	18833	H1	L1.87	VH-VL	2.51E-07	
18435	18834	H1	L1.88	VH-VL	1.40E-07	56.0
18436	18835	H1	L1.89	VH-VL	6.50E-07	
18437	18836	H1	L1.90	VH-VL	1.22E-06	
18438	18837	H1	L1.91	VH-VL	1.79E-07	
18439	18838	H1	L1.92	VH-VL	4.04E-07	
18440	18839	H1	L1.93	VH-VL	7.76E-07	
18441	18840	H1	L1.94	VH-VL	8.48E-08	53.0
18442	18841	H1	L1.95	VH-VL	1.23E-07	54.5
18443	18842	H1	L1.96	VH-VL	1.30E-07	55.5
18444	18843	H1	L1.97	VH-VL	1.06E-07	56.5
18445	18844	H1	L1.98	VH-VL	1.84E-07	
18446	18845	H1	L1.99	VH-VL	1.48E-06	
18447	18846	H1	L1.100	VH-VL	9.17E-08	55.5
18448	18847	H1	L1.101	VH-VL	1.35E-07	
18449	18848	H1	L1.102	VH-VL	1.06E-07	55.0
18450	18849	H1	L1.103	VH-VL	9.46E-08	60.0
18451	18850	H1	L1.104	VH-VL	1.08E-07	57.0
18452	18851	H1	L1.105	VH-VL	1.02E-07	55.0
18453	18852	H1	L1.106	VH-VL	1.01E-07	57.5
18454	18853	H1	L1.107	VH-VL	Weak	
18455	18854	H1	L1.108	VH-VL	Weak	
18456	18855	H1	L1.109	VH-VL	Weak	
18457	18856	H1	L1.110	VH-VL	Weak	
18458	18857	H1	L1.111	VH-VL	Weak	
18459	18858	H1	L1.112	VH-VL	1.92E-07	
18460	18859	H1	L1.113	VH-VL	Weak	

Figure 23I

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
XENP	XENP					
18461	18860	H1	L1.114	VH-VL	2.87E-07	
18462	18861	H1	L1.115	VH-VL	Weak	
18463	18862	H1	L1.116	VH-VL	5.60E-08	55.5
18464	18863	H1	L1.117	VH-VL	1.58E-07	58.0
18465	18864	H1	L1.118	VH-VL	7.90E-08	51.00, 58.00
18466	18865	H1	L1.119	VH-VL	4.88E-08	54.0
18467	18866	H1	L1.120	VH-VL	7.74E-08	50.50, 57.00
18468	18867	H1	L1.121	VH-VL	1.08E-07	54.5
18469	18868	H1	L1.122	VH-VL	9.36E-08	51.0
18470	18869	H1	L1.123	VH-VL	1.32E-07	49.00, 59.00
18471	18870	H1	L1.124	VH-VL	8.70E-08	53.5
18472	18871	H1	L1.125	VH-VL	1.06E-07	53.0
18473	18872	H1	L1.126	VH-VL	7.34E-08	51.0
18474	18873	H1	L1.127	VH-VL	1.10E-07	55.5
18475	18874	H1	L1.128	VH-VL	1.07E-07	57.0
18476	18875	H1	L1.129	VH-VL	1.00E-07	57.0
18477	18876	H1	L1.130	VH-VL	1.18E-07	54.5
18478	18877	H1	L1.131	VH-VL	1.96E-07	55.5
18479	18878	H1	L1.132	VH-VL	1.51E-07	55.0
18480	18879	H1	L1.133	VH-VL	1.32E-07	54.0
18481	18880	H1	L1.134	VH-VL	1.97E-07	57.0
18482	18881	H1	L1.135	VH-VL	1.56E-07	54.5
18483	18882	H1	L1.136	VH-VL	2.41E-07	56.5
18484	18883	H1	L1.137	VH-VL	1.87E-07	56.0
18485	18884	H1	L1.138	VH-VL	2.05E-07	56.0
18486	18885	H1	L1.139	VH-VL	1.76E-07	54.0
18487	18886	H1	L1.140	VH-VL	2.52E-07	
18488	18887	H1	L1.141	VH-VL	2.05E-07	57.0
18489	18888	H1	L1.142	VH-VL	1.09E-07	54.0
18490	18889	H1	L1.143	VH-VL	2.36E-07	
18491	18890	H1	L1.144	VH-VL	1.83E-07	57.0
18492	18891	H1	L1.145	VH-VL	1.63E-07	54.0
18892	18895	H0	L0	VH-VL	1.24E-07	62.0
N/A	18896 (rvs scFv)	H1	L1	VL-VH		58.5
N/A	18921	H1	L3	VH-VL		55.0
N/A	18922	H1	L4	VH-VL		57.0
N/A	18923	H1	L5	VH-VL		60.0
N/A	18924	H2	L1	VH-VL		
N/A	18925	H2	L2	VH-VL		
N/A	18926	H2	L3	VH-VL		
N/A	18927	H2	L4	VH-VL		
N/A	18928	H2	L5	VH-VL		
N/A	18929	H3	L1	VH-VL		
N/A	18930	H3	L2	VH-VL		

Figure 23J

Full-length mAb XENP	scFv XENP	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
N/A	18931	H3	L3	VH-VL		
N/A	18932	H3	L4	VH-VL		
N/A	18933	H3	L5	VH-VL		
N/A	18934	H4	L1	VH-VL		
N/A	18935	H4	L2	VH-VL		
N/A	18936	H4	L3	VH-VL		
N/A	18937	H4	L4	VH-VL		
N/A	18938	H4	L5	VH-VL		
18910	N/A	H1.90	L1.119	VH-VL	1.254E-08	
18911	N/A	H1.90	L1.23	VH-VL	2.278E-08	
18912	N/A	H1.90	L1.67	VH-VL	3.224E-08	
18913	N/A	H1.90	L1.94	VH-VL	2.27E-08	
18914	N/A	H1.90	L1.116	VH-VL	1.634E-08	
18915	N/A	H1.155	L1.119	VH-VL	1.971E-08	
18980	19064	H1.239	L1	VH-VL		56.5
18981	19065	H1.240	L1	VH-VL		56.5
18982	19066	H1.241	L1	VH-VL		57.0
18983	19067	H1.242	L1	VH-VL		56.5
18984	19068	H1.243	L1	VH-VL		55.0
18985	19069	H1.244	L1	VH-VL		55.5
18986	19070	H1.245	L1	VH-VL		56.0
18987	19071	H1.246	L1	VH-VL		54.0
18988	19072	H1.247	L1	VH-VL		56.5
18989	19073	H1.248	L1	VH-VL		55.0
18990	19074	H1.249	L1	VH-VL		54.0
18991	19075	H1.250	L1	VH-VL		56.0
18992	19076	H1.251	L1	VH-VL	6.054E-08	57.0
18993	19077	H1.252	L1	VH-VL		56.5
18994	19078	H1.253	L1	VH-VL		55.0
18995	19079	H1.254	L1	VH-VL		56.5
18996	19080	H1.255	L1	VH-VL		
19001	19081	H1.256	L1	VH-VL		56.0
19002	19082	H1.257	L1	VH-VL	5.607E-08	58.0
19003	19083	H1.258	L1	VH-VL		56.0
19004	19084	H1.259	L1	VH-VL		
19005	19085	H1.260	L1	VH-VL		
19006	19086	H1.261	L1	VH-VL	7.064E-08	57.0
19007	19087	H1.262	L1	VH-VL	6.263E-08	57.0
19008	19088	H1.263	L1	VH-VL		50.0
19009	19089	H1.264	L1	VH-VL		52.0
19010	19090	H1.265	L1	VH-VL		56.0
19011	19091	H1.266	L1	VH-VL		55.0
19012	19092	H1.267	L1	VH-VL		
19013	19093	H1.268	L1	VH-VL		56.5

Figure 23K

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv	T _m (°C)
XENP	XENP						
19014	19094	H1.269	L1	VH-VL			54.5
19015	19095	H1.270	L1	VH-VL			52.0
19016	19096	H1.271	L1	VH-VL	2.267E-08		55.5
19017	19101	H1.272	L1	VH-VL			55.5
19018	19102	H1.273	L1	VH-VL			52.0
19019	19103	H1.274	L1	VH-VL			56.5
19020	19104	H1.275	L1	VH-VL			50.0
19021	19105	H1.276	L1	VH-VL			
19022	19106	H1.277	L1	VH-VL			58.0
19023	19107	H1	L1.146	VH-VL	6.46E-08		57.0
19024	19108	H1	L1.147	VH-VL			54.5
19025	19109	H1	L1.148	VH-VL	6.665E-08		58.0
19026	19110	H1	L1.149	VH-VL			55.5
19027	19111	H1	L1.150	VH-VL	7.238E-08		57.5
19028	19112	H1	L1.151	VH-VL			
19029	19113	H1	L1.152	VH-VL			56.0
19030	19114	H1	L1.153	VH-VL			55.0
19031	19115	H1	L1.154	VH-VL			54.5
19032	19116	H1	L1.155	VH-VL			55.5
19033	19117	H1	L1.156	VH-VL			56.5
19034	19118	H1	L1.157	VH-VL			56.0
19035	19119	H1	L1.158	VH-VL	9.671E-08		58.0
19036	19120	H1	L1.159	VH-VL			52.0
19037	19121	H1	L1.160	VH-VL			
19038	19122	H1	L1.161	VH-VL			47.5
19039	19123	H1	L1.162	VH-VL			
19040	19124	H1	L1.163	VH-VL			55.5
19041	19125	H1	L1.164	VH-VL			56.0
19042	19126	H1	L1.165	VH-VL			58.5
19043	19127	H1	L1.166	VH-VL			49.0
19044	19128	H1	L1.167	VH-VL			53.0
19045	19129	H1	L1.168	VH-VL			54.0
19046	19130	H1	L1.169	VH-VL			67.0
19047	19131	H1	L1.170	VH-VL			65.5
19048	19132	H1	L1.171	VH-VL			51.5
19049	19133	H1	L1.172	VH-VL			53.0
19050	19134	H1	L1.173	VH-VL			54.5
19051	19135	H1	L1.174	VH-VL			53.5
19052	19136	H1	L1.175	VH-VL			54.0
19053	19137	H1	L1.176	VH-VL			54.0
19054	19138	H1	L1.177	VH-VL			56.0
19055	19139	H1	L1.178	VH-VL			52.5
19056	19140	H1	L1.179	VH-VL			
19057	19141	H1	L1.180	VH-VL			

Figure 23L

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv T _m (°C)
XENP	XENP					
19058	19142	H1	L1.181	VH-VL		
19059	19143	H1	L1.182	VH-VL		52.0
19060	19144	H1	L1.183	VH-VL		53.5
19061	19145	H1	L1.184	VH-VL		
19062	19146	H1	L1.185	VH-VL		55.5
19063	19147	H1	L1.186	VH-VL		54.0
N/A	19148	H1.257	L1.152	VH-VL		57.5
N/A	19149	H1.257	L1.151	VH-VL		55.5
N/A	19150	H1.139	L1.134	VH-VL		57.5
N/A	19151	H1.48	L1.187	VH-VL		53.5
N/A	19152	H1.48	L1.151	VH-VL		52.5
N/A	19153	H1.43	L1.159	VH-VL		50.0
N/A	19154	H1.90	L1.119	VH-VL		53.0
N/A	19155	H1.90	L1.23	VH-VL		57.5
N/A	19156	H1.90	L1.67	VH-VL		53.0
N/A	19157	H1.90	L1.94	VH-VL		52.0
N/A	19158	H1.90	L1.116	VH-VL		54.5
N/A	19159	H1.155	L1.119	VH-VL		54.5
19160	N/A	H1.269	L1.116	VH-VL		
19161	N/A	H1.271	L1.116	VH-VL	1.233E-08	
19162	N/A	H1.272	L1.116	VH-VL		
19163	N/A	H1.90	L1.177	VH-VL		
19164	N/A	H1.269	L1.177	VH-VL		
19165	N/A	H1.271	L1.177	VH-VL	4.682E-09	
19166	N/A	H1.272	L1.177	VH-VL	6.386E-09	
19167	N/A	H1.90	L1.175	VH-VL		
19168	N/A	H1.269	L1.175	VH-VL		
19169	N/A	H1.271	L1.175	VH-VL		
19170	N/A	H1.272	L1.175	VH-VL		
19172	19182	H1	L1.190	VH-VL	2.577E-08	58.5
19173	19183	H1	L1.191	VH-VL		57.0
19174	N/A	H1.90	L1.190	VH-VL	1.103E-08	
19175	N/A	H1.90	L1.191	VH-VL		
19176	N/A	H1.269	L1.190	VH-VL		
19177	N/A	H1.271	L1.190	VH-VL	8.287E-09	
19178	N/A	H1.272	L1.190	VH-VL	7.09E-09	
19179	N/A	H1.269	L1.191	VH-VL		
19180	N/A	H1.271	L1.191	VH-VL		
19181	N/A	H1.272	L1.191	VH-VL		
19193	19203	H1	L1.188	VH-VL	2.596E-08	
19194	19204	H1	L1.189	VH-VL	1.366E-08	64.0
19195	19205	H1.278	L1.188	VH-VL	6.689E-09	66.0
19196	19206	H1.278	L1.189	VH-VL	4.683E-09	67.5
19201	19202	H1.278	L1	VH-VL	1.861E-08	60.0

Figure 23M

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv	T _m (°C)
XENP	XENP						
N/A	19207	H1.278	L1.188	VH-VL			68.0
N/A	19208	H1.278	L1.189	VH-VL			69.5
19589	19618	H1.279	L1.189	VH-VL	1.254E-08		68.5
19590	19619	H1.280	L1.189	VH-VL	5.393E-09		69.0
19591	19620	H1.281	L1.189	VH-VL			68.0
19592	19621	H1.282	L1.189	VH-VL	1.291E-08		68.5
19593	19622	H1.283	L1.189	VH-VL	7.859E-09		69.0
19594	19623	H1.284	L1.189	VH-VL			70.5
19595	19624	H1.285	L1.189	VH-VL			70.0
19596	19625	H1.286	L1.189	VH-VL	1.41E-08		69.5
19601	19626	H1.278	L1.192	VH-VL	6.268E-09		67.5
19602	19627	H1.278	L1.193	VH-VL	1.37E-08		69.5
19603	19628	H1.278	L1.194	VH-VL	7.5E-09		69.0
19604	19629	H1.278	L1.195	VH-VL			69.5
19605	19630	H1.278	L1.196	VH-VL	4.443E-08		71.0
19606	19631	H1.278	L1.197	VH-VL	2.079E-08		69.5
19607	19632	H1.278	L1.198	VH-VL			67.5
19608	19633	H1.278	L1.199	VH-VL			67.5
19609	19634	H1.278	L1.200	VH-VL			67.5
19610	19635	H1.278	L1.201	VH-VL			67.5
19611	19636	H1.278	L1.202	VH-VL			67.5
19612	19637	H1.278	L1.203	VH-VL			67.5
19613	19638	H1.278	L1.204	VH-VL			67.0
19614	19639	H1.278	L1.205	VH-VL	1.266E-08		68.0
19615	19640	H1.278	L1.206	VH-VL			69.0
19616	19641	H1.278	L1.207	VH-VL			68.5
19617	19642	H1.278	L1.208	VH-VL			68.5
N/A	19643	H1.279	L1.189	VL-VH			71.5
N/A	19644	H1.280	L1.189	VL-VH			70.5
N/A	19645	H1.281	L1.189	VL-VH			69.5
N/A	19646	H1.282	L1.189	VL-VH			70.0
N/A	19647	H1.283	L1.189	VL-VH			70.5
N/A	19648	H1.284	L1.189	VL-VH			70.5
N/A	19649	H1.285	L1.189	VL-VH			71.5
N/A	19650	H1.278	L1.192	VL-VH			69.0
N/A	19651	H1.278	L1.193	VL-VH			71.5
N/A	19652	H1.278	L1.194	VL-VH			71.5
N/A	19653	H1.278	L1.195	VL-VH			71.5
N/A	19654	H1.278	L1.196	VL-VH			64.0
N/A	19655	H1.278	L1.197	VL-VH			72.0
N/A	19664	H1.287	L1.209	VH-VL			70.5
N/A	19665	H1.287	L1.209	VL-VH			72.0
N/A	19666	H1.284	L1.194	VH-VL			70.5
N/A	19667	H1.284	L1.194	VL-VH			72.5

Figure 23N

Full-length mAb	scFv	VH	VL	scFv orientation	Human PD-1 mAb K _D (M)	scFv
XENP	XENP					T _m (°C)
N/A	19668	H1.288	L1.210	VH-VL		72.5
N/A	19669	H1.288	L1.210	VL-VH		72.0
19678	N/A	H1.279	L1.192	VH-VL		
19679	N/A	H1.280	L1.192	VH-VL		
19680	N/A	H1.281	L1.192	VH-VL		
19681	N/A	H1.282	L1.192	VH-VL		
19682	N/A	H1.279	L1.193	VH-VL		
19683	N/A	H1.280	L1.193	VH-VL		
19684	N/A	H1.281	L1.193	VH-VL		
19685	N/A	H1.282	L1.193	VH-VL		
19686	19690	H1.279	L1.194	VH-VL	7.268E-09	70.0
19687	N/A	H1.280	L1.194	VH-VL		
19688	N/A	H1.281	L1.194	VH-VL		
19689	19691	H1.282	L1.194	VH-VL	1.212E-08	70.5
N/A	19692	H1.279	L1.194	VL-VH		71.5
N/A	19693	H1.282	L1.194	VL-VH		71.5
N/A	21215	H1.280	L1.224	VH-VL		65.0
N/A	21216	H1.280	L1.224	VL-VH		66.5

Figure 24A

Fab XENP	scFv XENP	VH	VL	Human CTLA-4 Fab K _D (M)	Cyno CTLA-4 Fab K _D (M)	Fab T _m (°C)	scFv	VH 9- mers	Δ VH 9- mers	VL 9- mers	Δ VL 9- mers
9950	19533	H0	L0	5.61E-09	3.29E-08	75.8	63.9	65	0	82	0
19211	19745	H0.1	L0	6.33E-09	n.t.	75.5	64	65	0	82	0
19212	19746	H0.2	L0	5.60E-09	n.t.	74.8	63	61	-4	82	0
19213	19747	H0.3	L0	6.39E-09	n.t.	75	63.5	65	0	82	0
19214	19748	H0.4	L0	6.49E-09	n.t.	71.5	58	56	-9	82	0
19215	19749	H0.5	L0	1.09E-08	n.t.	74.5	n.t.	52	-13	82	0
19216	19750	H0.6	L0	6.60E-09	n.t.	76	63.5	56	-9	82	0
19217	19751	H0.7	L0	1.55E-08	n.t.	75.5	n.t.	56	-9	82	0
19218	19752	H0.8	L0	6.94E-09	n.t.	78	66	65	0	82	0
19219	19753	H0.9	L0	6.20E-09	n.t.	75.5	65.5	56	-9	82	0
19220	19754	H0.10	L0	3.25E-08	n.t.	n.t.	n.t.	59	-6	82	0
19221	19755	H0.11	L0	4.12E-08	n.t.	n.t.	n.t.	64	-1	82	0
19222	19756	H0.12	L0	1.08E-08	n.t.	76	64.5	63	-2	82	0
19223	19757	H0.13	L0	7.05E-08	n.t.	n.t.	n.t.	65	0	82	0
19224	19758	H0.14	L0	4.24E-08	n.t.	n.t.	n.t.	64	-1	82	0
19225	19759	H0.15	L0	5.00E-07	n.t.	n.t.	n.t.	64	-1	82	0
19226	19760	H0.16	L0	1.29E-08	n.t.	76.5	65	63	-2	82	0
19227	19761	H0.17	L0	6.59E-08	n.t.	n.t.	n.t.	63	-2	82	0
19228	19762	H0.18	L0	5.00E-07	n.t.	n.t.	n.t.	64	-1	82	0
19229	19763	H0.19	L0	7.02E-09	n.t.	74	61.5	64	-1	82	0
19230	19764	H0.20	L0	1.19E-08	n.t.	75.5	n.t.	64	-1	82	0
19231	19765	H0.21	L0	5.00E-07	n.t.	n.t.	n.t.	64	-1	82	0
19232	19766	H0.22	L0	4.09E-08	n.t.	n.t.	n.t.	64	-1	82	0
19233	19767	H0.23	L0	5.00E-07	n.t.	n.t.	n.t.	64	-1	82	0
19234	19768	H0.24	L0	1.13E-07	n.t.	n.t.	n.t.	64	-1	82	0
19235	19769	H0.25	L0	5.97E-08	n.t.	n.t.	n.t.	74	9	82	0
19236	19770	H0.26	L0	5.70E-08	n.t.	n.t.	n.t.	74	9	82	0
19237	19771	H0.27	L0	6.54E-08	n.t.	n.t.	n.t.	68	3	82	0
19238	19772	H0.28	L0	4.33E-08	n.t.	n.t.	n.t.	65	0	82	0
19239	19773	H0.29	L0	5.00E-07	n.t.	n.t.	n.t.	68	3	82	0
19240	19774	H0.30	L0	5.00E-07	n.t.	n.t.	n.t.	65	0	82	0
19241	19775	H0.31	L0	5.00E-07	n.t.	n.t.	n.t.	63	-2	82	0
19242	19776	H0.32	L0	2.87E-08	n.t.	n.t.	n.t.	65	0	82	0
19243	19777	H0.33	L0	5.00E-07	n.t.	n.t.	n.t.	65	0	82	0
19244	19778	H0.34	L0	5.00E-07	n.t.	n.t.	n.t.	63	-2	82	0
19245	19779	H0.35	L0	2.31E-08	n.t.	n.t.	n.t.	63	-2	82	0
19246	19780	H0.36	L0	4.92E-09	n.t.	74	62.5	61	-4	82	0
19247	19781	H0.37	L0	5.53E-08	n.t.	n.t.	n.t.	60	-5	82	0
19248	19782	H0.38	L0	3.63E-08	n.t.	n.t.	n.t.	66	1	82	0
19249	19783	H0.39	L0	2.64E-08	n.t.	n.t.	n.t.	68	3	82	0
19250	19784	H0.40	L0	2.80E-09	n.t.	61.5	66.5	66	1	82	0
19251	19785	H0.41	L0	1.55E-08	n.t.	63	n.t.	65	0	82	0
19252	19786	H0.42	L0	4.66E-08	n.t.	n.t.	n.t.	65	0	82	0
19253	19787	H0.43	L0	4.42E-08	n.t.	n.t.	n.t.	65	0	82	0
19254	19788	H0.44	L0	5.00E-07	n.t.	n.t.	n.t.	65	0	82	0
19255	19789	H0.45	L0	1.40E-08	n.t.	71	n.t.	65	0	82	0
19256	19790	H0.46	L0	5.00E-07	n.t.	n.t.	n.t.	65	0	82	0
19257	19791	H0.47	L0	5.00E-07	n.t.	n.t.	n.t.	65	0	82	0
19258	19792	H0.48	L0	5.01E-08	n.t.	n.t.	n.t.	65	0	82	0

Figure 24B

Fab XENP	scFv XENP	VH	VL	Human CTLA-4 Fab K ₀ (M)	Cyno CTLA-4 Fab K ₀ (M)	Fab T _m (°C)	scFv T _m (°C)	VH 9-mers	Δ VH 9-mers	VL 9-mers	Δ VL 9-mers
19259	19793	H0.49	L0	5.00E-07	n.t.	n.t.	n.t.	65	0	82	0
19260	19794	H0.50	L0	1.41E-09	n.t.	n.t.	66.5	65	0	82	0
19261	19795	H0.51	L0	8.43E-09	n.t.	n.t.	57.5	65	0	82	0
19262	19796	H0.52	L0	1.13E-08	3.69E-08	74.5	n.t.	65	0	82	0
19263	19801	H0.53	L0	1.27E-08	n.t.	n.t.	n.t.	65	0	82	0
19264	19802	H0.54	L0	5.00E-07	n.t.	n.t.	n.t.	65	0	82	0
19265	19803	H0.55	L0	3.43E-08	n.t.	n.t.	n.t.	65	0	82	0
19266	19804	H0.56	L0	5.95E-08	n.t.	n.t.	n.t.	65	0	82	0
19267	19805	H0.57	L0	9.15E-09	n.t.	62.5	62	65	0	82	0
19268	19806	H0.58	L0	3.93E-09	n.t.	58.5	59	65	0	82	0
19269	19807	H0.59	L0	1.91E-09	n.t.	73	60	65	0	82	0
19270	19808	H0.60	L0	7.46E-09	n.t.	63.5	59.5	65	0	82	0
19271	19809	H0.61	L0	n.t.	n.t.	n.t.	n.t.	65	0	82	0
19272	19810	H0.62	L0	5.48E-08	n.t.	n.t.	n.t.	56	-9	82	0
19273	19811	H0.63	L0	3.66E-09	n.t.	58	59	65	0	82	0
19274	19812	H0.64	L0	2.04E-08	n.t.	n.t.	n.t.	65	0	82	0
19275	19813	H0.65	L0	5.00E-07	n.t.	n.t.	n.t.	56	-9	82	0
19276	19814	H0.66	L0	2.08E-08	n.t.	59.5	n.t.	65	0	82	0
19277	19815	H0.67	L0	1.10E-08	n.t.	58.5	n.t.	65	0	82	0
19278	19816	H0.68	L0	7.32E-09	n.t.	62	63.5	65	0	82	0
19279	19817	H0.69	L0	1.79E-08	n.t.	58	n.t.	65	0	82	0
19280	19818	H0.70	L0	1.42E-08	n.t.	56.5	n.t.	71	6	82	0
19281	19819	H0.71	L0	3.00E-08	n.t.	n.t.	n.t.	64	-1	82	0
19282	19820	H0.72	L0	5.00E-07	n.t.	n.t.	n.t.	64	-1	82	0
19283	19821	H0.73	L0	2.07E-09	n.t.	76	64.5	64	-1	82	0
19284	19822	H0.74	L0	1.24E-08	n.t.	59	n.t.	64	-1	82	0
19285	19823	H0.75	L0	3.55E-09	n.t.	76	65	64	-1	82	0
19286	19824	H0.76	L0	1.08E-08	n.t.	76.5	65	64	-1	82	0
19287	19825	H0.77	L0	3.42E-08	n.t.	n.t.	n.t.	64	-1	82	0
19288	19826	H0.78	L0	2.10E-08	n.t.	75.5	n.t.	64	-1	82	0
19289	19827	H0.79	L0	3.79E-08	n.t.	n.t.	n.t.	62	-3	82	0
19290	19828	H0.80	L0	1.24E-08	n.t.	75.5	n.t.	62	-3	82	0
19291	19829	H0.81	L0	5.65E-09	n.t.	74.5	63	59	-6	82	0
19292	19830	H0.82	L0	5.13E-09	n.t.	73.5	62.5	56	-9	82	0
19293	19831	H0.83	L0	5.33E-09	n.t.	72.5	61.5	56	-9	82	0
19294	19832	H0.84	L0	7.94E-09	n.t.	67.5	n.t.	56	-9	82	0
19295	19833	H0.85	L0	2.10E-09	n.t.	70	55.5	56	-9	82	0
19296	19834	H0.86	L0	6.78E-09	n.t.	75.8	65	56	-9	82	0
19301	19835	H0.87	L0	5.15E-08	n.t.	n.t.	n.t.	56	-9	82	0
19302	19836	H0.88	L0	9.63E-09	n.t.	73.5	n.t.	58	-7	82	0
19303	19837	H0.89	L0	2.12E-08	n.t.	n.t.	n.t.	65	0	82	0
19304	19838	H0.90	L0	7.82E-09	n.t.	75.5	55.5	65	0	82	0
19305	19839	H0.91	L0	6.11E-09	n.t.	75.5	65	61	-4	82	0
19306	19840	H0.92	L0	5.72E-09	n.t.	73.5	61	65	0	82	0
19307	19841	H0.93	L0	5.13E-09	n.t.	74.5	63.5	56	-9	82	0
19308	19842	H0.94	L0	5.90E-09	n.t.	75.5	64	56	-9	82	0
19309	19843	H0.95	L0	1.02E-08	n.t.	76	64	56	-9	82	0
19310	19844	H0.96	L0	1.53E-08	n.t.	77	65.5	57	-8	82	0
19311	19845	H0.97	L0	6.30E-09	3.17E-08	76	64	65	0	82	0

