(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2013/075035 A1

(43) International Publication Date 23 May 2013 (23.05.2013)

(51) International Patent Classification: C07H 21/00 (2006.01) A61K 31/7088 (2006.01) C12N 15/113 (2010.01)

(21) International Application Number:

PCT/US2012/065691

(22) International Filing Date:

16 November 2012 (16.11.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/561,710 18 November 2011 (18.11.2011) US 61/615,618 26 March 2012 (26.03.2012) US 61/680,098 6 August 2012 (06.08.2012) US

- ALNYLAM **PHARMACEUTICALS** (71) Applicant: [US/US]; 300 Third Street, 3rd Floor, Cambridge, MA 02142 (US).
- (72) Inventors: RAJEEV, Kallanthottathil, G.; 300 Third Street, 3rd Floor, Cambridge, MA 02142 (US). ZIMMER-MANN, Tracy; 300 Third Street, 3rd Floor, Cambridge, MA 02142 (US). MANOHARAN, Muthiah; 300 Third Street, 3rd Floor, Cambridge, MA 02142 (US). MAIER, Martin; 300 Third Street, 3rd Floor, Cambridge, MA 02142 (US). KUCHIMANCHI, Satyanarayana; 300 Third Street, 3rd Floor, Cambridge, MA 02142 (US). CHARISSE, Klaus; 300 Third Street, 3rd Floor, Cambridge, MA 02142 (US).
- (74) Agents: ZACHARAKIS, Maria Laccotripe et al.; Mc-Carter & English, LLP, 265 Franklin Street, Boston, MA 02110 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

RNAi AGENTS, COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING TRANSTHYRETIN (TTR) ASSOCIATED DISEASES

Related Applications

This application claims priority to U.S. Provisional Application No. 61/561,710, filed on November 18, 2011, U.S. Provisional Application No. 61/615,618, filed on March 26, 2012, and U.S. Provisional Application No. 61/680,098, filed on August 6, 2012, the entire contents of each of which are hereby incorporated herein by reference.

10 **Sequence Listing**

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on November 13, 2012, is named 121301WO.txt and is 541,508 bytes in size.

15

20

Background of the Invention

Transthyretin (TTR) (also known as prealbumin) is found in serum and cerebrospinal fluid (CSF). TTR transports retinol-binding protein (RBP) and thyroxine (T4) and also acts as a carrier of retinol (vitamin A) through its association with RBP in the blood and the CSF. Transthyretin is named for its **trans**port of **thy**roxine and **retin**ol. TTR also functions as a protease and can cleave proteins including apoA-I (the major HDL apolipoprotein), amyloid β -peptide, and neuropeptide Y. See Liz, M.A. *et al.* (2010) *IUBMB Life*, 62(6):429-435.

TTR is a tetramer of four identical 127-amino acid subunits (monomers) that are rich in beta sheet structure. Each monomer has two 4-stranded beta sheets and the shape of a prolate ellipsoid. Antiparallel beta-sheet interactions link monomers into dimers. A short loop from each monomer forms the main dimer-dimer interaction. These two pairs of loops separate the opposed, convex beta-sheets of the dimers to form an internal channel.

The liver is the major site of TTR expression. Other significant sites of expression include the choroid plexus, retina (particularly the retinal pigment epithelium) and pancreas.

Transthyretin is one of at least 27 distinct types of proteins that is a precursor protein in the formation of amyloid fibrils. See Guan, J. *et al.* (Nov. 4, 2011) Current perspectives on cardiac amyloidosis, *Am J Physiol Heart Circ Physiol*, doi:10.1152/ajpheart.00815.2011. Extracellular deposition of amyloid fibrils in organs and tissues is the hallmark of amyloidosis. Amyloid fibrils are composed of misfolded protein aggregates, which may result from either excess production of or specific mutations in precursor proteins. The amyloidogenic potential of TTR may be related to its extensive beta sheet structure; X-ray crystallographic studies indicate that certain amyloidogenic mutations destabilize the tetrameric structure of the protein. See, *e.g.*, Saraiva M.J.M. (2002) *Expert Reviews in Molecular Medicine*, 4(12):1-11.

Amyloidosis is a general term for the group of amyloid diseases that are

15 characterized by amyloid deposits. Amyloid diseases are classified based on their precursor protein; for example, the name starts with "A" for amyloid and is followed by an abbreviation of the precursor protein, e.g., ATTR for amloidogenic transthyretin.

1bid.

20

25

30

There are numerous TTR-associated diseases, most of which are amyloid diseases. Normal-sequence TTR is associated with cardiac amyloidosis in people who are elderly and is termed senile systemic amyloidosis (SSA) (also called senile cardiac amyloidosis (SCA) or cardiac amyloidosis). SSA often is accompanied by microscopic deposits in many other organs. TTR amyloidosis manifests in various forms. When the peripheral nervous system is affected more prominently, the disease is termed familial amyloidotic polyneuropathy (FAP). When the heart is primarily involved but the nervous system is not, the disease is called familial amyloidotic cardiomyopathy (FAC). A third major type of TTR amyloidosis is leptomeningeal amyloidosis, also known as leptomeningeal or meningocerebrovascular amyloidosis, central nervous system (CNS) amyloidosis, or amyloidosis VII form. Mutations in TTR may also cause amyloidotic vitreous opacities, carpal tunnel syndrome, and euthyroid hyperthyroxinemia, which is a non-amyloidotic disease thought to be secondary to an increased association of

thyroxine with TTR due to a mutant TTR molecule with increased affinity for thyroxine. See, *e.g.*, Moses *et al.* (1982) *J. Clin. Invest.*, 86, 2025-2033.

Abnormal amyloidogenic proteins may be either inherited or acquired through somatic mutations. Guan, J. et al. (Nov. 4, 2011) Current perspectives on cardiac amyloidosis, Am J Physiol Heart Circ Physiol, doi:10.1152/ajpheart.00815.2011. Transthyretin associated ATTR is the most frequent form of hereditary systemic amyloidosis. Lobato, L. (2003) J. Nephrol., 16:438-442. TTR mutations accelerate the process of TTR amyloid formation and are the most important risk factor for the development of ATTR. More than 85 amyloidogenic TTR variants are known to cause systemic familial amyloidosis. TTR mutations usually give rise to systemic amyloid deposition, with particular involvement of the peripheral nervous system, although some mutations are associated with cardiomyopathy or vitreous opacities. Ibid.

The V30M mutation is the most prevalent TTR mutation. See, *e.g.*, Lobato, L. (2003) *J Nephrol*, 16:438-442. The V122I mutation is carried by 3.9% of the African American population and is the most common cause of FAC. Jacobson, D.R. et al. (1997) *N. Engl. J. Med.* 336 (7): 466–73. It is estimated that SSA affects more than 25% of the population over age 80. Westermark, P. et al. (1990) *Proc. Natl. Acad. Sci. U.S.A.* 87 (7): 2843–5.

Accordingly, there is a need in the art for effective treatments for TTR-associated 20 diseases.

Summary of the Invention

10

25

30

The present invention provides RNAi agents, e.g., double stranded RNAi agents, targeting the Transthyretin (TTR) gene. The present invention also provides methods of inhibiting expression of TTR and methods of treating or preventing a TTR-associated disease in a subject using the RNAi agents, e.g. double stranded RNAi agents, of the invention. The present invention is based, at least in part, on the discovery that RNAi agents that comprise particular chemical modifications show a superior ability to inhibit expression of TTR. Agents including a certain pattern of chemical modifications (e.g., an alternating pattern) and a ligand are shown herein to be effective in silencing the activity of the TTR gene. Furthermore, agents including one or more motifs of three

identical modifications on three consecutive nucleotides, including one such motif at or near the cleavage site of the agents, show surprisingly enhanced TTR gene silencing activity. When a single such chemical motif is present in the agent, it is preferred to be at or near the cleavage region for enhancing of the gene silencing activity. Cleavage region is the region surrounding the cleavage site, *i.e.*, the site on the target mRNA at which cleavage occurs.

Accordingly, in one aspect, the present invention features RNAi agents, e.g., double stranded RNAi agents, for inhibiting expression of a transthyretin (TTR). The double stranded RNAi agent includes a sense strand complementary to an antisense strand. The antisense strand includes a region complementary to a part of an mRNA encoding transthyretin. Each strand has 14 to 30 nucleotides, and the double stranded RNAi agent is represented by formula (III):

sense:
$$5' n_p - N_a - (X X X)_i - N_b - Y Y Y - N_b - (Z Z Z)_j - N_a - n_q 3'$$

antisense:
$$3' n_p' - N_a' - (X'X'X')_k - N_b' - Y'Y'Y' - N_b' - (Z'Z'Z')_l - N_a' - n_q' 5'$$

10

20

25

In Formula III, i, j, k, and l are each independently 0 or 1; p, p', q, and q' are each independently 0-6; each N_a and N_a ' independently represents an oligonucleotide sequence including 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucleotides; each N_b and N_b ' independently represents an oligonucleotide sequence including 0-10 nucleotides which are either modified or unmodified or combinations thereof; each n_p , n_p ', n_q , and n_q ' independently represents an overhang nucleotide; XXX, YYY, ZZZ, X'X'X', Y'Y'Y', and Z'Z'Z' each independently represents one motif of three identical modifications on three consecutive nucleotides; modifications on N_b differ from the modification on Y and modifications on N_b ' differ from the modification on Y'. In some embodiments, the sense strand is conjugated to at least one ligand, *e.g.*, at least one ligand attached to the 3' end of the sense strand. In other embodiments, the ligand may be conjugated to the antisense strand.

In some embodiments, i is 1; j is 1; or both i and j are 1.

In some embodiments, k is 1; 1 is 1; or both k and 1 are 1.

In some embodiments, i is 0; j is 1.

In some embodiments, i is 1, j is 0.

In some embodiments, k is 0; 1 is 1.

In some embodiments, k is 1; 1 is 0.

In some embodiments, XXX is complementary to X'X'X', YYY is complementary to Y'Y'Y', and ZZZ is complementary to Z'Z'Z'.

In some embodiments, the YYY motif occurs at or near the cleavage site of the sense strand.

In some embodiments, the Y'Y'Y' motif occurs at the 11, 12 and 13 positions of the antisense strand from the 5'-end.

In some embodiments, the Y' is 2'-O-methyl.

In some embodiments, the Y' is 2'-fluoro.

In some embodiments, formula (III) is represented as formula (IIIa):

sense:
$$5' n_p - N_a - Y Y Y - N_b - Z Z Z - N_a - n_q 3'$$

15 antisense: 3'
$$n_p$$
'- N_a '- Y ' Y '- Y '- N_b '- Z ' Z ' Z '- N_a ' n_q ' 5' (IIIa).

In formula IIIa, each N_b and N_b' independently represents an oligonucleotide sequence including 1-5 modified nucleotides.

In some embodiments, formula (III) is represented as formula (IIIb):

20 sense:
$$5' n_p - N_a - X X X - N_b - Y Y Y - N_a - n_q 3'$$
 antisense: $3' n_p' - N_a' - X'X'X' - N_b' - Y'Y'Y' - N_a' - n_q' 5'$ (IIIb).

In formula IIIb each N_b and $N_{b'}$ independently represents an oligonucleotide sequence including 1-5 modified nucleotides.

In some embodiments, formula (III) is represented as formula (IIIc):

sense: $5' n_p - N_a - X X X - N_b - Y Y Y - N_b - Z Z Z - N_a - n_q 3'$

antisense: $3' n_p' - N_a' - X'X'X' - N_b' - Y'Y'Y' - N_b' - Z'Z'Z' - N_a' - n_q' 5'$

(IIIc).

In formula IIIc, each N_b and -N_b' independently represents an oligonucleotide sequence including 1-5 modified nucleotides and each N_a and N_a' independently represents an oligonucleotide sequence including 2-10 modified nucleotides.

In many embodiments, the duplex region is 15-30 nucleotide pairs in length. In some embodiments, the duplex region is 17-23 nucleotide pairs in length, 17-25 nucleotide pairs in length, 23-27 nucleotide pairs in length, 19-21 nucleotide pairs in length, or 21-23 nucleotide pairs in length.

In certain embodiments, each strand has 15-30 nucleotides.

In some embodiments, the modifications on the nucleotides are selected from the group consisting of LNA, HNA, CeNA, 2'-methoxyethyl, 2'-O-alkyl, 2'-O-alkyl, 2'-C-allyl, 2'-fluoro, 2'-deoxy, 2'-hydroxyl, and combinations thereof. In some preferred embodiments, the modifications on the nucleotides are 2'-O-methyl or 2'-fluoro.

In some embodiments, the ligand is one or more N-acetylgalactosamine (GalNAc) derivatives attached through a bivalent or trivalent branched linker. In particular embodiments, the ligand is

20

10

In some embodiments, the ligand is attached to the 3' end of the sense strand.

In some embodiments, the RNAi agent is conjugated to the ligand as shown in the following schematic

5 wherein X is O or S.

In some embodiments, the RNAi agent is conjugated to the ligand as shown in the following schematic

In some embodiments, the RNAi agent further includes at least one
10 phosphorothioate or methylphosphonate internucleotide linkage. In some embodiments,
the phosphorothioate or methylphosphonate internucleotide linkage is at the 3'-terminal
of one strand. In some embodiments, the strand is the antisense strand. In other
embodiments, the strand is the sense strand.

In certain embodiments, the base pair at the 1 position of the 5'-end of the duplex is an AU base pair.

In some embodiments, the Y nucleotides contain a 2'-fluoro modification.

In some embodiments, the Y' nucleotides contain a 2'-O-methyl modification.

In some embodiments, p'>0. In some such embodiments, each n is complementary to the target mRNA. In other such embodiments, each n is non-complementary to the target mRNA. In some embodiments, p, p', q and q' are 1-6. In some preferred embodiments, p' = 1 or 2. In some preferred embodiments, p'=2. In some such embodiments, q'=0, p=0, q=0, and p' overhang nucleotides are complementary to the target mRNA. In other such embodiments, q'=0, p=0, q=0, and p' overhang nucleotides are non-complementary to the target mRNA.

In some embodiments, the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.

In certain embodiments, linkages between n_p' include phosphorothioate linkages.

In some such embodiments, the linkages between n_p' are phosphorothioate linkages.

In some embodiments, the RNAi agent is selected from the group of agents listed in Table 1.

In preferred embodiments, the RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547.

In an even more preferred embodiment, the RNAi agent is AD-51547 having the following structure:

sense: 5'- UfgGfgAfuUfuCfAfUfgUfaacCfaAfgAfL96-3' (SEQ ID

NO:2)

antisense: 5'- uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc-3' (SEQ ID

25 NO:3)

wherein lowercase nucleotides (a, u, g, c) indicate 2'-O-methyl nucleotides; Nf (e.g., Af) indicates a 2'-fluoro nucleotide; s indicates a phosphothiorate linkage; L96 indicates a GalNAc₃ ligand.

In another aspect, the present invention features a cell containing the RNAi agent for inhibiting expression of TTR.

In a further aspect, the present invention features a pharmaceutical composition comprising an RNAi agent for inhibiting expression of TTR. In some embodiments, the pharmaceutical composition is a solution comprising the RNAi agent. In some embodiments, the solution comprising the RNAi agent is an unbuffered solution, e.g., saline solution or water. In other embodiments, the solution is a buffered solution, e.g., a solution of phosphate buffered saline (PBS). In other embodiments, the pharmaceutical composition is a liposome or a lipid formulation. In some embodiments, the lipid formulation comprises a XTC or MC3.

10

20

In yet another aspect, the present invention features methods of inhibiting
expression of transthyretin (TTR) in a cell. The methods include contacting a cell with
an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit
expression of TTR in the cell, thereby inhibiting expression of TTR in the cell.

In some embodiments, the expression of TTR is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%.

In other embodiments, the cell is contacted *in vitro* with the RNAi agent. In other embodiments, the cell is present within a subject. In preferred embodiments, the subject is a human.

In further embodiments, the subject is a subject suffering from a TTR-associated disease and the effective amount is a therapeutically effective amount. In other embodiments, the subject is a subject at risk for developing a TTR-associated disease and the effective amount is a prophylactically effective amount. In some embodiments,

a subject at risk for develping a TTR-associated disease is a subject who carries a TTR gene mutation that is associated with the development of a TTR-associated disease.

In certain embodiments, the TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.

5

20

25

In some embodiments, the subject has a TTR-associated amyloidosis and the method reduces an amyloid TTR deposit in the subject.

In other embodiments, the RNAi agent is administered to the subject by an administration means selected from the group consisting of subcutaneous, intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof. In certain embodiments, the RNAi agent is administered to the subject via subcutaneous or intravenous administration. In preferred embodiments, the RNAi agent is administered to the subject via subcutaneous administration. In some such embodiments, the subcutaneous administration includes administration via a subcutaneous pump or subcutaneous depot.

In certain embodiments, the RNAi agent is administered to the subject such that the RNAi agent is delivered to a specific site within the subject. In some embodiments, the site is selected from the group consisting of liver, choroid plexus, retina, and pancreas. In preferred embodiments, the site is the liver. In some embodiments, the delivery of the RNAi agent is mediated by asialoglycoprotein receptor (ASGP-R) present in hepatocytes.

In some embodiments, the RNAi agent is administered at a dose of between about 0.25 mg/kg to about 50 mg/kg, *e.g.*, between about 0.25 mg/kg to about 0.5 mg/kg, between about 0.25 mg/kg to about 1 mg/kg, between about 0.25 mg/kg to about 5 mg/kg, between about 0.25 mg/kg to about 10 mg/kg, between about 1 mg/kg to about 10 mg/kg, between about 5 mg/kg to about 25 mg/kg, between about 20 mg/kg to about 20 mg/kg, between about 20 mg/kg to about

30 mg/kg, between about 25 mg/kg to about 35 mg/kg, or between about 40 mg/kg to about 50 mg/kg.

In some embodiments, the RNAi agent is administered at a dose of about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, about 10 mg/kg, about 11 mg/kg, about 12 mg/kg, about 13 mg/kg, about 14 mg/kg, about 15 mg/kg, about 16 mg/kg, about 17 mg/kg, about 18 mg/kg, about 19 mg/kg, about 20 mg/kg, about 21 mg/kg, about 22 mg/kg, about 23 mg/kg, about 24 mg/kg, about 25 mg/kg, about 26 mg/kg, about 27 mg/kg, about 28 mg/kg, about 29 mg/kg, 30 mg/kg, about 31 mg/kg, about 32 mg/kg, about 33 mg/kg, about 34 mg/kg, about 35 mg/kg, about 36 mg/kg, about 37 mg/kg, about 38 mg/kg, about 39 mg/kg, about 40 mg/kg, about 41 mg/kg, about 42 mg/kg, about 43 mg/kg, about 44 mg/kg, about 45 mg/kg, about 46 mg/kg, about 47 mg/kg, about 48 mg/kg, about 49 mg/kg or about 50 mg/kg.

10

15

20

30

In some embodiments, the RNAi agent is administered in two or more doses. In particular embodiments, the RNAi agent is administered at intervals selected from the group consisting of once every about 2 hours, once every about 3 hours, once every about 4 hours, once every about 6 hours, once every about 8 hours, once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, once every about 96 hours, once every about 120 hours, once every about 144 hours, once every about 168 hours, once every about 240 hours, once every about 336 hours, once every about 504 hours, once every about 672 hours and once every about 720 hours.

In other embodiments, the method further includes assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.

In preferred embodiments, administering the RNAi agent does not result in an inflammatory response in the subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN- γ , IL-10, IL-12 (p70), IL-1 β , IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1 α , MIP-1 β , TNF α , and any combinations thereof, in a sample from the subject.

In some embodiments, the RNAi agent is administered using a pharmaceutical composition

In preferred embodiments, the RNAi agent is administered in a solution. In some such embodiments, the siRNA is administered in an unbuffered solution. In one embodiment, the siRNA is administered in water. In other embodiments, the siRNA is administered with a buffer solution, such as an acetate buffer, a citrate buffer, a prolamine buffer, a carbonate buffer, or a phosphate buffer or any combination thereof. In some embodiments, the buffer solution is phosphate buffered saline (PBS).

In another embodiment, the pharmaceutical composition is a liposome or a lipid formulation comprising SNALP or XTC. In one embodiment, the lipid formulation comprises an MC3.

In another aspect, the invention provides methods of treating or preventing a TTR-associated disease in a subject. The methods include administering to the subject a therapeutically effective amount or prophylactically effective amount of an RNAi agent, e.g., a double stranded RNAi agent, thereby treating or preventing the TTR-associated disease in the subject.

In some embodiments, TTR expression in a sample derived from the subject is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60% or at least about 70% at least about 80%, or at least about 90%.

In some embodiments, the subject is a human.

15

20

In some embodiments, the subject is a subject suffering from a TTR-associated disease. In other embodiments, the subject is a subject at risk for developing a TTR-associated disease.

In some embodiments, the subject is a subject who carries s a TTR gene mutation that is associated with the development of a TTR-associated disease.

In certain embodiments, the TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.

In some embodiments, the subject has a TTR-associated amyloidosis and the method reduces an amyloid TTR deposit in the subject.

10

25

In some embodiments, the RNAi agent is administered to the subject by an administration means selected from the group consisting of subcutaneous, intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof. In certain embodiments, the RNAi agent is administered to the subject via subcutaneous or intravenous administration. In preferred embodiments, the RNAi agent is administered to the subject via subcutaneous administration. In some such embodiments, the subcutaneous administration includes administration via a subcutaneous pump or subcutaneous depot.

In certain embodiments, the RNAi agent is administered to the subject such that the RNAi agent is delivered to a specific site within the subject. In some such embodiments, the site is selected from the group consisting of liver, choroid plexus, retina, and pancreas. In preferred embodiments, the site is the liver. In some embodiments, the delivery of the RNAi agent is mediated by asialoglycoprotein receptor (ASGP-R) present in hepatocytes.

In some embodiments, the RNAi agent is administered at a dose of between about 0.25 mg/kg to about 50 mg/kg, *e.g.*, between about 0.25 mg/kg to about 0.5 mg/kg, between about 0.25 mg/kg to about 1 mg/kg, between about 0.25 mg/kg to about 5 mg/kg, between about 0.25 mg/kg to about 10 mg/kg, between about 1 mg/kg to about 10 mg/kg, between about 5 mg/kg to about 15 mg/kg, between about 10 mg/kg to about 20 mg/kg, between about 25 mg/kg to about 30 mg/kg, between about 25 mg/kg to about 35 mg/kg, or between about 40 mg/kg to about 50 mg/kg.

In some embodiments, the RNAi agent is administered at a dose of about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, about 10 mg/kg, about 11 mg/kg, about 12 mg/kg, about 13 mg/kg, about 14 mg/kg, about 15 mg/kg, about 16 mg/kg, about 17 mg/kg, about 18 mg/kg, about 19 mg/kg, about 20 mg/kg, about 21 mg/kg, about 22 mg/kg, about 23 mg/kg, about 24 mg/kg, about 25 mg/kg, about 26 mg/kg, about 27 mg/kg, about 28 mg/kg, about 29 mg/kg, 30 mg/kg, about 31 mg/kg, about 32 mg/kg, about 33 mg/kg, about 34 mg/kg, about 35 mg/kg, about 36 mg/kg, about 37 mg/kg, about 38 mg/kg, about 39 mg/kg, about 40 mg/kg, about 41 mg/kg, about 42 mg/kg, about 43 mg/kg, about 44 mg/kg, about 45 mg/kg, about 46 mg/kg, about 47 mg/kg, about 48 mg/kg, about 49 mg/kg or about 50 mg/kg.

10

15

20

25

In some embodiments, the RNAi agent is administered in two or more doses. In particular embodiments, the RNAi agent is administered at intervals selected from the group consisting of once every about 2 hours, once every about 3 hours, once every about 4 hours, once every about 6 hours, once every about 8 hours, once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, once every about 96 hours, once every about 120 hours, once every about 144 hours, once every about 168 hours, once every about 240 hours, once every about 336 hours, once every about 504 hours, once every about 672 hours and once every about 720 hours.

In other embodiments, the method further includes assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.

In preferred embodiments, administering the RNAi agent does not result in an inflammatory response in the subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN- γ , IL-10, IL-12 (p70), IL-1 β , IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1 α , MIP-1 β , TNF α , and any combinations thereof, in a sample from the subject.

In some embodiments, the RNAi agent is administered using a pharmaceutical composition, *e.g.*, a liposome.

In some embodiments, the RNAi agent is administered in a solution. In some such embodiments, the siRNA is administered in an unbuffered solution. In one embodiment, the siRNA is administered in saline or water. In other embodiments, the siRNA is administred with a buffer solution, such as an acetate buffer, a citrate buffer, a prolamine buffer, a carbonate buffer, or a phosphate buffer or any combination thereof. In some embodiments, the buffer solution is phosphate buffered saline (PBS).

In another aspect, the present invention provides a method of inhibiting expression of transthyretin (TTR) in a cell, including contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit expression of TTR in the cell. In one aspect, the double stranded RNAi agent is selected from the group of agents listed in Table 1, thereby inhibiting expression of transthyretin (TTR) in the cell.

