发明名称
3-氯甲基-1,2,4-三嗪啉-5-酮的合成方法

摘要
本发明公开一种3-氯甲基-1,2,4-三嗪啉-5-酮的合成方法，其以氯乙酸、醇、HCl为原料合成亚氨基氯乙基烷基醚氯酸盐，然后与氨基脲盐酸盐在醇类溶剂中直接反应合成3-氯甲基-1,2,4-三嗪啉-5-酮。该工艺具有合成路线短、操作简单、原料易得、成本低廉的优点。
1. 一种 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其包括以下步骤：
 (1) 氯乙腈、醇和溶剂 A 混合，在 0 ～ 5℃的条件下边搅拌边通入 HCl 气体，通气完毕后
 反应 10 ～ 20 小时，纯化得亚氨基氯乙烷基醚盐酸盐；
 (2) 将溶剂 B 升温至 45℃，加入前述亚氨基氯乙烷基醚盐酸盐，反应 2.5 ～ 6 小时后
 降温至 -5 ～ 0℃，过滤取滤液，该滤液再升温至 20 ～ 40℃，加入氨基脲盐酸盐，反应 35 ～
 72 小时，得 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮；
 其中，所述醇为含 1 ～ 6 个碳原子的烷基的单羟基醇；
 所述醇的制剂的水分含量为 0.5% 以下；
 所述溶剂 A 为甲基叔丁基醚或二氯甲烷；
 所述溶剂 B 为甲醇或乙醇；
 所述氯乙腈、醇、HCl 和氨基脲盐酸盐的投料摩尔比为 1:1 ～ 1.05 :1.025 ～ 1:1 :
 0.175 ～ 0.2175。

2. 如权利要求 1 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 醇为甲醇或乙醇。

3. 如权利要求 1 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 醇制剂的水分含量为 0.1% 以下。

4. 如权利要求 1 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 氯乙腈与溶剂 A 的投料质量比为 1:6.62 ～ 10.93。

5. 如权利要求 1 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 亚氨基氯乙烷基醚盐酸盐与溶剂 B 的投料质量比为 1:0.34 ～ 2.34。

6. 如权利要求 1 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的纯化包括以下步骤；所述步骤(2) 得到的 3- 氯甲基
 -1, 2, 4- 三唑啉 -5- 酮过滤后取滤液 a，所述滤液 a 于 50℃减压蒸馏，所得固体加入溶剂
 C，加热搅拌回流 30min，趁热过滤取滤液 b，所述滤液 b 冷却析晶，过滤后得滤渣 c，所述滤
 渣 c 进行真空干燥得白色粉末状的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮；其中，所述溶剂 C 为
 异丙醇或丙酮。

7. 如权利要求 6 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 氨基脲盐酸盐与溶剂 C 的投料质量比为 1:7.22 ～ 10。

8. 如权利要求 6 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 冷却析晶的温度为 -10 ～ 30℃。

9. 如权利要求 6 所述的 3- 氯甲基 -1, 2, 4- 三唑啉 -5- 酮的合成方法，其特征在于：所述
 真空干燥的温度为 30 ～ 60℃。
3- 氯甲基-1,2,4- 三唑啉-5- 酮的合成方法

技术领域
[0001] 本发明涉及一种化合物合成方法，尤以涉及一种 3- 氯甲基-1,2,4- 三唑啉-5- 酮的合成方法。

背景技术
[0002] 阿瑞匹坦（Aprepitant），化学名为 5-[[2R,3S]-2-[[1R]-1-[3,5-二（三氟甲基）苯基]-乙氧基]-3-(4-氟苯氧基)-4-(吗啉基)甲基] -1,2- 二氢-3H-1,2,4-三唑-3-酮，是美国 Merck&Co 公司研究开发的神经激肽-1 (NK-1) 受体拮抗剂，2003 年经美国 FDA 批准上市，用于预防高致吐性抗肿瘤化疗药物（包括大剂量化疗治疗方案）所致的急性及延迟性恶心、呕吐。阿瑞匹坦可透过血脑屏障，与脑部 NK-1 受体选择性结合发挥止吐作用 [黄东林．2003 年美国批准的新药 [J]．上海医药，2004, 25 (9) :418-422]，[周振，毕小玲，尤启冬．阿瑞匹坦 [J]．中国新药杂志，2006, 15 (3) :238-239]。