Figure 24C

Fab XENP	scFv XENP	VH	VL	Human CTLA-4 Fab K _D (M)	Cyno CTLA-4 Fab K _D (M)	Fab T _m (°C)	scFv	VH 9- mers	Δ VH 9- mers	VL 9- mers	Δ VL 9- mers
19312	19846	H0.98	L0	7.36E-09	3.38E-08	74.5	61.5	70	5	82	0
19313	19847	H0.99	L0	7.01E-09	3.53E-08	76	63.5	71	6	82	0
19314	19848	H0.100	L0	1.10E-08	3.14E-08	75.5	n.t.	65	0	82	0
19315	19849	H0.101	L0	2.90E-08	5.00E-07	72	n.t.	65	0	82	0
19316	19850	H0.102	L0	3.48E-08	5.00E-07	79	n.t.	65	0	82	0
19317	19851	H0.103	L0	1.02E-08	3.68E-08	77.5	65.5	65	0	82	0
19318	19852	H0.104	L0	5.00E-07	5.00E-07	72.5	n.t.	65	0	82	0
19319	19853	H0.105	L0	5.00E-07	5.00E-07	78.5	n.t.	65	0	82	0
19320	19854	H0.106	L0	2.37E-08	5.00E-07	74	n.t.	65	0	82	0
19321	19855	H0.107	L0	5.00E-07	5.00E-07	70	n.t.	65	0	82	0
19322	19856	H0.108	L0	1.67E-08	2.17E-08	76.5	64.5	65	0	82	0
19323	19857	H0.109	L0	1.51E-08	4.39E-08	77	65	65	0	82	0
19324	19858	H0.110	L0	5.00E-07	5.00E-07	76.5	n.t.	65	0	82	0
19325	19859	H0.111	L0	6.52E-09	3.30E-08	76	64	65	0	82	0
19326	19860	H0.112	L0	5.00E-07	5.00E-07	77	n.t.	65	0	82	0
19327	19861	H0.113	L0	1.12E-08	3.64E-08	76.5	65	65	0	82	0
19328	19862	H0.114	L0	3.64E-09	2.28E-08	76.5	64.5	65	0	82	0
19329	19863	H0.115	L0	1.19E-08	4.10E-08	76	n.t.	65	0	82	0
19330	19864	H0.116	L0	3.45E-08	5.00E-07	76	n.t.	65	0	82	0
19331	19865	H0.117	L0	5.00E-07	5.00E-07	76.5	n.t.	65	0	82	0
19332	19866	H0.118	L0	1.65E-08	5.00E-07	76	n.t.	65	0	82	0
19333	19867	H0.119	L0	5.00E-07	5.00E-07	73.5	n.t.	65	0	82	0
19334	19868	H0.120	L0	5.00E-07	5.00E-07	73.5	n.t.	65	0	82	0
19335	19869	H0.121	L0	5.00E-07	5.00E-07	74	n.t.	65	0	82	0
19336	19870	H0.122	L0	2.20E-08	5.00E-07	75.5	n.t.	64	-1	82	0
19337	19871	H0.123	L0	2.25E-08	5.00E-07	75.5	n.t.	64	-1	82	0
19338	19872	H0.124	L0	5.00E-07	5.00E-07	71	n.t.	63	-2	82	0
19339	19873	H0.125	L0	3.08E-08	5.00E-07	75	n.t.	63	-2	82	0
19340	19874	H0.126	L0	5.00E-07	5.00E-07	70.5	n.t.	63	-2	82	0
19341	19875	H0.127	L0	3.20E-08	5.00E-07	70.5	n.t.	63	-2	82	0
19342	19876	H0.128	L0	1.84E-08	5.00E-07	71	n.t.	63	-2	82	0
19343	19877	H0.129	L0	5.00E-07	5.00E-07	72	n.t.	63	-2	82	0
19344	19878	H0.130	L0	6.51E-09	3.93E-08	76	64	63	-2	82	0
19345	19879	H0.131	L0	5.82E-09	3.40E-08	78	66.5	62	-3	82	0
19346	19880	H0.132	L0	6.46E-09	3.82E-08	74.5	62.5	65	0	82	0
19347	19881	H0.133	L0	2.03E-08	4.96E-08	77.5	n.t.	62	-3	82	0
19348	19882	H0.134	L0	1.58E-07	5.00E-07	low signal	64.5	62	-3	82	0
19349	19883	H0.135	L0	6.69E-09	4.03E-08	76.5	64.5	62	-3	82	0
19350	19884	H0.136	L0	7.41E-09	4.21E-08	75.5	63	62	-3	82	0
19416	19885	H0	L0.1	1.14E-08	4.63E-08	n.t.	n.t.	65	0	81	-1
19417	19886	H0	L0.2	6.94E-09	3.77E-08	75.5	62	65	0	81	-1
19418	19887	H0	L0.3	9.31E-09	4.19E-08	75.5	low signal	65	0	81	-1
19419	19888	H0	L0.4	1.95E-07	5.00E-07	n.t.	n.t.	65	0	81	-1
19420	19889	H0	L0.5	8.28E-09	3.95E-08	76	low signal	65	0	79	-3
19421	19890	H0	L0.6	5.00E-07	5.16E-08	n.t.	n.t.	65	0	71	-11
19422	19891	H0	L0.7	1.36E-08	7.79E-08	n.t.	n.t.	65	0	78	-4
19423	19892	H0	L0.8	1.07E-08	5.50E-08	n.t.	n.t.	65	0	82	0
19424	19893	H0	L0.9	8.18E-09	4.70E-08	76.5	64.5	65	0	78	-4
19425	19894	H0	L0.10	8.97E-09	4.60E-08	76.5	64.5	65	0	73	-9

Figure 24D

Fab XENP	scFv XENP	VH	VL	Human CTLA-4 Fab K _D (M)	Cyno CTLA-4 Fab K _D (M)	Fab T _m (°C)	scFv T _m (°C)	VH 9-mers	Δ VH 9-mers	VL 9-mers	Δ VL 9-mers
19426	19895	H0	L0.11	5.00E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19427	19896	H0	L0.12	7.59E-09	4.14E-08	77	63.5	65	0	77	-5
19428	19901	H0	L0.13	9.71E-09	5.19E-08	75.5	63	65	0	73	-9
19429	19902	H0	L0.14	8.04E-09	4.90E-08	76	63.5	65	0	73	-9
19430	19903	H0	L0.15	9.79E-09	5.37E-08	73.5	61	65	0	82	0
19431	19904	H0	L0.16	1.43E-08	5.23E-08	n.t.	n.t.	65	0	73	-9
19432	19905	H0	L0.17	2.17E-08	4.96E-08	n.t.	n.t.	65	0	73	-9
19433	19906	H0	L0.18	8.28E-09	4.59E-08	75.5	62.5	65	0	77	-5
19434	19907	H0	L0.19	2.86E-09	1.64E-08	72	57.5	65	0	81	-1
19435	19908	H0	L0.20	5.00E-07	9.64E-07	n.t.	n.t.	65	0	81	-1
19436	19909	H0	L0.21	1.79E-08	5.00E-07	n.t.	n.t.	65	0	82	0
19437	19910	H0	L0.22	1.46E-08	5.28E-08	n.t.	64.5	65	0	91	9
19438	19911	H0	L0.23	2.02E-08	5.47E-08	n.t.	n.t.	65	0	82	0
19439	19912	H0	L0.24	1.26E-08	5.36E-08	n.t.	n.t.	65	0	81	-1
19440	19913	H0	L0.25	4.60E-09	2.85E-08	76	64	65	0	81	-1
19441	19914	H0	L0.26	9.55E-09	4.17E-08	76	64	65	0	81	-1
19442	19915	H0	L0.27	1.20E-08	5.58E-08	n.t.	n.t.	65	0	81	-1
19443	19916	H0	L0.28	5.00E-07	5.00E-07	n.t.	n.t.	65	0	81	-1
19444	19917	H0	L0.29	2.09E-08	5.16E-08	n.t.	n.t.	65	0	80	-2
19445	19918	H0	L0.30	1.10E-08	5.42E-08	n.t.	n.t.	65	0	80	-2
19446	19919	H0	L0.31	8.90E-09	4.62E-08	76.5	65	65	0	81	-1
19447	19920	H0	L0.32	8.69E-09	5.14E-08	76	64.5	65	0	80	-2
19448	19921	H0	L0.33	1.37E-07	5.00E-07	n.t.	n.t.	65	0	80	-2
19449	19922	H0	L0.34	4.27E-08	5.00E-07	n.t.	n.t.	65	0	81	-1
19450	19923	H0	L0.35	5.00E-07	5.00E-07	n.t.	n.t.	65	0	79	-3
19451	19924	H0	L0.36	1.60E-08	5.00E-07	n.t.	63.5	65	0	79	-3
19452	19925	H0	L0.37	7.60E-09	3.37E-08	75	63	65	0	79	-3
19453	19926	H0	L0.38	5.73E-08	5.00E-07	n.t.	n.t.	65	0	81	-1
19454	19927	H0	L0.39	2.39E-08	5.00E-07	n.t.	n.t.	65	0	79	-3
19455	19928	H0	L0.40	1.15E-08	3.66E-08	73.5	60.5	65	0	79	-3
19456	19929	H0	L0.41	7.20E-09	3.96E-08	76	64	65	0	78	-4
19457	19930	H0	L0.42	5.00E-07	5.00E-07	n.t.	n.t.	65	0	77	-5
19458	19931	H0	L0.43	5.00E-07	5.00E-07	n.t.	n.t.	65	0	68	-14
19459	19932	H0	L0.44	3.85E-08	5.00E-07	n.t.	60	65	0	82	0
19460	19933	H0	L0.45	7.16E-08	5.00E-07	n.t.	n.t.	65	0	82	0
19461	19934	H0	L0.46	9.56E-09	5.16E-08	72	low	65	0	74	-8
19462	19935	H0	L0.47	1.91E-08	4.75E-08	n.t.	n.t.	65	0	75	-7
19463	19936	H0	L0.48	9.34E-09	4.70E-08	75	61.5	65	0	74	-8
19464	19937	H0	L0.49	1.10E-08	4.42E-08	n.t.	n.t.	65	0	68	-14
19465	19938	H0	L0.50	9.39E-09	4.63E-08	71.5	58	65	0	73	-9
19466	19939	H0	L0.51	7.20E-09	4.05E-08	75	62.5	65	0	75	-7
19467	19940	H0	L0.52	7.50E-09	3.91E-08	75	62.5	65	0	74	-8
19468	19941	H0	L0.53	1.87E-07	5.00E-07	n.t.	n.t.	65	0	74	-8
19469	19942	H0	L0.54	2.15E-08	4.66E-08	n.t.	n.t.	65	0	76	-6
19470	19943	H0	L0.55	5.00E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19471	19944	H0	L0.56	5.75E-09	3.57E-08	76	64	65	0	73	-9
19472	19945	H0	L0.57	7.61E-09	3.87E-08	73	60	65	0	75	-7
19473	19946	H0	L0.58	7.85E-09	4.46E-08	n.t.	n.t.	65	0	66	-16
19474	19947	H0	L0.59	7.36E-09	4.29E-08	75.5	63.5	65	0	75	-7

Figure 24E

Fab XENP	scFv XENP	VH	VL	Human CTLA-4 Fab K _D (M)	Cyno CTLA-4 Fab K _D (M)	Fab T _m (°C)	scFv T _m (°C)	VH 9- mers	Δ VH 9- mers	VL 9- mers	Δ VL 9- mers
19475	19948	H0	L0.60	6.52E-08	5.00E-07	n.t.	n.t.	65	0	76	-6
19476	19949	H0	L0.61	5.00E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19477	19950	H0	L0.62	2.36E-08	5.40E-08	n.t.	n.t.	65	0	79	-3
19478	19951	H0	L0.63	8.66E-09	5.13E-08	75	62.5	65	0	79	-3
19479	19952	H0	L0.64	2.65E-08	5.00E-07	n.t.	n.t.	65	0	79	-3
19480	19953	H0	L0.65	1.23E-08	4.90E-08	n.t.	n.t.	65	0	79	-3
19481	19954	H0	L0.66	1.55E-08	5.53E-08	n.t.	n.t.	65	0	79	-3
19482	19955	H0	L0.67	5.00E-08	5.00E-07	n.t.	n.t.	65	0	82	0
19483	19956	H0	L0.68	6.98E-09	4.30E-08	75.5	63	65	0	80	-2
19484	19957	H0	L0.69	1.62E-08	4.75E-08	n.t.	n.t.	65	0	81	-1
19485	19958	H0	L0.70	6.58E-09	4.02E-08	76	64.5	65	0	82	0
19486	19959	H0	L0.71	8.41E-09	4.21E-08	76	64.5	65	0	82	0
19487	19960	H0	L0.72	9.76E-09	4.90E-08	75	63	65	0	82	0
19488	19961	H0	L0.73	4.75E-09	n.t.	76.5	65	65	0	91	9
19489	19962	H0	L0.74	9.11E-09	n.t.	76	64.5	65	0	82	0
19490	19963	H0	L0.75	3.53E-08	n.t.	n.t.	n.t.	65	0	81	-1
19491	19964	H0	L0.76	4.95E-08	n.t.	n.t.	n.t.	65	0	81	-1
19492	19965	H0	L0.77	6.63E-09	n.t.	76.5	65.5	65	0	81	-1
19493	19966	H0	L0.78	4.18E-09	n.t.	76.5	65	65	0	81	-1
19494	19967	H0	L0.79	5.13E-09	3.81E-08	76	64	65	0	81	-1
19495	19968	H0	L0.80	4.44E-09	2.91E-08	72.5	59.5	65	0	79	-3
19496	19969	H0	L0.81	6.03E-09	3.61E-08	75.5	64	65	0	78	-4
19501	19970	H0	L0.82	5.34E-09	3.25E-08	76	64	65	0	78	-4
19502	19971	H0	L0.83	5.18E-09	3.14E-08	75.5	63.5	65	0	81	-1
19503	19972	H0	L0.84	5.22E-09	3.20E-08	74	61.5	65	0	73	-9
19504	19973	H0	L0.85	4.90E-09	3.00E-08	76	64.5	65	0	80	-2
19505	19974	H0	L0.86	3.51E-09	2.65E-08	74.5	61.5	65	0	77	-5
19506	19975	H0	L0.87	7.35E-09	4.11E-08	75.5	63.5	65	0	82	0
19507	19976	H0	L0.88	6.08E-09	3.73E-08	n.t.	n.t.	65	0	82	0
19508	19977	H0	L0.89	6.40E-09	3.95E-08	75.5	64.5	65	0	73	-9
19509	19978	H0	L0.90	7.22E-09	3.74E-08	75.5	63	65	0	75	-7
19510	19979	H0	L0.91	4.69E-09	3.06E-08	75	62.5	65	0	74	-8
19511	19980	H0	L0.92	7.82E-09	4.24E-08	75	62.5	65	0	73	-9
19512	19981	H0	L0.93	7.70E-08	5.00E-07	n.t.	n.t.	65	0	73	-9
19513	19982	H0	L0.94	5.40E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19514	19983	H0	L0.95	1.71E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19515	19984	H0	L0.96	1.80E-09	1.06E-08	72.5	59.5	65	0	73	-9
19516	19985	H0	L0.97	8.41E-08	5.00E-07	n.t.	n.t.	65	0	73	-9
19517	19986	H0	L0.98	5.00E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19518	19987	H0	L0.99	5.00E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19519	19988	H0	L0.100	8.03E-08	5.00E-07	n.t.	n.t.	65	0	73	-9
19520	19989	H0	L0.101	1.84E-08	6.21E-08	n.t.	n.t.	65	0	73	-9
19521	19990	H0	L0.102	2.02E-09	2.20E-08	76	62	65	0	73	-9
19522	19991	H0	L0.103	7.60E-09	4.24E-08	75.5	65	65	0	73	-9
19523	19992	H0	L0.104	7.47E-08	5.00E-07	n.t.	n.t.	65	0	75	-7
19524	19993	H0	L0.105	5.00E-07	5.00E-07	n.t.	n.t.	65	0	74	-8
19525	19994	H0	L0.106	2.33E-08	3.30E-08	n.t.	n.t.	65	0	77	-5
19526	19995	H0	L0.107	5.00E-07	5.00E-07	n.t.	n.t.	65	0	73	-9
19527	19996	H0	L0.108	5.00E-07	5.00E-07	n.t.	n.t.	65	0	80	-2

Figure 24F

Fab XENP	scFv XENP	VH	VL	Human CTLA-4 Fab K _D (M)	Cyno CTLA-4 Fab K _D (M)	Fab T _m (°C)	scFv T _m (°C)	VH 9-mers	Δ VH 9-mers	VL 9-mers	Δ VL 9-mers
19528	20001	H0	L0.109	5.00E-07	5.00E-07	n.t.	n.t.	65	0	77	-5
19529	20002	H0	L0.110	5.00E-07	5.00E-07	n.t.	n.t.	65	0	81	-1
19530	20003	H0	L0.111	4.58E-09	1.68E-08	73.5	60.5	65	0	73	-9
19531	20004	H0	L0.112	6.08E-09	2.93E-08	75.5	63.5	65	0	77	-5
19532	20005	H0	L0.113	6.82E-09	4.48E-08	n.t.	62	65	0	74	-8
	19534	H0.36	L0.50	n.t.	n.t.	62.5	61	-4	73	-9	
	19535	H0.36	L0.51	n.t.	n.t.	62	61	-4	75	-7	
	19536	H0.37	L0.50	n.t.	n.t.	59.5	60	-5	73	-9	
	19537	H0.37	L0.113	n.t.	n.t.	63.5	60	-5	74	-8	
	19538	H0.134	L0.51	n.t.	n.t.	64	62	-3	75	-7	
20006	19539	H0.134	L0.53	5.02E-09	2.00E-08	75.5	65	62	-3	74	-8
	19540	H0.134	L0.57	n.t.	n.t.	61	62	-3	75	-7	
	19541	H0.137	L0.114	n.t.	n.t.	66	60	-5	74	-8	
	19542	H0.138	L0.115	n.t.	n.t.	64	59	-6	73	-9	
	19543	H0.139	L0.116	n.t.	n.t.	62.5	59	-6	73	-9	
19585	19587	H0.140	L0	2.83E-09	1.76E-08	78.5	68	56	-9	82	0
19586	19588	H0	L0.117	4.09E-09	2.52E-08	76.5	63.5	65	0	69	-13
19544	19551	H1	L0	1.77E-08	2.51E-08	74.5	61.5	70	5	82	0
19545	19552	H2	L0	1.10E-07	5.00E-07	n.t.	66.5	69	4	82	0
19546	19553	H3	L0	2.87E-09	1.92E-08	78.3	65.9	72	7	82	0
19547	19554	H4	L0	5.00E-07	5.00E-07	67.5	51.8	71	6	82	0
19548	19555	H0	L1	7.42E-09	4.37E-08	73.5	59.8	65	0	81	-1
19549	19556	H0	L2	3.15E-09	2.32E-08	75	61	65	0	81	-1
9950	19550	H0	L0	5.61E-09	3.29E-08	75.8	63.5	65	0	82	0
20007		H3	L1	3.35E-09	1.89E-08	75	n.t.	72	7	81	-1
20008		H3	L2	1.41E-09	1.28E-08	77	n.t.	72	7	81	-1
20009		H3	L0.12	2.46E-09	1.71E-08	79	n.t.	72	7	77	-5
20010		H3	L0.18	2.17E-09	1.57E-08	77	n.t.	72	7	77	-5
20011		H3	L0.22	4.13E-09	2.46E-08	78.5	n.t.	72	7	91	9
20012		H3	L0.27	1.31E-09	1.04E-08	77.5	n.t.	72	7	81	-1
20013		H3	L0.32	1.59E-09	1.48E-08	78.5	n.t.	72	7	80	-2
20014		H3	L0.36	3.75E-09	2.39E-08	77.5	n.t.	72	7	79	-3
20015		H3	L0.37	1.44E-09	1.06E-08	77	n.t.	72	7	79	-3
20016		H3	L0.39	1.29E-08	3.75E-08	77.5	n.t.	72	7	79	-3
20017		H3	L0.41	1.84E-09	1.65E-08	78	n.t.	72	7	78	-4
20018		H3	L0.67	3.49E-08	5.00E-07	77.5	n.t.	72	7	82	0
20019		H3	L0.69	2.64E-09	n.t.	77.5	n.t.	72	7	81	-1
20020		H3	L0.74	2.68E-09	n.t.	78.8	n.t.	72	7	82	0
20021		H3	L0.75	2.81E-09	n.t.	78	n.t.	72	7	81	-1
20022		H3	L0.103	3.69E-09	2.64E-08	78	n.t.	72	7	73	-9
20052		H3	L0.44	6.78E-09	4.20E-08	75.8	n.t.	72	7	82	0
20068	20075	H3.1	L0.12	5.37E-10	3.64E-09	81	69	68	3	77	-5
20069	20076	H3.2	L0.12	6.24E-10	4.10E-09	81	69.5	68	3	77	-5
20070	20077	H3.3	L0.12	2.21E-09	1.08E-08	81	67	68	3	77	-5
20071	20078	H3.4	L0.12	1.37E-09	6.14E-09	81	69.5	68	3	77	-5
20072	20079	H3.5	L0.12	3.72E-09	1.59E-08	81.5	70	68	3	77	-5
20073	20080	H3.6	L0.12	8.14E-09	2.59E-08	81.5	69.5	68	3	77	-5
20074	20081	H3.7	L0.12	1.58E-09	1.11E-08	80	67	62	-3	77	-5
20323	20360	H3.9	L0.12	1.16E-09	5.54E-09	n.t.	69.5	68	3	77	-5

Figure 24G

Fab XENP	scFv XENP	VH	VL	Human CTLA-4 Fab K _D (M)	Cyno CTLA-4 Fab K _D (M)	Fab T _m (°C)	scFv T _m (°C)	VH 9-mers	Δ VH 9-mers	VL 9-mers	Δ VL 9-mers
20324	20361	H3.10	L0.12	7.08E-10	3.34E-09	n.t.	68.5	68	3	77	-5
20325	20362	H3.11	L0.12	1.65E-09	6.52E-09	n.t.	71	68	3	77	-5
20326	20363	H3.12	L0.12	1.20E-08	4.13E-08	n.t.	70	68	3	77	-5
20327	20364	H3.13	L0.12	8.15E-10	4.56E-09	n.t.	70	68	3	77	-5
20328	20365	H3.14	L0.12	3.46E-09	1.95E-08	n.t.	69.5	68	3	77	-5
20329	20366	H3.15	L0.12	8.65E-09	3.62E-08	n.t.	71.5	68	3	77	-5
20330	20367	H3.16	L0.12	1.56E-08	6.23E-08	n.t.	70.5	68	3	77	-5
20331	20368	H3.17	L0.12	3.93E-09	2.51E-08	n.t.	70.5	68	3	77	-5
20332	20369	H3.18	L0.12	1.71E-08	8.46E-08	n.t.	69.5	68	3	77	-5
20333	20370	H3.19	L0.12	4.09E-09	1.60E-08	n.t.	71.5	68	3	77	-5
20334	20371	H3.20	L0.12	2.59E-08	2.54E-06	n.t.	70.5	68	3	77	-5
20335	20372	H3.21	L0.12	1.55E-09	9.54E-09	n.t.	71	68	3	77	-5
20336	20373	H3.22	L0.12	7.49E-09	2.98E-08	n.t.	69.5	68	3	77	-5
20337	20374	H3.23	L0.12	1.17E-09	4.78E-09	n.t.	70.5	68	3	77	-5
20338	20375	H3.24	L0.12	8.44E-09	2.96E-08	n.t.	69.5	68	3	77	-5
20339	20376	H3.25	L0.12	4.51E-10	2.75E-09	n.t.	69.5	68	3	77	-5
20340	20377	H3.26	L0.12	1.97E-09	1.23E-08	n.t.	69	68	3	77	-5
20341	20378	H3.4	L0.118	1.55E-09	6.67E-09	n.t.	70.5	68	3	82	0
20342	20379	H3.4	L0.119	1.89E-09	8.23E-09	n.t.	70	68	3	82	0
20343	20380	H3.4	L0.120	2.70E-09	1.06E-08	n.t.	70	68	3	86	4
20344	20381	H3.4	L0.121	1.28E-09	5.54E-09	n.t.	71	68	3	86	4
20345	20382	H3.4	L0.122	1.98E-09	8.47E-09	n.t.	71	68	3	82	0
20346	20383	H3.4	L0.123	2.74E-09	1.14E-08	n.t.	71.5	68	3	91	9
20347	20384	H3.4	L0.124	1.41E-09	5.67E-09	n.t.	72.5	68	3	91	9
20348	20385	H3.4	L0.125	3.20E-09	1.37E-08	n.t.	70.5	68	3	91	9
20349	20386	H3.4	L0.126	1.68E-09	7.52E-09	n.t.	71.5	68	3	91	9
20350	20387	H3.4	L0.127	2.46E-09	9.53E-09	n.t.	72	68	3	95	13
20351	20388	H3.4	L0.128	3.16E-09	1.33E-08	n.t.	72	68	3	91	9
20352	20389	H3.4	L0.129	1.65E-09	7.31E-09	n.t.	73	68	3	91	9
20353	20390	H3.4	L0.130	2.77E-09	1.09E-08	n.t.	73	68	3	100	18
20354	20391	H3.4	L0.131	2.70E-09	1.08E-08	n.t.	72.5	68	3	100	18
20355	20392	H3.4	L0.132	2.78E-09	1.12E-08	n.t.	73.5	68	3	100	18
20356	20393	H3.5	L2	2.17E-09	1.13E-08	n.t.	67	68	3	81	-1
20357	20394	H3.5	L2.1	4.52E-09	2.41E-08	n.t.	67.5	68	3	90	8
20358	20395	H3.5	L2.2	1.90E-09	1.04E-08	n.t.	68.5	68	3	89	7
20359	20396	H3.5	L2.3	3.90E-09	2.05E-08	n.t.	69	68	3	98	16
20422	20431	H3.21	L0.124	5.55E-09	1.23E-08	n.t.	74	68	3	91	9
20423	20432	H3.21	L0.129	5.42E-09	1.36E-08	n.t.	74.5	68	3	91	9
20424	20433	H3.21	L0.132	5.27E-09	1.60E-08	n.t.	75	68	3	100	18
20425	20434	H3.23	L0.124	2.63E-09	4.99E-09	n.t.	73.5	68	3	91	9
20426	20435	H3.23	L0.129	2.97E-09	4.99E-09	n.t.	74	68	3	91	9
20427	20436	H3.23	L0.132	4.84E-09	8.89E-09	n.t.	74.5	68	3	100	18
20428	20437	H3.25	L0.124	4.80E-09	8.65E-09	n.t.	72.5	68	3	91	9
20429	20438	H3.25	L0.129	2.05E-09	3.99E-09	n.t.	73	68	3	91	9
20430	20439	H3.25	L0.132	1.80E-09	3.81E-09	n.t.	73.5	68	3	100	18