10

15

20

In another aspect, the present invention provides a method of inhibiting expression of transthyretin (TTR) in a cell, including contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit expression of TTR in the cell. In one aspect, the double stranded RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547, thereby inhibiting expression of transthyretin (TTR) in the cell.

In a further aspect, the present invention provides a method of treating or preventing a TTR-associated disease in a subject, including administering to the subject a therapeutically effective amount or a prophylactically effective amount of an RNAi agent, e.g., a double stranded RNAi agent. In one aspect, the double stranded RNAi agent is selected from the group of agents listed in Table 1, thereby treating or preventing a TTR-associated disease in the subject.

In yet another aspect, the present invention provides a method of treating or preventing a TTR-associated disease in a subject, including administering to the subject a therapeutically effective amount or a prophylactically effective amount of an RNAi agent, e.g., a double stranded RNAi agent. In one aspect, the double stranded RNAi

agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547, thereby treating or preventing a TTR-associated disease in the subject.

In further aspects, the invention provides kits for performing the methods of the invention. In one aspect, the invention provides a kit for performing a method of inhibiting expression of transthyretin (TTR) in a cell comprising contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit expression of said TTR in said cell, thereby inhibiting the expression of TTR in the cell. The kit comprises an RNAi agent and instructions for use and, optionally, means for administering the RNAi agent to the subject.

The present invention is further illustrated by the following detailed description and drawins.

Brief Description of the Drawings

15

Figure 1 is a graph depicting that administering to mice a single subcutaneous dose of a GalNAc-conjugated RNAi agent targeting TTR resulted in dose-dependent suppression of TTR mRNA.

Figure 2 is a graph depicting that administering to mice a single subcutaneous dose of 7.5 mg/kg or 30 mg/kg of a GalNAc conjugated RNAi agent targeting TTR resulted in long lasting suppression of TTR mRNA.

Figure 3 depicts the human TTR mRNA sequence.

Figure 4 is a graph depicting improved silencing activity of RNAi agents modified relative to the parent AD-45163.

Figure 5 is a graph depicting improved silencing activity of RNAi agents modified relative to the parent AD-45165.

Figure 6 is a graph depicting improved free uptake silencing following 4 hour incubation with RNAi agents modified relative to the parent AD-45163.

Figure 7 is a graph depicting improved free uptake silencing following 24 hour incubation with RNAi agents modified relative to the parent AD-45163.

Figure 8 is a graph depicting improved free uptake silencing following 4 hour incubation with RNAi agents modified relative to the parent AD-45165.

Figure 9 is a graph depicting improved free uptake silencing following 24 hour incubation with RNAi agents modified relative to the parent AD-45165.

Figure 10 is a graph depicting silencing of TTR mRNA in transgenic mice that express hTTR V30M following administration of a single subcutaneous dose of RNAi agents AD-51544, AD-51545, AD-45163, AD-51546, AD-51547, or AD-45165.

Figure 11 is a graph depicting TTR protein suppression in transgenic mice that express hTTR V30M following administration of a single subcutaneous dose of 5 mg/kg or 1mg/kg of RNAi agents AD-51544, AD-51545, or AD-45163.

Figure 12 is a graph depicting TTR protein suppression in transgenic mice that express hTTR V30M following administration of a single subcutaneous dose of 5 mg/kg or 1mg/kg of RNAi agents AD-51546, AD-51547, or AD-45165.

Figure 13 depicts the protocol for post-dose blood draws in monkeys that received 5x5mg/kg RNAi agent (top line) or 1x25mg/kg RNAi agent (bottom line).

15

20

25

Figure 14 is a graph depicting suppression of TTR protein in non-human primates following subcutaneous administration of five 5 mg/kg doses (top panel) or a single 25mg/kg dose (bottom panel) of AD-45163, AD-51544, AD-51545, AD-51546, or AD-51547.

Figure 15 is a graph depicting suppression of TTR protein in non-human primates following subcutaneous administration of AD-51547 at 2.5 mg/kg (white squares), 5 mg/kg (black squares) or 10 mg/kg (patterned squares) per dose, or administration of PBS as a negative control (gray squares).

Detailed Description of the Invention

The present invention provides RNAi agents, e.g., double stranded RNAi agents, and compositions targeting the Transthyretin (TTR) gene. The present invention also provides methods of inhibiting expression of TTR and methods of treating or preventing a TTR-associated disease in a subject using the RNAi agents, e.g., double stranded RNAi agents, of the invention. The present invention is based, at least in part, on the discovery that RNAi agents that comprise particular chemical modifications show a superior ability to inhibit expression of TTR. Agents including a certain pattern of chemical modifications (e.g., an alternating pattern) and a ligand are shown herein to be effective in silencing the activity of the TTR gene. Furthermore, agents including one or more motifs of three identical modifications on three consecutive nucleotides, including one such motif at or near the cleavage site of the agents, show surprisingly enhanced TTR gene silencing activity. When a single such chemical motif is present in the agent, it is preferred to be at or near the cleavage region for enhancing of the gene silencing activity. Cleavage region is the region surrounding the cleavage site, i.e., the site on the target mRNA at which cleavage occurs.

I. Definitions

10

15

25

30

As used herein, each of the following terms has the meaning associated with it in 20 this section.

The term "including" is used herein to mean, and is used interchangeably with, the phrase "including but not limited to".

The term "or" is used herein to mean, and is used interchangeably with, the term "and/or," unless context clearly indicates otherwise.

As used herein, a "transthyretin" ("TTR") refers to the well known gene and protein. TTR is also known as prealbumin, HsT2651, PALB, and TBPA. TTR functions as a transporter of retinol-binding protein (RBP), thyroxine (T4) and retinol, and it also acts as a protease. The liver secretes TTR into the blood, and the choroid plexus secretes TTR into the cerebrospinal fluid. TTR is also expressed in the pancreas and the retinal pigment epithelium. The greatest clinical relevance of TTR is that both

normal and mutant TTR protein can form amyloid fibrils that aggregate into extracellular deposits, causing amyloidosis. See, *e.g.*, Saraiva M.J.M. (2002) *Expert Reviews in Molecular Medicine*, 4(12):1-11 for a review. The molecular cloning and nucleotide sequence of rat transthyretin, as well as the distribution of mRNA expression, was described by Dickson, P.W. et al. (1985) *J. Biol. Chem.* 260(13)8214-8219. The X-ray crystal structure of human TTR was described in Blake, C.C. et al. (1974) *J Mol Biol* 88, 1-12. The sequence of a human TTR mRNA transcript can be found at National Center for Biotechnology Information (NCBI) RefSeq accession number NM_000371. The sequence of mouse TTR mRNA can be found at RefSeq accession number NM_013697.2, and the sequence of rat TTR mRNA can be found at RefSeq accession number NM_012681.1

As used herein, "target sequence" refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a TTR gene, including mRNA that is a product of RNA processing of a primary transcription product.

As used herein, the term "strand comprising a sequence" refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.

10

15

20

25

30

"G," "C," "A" and "U" each generally stand for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively. "T" and "dT" are used interchangeably herein and refer to a deoxyribonucleotide wherein the nucleobase is thymine, *e.g.*, deoxyribothymine, 2'-deoxythymidine or thymidine. However, it will be understood that the term "ribonucleotide" or "nucleotide" or "deoxyribonucleotide" can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences comprising such replacement moieties are embodiments of the invention.

A "double stranded RNAi agent," double-stranded RNA (dsRNA) molecule, also referred to as "dsRNA agent," "dsRNA", "siRNA", "iRNA agent," as used interchangeably herein, refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary, as defined below, nucleic acid strands. In general, the majority of nucleotides of each strand are ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, *e.g.*, a deoxyribonucleotide and/or a modified nucleotide. In addition, as used in this specification, an "RNAi agent" may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucleotides. Such modifications may include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by "RNAi agent" for the purposes of this specification and claims.

10

15

20

In another embodiment, the RNAi agent may be a single-stranded siRNA that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are chemically modified. The design and testing of single-stranded siRNAs are described in U.S. Patent No. 8,101,348 and in Lima *et al.*, (2012) *Cell* 150: 883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima *et al.*, (2012) *Cell* 150;:883-894.

The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3'-end of one strand and the 5'-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a "hairpin loop." Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3'-end of one strand and the 5'-end of

the respective other strand forming the duplex structure, the connecting structure is referred to as a "linker." The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, an RNAi agent may comprise one or more nucleotide overhangs. The term "siRNA" is also used herein to refer to an RNAi agent as described above.

In another aspect, the agent is a single-stranded antisense RNA molecule. An antisense RNA molecule is complementary to a sequence within the target mRNA. Antisense RNA can inhibit translation in a stoichiometric manner by base pairing to the mRNA and physically obstructing the translation machinery, see Dias, N. *et al.*, (2002) *Mol Cancer Ther* 1:347-355. The antisense RNA molecule may have about 15-30 nucleotides that are complementary to the target mRNA. For example, the antisense RNA molecule may have a sequence of at least 15, 16, 17, 18, 19, 20 or more contiguous nucleotides from one of the antisense sequences of Table 1.

10

15

20

25

30

As used herein, a "nucleotide overhang" refers to the unpaired nucleotide or nucleotides that protrude from the duplex structure of an RNAi agent when a 3'-end of one strand of the RNAi agent extends beyond the 5'-end of the other strand, or vice versa. "Blunt" or "blunt end" means that there are no unpaired nucleotides at that end of the double stranded RNAi agent, *i.e.*, no nucleotide overhang. A "blunt ended" RNAi agent is a dsRNA that is double-stranded over its entire length, *i.e.*, no nucleotide overhang at either end of the molecule. The RNAi agents of the invention include RNAi agents with nucleotide overhangs at one end (*i.e.*, agents with one overhang and one blunt end) or with nucleotide overhangs at both ends.

The term "antisense strand" refers to the strand of a double stranded RNAi agent which includes a region that is substantially complementary to a target sequence (*e.g.*, a human TTR mRNA). As used herein, the term "region complementary to part of an mRNA encoding transthyretin" refers to a region on the antisense strand that is substantially complementary to part of a TTR mRNA sequence. Where the region of complementarity is not fully complementary to the target sequence, the mismatches are

most tolerated in the terminal regions and, if present, are generally in a terminal region or regions, *e.g.*, within 6, 5, 4, 3, or 2 nucleotides of the 5' and/or 3' terminus.

The term "sense strand," as used herein, refers to the strand of a dsRNA that includes a region that is substantially complementary to a region of the antisense strand.

5

10

15

20

25

30

As used herein, the term "cleavage region" refers to a region that is located immediately adjacent to the cleavage site. The cleavage site is the site on the target at which cleavage occurs. In some embodiments, the cleavage region comprises three bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage region comprises two bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage site specifically occurs at the site bound by nucleotides 10 and 11 of the antisense strand, and the cleavage region comprises nucleotides 11, 12 and 13.

As used herein, and unless otherwise indicated, the term "complementary," when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50°C or 70°C for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.

Sequences can be "fully complementary" with respect to each when there is base-pairing of the nucleotides of the first nucleotide sequence with the nucleotides of the second nucleotide sequence over the entire length of the first and second nucleotide sequences. However, where a first sequence is referred to as "substantially complementary" with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 4, 3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize

under the conditions most relevant to their ultimate application. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as "fully complementary" for the purposes described herein.

"Complementary" sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but not limited to, G:U Wobble or Hoogstein base pairing.

10

15

20

30

The terms "complementary," "fully complementary" and "substantially complementary" herein may be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of a dsRNA and a target sequence, as will be understood from the context of their use.

As used herein, a polynucleotide that is "substantially complementary to at least part of" a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding TTR) including a 5" UTR, an open reading frame (ORF), or a 3" UTR. For example, a polynucleotide is complementary to at least a part of a TTR mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding TTR.

The term "inhibiting," as used herein, is used interchangeably with "reducing," "silencing," "downregulating," "suppressing" and other similar terms, and includes any level of inhibition.

The phrase "inhibiting expression of a TTR," as used herein, includes inhibition of expression of any TTR gene (such as, *e.g.*, a mouse TTR gene, a rat TTR gene, a monkey TTR gene, or a human TTR gene) as well as variants or mutants of a TTR gene. Thus, the TTR gene may be a wild-type TTR gene, a mutant TTR gene (such as a

mutant TTR gene giving rise to systemic amyloid deposition), or a transgenic TTR gene in the context of a genetically manipulated cell, group of cells, or organism.

"Inhibiting expression of a TTR gene" includes any level of inhibition of a TTR gene, e.g., at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%. at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.

10

15

20

30

The expression of a TTR gene may be assessed based on the level of any variable associated with TTR gene expression, *e.g.*, TTR mRNA level, TTR protein level, retinol binding protein level, vitamin A level, or the number or extent of amyloid deposits. Inhibition may be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, *e.g.*, a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, *e.g.*, buffer only control or inactive agent control).

The phrase "contacting a cell with an RNAi agent," as used herein, includes contacting a cell by any possible means. Contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, includes contacting a cell *in vitro* with the RNAi agent or contacting a cell *in vivo* with the RNAi agent. The contacting may be done directly or indirectly. Thus, for example, the RNAi agent may be put into physical contact with the cell by the individual performing the method, or alternatively, the RNAi agent may be put into a situation that will permit or cause it to subsequently come into contact with the cell.

Contacting a cell *in vitro* may be done, for example, by incubating the cell with the RNAi agent. Contacting a cell *in vivo* may be done, for example, by injecting the RNAi agent into or near the tissue where the cell is located, or by injecting the RNAi agent into another area, *e.g.*, the bloodstream or the subcutaneous space, such that the

agent will subsequently reach the tissue where the cell to be contacted is located. For example, the RNAi agent may contain and/or be coupled to a ligand, *e.g.*, a GalNAc₃ ligand, that directs the RNAi agent to a site of interest, *e.g.*, the liver. Combinations of *in vitro* and *in vivo* methods of contacting are also possible. In connection with the methods of the invention, a cell might also be contacted *in vitro* with an RNAi agent and subsequently transplanted into a subject.

A "patient" or "subject," as used herein, is intended to include either a human or non-human animal, preferably a mammal, *e.g.*, a monkey. Most preferably, the subject or patient is a human.

10 A "TTR-associated disease," as used herein, is intended to include any disease associated with the TTR gene or protein. Such a disease may be caused, for example, by excess production of the TTR protein, by TTR gene mutations, by abnormal cleavage of the TTR protein, by abnormal interactions between TTR and other proteins or other endogenous or exogenous substances. A "TTR-associated disease" includes any type of TTR amyloidosis (ATTR) wherein TTR plays a role in the formation of abnormal 15 extracellular aggregates or amyloid deposits. TTR-associated diseases include senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, amyloidotic vitreous opacities, carpal tunnel syndrome, and hyperthyroxinemia. Symptoms of TTR 20 amyloidosis include sensory neuropathy (e.g., paresthesia, hypesthesia in distal limbs), autonomic neuropathy (e.g., gastrointestinal dysfunction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomic insufficiency, cardiomyopathy, 25 vitreous opacities, renal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfunction, and corneal lattice dystrophy.

"Therapeutically effective amount," as used herein, is intended to include the amount of an RNAi agent that, when administered to a patient for treating a TTR associated disease, is sufficient to effect treatment of the disease (e.g., by diminishing, ameliorating or maintaining the existing disease or one or more symptoms of disease). The "therapeutically effective amount" may vary depending on the RNAi agent, how the

agent is administered, the disease and its severity and the history, age, weight, family history, genetic makeup, stage of pathological processes mediated by TTR expression, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.

5

10

15

20

25

30

"Prophylactically effective amount," as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject who does not yet experience or display symptoms of a TTR-associated disease, but who may be predisposed to the disease, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Symptoms that may be ameliorated include sensory neuropathy (e.g., paresthesia, hypesthesia in distal limbs), autonomic neuropathy (e.g., gastrointestinal dysfunction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomic insufficiency, cardiomyopathy, vitreous opacities, renal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfunction, and corneal lattice dystrophy. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The "prophylactically effective amount" may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.

A "therapeutically-effective amount" or "prophylacticaly effective amount" also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. RNAi gents employed in the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.

The term "sample," as used herein, includes a collection of similar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues present within a subject. Examples of biological fluids include blood, serum and serosal fluids, plasma, cerebrospinal fluid, ocular fluids, lymph, urine, saliva, and the like. Tissue samples may include samples from tissues, organs or localized regions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organs. In

certain embodiments, samples may be derived from the liver (*e.g.*, whole liver or certain segments of liver or certain types of cells in the liver, such as, *e.g.*, hepatocytes), the retina or parts of the retina (*e.g.*, retinal pigment epithelium), the central nervous system or parts of the central nervous system (*e.g.*, ventricles or choroid plexus), or the pancreas or certain cells or parts of the pancreas. In some embodiments, a "sample derived from a subject" refers tocerebrospinal fluid obtained from the subject. In preferred embodiments, a "sample derived from a subject" refers to blood or plasma drawn from the subject. In further embodiments, a "sample derived from a subject" refers to liver tissue (or subcomponents thereof) or retinal tissue (or subcomponents thereof) derived from the subject.

II. RNAi Agents

10

15

20

25

The present invention provides RNAi agents with superior gene silencing activity. It is shown herein and in Provisional Application No. 61/561,710 (to which the present application claims priority) that a superior result may be obtained by introducing one or more motifs of three identical modifications on three consecutive nucleotides into a sense strand and/or antisense strand of a RNAi agent, particularly at or near the cleavage site. The sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if present, of the sense and/or antisense strand. The RNAi agent also optionally conjugates with a GalNAc derivative ligand, for instance on the sense strand. The resulting RNAi agents present superior gene silencing activity.

The inventors surprisingly discovered that when the sense strand and antisense strand of the RNAi agent are completely modified, having one or more motifs of three identical modifications on three consecutive nucleotides at or near the cleavage site of at least one strand of a RNAi agent superiorly enhanced the gene silencing acitivity of the RNAi agent.

Accordingly, the invention provides RNAi agents, e.g., double stranded RNAi agents, capable of inhibiting the expression of a target gene (*i.e.*, a TTR gene) *in vivo*. The RNAi agent comprises a sense strand and an antisense strand. Each strand of the

RNAi agent can range from 12-30 nucleotides in length. For example, each strand can be between 14-30 nucleotides in length, 17-30 nucleotides in length, 25-30 nucleotides in length, 27-30 nucleotides in length, 17-21 nucleotides in length, 17-19 nucleotides in length, 19-25 nucleotides in length, 19-23 nucleotides in length, 19-21 nucleotides in length, 21-25 nucleotides in length, or 21-23 nucleotides in length.

The sense strand and antisense strand typically form a duplex double stranded RNA ("dsRNA"), also referred to herein as an "RNAi agent." The duplex region of an RNAi agent may be 12-30 nucleotide pairs in length. For example, the duplex region can be between 14-30 nucleotide pairs in length, 17-30 nucleotide pairs in length, 27-30 nucleotide pairs in length, 17 - 23 nucleotide pairs in length, 17-21 nucleotide pairs in length, 17-19 nucleotide pairs in length, 19-25 nucleotide pairs in length, 19-23 nucleotide pairs in length, 19-21 nucleotide pairs in length, 21-25 nucleotide pairs in length, or 21-23 nucleotide pairs in length. In another example, the duplex region is selected from 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27.

10

15

20

25

30

In one embodiment, the RNAi agent may contain one or more overhang regions and/or capping groups of RNAi agent at 3'-end, or 5'-end or both ends of a strand. The overhang can be 1-6 nucleotides in length, for instance 2-6 nucleotides in length, 1-5 nucleotides in length, 2-5 nucleotides in length, 1-4 nucleotides in length, 2-4 nucleotides in length, 1-3 nucleotides in length, 2-3 nucleotides in length, or 1-2 nucleotides in length. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be other sequence. The first and second strands can also be joined, *e.g.*, by additional bases to form a hairpin, or by other non-base linkers.

The RNAi agents provided by the present invention include agents with chemical modifications as disclosed, for example, in U.S. Provisional Application No. 61/561,710, filed on November 18, 2011, International Application No. PCT/US2011/051597, filed on September 15, 2010, and PCT Publication WO 2009/073809, the entire contents of each of which are incorporated herein by reference.

In one embodiment, the nucleotides in the overhang region of the RNAi agent can each independently be a modified or unmodified nucleotide including, but no limited to 2'-sugar modified, such as, 2-F, 2'-O-methyl, thymidine (T), 2`-O-methoxyethyl-5-methyluridine (Teo), 2`-O-methoxyethyladenosine (Aeo), 2`-O-methoxyethyl-5-methylcytidine (m5Ceo), and any combinations thereof. For example, TT can be an overhang sequence for either end on either strand. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be other sequence.

The 5'- or 3'- overhangs at the sense strand, antisense strand or both strands of the RNAi agent may be phosphorylated. In some embodiments, the overhang region contains two nucleotides having a phosphorothioate between the two nucleotides, where the two nucleotides can be the same or different. In one embodiment, the overhang is present at the 3'-end of the sense strand, antisense strand or both strands. In one embodiment, this 3'-overhang is present in the antisense strand. In one embodiment, this 3'-overhang is present in the sense strand.

10

15

20

25

30

The RNAi agent may contain only a single overhang, which can strengthen the interference activity of the RNAi, without affecting its overall stability. For example, the single-stranded overhang is located at the 3'-terminal end of the sense strand or, alternatively, at the 3'-terminal end of the antisense strand. The RNAi may also have a blunt end, located at the 5'-end of the antisense strand (or the 3'-end of the sense strand) or vice versa. Generally, the antisense strand of the RNAi has a nucleotide overhang at the 3'-end, and the 5'-end is blunt. While the Applicants are not bound by theory, the theoretical mechanism is that the asymmetric blunt end at the 5'-end of the antisense strand and 3'-end overhang of the antisense strand favor the guide strand loading into RISC process.

In one embodiment, the RNAi agent is a double ended bluntmer of 19 nt in length, wherein the sense strand contains at least one motif of three 2'-F modifications on three consecutive nucleotides at positions 7,8,9 from the 5'end. The antisense strand contains at least one motif of three 2'-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5'end.

In one embodiment, the RNAi agent is a double ended bluntmer of 20 nt in length, wherein the sense strand contains at least one motif of three 2'-F modifications on three consecutive nucleotides at positions 8,9,10 from the 5'end. The antisense strand contains at least one motif of three 2'-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5'end.

5

10

15

20

25

30

In one embodiment, the RNAi agent is a double ended bluntmer of 21 nt in length, wherein the sense strand contains at least one motif of three 2'-F modifications on three consecutive nucleotides at positions 9, 10, 11 from the 5'end. The antisense strand contains at least one motif of three 2'-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5'end.

In one embodiment, the RNAi agent comprises a 21 nucleotides (nt) sense strand and a 23 nucleotides (nt) antisense strand, wherein the sense strand contains at least one motif of three 2'-F modifications on three consecutive nucleotides at positions 9,10,11 from the 5'end; the antisense strand contains at least one motif of three 2'-O-methyl modifications on three consecutive nucleotides at positions 11, 12, 13 from the 5'end, wherein one end of the RNAi agent is blunt, while the other end comprises a 2 nt overhang. Preferably, the 2 nt overhang is at the 3'-end of the antisense. Optionally, the RNAi agent further comprises a ligand (preferably GalNAc₃).

In one embodiment, the RNAi agent comprises a sense and an antisense strand, wherein the sense strand is 25-30 nucleotide residues in length, wherein starting from the 5' terminal nucleotide (position 1) positions 1 to 23 of the first strand comprise at least 8 ribonucleotides; antisense strand is 36-66 nucleotide residues in length and, starting from the 3' terminal nucleotide, comprises at least 8 ribonucleotides in the positions paired with positions 1- 23 of sense strand to form a duplex; wherein at least the 3' terminal nucleotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3' terminal nucleotides are unpaired with sense strand, thereby forming a 3' single stranded overhang of 1-6 nucleotides; wherein the 5' terminus of antisense strand comprises from 10-30 consecutive nucleotides which are unpaired with sense strand, thereby forming a 10-30 nucleotide single stranded 5' overhang; wherein at least the sense strand 5' terminal and 3' terminal nucleotides are base paired with nucleotides of antisense strand when sense and antisense strands are aligned for maximum

complementarity, thereby forming a substantially duplexed region between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when the double stranded nucleic acid is introduced into a mammalian cell; and wherein the sense strand contains at least one motif of three 2'-F modifications on three consecutive nucleotides, where at least one of the motifs occurs at or near the cleavage site. The antisense strand contains at least one motif of three 2'-O-methyl modifications on three consecutive nucleotides at or near the cleavage site.

10

15

20

25

In one embodiment, the RNAi agent comprises sense and antisense strands, wherein the RNAi agent comprises a first strand having a length which is at least 25 and at most 29 nucleotides and a second strand having a length which is at most 30 nucleotides with at least one motif of three 2'-O-methyl modifications on three consecutive nucleotides at position 11,12,13 from the 5' end; wherein the 3' end of the first strand and the 5' end of the second strand form a blunt end and the second strand is 1-4 nucleotides longer at its 3' end than the first strand, wherein the duplex region which is at least 25 nucleotides in length, and the second strand is sufficiently complemenatary to a target mRNA along at least 19 nt of the second strand length to reduce target gene expression when the RNAi agent is introduced into a mammalian cell, and wherein dicer cleavage of the RNAi agent preferentially results in an siRNA comprising the 3' end of the second strand, thereby reducing expression of the target gene in the mammal. Optionally, the RNAi agent further comprises a ligand.

