发明名称 从松节油中高效提取α—蒎烯和β—蒎烯

摘要
从松节油中高效提取α—蒎烯和β—蒎烯。本发明属于用添加剂的特种精馏法，本发明采用在松节油中加入乙二醇和使用带有特用分布器的，理论塔板数不多的精馏塔在减压下进行分离提取α—蒎烯和β—蒎烯。馏出物在常温常压下经水萃取净化，可得到纯度达98%以上的α—蒎烯和90%以上的β—蒎烯。单程提取率90%以上，单位时间的产量比现有方法高一倍以上。本发明的技术可广泛适用于β—蒎烯含量5～36%的松节油的分离，添加剂的消耗量少且可以回收循环使用。
1. 一种用特种精馏从松节油中高效提取 α- 蒽烯和 β- 蒽烯的方法，其特征是将经净化处理过的松节油加入添加剂乙二醇，用一具有 25～35 个理论塔板数的 “α- 蒽烯精馏塔” 及 “β- 蒽烯精馏塔” 进行减压共沸精馏，共沸馏出物的轻相层再进行水萃取。

2. 根据权利要求 1 所述的方法，其特征是添加剂也可以是乳酸甲酯、乙二醇甲醚、乙二醇乙醚、1, 2- 丙二醇、1, 3- 丙二醇。

3. 根据权利要求 1 所述的方法，其特征是所加入的添加剂乙二醇与松节油之体积比为 1: 7～9。

4. 根据权利要求 1 所述的方法，其特征是 “α- 蒽烯精馏塔” 和 “β- 蒽烯精馏塔” 为普通精馏塔加设一塔顶分布器，在该分布器内把回流管与出料管的管口安装在同等水平高度。

5. 根据权利要求 1 所述的方法，其特征是 “α- 蒽烯精馏塔” 的控制条件是：塔内压力为 150～360 mmHg，塔釜温度 120～140℃，塔顶温度 100～115℃。

6. 根据权利要求 1 所述的方法，其特征是 “β- 蒽烯精馏塔” 的控制条件为：塔内压力 150～360 mmHg，塔釜温度 130～150℃，塔顶温度 115～125℃。

7. 根据权利要求 1 所述的方法，其特征是馏出液的轻相层按体积比轻相层：水 = 4: 1，在常温常压下进行水萃取。
说明

从松节油中高效提取α-蒎烯和β-蒎烯

本发明属于用添加剂的特种精馏法，从松节油中高效分离提取α-蒎烯和β-蒎烯。

松节油是我国最大宗的天然精油资源，产量居于世界前列。据报导，松节油中含有α-蒎烯 (60～85%)、β-蒎烯 (5～36%)、长叶烯、香叶烯、β-石竹烯和单烯等三十多种组分。其中α-蒎烯和β-蒎烯是制造香料、医药及精细有机合成工业的重要原料，可以合成近百种香料、樟脑、冰片、维生素E、A、K和萜烯树脂等。

从松节油中分离提取α-蒎烯和β-蒎烯，国外使用的工业化方法是采用传统的精馏法。以设备技术先进的英国BBA (Bush Boake Allem) 公司和美国的Glidden公司为例，均是采用一百多层理论塔板（相当于十几层楼高）的高效精馏塔进行分离的，这样高的塔必须要配备电脑和高级自动化仪表控制，才能保证精馏过程的正常运行。这种传统的精馏方法虽然有效，但存在设备复杂、操作困难、投资和管理费用大、能耗大、单位时间内的产量不高等缺点。国内目前采用的分离方法，仍然是传统的精馏法，采用精馏塔的理论塔板为55～67 层，需要进行重复精馏操作，原料利用率低，效果不理想。
此外，国内外一些研究单位采用的从松节油中提取α-蒎烯和β-蒎烯的分离方法中，还有色谱分离法，这种方法的特点是分离的产品纯度高，但设备费用太大，不适用于工业化大量生产。美国专利US. Pat. No. 3987121提出的用添加共沸剂二甘醇进行共沸精馏分离α-蒎烯和β-蒎烯的方法，虽可以降低精馏塔的理论塔板数（30～35层），但精馏过程要在常压下进行，釜温几乎达200℃，能耗大，副反应多，而且在这样高的温度下二甘醇在松节油中的稳定性差，有相当多的二甘醇起了变化不能回收循环使用，这种分离方法的投资费用大，经济效益差，产品质量也不大理想，很难实现工业化。

本发明的目的在于提供一种简便的、设备和技术条件要求不高、从松节油中优质、高产地分离提取α-蒎烯和β-蒎烯的分离方法。因此，本发明的主要措施是有目的地选择在松节油中加入一种适宜的添加剂，使到体系中各组分的活度系数改变，把松节油这一“理想溶液”人为地进行“非理想化”，使之成为一正偏差足够大的非理想体系，致使体系气—液平衡时的气、液热力学曲面间距扩大，达到有利于各组分容易分离的程度。从而根据非理想体系呈现的这一特性，使到仅需用较少理论塔板数的精馏塔就能方便地在低回流比情况下进行精馏分离出α-蒎烯和β-蒎烯。