Figure 25

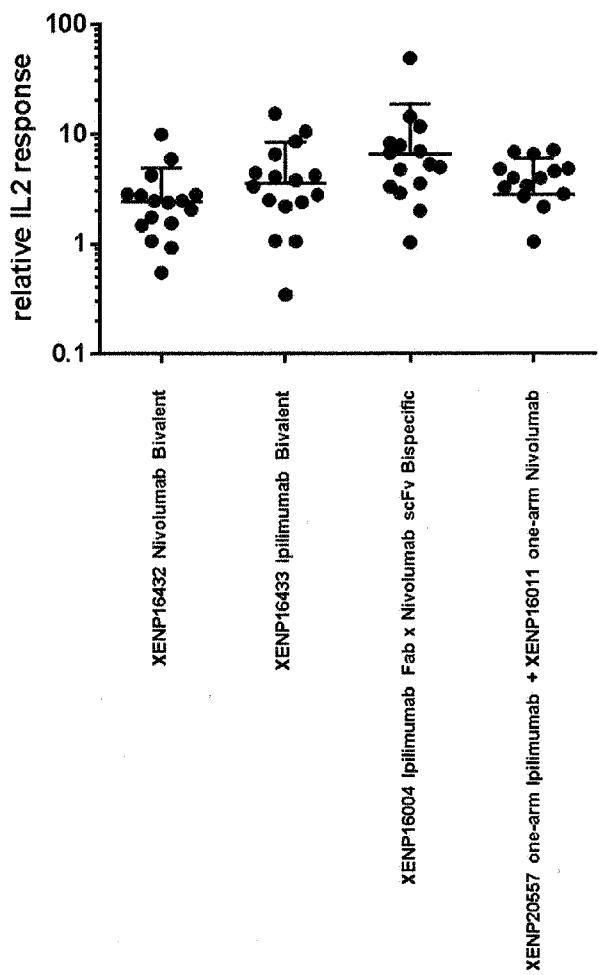


Figure 26

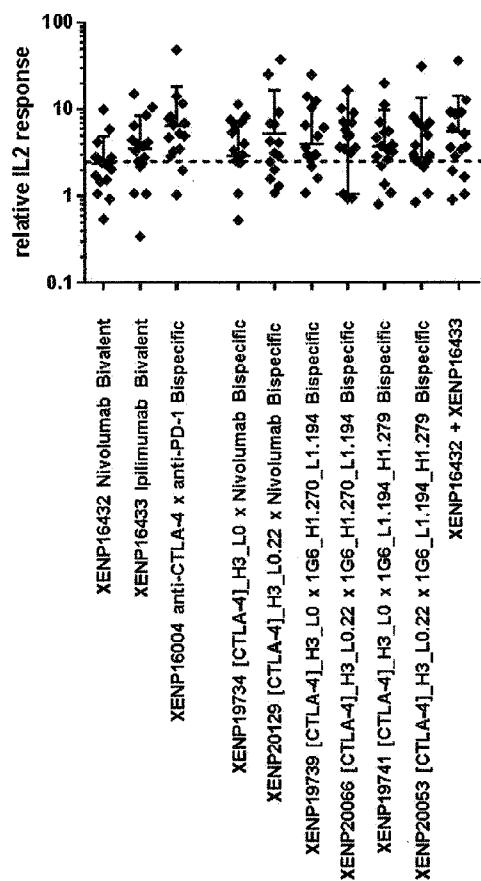


Figure 27

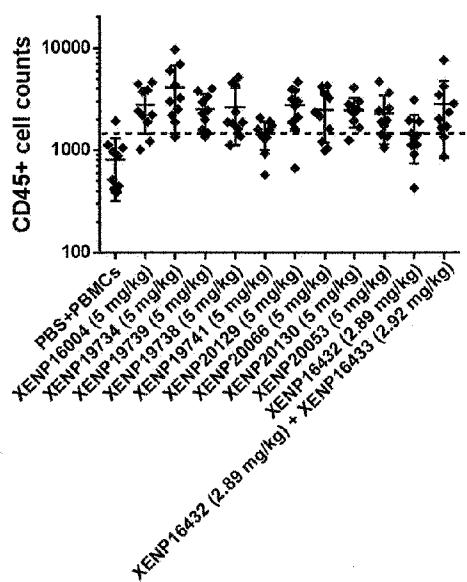


Figure 28

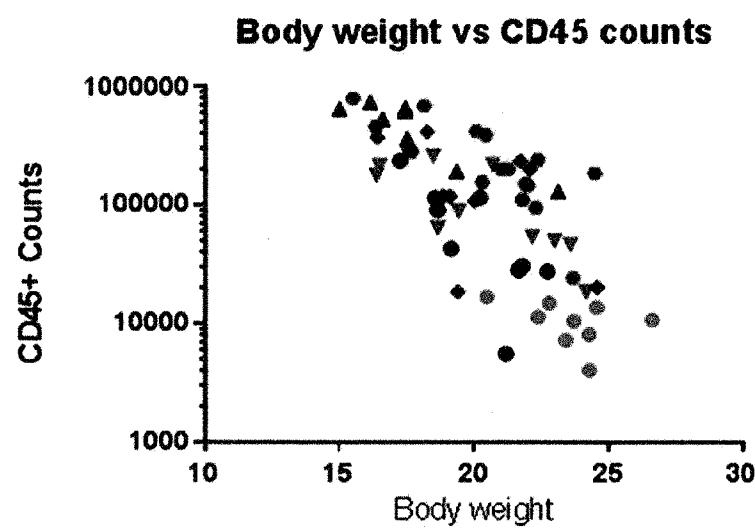


Figure 29

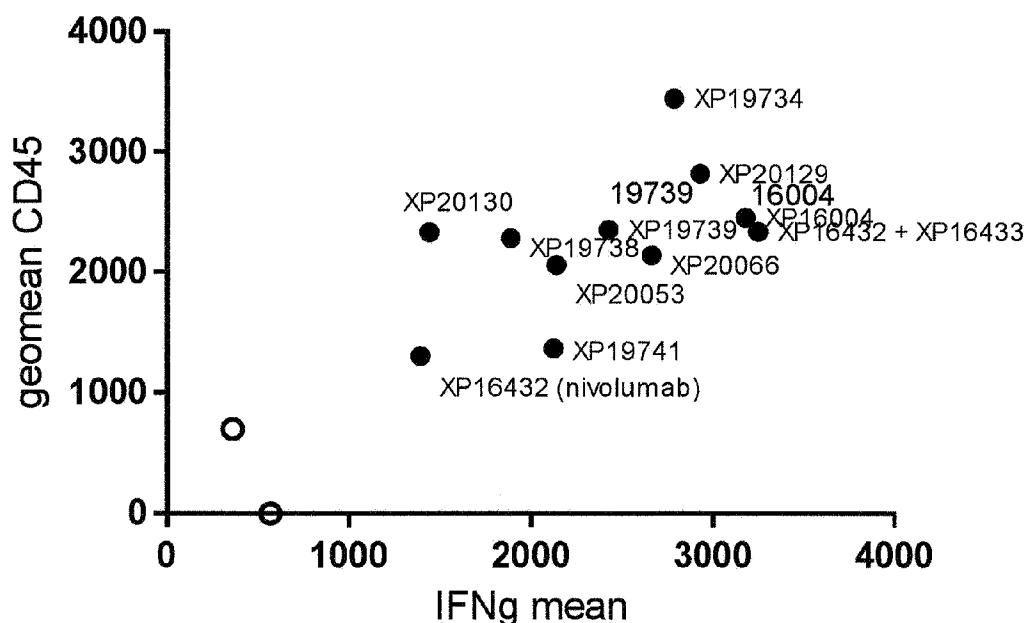


Figure 30

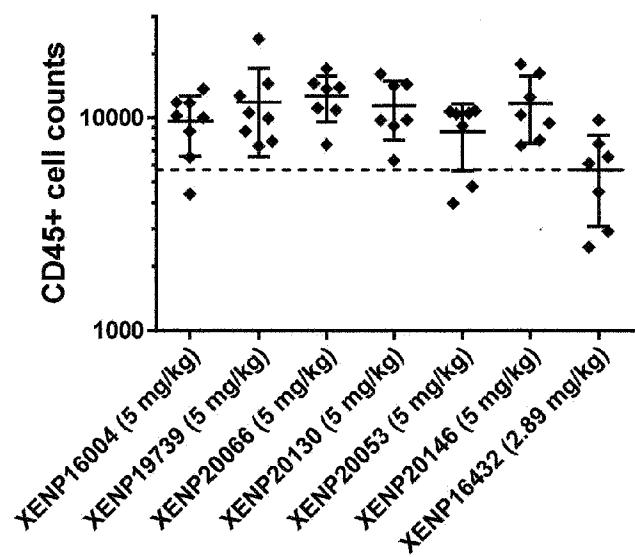


Figure 31

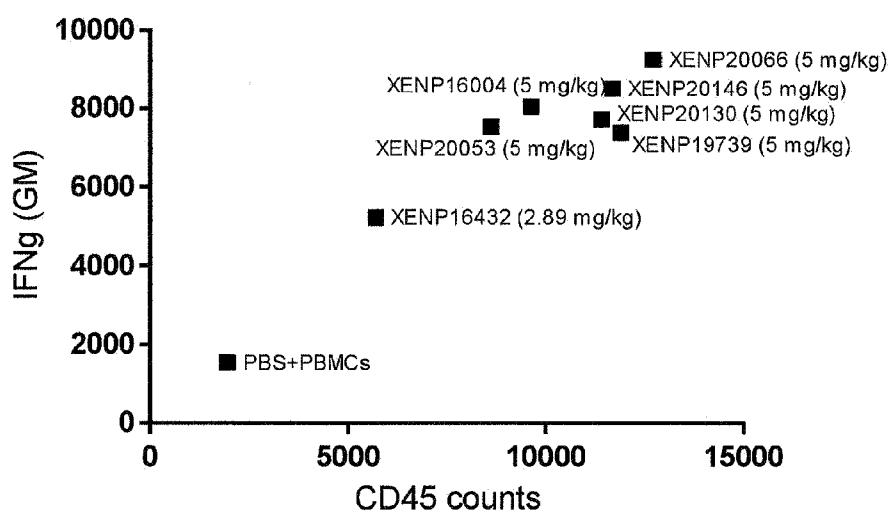


Figure 32

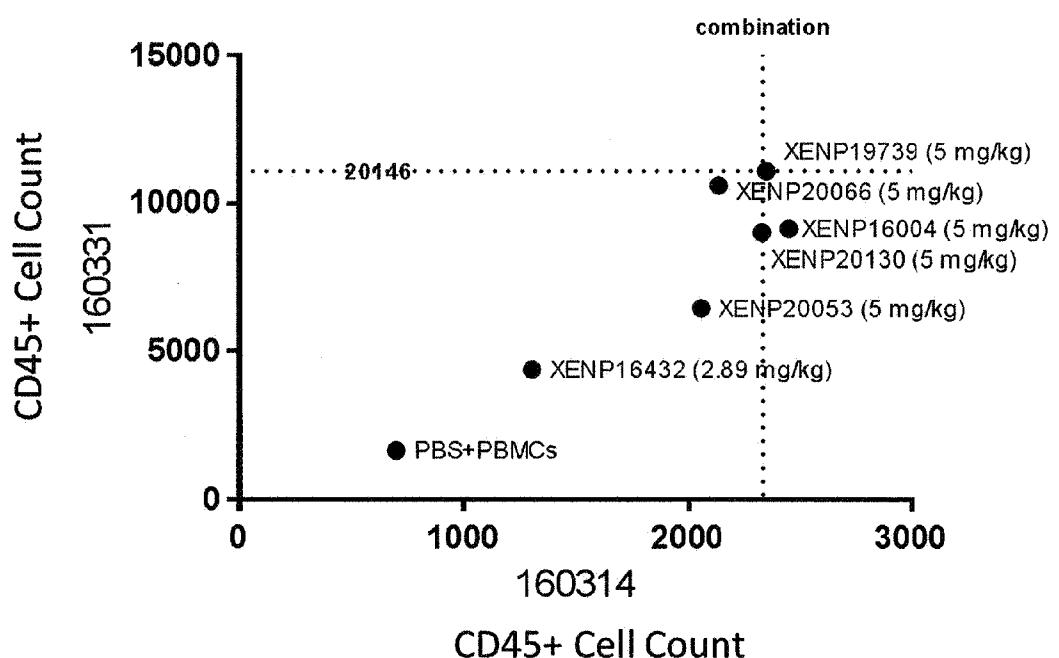


Figure 33A

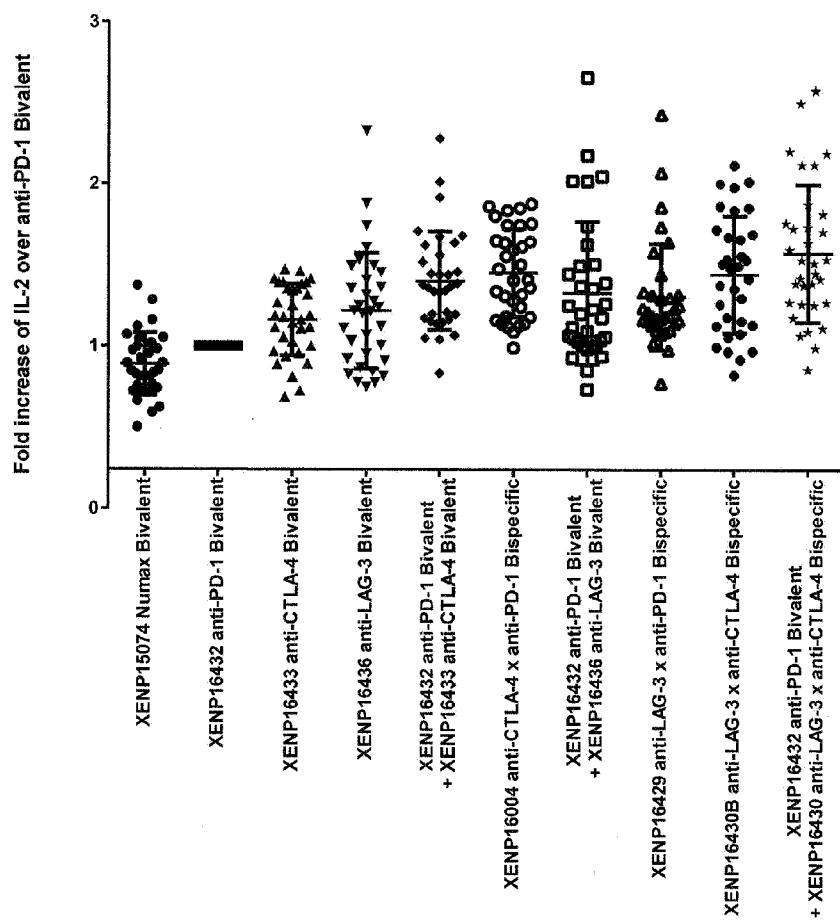


Figure 33B

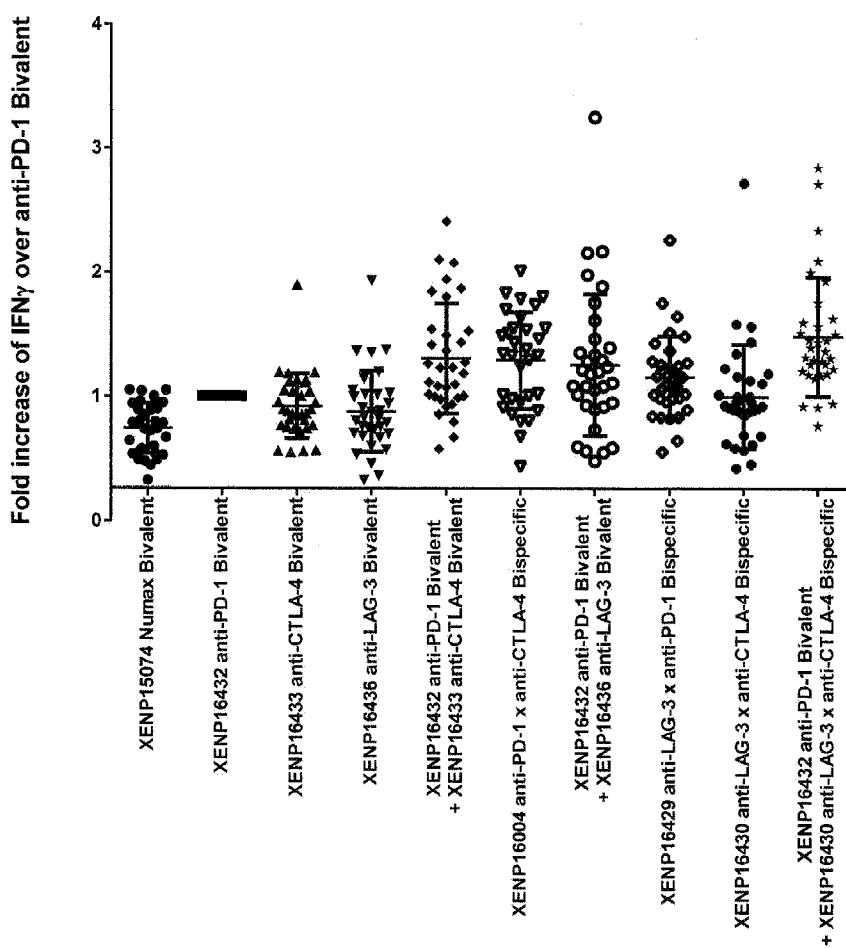


Figure 34

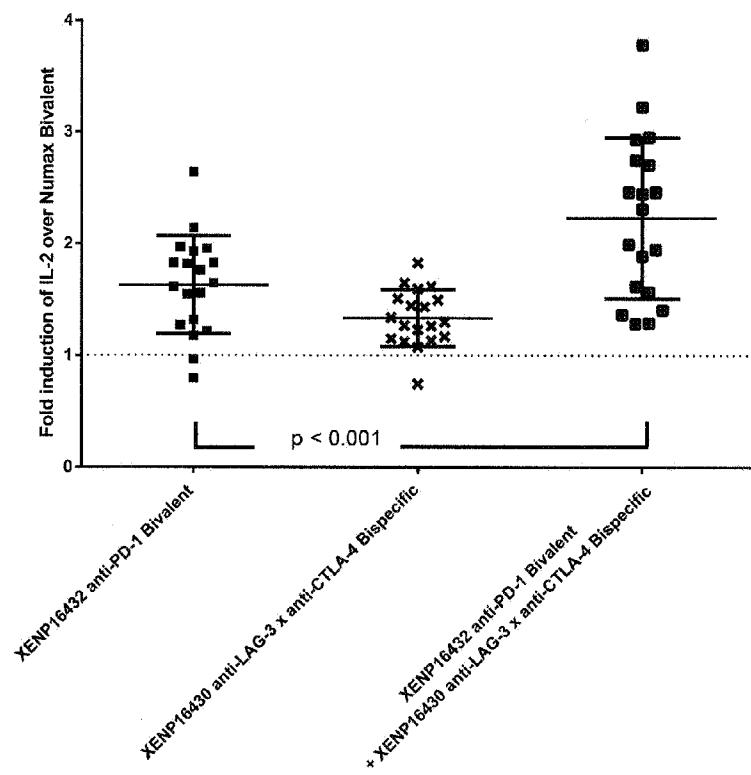


Figure 35

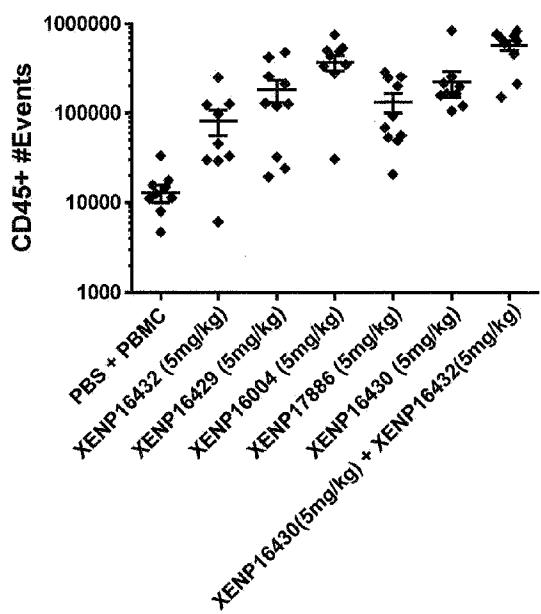


Figure 36A

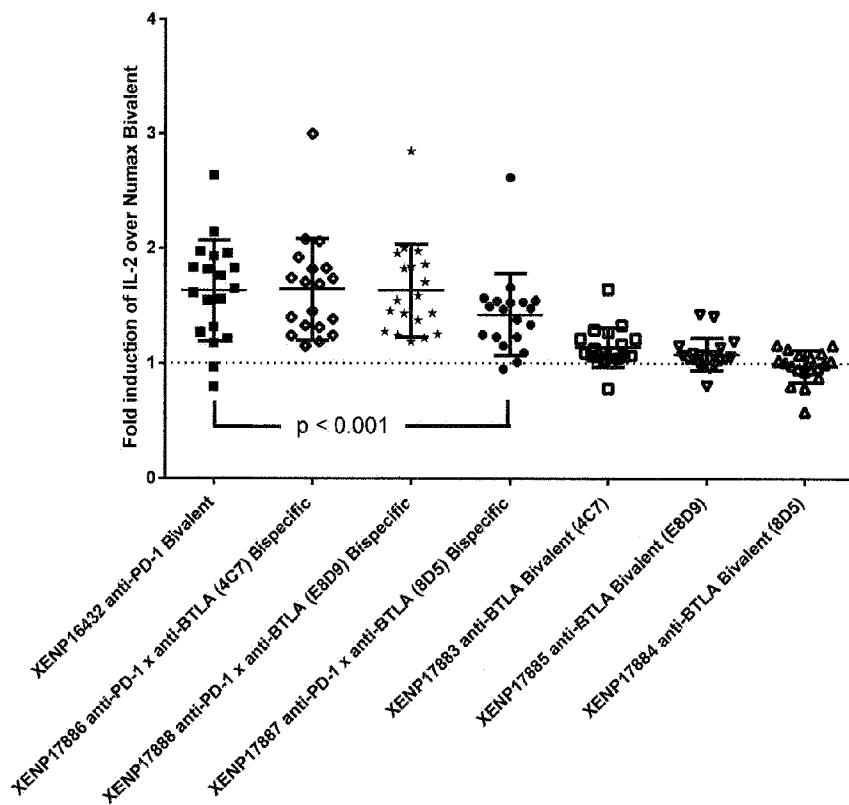


Figure 36B

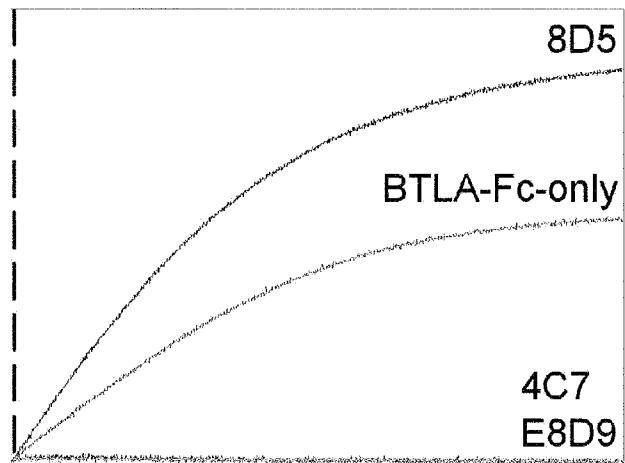


Figure 37A

Bottle opener backbone 1

Fab side heavy chain (SEQ ID NO: 37725)

ASTIKGPSVFLAPSSKSTSGTAALGCLVKDYPFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHRPSDTKVDKKVEPKSCDKTH
 TCPPCPAAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYDGVFPEVTKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKV
 EKTISSKAKGQPREPQVYTLPPSREEMTKNQVSLTCDVSGFYPSDIAVEWESDGOPENNYKTTPPVLDSDGSFTFLYSKLTVDKSRWEQGDFVSCSVMEALHNHYTQK
 SLSLSPGK

scFv heavy chain (SEQ ID NO: 37726)

EPKSSDKTHTCPPCPAAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYDGVFPEVTKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKV
 SNKALPAPIEKTISSKAKGQPREPQVYTLPPSREEMTKNQVSLTCDVSGFYPSDIAVEWESDGOPENNYKTTPPVLDSDGSFTFLYSKLTVDKSRWEQGDFVSCSVME
 ALHNHYTQKSLSLSPGK

constant light chain (SEQ ID NO: 37727)

RTVAAPSVFIFPPSDEQLEKSGTASVVCILNNFYPREAKVQWVDNALOSGNSQESVTEQDSKRDSTYLSLSSITLSKADYERHKVYACEVTHOGLSSPVTKSFRNGEC

Bottle opener backbone 2

Fab side heavy chain (SEQ ID NO: 37728)

ASTIKGPSVFLAPSSKSTSGTAALGCLVKDYPFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHRPSDTKVDKKVEPKSCDKTH
 TCPPCPAAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYDGVFPEVTKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKV
 EKTISSKAKGQPREPQVYTLPPSREEMTKNQVSLTCDVSGFYPSDIAVEWESDGOPENNYKTTPPVLDSDGSFTFLYSKLTVDKSRWEQGDFVSCSVMEALHNHYTQK
 SLSLSPGK

scFv heavy chain (SEQ ID NO: 37729)

EPKSSDKTHTCPPCPAAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYDGVFPEVTKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKV
 SNKALPAPIEKTISSKAKGQPREPQVYTLPPSREEMTKNQVSLTCDVSGFYPSDIAVEWESDGOPENNYKTTPPVLDSDGSFTFLYSKLTVDKSRWEQGDFVSCSVME
 ALHNHYTQKSLSLSPGK

Figure 37B

Bottle opener backbone 3

Fab side heavy chain (SEQ ID NO: 37731)

ASTKGPSVFPPLAPSSKSTSGGTAALGCLVKDYPFPEPVTVSWNSGALTSGVHTFPALQSSGLYSSLSSVVTYVSSSLGQTYYICNVNHNKPSDTKVDKKVEPKSCDKTH
 TCPPCPAEPVAGPSVLEFPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYVDGVEVHNAKTPKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI
 EKTISKAKGQPREFQVYTLPPSREEMTKNQVSLTCEVSGFYPSDIAVEMESDGOPENNYKTTPPVLDGSEFLYSKLTIVDERSWEQGDFVSCSVMHEALHNHYTQK
 SLSLSPGK

scFv heavy chain (SEQ ID NO: 37732)

EPKSSDKTHTCPPCPAPPVAGPSVLFPPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYVDGVEVHNAKTPKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKV
 SNKALPAPIERKTISSKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGGFYPSPDIAVEMESNGOPENNYKTTPPVLDGSEFLYSKLTIVDERSWEQGDFVSCSVMHE
 ALHNHYTQKSLSLSPGK

Bottle opener backbone 4

Fab side heavy chain (SEQ ID NO: 37734)

ASTKGPSVFPPLAPSSKSTSGGTAALGCLVKDYPFPEPVTVSWNSGALTSGVHTFPALQSSGLYSSLSSVVTYVSSSLGQTYYICNVNHNKPSDTKVDKKVEPKSCDKTH
 TCPPCPAEPVAGPSVLEFPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYVDGVEVHNAKTPKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI
 EKTISKAKGQPREFQVYTLPPSREEMTKNQVSLTCEVSGFYPSDIAVEMESDGOPENNYKTTPPVLDGSEFLYSKLTIVDERSWEQGDFVSCSVMHEALHNHYTQK
 KSLSLSPGK

scFv heavy chain (SEQ ID NO: 37735)

EPKSSDKTHTCPPCPAPPVAGPSVLFPPKPKDTLMISRTPEVTCVVVDVKHEDPEVKENWYVDGVEVHNAKTPKPREEEYNSTYRVVSVLTVLHQDWLNGKEYKCKV
 SNKALPAPIERKTISSKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGGFYPSPDIAVEMESNGOPENNYKTTPPVLDGSEFLYSKLTIVDERSWEQGDFVSCSVMHE
 ALHNHYTQKSLSLSPGK

Figure 37C

Bottle opener backbone 5 (356D/358L allotype)

Fab side heavy chain (SEQ ID NO: 39158)

```

ASTKGPSVEPLAPSSKSTSGGTAALGCLMKDFPEPVTVWMSGALTSCGVHTFPAVLQSSGLYSLSSYYVPESSSLGTQTYICNYNHKPSDTKVDKKVEPKSCDKTH
TCPPCAPPVAGPSVFLEFPPKPKDTLMISRTPEVTCVVDVKHEDPVKFNWYVDGVEHNAKTKPREEYNYTYRVVSVLTVLHQDWLNGKEYKCKV
EKTISKAKGQPREPQVYTLPPSDAWEESDGQPENNYKTPPVIDSGSFLYSKLTVDKSRWEQGDVFSCSVMHE
SLSLSPGK

```

scFv heavy chain (SEQ ID NO: 39-59)

```

EPKSDXTHTCPPCAPPVAGPSVFLEFPPKPKDTLMISRTPEVTCVVDVKHEDPVKFNWYVDGVEHNAKTKPREEYNYTYRVVSVLTVLHQDWLNGKEYKCKV
SNKAPAPIEKTISKAKGQPREPQYTLPPSDAWEESDGQPENNYKTPPVIDSGSFLYSKLTVDKSRWEQGDVFSCSVMHE
ALHNYTQKSLSLSPGK

```

Bottle opener backbone 6

Fab side heavy chain (SEQ ID NO: 39160)

```

ASTKGPSVEPLAPSSKSTSGGTAALGCLMKDFPEPVTVWMSGALTSCGVHTFPAVLQSSGLYSLSSYYVPESSSLGTQTYICNYNHKPSDTKVDKKVEPKSCDKTH
TCPPCAPPVAGPSVFLEFPPKPKDTLMISRTPEVTCVVDVKHEDPVKFNWYVDGVEHNAKTKPREEYNYTYRVVSVLTVLHQDWLNGKEYKCKV
EKTISKAKGQPREPQVYTLPPSDAWEESDGQPENNYKTPPVIDSGSFLYSKLTVDKSRWEQGDVFSCSVMHE
SLSLSPGK

```

scFv heavy chain (SEQ ID NO: 39-61)

```

EPKSDXTHTCPPCAPPVAGPSVFLEFPPKPKDTLMISRTPEVTCVVDVKHEDPVKFNWYVDGVEHNAKTKPREEYNYTYRVVSVLTVLHQDWLNGKEYKCKV
SNKAPAPIEKTISKAKGQPREPQYTLPPSDAWEESDGQPENNYKTPPVIDSGSFLYSKLTVDKSRWEQGDVFSCSVMHE
ALHNYTQKSLSLSPGK

```

Figure 37D

Bottle opener backbone 7

Fab side heavy chain (SEQ ID NO: 39162)

```

ASTKGPSVFLAPSSKSSTSGGTAALGCLVYDFFPEPVTWSWNMSGALTSGVHTFPAVLOQSSGLYSLSSVYTYPSSSLGTTYICNYNHNPDSDTKVDKVKVEPKSCDKTH
TCPPCPAPPVAGPSVFLFPPKPKDTLMSRTPETVCAVWVYDVKHEDEPEVKFNWYVDGVEVHNAKTKPREEYSSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAP
EKTISKAKGQPREPQVYTLPSSQEEMTKNOVSLLCDVSGFYPSDIAVEMESDGQOPENNYKTTPPVILDGSSEFLYSKLTVDKSRWEQGVTSCSVMEALHNHYTQK
SLSLSPGK

```

scFv heavy chain (SEQ ID NO: 39163)

```

EPKSDRTHTCPPCPAPPVAGPSVFLFPPKPKDTLMSRTPETVCAVWVYDVKHEDEPEVKFNWYVDGVEVHNAKTKPREEYSSTYRVSVLTVLHQDWLNGKEYKCKV
SNKALPAPIEKTTISKAKGQPREPQVYTLPSSQEEMTKNOVSLLCDVSGFYPSDIAVEMESNGQOPENNYKTTPPVILDSDGSFFFLYSKLTVDKSRWEQGVTSCSVME
ALHNHYTQKSLSLSPGK

```

Bottle opener backbone 8

Fab side heavy chain (SEQ ID NO: 39164)

```

ASTKGPSVFLAPCSRSTSESTAAALGCLVYDFFPEPVTWSWNMSGALTSGVHTFPAVLOQSSGLYSLSSVYTYPSSSLGTTYICNVDHKPSDTKVDKVKVESKYGPPCP
PCPAEEFLGGPSVFLFPPKPKDTLMSRTPETVCAVWVYDVKQEDPEVQFNWYVDGVEVHNAKTKPREEYSSTYRVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEK
TISKAKGQPREPQVYTLPSSQEEMTKNOVSLLCDVSGFYPSDIAVEMESDGQOPENNYKTTPPVILDSDGSFFFLYSKLTVDKSRWEQGVTSCSVMEALHNHYTQKSL
SLSLSPGK

```

scFv heavy chain (SEQ ID NO: 39165)

```

ESKGPPCPCCPAPEFLGGPSVFLFPPKPKDTLMSRTPETVCAVWVYDVKQEDPEVQFNWYVDGVEVHNAKTKPREEYSSTYRVSVLTVLHQDWLNGKEYKCKVSN
KCLPSIEKTTISKAKCQPREPQVYTLPSSQEEMTKNOVQLTCAVNGTYPSEQMTENQVLTQKSLTVDKSRWEQGVTSCSVMEALHNHYTQKSLSLSPGK

```

Figure 37E

Bottle opener backbone 9

Fab side heavy chain (SEQ ID NO: 39166)

```
ASTKGPSVFLAPCSRSTSESTAALGCLVKDYPEPVTWSMNSGALTSGYHTPEAVLQSSGLYSLSSVYTYPSSNFGTQTYTCNVVDHKPSTDVKYDVKTYVERKCCVECP
PCPAFPVAGPSVFLFPPPKPKDTLMISRTPEVTCVWVQDVEVHNAKTKPREFEFNSTFRVYVSLTVHQDWLNGKEIKCKVSNKGLPAPIEKT
ISKTKGQPREPOVYTLPPSREMTKNOVSLTCDVSGFYPSDIAVEWESDQOPENNYKTTPPMLSDGSFFFLYSKLTVDKSRSWEQGDVFSCSYMHAEALHNHYTQKSL
LSPGK
```

scFv heavy chain (SEQ ID NO: 39167)

```
ERKCSVECPFCAPPVAGPSVFLFPPPKPKDTLMISRTPEVTCVWVQDVEVHNAKTKPREFEFNSTFRVYVSLTVHQDWLNGKEIKCKVSNKGLPAPIEKT
GLPAPIEKTISKTKGQPREPOVYTLPPSREMTKNOVSLTCDVSGFYPSDIAVEWESDQOPENNYKTTPPMLSDGSFFFLYSKLTVDKSRSWEQGDVFSCSYMHAEALHNHYTQKSL
LSPGK
```