In one embodiment, the sense strand of the RNAi agent contains at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at the cleavage site in the sense strand.

In one embodiment, the antisense strand of the RNAi agent can also contain at least one motif of three identical modifications on three consecutive nucleotides, where one of the motifs occurs at or near the cleavage site in the antisense strand

For RNAi agent having a duplex region of 17-23 nt in length, the cleavage site of the antisense strand is typically around the 10, 11 and 12 positions from the 5'-end.

Thus, the motifs of three identical modifications may occur at the 9, 10, 11 positions; 10, 11, 12 positions; 11, 12, 13 positions; 12, 13, 14 positions; or 13, 14, 15 positions of the

5

10

15

20

25

antisense strand, the count starting from the 1st nucleotide from the 5'-end of the antisense strand, or, the count starting from the 1st paired nucleotide within the duplex region from the 5'- end of the antisense strand. The cleavage site in the antisense strand may also change according to the length of the duplex region of the RNAi from the 5'- end.

The sense strand of the RNAi agent may contain at least one motif of three identical modifications on three consecutive nucleotides at the cleavage site of the strand; and the antisense strand may have at least one motif of three identical modifications on three consecutive nucleotides at or near the cleavage site of the strand. When the sense strand and the antisense strand form a dsRNA duplex, the sense strand and the antisense strand can be so aligned that one motif of the three nucleotides on the sense strand and one motif of the three nucleotides on the antisense strand have at least one nucleotide overlap, *i.e.*, at least one of the three nucleotides of the motif in the sense strand forms a base pair with at least one of the three nucleotides of the motif in the antisense strand. Alternatively, at least two nucleotides may overlap, or all three nucleotides may overlap.

In one embodiment, the sense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucleotides. The first motif should occur at or near the cleavage site of the strand and the other motifs may be wing modifications. The term "wing modification" herein refers to a motif occurring at another portion of the strand that is separated from the motif at or near the cleavage site of the same strand. The wing modification is either adajacent to the first motif or is separated by at least one or more nucleotides. When the motifs are immediately adjacent to each other than the chemistry of the motifs are distinct from each other and when the motifs are separated by one or more nucleotide than the chemistries can be the same or different. Two or more wing modifications may be present. For instance, when two wing modifications are present, each wing modification may occur at one end relative to the first motif which is at or near cleavage site or on either side of the lead motif.

Like the sense strand, the antisense strand of the RNAi agent may contain at least two motifs of three identical modifications on three consecutive nucleotides, with at least one of the motifs occurring at or near the cleavage site of the strand. This antisense

strand may also contain one or more wing modifications in an alignment similar to the wing modifications that is present on the sense strand.

In one embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two terminal nucleotides at the 3'-end, 5'-end or both ends of the strand.

In another embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two paired nucleotides within the duplex region at the 3'-end, 5'-end or both ends of the strand.

When the sense strand and the antisense strand of the RNAi agent each contain at least one wing modification, the wing modifications may fall on the same end of the duplex region, and have an overlap of one, two or three nucleotides.

When the sense strand and the antisense strand of the RNAi agent each contain at least two wing modifications, the sense strand and the antisense strand can be so aligned that two modifications each from one strand fall on one end of the duplex region, having an overlap of one, two or three nucleotides; two modifications each from one strand fall on the other end of the duplex region, having an overlap of one, two or three nucleotides; two modifications one strand fall on each side of the lead motif, having an overlap of one, two or three nucleotides in the duplex region.

15

20

25

30

In one embodiment, every nucleotide in the sense strand and antisense strand of the RNAi agent, including the nucleotides that are part of the motifs, may be modified. Each nucleotide may be modified with the same or different modification which can include one or more alteration of one or both of the non-linking phosphate oxygens and/or of one or more of the linking phosphate oxygens; alteration of a constituent of the ribose sugar, *e.g.*, of the 2' hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with "dephospho" linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.

As nucleic acids are polymers of subunits, many of the modifications occur at a position which is repeated within a nucleic acid, *e.g.*, a modification of a base, or a phosphate moiety, or a non-linking O of a phosphate moiety. In some cases the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3' or 5'

terminal position, may only occur in a terminal region, *e.g.*, at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of a RNA or may only occur in a single strand region of a RNA. For example, a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal region, *e.g.*, at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5' end or ends can be phosphorylated.

10 It may be possible, *e.g.*, to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, *e.g.*, in a 5' or 3' overhang, or in both. For example, it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3' or 5' overhang may be modified, *e.g.*, with a modification described herein.

15 Modifications can include, *e.g.*, the use of modifications at the 2' position of the ribose sugar with modifications that are known in the art, *e.g.*, the use of deoxyribonucleotides, , 2'-deoxy-2'-fluoro (2'-F) or 2'-O-methyl modified instead of the ribosugar of the nucleobase, and modifications in the phosphate group, *e.g.*, phosphorothioate modifications. Overhangs need not be homologous with the target sequence.

In one embodiment, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2'-methoxyethyl, 2'-O-methyl, 2'-O-allyl, 2'-deoxy, 2'-hydroxyl, or 2'-fluoro. The strands can contain more than one modification. In one embodiment, each residue of the sense strand and antisense strand is independently modified with 2'- O-methyl or 2'-fluoro.

At least two different modifications are typically present on the sense strand and antisense strand. Those two modifications may be the 2'- O-methyl or 2'-fluoro modifications, or others.

In one embodiment, the N_a and/or N_b comprise modifications of an alternating pattern. The term "alternating motif" as used herein refers to a motif having one or more modifications, each modification occurring on alternating nucleotides of one strand. The

alternating nucleotide may refer to one per every other nucleotide or one per every three nucleotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucleotide, the alternating motif can be "ABABABABABABAB...," "AABBAABBAABBB...," "AABBAABBAABBB...," "AAABBBAAABBB...," or "ABCABCABCABC...," etc.

The type of modifications contained in the alternating motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucleotide, the alternating pattern, *i.e.*, modifications on every other nucleotide, may be the same, but each of the sense strand or antisense strand can be selected from several possibilities of modifications within the alternating motif such as "ABABAB...", "ACACAC..." "BDBDBD..." or "CDCDCD...," etc.

10

15

20

25

30

In one embodiment, the RNAi agent of the invention comprises the modification pattern for the alternating motif on the sense strand relative to the modification pattern for the alternating motif on the antisense strand is shifted. The shift may be such that the modified group of nucleotides of the sense strand corresponds to a differently modified group of nucleotides of the antisense strand and vice versa. For example, the sense strand when paired with the antisense strand in the dsRNA duplex, the alternating motif in the sense strand may start with "ABABAB" from 5'-3' of the strand and the alternating motif in the antisense strand may start with "BABABA" from 5'-3' of the strand and the alternating motif in the sense strand may start with "AABBAABB" from 5'-3' of the strand and the alternating motif in the antisenses strand may start with "BBAABBAA" from 5'-3' of the strand within the duplex region, so that there is a complete or partial shift of the modification patterns between the sense strand and the antisense strand.

In one embodiment, the RNAi agent comprises the pattern of the alternating motif of 2'-O-methyl modification and 2'-F modification on the sense strand initially has a shift relative to the pattern of the alternating motif of 2'-O-methyl modification and 2'-F modification on the antisense strand initially, *i.e.*, the 2'-O-methyl modified nucleotide on the sense strand base pairs with a 2'-F modified nucleotide on the antisense strand and vice versa. The 1 position of the sense strand may start with the 2'-F modification, and the 1 position of the antisense strand may start with the 2'-O-methyl modification.

The introduction of one or more motifs of three identical modifications on three consecutive nucleotides to the sense strand and/or antisense strand interrupts the initial modification pattern present in the sense strand and/or antisense strand. This interruption of the modification pattern of the sense and/or antisense strand by introducing one or more motifs of three identical modifications on three consecutive nucleotides to the sense and/or antisense strand surprisingly enhances the gene silencing acitivty to the target gene.

In one embodiment, when the motif of three identical modifications on three consecutive nucleotides is introduced to any of the strands, the modification of the nucleotide next to the motif is a different modification than the modification of the motif. For example, the portion of the sequence containing the motif is "…NaYYYNb…," where "Y" represents the modification of the motif of three identical modifications on three consecutive nucleotide, and "Na" and "Nb" represent a modification to the nucleotide next to the motif "YYY" that is different than the modification of Y, and where Na and Nb can be the same or different modifications. Altnernatively, Na and/or Nb may be present or absent when there is a wing modification present.

10

15

20

25

30

The RNAi agent may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand or antisense strand may contain both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.

In one embodiment, the RNAi comprises the phosphorothicate or methylphosphonate internucleotide linkage modification in the overhang region. For example, the overhang region may contain two nucleotides having a phosphorothicate or methylphosphonate internucleotide linkage between the two nucleotides.

Internucleotide linkage modifications also may be made to link the overhang nucleotides with the terminal paired nucleotides within duplex region. For example, at least 2, 3, 4, or all the overhang nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate internucleotide linkages linking the overhang nucleotide with a paired nucleotide that is next to the overhang nucleotide. For instance, there may be at least two phosphorothioate internucleotide linkages between the terminal three nucleotides, in which two of the three nucleotides are overhang nucleotides, and the third is a paried nucleotide next to the overhang nucleotide. Preferably, these terminal three nucleotides may be at the 3'-end of the antisense strand.

15

20

25

30

In one embodiment, the RNAi agent comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mistmatch can occur in the overhang region or the duplex region. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.

In one embodiment, the RNAi agent comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5'- end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, *e.g.*, non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5'-end of the duplex.

In one embodiment, the nucleotide at the 1 position within the duplex region from the 5'-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5'- end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5'- end of the antisense strand is an AU base pair.

In one embodiment, the sense strand sequence may be represented by formula (I):

$$5'\ n_p\hbox{-}N_a\hbox{-}(X\ X\ X\)_i\hbox{-}N_b\hbox{-}Y\ Y\ Y\ \hbox{-}N_b\hbox{-}(Z\ Z\ Z\)_j\hbox{-}N_a\hbox{-}n_q\ 3'\ \ (I)$$

wherein:

15

i and j are each independently 0 or 1;

p and q are each independently 0-6;

each N_a independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;

each N_b independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;

each n_p and n_q independently represent an overhang nucleotide; wherein Nb and Y do not have the same modification; and

20 XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucleotides. Preferably YYY is all 2'-F modified nucleotides.

In one embodiment, the N_a and/or N_b comprise modifications of alternating pattern.

In one embodiment, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or the vicinity of the cleavage site (*e.g.*: can occur at positions 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11,12 or 11, 12, 13) of - the sense strand, the count starting from the 1st nucleotide, from the 5'-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5'- end.

In one embodiment, i is 1 and j is 0, or i is 0 and j is 1, or both i and j are 1. The sense strand can therefore be represented by the following formulas:

When the sense strand is represented by formula (Ia), N_b represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each N_a independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

When the sense strand is represented as formula (Ib), N_b represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each N_a can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

When the sense strand is represented as formula (Ic), each N_b independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Preferably, N_b is 0, 1, 2, 3, 4, 5 or 6 Each N_a can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

Each of X, Y and Z may be the same or different from each other.

In one embodiment, the antisense strand sequence of the RNAi may be 20 represented by formula (II):

5'
$$n_{q'}$$
- $N_{a'}$ - $(Z'Z'Z')_k$ - $N_{b'}$ - $Y'Y'Y'$ - $N_{b'}$ - $(X'X'X')_l$ - N'_a - $n_{p'}$ 3' (II) wherein:

k and l are each independently 0 or 1;

15

p' and q' are each independently 0-6;

each N_a ' independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;

each N_{b} ' independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;

and n_{q} and n_{q} independently represent an overhang nucleotide; wherein N_{b} and Y do not have the same modification;

and

10

25

X'X'X', Y'Y'Y' and Z'Z'Z' each independently represent one motif of three identical modifications on three consecutive nucleotides.

In one embodiment, the N_a ' and/or N_b ' comprise modifications of alternating 5 pattern.

The Y'Y'Y' motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex region of 17-23 nt in length, the Y'Y'Y' motif can occur at positions 9, 10, 11;10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense strand, with the count starting from the 1st nucleotide, from the 5'-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5'- end. Preferably, the Y'Y'Y' motif occurs at positions 11, 12, 13.

In one embodiment, Y'Y'Y' motif is all 2'-OMe modified nucleotides. In one embodiment, k is 1 and 1 is 0, or k is 0 and 1 is 1, or both k and 1 are 1. The antisense strand can therefore be represented by the following formulas:

When the antisense strand is represented by formula (IIa), N_b represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each N_a' independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

When the antisense strand is represented as formula (IIb), N_b ' represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each N_a ' independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

When the antisense strand is represented as formula (IIc), each N_b ' independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each N_a ' independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

30 Preferably, N_b is 0, 1, 2, 3, 4, 5 or 6.

Each of X', Y' and Z' may be the same or different from each other.

Each nucleotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, 2'-methoxyethyl, 2'-O-methyl, 2'-O-allyl, 2'-C-allyl, 2'-hydroxyl, 2'-deoxy or 2'-fluoro. For example, each nucleotide of the sense strand and antisense strand is independently modified with 2'-O-methyl or 2'-fluoro.

Each X, Y, Z, X', Y' and Z', in particular, may represent a 2'-O-methyl modification or a 2'-fluoro modification.

In one embodiment, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex region is 21 nt, the count starting from the 1st nucleotide from the 5'-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5'- end; and Y represents 2'-F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2'-OMe modification or 2'-F modification.

In one embodiment the antisense strand may contain Y'Y'Y' motif occurring at positions 11, 12, 13 of the strand, the count starting from the 1st nucleotide from the 5'-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5'- end; and Y' represents 2'-O-methyl modification. The antisense strand may additionally contain X'X'X' motif or Z'Z'Z' motifs as wing modifications at the opposite end of the duplex region; and X'X'X' and Z'Z'Z' each independently represents a 2'-OMe modification or 2'-F modification.

The sense strand represented by any one of the above formulas (Ia), (Ib) and (Ic) forms a duplex with a antisense strand being represented by any one of formulas (IIa), (IIb) and (IIc), respectively.

Accordingly, the RNAi agents of the invention may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):

sense: 5'
$$n_p - N_a - (X X X)_i - N_b - Y Y Y - N_b - (Z Z Z)_j - N_a - n_q 3'$$

antisense: 3' $n_p - N_a - (X'X'X')_k - N_b - Y'Y'Y' - N_b - (Z'Z'Z')_l - N_a - n_q 5'$

30 wherein:

i, j, k, and l are each independently 0 or 1;

p, p', q, and q' are each independently 0-6;

each N_a and N_a independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;

each N_b and N_b independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;

wherein

10

each n_p ', n_p , n_q ', and n_q independently represents an overhang nucleotide; and XXX, YYY, ZZZ, X'X'X', Y'Y'Y', and Z'Z'Z' each independently represent one motif of three identical modifications on three consecutive nucleotides.

In one embodiment, i is 1 and j is 0; or i is 0 and j is 1; or both i and j are 1. In another embodiment, k is 1 and 1 is 0; k is 0 and 1 is 1; or both k and 1 are 1.

Exemplary combinations of the sense strand and antisense strand forming a RNAi duplex include the formulas below:

When the RNAi agent is represented by formula (IIIa), each N_b independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucleotides. Each N_a independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

When the RNAi agent is represented as formula (IIIb), each N_b, N_b' independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0modified nucleotides. Each N_a independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.

When the RNAi agent is represented as formula (IIIc), each N_b , N_b ' independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0modified nucleotides. Each N_a , N_a ' independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Each of N_a , N_a ', N_b and N_b ' independently comprises modifications of alternating pattern.

Each of X, Y and Z in formulas (III), (IIIa), (IIIb) and (IIIc) may be the same or different from each other.

When the RNAi agent is represented by formula (III), (IIIa), (IIIb) or (IIIc), at least one of the Y nucleotides may form a base pair with one of the Y' nucleotides.

10 Alternatively, at least two of the Y nucleotides form base pairs with the corresponding Y' nucleotides; or all three of the Y nucleotides all form base pairs with the corresponding Y' nucleotides.

When the RNAi agent is represented by formula (IIIa) or (IIIc), at least one of the Z nucleotides may form a base pair with one of the Z' nucleotides. Alternatively, at least two of the Z nucleotides form base pairs with the corresponding Z' nucleotides; or all three of the Z nucleotides all form base pairs with the corresponding Z' nucleotides.

15

20

25

30

When the RNAi agent is represented as formula (IIIb) or (IIIc), at least one of the X nucleotides may form a base pair with one of the X' nucleotides. Alternatively, at least two of the X nucleotides form base pairs with the corresponding X' nucleotides; or all three of the X nucleotides all form base pairs with the corresponding X' nucleotides.

In one embodiment, the modification on the Y nucleotide is different than the modification on the Y' nucleotide, the modification on the Z nucleotide is different than the modification on the Z' nucleotide, and/or the modification on the X nucleotide is different than the modification on the X' nucleotide.

In one embodiment, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (IIIa), (IIIb) or (IIIc), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprise a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.

In one embodiment, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (IIIa), (IIIb) or (IIIc), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.

In one embodiment, two RNAi agents represented by formula (III), (IIIa), (IIIb) or (IIIc) are linked to each other at the 5' end, and one or both of the 3' ends of the are optionally conjugated to to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.

10

15

20

25

30

Various publications describe multimeric RNAi agents . Such publications include WO2007/091269, US Patent No. 7858769, WO2010/141511, WO2007/117686, WO2009/014887 and WO2011/031520 the entire contents of which are hereby incorporated herein by reference.

The RNAi agent that contains conjugations of one or more carbohydrate moieties to a RNAi agent can optimize one or more properties of the RNAi agent. In many cases, the carbohydrate moiety will be attached to a modified subunit of the RNAi agent. For example, the ribose sugar of one or more ribonucleotide subunits of a dsRNA agent can be replaced with another moiety, *e.g.*, a non-carbohydrate (preferably cyclic) carrier to which is attached a carbohydrate ligand. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, *i.e.*, all ring atoms are carbon atoms, or a heterocyclic ring system, *i.e.*, one or more ring atoms may be a heteroatom, *e.g.*, nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, *e.g.* fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.

The ligand may be attached to the polynucleotide via a carrier. The carriers include (i) at least one "backbone attachment point," preferably two "backbone attachment points" and (ii) at least one "tethering attachment point." A "backbone attachment point" as used herein refers to a functional group, *e.g.* a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into

the backbone, *e.g.*, the phosphate, or modified phosphate, *e.g.*, sulfur containing, backbone, of a ribonucleic acid. A "tethering attachment point" (TAP) in some embodiments refers to a constituent ring atom of the cyclic carrier, *e.g.*, a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, *e.g.*, a carbohydrate, *e.g.* monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, the cyclic carrier will often include a functional group, *e.g.*, an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, *e.g.*, a ligand to the constituent ring.

The RNAi agents may be conjugated to a ligand via a carrier, wherein the carrier can be cyclic group or acyclic group; preferably, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and and decalin; preferably, the acyclic group is selected from serinol backbone or diethanolamine backbone.

15

In certain specific embodiments, the RNAi agent of the invention is an agent selected from the group of agents listed in Table 1 and consisting of D1000, D1001, D1002, D1003, D1004, D1005, D1006, D1007, D1008, D1009, D1010, D1011, D1012, 20 D1013, D1014, D1015, D1016, D1017, D1018, D1019, D1020, D1021, D1022, D1023, D1024, D1025, D1026, D1027, D1028, D1029, D1030, D1031, D1032, D1033, D1034, D1035, D1036, D1037, D1038, D1039, D1040, D1041, D1042, D1043, D1044, D1045, D1046, D1047, D1048, D1049, D1050, D1051, D1052, D1053, D1054, D1055, D1056, 25 D1057, D1058, D1059, D1060, D1061, D1062, D1063, D1064, D1065, D1066, D1067, D1068, D1069, D1070, D1071, D1072, D1073, D1074, D1075, D1076, D1077, D1078, D1079, D1080, D1081, D1082, D1083, D1084, D1085, D1086, D1087, D1088, D1089, D1090, D1091, D1092, D1093, D1094, D1095, D1096, D1097, D1098, D1099, D1100, D1101, D1102, D1103, D1104, D1105, D1106, D1107, D1108, D1109, D1110, D1111, D1112, D1113, D1114, D1115, D1116, D1117, D1118, D1119, D1120, D1121, D1122, 30 D1123, D1124, D1125, D1126, D1127, D1128, D1129, D1130, D1131, D1132, D1133,

D1134, D1135, D1136, D1137, D1138, D1139, D1140, D1141, D1142, D1143, D1144, D1145, D1146, D1147, D1148, D1149, D1150, D1151, D1152, D1153, D1154, D1155, D1156, D1157, D1158, D1159, D1160, D1161, D1162, D1163, D1164, D1165, D1166, D1167, D1168, D1169, D1170, D1171, D1172, D1173, D1174, D1175, D1176, D1177, D1178, D1179, D1180, D1181, D1182, D1183, D1184, D1185, D1186, D1187, D1188, D1189, D1190, D1191, D1192, D1193, D1194, D1195, D1196, D1197, D1198, D1199, D1200, D1201, D1202, D1203, D1204, D1205, D1206, D1207, D1208, D1209, D1210, D1211, D1212, D1213, D1214, D1215, D1216, D1217, D1218, D1219, D1220, D1221, D1222, D1223, D1224, D1225, D1226, D1227, D1228, D1229, D1230, D1231, D1232, D1233, D1234, D1235, D1236, D1237, D1238, D1239, D1240, D1241, D1242, D1243, 10 D1244, D1245, D1246, D1247, D1248, D1249, D1250, D1251, D1252, D1253, D1254, D1255, D1256, D1257, D1258, D1259, D1260, D1261, D1262, D1263, D1264, D1265, D1266, D1267, D1268, D1269, D1270, D1271, D1272, D1273, D1274, D1275, D1276, D1277, D1278, D1279, D1280, D1281, D1282, D1283, D1284, D1285, D1286, D1287, D1288, D1289, D1290, D1291, D1292, D1293, D1294, D1295, D1296, D1297, D1298, 15 D1299, D1300, D1301, D1302, D1303, D1304, D1305, D1306, D1307, D1308, D1309, D1310, D1311, D1312, D1313, D1314, D1315, D1316, D1317, D1318, D1319, D1320, D1321, D1322, D1323, D1324, D1325, D1326, D1327, D1328, D1329, D1330, D1331, D1332, D1333, D1334, D1335, D1336, D1337, D1338, D1339, D1340, D1341, D1342, D1343, D1344, D1345, D1346, D1347, D1348, D1349, D1350, D1351, D1352, D1353, 20 D1354, D1355, D1356, D1357, D1358, D1359, D1360, D1361, D1362, D1363, D1364, D1365, D1366, D1367, D1368, D1369, D1370, D1371, D1372, D1373, D1374, D1375, D1376, D1377, D1378, D1379, D1380, D1381, D1382, D1383, D1384, D1385, D1386, D1387, D1388, D1389, D1390, D1391, D1392, D1393, D1394, D1395, D1396, D1397, D1398, D1399, D1400, D1401, D1402, D1403, D1404, D1405, D1406, D1407, D1408, 25 D1409, D1410, D1411, D1412, D1413, D1414, D1415, D1416, D1417, D1418, D1419, D1420, D1421, D1422, D1423, D1424, D1425, D1426, D1427, D1428, D1429, D1430, D1431, D1432, D1433, D1434, D1435, D1436, D1437, D1438, D1439, D1440, D1441, D1442, D1443, D1444, D1445, D1446, D1447, D1448, D1449, D1450, D1451, D1452, 30 D1453, D1454, D1455, D1456, D1457, D1458, D1459, D1460, D1461, D1462, D1463, D1464, D1465, D1466, D1467, D1468, D1469, D1470, D1471, D1472, D1473, D1474,