[0003] 1,2,4- 三唑啉 -5- 酮衍生物是一类十分重要的医药间体，可用来合成多种药物有效成分 (API)。特别的，3-氯甲基-1,2,4- 三唑啉-5- 酮 (化合物 I) 是止吐药阿瑞匹坦的关键间体之一，其生产工艺优劣直接影响到该药物的合成成本。以 3- 氯甲基-1,2,4- 三唑啉 -5- 酮作为中间体直接合成阿瑞匹坦是目前已开发工艺中最简单快捷、效果最好的方法，因此具有较好的市场前景。

[0005]

[0006] 以苄氧基乙酰氯和氨基脲盐酸盐经 Schotten – Baumann 缩合、环化、水解、氯代的到 3- 氯甲基-1,2,4- 三唑啉-5- 酮。该合成方法明显的缺陷是工艺路线太长，工艺及操作繁琐复杂，总收率低，使用的中间体原料苄氧基乙酰氯价格高、经济性差，故目前的生产基
本不采用该路线。

随后MERCK SHARP & DOHME公司开发了以已经商品化的2-氯-1,1,1-三甲氧基乙烷为原料和氨基胍盐酸盐进在甲醇溶剂中直接缩合环化制备3-氯甲基-1,2,4-三唑啉-5-酮的合成工艺路线[COWDEN C.J.Process for the preparation of 1,2,4-triazol-5-one derivatives,US2003187274A1,US20030311389,2003]，如下所示：

![化学结构式](image)

发明内容

[0010] 本发明的目的是为克服现有技术的不足，提供一种工艺流程短、操作简单、成本低廉以及产品质量优良的3-氯甲基-1,2,4-三唑啉-5-酮的合成方法。

[0011] 为达到以上技术目的，本发明采用的技术方案如下：

[0012] 一种3-氯甲基-1,2,4-三唑啉-5-酮的合成方法，其包括以下步骤：

[0013] （1）化合物IV（氯乙烯）、化合物V（醇）和溶剂A混合，在0～5℃的条件下边搅拌边通入HCl气体，通气完毕后反应10～20小时，纯化后得化合物II（亚氨基氯氯基甲基氯酸盐）；

[0014] （2）将溶剂B升温至45℃，加入化合物II，反应2.5～6小时后降温至5～0℃，过滤取滤液，该滤液再升温至20～40℃，加入化合物III（氨基脲盐酸盐），反应35～72小时，得化合物I，即3-氯甲基-1,2,4-三唑啉-5-酮；

[0015] 其中，所述化合物V为含1～6个碳原子的烷基的单羟基醇；所述化合物V的制备的水分含量为0.5%以下；所述溶剂A为甲基叔丁基醚或二氯甲烷；所述溶剂B为甲醇或乙醇；所述化合物IV、化合物V、HCl和化合物III的投料摩尔比为1:1～1.05：1.025～1.1：
0.175 ~ 0.20175。

[0016]

\[
\text{化合物 IV} + \text{ROH} + \text{HCl} \xrightarrow{\text{溶剂 A}} \text{化合物 V} \xrightarrow{\text{溶剂 A}} \text{化合物 II}
\]

\[
\text{化合物 II} + \text{化合物 III} \xrightarrow{\text{溶剂 B}} \text{化合物 I}
\]

[0017] 进一步地，所述化合物 V 为甲醇或乙醇；且该化合物 V 的制备的水分含量为 0.1% 以下。

[0018] 进一步地，所述化合物 IV 与溶剂 A 的投料质量比为 1:6.62 ~ 10.93。所述化合物 II 与溶剂 B 的投料质量比为 1:0.34 ~ 2.34。

[0019] 优选地，所述化合物 I 的纯化包括以下步骤：所述步骤 (2) 得到的化合物 I 过滤后取滤液 a，所述滤液 a 于 50℃减压蒸馏，所得固体加入溶剂 C，加热搅拌回流 30min，趁热过滤取滤液 b，所述滤液 b 冷却析晶，过滤后得滤渣 c，所述滤渣 c 进行真空干燥得白色粉末状的化合物 I；其中，所述溶剂 C 为异丙醇或丙酮。