Bottle opener backbone 10

Fab side heavy chain (SEQ ID NO: 39168)

```
ASTKGPSVFLAPCSRSTSESTAALGCLVKDYPEPVTWSMNSGALTSGYHTPEAVLQSSGLYSLSSVYTYPSSNFGTQTYTCNVVDHKPSTDVKYDVKTYVERKCCVECP
PCPAFPVAGPSVFLFPPPKPKDTLMISRTPEVTCVWVQDVEVHNAKTKPREFEFNSTFRVYVSLTVHQDWLNGKEIKCKVSNKGLPAPIEKT
ISKTKGQPREPOVYTLPPSREMTKNOVSLTCDVSGFYPSDIAVEWESDQOPENNYKTTPPMLSDGSFFFLYSKLTVDKSRSWEQGDVFSCSYMHAEALHNHYTQKSL
LSPGK
```

scFv heavy chain (SEQ ID NO: 39169)

```
ERKCSVECPFCAPPVAGPSVFLFPPPKPKDTLMISRTPEVTCVWVQDVEVHNAKTKPREFEFNSTFRVYVSLTVHQDWLNGKEIKCKVSNKGLPAPIEKT
GLPAPIEKTISKTKGQPREPOVYTLPPSREMTKNOVSLTCDVSGFYPSDIAVEWESDQOPENNYKTTPPMLSDGSFFFLYSKLTVDKSRSWEQGDVFSCSYMHAEALHNHYTQKSL
LSPGK
```

Figure 38A

mAb-scFv backbone 1 (356E/358M allotype)

monomer 1 (Fab-scFv side) (SEQ ID NO: 37737)

```

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVTVSSSLGTQTYICNVNHHKPSSDTKVDKVKVEPKSDKTHTCPPCPAPP
VAGPSVFLFPPKEDTLMISRTPEVTCVVVDVKEDEPEVKTNAYVDGVEVNAKTKPREEQYNSTYRVVSVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVT
LPPSREEMTKNQVSLTCDVSGF4PSDIAVEMSDQOPENNYKTPPVILDSDGSEFFLYSKLTVDKSRWEQGDVFSCSVMMHEALHNHYTQSLSLSPGK

```

monomer 2 (Fab side) (SEQ ID NO: 37738)

```

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVTVSSSLGTQTYICNVNHHKPSSDTKVDKVKVEPKSDKTHTCPPCPAPP
VAGPSVFLFPPKEDTLMISRTPEVTCVVVDVKEDEPEVKTNAYVDGVEVNAKTKPREEQYNSTYRVVSVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVT
LPPSREQMTKQVSLTCLVKGFPSDIAVEMSDQOPENNYKTPPVILDSDGSEFFLYSKLTVDKSRWEQGDVFSCSVMMHEALHNHYTQSLSLSPGK

```

constant light chain (SEQ ID NO: 37739)

```

RTVYAAAPSVFIFPPSDEQLK3GTASVAVCLNNFYPREAKYQWVQVNDALQSGNQESVTEQDSDKSTYSLSSSTLTLSKADDYEEKHYACEVYTHQGLSSPVTKSENRCGC

```

Figure 38B

mAb-scfFv backbone 2

Fab-SCFv-HC - 356D/358L allototype (SEQ ID NO: 39170)

ASTKGPSVFPIAPSSKSTSGGTAALGCLVKYFPEPVTVWSAGALTSGVHTFPAVLQSSGLYSSVTVSSSLGTQTYIVNVNHKPSIDIKVKVEPKSDKTHTCPAPPVAGPSVFLFPKPDTLMISRPEVTVVVKHDEPEVTVNAYVGVEYNARTKPREEEYNSTYRVSVLVLHQDWLNGREYKCKVSMALPAPIEKTISKANGQPREPVYTLEPSREEMTKHQSLSLTCDVSSGTPSDIAWESDGOOPENNKKITPPVLDSDSEFFELYSKLTIDRSRWEQDFTSCSVMEALINHYTOKSLSLSEPK

>mab-scfv Fab-HC = 356D/358L allotype (see ID No.: 39171)

ASTKGPSVFPIAPSSKSTSGGTAAAGCIVDKYDFPEPVTVWSNSGALTSGVHTDEPAVLOSSGLYSSSVVTPSSSLGTQTYIVNVNHPSPDIDKTHTPPPCPAPP
VAGPSVSEFLPFPKPDLMISRTPEVTCVYDVKHDEPEVTRNAYDGVEMHAKTPREEQNTSYRVSVSLVHQDWLNGKEYKCVSNSHALPAPIEKTISKAQGPREFQVYT
LPSRSDOLTKHOKKLTCIYKGYPSDIAVEMNGOPENNYYKTPPVLDSDGSEFLYSKLTIDRSRWOOGUVFCSVMHEALHNHYTOKSLSLPGK

mAb-scfv backbone 3

>mailbox=ssCFW; Fab=ssCFW-HC = N297A 'SEQ ID NO: 3917?')

ASTKGPSVFPLAPSSKSTSGGTAALGCLVQKDYPEPEVTVWSNLGALSGHTFPAVLQSSGLYSSVTPSSSLGTTQYCNVNHKPSDITVKDEKEVPEKSCDKTHTCPPCPAPP
VAGPSVLEFLPPKDTLMSRTPETCVYDVKHEDPEVANAYVGDVEYVNAKTPREEEASTYRVVSVLTLHQDWLNLGEYKCKVSKNPKALPAIETKTSKAGQPREPVYPT
LPPSREFEMTKNOVSITCUDSYFPSDITAVWMSDGOPEFNNYKUTPPVILDSSEFETYKSRITVDRSRMEOGUVFSCSYVMEAHINHYOTKSLSI SPGK

symAb-scEVY Fab-HC = N297A (SEQ ID NO: 29173)

ASTKGPSVFPLAPSSKSTSGGTAALGCLYKDYPEPEVTVSYNSGALTSGCYHTFPAVLQSSGLYSSLSSVTVYSSSLGTQTYLICVNHHKPSDTKTHCTPPCAPP
VAGPSVLELFPEPKDTLMISRTEPVTCVYDVKHDEPEVTKENAYDGEVYNAKTPREQQASYTRWVSYSTLTHQDMVNGKEYKCKVSYNALPAPIEKTISKAKGQPREQVYT
LPPSPSRQOMTKNOVKLTCVAGCFFPSDIAFWESNGOPENNYYKTPPVIDSDSSEFLYSKTTYDKRSRQOGHMFSCSYMHRAHNHYTOKSSTSPPGK

Figure 38C

mA_b-scFv backbone 4

>mAb-SCFv Fab-SCFv-HC - N297S (SEQ ID NO: 39174)

ASTKGPSVPLAPSSKSTSGGTAALGCLVQDFPEPVTVWSNLGALTSQVHTPAVLQSSGLYSSLGQTQYICVNNHKSPTDKVDKKVEPKSCKDTHTCPPCAPP
VAGPSVFLPEPKDITLMSRPEVTCVVYLVKHEDPEVKENAWYDGVETVAKTPQREEYSSVYVSVLTLHODMLNQKEYKCKVSYNHALPALEKTSKAKGQPREPQYTT
LPSREEMKNOVSLTCDSGYPSDIAWESDGOOPENYKXKTPVLDSDSFFLYSKLTYDRSWEQGDYSCSYVMHEALINHYTOKSLSSPGK

卷之三

ASTKGPSVFPALPSSKSTSGGTAALGCLYKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSSVLTSGTQTYCIVNWKPSDITKVDKVEPKSSDVKDTHTCPPCPAPP
VAGKDPFVPPKPKDMLISRPEDVTCVYDVKHEDPEVENVYDVGVEVHNAKTVPDLWNGKEYKCVNSKALVPIEKTISKAGQPREPVYT
VAGKDPFVPPKPKDMLISRPEDVTCVYDVKHEDPEVENVYDVGVEVHNAKTVPDLWNGKEYKCVNSKALVPIEKTISKAGQPREPVYT

$m3h = scEuv$ $Fah = scEuv = TagA = Hs$ (SEQ ID No: 39176)

ASTKGPSSVPLAPCSRSTSESTAALGCLVKDYPPEPVTVWNISGALTSGVHTPVALVQSSGLYSSVSSSLGTTTVDHKPSDITVKRVEVKYGPCCPPCAPEFLG
GSSVLEPPKEKDTLMISRPPEVTCVVDVKQEDPEVQWVYDGEVHBAKTKPREFENSTYRVSVLTVLHQDWLNGKLXVKCYSNGLPSSIEKTIISAKGQPREPVYTLPE
PSOFEWMTKUNQMSLTCVSGFPESDTAVEMEISGOPENYXKTTTPYTDSDGAFFLYSKLIVDYESRWEFGDVYFCSVVMHEATHHYTOKSLSIYGK

卷之三

ASTKGPSVFPLAPCSRSTSESTAAAGCLVKKDYFPEPVTVSYNSGALTSGYHTPAVLQSSGLYSSLSVVTVPSSSLGTKTYTCNVDHKPSPDTVKERVESKYGPBCCPAPPEFLG
GFSVSVLFLPPKEDTMISRTPEVTCVWVYKQEDPEVQFWYVDPGEVHMAKTPREEQFNSTYRVSVLTVHQDWLNGQQEERIISKAFCQGPREFQPYVTLIP

Figure 38D

mAb-scFv backbone 6

>mAb-scFv Fab-scFv-IgG2-Hc - without S267K (SEQ ID NO: 39178)
 ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDDHKPSDTKVDKTVERKCCVECPPCPAPPVAG
 PSVFLFPKPDKTLMISRTPETVYVVDVKHEDPEVQENWVYDGEVENAKTPREEEFNSTFRVSVLTVHODWLNGREYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLLPP
 SREEMTKNQVSLTCDVSGFYPSPDIAVEWESDGOENNYKTIPMLSDGSEFLYSKLTVDSRMEQGDVTSVLTQKSLSPGK

>mAb-scFv Fab-IgG2-Hc - without S267K (SEQ ID NO: 39179)
 ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDDHKPSDTKVDKTVERKCSVECPPCPAPPVAG
 PSVFLFPKPDKTLMISRTPETVYVVDVKHEDPEVQENWVYDGEVENAKTPREEEFNSTFRVSVLTVHODWLNGREYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLLPP
 SREQMTKRNQVSLTCDVSGFYPSPDIAVEWESNG2PENNYKTIPMLSDGSEFLYSKLTVDSRMEQGDVTSVLTQKSLSPGK

mAb-scFv backbone 7

>mAb-scFv Fab-scFv-IgG2-Hc - with S267K (SEQ ID NO: 39180)
 ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDDHKPSDTKVDKTVERKCCVECPPCPAPPVAG
 PSVFLFPKPDKTLMISRTPETVYVVDVKHEDPEVQENWVYDGEVENAKTPREEEFNSTFRVSVLTVHODWLNGREYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLLPP
 SREEMTKNQVSLTCDVSGFYPSPDIAVEWESDGOENNYKTIPMLSDGSEFLYSKLTVDSRMEQGDVTSVLTQKSLSPGK

>mAb-scFv Fab-IgG2-Hc - with S267K (SEQ ID NO: 39181)
 ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDDHKPSDTKVDKTVERKCSVECPPCPAPPVAG
 PSVFLFPKPDKTLMISRTPETVYVVDVKHEDPEVQENWVYDGEVENAKTPREEEFNSTFRVSVLTVHODWLNGREYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLLPP
 SREQMTKRNQVSLTCDVSGFYPSPDIAVEWESNG2PENNYKTIPMLSDGSEFLYSKLTVDSRMEQGDVTSVLTQKSLSPGK

Figure 39A**A**

1st/2nd antigens	PD-1	CTLA-4	TIM-3	LAG-3	TIGIT	BTLA
PD-1	XXX	A, B, C, D, E				
CTLA-4	A, B, C, D, F	XXX	A, B, C, D, F			
TIM-3	A, B, C, D, G	A, B, C, D, G	XXX	A, B, C, D, G	A, B, C, D, G	A, B, C, D, G
LAG-3	A, B, C, D, H	A, B, C, D, H	A, B, C, D, H	XXX	A, B, C, D, H	A, B, C, D, H
TIGIT	A, B, C, D, I	XXX	A, B, C, D, I			
BTLA	A, B, C, D, J	XXX				

Figure 39B**B**

1st/2nd antigens	PD-1	CTLA-4	TIM-3	LAG-3	TIGIT	BTLA
PD-1	XXX	A, B, C, D, E				
CTLA-4	A, B, C, D, F	XXX	A, B, C, D, F			
TIM-3	A, B, C, D, G	A, B, C, D, G	XXX	A, B, C, D, G	A, B, C, D, G	A, B, C, D, G
LAG-3	A, B, C, D, H	A, B, C, D, H	A, B, C, D, H	XXX	A, B, C, D, H	A, B, C, D, H
TIGIT	A, B, C, D, I	XXX	A, B, C, D, I			
BTLA	A, B, C, D, J	XXX				

Figure 40

1st/2nd antigens	PD-1	CTLA-4	TIM-3	LAG-3	TIGIT	BTLA
PD-1	-----	Q, R, S				
CTLA-4	Q, R, T	-----	Q, R, T	Q, R, T	Q, R, T	Q, R, T
TIM-3	Q, R, U	Q, R, U	-----	Q, R, U	Q, R, U	Q, R, U
LAG-3	Q, R, V	Q, R, V	Q, R, V	-----	Q, R, V	Q, R, V
TIGIT	Q, R, W	Q, R, W	Q, R, W	Q, R, W	-----	Q, R, W
BTLA	Q, R, X	-----				

Figure 41A

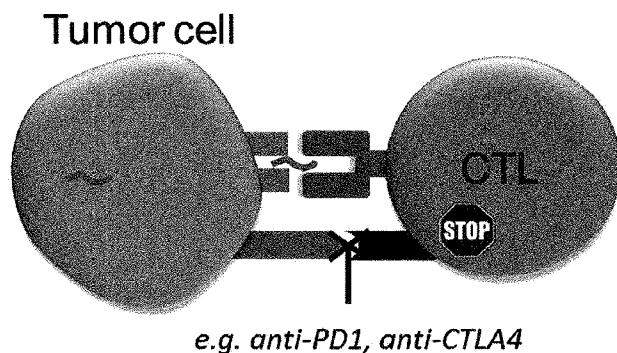


Figure 41B

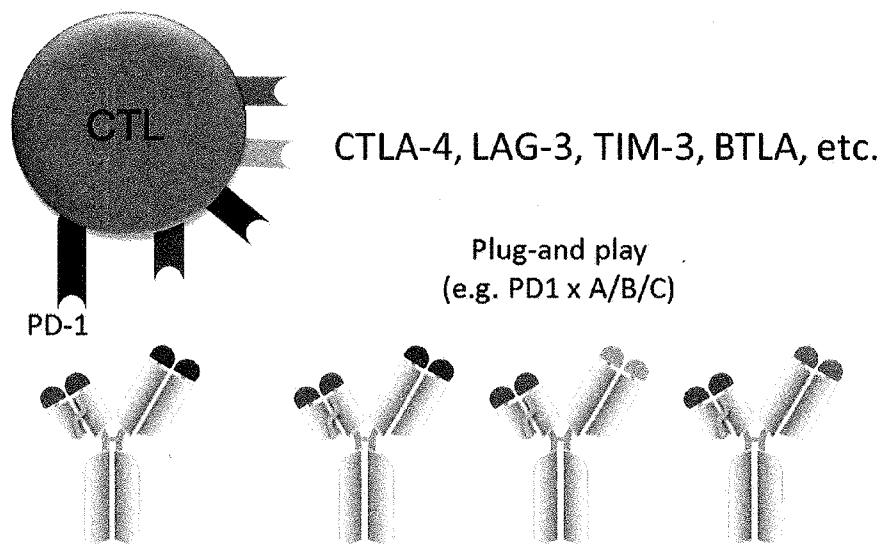


Figure 42

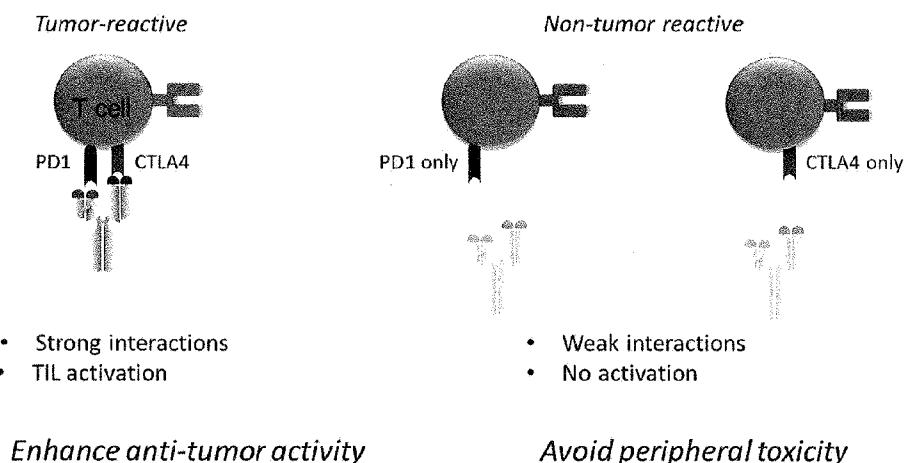


Figure 43

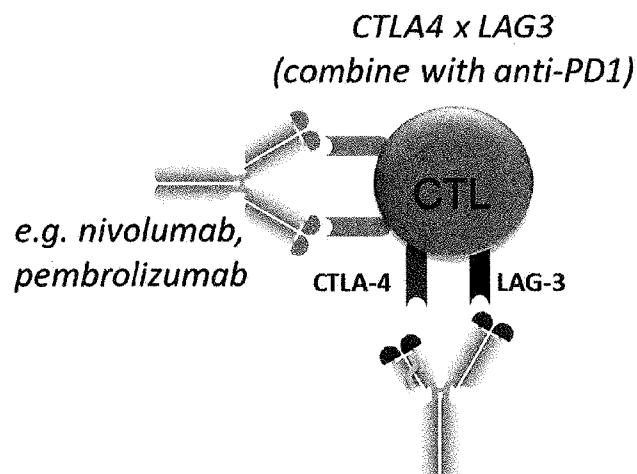


Figure 44

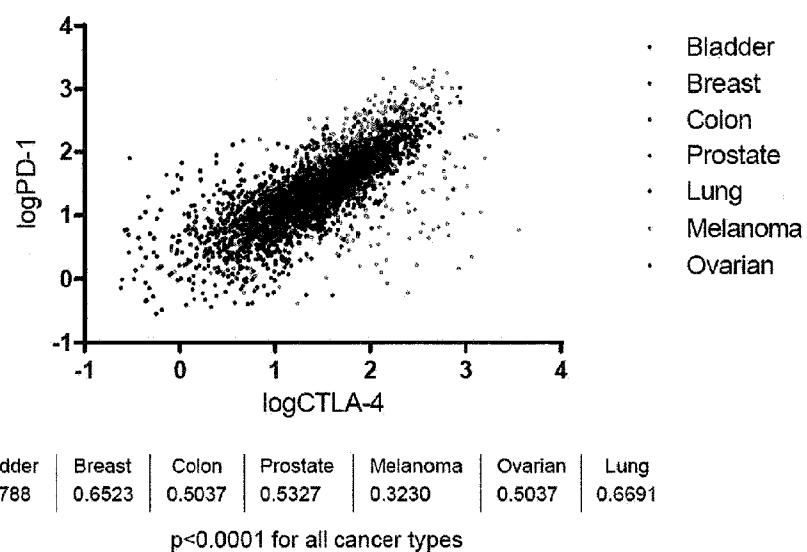


Figure 45A

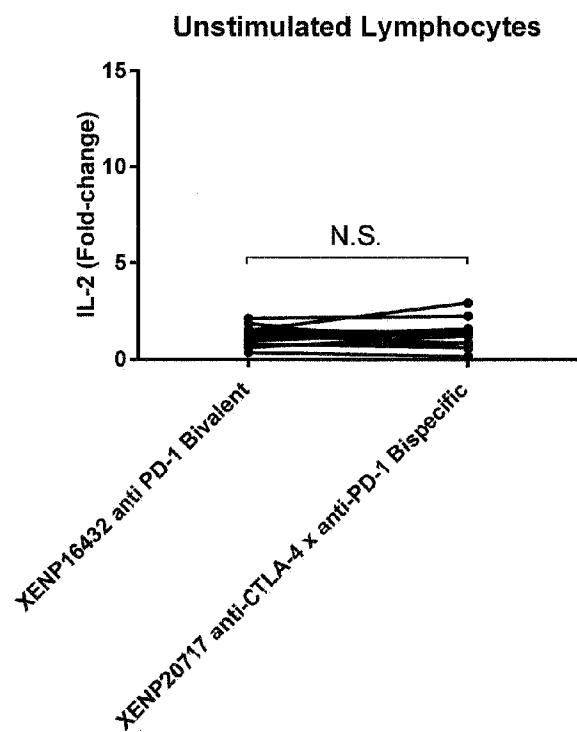


Figure 45B

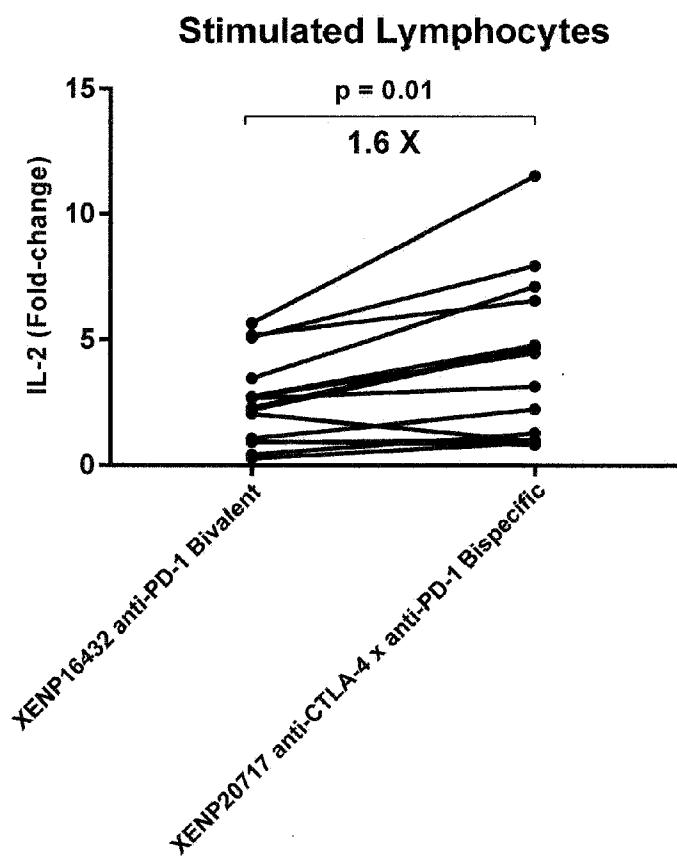


Figure 45C

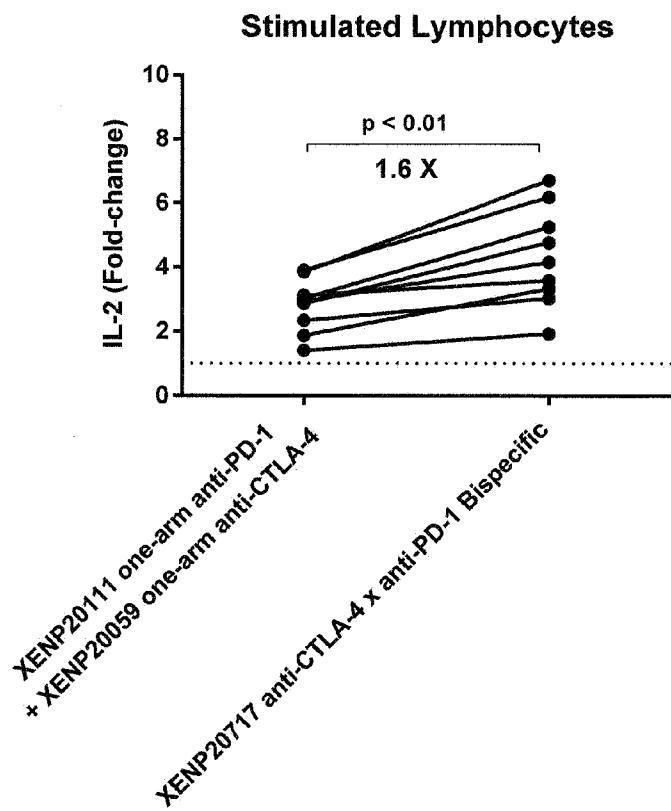


Figure 46A

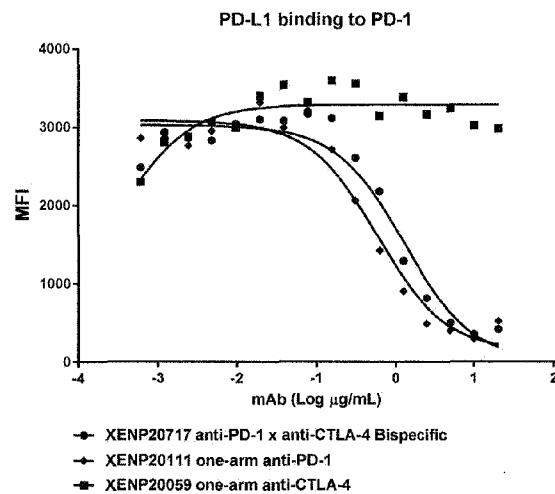


Figure 46B

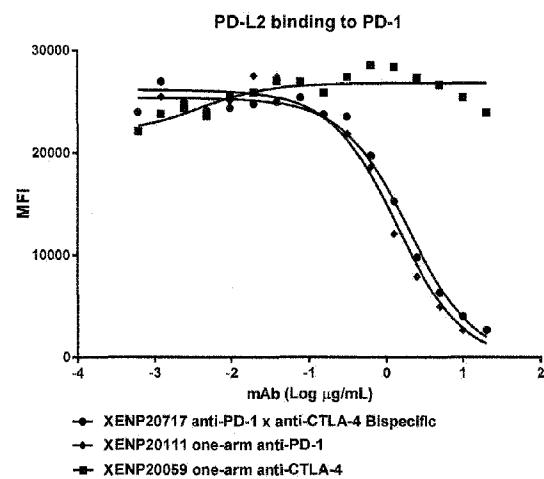


Figure 47

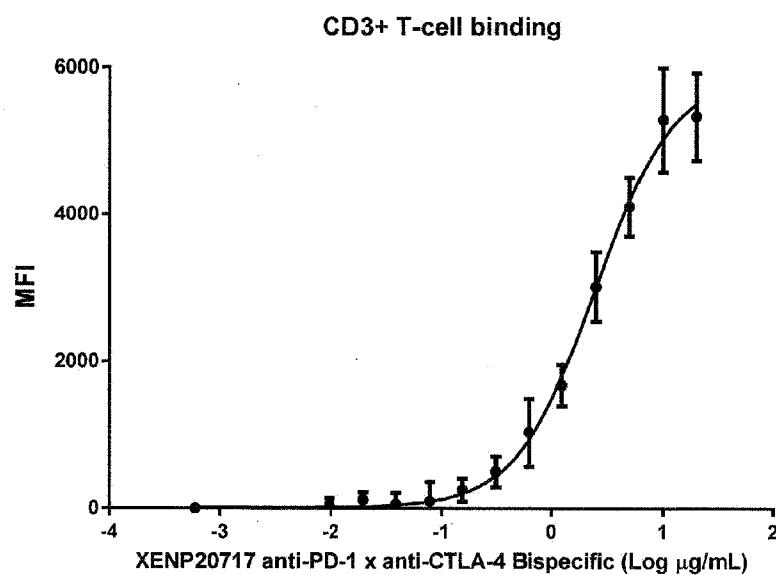
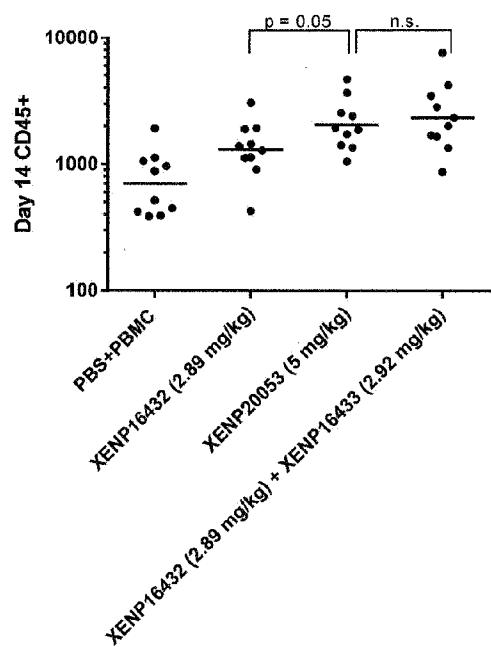