通过对“非理想体系”中分子的构形、性质和分子聚集状态性质的研究，本发明对所使用的添加剂进行广泛的试验，如对醇类、酯类、
胺类等各种类型的化合物作了系列的试验，发现效果最好的是乙二醇，效果较好的还有乳酸甲酯、乙二醇甲醚、乙二醇乙醚、1，2-丙二醇、1，3-丙二醇等。对于“松节油——乙二醇”体系而言，当降低体系的总压力时会使体系向气-液平衡相图的最低恒沸点偏移，亦即随着压力的降低其恒沸混合物组成会向着低沸点物（α蒎烯或β蒎烯）的含量增多高沸点物乙二醇的含量减少的方向移动。按此规律即可适当降低体系压力来实现以较少的乙二醇夹带出较多的α蒎烯和β蒎烯，同时也降低了物耗和能耗。

根据共沸精馏有关理论，要从松节油中优质、高产、高效率地分离α-蒎烯和β-蒎烯，须使精馏塔顶的回流液严格符合气-液平衡理论所要求的各组分的含量要求。对于“松节油—乙二醇”体系，本发明的进一步措施是设计一特用的α-蒎烯共沸精馏塔和β-蒎烯共沸精馏塔的塔顶分布器，这种塔顶分布器的内部装置特点是：在这种分布器内，回流管和出料管的管口处于同一水平高度，以保证回流液组成与馏出物组成充分接近。采用这样的分布器，即使在很小的回流比条件下操作也不会破坏精馏塔的平衡，而能达到在工业规模上优质、高产、高效率的分离效果。

本发明使用乙二醇从松节油中共沸精馏提取α-蒎烯和β-蒎烯具有如下的优点：

1. 乙二醇是普通的化工原料，价格便宜。
2. 乙二醇的实际用量少，实际使用的体积比是 油：乙二醇 = 7 ～ 9 : 1，并且几乎可以循环使用。

3. 在“松节油 —— 乙二醇”体系中，乙二醇具有较高的化学稳定性。乙二醇的闪点高，不易爆炸，毒性低。

4. 乙二醇在α-蒎烯和β-蒎烯中的溶解度小，在30℃下乙二醇在α-蒎烯中的溶解度 < 0.05%，在40℃下乙二醇在β-蒎烯中的溶解度 < 0.06%。

5. 在常压下，乙二醇的沸点为157℃，比α-蒎烯的沸点（156℃）、β-蒎烯的沸点（184℃）高；比二者的恒沸点（α-蒎烯与乙二醇的恒沸点为149.5℃，β-蒎烯与乙二醇的恒沸点155℃）也高。

6. 使用乙二醇为添加剂可大大降低精馏塔的理论塔板数（一般为25～35层）和减少回流量。

7. 以乙二醇为添加剂，使本发明的适用范围广泛，对于β-蒎烯含量为5～36%的各种松节油均可采用本发明技术。

本发明从松节油中高效提取α-蒎烯和β-蒎烯的做法为：

1. 松节油的净化处理：

将粗松节油按体积比为 水：NaOH (0.1～0.2%) 水溶液：松节油 = 1 : 1 : 4, 在常温、常压下用转盘塔进行净化处理，再用水洗至呈中性，除去松节油中的松香酸及杂质，以得到净化的松节
2 共沸精馏分离 α- 萘烯和 β- 萘烯:

将净化的松节油掺入添加剂乙二醇，按体积比 油：添加剂 = 7～9 : 1 混合，用一具有 25～35 块理论塔板的填料塔（α- 萘烯精馏塔和 β- 萘烯精馏塔）进行精馏分离。“α- 萘烯精馏塔”的控制条件为：塔内压力 150～360 mmHg，塔釜温度 120～140℃，塔顶温度为 100～115℃；“β- 萘烯精馏塔” 的控制条件为：塔内压力 150～360 mmHg，塔釜温度 130～150℃，塔顶温度 115～125℃，回流比为 3～8 : 1，用测定馏出物的折光率或进行色谱分析来确定和控制产品的收集。馏出液经冷凝后分为两个液相层，轻相层（上层）为含有微量添加剂（小于 0.05%）的萘烯，重相层（下层）为含有微量萘烯（小于 0.3%）的乙二醇，用物理倾析法分离轻重两相层，轻相层供下一步进行水萃取处理，重相层可供循环使用。