D1475, D1476, D1477, D1478, D1479, D1480, D1481, D1482, D1483, D1484, D1485, D1486, D1487, D1488, D1489, D1490, D1491, D1492, D1493, D1494, D1495, D1496, D1497, D1498, D1499, . D1500, D1501, D1502, D1503, D1504, D1505, D1506, D1507, D1508, D1509, D1510, D1511, D1512, D1513, D1514, D1515, D1516, D1517, D1518, D1519, D1520, D1521, D1522, D1523, D1524, D1525, D1526, D1527, D1528, D1529, D1530, D1531, D1532, D1533, D1534, D1535, D1536, D1537, D1538, D1539, D1540, D1541, D1542, D1543, D1544, D1545, D1546, D1547, D1548, D1549, D1550, D1551, D1552, D1553, D1554, D1555, D1556, D1557, D1558, D1559, D1560, D1561, D1562, D1563, D1564, D1565, D1566, D1567, D1568, D1569, D1570, D1571, D1572, D1573, D1574, D1575, D1576, D1577, D1578, D1579, D1580, D1581, D1582, D1583, 10 D1584, D1585, D1586, D1587, D1588, D1589, D1590, D1591, D1592, D1593, D1594, D1595, D1596, D1597, D1598, D1599, D1600, D1601, D1602, D1603, D1604, D1605, D1606, D1607, D1608, D1609, D1610, D1611, D1612, D1613, D1614, D1615, D1616, D1617, D1618, D1619, D1620, D1621, D1622, D1623, D1624, D1625, D1626, D1627, D1628, D1629, D1630, D1631, D1632, D1633, D1634, D1635, D1636, D1637, D1638, 15 D1639, D1640, D1641, D1642, D1643, D1644, D1645, D1646, D1647, D1648, D1649, D1650, D1651, D1652, D1653, D1654, D1655, D1656, D1657, D1658, D1659, D1660, D1661, D1662, D1663, D1664, D1665, D1666, D1667, D1668, D1669, D1670, D1671, D1672, D1673, D1674, D1675, D1676, D1677, D1678, D1679, D1680, D1681, D1682, D1683, D1684, D1685, D1686, D1687, D1688, D1689, D1690, D1691, D1692, D1693, 20 D1694, D1695, D1696, D1697, D1698, D1699, D1700, D1701, D1702, D1703, D1704, D1705, D1706, D1707, D1708, D1709, D1710, D1711, D1712, D1713, D1714, D1715, D1716, D1717, D1718, D1719, D1720, D1721, D1722, D1723, D1724, D1725, D1726, D1727, D1728, D1729, D1730, D1731, D1732, D1733, D1734, D1735, D1736, D1737, D1738, D1739, D1740, D1741, D1742, D1743, D1744, D1745, D1746, D1747, D1748, 25 D1749, D1750, D1751, D1752, D1753, D1754, D1755, D1756, D1757, D1758, D1759, D1760, D1761, D1762, D1763, D1764, D1765, D1766, D1767, D1768, D1769, D1770, D1771, D1772, D1773, D1774, D1775, D1776, D1777, D1778, D1779, D1780, D1781, D1782, D1783, D1784, D1785, D1786, D1787, D1788, D1789, D1790, D1791, D1792, 30 D1793, D1794, D1795, D1796, D1797, D1798, D1799, D1800, D1801, D1802, D1803, D1804, D1805, D1806, D1807, D1808, D1809, D1810, D1811, D1812, D1813, D1814,

D1815, D1816, D1817, D1818, D1819, D1820, D1821, D1822, D1823, D1824, D1825, D1826, D1827, D1828, D1829, D1830, D1831, D1832, D1833, D1834, D1835, D1836, D1837, D1838, D1839, D1840, D1841, D1842, D1843, D1844, D1845, D1846, D1847, D1848, D1849, D1850, D1851, D1852, D1853, D1854, D1855, D1856, D1857, D1858, D1859, D1860, D1861, D1862, D1863, D1864, D1865, D1866, D1867, D1868, D1869, D1870, D1871, D1872, D1873, D1874, D1875, D1876, D1877, D1878, D1879, D1880, D1881, D1882, D1883, D1884, D1885, D1886, D1887, D1888, D1889, D1890, D1891, D1892, D1893, D1894, D1895, D1896, D1897, D1898, D1899, D1900, D1901, D1902, D1903, D1904, D1905, D1906, D1907, D1908, D1909, D1910, D1911, D1912, D1913, D1914, D1915, D1916, D1917, D1918, D1919, D1920, D1921, D1922, D1923, D1924, 10 D1925, D1926, D1927, D1928, D1929, D1930, D1931, D1932, D1933, D1934, D1935, D1936, D1937, D1938, D1939, D1940, D1941, D1942, D1943, D1944, D1945, D1946, D1947, D1948, D1949, D1950, D1951, D1952, D1953, D1954, D1955, D1956, D1957, D1958, D1959, D1960, D1961, D1962, D1963, D1964, D1965, D1966, D1967, D1968, D1969, D1970, D1971, D1972, D1973, D1974, D1975, D1976, D1977, D1978, D1979, 15 D1980, D1981, D1982, D1983, D1984, D1985, D1986, D1987, D1988, D1989, D1990, D1991, D1992, D1993, D1994, D1995, D1996, D1997, D1998, D1999, D2000, D2001, D2002, D2003, D2004, D2005, D2006, D2007, D2008, D2009, D2010, D2011, D2012, D2013, D2014, D2015, D2016, D2017, D2018, D2019, D2020, D2021, D2022, D2023, D2024, D2025, D2026, D2027, D2028, D2029, D2030, D2031, D2032, D2033, D2034, 20 D2035, D2036, D2037, D2038, D2039, D2040, D2041, D2042, D2043, D2044, D2045, D2046, D2047, D2048, D2049, D2050, D2051, D2052, D2053, D2054, D2055, D2056, D2057, D2058, D2059, D2060, D2061, D2062, D2063, D2064, D2065, D2066, D2067, D2068, D2069, D2070, D2071, D2072, D2073, D2074, D2075, D2076, D2077, D2078, 25 D2079, D2080, D2081, D2082, D2083, D2084, D2085, D2086, D2087, D2088, D2089, D2090 and D2091.

These agents may further comprise a ligand, such as a GalNAc ligand.

Ligands

The RNAi agents of the invention, e.g., double stranded RNAi agents, may optionally be conjugated to one or more ligands. The ligand can be attached to the sense

strand, antisense strand or both strands, at the 3'-end, 5'-end or both ends. For instance, the ligand may be conjugated to the sense strand. In preferred embodiments, the ligand is conjugated to the 3'-end of the sense strand. In one preferred embodiment, the ligand is a GalNAc ligand. In particularly preferred embodiments, the ligand is GalNAc₃:

5 AcHN Ö H H .

10

15

20

A wide variety of entities can be coupled to the RNAi agents of the present invention. Preferred moieties are ligands, which are coupled, preferably covalently, either directly or indirectly via an intervening tether.

In preferred embodiments, a ligand alters the distribution, targeting or lifetime of the molecule into which it is incorporated. In preferred embodiments a ligand provides an enhanced affinity for a selected target, *e.g.*, molecule, cell or cell type, compartment, receptor *e.g.*, a cellular or organ compartment, tissue, organ or region of the body, as, *e.g.*, compared to a species absent such a ligand. Ligands providing enhanced affinity for a selected target are also termed targeting ligands.

Some ligands can have endosomolytic properties. The endosomolytic ligands promote the lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell. The endosomolytic ligand may be a polyanionic peptide or peptidomimetic which shows pH-dependent membrane activity and fusogenicity. In one embodiment, the endosomolytic ligand assumes its active conformation at endosomal pH. The "active" conformation is that conformation in which the endosomolytic ligand promotes lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell. Exemplary endosomolytic ligands include the GALA peptide

(Subbarao *et al.*, *Biochemistry*, 1987, 26: 2964-2972), the EALA peptide (Vogel *et al.*, *J. Am. Chem. Soc.*, 1996, 118: 1581-1586), and their derivatives (Turk *et al.*, *Biochem. Biophys. Acta*, 2002, 1559: 56-68). In one embodiment, the endosomolytic component may contain a chemical group (*e.g.*, an amino acid) which will undergo a change in charge or protonation in response to a change in pH. The endosomolytic component may be linear or branched.

Ligands can improve transport, hybridization, and specificity properties and may also improve nuclease resistance of the resultant natural or modified oligoribonucleotide, or a polymeric molecule comprising any combination of monomers described herein and/or natural or modified ribonucleotides.

10

15

20

25

30

Ligands in general can include therapeutic modifiers, *e.g.*, for enhancing uptake; diagnostic compounds or reporter groups *e.g.*, for monitoring distribution; cross-linking agents; and nuclease-resistance conferring moieties. General examples include lipids, steroids, vitamins, sugars, proteins, peptides, polyamines, and peptide mimics.

Ligands can include a naturally occurring substance, such as a protein (*e.g.*, human serum albumin (HSA), low-density lipoprotein (LDL), high-density lipoprotein (HDL), or globulin); a carbohydrate (*e.g.*, a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, *e.g.*, a synthetic polyamino acid, an oligonucleotide (*e.g.*, an aptamer). Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.

Ligands can also include targeting groups, *e.g.*, a cell or tissue targeting agent, *e.g.*, a lectin, glycoprotein, lipid or protein, *e.g.*, an antibody, that binds to a specified

cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, an RGD peptide, an RGD peptide mimetic or an aptamer.

Other examples of ligands include dyes, intercalating agents (e.g., acridines), cross-linkers (e.g., psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), 10 artificial endonucleases or a chelator (e.g., EDTA), lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or 15 phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]₂, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g., biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-20 imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.

Ligands can be proteins, *e.g.*, glycoproteins, or peptides, *e.g.*, molecules having a specific affinity for a co-ligand, or antibodies *e.g.*, an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, or aptamers. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.

25

The ligand can be a substance, *e.g.*, a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, *e.g.*, by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.

The ligand can increase the uptake of the oligonucleotide into the cell by, for example, activating an inflammatory response. Exemplary ligands that would have such an effect include tumor necrosis factor alpha (TNFalpha), interleukin-1 beta, or gamma interferon.

In one aspect, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule preferably binds a serum protein, *e.g.*, human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, *e.g.*, a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, naproxen or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, *e.g.*, HSA.

A lipid based ligand can be used to modulate, *e.g.*, control the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.

20

25

30

In a preferred embodiment, the lipid based ligand binds HSA. Preferably, it binds HSA with a sufficient affinity such that the conjugate will be preferably distributed to a non-kidney tissue. However, it is preferred that the affinity not be so strong that the HSA-ligand binding cannot be reversed.

In another preferred embodiment, the lipid based ligand binds HSA weakly or not at all, such that the conjugate will be preferably distributed to the kidney. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid based ligand.

In another aspect, the ligand is a moiety, *e.g.*, a vitamin, which is taken up by a target cell, *e.g.*, a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, *e.g.*, of the malignant or non-malignant type, *e.g.*, cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include B vitamins, *e.g.*, folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HAS, low density lipoprotein (LDL) and high-density lipoprotein (HDL).

In another aspect, the ligand is a cell-permeation agent, preferably a helical cell-permeation agent. Preferably, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is preferably an alpha-helical agent, which preferably has a lipophilic and a lipophobic phase.

10

The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined 15 three-dimensional structure similar to a natural peptide. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long. A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer 20 peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO:4). An RFGF analogue (e.g., amino 25 acid sequence AALLPVLLAAP) (SEQ ID NO:5) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a "delivery" peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ) (SEQ ID NO:6) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK) (SEQ ID NO:7) have been found to be capable of functioning as delivery peptides. A 30 peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a

peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Preferably the peptide or peptidomimetic tethered to an iRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized. An RGD peptide moiety can be used to target a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate 10 targeting of an iRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Preferably, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD 15 peptide can deliver an iRNA agent to a tumor cell expressing $\alpha_V \beta_3$ (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001). Peptides that target markers enriched in proliferating cells can be used. For example, RGD containing peptides and peptidomimetics can target cancer cells, in particular cells that exhibit an integrin. Thus, one could use RGD peptides, cyclic peptides containing RGD, RGD peptides that include D-amino acids, as 20 well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. Generally, such ligands can be used to control proliferating cells and angiogeneis. Preferred conjugates of this type of ligand target PECAM-1, VEGF, or other cancer gene, e.g., a cancer gene described herein.

A "cell permeation peptide" is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α -helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α -defensin, β -defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic

25

peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).

In one embodiment, a targeting peptide can be an amphipathic α -helical peptide. Exemplary amphipathic α -helical peptides include, but are not limited to, cecropins, lycotoxins, paradaxins, buforin, CPF, bombinin-like peptide (BLP), cathelicidins, ceratotoxins, S. clava peptides, hagfish intestinal antimicrobial peptides (HFIAPs), magainines, brevinins-2, dermaseptins, melittins, pleurocidin, H₂A peptides, Xenopus peptides, esculentinis-1, and caerins. A number of factors will preferably be considered to maintain the integrity of helix stability. For example, a maximum number of helix 10 stabilization residues will be utilized (e.g., leu, ala, or lys), and a minimum number helix destabilization residues will be utilized (e.g., proline, or cyclic monomeric units. The capping residue will be considered (for example Gly is an exemplary N-capping residue and/or C-terminal amidation can be used to provide an extra H-bond to stabilize the helix. Formation of salt bridges between residues with opposite charges, separated by i 15 \pm 3, or i \pm 4 positions can provide stability. For example, cationic residues such as lysine, arginine, homo-arginine, ornithine or histidine can form salt bridges with the anionic residues glutamate or aspartate.

Peptide and peptidomimetic ligands include those having naturally occurring or modified peptides, e.g., D or L peptides; α , β , or γ peptides; N-methyl peptides; azapeptides; peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages; or cyclic peptides.

20

25

30

The targeting ligand can be any ligand that is capable of targeting a specific receptor. Examples are: folate, GalNAc, galactose, mannose, mannose-6P, clusters of sugars such as GalNAc cluster, mannose cluster, galactose cluster, or an apatamer. A cluster is a combination of two or more sugar units. The targeting ligands also include integrin receptor ligands, Chemokine receptor ligands, transferrin, biotin, serotonin receptor ligands, PSMA, endothelin, GCPII, somatostatin, LDL and HDL ligands. The ligands can also be based on nucleic acid, *e.g.*, an aptamer. The aptamer can be unmodified or have any combination of modifications disclosed herein.

Endosomal release agents include imidazoles, poly or oligoimidazoles, PEIs, peptides, fusogenic peptides, polycaboxylates, polyacations, masked oligo or poly cations or anions, acetals, polyacetals, ketals/polyketyals, orthoesters, polymers with masked or unmasked cationic or anionic charges, dendrimers with masked or unmasked cationic or anionic charges.

5

20

30

PK modulator stands for pharmacokinetic modulator. PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Examplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride,

phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc.
Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple phosphorothioate linkages in the backbaone are also amenable to the present invention as ligands (e.g., as PK modulating ligands).

In addition, aptamers that bind serum components (*e.g.*, serum proteins) are also amenable to the present invention as PK modulating ligands.

Other ligand conjugates amenable to the invention are described in U.S. Patent Applications USSN: 10/916,185, filed August 10, 2004; USSN: 10/946,873, filed September 21, 2004; USSN: 10/833,934, filed August 3, 2007; USSN: 11/115,989 filed April 27, 2005 and USSN: 11/944,227 filed November 21, 2007, which are incorporated by reference in their entireties for all purposes.

When two or more ligands are present, the ligands can all have same properties, all have different properties or some ligands have the same properties while others have different properties. For example, a ligand can have targeting properties, have endosomolytic activity or have PK modulating properties. In a preferred embodiment, all the ligands have different properties.

Ligands can be coupled to the oligonucleotides at various places, for example, 3'-end, 5'-end, and/or at an internal position. In preferred embodiments, the ligand is attached to the oligonucleotides *via* an intervening tether, *e.g.*, a carrier described herein. The ligand or tethered ligand may be present on a monomer when the monomer is

incorporated into the growing strand. In some embodiments, the ligand may be incorporated via coupling to a "precursor" monomer after the "precursor" monomer has been incorporated into the growing strand. For example, a monomer having, *e.g.*, an amino-terminated tether (*i.e.*, having no associated ligand), *e.g.*, TAP-(CH₂)_nNH₂ may be incorporated into a growing oligonucelotide strand. In a subsequent operation, *i.e.*, after incorporation of the precursor monomer into the strand, a ligand having an electrophilic group, *e.g.*, a pentafluorophenyl ester or aldehyde group, can subsequently be attached to the precursor monomer by coupling the electrophilic group of the ligand with the terminal nucleophilic group of the precursor monomer's tether.

In another example, a monomer having a chemical group suitable for taking part in Click Chemistry reaction may be incorporated, *e.g.*, an azide or alkyne terminated tether/linker. In a subsequent operation, *i.e.*, after incorporation of the precursor monomer into the strand, a ligand having complementary chemical group, *e.g.* an alkyne or azide can be attached to the precursor monomer by coupling the alkyne and the azide together.

10

15

20

25

30

For double- stranded oligonucleotides, ligands can be attached to one or both strands. In some embodiments, a double-stranded iRNA agent contains a ligand conjugated to the sense strand. In other embodiments, a double-stranded iRNA agent contains a ligand conjugated to the antisense strand.

In some embodiments, ligand can be conjugated to nucleobases, sugar moieties, or internucleosidic linkages of nucleic acid molecules. Conjugation to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In some embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a conjugate moiety. Conjugation to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be substituted with a conjugate moiety. Conjugation to sugar moieties of nucleosides can occur at any carbon atom. Example carbon atoms of a sugar moiety that can be attached to a conjugate moiety include the 2', 3', and 5' carbon atoms. The 1' position can also be attached to a conjugate moiety, such as in an abasic residue. Internucleosidic linkages can also bear conjugate moieties. For phosphorus-containing linkages (*e.g.*, phosphodiester, phosphorothioate,

phosphorodithiotate, phosphoroamidate, and the like), the conjugate moiety can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom. For amine- or amide-containing internucleosidic linkages (e.g., PNA), the conjugate moiety can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.

Any suitable ligand in the field of RNA interference may be used, although the ligand is typically a carbohydrate *e.g.* monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, polysaccharide.

Linkers that conjugate the ligand to the nucleic acid include those discussed above. For example, the ligand can be one or more GalNAc (*N*-acetylglucosamine) derivatives attached through a bivalent or trivalent branched linker.

In one embodiment, the dsRNA of the invention is conjugated to a bivalent and trivalent branched linkers include the structures shown in any of formula (IV) – (VII):

$$P^{2A}-Q^{2A}-R^{2A}\Big]_{q^{2A}} T^{2A}-L^{2A}$$

$$P^{2B}-Q^{2B}-R^{2B}\Big]_{q^{2B}} T^{2B}-L^{2B}$$

Formula (IV)

$$P^{3A}-Q^{3A}-R^{3A}\Big]_{q^{3A}} T^{3A}-L^{3A}$$

$$P^{3B}-Q^{3B}-R^{3B}\Big]_{q^{3B}} T^{3B}-L^{3B}$$
Formula (V)

$$P^{4A}-Q^{4A}-R^{4A}\Big]_{q^{4A}} T^{4A}-L^{4A}$$

$$P^{4B}-Q^{4B}-R^{4B}\Big]_{q^{4B}} T^{4B}-L^{4B}$$

Formula (VI)
15 , or

wherein:

 q^{2A} , q^{2B} , q^{3A} , q^{3B} , $q4^A$, q^{4B} , q^{5A} , q^{5B} and q^{5C} represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different; P^{2A} , P^{2B} , P^{3A} , P^{3B} , P^{4A} , P^{4B} , P^{5A} , P^{5B} , P^{5C} , T^{2A} , T^{2B} , T^{3A} , T^{3B} , T^{4A} , T^{4B} , T^{4A} , T^{5B} , T^{5C} are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH₂, CH₂NH or CH₂O;

CH₂NH or CH₂O; Q^{2A} , Q^{2B} , Q^{3A} , Q^{3B} , Q^{4A} , Q^{4B} , Q^{5A} , Q^{5B} , Q^{5C} are independently for each occurrence absent, alkylene, substituted alkylene wherin one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO₂, N(R^N), C(R')=C(R''), C=C or C(O);

 R^{2A} , R^{2B} , R^{3A} , R^{3B} , R^{4A} , R^{4B} , R^{5A} , R^{5B} , R^{5C} are each independently for each occurrence absent, NH, O, S, CH₂, C(O)O, C(O)NH, NHCH(R^a)C(O), -C(O)-CH(R^a)-

 $L^{2A}, L^{2B}, L^{3A}, L^{3B}, L^{4A}, L^{4B}, L^{5A}, L^{5B}$ and L^{5C} represent the ligand; *i.e.* each

independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and

R^a is H or amino acid side chain.

10

Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula 20 (VII):

$$P^{5A} - Q^{5A} - R^{5A} \Big]_{q^{5A}} T^{5A} - L^{5A}$$

$$P^{5B} - Q^{5B} - R^{5B} \Big]_{q^{5B}} T^{5B} - L^{5B}$$

$$P^{5C} - Q^{5C} - R^{5C} \Big]_{q^{5C}} T^{5C} - L^{5C}$$

Formula (VII)

wherein L^{5A} , L^{5B} and L^{5C} represent a monosaccharide, such as GalNAc derivative.

Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the following compounds:

In other embodiments, the RNAi agent of the invention is an agent selected from the group consisting of AD-45163, AD-45165, AD-51544, AD-51545, AD-51546, and AD-51547.

5 III. Pharmaceutical Compositions

10

15

20

25

The RNAi agents of the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other pharmaceuticals. The pharmaceutical compositions comprising RNAi agents of the invention may be, for example, solutions with or without a buffer, or compositions containing pharmaceutically acceptable carriers. Such compositions include, for example, aqueous or crystalline compositions, liposomal formulations, micellar formulations, emulsions, and gene therapy vectors.

In the methods of the invention, the RNAi agent may be administered in a solution. A free RNAi agent may be administered in an unbuffered solution, e.g., in saline or in water. Alternatively, the free siRNA may also be administred in a suitable buffer solution. The buffer solution may comprise acetate, citrate, prolamine, carbonate, or phosphate, or any combination thereof. In a preferred embodiment, the buffer solution is phosphate buffered saline (PBS). The pH and osmolarity of the buffer solution containing the RNAi agent can be adjusted such that it is suitable for administering to a subject.

In some embodiments, the buffer solution further comprises an agent for controlling the osmolarity of the solution, such that the osmolarity is kept at a desired value, *e.g.*, at the physiologic values of the human plasma. Solutes which can be added to the buffer solution to control the osmolarity include, but are not limited to, proteins, peptides, amino acids, non-metabolized polymers, vitamins, ions, sugars, metabolites, organic acids, lipids, or salts. In some embodiments, the agent for controlling the osmolarity of the solution is a salt. In certain embodiments, the agent for controlling the osmolarity of the solution is sodium chloride or potassium chloride.

In other embodiments, the RNAi agent is formulated as a composition that

30 includes one or more RNAi agents and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and

all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

In one embodiment, the RNAi agent preparation includes at least a second therapeutic agent (*e.g.*, an agent other than an RNA or a DNA). For example, an RNAi agent composition for the treatment of a TTR-associated disease, *e.g.*, a transthyretin-related hereditary amyloidosis (familial amyloid polyneuropathy, FAP), may include a known drug for the amelioration of FAP, *e.g.*, Tafamidis (INN, or Fx-1006A or Vyndaqel).

10

15

20

25

30

A formulated RNAi agent composition can assume a variety of states. In some examples, the composition is at least partially crystalline, uniformly crystalline, and/or anhydrous (*e.g.*, it contains less than 80, 50, 30, 20, or 10% of water). In another example, the RNAi agent is in an aqueous phase, *e.g.*, in a solution that includes water.

The aqueous phase or the crystalline compositions can be incorporated into a delivery vehicle, *e.g.*, a liposome (particularly for the aqueous phase) or a particle (*e.g.*, a microparticle as can be appropriate for a crystalline composition). Generally, the RNAi agent composition is formulated in a manner that is compatible with the intended method of administration, as described herein. For example, in particular embodiments the composition is prepared by at least one of the following methods: spray drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques; or sonication with a lipid, freeze-drying, condensation and other self-assembly.

An RNAi agent preparation can be formulated in combination with another agent, e.g., another therapeutic agent or an agent that stabilizes RNAi agent, e.g., a protein that complexes with the RNAi agent to form an iRNP. Still other agents include chelators, e.g., EDTA (e.g., to remove divalent cations such as Mg^{2+}), salts, RNAse inhibitors (e.g., a broad specificity RNAse inhibitor such as RNAsin) and so forth.

In one embodiment, the RNAi agent preparation includes another siRNA compound, *e.g.*, a second RNAi agent that can mediate RNAi with respect to a second gene, or with respect to the same gene. Still other preparation can include at least 3, 5, ten, twenty, fifty, or a hundred or more different RNAi agent species. Such RNAi agents can mediate RNAi with respect to a similar number of different genes.

5

10

15

20

The iRNA agents of the invention may be formulated for pharmaceutical use. Pharmaceutically acceptable compositions comprise a therapeutically-or prophylactically effective amount of one or more of the the dsRNA agents in any of the preceding embodiments, taken alone or formulated together with one or more pharmaceutically acceptable carriers (additives), excipient and/or diluents.

Methods of preparing pharmaceutical compositions of the invention include the step of bringing into association an RNAi agent of the present invention with the carrier and, optionally, one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association an RNAi agent of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

The pharmaceutical compositions may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; (3) topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; (5) sublingually; (6) ocularly; (7) transdermally; or (8) nasally. Delivery using subcutaneous or intravenous methods can be particularly advantageous.

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and

animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

The phrase "pharmaceutically-acceptable carrier" as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not injurious to the patient. 10 Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium state, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, 15 cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl 20 alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; and (22) other non-toxic compatible substances employed in pharmaceutical compositions.