Figure 48

FIGURE 49

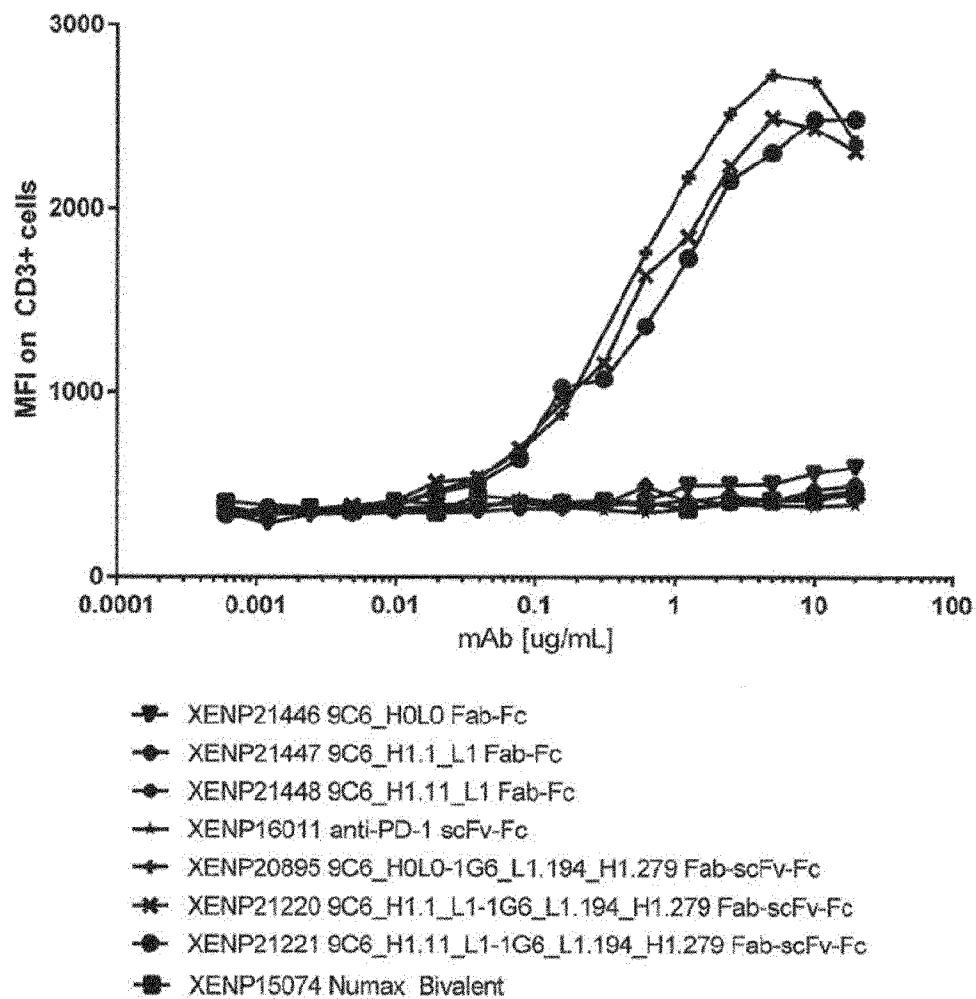


FIGURE 50A

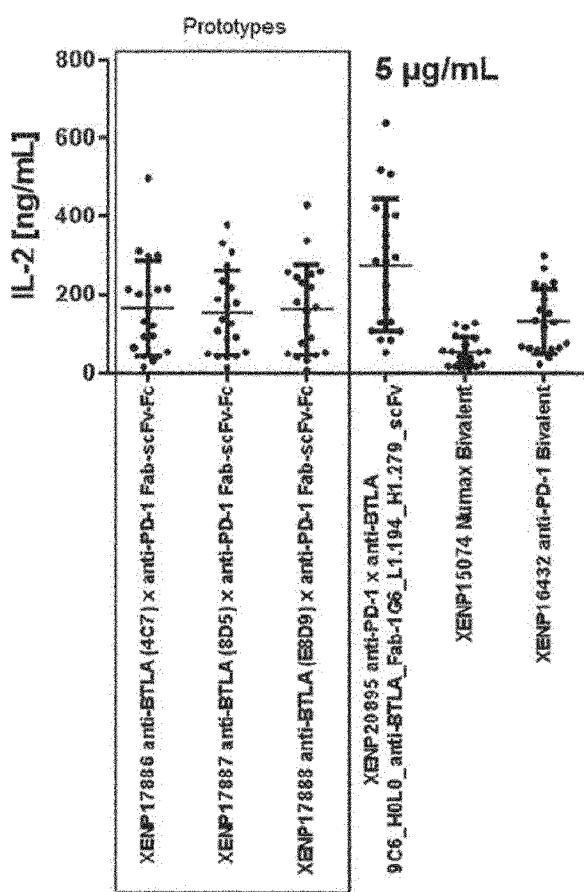


FIGURE 50B

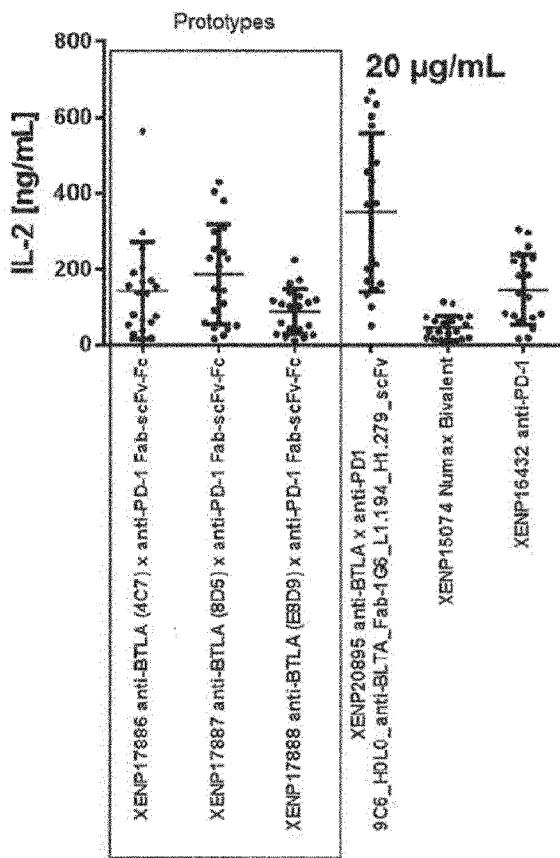


FIGURE 51A

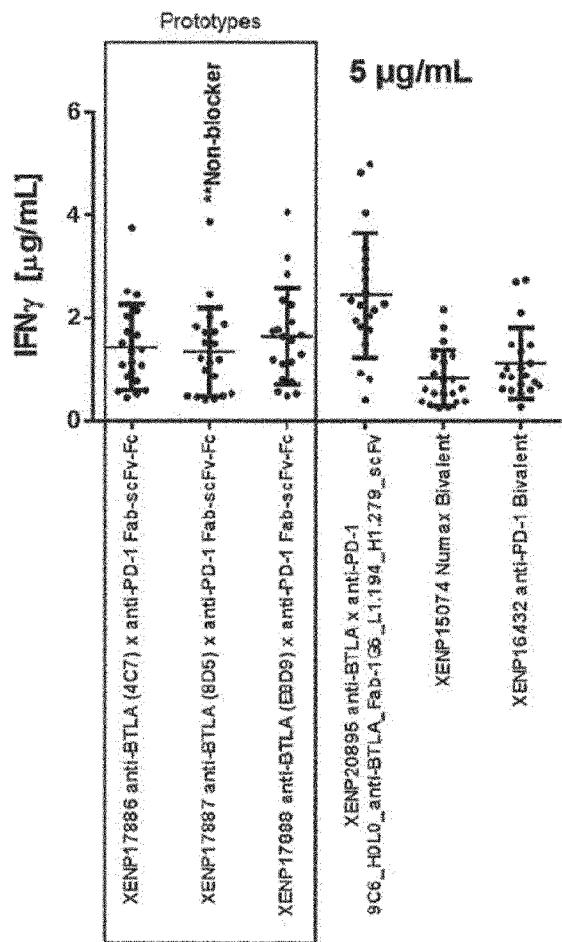


FIGURE 51B

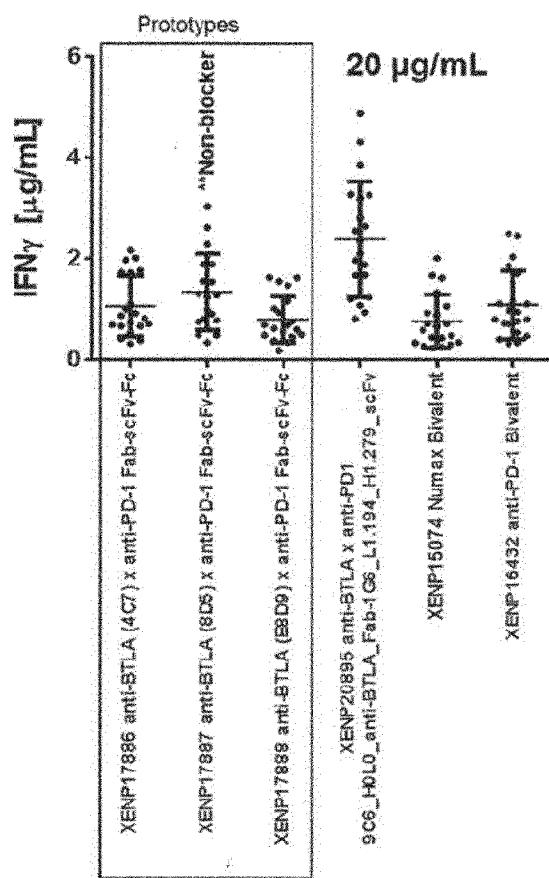


FIGURE 52A

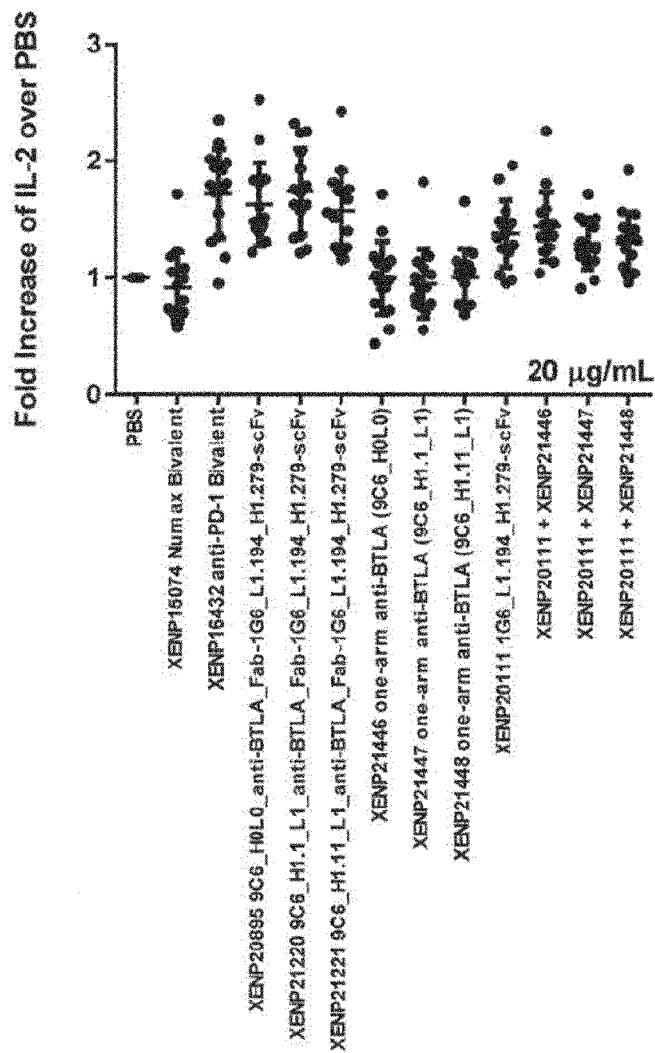


FIGURE 52B

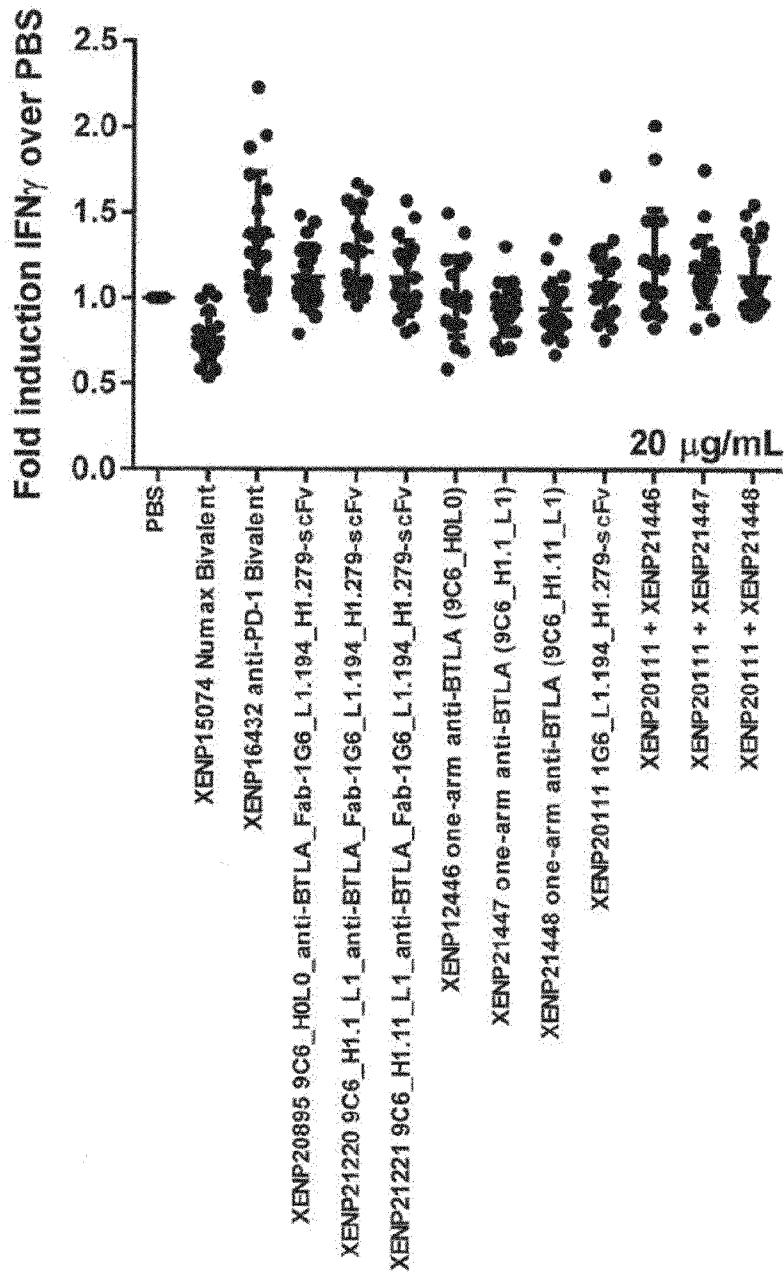
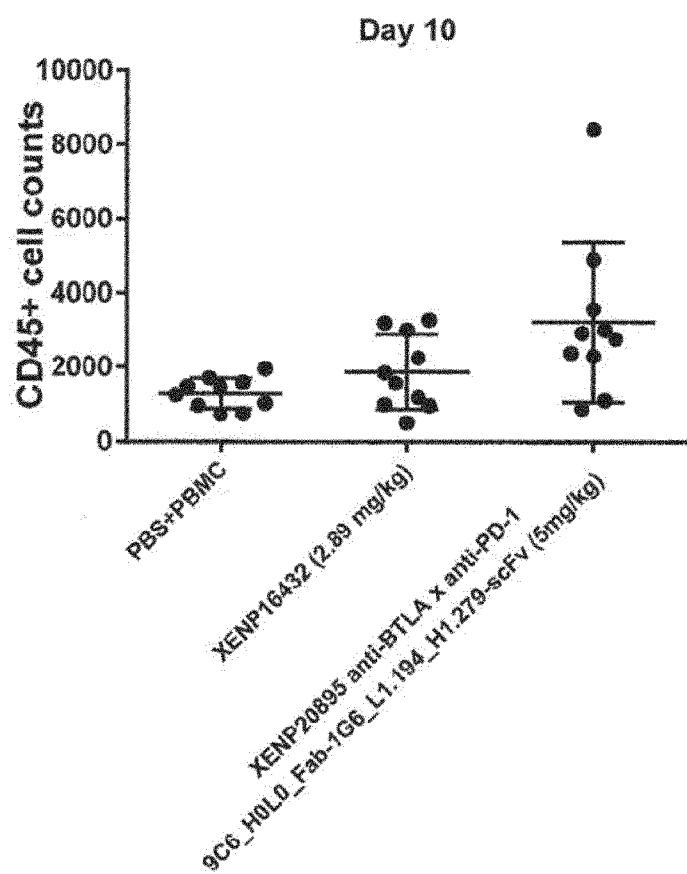



FIGURE 53A

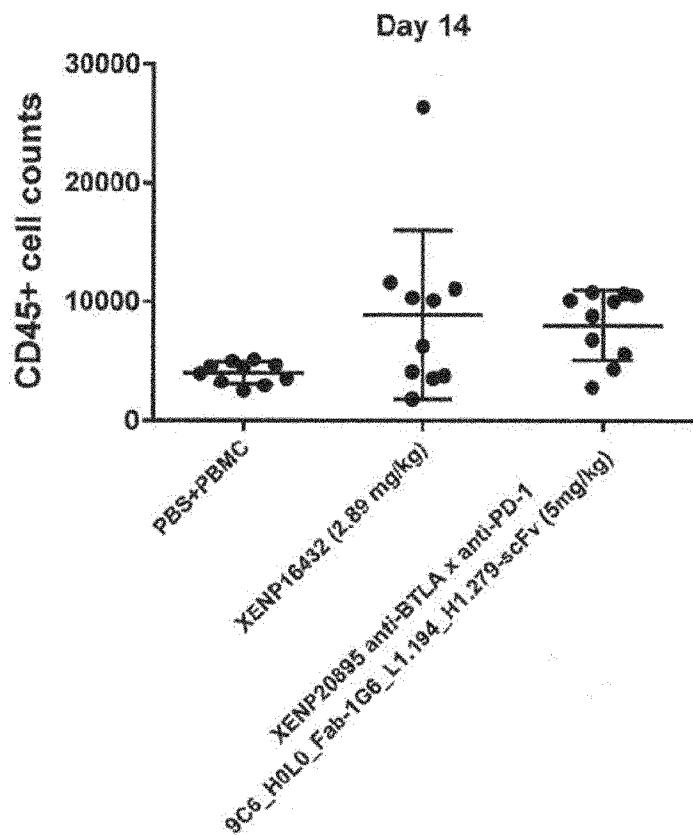
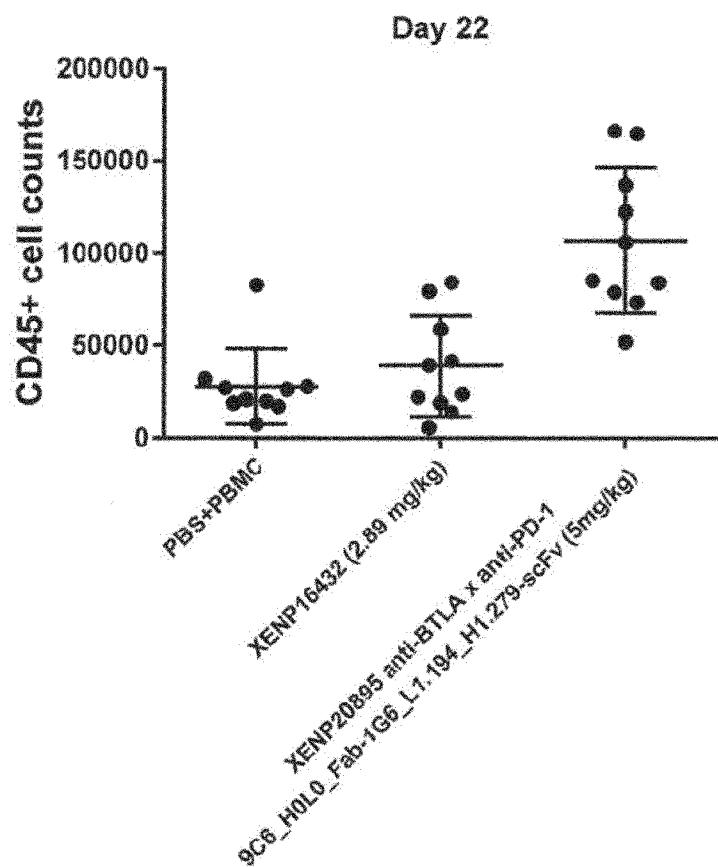


FIGURE 53B

FIGURE 53C

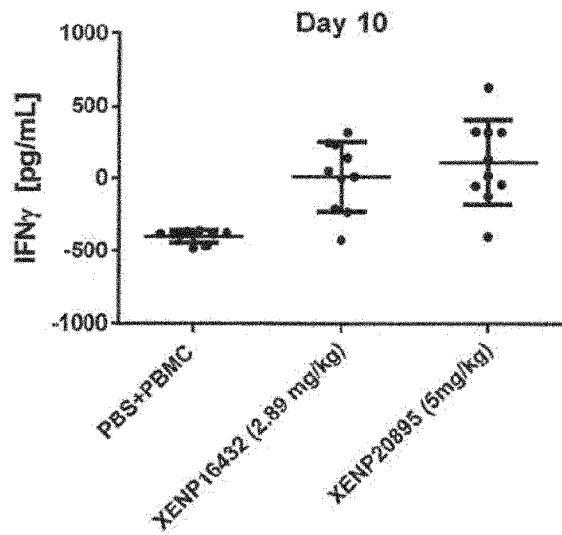
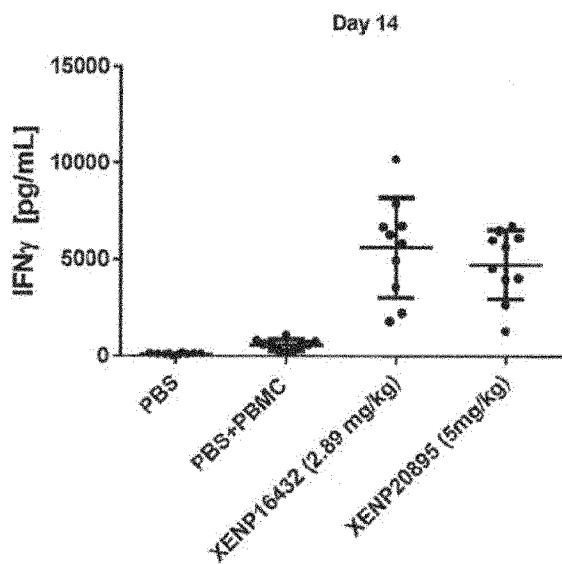
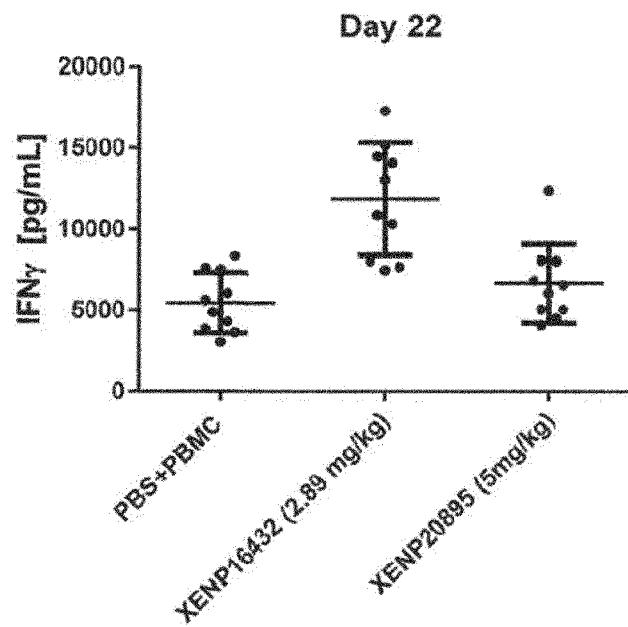



FIGURE 53D**FIGURE 53E**

FIGURE 53F

FIGURE 54

XENP (bivalent mAb)	Clone	VH	VL	KD (M; human BTLA)
20269	9C6	H0	L0	1.3E-08
20744	9C6	H0	L1	1.4E-08
20745	9C6	H0	L2	1.9E-08
20746	9C6	H1	L0	1.8E-08
20747	9C6	H1	L1	2.7E-08
20748	9C6	H1	L2	4.2E-08
20749	9C6	H2	L0	2.1E-08
20750	9C6	H2	L1	3.7E-08
20751	9C6	H2	L2	5.1E-08
20752	9C6	H3	L0	2.3E-08
20753	9C6	H3	L1	3.2E-08
20754	9C6	H3	L2	3.1E-08
20872	9C6	H1.1	L1	2.4E-08
20873	9C6	H1.2	L1	3.8E-08
20874	9C6	H1.3	L1	5.0E-08
20875	9C6	H1.4	L1	4.5E-08
20876	9C6	H1.5	L1	4.7E-08
20877	9C6	H1.6	L1	4.6E-08
20878	9C6	H1.7	L1	4.5E-08
20879	9C6	H1.8	L1	4.7E-08
20880	9C6	H1.9	L1	3.5E-08
20881	9C6	H1.10	L1	5.1E-08
20882	9C6	H1.11	L1	2.2E-08
20883	9C6	H1.12	L1	3.4E-08
20884	9C6	H1.13	L1	3.0E-08
20885	9C6	H1.14	L1	3.4E-08
20886	9C6	H1.15	L1	3.4E-08
20887	9C6	H1.16	L1	3.7E-08
20888	9C6	H1	L1.1	3.1E-08
20889	9C6	H1	L1.2	3.0E-08
20890	9C6	H1	L1.3	3.2E-08
20891	9C6	H1	L1.4	3.1E-08
20892	9C6	H1	L1.5	3.1E-08
20893	9C6	H1	L1.6	3.4E-08
20894	9C6	H1	L1.7	6.2E-08

FIGURE 55A

Fab XENP	VH	VL	Human LAG-3 Fab K _D (M)	Fab T _m (°C)
20847	H1	L2	1.37E-08	73.5
21228	H1.1	L2	1.43E-08	72.5
21232	H1.5	L2	1.73E-08	73
21235	H1.8	L2	1.15E-08	72.5
21236	H1.9	L2	1.26E-08	73
21239	H1.12	L2	1.25E-08	73.5
21245	H1.18	L2	1.27E-08	72.5
21249	H1.22	L2	9.50E-09	72.5
21256	H1.29	L2	1.30E-08	73.5
21264	H1.37	L2	3.60E-09	73
21284	H1.57	L2	2.36E-08	73.5
21286	H1.59	L2	3.61E-08	73.5
21291	H1.64	L2	6.71E-09	73
21292	H1.65	L2	7.08E-09	73
21295	H1.68	L2	1.31E-08	72.5
21301	H1.70	L2	5.47E-09	72.5
21302	H1.71	L2	1.25E-08	74.5
21304	H1.73	L2	1.63E-08	73.5
21306	H1.75	L2	1.69E-08	74
21327	H1.96	L2	1.93E-08	73.5
21329	H1.98	L2	1.11E-08	73.5
21332	H1.101	L2	1.43E-08	73.5
21336	H1.105	L2	5.41E-09	73
21339	H1.108	L2	1.29E-08	73.5
21342	H1.111	L2	1.18E-08	73.5
21344	H1.113	L2	1.16E-08	73
21351	H1	L2.4	1.07E-08	71.5
21353	H1	L2.6	1.68E-08	70.5
21360	H1	L2.13	1.17E-08	74
21369	H1	L2.22	1.74E-08	71
21370	H1	L2.23	9.74E-09	73
21371	H1	L2.24	1.80E-08	73
21382	H1	L2.35	5.44E-09	73
21392	H1	L2.45	5.09E-09	72
21394	H1	L2.47	3.40E-09	73.5
21395	H1	L2.48	8.27E-09	72
21401	H1	L2.50	2.30E-09	73.5
21402	H1	L2.51	8.47E-09	73
21409	H1	L2.58	3.11E-09	77

FIGURE 55B

Fab XENP	VH	VL	Human LAG-3 Fab K _D (M)	Fab T _m (°C)
21411	H1	L2.60	1.46E-08	75
21421	H1	L2.70	6.58E-09	74
21423	H1	L2.72	1.15E-08	73
21424	H1	L2.73	7.68E-09	74
21426	H1	L2.75	1.61E-08	74.5
21609	H1.64	L2.35	1.16E-08	
21610	H1.64	L2.47	3.30E-09	
21611	H1.64	L2.50	2.34E-09	
21612	H1.70	L2.35	1.30E-08	
21613	H1.70	L2.47	6.29E-09	
21614	H1.70	L2.50	6.48E-09	
21615	H1.105	L2.35	5.82E-09	
21616	H1.105	L2.47	3.62E-09	
21617	H1.105	L2.50	2.02E-09	
21705	H.117	L2	2.90E-09	
21706	H.118	L2	4.06E-09	
21707	H.119	L2	7.72E-09	
21708	H.120	L2	8.48E-09	
21709	H.121	L2	3.19E-09	
21710	H.122	L2	4.54E-09	
21711	H.123	L2	7.63E-09	
21712	H.124	L2	1.08E-08	
21713	H.126	L2	1.63E-09	
21714	H.128	L2	5.70E-09	
21715	H.129	L2	1.16E-08	
21716	H.130	L2	9.43E-09	
21717	H.131	L2	1.63E-08	
21718	H.132	L2	2.12E-08	
21719	H.133	L2	1.60E-08	
21720	H.134	L2	2.45E-08	
21721	H.135	L2	5.71E-09	
21722	H.136	L2	3.03E-09	
21723	H.137	L2	7.26E-09	
21724	H.138	L2	8.29E-09	
21725	H.139	L2	7.00E-09	
21726	H.140	L2	1.03E-08	
21727	H.141	L2	4.74E-09	
21728	H.142	L2	1.61E-06	
21729	H.143	L2	4.70E-09	

FIGURE 55C

Fab XENP	VH	VL	Human LAG-3 Fab K _D (M)	Fab T _m (°C)
21730	H.144	L2	1.64E-09	
21731	H.145	L2	5.19E-09	
21732	H.146	L2	2.95E-09	
21794	H1.125	L2	8.13E-10	
21795	H1.127	L2	2.36E-09	
21796	H1	L2.102	1.21E-08	
21801	H1	L2.103	3.22E-08	
21802	H1	L2.104	2.09E-07	
21803	H1	L2.105	8.35E-08	
21804	H1	L2.106	1.43E-07	
21805	H1	L2.107		
21806	H1	L2.108		
21807	H1	L2.109	1.68E-08	
21808	H1	L2.110		
21809	H1	L2.111	2.24E-09	
21810	H1	L2.112	3.26E-09	
21811	H1	L2.113	1.29E-09	
21812	H1	L2.114	2.79E-09	
21813	H1	L2.115	6.06E-09	
21814	H1	L2.116	1.58E-09	
21815	H1	L2.117		
21816	H1	L2.118	1.13E-08	
21817	H1	L2.119	3.99E-09	
21818	H1	L2.120	2.90E-09	
21819	H1	L2.121	1.12E-08	
21912	H1.117	L2.50		
21913	H1.125	L2.50	1.75E-10	
21914	H1.126	L2.50	2.75E-10	
21915	H1.144	L2.50	4.63E-10	
21916	H1.127	L2.50	5.28E-10	
21917	H1.136	L2.50	5.12E-10	
21918	H1.154	L2.50	9.22E-10	
21919	H1.141	L2.50	1.71E-09	
21920	H1.117	L2.113	7.96E-10	
21921	H1.125	L2.113	1.38E-10	
21922	H1.126	L2.113	3.96E-10	
21923	H1.144	L2.113	2.84E-10	
21924	H1.127	L2.113	5.20E-10	
21925	H1.136	L2.113	3.08E-10	