整个精馏分离过程用测定折光率或进行色谱分析来进行分离物的跟踪控制，先分离提取 α- 萘烯，后分离提取 β- 萘烯。如以折光率进行跟踪，当轻相层油的折光率 $n_20^\circ = 1.4653～1.4655$ 的馏份为纯度高于 98% 的 α- 萘烯；轻相层油的折光率 $n_20^\circ = 1.4776$ 开始收集 β- 萘烯，收集过程中随着 β- 萘烯含量的变化，折光率上升到 $n_20^\circ = 1.4788 ～ 1.4790$，然后下降到 $n_20^\circ = 1.4785$
的馏份为纯度达90％以上的β-蒎烯。α-蒎烯的分离和β-蒎烯也可安排在不同的精馏塔进行。

3. 共沸馏份轻相层的水萃取：

把共沸精馏得到的“蒎烯——乙二醇”馏分的轻相层，按体积比：轻相层：水=4：1在常温常压下用转盘塔进行水萃取，以除去微量的添加剂乙二醇，其重相是含有微量添加剂和微量蒎烯的水溶液，可回收供循环使用或弃之。其轻相层则为高纯度的α-蒎烯和β-蒎烯成品。

4. 残液处理

精馏后的釜底残液放到一贮槽静置，分出重相层乙二醇可供循环使用，轻相层为松节油的其他高沸点组分。

表1和2为试验分离效果。

图1为从松节油中高效提高α-蒎烯和β-蒎烯的工业生产流程图。

现就图1对从松节油中分离提高α蒎烯和β蒎烯的工业生产流程作如下说明。

1. 松节油的预处理

来自贮槽(1)的松节油与来自贮槽(2)的清水、来自贮槽(3)的稀碱液通过转子流量计F1、F2、F3，按规定的比例控制进入松节油预处理转盘塔(4)，处理好的松节油由塔上口排出进入贮槽(5)，经油泵机P1、P2去
油中的少量水份和杂质进入贮槽（25），洗涤松节油的污水从下口排出。

2 共沸精馏提取 α- 蒽烯

把预处理过的松节油从贮槽（25）抽到计量槽（12），以内位计工计量进入“ α- 蒽烯精馏塔”塔釜（14），添加剂乙二醇由计量槽（13）由内位计工按比例加到塔釜（14）中，控制温度和压力进行分离 α- 蒽烯。从塔顶（15）蒸出的共沸混合物经冷凝器（16）进入分布器（17），液体分为两个液相层，上层为纯度≥ 98 % 的 α- 蒽烯和微量添加剂，下层为含微量蒽烯的添加剂。由流量计 F1 和 F2 按规定的比例进行控制回流和收集 α- 蒽烯。共沸混合物“ α- 蒽烯添加剂”一起被收集到分离贮槽（18），静置后上层为含有微量添加剂的 α- 蒽烯，下层为含有微量 α- 蒽烯的添加剂乙二醇。由液位计控制，上层放到贮槽（6），下层回到添加剂贮槽（13）。来自贮槽（6）的 α- 蒽烯和来自贮槽（2）的清水由流量计 F1 和 F2，按规定的比例控制进入 α- 蒽烯水萃取转盘塔（7）除去 α- 蒽烯溶剂的微量添加剂，水萃取后的 α- 蒽烯由上口排出进入贮槽（8），经洗油机 F2，滤去微量水分，即得到纯度 98 % 以上的 α- 蒽烯产品，进入成品贮槽（26）。转盘塔（7）的萃取相污水由下口排走。α- 蒽烯精馏塔的釜液被送入 β- 蒽烯精馏塔塔釜（19）进行 β- 蒽烯的分离。

3 共沸精馏提取 β- 蒽烯
来自 α- 蒸烯精馏塔塔釜 (14) 的釜余液进入“β- 蒸烯精馏塔塔釜 (19)，按技术规定的温度、压力分离 β- 蒸烯。塔顶蒸出的共沸混合物进入冷凝器 (21)，冷凝的蒸出物分为两个相进入分布器 (22)。通过转子流量计 \(F_1 \) 和 \(F_2 \)，按技术要求控制回流和出料。出料进入分离贮槽 (23)，静置后分为两个液相层，上层为含有微量添加剂纯度约为 90% 的 β- 蒸烯，下层为含有微量蒸烯的添加剂乙二醇。上层送到贮槽 (9)，下层回到添加剂贮槽 (13)。来自 (9) 的含微量添加剂的 β- 蒸烯和来自 (2) 的清水由 \(F_1 \) 和 \(F_2 \)，按比例控制进入 β- 蒸烯水萃取转盘塔 (10)。水萃取除去微量添加剂后的 β- 蒸烯进入贮槽 (11) 经滤油机 \(F_3 \) 滤去水分，进入 β- 蒸烯成品贮槽 (27)，萃取相污水从下口排出。