The compositions may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of RNAi agent which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, and the particular mode of administration. The RNAi agent which can be combined with a carrier material to produce a single dosage form will generally be that amount of the RNAi agent which produces a desired effect, e.g., therapeutic or prophylactic effect. Generally, out of one

25

hundred per cent, this amount will range from about 0.1 per cent to about ninety-nine percent of RNAi agent, preferably from about 5 per cent to about 70 per cent, most preferably from about 10 per cent to about 30 per cent.

In certain embodiments, a composition of the present invention comprises an excipient selected from the group consisting of cyclodextrins, celluloses, liposomes, micelle forming agents, *e.g.*, bile acids, and polymeric carriers, *e.g.*, polyesters and polyanhydrides; and an RNAi agent of the present invention. In certain embodiments, an aforementioned composition renders orally bioavailable an RNAi agent of the present invention.

In some cases, in order to prolong the effect of an RNAi agent, it is desirable to slow the absorption of the agent from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the RNAi agent then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered RNAi agent may be accomplished by dissolving or suspending the agent in an oil vehicle.

Liposomes

5

20

25

30

An RNAi agent of the invention can be formulated for delivery in a membranous molecular assembly, *e.g.*, a liposome or a micelle. As used herein, the term "liposome" refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, *e.g.*, one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the RNAi agent composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the RNAi agent composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the RNAi agent are delivered into the cell where the RNAi agent can specifically bind to a target RNA and can mediate RNAi. In some cases the

liposomes are also specifically targeted, *e.g.*, to direct the RNAi agent to particular cell types.

A liposome containing an RNAi agent can be prepared by a variety of methods. In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The RNAi agent preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the RNAi agent and condense around the RNAi agent to form a liposome. After condensation, the detergent is removed, *e.g.*, by dialysis, to yield a liposomal preparation of RNAi agent.

10

15

If necessary a carrier compound that assists in condensation can be added during the condensation reaction, *e.g.*, by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (*e.g.*, spermine or spermidine). pH can also be adjusted to favor condensation.

Methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are further described in, e.g., WO 96/37194, the entire contents of which are incorporated herein by reference. Liposome formation can also include one or 20 more aspects of exemplary methods described in Felgner, P. L. et al., Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987; U.S. Pat. No. 4,897,355; U.S. Pat. No. 5,171,678; Bangham, et al. M. Mol. Biol. 23:238, 1965; Olson, et al. Biochim. Biophys. Acta 557:9, 1979; Szoka, et al. Proc. Natl. Acad. Sci. 75: 4194, 1978; Mayhew, et al. Biochim. Biophys. Acta 775:169, 1984; Kim, et al. Biochim. Biophys. Acta 728:339, 1983; and Fukunaga, et al. Endocrinol. 115:757, 1984. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer, et al. Biochim. Biophys. Acta 858:161, 1986). Microfluidization can be used when consistently small (50 to 200 nm) and 30 relatively uniform aggregates are desired (Mayhew, et al. Biochim. Biophys. Acta

775:169, 1984). These methods are readily adapted to packaging RNAi agent preparations into liposomes.

Liposomes that are pH-sensitive or negatively-charged entrap nucleic acid molecules rather than complex with them. Since both the nucleic acid molecules and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid molecules are entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou *et al.*, *Journal of Controlled Release*, 19, (1992) 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Examples of other methods to introduce liposomes into cells *in vitro* and *in vivo* include U.S. Pat. No. 5,283,185; U.S. Pat. No. 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, *J. Biol. Chem.* 269:2550, 1994; Nabel, *Proc. Natl. Acad. Sci.* 90:11307, 1993; Nabel, *Human Gene Ther.* 3:649, 1992; Gershon, *Biochem.* 32:7143, 1993; and Strauss *EMBO J.* 11:417, 1992.

In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages *in vivo* and can be used to deliver RNAi agents to macrophages.

Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated RNAi agents

5

10

15

20

25

30

in their internal compartments from metabolism and degradation (Rosoff, in "Pharmaceutical Dosage Forms," Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of RNAi agent (see, *e.g.*, Felgner, P. L. *et al.*, Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987 and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).

A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. LipofectinTM Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane ("DOTAP") (Boehringer Mannheim, Indianapolis, Indiana) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.

Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine dioctaoleoylamide ("DOGS") (TransfectamTM, Promega, Madison, Wisconsin) and dipalmitoylphosphatidylethanolamine 5-carboxyspermylamide ("DPPES") (see, *e.g.*, U.S. Pat. No. 5,171,678).

Another cationic lipid conjugate includes derivatization of the lipid with cholesterol ("DC-Chol") which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., Biochim. Biophys. Res. Commun. 179:280, 1991). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., Biochim. Biophys. Acta 1065:8, 1991). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, California) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Maryland). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.

Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, 15 increased accumulation of the administered drug at the desired target, and the ability to administer RNAi agent into the skin. In some implementations, liposomes are used for delivering RNAi agent to epidermal cells and also to enhance the penetration of RNAi agent into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been 20 documented (see, e.g., Weiner et al., Journal of Drug Targeting, 1992, vol. 2,405-410 and du Plessis et al., Antiviral Research, 18, 1992, 259-265; Mannino, R. J. and Fould-Fogerite, S., Biotechniques 6:682-690, 1988; Itani, T. et al. Gene 56:267-276. 1987; Nicolau, C. et al. Meth. Enz. 149:157-176, 1987; Straubinger, R. M. and 25 Papahadjopoulos, D. Meth. Enz. 101:512-527, 1983; Wang, C. Y. and Huang, L., Proc. Natl. Acad. Sci. USA 84:7851-7855, 1987).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/ cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into

the dermis of mouse skin. Such formulations with RNAi agent are useful for treating a dermatological disorder.

Liposomes that include RNAi agent can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are a type of deformable liposomes. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include RNAi agent can be delivered, for example, subcutaneously by infection in order to deliver RNAi agent to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, *e.g.*, in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading.

Other formulations amenable to the present invention are described in United States provisional application serial Nos. 61/018,616, filed January 2, 2008; 61/018,611, filed January 2, 2008; 61/039,748, filed March 26, 2008; 61/047,087, filed April 22, 2008 and 61/051,528, filed May 8, 2008. PCT application no PCT/US2007/080331, filed October 3, 2007 also describes formulations that are amenable to the present invention.

Surfactants

10

15

20

25

30

Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes (see above). RNAi agent (or a precursor, *e.g.*, a larger dsiRNA which can be processed into a siRNA, or a DNA which encodes a siRNA or precursor) compositions can include a surfactant. In one embodiment, the siRNA is formulated as an emulsion that includes a surfactant. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., New York, NY, 1988, p. 285).

If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., New York, NY, 1988, p. 285).

Micelles and other Membranous Formulations

15

20

The RNAi agents of the invention can also be provided as micellar formulations.

"Micelles" are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the

hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.

5

10

15

20

25

30

A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the siRNA composition, an alkali metal C_8 to C_{22} alkyl sulphate, and a micelle forming compound. Exemplary micelle forming compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali metal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingredients but vigorous mixing in order to provide smaller size micelles.

In one method a first micellar composition is prepared which contains the siRNA composition and at least the alkali metal alkyl sulphate. The first micellar composition is then mixed with at least three micelle forming compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the siRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.

Phenol and/or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Alternatively, phenol and/or m-cresol may be added with the micelle forming ingredients. An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition.

For delivery of the micellar formulation as a spray, the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, *i.e.*, there is one

phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, *e.g.*, through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.

Propellants may include hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. In certain embodiments, HFA 134a (1,1,1,2 tetrafluoroethane) may be used.

The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the oral cavities, it is often desirable to increase, *e.g.*, at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.

Particles

10

15

20

25

30

In another embodiment, an RNAi agent of the invention may be incorporated into a particle, *e.g.*, a microparticle. Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination of these techniques.

IV. Methods For Inhibiting TTR Expression

The present invention also provides methods of inhibiting expression of a transthyretin (TTR) in a cell. The methods include contacting a cell with an RNAi agent, e.g., double stranded RNAi agent, in an amount effective to inhibit expression of TTR in the cell, thereby inhibiting expression of TTR in the cell.

Contacting of a cell with an RNAi agent, e.g., a double stranded RNAi agent, may be done *in vitro* or *in vivo*. Contacting a cell *in vivo* with the RNAi agent includes contacting a cell or group of cells within a subject, *e.g.*, a human subject, with the RNAi agent. Combinations of *in vitro* and *in vivo* methods of contacting a cell are also possible. Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In preferred embodiments, the targeting ligand is a carbohydrate moiety, *e.g.*, a GalNAc₃ ligand, or any other ligand that directs the RNAi agent to a site of interest, *e.g.*, the liver of a subject.

The term "inhibiting," as used herein, is used interchangeably with "reducing," "silencing," "downregulating", "suppressing", and other similar terms, and includes any level of inhibition.

The phrase "inhibiting expression of a TTR" is intended to refer to inhibition of expression of any TTR gene (such as, *e.g.*, a mouse TTR gene, a rat TTR gene, a monkey TTR gene, or a human TTR gene) as well as variants or mutants of a TTR gene. Thus, the TTR gene may be a wild-type TTR gene, a mutant TTR gene (such as a mutant TTR gene giving rise to amyloid deposition), or a transgenic TTR gene in the context of a genetically manipulated cell, group of cells, or organism.

5

10

15

20

25

30

"Inhibiting expression of a TTR gene" includes any level of inhibition of a TTR gene, *e.g.*, at least partial suppression of the expression of a TTR gene. The expression of the TTR gene may be assessed based on the level, or the change in the level, of any variable associated with TTR gene expression, *e.g.*, TTR mRNA level, TTR protein level, or the number or extent of amyloid deposits. This level may be assessed in an individual cell or in a group of cells, including, for example, a sample derived from a subject.

Inhibition may be assessed by a decrease in an absolute or relative level of one or more variables that are associated with TTR expression compared with a control level. The control level may be any type of control level that is utilized in the art, *e.g.*, a predose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, *e.g.*, buffer only control or inactive agent control).

In some embodiments of the methods of the invention, expression of a TTR gene is inhibited by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%. at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.

Inhibition of the expression of a TTR gene may be manifested by a reduction of the amount of mRNA expressed by a first cell or group of cells (such cells may be present, for example, in a sample derived from a subject) in which a TTR gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with an RNAi agent of the invention, or by administering an RNAi agent of the invention to a subject in which the cells are or were present) such that the expression of a TTR gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s)). In preferred embodiments, the inhibition is assessed by expressing the level of mRNA in treated cells as a percentage of the level of mRNA in control cells, using the following formula:

(mRNA in control cells) - (mRNA in treated cells) (mRNA in control cells) • 100%

10

15

20

25

30

Alternatively, inhibition of the expression of a TTR gene may be assessed in terms of a reduction of a parameter that is functionally linked to TTR gene expression, e.g., TTR protein expression, retinol binding protein level, vitamin A level, or presence of amyloid deposits comprising TTR. TTR gene silencing may be determined in any cell expressing TTR, either constitutively or by genomic engineering, and by any assay known in the art. The liver is the major site of TTR expression. Other significant sites of expression include the choroid plexus, retina and pancreas.

Inhibition of the expression of a TTR protein may be manifested by a reduction in the level of the TTR protein that is expressed by a cell or group of cells (*e.g.*, the level of protein expressed in a sample derived from a subject). As explained above for the assessment of mRNA suppression, the inhibition of protein expression levels in a treated cell or group of cells may similarly be expressed as a percentage of the level of protein in a control cell or group of cells.

A control cell or group of cells that may be used to assess the inhibition of the expression of a TTR gene includes a cell or group of cells that has not yet been contacted with an RNAi agent of the invention. For example, the control cell or group of cells may be derived from an individual subject (*e.g.*, a human or animal subject) prior to treatment of the subject with an RNAi agent.

The level of TTR mRNA that is expressed by a cell or group of cells, or the level of circulating TTR mRNA, may be determined using any method known in the art for assessing mRNA expression. In one embodiment, the level of expression of TTR in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, *e.g.*, mRNA of the TTR gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNeasy RNA preparation kits (Qiagen) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays (Melton *et al.*, *Nuc. Acids Res.* 12:7035), Northern blotting, *in situ* hybridization, and microarray analysis. Circulating TTR mRNA may be detected using methods the described in PCT/US2012/043584, the entire contents of which are hereby incorporated herein by reference.

In one embodiment, the level of expression of TTR is determined using a nucleic acid probe. The term "probe", as used herein, refers to any molecule that is capable of selectively binding to a specific TTR. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes may be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.

15

20

25

30

Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction (PCR) analyses and probe arrays. One method for the determination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to TTR mRNA. In one embodiment, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in determining the level of TTR mRNA.

An alternative method for determining the level of expression of TTR in a sample involves the process of nucleic acid amplification and/or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189-193), self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid 10 amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In particular aspects of the invention, the level of expression of TTR is determined by quantitative fluorogenic RT-PCR (i.e., the TaqManTM System).

The expression levels of TTR mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as Northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are incorporated herein by reference. The determination of TTR expression level may also comprise using nucleic acid probes in solution.

15

20

30

In preferred embodiments, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of these methods is described and exemplified in the Examples presented herein.

The level of TTR protein expression may be determined using any method 25 known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, Western blotting, radioimmunoassay (RIA),

enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like.

In some embodiments, the efficacy of the methods of the invention can be monitored by detecting or monitoring a reduction in an amyloid TTR deposit. Reducing an amyloid TTR deposit, as used herein, includes any decrease in the size, number, or severity of TTR deposits, or to a prevention or reduction in the formation of TTR deposits, within an organ or area of a subject, as may be assessed in vitro or in vivo using any method known in the art. For example, some methods of assessing amyloid deposits are described in Gertz, M.A. & Rajukumar, S.V. (Editors) (2010), Amyloidosis: Diagnosis and Treatment, New York: Humana Press. Methods of assessing amyloid 10 deposits may include biochemical analyses, as well as visual or computerized assessment of amyloid deposits, as made visible, e.g., using immunohistochemical staining, fluorescent labeling, light microscopy, electron microscopy, fluorescence microscopy, or other types of microscopy. Invasive or noninvasive imaging modalities, including, e.g., CT, PET, or NMR/MRI imaging may be employed to assess amyloid 15 deposits.

The methods of the invention may reduce TTR deposits in any number of tissues or regions of the body including but not limited to the heart, liver, spleen, esophagus, stomach, intestine (ileum, duodenum and colon), brain, sciatic nerve, dorsal root ganglion, kidney and retina.

20

25

30

The term "sample" as used herein refers to a collection of similar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues present within a subject. Examples of biological fluids include blood, serum and serosal fluids, plasma, lymph, urine, cerebrospinal fluid, saliva, ocular fluids, and the like. Tissue samples may include samples from tissues, organs or localized regions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organis. In certain embodiments, samples may be derived from the liver (*e.g.*, whole liver or certain segments of liver or certain types of cells in the liver, such as, *e.g.*, hepatocytes), the retina or parts of the retina (*e.g.*, retinal pigment epithelium), the central nervous system or parts of the central nervous system (*e.g.*, ventricles or choroid plexus), or the pancreas or certain cells or parts of the pancreas. In preferred embodiments, a "sample derived

from a subject" refers to blood or plasma drawn from the subject. In further embodiments, a "sample derived from a subject" refers to liver tissue or retinal tissue derived from the subject.

In some embodiments of the methods of the invention, the RNAi agent is administered to a subject such that the RNAi agent is delivered to a specific site within the subject. The inhibition of expression of TTR may be assessed using measurements of the level or change in the level of TTR mRNA or TTR protein in a sample derived from fluid or tissue from the specific site within the subject. In preferred embodiments, the site is selected from the group consisting of liver, choroid plexus, retina, and pancreas. The site may also be a subsection or subgroup of cells from any one of the aforementioned sites (*e.g.*, hepatocytes or retinal pigment epithelium). The site may also include cells that express a particular type of receptor (*e.g.*, hepatocytes that express the asialogycloprotein receptor).

15 V. Methods for Treating or Preventing a TTR-Associated Disease

25

The present invention also provides methods for treating or preventing a TTR-associated disease in a subject. The methods include administering to the subject a therapeutically effective amount or prophylactically effective amount of an RNAi agent of the invention.

As used herein, a "subject" includes either a human or a non-human animal, preferably a vertebrate, and more preferably a mammal. A subject may include a transgenic organism. Most preferably, the subject is a human, such as a human suffering from or predisposed to developing a TTR-associated disease.

In some embodiments, the subject is suffering from a TTR-associated disease. In other embodiments, the subject is a subject at risk for developing a TTR-associated disease, *e.g.*, a subject with a TTR gene mutation that is associated with the development of a TTR associated disease, a subject with a family history of TTR-associated disease, or a subject who has signs or symptoms suggesting the development of TTR amyloidosis.

A "TTR-associated disease," as used herein, includes any disease caused by or associated with the formation of amyloid deposits in which the fibril precurosors consist

of variant or wild-type TTR protein. Mutant and wild-type TTR give rise to various forms of amyloid deposition (amyloidosis). Amyloidosis involves the formation and aggregation of misfolded proteins, resulting in extracellular deposits that impair organ function. Climical syndromes associated with TTR aggregation include, for example, senile systemic amyloidosis (SSA); systemic familial amyloidosis; familial amyloidotic polyneuropathy (FAP); familial amyloidotic cardiomyopathy (FAC); and leptomeningeal amyloidosis, also known as leptomeningeal or meningocerebrovascular amyloidosis, central nervous system (CNS) amyloidosis, or amyloidosis VII form.

In some embodiments of the methods of the invention, RNAi agents of the
invention are administered to subjects suffering from familial amyloidotic
cardiomyopathy (FAC) and senile systemic amyloidosis (SSA). Normal-sequence TTR
causes cardiac amyloidosis in people who are elderly and is termed senile systemic
amyloidosis (SSA) (also called senile cardiac amyloidosis (SCA) or cardiac
amyloidosis). SSA often is accompanied by microscopic deposits in many other organs.

TTR mutations accelerate the process of TTR amyloid formation and are the most
important risk factor for the development of clinically significant TTR amyloidosis (also
called ATTR (amyloidosis-transthyretin type)). More than 85 amyloidogenic TTR
variants are known to cause systemic familial amyloidosis.

In some embodiments of the methods of the invention, RNAi agents of the invention are administered to subjects suffering from transthyretin (TTR)-related 20 familial amyloidotic polyneuropathy (FAP). Such subjects may suffer from ocular manifestations, such as vitreous opacity and glaucoma. It is known to one of skill in the art that amyloidogenic transthyretin (ATTR) synthesized by retinal pigment epithelium (RPE) plays important roles in the progression of ocular amyloidosis. Previous studies 25 have shown that panretinal laser photocoagulation, which reduced the RPE cells, prevented the progression of amyloid deposition in the vitreous, indicating that the effective suppression of ATTR expression in RPE may become a novel therapy for ocular amyloidosis (see, e.g., Kawaji, T., et al., Ophthalmology. (2010) 117: 552-555). The methods of the invention are useful for treatment of ocular manifestations of TTR related FAP, e.g., ocular amyloidosis. The RNAi agent can be delivered in a manner 30 suitable for targeting a particular tissue, such as the eye. Modes of ocular delivery

include retrobulbar, subcutaneous eyelid, subconjunctival, subtenon, anterior chamber or intravitreous injection (or internal injection or infusion). Specific formulations for ocular delivery include eye drops or ointments.

Another TTR-associated disease is hyperthyroxinemia, also known as "dystransthyretinemic hyperthyroxinemia" or "dysprealbuminemic hyperthyroxinemia". This type of hyperthyroxinemia may be secondary to an increased association of thyroxine with TTR due to a mutant TTR molecule with increased affinity for thyroxine. See, *e.g.*, Moses *et al.* (1982) *J. Clin. Invest.*, 86, 2025-2033.

The RNAi agents of the invention may be administered to a subject using any mode of administration known in the art, including, but not limited to subcutaneous, intravenous, intramuscular, intraocular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof. In preferred embodiments, the agents are administered subcutaneously.

10

25

30

In some embodiments, the administration is via a depot injection. A depot injection may release the RNAi agent in a consistent way over a prolonged time period. Thus, a depot injection may reduce the frequency of dosing needed to obtain a desired effect, *e.g.*, a desired inhibition of TTR, or a therapeutic or prophylactic effect. A depot injection may also provide more consistent serum concentrations. Depot injections may include subcutaneous injections or intramuscular injections. In preferred embodiments, the depot injection is a subcutaneous injection.

In some embodiments, the administration is via a pump. The pump may be an external pump or a surgically implanted pump. In certain embodiments, the pump is a subcutaneously implanted osmotic pump. In other embodiments, the pump is an infusion pump. An infusion pump may be used for intravenous, subcutaneous, arterial, or epidural infusions. In preferred embodiments, the infusion pump is a subcutaneous infusion pump. In other embodiments, the pump is a surgically implanted pump that delivers the RNAi agent to the liver.

Other modes of administration include epidural, intracerebral, intracerebroventricular, nasal administration, intraarterial, intracardiac, intraosseous infusion, intrathecal, and intravitreal, and pulmonary. The mode of administration may be chosen based upon whether local or systemic treatment is desired and based upon the

area to be treated. The route and site of administration may be chosen to enhance targeting.

In some embodiments, the RNAi agent is administered to a subject in an amount effective to inhibit TTR expression in a cell within the subject. The amount effective to inhibit TTR expression in a cell within a subject may be assessed using methods discussed above, including methods that involve assessment of the inhibition of TTR mRNA, TTR protein, or related variables, such as amyloid deposits.

In some embodiments, the RNAi agent is administered to a subject in a therapeutically or prophylactically effective amount.

10

15

20

25

30

"Therapeutically effective amount," as used herein, is intended to include the amount of an RNAi agent that, when administered to a patient for treating a TTR associated disease, is sufficient to effect treatment of the disease (e.g., by diminishing, ameliorating or maintaining the existing disease or one or more symptoms of disease). The "therapeutically effective amount" may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, age, weight, family history, genetic makeup, stage of pathological processes mediated by TTR expression, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.

"Prophylactically effective amount," as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject who does not yet experience or display symptoms of a TTR-associated disease, but who may be predisposed to the disease, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Symptoms that may be ameliorated include sensory neuropathy (e.g., paresthesia, hypesthesia in distal limbs), autonomic neuropathy (e.g., gastrointestinal dysfunction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomic insufficiency, cardiomyopathy, vitreous opacities, renal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfunction, and corneal lattice dystrophy. Ameliorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The "prophylactically effective amount" may vary depending on the RNAi agent, how the

agent is administered, the degree of risk of disease, and the history, age, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.

A "therapeutically-effective amount" or "prophylacticaly effective amount" also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. RNAi agents employed in the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.

As used herein, the phrases "therapeutically effective amount" and "prophylactically effective amount" also include an amount that provides a benefit in the treatment, prevention, or management of pathological processes or symptom(s) of pathological processes mediated by TTR expression. Symptoms of TTR amyloidosis include sensory neuropathy (*e.g.* paresthesia, hypesthesia in distal limbs), autonomic neuropathy (*e.g.*, gastrointestinal dysfunction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomic insufficiency, cardiomyopathy, vitreous opacities, renal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfunction, and corneal lattice dystrophy.

The dose of an RNAi agent that is administered to a subject may be tailored to balance the risks and benefits of a particular dose, for example, to achieve a desired level of TTR gene suppression (as assessed, *e.g.*, based on TTR mRNA suppression, TTR protein expression, or a reduction in an amyloid deposit, as defined above) or a desired therapeutic or prophylactic effect, while at the same time avoiding undesirable side effects.

20

In one embodiment, the RNAi agent is administered at a dose of between about 0.25 mg/kg to about 50 mg/kg, e.g., between about 0.25 mg/kg to about 0.5 mg/kg, between about 0.25 mg/kg to about 1 mg/kg, between about 0.25 mg/kg to about 5 mg/kg, between about 0.25 mg/kg to about 10 mg/kg, between about 1 mg/kg to about 10 mg/kg, between about 5 mg/kg to about 20 mg/kg, between about 20 mg/kg to about 30 mg/kg, between about 15 mg/kg to about 25 mg/kg, between about 20 mg/kg to about

30 mg/kg, between about 25 mg/kg to about 35 mg/kg, or between about 40 mg/kg to about 50 mg/kg.

In some embodiments, the RNAi agent is administered at a dose of about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, about 10 mg/kg, about 11 mg/kg, about 12 mg/kg, about 13 mg/kg, about 14 mg/kg, about 15 mg/kg, about 16 mg/kg, about 17 mg/kg, about 18 mg/kg, about 19 mg/kg, about 20 mg/kg, about 21 mg/kg, about 22 mg/kg, about 23 mg/kg, about 24 mg/kg, about 25 mg/kg, about 26 mg/kg, about 27 mg/kg, about 28 mg/kg, about 29 mg/kg, 30 mg/kg, about 31 mg/kg, about 32 mg/kg, about 33 mg/kg, about 34 mg/kg, about 35 mg/kg, about 36 mg/kg, about 37 mg/kg, about 38 mg/kg, about 39 mg/kg, about 40 mg/kg, about 41 mg/kg, about 42 mg/kg, about 43 mg/kg, about 44 mg/kg, about 45 mg/kg, about 46 mg/kg, about 47 mg/kg, about 48 mg/kg, about 49 mg/kg or about 50 mg/kg.