FIGURE 55D

Fab XENP	VH	VL	Human LAG-3 Fab K _D (M)	Fab T _m (°C)
21926	H1.154	L2.113	9.08E-10	
21927	H1.141	L2.113	5.63E-10	
21928	H1.117	L2.116	3.23E-10	
21929	H1.125	L2.116	3.64E-10	
21930	H1.126	L2.116	9.37E-10	
21931	H1.144	L2.116	9.74E-10	
21932	H1.127	L2.116	1.66E-09	
21933	H1.136	L2.116	1.31E-09	
21934	H1.154	L2.116	3.58E-09	
21935	H1.141	L2.116	2.16E-09	
21936	H1.144	L2.50	7.66E-10	
21923	H1.144	L2.113	7.31E-10	
22138	H1.158	L2.126	1.58E-07	
22139	H1.159	L2.126	2.12E-07	
22140	H1.160	L2.126	1.70E-07	
22141	H1.161	L2.126	8.77E-08	
22142	H1.162	L2.126	1.20E-07	
22143	H1.163	L2.126	4.62E-07	
22144	H1.164	L2.126	3.46E-07	
22145	H1.165	L2.126	2.01E-07	
22146	H1.166	L2.126	2.59E-07	
22147	H1.167	L2.126	4.12E-08	
22148	H1.168	L2.126	3.43E-07	
22149	H1.169	L2.126	3.24E-07	
22453	H1.144	L2.131	2.00E-09	
22454	H1.167	L2.128	3.00E-07	
22455	H1.167	L2.129	1.68E-06	
22456	H1.167	L2.130	2.64E-07	
22457	H1.167	L2.131	3.76E-07	
22461	H1.125	L2.131	1.67E-09	
22450	H1.144	L2.128	2.55E-09	67
22451	H1.144	L2.129	4.26E-09	67.5
22452	H1.144	L2.130	4.95E-09	68.5
22458	H1.125	L2.128	2.24E-09	65
22459	H1.125	L2.129	5.64E-09	67
22460	H1.125	L2.130	3.21E-09	67
22570	H1.144	L2.132	2.44E-09	66.5
22571	H1.144	L2.133	4.71E-09	67
22572	H1.144	L2.134	5.54E-09	69

FIGURE 55E

Fab XENP	VH	VL	Human LAG-3 Fab K _D (M)	Fab T _m (°C)
22574	H1.125	L2.132	1.98E-09	65.5
22575	H1.125	L2.133	3.19E-09	65
22578	H1.141	L2.132	2.93E-12	66.5
22579	H1.141	L2.133	9.21E-09	68
22580	H1.141	L2.134	4.12E-09	69.5
22609	H1.144	L2.136	4.60E-09	67.5
22610	H1.125	L2.136	3.81E-09	66
22611	H1.141	L2.136	4.30E-09	68
22612	H1.144	L2.137	2.03E-08	
22613	H1.125	L2.137	5.09E-09	66
22614	H1.141	L2.137	7.35E-09	68.5
22576	H1.125	L2.134	3.46E-09	66.5
22615	H1.144	L2.126	2.69E-09	
22616	H1.144	L2.91	1.26E-08	74
22617	H1.144	L2.93	8.31E-09	72.5
22618	H1.144	L2.122	9.12E-09	74.5
22619	H1.144	L2.124	1.03E-08	73.5
22620	H1.125	L2.126	1.20E-09	64
22621	H1.125	L2.91	5.96E-09	73.5
22622	H1.125	L2.93	5.81E-09	72
22623	H1.125	L2.122	6.81E-09	73
22624	H1.125	L2.124	7.00E-09	73
22652	H1.144	L2.138	1.32E-09	74
22653	H1.144	L2.139	2.41E-09	
22654	H1.144	L2.140	2.89E-09	
22655	H1.144	L2.141	3.65E-09	
22656	H1.144	L2.142	1.29E-09	74
22657	H1.144	L2.143	3.33E-09	
22658	H1.144	L2.144	3.04E-09	
22659	H1.144	L2.145	3.43E-09	
22660	H1.125	L2.138	9.29E-10	73.5
22661	H1.125	L2.139	2.34E-09	
22662	H1.125	L2.140	2.24E-09	73.5
22663	H1.125	L2.141	2.41E-09	73
22664	H1.125	L2.142	3.62E-10	73.5
22665	H1.125	L2.143	2.74E-09	
22666	H1.125	L2.144	2.58E-09	
22667	H1.125	L2.145	2.70E-09	

FIGURE 56A

Figure V

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
20844	7G8	H3	L1	4.84E-08	3.51E-02	59.0
20911	7G8	H3.1	L1	2.13E-08	6.47E-03	
20912	7G8	H3.2	L1	5.51E-08	1.22E-02	
20913	7G8	H3.3	L1	2.16E-08	7.75E-03	
20914	7G8	H3.4	L1	1.64E-08	7.57E-03	
20915	7G8	H3.5	L1	8.38E-08	3.72E-03	
20916	7G8	H3.6	L1	6.50E-08	1.90E-02	
20917	7G8	H3.8	L1	1.62E-08	8.26E-03	
20918	7G8	H3	L1.1	8.19E-08	2.45E-02	
20919	7G8	H3	L1.2	Weak	Weak	
20920	7G8	H3	L1.3	Weak	Weak	
20921	7G8	H3	L1.4	8.16E-08	2.17E-02	
20922	7G8	H3	L1.5	Weak	Weak	
20923	7G8	H3	L1.6	4.42E-06	3.89E-02	
20924	7G8	H3	L1.8	6.43E-08	1.41E-02	
20925	7G8	H3.1	L1.1	4.31E-08	5.78E-03	
20926	7G8	H3.1	L1.5	5.26E-08	5.85E-03	
20927	7G8	H3.5	L1.1	1.61E-06	7.44E-03	
20928	7G8	H3.5	L1.5	7.31E-08	6.77E-03	
20929	7G8	H3	L0	4.17E-08	3.08E-02	
20930	7G8	H0	L0	6.59E-08	6.10E-02	
20931	7G8	H1	L0	1.09E-07	3.18E-02	
20932	7G8	H2	L0	8.33E-08	6.28E-02	
20933	7G8	H0.1	L0	2.44E-08	2.70E-02	
20934	7G8	H0.2	L0	2.11E-08	2.05E-02	
20935	7G8	H0.3	L0	3.07E-08	1.43E-02	
20936	7G8	H0.4	L0	3.55E-08	3.29E-02	
20937	7G8	H0.5	L0	5.33E-08	3.46E-02	
20938	7G8	H0.6	L0	1.86E-08	2.48E-02	
20939	7G8	H0.7	L0	7.57E-08	9.20E-02	
20940	7G8	H0.8	L0	2.24E-08	3.65E-02	
20941	7G8	H0.9	L0	7.91E-08	1.16E-01	
20942	7G8	H0.10	L0	1.08E-07	1.05E-01	
20943	7G8	H0.11	L0	8.29E-08	1.15E-01	
20944	7G8	H0.12	L0	1.19E-06	3.47E-01	
20945	7G8	H0.13	L0	9.61E-08	1.03E-01	
20946	7G8	H0.14	L0	1.85E-07	2.53E-01	
20947	7G8	H0.15	L0	7.88E-08	1.99E-01	

FIGURE 56B

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
20948	7G8	H0.17	LO	4.14E-08	5.74E-02	
20949	7G8	H0.18	LO	3.74E-08	4.05E-02	
20950	7G8	H0.19	LO	3.85E-08	3.85E-02	
20951	7G8	H0.20	LO	7.09E-08	9.98E-02	
20952	7G8	H0.21	LO	6.30E-08	3.75E-02	
20953	7G8	H0.22	LO	9.92E-08	5.17E-02	
20954	7G8	H0.23	LO	4.49E-08	2.71E-02	
20955	7G8	H0.24	LO	Weak	Weak	
20956	7G8	H0.25	LO	9.22E-08	6.99E-02	
20957	7G8	H0.26	LO	1.09E-07	1.18E-01	
20958	7G8	H0.27	LO	3.45E-08	5.35E-02	
20959	7G8	H0.28	LO	5.30E-08	5.63E-02	
20960	7G8	H0.29	LO	6.01E-08	4.73E-02	
20961	7G8	H0.30	LO	2.31E-08	2.00E-02	
20962	7G8	H0.31	LO	1.05E-08	1.29E-02	
20963	7G8	H0.32	LO	6.80E-08	5.77E-02	
20964	7G8	H0.33	LO	6.46E-08	1.61E-02	
20965	7G8	H0.34	LO	3.29E-08	1.77E-02	
20966	7G8	H0.35	LO	8.17E-08	1.70E-02	
20967	7G8	H0.36	LO	3.61E-07	1.49E-01	
20968	7G8	H0.37	LO	8.90E-08	1.33E-01	
20969	7G8	H0.38	LO	1.00E-07	1.66E-01	
20970	7G8	H0.39	LO	1.19E-07	1.62E-01	
20971	7G8	H0.40	LO	2.45E-07	1.49E-01	
20972	7G8	H0.41	LO	6.40E-08	1.48E-01	
20973	7G8	H0.42	LO	5.41E-08	1.17E-01	
20974	7G8	H0.43	LO	1.30E-06	4.23E-01	
20975	7G8	H0.44	LO	5.03E-07	2.47E-01	
20976	7G8	H0.45	LO	3.41E-08	5.79E-02	
20977	7G8	H0.46	LO	2.45E-08	4.35E-02	
20978	7G8	H0.47	LO	3.94E-08	3.73E-02	
20979	7G8	H0.48	LO	3.16E-08	3.07E-02	
20980	7G8	H0.49	LO	2.89E-08	2.66E-02	
20981	7G8	H0.50	LO	2.70E-08	2.71E-02	
20982	7G8	H0.51	LO	3.12E-08	3.57E-02	
20983	7G8	H0.52	LO	3.38E-08	2.95E-02	
20984	7G8	H0.53	LO	3.05E-08	2.31E-02	
20985	7G8	H0.54	LO	6.81E-08	5.02E-02	

FIGURE 56C

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
20986	7G8	H0.55	L0	4.72E-08	4.53E-02	
20987	7G8	H0.56	L0	1.37E-07	1.06E-01	
20988	7G8	H0.57	L0	5.69E-08	4.86E-02	
20989	7G8	H0.58	L0	6.58E-08	6.12E-02	
20990	7G8	H0.59	L0	3.52E-07	8.60E-02	
20991	7G8	H0.60	L0	7.59E-08	6.07E-02	
20992	7G8	H0.61	L0	1.86E-06	2.22E-01	
20993	7G8	H0.62	L0	3.12E-08	3.17E-02	
20994	7G8	H0.63	L0	2.50E-07	1.67E-01	
20995	7G8	H0.64	L0	9.55E-08	6.47E-02	
20996	7G8	H0.65	L0	1.53E-06	2.43E-01	
21001	7G8	H0.66	L0	3.19E-06	1.47E-01	
21002	7G8	H0.67	L0	1.12E-06	3.70E-01	
21003	7G8	H0.68	L0	7.10E-06	3.57E-01	
21004	7G8	H0.69	L0	1.34E-07	1.39E-01	
21005	7G8	H0.70	L0	1.45E-07	8.55E-02	
21006	7G8	H0.71	L0	2.35E-08	2.46E-02	
21007	7G8	H0.72	L0	4.36E-08	4.93E-02	
21008	7G8	H0.73	L0	1.57E-07	8.04E-02	
21009	7G8	H0.74	L0	6.39E-08	5.12E-02	
21010	7G8	H0.75	L0	9.21E-08	8.34E-02	
21011	7G8	H0.76	L0	5.84E-08	8.50E-02	
21012	7G8	H0.77	L0	1.07E-07	6.84E-02	
21013	7G8	H0.78	L0	1.56E-07	9.33E-02	
21014	7G8	H0.79	L0	5.11E-08	5.02E-02	
21015	7G8	H0.80	L0	1.11E-07	6.42E-02	
21016	7G8	H0.81	L0	6.41E-08	7.22E-02	
21017	7G8	H0.82	L0	1.08E-07	1.12E-01	
21018	7G8	H0.83	L0	3.88E-08	5.32E-02	
21019	7G8	H0.84	L0	1.04E-07	1.06E-01	
21020	7G8	H0.85	L0	5.13E-08	5.55E-02	
21021	7G8	H0.86	L0	8.11E-08	8.50E-02	
21022	7G8	H0.87	L0	1.61E-07	1.14E-01	
21023	7G8	H0.88	L0	8.22E-08	9.43E-02	
21024	7G8	H0.89	L0	6.36E-08	9.23E-02	
21025	7G8	H0.90	L0	6.07E-08	6.79E-02	
21026	7G8	H0.91	L0	8.91E-08	9.16E-02	
21027	7G8	H0.92	L0	7.61E-08	7.27E-02	

FIGURE 56D

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
21028	7G8	H0.93	L0	6.69E-08	6.88E-02	
21029	7G8	H0.94	L0	9.67E-08	2.04E-01	
21030	7G8	H0.95	L0	3.11E-08	3.15E-02	
21031	7G8	H0.96	L0	3.74E-08	3.89E-02	
21032	7G8	H0.97	L0	4.45E-08	3.44E-02	
21033	7G8	H0.98	L0	3.64E-08	2.58E-02	
21034	7G8	H0.99	L0	2.23E-08	1.77E-02	
21035	7G8	H0.100	L0	3.37E-08	2.26E-02	
21036	7G8	H0.101	L0	2.27E-08	1.79E-02	
21037	7G8	H0.102	L0	1.64E-08	1.84E-02	
21038	7G8	H0.103	L0	1.09E-08	1.03E-02	
21039	7G8	H0.104	L0	7.96E-08	4.16E-01	
21040	7G8	H0.105	L0	3.54E-08	2.87E-02	
21041	7G8	H0.106	L0	5.76E-08	3.36E-01	
21042	7G8	H0.107	L0	5.06E-08	3.82E-02	
21043	7G8	H0.110	L0	1.16E-07	4.05E-02	
21044	7G8	H0.111	L0	2.33E-07	2.48E-01	
21045	7G8	H0.112	L0	4.31E-07	5.82E-01	
21046	7G8	H0.114	L0	4.20E-08	7.45E-02	
21047	7G8	H0.115	L0	6.98E-08	7.11E-02	
21048	7G8	H0.116	L0	3.52E-08	3.42E-02	
21049	7G8	H0.117	L0	8.34E-07	2.83E-01	
21050	7G8	H0.118	L0	1.50E-07	1.23E-01	
21051	7G8	H0.119	L0	2.71E-08	4.85E-02	
21052	7G8	H0.120	L0	8.60E-08	7.91E-02	
21053	7G8	H0.121	L0	1.92E-07	3.86E-01	
21054	7G8	H0.122	L0	4.63E-08	2.90E-02	
21055	7G8	H0.123	L0	6.45E-07	1.88E-01	
21056	7G8	H0.124	L0	2.15E-07	2.02E-01	
21057	7G8	H0.125	L0	9.51E-07	1.77E-01	
21058	7G8	H0.126	L0	3.12E-07	1.44E-01	
21059	7G8	H0.127	L0	1.35E-07	1.43E-01	
21060	7G8	H0.128	L0	1.34E-07	1.68E-01	
21061	7G8	H0.129	L0	1.17E-08	1.53E-02	
21062	7G8	H0.130	L0	1.24E-07	9.49E-02	
21063	7G8	H0.131	L0	1.44E-07	6.58E-01	
21064	7G8	H0.132	L0	3.56E-05	2.33E-02	
21065	7G8	H0.134	L0	<1.0E-12	<1.0E-07	

FIGURE 56E

XENP	Clone	VH	VL	kD (M)	kdis(1/s)	DSF T _M (°C)
21066	7G8	H0.141	L0	1.11E-07	2.25E-01	
21067	7G8	H0.142	L0	6.72E-08	8.34E-02	
21068	7G8	H0.143	L0	2.35E-07	2.77E-01	
21069	7G8	H0.145	L0	6.09E-08	6.17E-02	
21070	7G8	H0.146	L0	5.40E-08	9.04E-02	
21071	7G8	H0.147	L0	5.53E-07	3.88E-01	
21072	7G8	H0.148	L0	2.10E-07	1.79E-01	
21074	7G8	H0	L0.1	9.61E-08	1.30E-01	
21075	7G8	H0	L0.2	8.81E-08	9.74E-02	
21076	7G8	H0	L0.3	1.86E-07	2.70E-01	
21077	7G8	H0	L0.4	1.09E-07	1.76E-01	
21078	7G8	H0	L0.5	4.48E-08	4.49E-01	
21079	7G8	H0	L0.6	1.28E-07	1.39E-01	
21080	7G8	H0	L0.7	5.79E-06	7.16E-02	
21081	7G8	H0	L0.8	1.16E-07	4.00E-01	
21082	7G8	H0	L0.9	8.20E-06	1.43E-01	
21083	7G8	H0	L0.10	6.42E-08	1.08E-01	
21084	7G8	H0	L0.11	2.70E-08	2.64E-02	
21085	7G8	H0	L0.12	6.51E-08	7.19E-02	
21086	7G8	H0	L0.13	7.75E-08	1.04E-01	
21087	7G8	H0	L0.14	1.19E-07	2.90E-01	
21088	7G8	H0	L0.15	1.57E-07	3.83E-01	
21089	7G8	H0	L0.16	0.00E+00	<1.0E-07	
21090	7G8	H0	L0.17	2.80E-07	3.17E-01	
21091	7G8	H0	L0.18	6.26E-05	2.72E+01	
21092	7G8	H0	L0.19	1.27E-06	2.47E-01	
21093	7G8	H0	L0.20	5.16E-08	7.64E-02	
21094	7G8	H0	L0.21	5.43E-08	8.04E-02	
21095	7G8	H0	L0.22	1.06E-07	1.33E-01	
21096	7G8	H0	L0.23	5.58E-08	1.71E-01	
21101	7G8	H0	L0.24	4.43E-08	1.79E-01	
21102	7G8	H0	L0.25	6.10E-08	1.51E-01	
21103	7G8	H0	L0.26	7.99E-08	1.48E-01	
21104	7G8	H0	L0.27	5.62E-08	1.35E-01	
21105	7G8	H0	L0.28	7.77E-08	9.49E-02	
21106	7G8	H0	L0.29	7.83E-08	5.16E-02	
21107	7G8	H0	L0.30	5.72E-08	4.66E-02	
21108	7G8	H0	L0.31	1.05E-07	4.67E-02	

FIGURE 56F

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
21109	7G8	H0	L0.32	4.68E-08	4.50E-02	
21110	7G8	H0	L0.33	6.87E+05	4.23E+08	
21111	7G8	H0	L0.34	2.75E-08	2.68E-02	
21112	7G8	H0	L0.35	9.77E-08	8.71E-02	
21113	7G8	H0	L0.36	1.20E-07	6.11E-02	
21114	7G8	H0	L0.37	3.00E-08	3.15E-02	
21115	7G8	H0	L0.38	1.12E-07	7.85E-02	
21116	7G8	H0	L0.39	3.17E-08	5.71E-02	
21117	7G8	H0	L0.40	2.27E-07	7.01E-01	
21118	7G8	H0	L0.41	8.48E-08	1.31E-01	
21119	7G8	H0	L0.42	2.50E-10	4.30E-03	
21120	7G8	H0	L0.43	2.39E-07	2.12E-01	
21121	7G8	H0	L0.44	2.46E-06	1.14E-01	
21122	7G8	H0	L0.45	1.75E-07	5.49E-01	
21123	7G8	H0	L0.46	2.60E-06	3.50E-01	
21124	7G8	H0	L0.47	6.27E-08	5.49E-02	
21125	7G8	H0	L0.48	3.15E-08	3.71E-02	
21126	7G8	H0	L0.49	5.22E-08	5.09E-02	
21127	7G8	H0	L0.50	4.37E-08	3.69E-02	
21128	7G8	H0	L0.51	2.23E-09	1.89E-02	
21129	7G8	H0	L0.52	5.88E-08	9.73E-02	
21130	7G8	H0	L0.53	3.55E-08	3.99E-02	
21131	7G8	H0	L0.54	8.64E-08	1.08E-01	
21132	7G8	H0	L0.55	Weak	Weak	
21133	7G8	H0	L0.56	6.02E-07	2.78E-01	
21134	7G8	H0	L0.57	3.63E-08	3.47E-02	
21135	7G8	H0	L0.58	1.65E-07	9.58E-02	
21136	7G8	H0	L0.59	2.27E-08	2.30E-02	
21137	7G8	H0	L0.60	2.65E-08	3.61E-02	
21138	7G8	H0	L0.61	9.30E-08	1.32E-01	
21139	7G8	H0	L0.62	2.91E-08	3.44E-02	
21140	7G8	H0	L0.63	3.40E-08	3.40E-02	
21141	7G8	H0	L0.64	3.69E-08	2.72E-02	
21142	7G8	H0	L0.65	3.09E-08	4.10E-02	
21143	7G8	H0	L0.66	7.34E-08	1.20E-01	
21144	7G8	H0	L0.67	1.26E-07	6.24E-02	
21145	7G8	H0	L0.68	8.99E-08	3.43E-01	
21146	7G8	H0	L0.69	5.94E-08	2.05E-01	

FIGURE 56G

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
21147	7G8	HO	L0.70	4.22E-08	8.54E-02	
21148	7G8	HO	L0.71	1.79E-07	2.51E-01	
21149	7G8	HO	L0.72	1.23E-07	2.35E-01	
21150	7G8	HO	L0.73	7.55E-08	1.58E-01	
21151	7G8	HO	L0.74	1.64E-07	1.84E-01	
21152	7G8	HO	L0.75	9.32E-08	1.42E-01	
21153	7G8	HO	L0.76	Weak	Weak	
21154	7G8	HO	L0.77	1.87E-07	8.91E-02	
21155	7G8	HO	L0.78	2.94E-07	4.70E-02	
21156	7G8	HO	L0.79	Weak	Weak	
21157	7G8	HO	L0.80	Weak	Weak	
21158	7G8	HO	L0.81	Weak	Weak	
21159	7G8	HO	L0.82	6.04E-07	4.40E-01	
21160	7G8	HO	L0.83	6.50E-08	3.50E-02	
21161	7G8	HO	L0.84	3.52E-06	1.08E-01	
21162	7G8	HO	L0.85	9.89E-08	4.37E-02	
21163	7G8	HO	L0.86	4.90E-08	4.85E-02	
21164	7G8	HO	L0.87	1.25E-07	1.41E-01	
21165	7G8	HO	L0.88	1.90E-07	1.87E-01	
21166	7G8	HO	L0.89	3.52E-06	6.60E-02	
21167	7G8	HO	L0.90	2.54E-08	2.01E-02	
21168	7G8	HO	L0.91	1.12E-06	1.99E-01	
21169	7G8	HO	L0.92	1.20E-07	7.65E-02	
21170	7G8	HO	L0.93	4.81E-08	5.41E-02	
21171	7G8	HO	L0.94	6.64E-07	1.82E-01	
21172	7G8	HO	L0.95	7.61E-08	8.11E-02	
21173	7G8	HO	L0.96	7.95E-07	8.67E-02	
21174	7G8	HO	L0.97	6.75E-08	6.60E-02	
21175	7G8	HO	L0.98	6.19E-08	4.49E-02	
21176	7G8	HO	L0.99	3.97E-08	4.14E-02	
21177	7G8	HO	L0.100	8.53E-08	5.75E-02	
21178	7G8	HO	L0.101	3.33E-07	1.95E+00	
21179	7G8	HO	L0.102	1.04E-07	2.79E-01	
21180	7G8	HO	L0.103	1.50E-07	2.14E+01	
21181	7G8	HO	L0.104	6.11E+16	2.82E+26	
21182	7G8	HO	L0.105	Weak	Weak	
21183	7G8	HO	L0.106	3.27E-06	7.92E-02	
21184	7G8	HO	L0.107	Weak	Weak	

FIGURE 56H

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
21558	7G8	H3.1	L0.59	7.44E-09	4.35E-03	
21559	7G8	H3.4	L0.59	6.72E-09	4.71E-03	
21560	7G8	H0.129	L0.59	7.05E-09	6.94E-03	
21561	7G8	H0.31	L0.59	6.39E-09	6.75E-03	
21562	7G8	H0.103	L0.59	3.09E-08	5.24E-03	
21563	7G8	H0.71	L0.59	7.04E-09	7.48E-03	
21564	7G8	H3.1	L0	6.73E-09	6.58E-03	
21565	7G8	H3.4	L0	8.47E-09	8.54E-03	
21566	7G8	H3.1	L0.11	4.56E-08	3.76E-02	
21567	7G8	H3.4	L0.11	5.84E-08	4.23E-02	
21568	7G8	H0.129	L0.11	1.26E-07	8.67E-02	
21569	7G8	H3.1	L0.34	1.05E-08	7.33E-03	
21570	7G8	H3.4	L0.34	1.13E-08	9.28E-03	
21571	7G8	H0.129	L0.34	1.33E-08	1.29E-02	
21662	7G8	H3.18	L1	3.04E-09	3.04E-03	
21663	7G8	H3.15	L1	3.50E-09	2.64E-03	
21664	7G8	H3.19	L1	7.41E-09	7.68E-03	
21665	7G8	H3.17	L1	4.07E-09	3.47E-03	
21666	7G8	H3.16	L1	1.63E-08	4.73E-03	
21667	7G8	H3.21	L1	8.57E-09	2.33E-03	
21668	7G8	H3.22	L1			
21669	7G8	H3.23	L1	4.10E-09	3.88E-03	
21670	7G8	H3.18	L1.11	2.88E-09	2.39E-03	54.5
21671	7G8	H3.15	L1.11	2.76E-09	2.48E-03	
21672	7G8	H3.19	L1.11	4.23E-09	4.54E-03	
21673	7G8	H3.17	L1.11	3.75E-09	2.73E-03	
21674	7G8	H3.16	L1.11	1.16E-08	3.38E-03	
21675	7G8	H3.21	L1.11	9.61E-09	2.05E-03	
21676	7G8	H3.22	L1.11			
21677	7G8	H3.23	L1.11	2.83E-09	2.29E-03	
21678	7G8	H3.18	L1.13	6.65E-09	5.02E-03	
21679	7G8	H3.15	L1.13	8.37E-09	4.87E-03	
21680	7G8	H3.19	L1.13	1.70E-08	9.72E-03	
21681	7G8	H3.17	L1.13	1.19E-08	7.68E-03	
21682	7G8	H3.16	L1.13	2.95E-08	1.38E-02	
21683	7G8	H3.21	L1.13	1.10E-08	5.13E-03	
21684	7G8	H3.22	L1.13			
21685	7G8	H3.23	L1.13	1.02E-08	7.76E-03	

FIGURE 56I

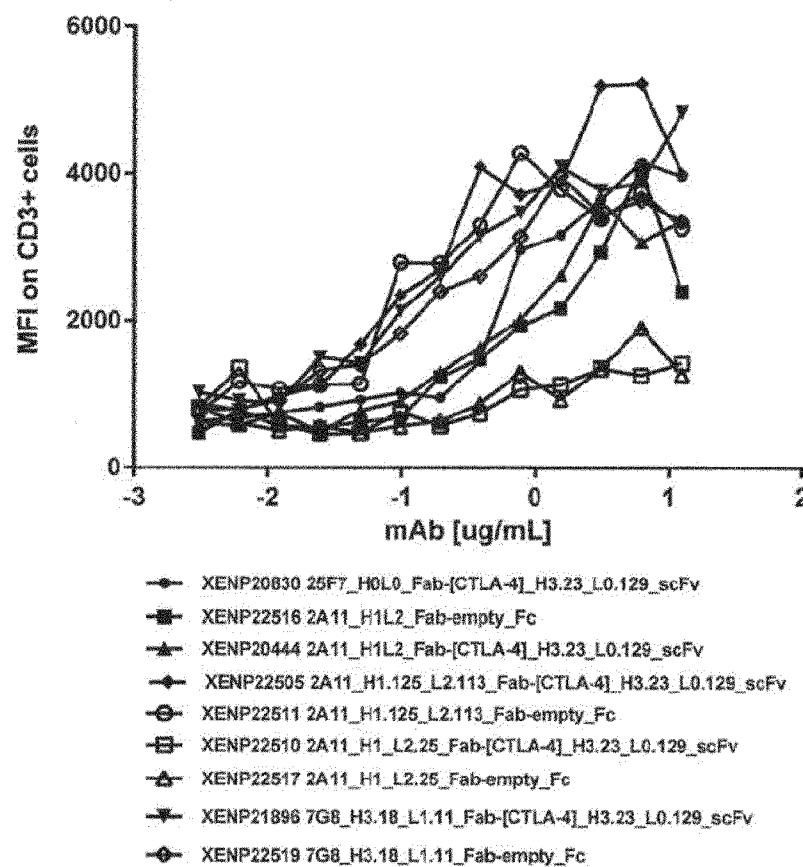
XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
21686	7G8	H3.18	L1.15	9.47E-09	7.62E-03	
21687	7G8	H3.15	L1.15	2.04E-08	7.79E-03	
21688	7G8	H3.19	L1.15	1.75E-08	1.04E-02	
21689	7G8	H3.17	L1.15	2.19E-08	1.21E-02	
21690	7G8	H3.16	L1.15	9.19E-08	9.61E-03	
21691	7G8	H3.21	L1.15	2.34E-08	8.44E-03	
21692	7G8	H3.22	L1.15	2.12E-08	1.31E-02	
21693	7G8	H3.23	L1.15	8.80E-09	6.46E-03	
21694	7G8	H3	L1.9	3.14E-07	1.16E-01	
21695	7G8	H3	L1.10	8.99E-08	3.06E-02	
21696	7G8	H3	L1.11	4.10E-08	1.48E-02	
21701	7G8	H3	L1.12	4.12E-06	2.07E-01	
21702	7G8	H3	L1.13	2.91E-07	8.61E-02	
21703	7G8	H3	L1.14	1.34E-07	2.39E-02	
21704	7G8	H3	L1.15	1.08E-06	3.49E-01	
21742	7G8	H3.11	L1.13	1.85E-08	1.25E-02	
21743	7G8	H3.4	L1.13	2.90E-08	2.04E-02	
21744	7G8	H3.1	L1.13	4.92E-08	1.89E-02	
21745	7G8	H3.11	L1.15	1.84E-08	1.33E-02	
21746	7G8	H3.4	L1.15	4.31E-08	1.71E-02	
21747	7G8	H3.1	L1.15	2.69E-07	0.0364	
21889	7G8	H3.27	L1	2.48E-09	3.04E-03	
21890	7G8	H3.27	L1.11	2.20E-09	1.81E-03	
21891	7G8	H3.27	L1.13	5.02E-09	5.79E-03	
21892	7G8	H3.28	L1	3.55E-09	4.33E-03	
21893	7G8	H3.28	L1.11	2.10E-09	2.67E-03	
21894	7G8	H3.28	L1.13	6.83E-09	7.95E-03	
22379	7G8	H3.29	L1.11			
22380	7G8	H3.30	L1.11	2.07E-09	2.11E-03	59.5
22381	7G8	H3.31	L1.11	6.94E-09	6.82E-03	
22382	7G8	H3.32	L1.11			
22383	7G8	H3.33	L1.11	6.00E-09	5.14E-03	62.5
22384	7G8	H3.34	L1.11	9.12E-09	2.43E-03	55.0
22385	7G8	H3.35	L1.11	3.18E-09	2.66E-03	56.0
22386	7G8	H3.36	L1.11			
22387	7G8	H3.37	L1.11			
22388	7G8	H3.38	L1.11			
22389	7G8	H3.39	L1.11	3.57E-09	2.54E-03	