[0020] 进一步地，所述化合物 III 与溶剂 C 的投料质量比为 1:7.22 ~ 10。

[0021] 具体地，所述冷却析晶的温度为 -10 ~ 30℃。

[0022] 进一步地，所述真空干燥的温度为 30 ~ 60℃。

[0023] 与现有技术相比较，本发明具有如下优势：

[0024] a) 与传统工艺相比，本发明选用了价格较低的原材料，显著降低了生产成本；

[0025] b) 对整个工艺流程而言，本发明缩短了合成路线，提高了生产效率；

[0026] c) 简化了生产工艺的同时，更加便于生产的操作和品质控制。

具体实施方式

[0027] 以下结合具体实施方式对本发明作进一步详细描述。

[0028] 实施例 1

[0029] 在磁力搅拌反应器中投入氯乙酰 30.2g (0.4mol)、甲醇 (水分含量为 0.08%) 13.4g (0.42mol) 和甲苯叔丁基醚 300g，降温冷却至 0℃，控制在该温度以下缓慢均匀地通入干燥的 HCl 气体 15g (0.41mol)，通气完毕后，搅拌反应 20h，可得有大量白色针状晶体生成，过滤取滤渣，即得到亚氨基氯乙基甲基醚盐酸盐。将甲醇 120g 置于反应釜中，搅拌升温至 45℃，然后加入所述亚氨基氯乙基甲基醚盐酸盐 55g，并维持在 40 下搅拌反应 4 小时；反应液搅拌降温至 0℃，抽滤；滤液搅拌升温至 20℃，加入氨基脲盐酸盐 7.7g (0.07mol)，并维持该温度下搅拌反应 72 小时；反应液过滤，滤液于 45℃ ~ 50℃减压浓缩至干，所得固体加入异丙醇 77g，加热搅拌回流 30min，趁热过滤取滤液，该滤液于 0℃冷却析晶，得白色
细针状晶体，即为3-氯甲基-1,2,4-三唑啉-5-酮，过滤，于50℃真空干燥得白色粉末状的固体 3-氯甲基-1,2,4-三唑啉-5-酮 5.3g，总摩尔收率（以氨基脲盐酸盐计）为 57%。HPLC 纯度 99.6%，熔点 181℃～183℃。

[0032] 实施例 2

[0033] 在磁力搅拌反应器中投入氨乙酸 60.4g（0.8mol）、乙醇（水分含量为 0.06%）36.8g（0.8mol）和二氯甲烷 400g。降温冷却至 5℃，控制在该温度以下缓慢均匀地通入干燥的 HCl 气体 32g（0.88mol），通气完毕后，搅拌反应 10h，可见有大量白色针状晶体生成；过滤取滤渣，即得到亚氨基氯乙基二甲基胺盐酸盐。将乙醇 300g 置于反应釜中，搅拌升温至 45℃，然后加入上述亚氨基氯乙基甲基胺盐酸盐 128g，并维持在 45℃搅拌反应 6 小时；反应液搅拌降温至 -5℃，抽滤；滤液搅拌升温至 40℃，加入氨基脲盐酸盐 15.5g（0.14mol），并维持该温度下搅拌反应 35 小时；反应液过滤，滤液于 45℃～50℃减压浓缩至干，所得固体加入丙酮 150g，加热搅拌回流 30min，趁热过滤取滤液，将滤液置于 -5℃冷却析晶，得白色细针状晶体，即为 3-氯甲基-1,2,4-三唑啉-5-酮，过滤，于 55℃真空干燥得白色粉末状的固体 3-氯甲基-1,2,4-三唑啉-5-酮 11.5g，总摩尔收率（以氨基脲盐酸盐计）为 62%，HPLC 纯度 99.5%，熔点 181℃～183℃。

[0034] 上述实施例为本发明较佳的实施方式，但并非仅仅由上述实施例的限制，其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化，均应为等效的置换方式，均包含在本发明的保护范围之内。