10

In some embodiments, the RNAi agent is administered in two or more doses. If desired to facilitate repeated or frequent infusions, implantation of a delivery device, 15 e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracisternal or intracapsular), or reservoir may be advisable. In some embodiments, the number or amount of subsequent doses is dependent on the achievement of a desired effect, e.g., the suppression of a TTR gene, or the achievement of a therapeutic or prophylactic effect, e.g., reducing an amyloid deposit or reducing a symptom of a TTR-associated 20 disease. In some embodiments, the RNAi agent is administered according to a schedule. For example, the RNAi agent may be administered twice per week, three times per week, four times per week, or five times per week. In some embodiments, the schedule involves regularly spaced administrations, e.g., hourly, every four hours, every six hours, every eight hours, every twelve hours, daily, every 2 days, every 3 days, every 4 25 days, every 5 days, weekly, biweekly, or monthly. In other embodiments, the schedule involves closely spaced administrations followed by a longer period of time during which the agent is not administered. For example, the schedule may involve an initial set of doses that are administered in a relatively short period of time (e.g., about every 6 30 hours, about every 12 hours, about every 24 hours, about every 48 hours, or about every

72 hours) followed by a longer time period (*e.g.*, about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 7 weeks, or about 8 weeks) during which the RNAi agent is not administered. In one embodiment, the RNAi agent is initially administered hourly and is later administered at a longer interval (*e.g.*, daily, weekly, biweekly, or monthly). In another embodiment, the RNAi agent is initially administered daily and is later administered at a longer interval (*e.g.*, weekly, biweekly, or monthly). In certain embodiments, the longer interval increases over time or is determined based on the achievement of a desired effect. In a specific embodiment, the RNAi agent is administered once daily during a first week, followed by weekly dosing starting on the eighth day of administration. In another specific embodiment, the RNAi agent is administered every other day during a first week followed by weekly dosing starting on the eighth day of administration.

10

15

20

25

30

Any of these schedules may optionally be repeated for one or more iterations. The number of iterations may depend on the achievement of a desired effect, *e.g.*, the suppression of a TTR gene, retinol binding protein level, vitamin A level, and/or the achievement of a therapeutic or prophylactic effect, *e.g.*, reducing an amyloid deposit or reducing a symptom of a TTR-associated disease.

In some embodiments, the RNAi agent is administered with other therapeutic agents or other therapeutic regimens. For example, other agents or other therapeutic regimens suitable for treating a TTR-associated disease may include a liver transplant, which can reduce mutant TTR levels in the body; Tafamidis (Vyndaqel), which kinetically stabilizes the TTR tetramer preventing tetramer dissociation required for TTR amyloidogenesis; and diuretics, which may be employed, for example, to reduce edema in TTR amyloidosis with cardiac involvement.

In one embodiment, a subject is administered an initial dose and one or more maintenance doses of an RNAi agent. The maintenance dose or doses can be the same or lower than the initial dose, *e.g.*, one-half of the initial dose. A maintenance regimen can include treating the subject with a dose or doses ranging from 0.01 µg to 15 mg/kg of body weight per day, *e.g.*, 10 mg/kg, 1 mg/kg, 0.1 mg/kg, 0.01 mg/kg, 0.001 mg/kg, or 0.00001 mg/kg of bodyweight per day. The maintenance doses are, for example, administered no more than once every 2 days, once every 5 days, once every 7 days,

once every 10 days, once every 14 days, once every 21 days, or once every 30 days. Further, the treatment regimen may last for a period of time which will vary depending upon the nature of the particular disease, its severity and the overall condition of the patient. In certain embodiments the dosage may be delivered no more than once per day, *e.g.*, no more than once per 24, 36, 48, or more hours, *e.g.*, no more than once every 5 or 8 days. Following treatment, the patient can be monitored for changes in his/her condition. The dosage of the RNAi agent may either be increased in the event the patient does not respond significantly to current dosage levels, or the dose may be decreased if an alleviation of the symptoms of the disease state is observed, if the

VI. Kits

15

20

The present invention also provides kits for performing any of the methods of the invention. Such kits include one or more RNAi agent(s) and instructions for use, *e.g.*, instructions for inhibiting expression of a TTR in a cell by contacting the cell with the RNAi agent(s) in an amount effective to inhibit expression of the TTR. The kits may optionally further comprise means for contacting the cell with the RNAi agent (*e.g.*, an injection device), or means for measuring the inhibition of TTR mRNA or TTR protein). Such means for measuring the inhibition of TTR may comprise a means for obtaining a sample from a subject, such as, *e.g.*, a plasma sample. The kits of the invention may optionally further comprise means for administering the RNAi agent(s) to a subject or means for determining the therapeutically effective or prophylactically effective amount.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references and published patents and patent applications cited throughout the application are hereby incorporated herein by reference.

EXAMPLES

Example 1: Inhibition of TTR with TTR-GalNAc conjugates

A single dose of the TTR RNAi agent AD-43527 was administered to mice subcutaneously and TTR mRNA levels were determined 72 hours post administration.

The mouse/rat cross-reactive GalNAc-conjugate, AD-43527, was chosen for *in vivo* evaluation in WT C57BL/6 mice for silencing of TTR mRNA in liver. The sequence of each strand of AD-43527 is shown below.

Strand: s= sense; as= antisense

Duplex #	Strand	Oligo	Sequence 5' to 3'
		#	
AD-43527	s	A-	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfaAfL96 (SEQ
		89592	ID NO: 8)
	as	A-	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu (SEQ
		83989	ID NO: 9
			L96 = GalNAc3; lowercase nts (a,u,g,c)
			are 2'-O-methyl nucleotides, Nf (i.e.,
			Af) is a 2'-fluoro nucleotide

10 The ligand used was GalNAc₃:

15 This GalNAc3 ligand was conjugated to the 3'-end of the sense strand using the linker and tether as shown below:

The structure of the resulting GalNAc₃ conjugated sense strand is shown in the following schematic:

5

Additional RNAi agents that target TTR and have the following sequences and modifications were synthesized and assayed.

Mouse/rat cross reactive TTR RNAi agents

Duplex	Sense strand 5'-3'	Antisense strand 5'-3'
AD-	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfaAfQ11L96	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu
43528	(SEQ ID NO: 10)	(SEQ ID NO: 11)

10

Human/cyno cross reactive TTR RNAi agents; parent duplex is AD-18328 [having a sense strand 5'-3' sequence of GuAAccAAGAGuAuuccAudTdT (SEQ ID NO: 12) and antisense strand 5' to 3' sequence of AUGGAAuACUCUUGGUuACdTdT (SEQ ID

NO: 13) with the following modifications: alternating 2'F/2'OMe w/2 PS on AS.

Duplex	Sense strand 5'-3'	Antisense strand 5'-3'
AD-	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfL96	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa
45163	(SEQ ID NO: 14)	(SEQ ID NO: 16)
AD-	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfQ11L96	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa
45164	(SEQ ID NO: 15)	(SEQ ID NO: 17)

 $L96 = GalNAc_3$; lowercase nts (a,u,g,c) are 2'-O-methyl nucleotides, Nf (*i.e.*, Af) is a 2'-fluoro nucleotide; Q11 is cholesterol; s is phosphorothioate.

20

AD-43527 was administered to female C57BL/6 mice (6-10 weeks, 5 per group) via subcutaneous injection at a dose volume of $10\mu\text{l/g}$ at a dose of 30, 15, 7.5, 3.5, 1.75 or 0.5 mg/kg of AD-43527. Control animals received PBS by subcutaneous injection at the same dose volume.

5 After approximately seventy two hours, mice were anesthetized with 200 µl of ketamine, and then exsanguinated by severing the right caudal artery. Liver tissue was collected, flash-frozen and stored at -80°C until processing.

10

15

20

25

30

Efficacy of treatment was evaluated by measurement of TTR mRNA in the liver at 72 hours post-dose. TTR liver mRNA levels were assayed utilizing the Branched DNA assays- QuantiGene 1.0 (Panomics). Briefly, mouse liver samples were ground and tissue lysates were prepared. Liver lysis mixture (a mixture of 1 volume of lysis mixture, 2 volume of nuclease-free water and 10µl of Proteinase-K/ml for a final concentration of 20mg/ml) was incubated at 65 °C for 35 minutes. 5µl of liver lysate and 95µl of working probe set (TTR probe for gene target and GAPDH for endogenous control) were added into the Capture Plate. Capture Plates were incubated at 53 °C ±1 °C (aprx. 16-20hrs). The next day, the Capture Plates were washed 3 times with 1X Wash Buffer (nuclease-free water, Buffer Component 1 and Wash Buffer Component 2), then dried by centrifuging for 1 minute at 240g. 100µl of Amplifier Probe mix per well was added into the Capture Plate, which was sealed with aluminum foil and incubated for 1 hour at 46°C ±1°C. Following a 1 hour incubation, the wash step was repeated, then 100µl of Label Probe mix per well was added. Capture plates were incubated at 46 °C ±1 °C for 1 hour. The plates were then washed with 1X Wash Buffer, dried and 100µl substrate per well was added into the Capture Plates. Capture Plates were incubated for 30 minutes at 46°C followed by incubation for 30 minutes at room temperature. Plates were read using the SpectraMax Luminometer following incubation. bDNA data were analyzed by subtracting the average background from each duplicate sample, averaging the resultant duplicate GAPDH (control probe) and TTR (experimental probe) values, and then computing the ratio: (experimental probebackground)/(control probe-background). The average TTR mRNA level was calculated for each group and normalized to the PBS group average to give relative TTR mRNA as a % of the PBS control group.

The results are shown in Figure 1. The GalNAc conjugated RNAi agent targeting TTR had an ED_{50} of approximately 5 mg/kg for TTR mRNA knockdown. These results demonstrate that GalNAc conjugated RNAi agents that target TTR are effective at inhibiting expression of TTR mRNA.

5

10

Example 2: Inhibition of TTR with TTR-GalNAc conjugates is durable

Mice were administered a subcutaneous dose (either 7.5 or 30.0 mg/kg) of AD-43527, a GalNAc conjugated RNAi agent that targets TTR. The TTR mRNA levels in the liver were evaluated at 1, 3, 5, 7, 10, 13, 15, 19, 26, 33, and 41 days post treatment using the method described in Example 1.

The results are shown in Figure 2. At day 19, administration of 30.0 mg/kg GalNAc conjugated RNAi agents still showed about 50% silencing. Full recovery of expression occurred at day 41.

These results demonstrated that the inhibition provided by GalNAc conjugated siRNA targeting TTR is durable, lasting up to 3, 5, 7, 10, 13, 15, 19, 26 or 33 days post treatment.

Example 3. RNA Synthesis and Duplex Annealing

20 1. Oligonucleotide Synthesis

Oligonucleotides were synthesized on an AKTAoligopilot synthesizer or an ABI 394 synthsizer. Commercially available controlled pore glass solid support (dT-CPG, 500Å, Prime Synthesis) and RNA phosphoramidites with standard protecting groups, 5'-*O*-dimethoxytrityl N6-benzoyl-2'-*t*-butyldimethylsilyl-adenosine-3'-*O*-N,N'-

- diisopropyl-2-cyanoethylphosphoramidite, 5'-*O*-dimethoxytrityl-N4-acetyl-2'-*t*-butyldimethylsilyl-cytidine-3'-*O*-N,N'-diisopropyl-2-cyanoethylphosphoramidite, 5'-*O*-dimethoxytrityl-N2--isobutryl-2'-*t*-butyldimethylsilyl-guanosine-3'-*O*-N,N'-diisopropyl-2-cyanoethylphosphoramidite, and 5'-*O*-dimethoxytrityl-2'-*t*-butyldimethylsilyl-uridine-3'-O-N,N'-diisopropyl-2-cyanoethylphosphoramidite (Pierce Nucleic Acids
- Technologies) were used for the oligonucleotide synthesis unless otherwise specified. The 2'-F phosphoramidites, 5'-O-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-O-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-acetyl-2'-dimethoxytrityl-N4-ac

N,N'-diisopropyl-2-cyanoethyl-phosphoramidite and 5'-O-dimethoxytrityl-2'-fluro-uridine-3'-O-N,N'-diisopropyl-2-cyanoethyl-phosphoramidite were purchased from (Promega). All phosphoramidites were used at a concentration of 0.2M in acetonitrile (CH₃CN) except for guanosine which was used at 0.2M concentration in 10% THF/ANC (v/v). Coupling/recycling time of 16 minutes was used. The activator was 5-ethyl thiotetrazole (0.75M, American International Chemicals), for the PO-oxidation Iodine/Water/Pyridine was used and the PS-oxidation PADS (2 %) in 2,6-lutidine/ACN (1:1 v/v) was used.

Ligand conjugated strands were synthesized using a solid support containing the corresponding ligand. For example, the introduction of a carbohydrate moiety/ligand 10 (for e.g., GalNAc) at the 3'-end of a sequence was achieved by starting the synthesis with the corresponding carbohydrate solid support. Similarly a cholesterol moiety at the 3'-end was introduced by starting the synthesis on the cholesterol support. In general, the ligand moiety was tethered to trans-4-hydroxyprolinol via a tether of choice as described in the previous examples to obtain a hydroxyprolinol-ligand moiety. The 15 hydroxyprolinol-ligand moiety was then coupled to a solid support via a succinate linker or was converted to phosphoramidite via standard phosphitylation conditions to obtain the desired carbohydrate conjugate building blocks. Fluorophore labeled siRNAs were synthesized from the corresponding phosphoramidite or solid support, purchased from Biosearch Technologies. The oleyl lithocholic (GalNAc)₃ polymer support made in 20 house at a loading of 38.6 µmol/gram. The Mannose (Man)₃ polymer support was also made in house at a loading of 42.0 µmol/gram.

Conjugation of the ligand of choice at the desired position, for example at the 5'end of the sequence, was achieved by coupling of the corresponding phosphoramidite to
the growing chain under standard phosphoramidite coupling conditions unless otherwise
specified. An extended 15 minute coupling of 0.1M solution of phosphoramidite in
anhydrous CH₃CN in the presence of 5-(ethylthio)-1*H*-tetrazole activator to a solid
bound oligonucleotide. Oxidation of the internucleotide phosphite to the phosphate was
carried out using standard iodine-water as reported in Beaucage, S.L. (2008) Solidphase synthesis of siRNA oligonucleotides. *Curr. Opin. Drug Discov. Devel.*, 11, 203–
216; Mueller, S., Wolf, J. and Ivanov, S.A. (2004) Current Strategies for the Synthesis

25

30

of RNA. *Curr. Org. Synth.*, 1, 293–307; Xia, J., Noronha, A., Toudjarska, I., Li, F., Akinc, A., Braich, R., Frank-Kamenetsky, M., Rajeev, K.G., Egli, M. and Manoharan, M. (2006) Gene Silencing Activity of siRNAs with a Ribo-difluorotoluyl Nucleotide. *ACS Chem. Biol.*, 1, 176–183 or by treatment with *tert*-butyl

5 hydroperoxide/acetonitrile/water (10: 87: 3) with a 10 minute oxidation wait time conjugated oligonucleotide. Phosphorothioate was introduced by the oxidation of phosphite to phosphorothioate by using a sulfur transfer reagent such as DDTT (purchased from AM Chemicals), PADS and or Beaucage reagent The cholesterol phosphoramidite was synthesized in house, and used at a concentration of 0.1 M in dichloromethane. Coupling time for the cholesterol phosphoramidite was 16 minutes.

2. Deprotection- I (Nucleobase Deprotection)

After completion of synthesis, the support was transferred to a 100 ml glass bottle (VWR). The oligonucleotide was cleaved from the support with simultaneous

deprotection of base and phosphate groups with 80 mL of a mixture of ethanolic ammonia [ammonia: ethanol (3:1)] for 6.5h at 55°C. The bottle was cooled briefly on ice and then the ethanolic ammonia mixture was filtered into a new 250 ml bottle. The CPG was washed with 2 x 40 mL portions of ethanol/water (1:1 v/v). The volume of the mixture was then reduced to ~ 30 ml by roto-vap. The mixture was then frozen on dry ice and dried under vacuum on a speed vac.

3. Deprotection-II (Removal of 2' TBDMS group)

25

The dried residue was resuspended in 26 ml of triethylamine, triethylamine trihydrofluoride (TEA.3HF) or pyridine-HF and DMSO (3:4:6) and heated at 60°C for 90 minutes to remove the *tert*-butyldimethylsilyl (TBDMS) groups at the 2' position. The reaction was then quenched with 50 ml of 20mM sodium acetate and pH adjusted to 6.5, and stored in freezer until purification.

4. Analysis

The oligonucleotides were analyzed by high-performance liquid chromatography (HPLC) prior to purification and selection of buffer and column depends on nature of the sequence and or conjugated ligand.

5

5. HPLC Purification

The ligand conjugated oligonucleotides were purified by reverse phase preparative HPLC. The unconjugated oligonucleotides were purified by anion-exchange HPLC on a TSK gel column packed in house. The buffers were 20 mM sodium phosphate (pH 8.5) in 10% CH₃CN (buffer A) and 20 mM sodium phosphate (pH 8.5) in 10% CH₃CN, 1M NaBr (buffer B). Fractions containing full-length oligonucleotides were pooled, desalted, and lyophilized. Approximately 0.15 OD of desalted oligonucleotidess were diluted in water to 150 μl and then pipetted in special vials for CGE and LC/MS analysis. Compounds were finally analyzed by LC-ESMS and CGE.

15

20

6. RNAi Agent preparation

For the preparation of an RNAi agent, equimolar amounts of sense and antisense strand were heated in 1xPBS at 95°C for 5 minutes and slowly cooled to room temperature. The integrity of the duplex was confirmed by HPLC analysis. Table 1 below reflects the RNAi agents which target human or rodent TTR mRNA.

Table 1: RNAi Agents and Results of In Vitro Screening

ICSO (nM)		900'0	0.0065	0.0068	0.0073	0.008	0.0093	0.0095	0.0098	0.010	0.0101	0.0101	0.011	0.0114	0.011	0.013	0.013	0.013	0.0133	0.014	0.014	0.0156
ained	0.01 nM	0.47	0.49	0.46	0.56	0.44	0.53	0.55	0.48	0.33	0.56	0.65	0.55	0.54	0.49	0.59	0.51	0.64	0.74	0.61	0.7	0.67
% of mRNA remained conc. of siRNA	0.1 nM	0.1	0.10	0.10	0.12	0.13	0.11	0.16	0.14	0.11	0.14	0.14	0.10	0.13	0.19	0.16	0.15	0.14	0.41	0.14	0.2	0.16
% of m conc. o	1 nM	0.03	0.03	0.04	0.05	0.07	90'0	0.05	0.05	0.07	0.03	0.03	90'0	0.04	0.11	0.04	0.07	90.0	60'0	0.03	0.02	0.04
Antisense strand (AS)		AfUfgGfaAfuAfcUfcuuGfgUfuAfcAfusGfsa	aUfsgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa	aUfgGfAfAfuAfcUfcuuGfgsUfuAfcAfusGfsa	aUfgGfAfAfuAfcUfcuuGfgUfsuAfcAfusGfsa	AUggAAuaCUcuUGguUAcaUsGsa	aUfgGfAfAfuAfcUfcuuGfgsUfsuAfcAfusGfsa	aUfgGfaAfuAfcUfcuuGfGfuuAfcAfusGfsa	aUfgGfaAfuAfcUfcuuGfguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	uCfuugGfuUfaCfaugAfaAfuccCfasUfsc	uCfuUfgGfuUfaCfaugAfaAfUfCfcCfasUfsc	aUfgGfaAfuAfcUfcuuGfGfuuAfcaUfsgsa	uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc	${\tt aUfgGfaAfuAfcUfcUfugdGudTadCadTsgsa}$	aUfgGfaAfuAfcUfcuuGfgUfUfAfcAfusGfsa	dAUdGgdAadTAfdCUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcuuGfgUfuAfcAfUfsGfsa	uCfuUfgGfuuaCfaugAfaAfuCfCfcasUfsc	aUfgGfaAfuAfcUfcuuGfgUfuAfCfAfusGfsa	${\tt aUfgGfaAfuAfcUfcuuGfGfUfuAfcAfusGfsa}$	asUfsgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa
SEQ ID NO:		1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130
AS ID		AS1000	AS1001	AS1002	AS1003	AS1004	AS1005	AS1006	AS1007	AS1008	AS1009	AS1010	AS1011	AS1012	AS1013	AS1014	AS1015	AS1016	AS1017	AS1018	AS1019	AS1020
Sense strand (S)		AfuGfuAfaCfcAfAfGfaGfuAfuUfcCfasu	AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AfuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AfuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	aUGuaACccAGagUAuuCCasu	AfuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AfuGfuAfAfccAfAfGfaGfuAfuUfcCfasUf	AfuGfuAfAfCfcAfAfGfaGfuAfuUfcCfasUf	auguaaccaadGadGudAudAcdGasu	UfgGfGfAfuUfuCfAfUfgUfaAfcCfAfAfgsAf	UfgGfgauUfuCfAfUfgUfaAfcCfaAfgsAf	aUfGfuAfAfccAfAfGfaGfuAfuUfcCfasUf	UfgGfgAfuUfuCfAfUfgUfaacCfaAfgsAf	angnaaccaadGadGudAndAcdGasn	AfuGfuaaCfcAfAfGfaGfuAfuUfcCfasUf	AfuguAfaccAfaGfdAGfdTAdTudCcdAsu	auGfuAfaCfcAfAfGfaGfuAfuUfcCfasUf	UfGfggAfuUfuCfAfUfgUfAfAfcCfaAfgsAf	AfuguAfaCfcAfAfGfaGfuAfuUfcCfasUf	AfuGfuAfaccAfAfGfaGfuAfuUfcCfasUf	AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf
SEQ ID NO:		18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
SID		21000	S1001	S1002	S1003	S1004	S1005	S1006	S1007	81008	\$1009	S1010	S1011	S1012	S1013	S1014	S1015	S1016	S1017	S1018	S1019	S1020
Duplex ID			D1001	D1002	D1003	D1004	D1005	D1006	D1007	D1008	D1009	D1010	D1011	D1012	D1013	D1014	D1015	D1016	D1017	D1018	D1019	D1020