FIGURE 56J

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
22390	7G8	H3.40	L1.11			
22391	7G8	H3.41	L1.11			
22392	7G8	H3.42	L1.11			
22393	7G8	H3.43	L1.11			
22394	7G8	H3.44	L1.11			
22395	7G8	H3.45	L1.11			
22396	7G8	H3.46	L1.11			
22401	7G8	H3.47	L1.11	3.50E-09	2.68E-03	
22402	7G8	H3.48	L1.11			
22403	7G8	H3.49	L1.11	2.37E-09	2.85E-03	55.0
22404	7G8	H3.50	L1.11			
22405	7G8	H3.51	L1.11			
22406	7G8	H3.52	L1.11			
22407	7G8	H3.53	L1.11			
22408	7G8	H3.18	L1.16	2.83E-09	3.27E-03	58.0
22409	7G8	H3.18	L1.17	3.04E-09	3.25E-03	56.0
22410	7G8	H3.18	L1.18			
22411	7G8	H3.18	L1.19			
22412	7G8	H3.18	L1.20			
22413	7G8	H3.18	L1.21			
22414	7G8	H3.18	L1.22			
22415	7G8	H3.18	L1.23			
22416	7G8	H3.18	L1.24			
22417	7G8	H3.18	L1.25			
22418	7G8	H3.18	L1.26			
22419	7G8	H3.18	L1.27			
22420	7G8	H3.18	L1.28	2.36E-09	2.55E-03	
22421	7G8	H3.18	L1.29			
22422	7G8	H3.18	L1.30	1.95E-09	3.13E-03	63.0
22423	7G8	H3.18	L1.31	2.65E-09	2.84E-03	
22424	7G8	H3.18	L1.32	2.98E-09	2.95E-03	
22425	7G8	H3.18	L1.33			
22582	7G8	H3.30	L1.30	2.34E-09	2.03E-03	67.5
22583	7G8	H3.33	L1.30	4.51E-09	3.15E-03	68.5
22588	7G8	H3.54	L1.30	8.45E-10	2.18E-03	65.5
22589	7G8	H3.55	L1.30	2.86E-09	4.56E-03	67.5
22590	7G8	H3.56	L1.30	4.85E-08	1.55E-03	66.5
22591	7G8	H3.57	L1.30	3.24E-09	3.45E-03	68.5

FIGURE 56K

XENP	Clone	VH	VL	KD (M)	kdis(1/s)	DSF T _M (°C)
22592	7G8	H3.58	L1.30	1.97E-09	2.31E-03	67.0
22593	7G8	H3.59	L1.30	3.54E-09	3.88E-03	69.0
22594	7G8	H3.30	L1.34	6.30E-10	1.48E-03	68.5
22595	7G8	H3.30	L1.36	2.86E-09	2.86E-03	69.5
22596	7G8	H3.33	L1.34	3.45E-09	3.02E-03	68.5
22601	7G8	H3.33	L1.36	1.09E-08	6.95E-03	70.0


FIGURE 57A

XENP	Fab side (Anti-LAG-3)	scFv side (Anti-CTLA-4)	Human LAG-3 KD (M)
22518	2A11_H1.144_L2.133	[CTLA-4]_H3.23_L0.129	1.7E-09
22506	2A11_H1.144_L2.113	[CTLA-4]_H3.23_L0.129	2.0E-10
22505	2A11_H1.125_L2.113	[CTLA-4]_H3.23_L0.129	4.0E-10
22509	2A11_H1_L2.113	[CTLA-4]_H3.23_L0.129	7.8E-10
20444	2A11_H1L2	[CTLA-4]_H3.23_L0.129	3.5E-09
21859	2A11_H1_L2.47	[CTLA-4]_H3.23_L0.129	3.5E-10
21860	2A11_H1_L2.50	[CTLA-4]_H3.23_L0.129	1.2E-09
22507	2A11_H1.117_L2.116	[CTLA-4]_H3.23_L0.129	6.2E-10
22508	2A11_H1.144_L2	[CTLA-4]_H3.23_L0.129	1.2E-09
22510	2A11_H1_L2.25	[CTLA-4]_H3.23_L0.129	2.3E-08
22630	2A11_H1.144_L2.137	[CTLA-4]_H3.23_L0.129	9.4E-10

FIGURE 57B

XENP	Fab side (Anti-LAG-3)	scFv side (Anti-CTLA-4)	human LAG-3 KD (nM)
20833	7G8_H3L1	[CTLA-4]_H3.23_L0.129	9.1
21895	7G8_H3.18_L1	[CTLA-4]_H3.23_L0.129	1.1
21896	7G8_H3.18_L1.11	[CTLA-4]_H3.23_L0.129	1.0
21901	7G8_H3.15_L1.11	[CTLA-4]_H3.23_L0.129	
21902	7G8_H3.23_L1.11	[CTLA-4]_H3.23_L0.129	1.1
21903	7G8_H3.18_L1.13	[CTLA-4]_H3.23_L0.129	2.2
21904	7G8_H3.28_L1	[CTLA-4]_H3.23_L0.129	1.7
21905	7G8_H3.28_L1.11	[CTLA-4]_H3.23_L0.129	1.1
21906	7G8_H3.28_L1.13	[CTLA-4]_H3.23_L0.129	2.1
22555	7G8_H3.30_L1.11	[CTLA-4]_H3.23_L0.129	1.2
22556	7G8_H3.33_L1.11	[CTLA-4]_H3.23_L0.129	2.6
22557	7G8_H3.18_L1.30	[CTLA-4]_H3.23_L0.129	0.7
22558	7G8_H3.30_L1.30	[CTLA-4]_H3.23_L0.129	0.3
22559	7G8_H3.33_L1.30	[CTLA-4]_H3.23_L0.129	1.6
22602	7G8_H3.30_L1.34	[CTLA-4]_H3.23_L0.129	0.2
22603	7G8_H3.30_L1.36	[CTLA-4]_H3.23_L0.129	0.4

FIGURE 58

FIGURE 59A

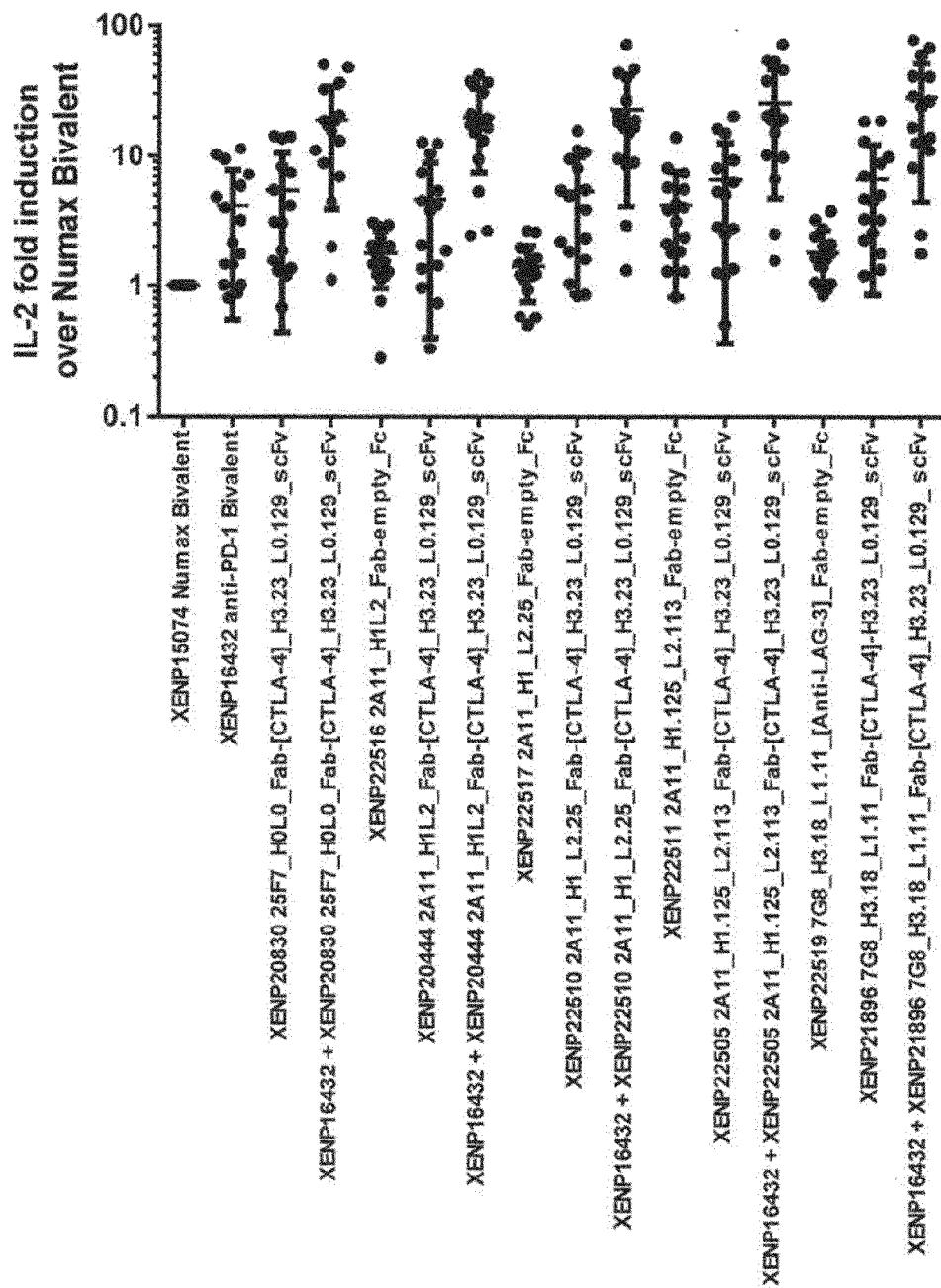


FIGURE 59B

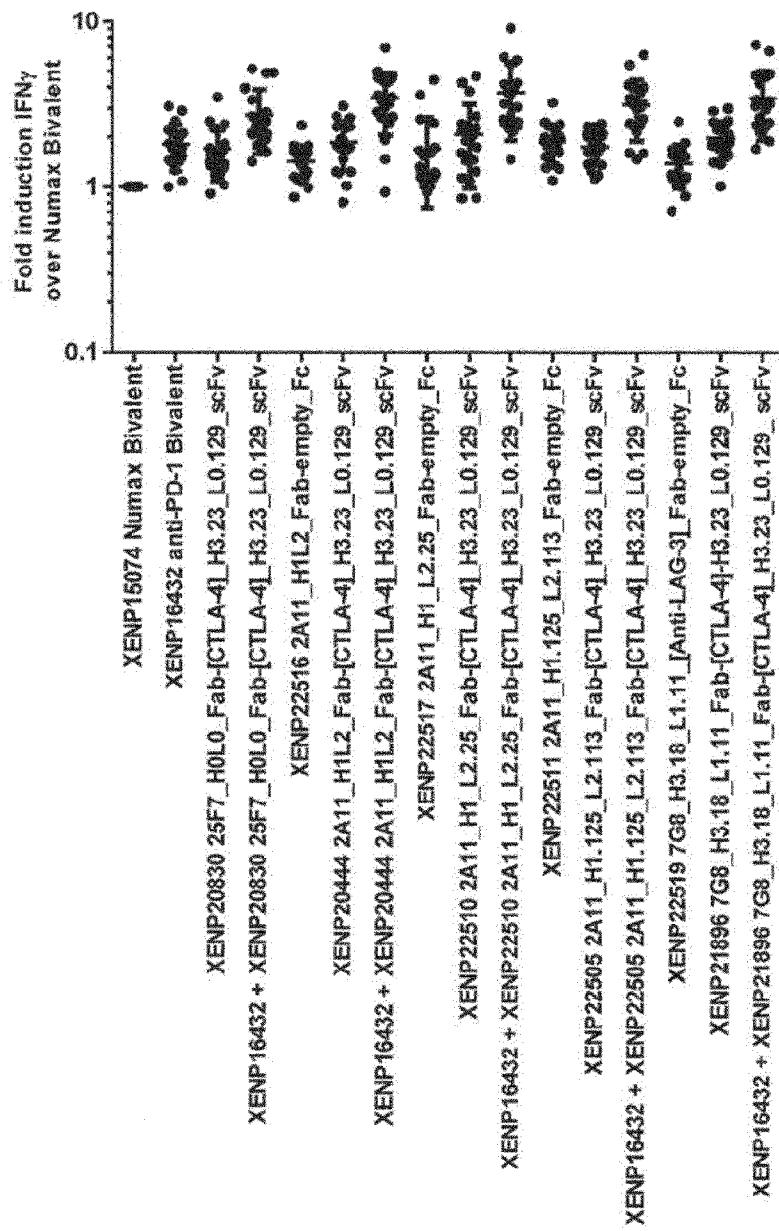


FIGURE 60A

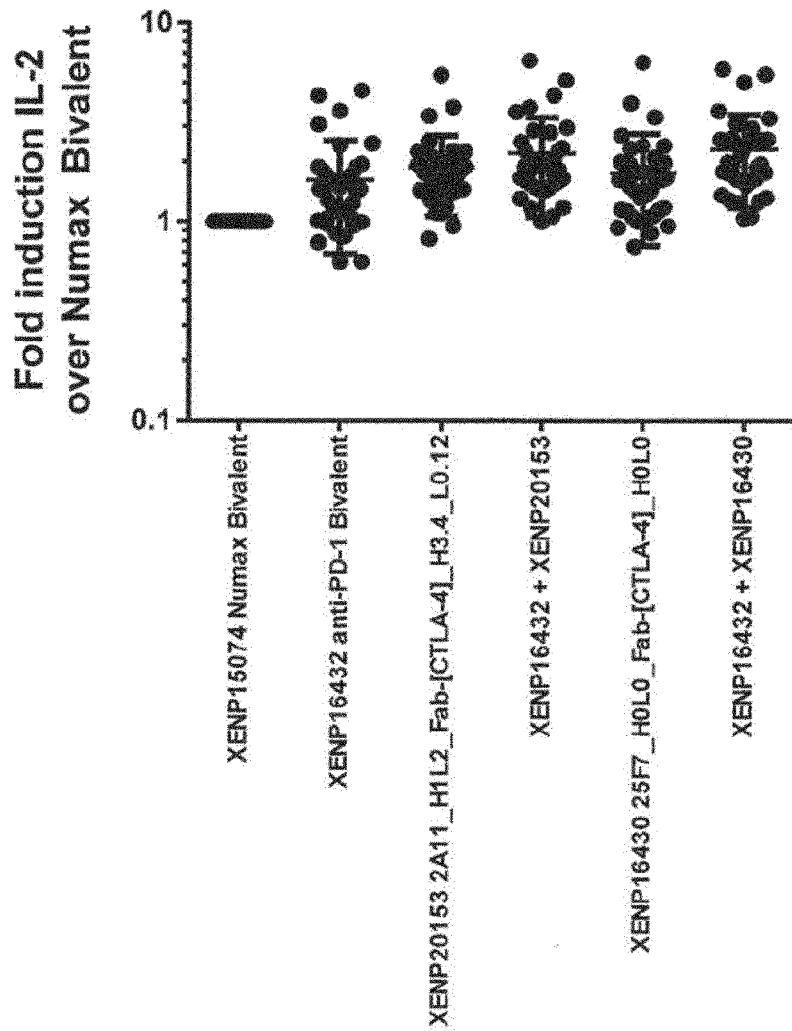


FIGURE 60B

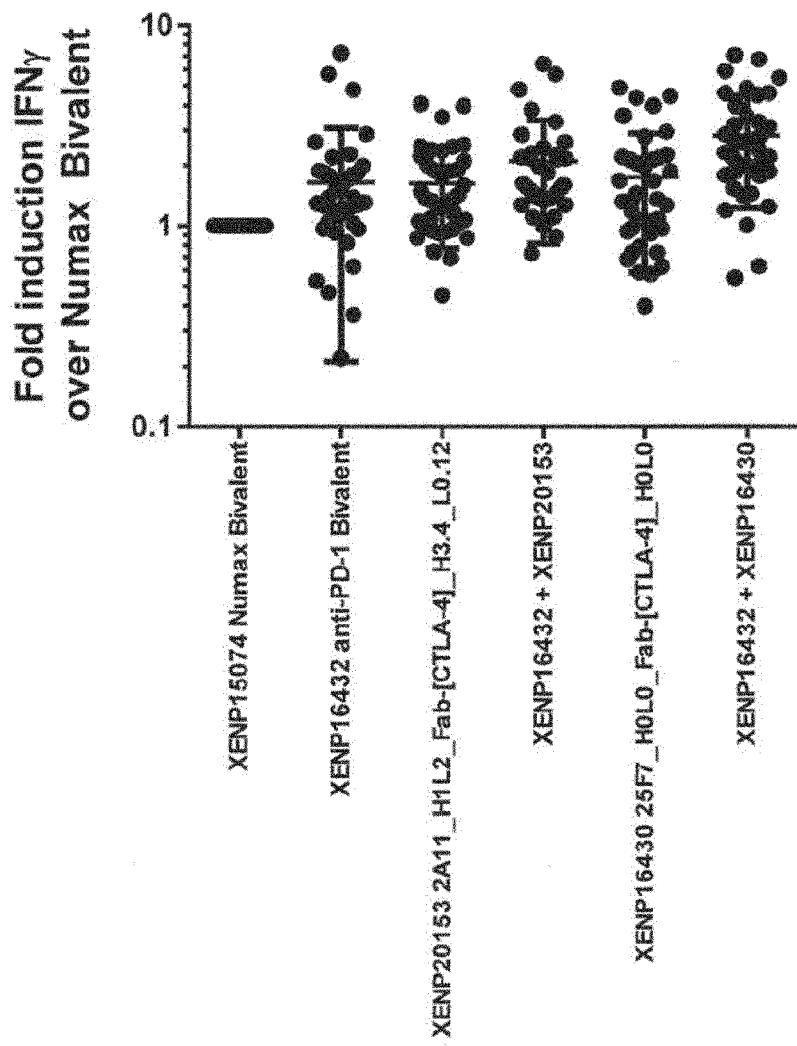


FIGURE 61A

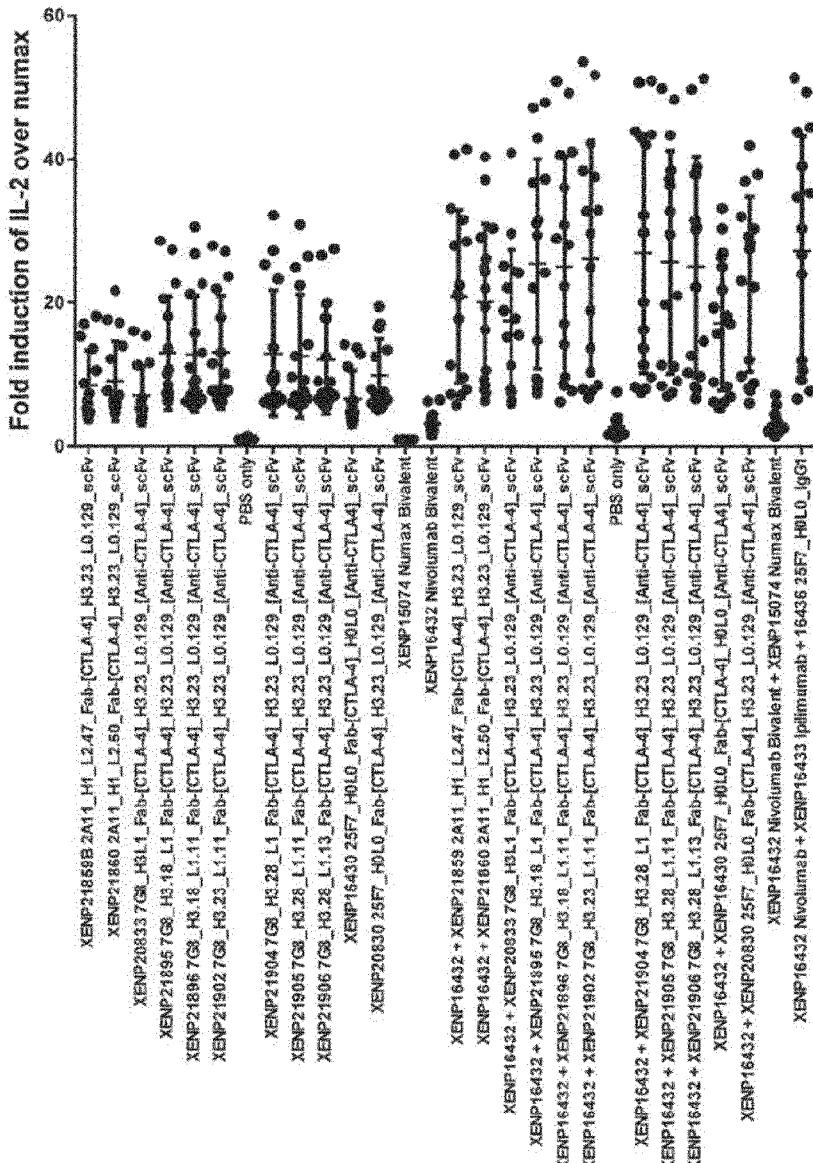
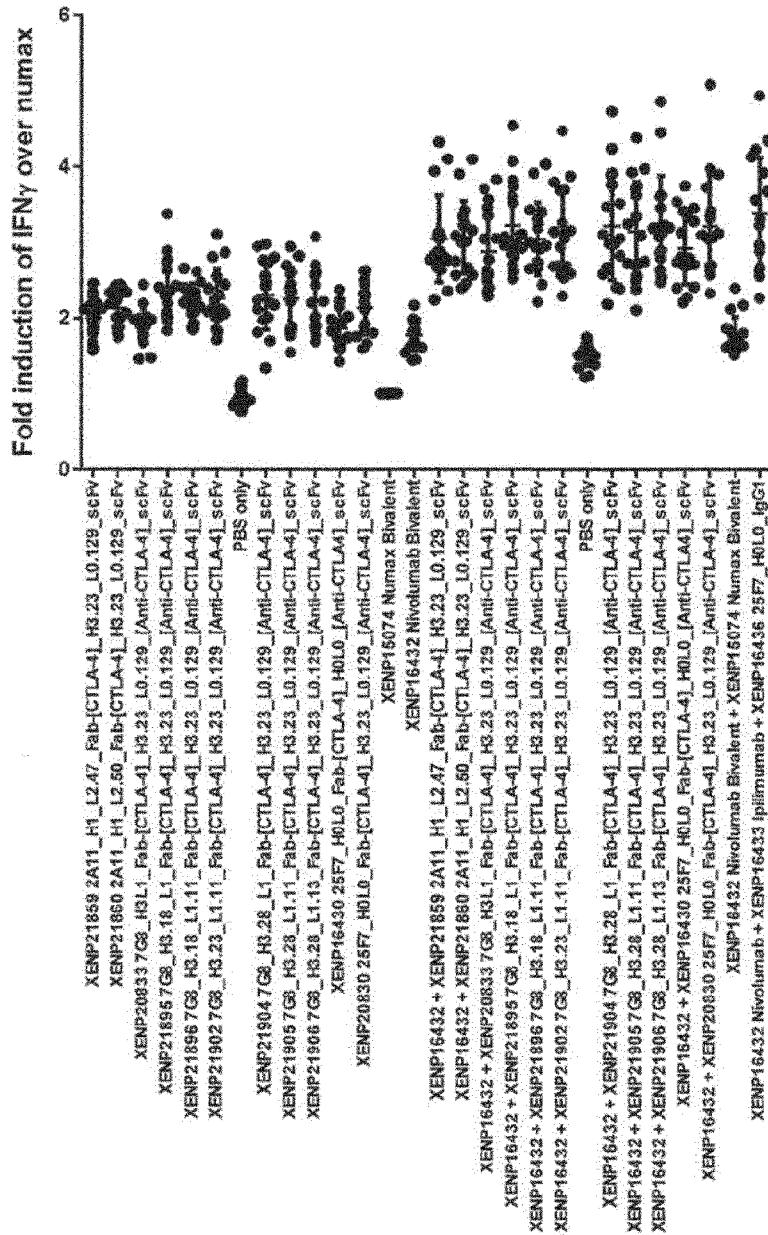
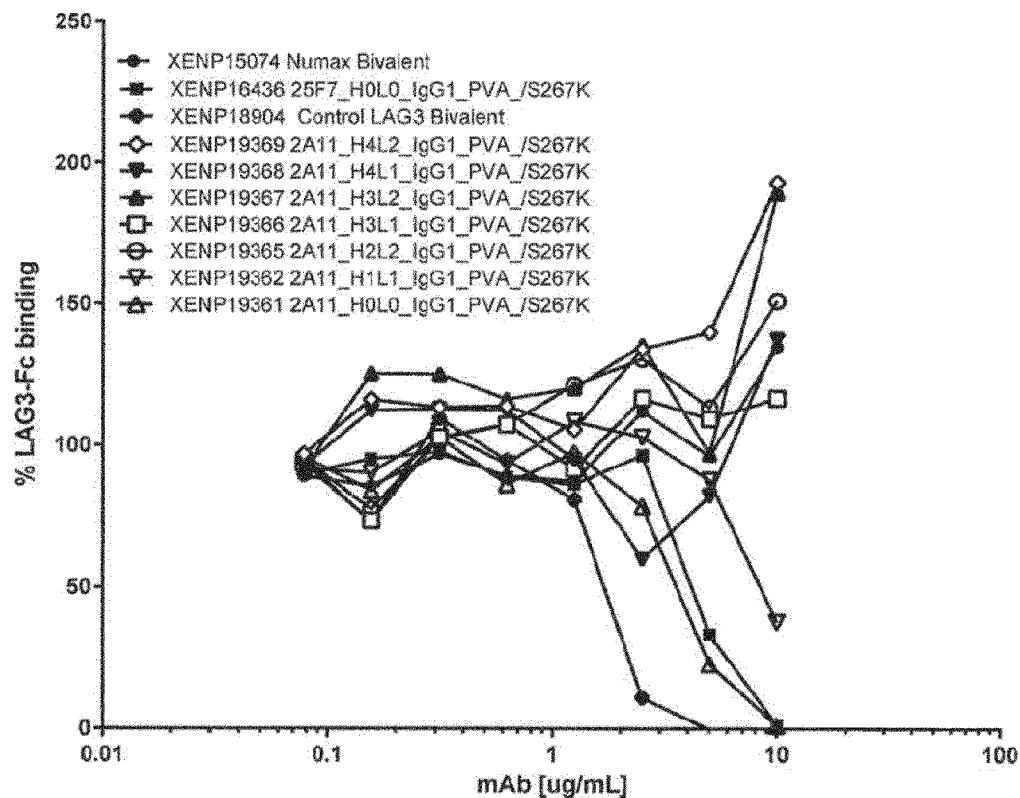



FIGURE 61B


FIGURE 62A

XENP	Fab side (anti-LAG-3)	scFv side (anti-PD-1)	Human LAG-3 KD (M)
20206	2A11_H1L2	1G6_L1.194_H1.279	2.2E-09
21584	2A11_H1_L2.93	1G6_L1.194_H1.279	1.4E-08
22123	2A11_H1_L2.122	1G6_L1.194_H1.279	1.9E-08
22125	2A11_H1_L2.124	1G6_L1.194_H1.279	2.0E-08
21582	2A11_H1_L2.91	1G6_L1.194_H1.279	6.2E-09
22627	2A11_H1.144_L2.133	1G6_L1.194_H1.279	3.8E-10
22628	2A11_H1.125_L2.113	1G6_L1.194_H1.279	<1.0E-12
22629	2A11_H1.144_L2.113	1G6_L1.194_H1.279	4.4E-11