分离提取 β- 蒸烯后的釜液、即松节油重组份和未用完的添加剂送入分离贮槽 (24) 静置分层，下层基本上为添加剂乙二醇，由液位计控制回到贮槽 (13)，上层为含有微量添加剂的松节油重组分送入贮槽 (28) 待进一步处理。

本发明方法与目前国内外所使用的方法的技术指标比较见表 3。从表 3 数据可见本发明方法与目前国内外所使用的方法比较具有如下优点：本发明方法使用所精馏塔理论板数少（为 2.5 ~3.5 理论板），产品的纯度比目前国内外使用传统蒸馏法和国外的特种蒸馏法得到的产品的纯度高。从回流比来看，本发明方法单位时间
内产量比目前国内外所采用的方法的产量高一倍以上。具有优质、高产、高效率、低能耗和低物耗、设备简单、易于操作管理、易于推广使用等优点。此外，本发明的适用范围广泛，对于β-蒎烯含量为5～36%的世界各地所产的各种松节油，均可用本发明的技术来实现高效而经济的分离α-蒎烯和β-蒎烯的目的。
<table>
<thead>
<tr>
<th>进 料 量</th>
<th>松节油 895ml</th>
<th>乙二醇 110ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>待分离松节油中目的物含量</td>
<td>α-蒎烯 85.73%</td>
<td>β-蒎烯 5.84%</td>
</tr>
<tr>
<td>精馏塔理论塔板数</td>
<td>23层</td>
<td>23层</td>
</tr>
<tr>
<td>操作压力</td>
<td>350mmHg</td>
<td>350mmHg</td>
</tr>
<tr>
<td>塔釜温度</td>
<td>126~131℃</td>
<td>131~140℃</td>
</tr>
<tr>
<td>产品产量</td>
<td>α-蒎烯 735ml</td>
<td>β-蒎烯 50ml</td>
</tr>
<tr>
<td>产品纯度</td>
<td>α-蒎烯 98.3%</td>
<td>β-蒎烯 86.6%</td>
</tr>
<tr>
<td>产品中目的物的提取率</td>
<td>α-蒎烯 95.8%</td>
<td>β-蒎烯 95.6%</td>
</tr>
<tr>
<td>操作损失</td>
<td></td>
<td>2%</td>
</tr>
</tbody>
</table>
表2 工业规模分离效果

<table>
<thead>
<tr>
<th>进料量</th>
<th>松节油 4110 kg</th>
<th>乙二醇 4000 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>待分离松节油中目的物含量</td>
<td>α-蒎烯 87.5%</td>
<td>β-蒎烯 5.50%</td>
</tr>
<tr>
<td>精馏塔理论塔板数</td>
<td>35层</td>
<td>35层</td>
</tr>
<tr>
<td>操作压力</td>
<td>350 mmHg</td>
<td>350 mmHg</td>
</tr>
<tr>
<td>塔釜温度</td>
<td>130~133°C</td>
<td>135~140°C</td>
</tr>
<tr>
<td>产品产量</td>
<td>α-蒎烯 3400 kg</td>
<td>β-蒎烯 205 kg</td>
</tr>
<tr>
<td>产品纯度</td>
<td>α-蒎烯 98.5%</td>
<td>β-蒎烯 91.5%</td>
</tr>
<tr>
<td>产品中目的物的提取率</td>
<td>α-蒎烯 95.1%</td>
<td>β-蒎烯 90.8%</td>
</tr>
<tr>
<td>操作损失</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>
表3、技术指标比较表

<table>
<thead>
<tr>
<th>方法</th>
<th>原料要求（β-蒎烯含量）</th>
<th>分馏塔理论塔板数</th>
<th>回流比</th>
<th>α-蒎烯纯度（%）</th>
<th>α-蒎烯收率（%）</th>
<th>β-蒎烯纯度（%）</th>
<th>β-蒎烯收率（%）</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>本发明方法</td>
<td>>5%</td>
<td>30</td>
<td>3〜8：1</td>
<td>>98</td>
<td>95</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>国外一次精馏法</td>
<td>>25%</td>
<td>>100</td>
<td></td>
<td>>95</td>
<td></td>
<td>>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国内一次精馏法</td>
<td>>20%</td>
<td>62</td>
<td>3〜5：1</td>
<td></td>
<td></td>
<td>>70</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>国内二次精馏法</td>
<td>>8%</td>
<td>67</td>
<td>4〜8：1</td>
<td>96</td>
<td>>90</td>
<td>>90</td>
<td>>60</td>
<td></td>
</tr>
<tr>
<td>US. Pat NO.3987121</td>
<td>>25%</td>
<td>30〜35</td>
<td>11.4〜29：1</td>
<td>97</td>
<td></td>
<td>84</td>
<td>89〜93</td>
<td>重复一次分馏</td>
</tr>
</tbody>
</table>