D1022 51022 4.0 TrideggebArtiuucicidAugeTidAucicidAugeArtiucidesid A1122 UnicidgedArtiuucidesid 0.05 0.27 0.04 D1023 51023 4.1 AkudicMainChaNdicaledidAuuciciasUF A51023 1.13 a-UlgeGARAIMACHICACANISCH 0.05 0.23 0.05	D1021	S1021	39	aUfguAfAfccAfAfgagUfaUfuCfcasUf	AS1021	1131	aUfGfgAfaUfaCfUfCfuuGfGfuuAfCfaUfsgsa	0.11	0.24	0.64	0.016
\$10.23 4.1 AfsuefuahacteAdAfeTaefuabuctasuff \$10.23 \$1.33 auftgeStAdAtuAteUteudisfultaeAteCasAgeAff \$10.23 \$1.32 UtgeGgAdutuCasAUSeanAteCasAgeAff \$10.22 \$1.32 UtgeGgAdutuCasAUSeanAteCasAgeAff \$10.22 \$1.33 uctual/gefoundeCasaGasAntecCasaUse \$0.02 \$0.25 \$10.025 4.3 UtgeGgAdutUnc(ARMUgUSAACCASAGSAF \$2.025 \$1.35 uctual/gefoundeCasAgeAntecCasAgeAf \$0.025 \$0.025 \$10.026 4.5 UtgeGgAdutUnc(ARMUgUSAACCASAGSAF \$2.025 \$1.35 uctual/gefoundeCasAgeAntecCasAgeAff \$0.025 \$0.02 \$0.03 \$10.029 4.5 UtgeGgAdutUnc(ARMUgUSAACCASAGSAF \$2.025 \$1.35 uctual/gefoundeCasagAactAcacAgeAgeAfGATAAACCACAAGEAG \$0.025 \$0.025 \$10.029 4.7 AddTguAdAAccAcAAGAGATAAACCACAAGSAF \$2.022 \$1.35 uctual/gefoundeCasAgeAGATAACACAAGAGATAAACACAAGSAF \$0.025 \$0.025 \$10.029 \$1.029 \$1.029 \$1.140 uctual/gefoundeCasAgeAACAACAAGAGATAAACAAGASAGAAAACAAAGAAAAAAAAAA		S1022	40	dTdGggdAdTuudCdAugdTdAacdCdAagsdA	AS1022	1132	udCdTugdGdTuadCdAugdAdAaudCdCcasdTsc	80:0	0.27	0.64	0.0161
\$10.02 4.2 UtgörgafuulurGrAfulguaAfrcClaAfgsAf AS10.24 11.34 uchuUtgörfuuUrGrAfulguaAfrcClaAfgsAf AS10.25 11.35 uchuUtgörfuuUrGrAfulguaAfrcClaAfgsAf AS10.25 11.35 uchuUtgörfuuArCrCrasulfsc 0.04 0.13 5.10.25 4.3 UtgörgafuuUrGrAfulgulArCrCaAfgsAf AS10.25 11.35 uchuUtgörfuuArCrCrasulfsc 0.04 0.13 5.10.26 4.4 UtgörgafuulurGrAfulgulArCrCaAfgsAf AS10.25 11.37 uchuUtgörfuuGragafharCrCrCasulfsc 0.04 0.13 5.10.27 4.5 UtgörgafuufurGrAfulgulArCrCaAfgsAf AS10.23 11.39 uchuUtgörfuuArCrCatagharCrCatagharCrCaAfgsAff 0.04 0.13 5.10.29 4.5 AdriguaAfraCrCAAfgrAfGharTuuCrCasulf AS10.23 11.40 uchuUtgörfuuArCrCatagharCrCatagharCrCaAfgrAfGrAfulArCrCaAfgrAfgrAfulArCrCatagharCrCata		S1023	41	AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AS1023	1133	aUfgsGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa	0.03	0.19	0.63	0.0163
\$10.05 4.3 Ufgolgafuturic/Aft/ligu/RAft-ClaAdgsAff \$10.05 11.35 uchol/gofuul-claafleshed 0.04 0.13 \$10.05 4.3 Ufgolgafuturic/Aft/ligu/RAft-ClaAdgsAff A51025 11.35 uchul/gofuul-claadrafathcClaadls 0.04 0.13 \$10.02 4.3 Ufgolgafuturic/Aft/ligu/Raft-ClaAdgsAff A51025 11.39 uchul/goful/rafcadrafathcClaadls 0.04 0.13 \$10.02 4.3 Ufgolgafuturic/Aft/ligu/Raft-ClaAdgsAff A51020 11.39 adffoot/Add-ClaAdg-ClaAdgsAff 0.04 0.10 \$10.02 4.3 Aft-Gradad-ClaAdgsAff-Aff-UnicClaAdgsAff A51020 11.40 uchul/gofulAdcadad-ClaAdgsAff-Aff-Aff-ClaAdgsAff 0.04 0.12 \$10.02 4.0 Aft-Gradad-ClaAdgsAff-Aff-Aff-ClaAdgsAff A51020 11.40 uchul/gofulAdgad-ClaAdgsAff-Aff-Aff-Aff-Aff-Aff-Aff-Aff-Aff-Aff	_	51024	42	UfgGfgAfuUfuCfAfUfguaAfcCfaAfgsAf	AS1024	1134	uCfuUfgGfuUfAfCfaugAfaAfuCfcCfasUfsc	0.05	0.25	69.0	0.0164
\$10.02 4.m Utgosfpafutufuc/AdulgufaAfccfaAfgsAf AS1020 1.35 ucfulfisGiruth3CfaugfaAffucfcfaaAfgsAf O 100 0.10 \$10.02 4.m UtgosfpafutufucAdulgufaAfccaAfgsAff AS1027 1.37 ucfulfisfisfuufaCfaugfaAfucccfasUfsc 0.04 0.19 \$10.02 4.m UtgosfpafutufucCaAfugfaAfgaCcaAfgaAfg AS1029 1.39 aTGGedaAdTacdTaCuadGaCaudGaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaCaafgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaAfgaCaafgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaAfgaCaafgaAfgaAfgaAfgaAfgaAfgaAfgaAfgaAfgaAfg	<u></u>	S1025	43	UfgGfgAfuUfuCfAfUfgUfAfAfcCfaAfgsAf	AS1025	1135	uCfuUfgGfuuaCfaugAfaAfuCfcCfasUfsc	0.04	0.18	0.75	0.0166
\$1022 4.5 UtgGGgAtUUtuCARUIgUIaAktcaAlgeAf AS1022 1137 ortbulGGGatAdTaGTaGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	G	S1026	44	UfgGfgAfuUfuCfAfUfgUfaAfcCfaAfgsAf	AS1026	1136	uCfuUfgGfuUfaCfaugAfaAfuCfcCfasUfsc	0.04	0.19	99'0	0.0178
\$10.28 4.6 dAdTgudAdaccAdAggaGGTaudTdCcasdT AS10.28 1.38 aTdTGGgadAdTacCTdCudGdCudGGCuudAdCauSGSa 0.15 0.20 \$10.29 4.7 AdTGGTAdACCACAAGGAGTTACTUGCCAASU AS10.29 11.39 AUUGGGAAATTACCUGCUTGGGUUTACCASUSCSAA 0.1 0.27 \$10.30 4.8 UfgGTGARUUUCAAUTGTACCAAGGAGTTACTUGCCAASU AS10.31 11.41 AUUGGGAAATTACTUGCUTGGGUUTACCASUSCSAA 0.0 0.1 0.21 \$10.31 4.9 AfuGTAAACCAAAGGAGTACTUGCAAGGAGTACTUGCAAGGAGTACTUGCAAGGAGTACTUGCAAGGAGTACTUGCAAGAGCAAGTACCAAGGAGTACTUGCAAGGAGTACTUGCAAGGAGTACTUGCAAGGAGTACTUGCAAGAGCAAGTACCAAGGAGTACTUGCAAGAGAAGTACCCAAGAGAGTACTACAAGGAGTACTACAAGAGACAAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGTACCAAGAGAAGAAGTACCAAGAGAAGAAGAACTACCAAGAGAAGAACAACAAGAACAACAAGAAGAACAACAA	7	S1027	45	UfgGfgAfuUfuCfAfUfgUfaAfccaAfgsAf	AS1027	1137	uCfuUfGfGfuUfaCfaugAfaAfuCfcCfasUfsc	0.04	0.19	69'0	0.018
\$10.29 47 AdTGGTAAACGCAAGGGGTAACTUGCCAAN ASJ029 1139 AdUGGGAAAATACCUGTGGGGTAACTUGCAANGGGTAACTUGCCAANGGAATACCAAGGAACTAGCAAGGGGTAACTUGCAAGGGAATACCACTAGGGAATACCAAGGAACTACAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACAAGGAACTACCAAGGAACTACCAAGGAACTACCAAGGAACTACAAGAACTACAAGAACTACAAGAACT	8	S1028	46	dAdTgudAdAccdAdAgadGdTaudTdCcasdT	AS1028	1138	adTdGgadAdTacdTdCuudGdGuudAdCausdGsa	0.15	0.29	0.72	0.018
\$1030 48 UtgoffedfutuucidatufgufadtcchaftgsAf \$1030 ind uctuufgoffuuffadtadtchusfds \$1030 0.00 0.00 0.01 \$1031 49 Atuoffuafafccafaffedfutuuccdfsu A51031 1141 Atuoffuafaffuaffuucffuuffadtusfds 0.00 0.03 0.05	6	S1029	47	AdTGdTAdACdCAdAGdAGdTAdTUdCCdAsU	AS1029	1139	dAUdGGdAAdTAdCUdCUdTGdGUdTAdCAdTsGsdA	0.1	0.27	0.61	0.018
\$1031 49 AtuGruafafccafafGrfubuuccAsvu AS1031 1141 AtUGFGAFAfubUtCHGUNGGRS 0.06 0.05 0.15 \$1032 50 AfsuGruafafccafafGrGruafuucCfasUf AS1032 1142 asUfgGFAfAfuAfcUfcuGGFUSGRS 0.09 0.34 \$1033 51 UfgGFAFATUUCTGAUGGUAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG	0	S1030	48	UfgGfGfAfuuuCfAfUfgUfaAfcCfaAfgsAf	AS1030	1140	uCfuUfgGfuUfaCfaugAfAfAfuccCfasUfsc	0.04	0.21	0.64	0.0187
\$1032 50 AfsuGtudfaCtcAfdfGfGVuAfuucCfasUf A51032 1142 asUfgGfAfdVuAcTcUcuuGfQUfsuacCfasAfgAf A51033 1143 uCfuUfgGfUfUfacaUfgAfAfuCcTcSuVfs 0.09 0.04 0.05 \$1033 5.1 UfgGfgAfuUfuCfaUfgCHAfaCfaAfgAf A51034 1143 uCfuUfgGTUHGCABAfGGGUAFUCCTCSuVfs 0.06 0.01 0.05 \$1034 5.2 AfuGFGAFAUUCTCAUFgUFAAFCFAAfgAF A51035 1143 uCfuUfgGTUHGCABAfAGGAFAGGAGGUAFUCTCAAfgAF 0.01 0.01 0.05 0.01 \$1035 5.3 UfgGFGAFUUTCAFUTGUFAAFCCFAAFgAF A51035 1143 uCfuUfgGTUHACTGAUFGAFACCFAAFGAFA 0.06 0.01 0.06 0.01 \$1037 5.5 UfgGFGAFUUTCAFAUTGUFAAFCCFAAFGAFA A51039 1143 uCftUTGGTUHACTGAUGAFAUCCFAAFGAFA 0.06 0.03 0.04 0.05 0.03 0.04 0.05 </td <td>1</td> <td>51031</td> <td>49</td> <td>AfuGfuAfAfccAfAfGfAfGfuAfuuccAfsu</td> <td>AS1031</td> <td>1141</td> <td>AfUfGfGfAfAfuAfCfUfCfUfuGfGfuuAfcAfusGfsa</td> <td>90.0</td> <td>0.15</td> <td>0.62</td> <td>0.019</td>	1	51031	49	AfuGfuAfAfccAfAfGfAfGfuAfuuccAfsu	AS1031	1141	AfUfGfGfAfAfuAfCfUfCfUfuGfGfuuAfcAfusGfsa	90.0	0.15	0.62	0.019
\$1033 \$1 UtgGfgAfuUfucfaUfGfUfaaccfaAfgsAf \$1033 \$143 ucfuUfgGfUfUfaceUfgCfasUfs \$0.06 \$0.26 \$0.26 \$1034 \$2 AfuGfuAfAccAfaGfaGfuAfuUfcCfasUf A51034 \$1143 aUfgGfaAfuUfcGfuUAfcGfaSUfs \$0.11 0.39 \$1035 \$3 UfgGfgAfuUucCfAUfgUFaAfcCfaAfgsAf A51036 \$1445 ucfuUfgGfuUfaCfaugAfAfuCfcCfaSUfs \$0.06 0.11 0.39 \$1036 \$3 UfgGGFAfuUucCfAUfgUFaAfcCfaAfgsAf A51036 \$1445 ucfuUfgGfuUfaCfaUfgAfaCfaSUfs \$0.06 0.31 \$1037 \$3 UfgGGAfuUucCfAUfgUFAAfcCfAAfgSAf A51039 \$1440 ucfuUfgGfuUfaCfaUfgAfaAfuCfcSAffSAfG \$0.06 0.30 \$1038 \$5 UfGGgAfuUucCfAUfgUFAAfcCfAAfgGAGTuAfuuCfCaAfgGAGTuAfuuCfCaSUf A51039 \$1143 ucfuUfgGTAfaAfaCfcAAfgGAGTAAfaCfaSUfs \$0.09 0.30 \$1039 \$5 AfuGfuAfaCfCAAfGGAGTAAfGGAGTAAfuUccfaSUf A51039 \$1159 aUfGGGAAfuAfaCfcAAfgGAGTAA \$0.00 \$0.30 \$1040 \$5 AfuGfuAfaCfcAfAGGAGTAAfuAfaCfaAfgGAGTAAfuCfcSAfgAGTAAfaCfaAfaGAGTAAfaCfaAfgGAGTAAfuAfaCfaAfaGAGTAAfaGAGTAAfaGAGTAAfaGAGTAAfaGAG	7	S1032	20	AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AS1032	1142	asUfgGfAfAfuAfcUfcuuGfgUfsuAfcAfusGfsa	60'0	0.34	0.78	0.021
\$1034 \$2 AfuGtuAfAccafaGfaGfaudtuUfccfasUf AS1034 \$144 aUfgGfaAtuAfCUIGfGTuUGfGTuUGfATUGCfaAfgsAf \$1034 \$144 aUfgGfaAtuAfCUIGCfaugfAGfaUncfCfaugfAgfaUncfCcfasUfsc 0.04 0.16 \$1035 \$3 UfgGfGATUUCGAUfgUFAAfcCfaAfgsAf AS1036 \$1145 uCfuUfgGTUUFACFAUfgAAfACCfaSUfsc 0.04 0.16 \$1037 \$5 UfgGFGATUUCCAAUfgUFAAfcCfaAfgsAf AS1037 \$1146 uCfuUfgGTUUFACFAUGAAfACCFASUfsc 0.03 0.14 \$1038 \$5 UfgGFGATUUCCAAUfgUFAAfcCFAAfgsAf AS1038 \$1148 uCfUUfgGTUTACFAUGAAfACFASUfsc 0.03 0.14 \$1038 \$5 UfGGGATUUCCAAUfgUFAAFCCFAAFGSAGTAATUUCCAAUGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	33	S1033	51	UfgGfgAfuUfuCfaUfGfUfaacCfaAfgsAf	AS1033	1143	uCfuUfgGfUfUfacaUfgAfaAfuCfcCfasUfsc	90'0	0.26	0.57	0.0212
\$1035 \$3 UfgGfgAfuuuCfAfUfgUfaAfcCfaAfgsAf AS1035 \$145 uCfuugGfuUfaCfaUfgAfAfucCfaSUfsc 0.04 0.10 \$1036 \$4 UfgGfGAfuUfuCfaUfgUfaAfcCfAfgsAf AS1036 \$146 uCfuugGfuUfaCfaUfgAfAfucCfaSUfsc 0.03 0.31 \$1037 \$5 UfgGGAffuUfuCfAfufgUfAacCfAfagsAf AS1037 \$147 uCfUUfgGfuUfaCfAfugAfAfaCfAfugAfAfucCfCfasUfsc 0.03 0.14 \$1038 \$5 UfGGGAffuUfuCfAfugUfAacCfAfagsAf AS1038 \$148 uCfUfugGfuUfaCfAfugAfaaCfCfAfagAfauCfCfasUfsc 0.03 0.14 \$1039 \$5 AfuGfuAfaCfCAfAfGFaGfuAfuuCfasUf AS1039 \$149 uCfUfugGfuAfaCfAfugAfaacfCfasUffuaCfasUff 0.03 0.13 \$1040 \$5 AfuGfuAfaCfCAfAfGFaGfuAfuuCfasUf AS1040 \$150 uCfUfgGfAfAfuAfcUfcuGfgUafafafuAfusCfCfasUff 0.03 0.13 \$1041 \$6 UfgGfgAfafuAfucfcafafgaGfuAfuuCfasUf AS1042 \$152 uCfUUfgGfaAfuAfuCfCfasUffsUffaCfasUff 0.03 0.15 \$1042 \$6 UfgGfgAfafuAfafcCfasUff AS1042 \$153 aUfgGfaAfuAfcCfasUffsUffaCfasUffsUffaCfasUff 0.05 <td>74</td> <td>S1034</td> <td>52</td> <td>AfuGfuAfAfccAfaGfaGfuAfuUfcCfasUf</td> <td>AS1034</td> <td>1144</td> <td>aUfgGfaAfuAfcUfcUfuGfGfuuAfcAfusGfsa</td> <td>0.11</td> <td>0.39</td> <td>0.82</td> <td>0.0216</td>	74	S1034	52	AfuGfuAfAfccAfaGfaGfuAfuUfcCfasUf	AS1034	1144	aUfgGfaAfuAfcUfcUfuGfGfuuAfcAfusGfsa	0.11	0.39	0.82	0.0216
\$1036 \$4 UfgGfGAfuUfuCfaUfgUfaAfcCfaAfgsAf AS1036 \$146 uCfuugGfuUfaCfaufgAfaCcfaSfSC 0.06 0.31 \$1038 \$5 UfgGGGAfuUfuCfAfUfgUfaAfcCfaAfgsAf AS1037 \$147 uCfuUfgGfuUfaCfaugAfaCcfaSfSC 0.09 0.39 \$1038 \$6 UfGfggAfUfuuCfAfUfgUfaAfcCfAfagsAf AS1038 \$148 uCfUfugGfUfuaCfAfugAfaCcfaSfSAfauCfCfasUfsCfasUfaCfargaffaCfafuaCfuuCfAfugUfAfacCfAfagaGfuAfuuCfaSUf 0.09 0.39 \$1039 \$5 AfuGfuAfaCfAfaGfaGfuAfuuCfaSUf AS1040 \$150 aUfGGFAfuuGfUfaCfaSGSA 0.03 0.13 \$1040 \$5 AfuGfuAfaCfafaGfuAfuuCfaSUf AS1041 \$15 aUfGGFAfuuGfgUfAfaCfaSGSA 0.03 0.13 \$1041 \$9 AfuGfuAfaCfafaGfuAfuuCfaSUf AS1042 \$15 aUfGGFAfAfuAfcUfcuGfgUfAfaCfaSGSA 0.05 0.05 \$1043 \$0 UfGGFAAfuuCfAfaGfaGfuaUffCcasUf AS1042 \$15 aUfGGFAAfuAfcUfcuGfgUfAfafaCfaSGSA 0.05 0.05 \$1044 \$0 UfGGFAAfaGfaGfauUffCcasUf AS1042 \$15 aUfGGFAAfuAfCffuuGfgUfAfafafaGfauUffCfasSGSA 0.05 0.05 <td>ν̈́</td> <td>S1035</td> <td>53</td> <td>UfgGfgAfuuuCfAfUfgUfaAfcCfaAfgsAf</td> <td>AS1035</td> <td>1145</td> <td>uCfuUfgGfuUfaCfaugAfAfAfuCfcCfasUfsc</td> <td>0.04</td> <td>0.16</td> <td>0.56</td> <td>0.0222</td>	ν̈́	S1035	53	UfgGfgAfuuuCfAfUfgUfaAfcCfaAfgsAf	AS1035	1145	uCfuUfgGfuUfaCfaugAfAfAfuCfcCfasUfsc	0.04	0.16	0.56	0.0222
\$1037 55 UfgGfGAfuuCfAfugUfAAfcCfaAfgsAf AS1037 147 uCfUuUfgGfuUTaCfaugAfaAfucCfasUfsc 0.03 0.14 \$1038 56 UfGfggAfUfuuCfAfugUfAacCfAfagsAf AS1038 1148 uCfUfugGfUfuaCfAugAfauCfCfasUfsc 0.09 0.39 \$1039 57 AfuGfuAfaCfAfAfGfaGfuAfuuCfasUf AS1039 1149 aUfGGFAAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.03 0.14 \$1040 58 AfuGfuAfaCfCAfAfGfaGfuAfuuCfasUf AS1040 1150 aUfGGFAAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.03 0.13 \$1041 59 AfuGfuAfaCfCAfAfGfaGfuaUfcfasUf AS1041 1151 avfgGfAAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.06 0.27 \$1042 60 UfgGfgAfuuuCfAfUfgUfAfAcfafgaGfuaUfcfasUf AS1042 1152 uCfuUfgGfuaCfafAfAfafaffaCfasUfacfafagfaafuuCffasUfgUfAfafafaffaaffaffaaffaaffaffaaffaaffaaf	و	S1036	54	UfgGfGfAfuUfuCfaUfgUfaAfcCfAfAfgsAf	AS1036	1146	uCfuugGfuUfaCfaUfgAfaAfuccCfasUfsc	90.0	0.31	0.78	0.0234
\$1038 56 UfGfggAfUfuucfAtugUfAtacCfAfagsAf AS1038 148 uCfUfugGfUfuacfAtugAfacTacTacTacTacTacTacTacTacTacTacTacTacTa	7	S1037	55	UfgGfGfAfuUfuCfAfUfgUfaAfcCfaAfgsAf	AS1037	1147	uCfuUfgGfuUfaCfaugAfaAfuccCfasUfsc	0.03	0.14	0.62	0.0235
\$1039 57 AfuGfuafacfcafafGfauAfuuccfasUf AS1039 1149 aUfgGfafAfuafcUfcuuGfgUfuafcAfusGfsa 0.03 0.14 \$1040 58 AfuGfuafacfcafafGfaGfuafuUfccasUf AS1040 1150 aUfGGGaAfuafcUfcuuGfgUfuafcAfusGfsa 0.03 0.13 \$1041 59 AfsuGfuafacfcafafGfaGfuaUcfcasUf AS1042 1151 avUfgGfaUuGfaUfuAfcAfusGfsa 0.05 0.27 \$1042 60 UfgGfgAfuuuCfaUfgUfafAfcCfaAfgsAf AS1042 1153 aUfgGfaUuGfaUfAfcUfcCfaSUfs 0.05 0.05 0.16 \$1043 61 AfuGfuafaCfcAfafGfaGfuaUfCfasUf AS1043 1153 aUfgGfaAfuUfcGfaUfafcAfusGfsa 0.05 0.16 0.05 0.16 \$1044 62 AfuGfuafaCfcAfafGfaGfuaUfcfcasUf AS1043 1154 aUfgGfaAfuUfcfaUfgGfuuAfcAfuSGfsa 0.05 0.16 0.27 \$1046 64 AfuGfuafaCfcAfafGfaguAfuUfcfasUf AS1045 1156 aUfgGfaAfuAfcUfaUfaGfauaCfaUfgGfuuafcfaUfgGfuuaCfaUfgGfuuafcfaUfaGfauaCfaUfgGfuuafcfaUfgGfuuafcfaUfaGfauaCfaUfgGfuuafcfaUfgGfuuafcfaUfaGfauafcfaUfaGfauafuUfaCfaUfgCfaUfgCfaUfgCfaUfgGfuuafcfaUfgGfuuafcfaUfgGfuuafcfaUfgGfuuafcfaUfgGfuuafcfaUfgGfuuafcfaUfgGfuuafcfaUfgGfuuafcfaUfgGfuuafcfaUfg	8	81038	26	UfGfggAfUfuuCfAfugUfAfacCfAfagsAf	AS1038	1148	uCfUfugGfUfuaCfAfugAfAfauCfCfcasUfsc	60:0	0.39	0.78	0.0239
\$1040\$8AfuGfuAfaCfcAfAfGFaGfuAfuUfccasUfAS1040\$150auTGGFGAAfUAfCUGFGUAGTCAFAFGFAGGTAGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTAGTCAFAFGFAGGTAGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTCAFAFGFAGGTAGTAGTCAFAFGFAGGTAGTAGTCAFAFGFAGGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGT	6	S1039	57	AfuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AS1039	1149	aUfgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa	0.03	0.14	0.59	0.025
\$1041\$9AfsuGfudAfaCfcAf4fGfaGfudAfuucCfasUfAS1041\$1151asUfgGfAfudAfcUfcuuGfgUfudAfcAfuSGfsa0.060.27\$104260UfgGfgAfuuuCfAfUfgUfAfAfcCfaAfgsAfAS1042\$1152uCfuUfgGfuuaCfaugAfAfAfCfCfasUfsc0.050.050.27\$104361AfuGfuAfaCfcAfAfGfaGfuaUfCfasUfAS1043\$1153aUfgGfaAfUfAfcUfcuuGfgUfuAfcAfusGfsa0.060.30\$104462aUfguAfAfcCAfAfGfaGfauUfCfasUfAS1045\$1154aUfgGfaAfUaCffuuGfGfuuAfCfaUfsga0.050.30\$104563aUfgGfGfAfUfuCfaUfgUfAfAfCfasUfAS1046\$1156aUfgGfaAfUaCfaUfgCfasUfAS1046AS10460.060.03\$104763UfgGfGfAfuUfuCfaUfgUfAfAfcCfaAfgsAfAS1047\$1156uCfuUfgGfuuaCfaUfgAfaAfucCfasUfs0.080.080.44	0	S1040	28	AfuGfuAfaCfcAfAfGfaGfuAfuUfccasUf	AS1040	1150	aUfGfGfaAfuAfcUfcuuGfgUfuAfcAfusGfsa	0.03	0.13	95.0	0.025
\$104260UfgGfgAfuuuCfAfUfgUfAfAfcCfaAfgSAfAS10421152uCfuUfgGfuadCfaugGfduaCfaCfaSUfcauGfgUfuAfAfuCfasUfcauGfgaAfUfAfcUfuuGfgUfuAfcAfusGfsa0.050.27\$104361AfuGfuAfaCfcAfAfGfaGfuaUfcCfasUfAS10431153aUfgGfaAfUfAfuAfcUfcuuGfgUfuAfcAfusGfsa0.060.30\$104462aUfguAfAfccAfAfgaGfauUfcCasUfAS10451154aUfGfgaAfUfacUfcuuGfGuuAfcAfusGfsa0.050.29\$104664AfuGfuAfaCfAfAfGfaguAfuUfcCfasUfAS10471156aUfGfaAfuAfCfUruGfGuuGfAfuCfasGfsa0.030.15\$104765UfgGfGfAtUUfuCfaUfgVfAfAfcCfaAfgsAfAS10471157uCfuUfgGfuaCfaUfgAfaAfucCfaSUfsc0.080.44	1	S1041	59	AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AS1041	1151	asUfgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa	90.0	0.27	0.79	0.0252
\$104361AfuGfudAaCfcAfAfGFaGfuaUUfcCfasUfAS1043\$1153aUfgGFAAFUFACUfcuuGfgUfuAfcAfusGfsa0.020.16\$104462AfsuGfudAfaCfcAfAfGFaGfuAfuucCfasUfAS10441154asUfgGFAAFUAfCTUCfuuGfgTuAfcAfusGfsa0.060.30\$104563aUfguAfAfccAfAfGFaGfauUfCcasUfAS10451156aUfgGFAAFUAfCTUAGFGUAFGFaGSA0.030.12\$104664AfuGFuAfaGFaGraUfuCfaUfgUfAfAfcCfaAfgsAfAS1047	2	S1042	09	UfgGfgAfuuuCfAfUfgUfAfAfcCfaAfgsAf	AS1042	1152	uCfuUfgGfuuaCfaugAfAfAfuCfcCfasUfsc	0.05	0.27	0.67	0.0259
\$104462AfsuGfuAfaCfcAf4fGfaGfuAfuucCfasUfAS10441154asUfgGfAffuAfcUfcuuGfgsUfsuAfcAfusGfsa0.060.30\$104563aUfguAfAfccAfAfgaGfGauUfCfcasUfAS10451155aUfgGfaAfuAfcfluuGfGuuAfcAfusGfsa0.120.29\$104664AfuGfuAfaCfaAfGfaguAfuUfcCfaSUfAS10461156aUfgGfaAfuAfcHaAfcAfusGfsa0.030.15\$104765UfgGfGfAfuUfuCfaUfgUfAfAfcCfaAfgsAfAS10471157uCfuUfgGfuuaCfaUfgAfaAfucCfasUfsc0.080.04	3	S1043	61	AfuGfuAfaCfcAfAfGfaGfuauUfcCfasUf	AS1043	1153	aUfgGfaAfUfAfcUfcuuGfgUfuAfcAfusGfsa	0.02	0.16	0.63	0.027
\$104563aUfgudAfAfccAfAfgaGfGauUfCfcasUfAS10451155aUfGfgaAfUfacUfCfuuGfGuuAfCfauGfSgaa0.120.29\$104764AfuGfuAfaCfcAfAfGfaguAfuUfcCfaSUfAS10461156aUfgGfaAfuAfCfUfcuuGfgUfaAfcAfuSGfsa0.030.15\$104765UfgGfGfAfuUfuCfaUfgUfAfAfcCfaAfgsAfAS10471157uCfuUfgGfuuaCfaUfgAfaAfuccCfaSUfsc0.080.04	4	S1044	62	AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf	AS1044	1154	asUfgGfAfAfuAfcUfcuuGfgsUfsuAfcAfusGfsa	90:0	0:30	0.81	0.0271
\$104664AfuGfudfudfudfudfudfudfudfudfudfudfudfudfudf	2	S1045	63	aUfguAfAfccAfAfgaGfGfauUfCfcasUf	AS1045	1155	aUfGfgaAfUfacUfCfuuGfGfuuAfCfaUfsgsa	0.12	0.29	8.0	0.028
S1047 65 UfgGfGfAfuUfuCfaUfgUfAfAfcCfaAfgsAf AS1047 1157 uCfuUfgGfuuaCfaUfgAfaAfuccCfasUfsc 0.08 0.44	9	S1046	64	AfuGfuAfaCfcAfAfGfaguAfuUfcCfasUf	AS1046	1156	aUfgGfaAfuAfCfUfcuuGfgUfuAfcAfusGfsa	0.03	0.15	0.59	0:030
	.7	S1047	65	UfgGfGfAfuUfuCfaUfgUfAfAfcCfaAfgsAf	AS1047	1157	uCfuUfgGfuuaCfaUfgAfaAfuccCfasUfsc	0.08	0.44	0.83	0.0324