FIGURE 62B

XENP	Fab side (anti-LAG-3)	scFv side (anti-PD-1)	Human LAG-3 KD (nM)
22521	7G8_H3.18_L1.11	1G6_L1.194_H1.279	NT
22522	7G8_H3.28_L1.13	1G6_L1.194_H1.279	NT
22565	7G8_H3.30_L1.11	1G6_L1.194_H1.279	NT
22566	7G8_H3.33_L1.11	1G6_L1.194_H1.279	NT
22567	7G8_H3.18_L1.30	1G6_L1.194_H1.279	1.0
22568	7G8_H3.30_L1.30	1G6_L1.194_H1.279	0.3
22569	7G8_H3.33_L1.30	1G6_L1.194_H1.279	1.5
22604	7G8_H3.30_L1.34	1G6_L1.194_H1.279	0.5
22605	7G8_H3.30_L1.36	1G6_L1.194_H1.279	0.5

FIGURE 63A

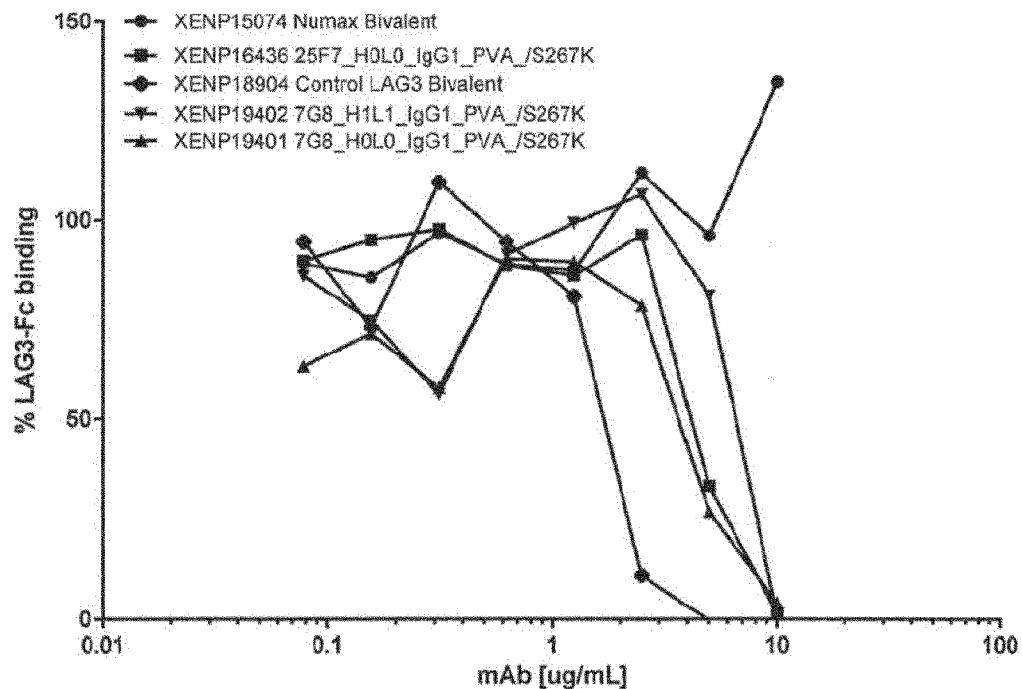

FIGURE 63B

FIGURE 64A

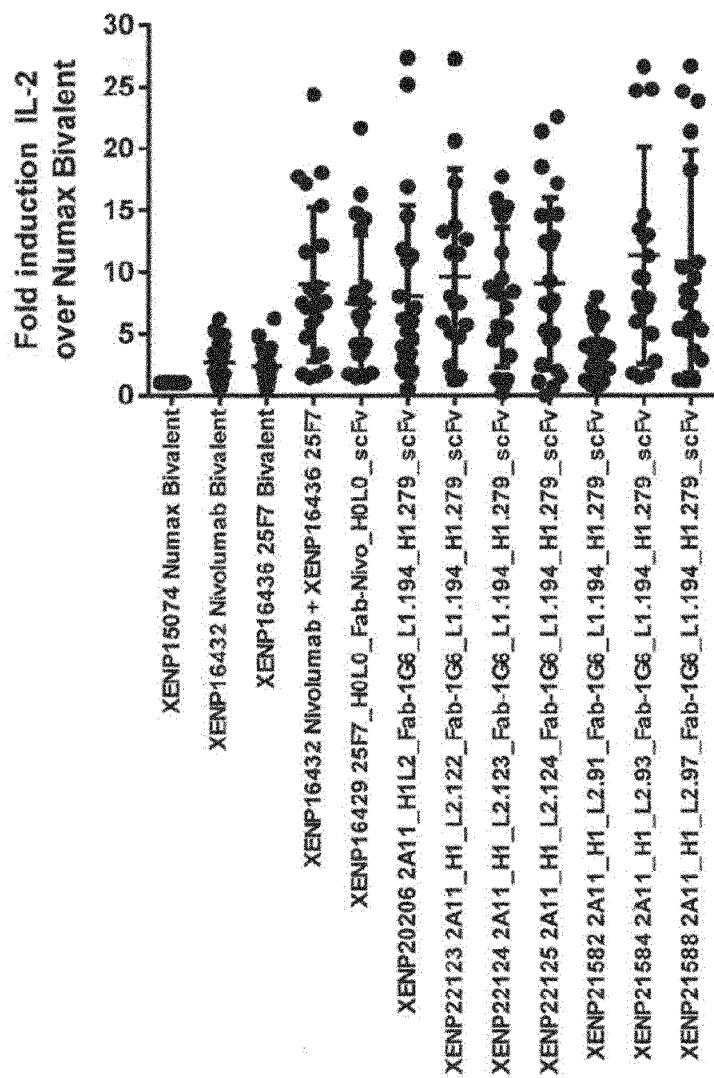


FIGURE 64B

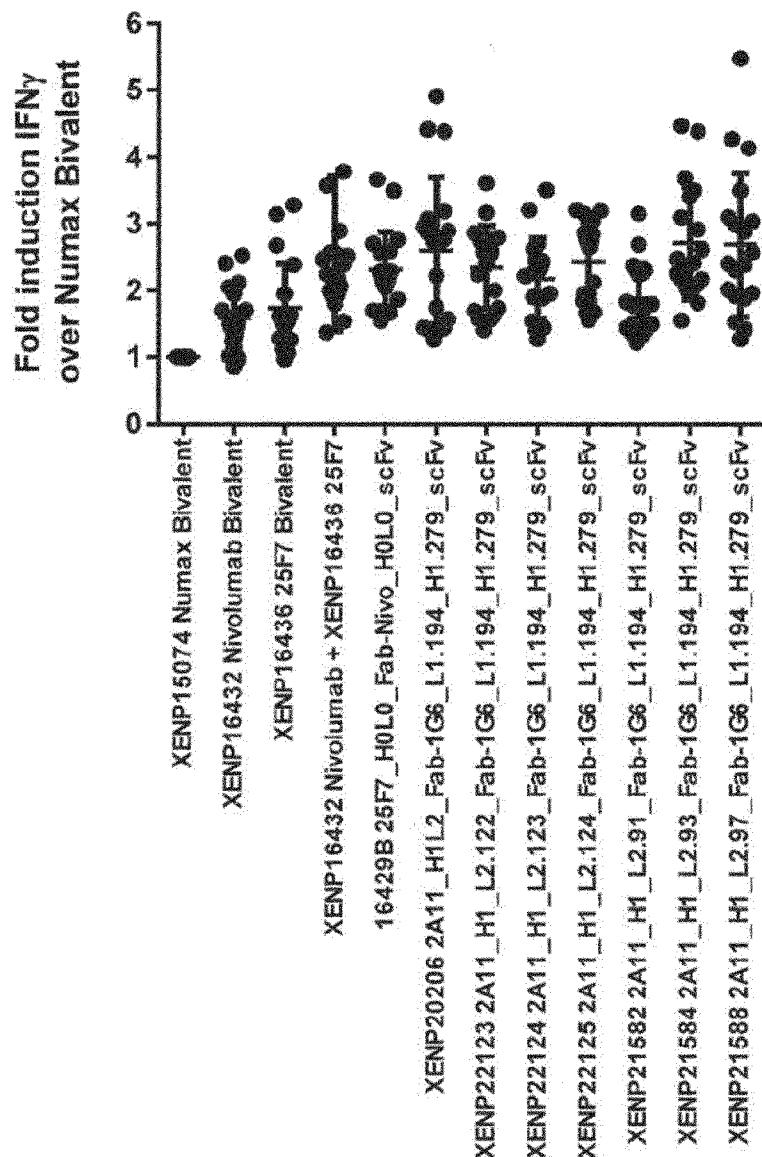
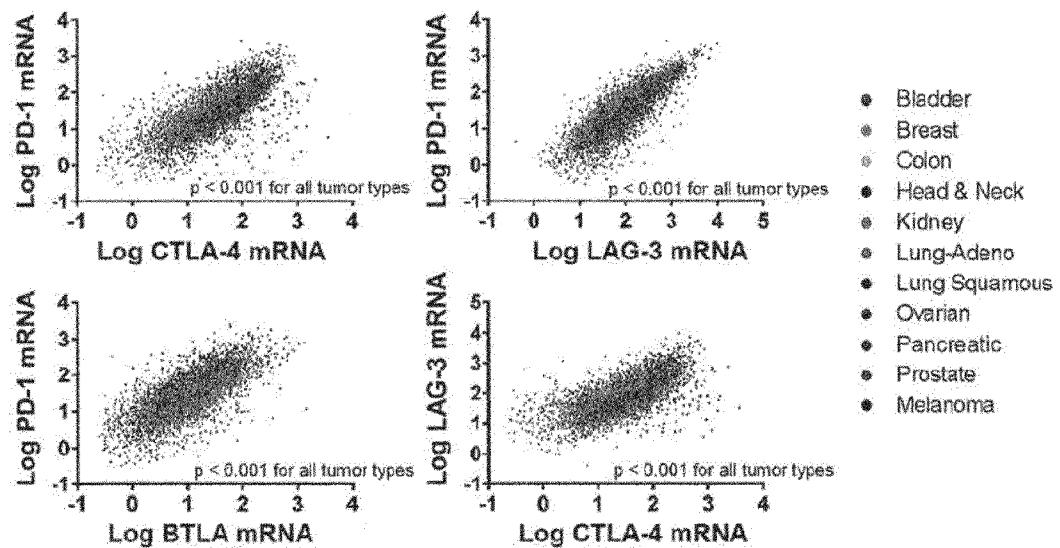
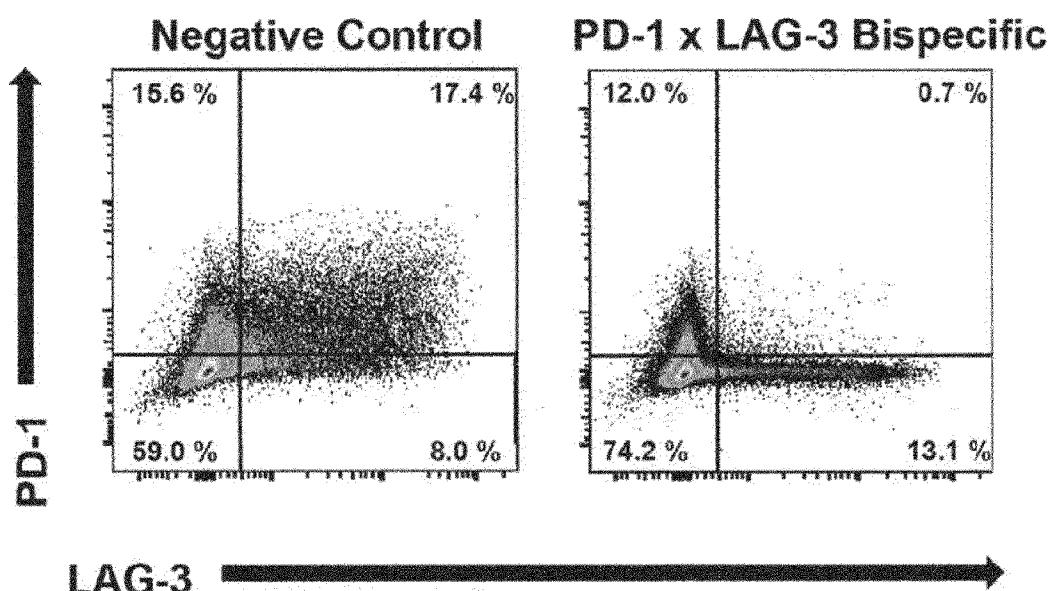
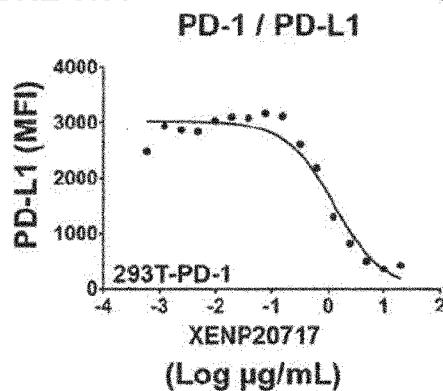
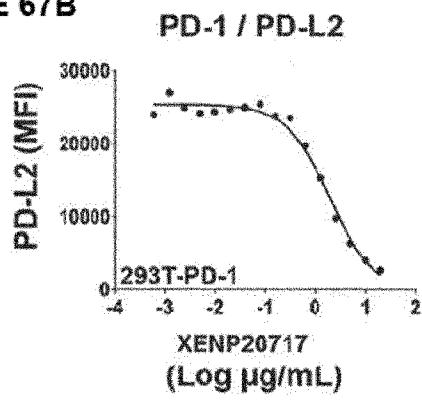
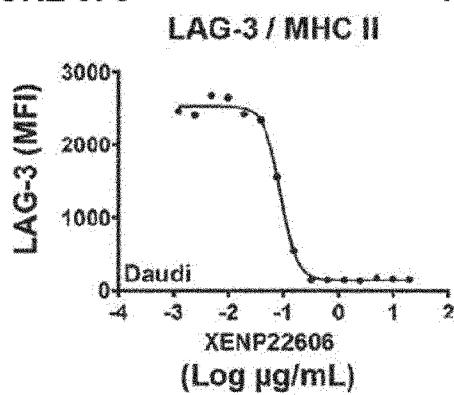
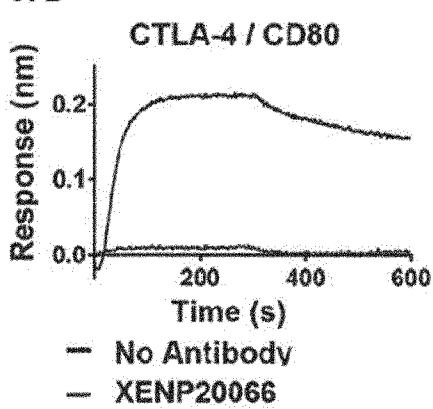
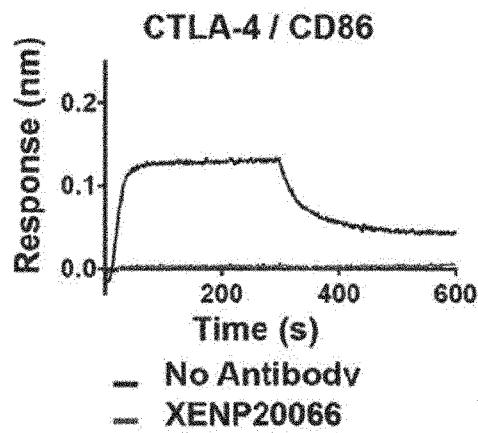
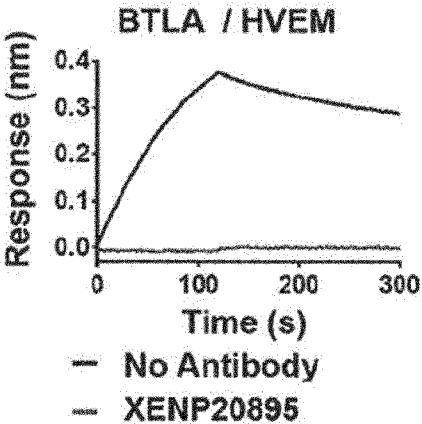
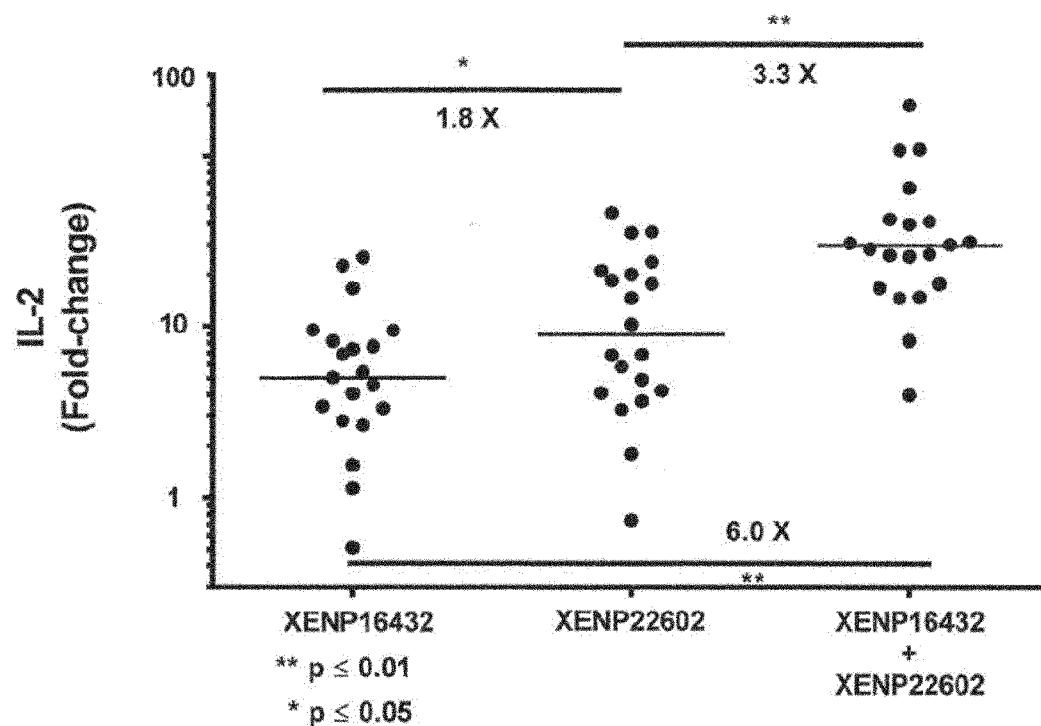




FIGURE 65

The results shown are based upon data generated by the TCGA Research Network:
<http://cancergenome.nih.gov/>

FIGURE 66







FIGURE 67A**FIGURE 67B****FIGURE 67C****FIGURE 67D****FIGURE 67E****FIGURE 67F**


FIGURE 68

**p ≤ 0.01

*p ≤ 0.05

FIGURE 69

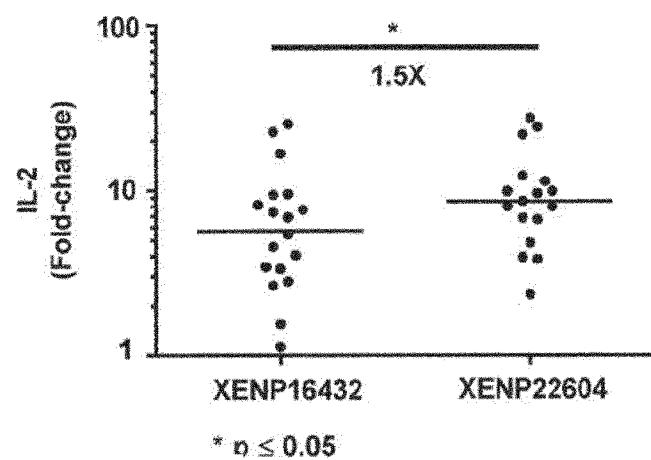


FIGURE 70

FIGURE 71

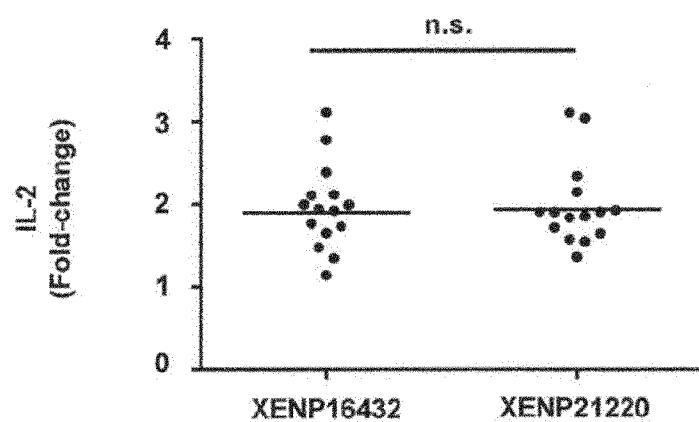


FIGURE 72

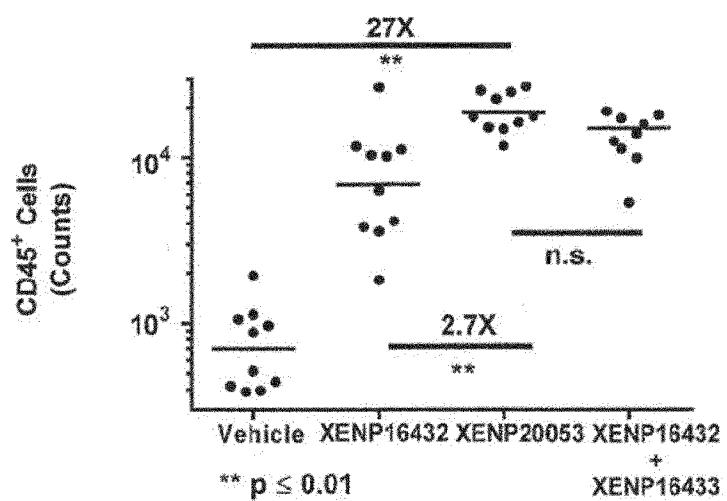


FIGURE 73

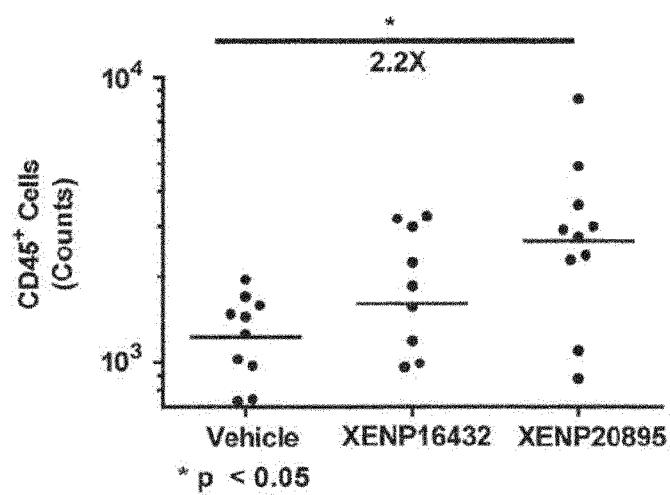


FIGURE 74

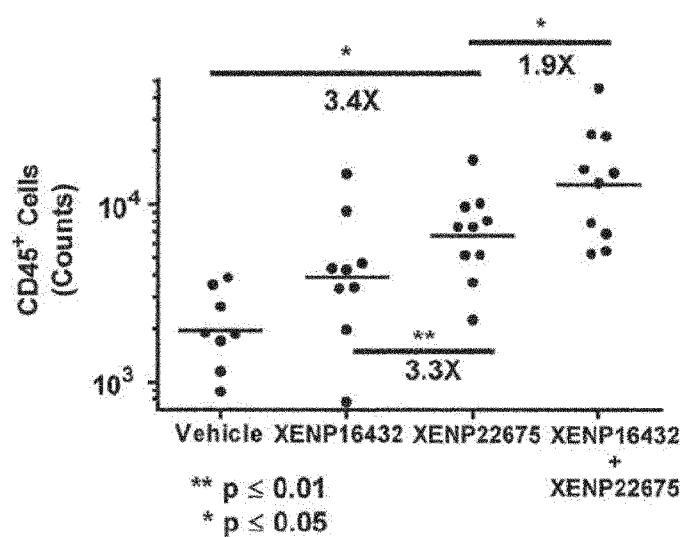
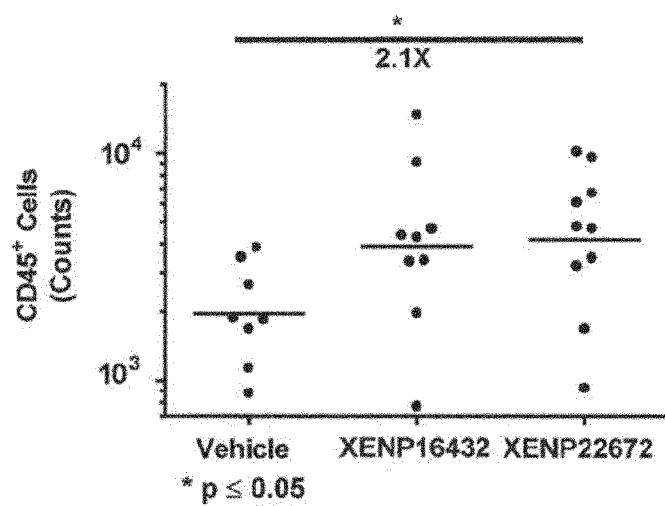
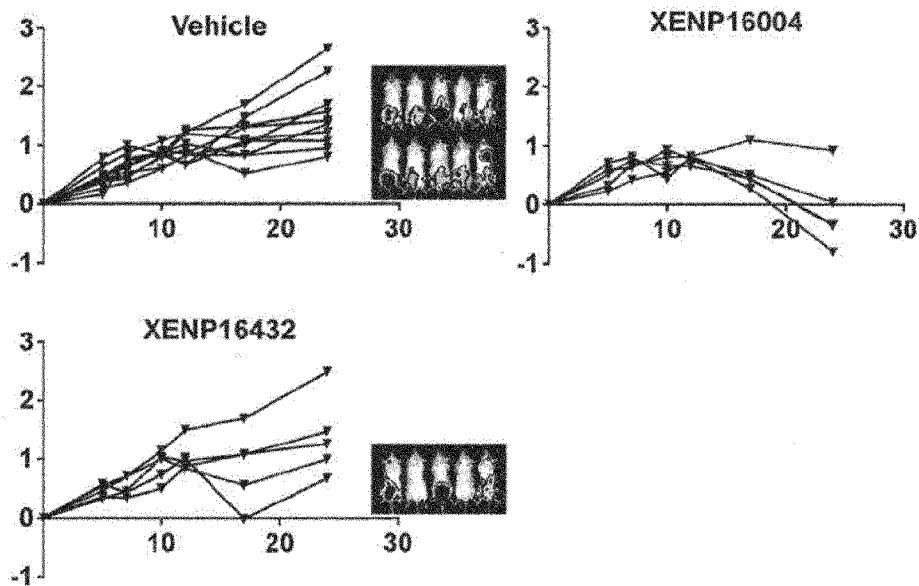
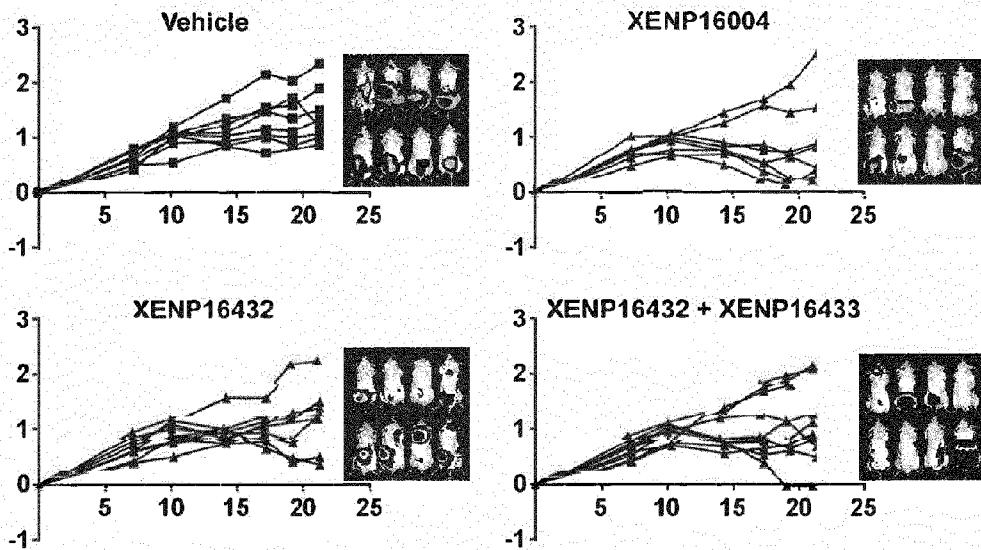





FIGURE 75

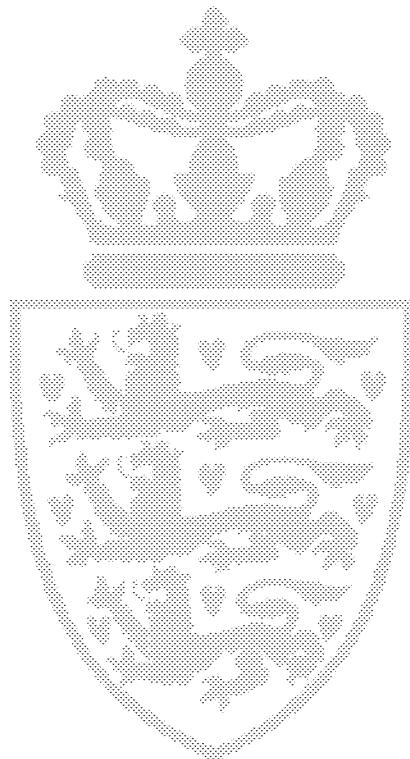

FIGURE 76A**Study #1**

FIGURE 76B**Study #2**

SEKVENSLISTE

Sekvenslisten er udeladt af skriftet og kan hentes fra det Europæiske Patent Register.

The Sequence Listing was omitted from the document and can be downloaded from the European Patent Register.