0.67	0.73	0.29 0.78 0.0372 0.41 0.86 0.040	0.22 0.72 0.042	0.31 0.69 0.044	0.45 0.75 0.047		0.26 0.7 0.049	0.7	0.7	0.7 0.65 0.62 0.86	0.7 0.65 0.62 0.86	0.7 0.65 0.62 0.86 0.7	0.77 0.65 0.62 0.86 0.7 0.77	0.77 0.65 0.62 0.86 0.7 0.66	0.77 0.65 0.62 0.86 0.77 0.77 0.65	0.77 0.65 0.62 0.86 0.77 0.65 0.83	0.77 0.65 0.62 0.86 0.77 0.65 0.82 0.83	0.77 0.65 0.62 0.86 0.77 0.65 0.82 0.83 0.72	0.77 0.65 0.62 0.86 0.77 0.77 0.65 0.83 0.83	0.7 0.65 0.62 0.86 0.77 0.65 0.83 0.72 0.72 0.72	0.7 0.65 0.62 0.86 0.7 0.77 0.65 0.83 0.72 0.72 0.64 0.64	0.7 0.65 0.65 0.86 0.77 0.65 0.83 0.72 0.72 0.72 0.72 0.64 0.64	0.77 0.65 0.65 0.86 0.77 0.65 0.83 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.73	0.77 0.65 0.65 0.77 0.77 0.72 0.64 0.64 0.64 0.64 0.64 0.64 0.63 0.63	0.77 0.65 0.65 0.77 0.77 0.72 0.83 0.72 0.64 0.64 0.73 0.72 0.63 0.63 0.83 0.83
\dashv	80.0		0.1 0.3	0.09	0.1 0.	0.12 0.3		0.08 0.3			 	 													
	AfusGfsa	uCtuugGtuUtaCtaUtgAtAtAtuCtCCtasUtsc aUfgGfaAfudAcdTcdTudGgdTuAfcAfusgsa C	a UfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	dAUdGGdAAfuAfcUfuGfGfUfuAfCfAfusGfsa	adTdGGfaAfudAdCUfcUfuGfgUfuAfcAfusGfsa C	dAUdGGdAadTAfcUfcUfuGfgUfuAfcAfusGfsa		aUgGaAuAcUcUuGgUuAcAusGsa	AfCfAfusGfsa																
1159 Aft	_	1160 uCt 1161 aUt				1165 dAl		1166 aU _{																	
	_	AS1050 1 AS1051 1	AS1052 1	AS1053 1	AS1054 1	AS1055 ₁		AS1056 1	_				- 	- 	- 	- 	 	- 	- 	- 					-
	scAfsu	ıtgsAt If	dAsu	ns	dAsUf								1 1 1 1 1 1	1 1 1 1 1 1 1											
	AfuGfuAfAfccAfAfGfAfGfuAfuuc HeGfeAfiiiiCfaHeHaAfcCfAf2	UtgGtgAtuuuCtaUtgUtaAtcCtAtAtgsAt AfuGfuAfaccaagaguAfuUfcCfasUf	AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu	AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu	A fu G fu A fa C fc A fa G fa d G d T A fu U fc d C d A fa G fa d G d T A fu U fc d C d A fa G fa d G d A fa G fa d G d A fa	AfuguAfaccAfaGfaGfdTAdTUdCcdAsu		AuGuAaCcAaGaGuAuUcCasU	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf	AuguAaccAagaguAuUccasU AfuguAfaccAfagaGfuauUfccasUf AfuGfuAfaccaagaguAfuUfcCfasUf	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuGfuAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuGfuAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdccdAdAgagdTadTudCcasdT	AuGudaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuGuAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAdgagdTadTudCcasdT AfuGfuAfaCfcAfaGfdAdGuAfuUfcdCasdT	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuGuAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAdAgagdTadTudCcasdT AfuGhAfaCfcAfaGfdAdGuAfuUfcdCdAsUf	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuGuAfaccaagaguAfuUfccfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAdgagdTadTudCcasdT AfuGfuAfaCfcAfaGfdAdGuAfuUfcdCdAsU AfuguAfaccAfaGfdAdGadTadTudCcdAsu adTdGuaAfaCccAfaGfdAdGadAdTudCcdAsu adTdGuaAfaCcdAdGagdTdAuudCcdAsu	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTudCcdAsu AdTgudAdAccdAdAgagdTadTudCcdAsu AfuguAfacCAfaGfdAGfdTAdTudCcdAsu AfuguAfaccAfaGfdAGfdTAdTudCcdAsu AfuguAfacCAfaGfdAGfdTAdTudCcdAsu AfuguAfacCAfaGfdAGfdTAdTudCcdAsu AfuGuAfaCcAfaGfaGfdTAdTudCcCAsu	AuGuAaCcAaGaCuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAdAgagdTadTudCcdAsu AfuguAfacCfcAfaGfdAdGuAfuUfcdCdAs adTdGuadAdCccdAdGagdTdAuUfcdCdAs AfuguAfacCfcAfaGfaGfdTdAuUfcdCdSas AfuguAfacCfcAfaGfaGfdTdAuUfcdCdSas AfuguAfacCAfaGfaGfdTdAuUfcdCdAs	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAdAgagdTadTudCcdAsu AfuguAfacCfcAfaGfdAdGuAfuUfcdCdAss AfuguAfacCfcAfaGfdAGfdTAdTudCcdAsu adTdGuadAdCccdAdGagdTdAuUfcdCdasu AfuguAfacCfcAfaGfaGfdTdAuUfcdCdasu AfuguAfacCfcAfaGfaGfdTAdTudCcdAsu AfuGfuAfaCfcAfaGfaGfdTAdTudCcdAsu	AuguAaCcAaGaGuAuUcCasU AfuguAfaccAfagaGfuauUfccasUf AfuguAfaccafagaGfuauUfccasUf AfuguAfaccafaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAAGgagdTadTudCcdAsu AfuguAfacCfAfaGfdAdGuAfuUfcdCdAsu adTdGuaAfaCfcAfaGfdAdGuAfuUfcdCdAsu adTdGuaAfaCfcAfaGfdAGfdTAdTudCcdAsu AfuguAfacCfcAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAaGaGuAuUfccasUf AfuguAfaccaagaguAfuuUfccfasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAdAgagdTadTudCcdAsUf AfuguAfacfcAfaGfdAdGuAfuUfcdCdAsUf AfuguAfacCAfaGfdAdGagdTdAuudCcdAsu AfuguAfacCfcAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCfcAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfaccAfaGfaGfdTAdTUdCcdAsu AfuguAfaccAfaGfaGfdTAdTUdCcdAsu	AuguAfaccAaGaGuAuUcCasU AfuguAfaccAaGaGuAuUfccasUf AfuguAfaccaagaguAfuUfccfasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTudCcdAsu adTgudAdaccdAaGfdAdGuAfuUfcdCdAsUf AfuguAfacCfcAfaGfdAGfdTAdTudCcdAsu adTdGuadAdCccdAGGaGfdTAdTudCcdAsu AfuguAfacCfcAfaGfaGfdTAdTudCcdAsu AfuguAfacCfcAfaGfaGfdTAdTudCcdAsu AfuguAfacCfCAfaGfaGfdTAdTudCcdAsu AfuguAfacCfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAagaGfuauUfccasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu adTgudAdAccdAdAgagdTadTudCcdAsU AfuguAfacCAfaGfdAGfdTAdTudCcdAsu adTdGuadAdCccdAdGagdTdAuUfcdCdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfagfaTAdTudCcdAsu AfuguAfacCAfaGfagfaTAdTudCcdAsu	AuGuAaCcAaGaGuAuUcCasU AfuguAfaccAaGaGuauUfccasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccaagaguAfuUfcCfasUf AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu AduguAfacCAfaGfdAGfdTAdTudCcdAsu AduguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfaTAdTUdCcdAsu AfuguAfacCAfaGfaGfdTAdTUdCcdAsu AfuguAfacCAfaGfaGfaTAdTUdCcdAsu AfuguAfacCAfaGfaGfaTAdTUdCcdAsu AfuguAfacCAfaGfaGfaGfaTAdTUdCcdAsu AfuguAfacCAfaGfaGfagUfAfuuCfCfasu AfuGfuAfaCfCfAfaGfaguAfuUfcCfasUf	AuguafaccaagaguafuuUccasUf AfuguafaccafagaGfuauUfccasUf AfuguafaccaagaguafuuUfccasUf AfuguafaccafagaGfuauUfccasUf AfuguafaccafaGfdAGfdTAdTUdCcdAsu adTgudAdaccdAdAgagdTadTudCcdAsa AfuguafaccAfaGfdAGfdTAdTudCcdAsa adTdGuadAdCccdAdGagdTdAuUfcdCdAs AfuguafaccAfaGfaGfdTAdTudCcdAsu AfuguAfacCAfaGfaGfaGfdTAdTudCcfasUf AfuGfuAfaCfCAfaGfaGfaGuAfuUfcCfasUf UfgGfgAfuuuCfaUfgUfaAfcCfaAfgsAf	AuguafaccaagaguafuuCcasU AfuguafaccafagaGfuauUfccasUf AfuguafaccaagaguafuUfcCfasUf AfuguafaccafaGfdAGfdTAdTUdCcdAsu adTgudAdaCcdAdAgagdTadTudCcaAsUf AfuguafacCafaGfdAGfdTAdTudCcdAsU AfuguafacCafaGfaGfdTAdTudCcdAsu AfuguafacCafaGfaGfdTAdTudCcdAsu AfuguafacCafaGfaGfdTAdTUdCcdAsu AfuguafacCafaGfaGfdTAdTUdCcdAsu AfuguafacCafaGfaGfdTAdTUdCcdAsu AfuguafacCafaGfaGfdTAdTUdCcdAsu AfuguafacCafaGfaGfdTAdTUdCcdAsu AfuguafacCafaGfaGfdTAdTUdCcdAsu AfuguafacCafaGfaGfdTAdTUdCcdAsu AfuguafacCfAfaGfagUfafuuCfCfasUf UfGGfgAfuuuCfaUfgUfaAfcCfasUf AfuGfuAfaCfcAfaGfaGfuauUfcCfasUf AfuGfuAfaCfcAfaGfaGfuauUfcCfasUf
		68 UtgGtBAtuuuCtaUtgUtaAtcCtAtA 69 AfuGfuAfaccaagaguAfuUfcCfasU			AfuGfuAfaCfcAfaGfadGdTAfuUfcdC	73 AfuguAfaccAfaGfaGfdTAdTUdCcdAsu		74 AuGuAaCcAaGaGuAuUcCasU																	
90	S1049 67 AfuGfuAfAfccAfAfGfuAfuuccAfsu	89			AfuGfuAfaCfcAfaGfadGdTAfuUfcdC			/+	75	75	75 76 77	75 76 77 78 78	75 76 77 78 79 79	75 76 77 78 78 79 80	75 76 77 78 79 80 81	75 76 77 78 79 80 81 81	75 76 77 77 79 80 81 82 83	75 76 77 77 79 80 81 82 83	75 76 77 77 79 80 81 82 83 83 84	75 76 77 77 79 80 81 82 83 84 85 86	75 76 77 77 79 80 81 82 83 83 84 85 85 86	75 76 77 77 79 80 81 82 83 84 85 86 88	74 75 76 77 78 80 81 83 83 84 85 86 88 88 88	75 76 77 77 79 88 88 88 88 88 89 89 89	75 76 77 77 78 88 83 88 88 88 89 89 90

D1070 \$1070 \$1070 \$1070 \$1180 dutgeladadaTRethelusefisha \$1017 D1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1077 \$1070	D1075	S1075	93	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1075	1185	aUfgGfdAdAdTdAcUfcUfuGfgUfuAfcAfusGfsa	0.1	0.41	0.72	0.088
95 AtuGrudaGredaGindfuuticClasur AS1077 1,87 AtuGedaAadTACUFCHUGIGUTAGAUSGSa 96 AtuGrudaGredaGindfuuticClasur AS1078 1,188 Adv0GGdAadTACUFCHUGIGUTAGAUSGSa 97 AfugudaccAfaGindfuuticClasur AS1079 1,189 Adv0GGdAadTACUFULGIGUTAGAUSGSa 98 AfuGudaCcAfaGindfuutiCclasur AS1080 1,190 aUTGGIAAGUCCUTGIGUTAGAUSGSa 100 AfuGudaCcAfaGindfuutiCclasur AS1081 1,191 aATUGGIAAGUCCUTGIGUTAGAUSGSa 101 AfuGudaCcAfaGinGAGUTCCLASUR AS1081 1,193 aUTGGIAACTCCTGGUTAGAUGCGSA 102 AfuGudaCCAfaGinGAGUTCCASUR AS1081 1,193 aUTGGIAACTCCTGGUTAGAUGCGSA 103 AfuGUAACCCAFAGINGAGUTCCASUR AS1084 1,193 aUTGGIAAACTCCTGGUTAGUTCCASUR 104 AfuGUAACCCAFAGINGAGUTCCASUR AS1085 1,195 aUTGGIAAACTCCTGGUTAGUTCCASUR 105 AfuGUAACCCAFAGINGAGUTCCASUR AS1086 1,195 aUTGGIAAACTCCTGGUTAGAUCCASUR 106 AfuGUAACCCAFAGINGAGUTCCTASUR AS1086 1,197 AUTGGIAAACCCTCTGGUTAGATCCAGAGAGAGAGATAGAUTCCTAGAGAGAGAGATAGAUTCCTAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG		S1076	94	AfuGfuAfaCfcAfaGfaGfudAdTdTdCCfasUf	AS1076	1186	aUfgdGdAdAdTAfcUfcUfuGfgUfuAfcAfusGfsa	0.15	0.45	98.0	0.088
\$1078 g. Afuefuafactedasfiaefuafuuticctasuf AS1078 1188 dAudGedaardTafcuticutifusfigutaatedussisa \$1079 97 Afueguafacedasfiaefiafadfuuticctasuf AS1079 1189 AdudGedaadTafcutifutifusfigutaatedussisa \$1080 98 AfuefudAfactedasfiaefiadfuduticctasuf AS1080 1190 adugGedaadTafcutifutifusfigutaatedussisa \$1081 99 AfuefudAfactedasfiaefudutificctasuf AS1081 1191 adufGedaadtuafctfutificifigutaatedussisa \$1082 100 AfuefudAfactedasfiaefudutificctasuf AS1082 1192 autgGafaAfudactutificifigutaatedussisa \$1082 100 AfuefudAfactedasfiaefuduutificctasuf AS1082 1195 autgGafaAfudactutificifigutaatedussisa \$1083 103 AfuefudAfactedasfiaefuduutificctasuf AS1082 1195 autgGafaAfudatutificutifigutaatedussisa \$1084 105 AfuefudAfactedasfiaefuduutificctasuf AS1082 1195 autgGfaAfudatutificutifigutaatedussisa \$1088 106 AfuefudAfactedasfiaefuduutificctasuf AS1082 1195 autgGfaAfudatutificifigutuatedussisa \$1089 107 Afuefud		S1077	95	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasu	AS1077	1187	AfUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	0.08	0.46	0.95	0.092
\$1079 97 AfriguAfaccAfaGiAGITadTudCcdAsu AS1079 1189 dAudGgdAadTAGUUCUGUUGGUUAACAGUGGAAU \$1080 98 AfuGUAfaCCAfaGIAGEAGUUCCGASUT AS1080 1190 aUgGGAATUACUTUGGUUACAGUGGAAU \$1081 99 AfuGUAfaCCAfaGIAGEAGUUCCGASUT AS1081 1191 AdTGGAGAATUACUTUGGUUACAGUGGAAU \$1082 100 AfuGUAfaCCAfaGIAGUUTCCASUT AS1082 1192 aUGGGAATUACCUTUGGGUUATCAAUGGAA \$1082 100 AfuGUAFACCAFAGIAGUUCCASUT AS1082 1193 adTGGAATUACCUTUGGGUUATCAAUGGAA \$1083 101 AfuGUAFACCAFAGIAGUUCCASUT AS1082 1194 adTGGAATUACUTCUTUGGUUACAGUGGAAUGGAAUGGAAUG		S1078	96	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1078	1188	dAUdGGdAadTAfcUfcUfuGfgUfuAfcAfusGfsa	60.0	0.32	0.76	0.093
\$1080 98 AfuGfuAfaCrCafaGARGfuAfuucCfasUf A51080 1100 aUgGGAAfuAfuCfuUcGUFUGGGAASGT A51081 1101 aUgGGAAfuAfuCfuUcGUFUGGGAASGT A51081 1101 aUfGGGAAfuAfuCfuUcUFUGGGAASGT A51082 1102 aUfGGGAAfuAfuCfuUcUFUGGGAASGT A51082 1102 aUfGGGAAfuAfuCfuUcUFUGGGUAAGGGGGUAAGGGGGGAAGGGGGAAGGGGAAGGGAAGGGAAGGGGAAGGGG		81079	97	AfuguAfaccAfaGfaGfdTadTudCcdAsu	AS1079	1189	dAudGgdAadTAfcUfcUfuGfgUfuAfcAfusGfsa	0.14	0.38	0.76	0.095
S1081 gg Afuorinafacrcafaofaofuafuu/lecdacadsard AS1082 1191 Adardedaofaafuafeutfuoringutfuor		21080	86	AfuGfuAfaCfcAfaGfAfGfuAfuucCfasUf	AS1080	1190	aUfgGfAfAfuAfcucUfuGfgUfuAfcAfusGfsa	0.05	0.42	98.0	660.0
\$1082 quoçinate agaguaturut contrastit AS1082 1192 autrofradactud Chud Cofund Technosar \$1083 101 Atuofund Facted Facturut Contrastit AS1083 1193 addoctad Atua Chud Cofund Technosar \$1084 102 Atuofund Facted Facturut Contrastit AS1084 1194 addoctad Atua Chud Cofund Technosar \$1086 102 Atuofund Facted Facted Facturut UtcCrasult AS1084 1194 addoctad Facted Technosity Contrastit \$1086 102 Atuofund Facted Fact		S1081	66	AfuGfuAfaCfcAfaGfaGfuAfuUfdCdCdAsdT	AS1081	1191	dAdTdGdGaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	0.17	0.47	6.0	0.105
\$1083 Introductaefacterafacteraforactive freezoruf from the control of	-	S1082	100	AfuGfuAfaccaagaguAfuUfcCfasUf	AS1082	1192	${\tt aUfgGfaAfudACfudCUfudGGfudTAfcAfusgsa}$	0.12	0.44	0.83	0.106
\$1084 102 AfuefuadafcreafaefaefuauUrccfasuf AS1081 1194 aUfgefaaAfufaeteUrdefguudfectasuf AS1085 1195 aUfgefaaAfufaeteUrdefguudfectasuf AS1081 1195 aUfgefaaAfufaetufeUrdefguudfectasuf AS1081 1195 aUfgefaaAfufaetufeUrdefguudfectasuf AS1081 1195 aUfgefaaAfufaetufeUrdefguudfectasuf AS1081 1195 Afuefuadafceduafaeteafaefurfuufectasuf AS1081 1199 AfuefaaAfuecuffcuefguudrefaetaefaefurfuufectasuf AS1081 1199 AfuefaaAfuecuffcuefguudrefaetaefaefurfuufectasuf AS1081 AfuefaaAfuecuffcuefguudrefaeraefaefaefurfuufectasuf AS1081 1120 AfuefaaAfuecuffaefaefaefurfuufectasuf AS1081 1200 AfuefaaAfuecuffaefaefaefuefuufectasuf AS1081 1200 AfuefaaAfuecuffaefaefaefaefaefaefaefaefaefaefaefaefae		S1083	101	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1083	1193	adTdGGfaAfdTdAcUfcUfuGfgUfuAfcAfusGfsa	0.11	0.34	0.74	0.109
51086 103 AfusifurfacticafagedruauUrcfasuf AS1086 1195 autgedaafutfutfetfetusgesa 51086 104 autgudfatcafafgaefuafuutfccfasuf AS1086 1196 autgedaafuaftcutfetuugfguuaftcaltgesa 51087 105 Afusfuudfatcaffagefudfuutfccfasuf AS1087 1197 Afusfefaafuactutfutfetuugfguuaftcaltgesa 51088 106 Afusfuudfactcafagefudfuutfccfasuf AS1088 1198 autgefaafuactfutfutfetfuugfguuaftcafusgesa 51089 107 Afusfuudfactcafagefudfuutfccfasuf AS1088 1199 autgefaafuactfutfutfetfuugfguuaftcafusgesa 51090 108 Afusfuudfactcafagefudfuutfccfasuf AS1090 1200 autgefaafuaftutfetfuugfguuaftcafusgesa 51091 110 Afusfuudfactcafagefutfuutfccfasuf AS1091 1201 Afusfrafutfetutfatfuugfguuaftcafusgesa 51092 113 Afusfuudfactcafagefutfuufutfccfasuf AS1093 1203 aUtgefaafuacutfutfutfguuactfuusgesa 51092 113 Afusfuudfactcafagefutfutfuuccfasuf AS1093 1203 aUtgefaafuacutfutfutfguuactfuugfguuaftafuutfatfasgesa 51093 114 Afusfuudfactcafagefutfutf	D1084	S1084	102	AfuGfuAfAfCfcAfaGfaGfuauUfcCfasUf	AS1084	1194	aUfgGfaAfUfAfcUfcUfuGfguuAfcAfusGfsa	0.1	0.45	0.93	0.117
\$1086 104 autgadataccatatgaGruatuUtccfasuf AS1086 1196 autgGfaAfuaCtCfuuGfGruatuCtGasuf \$1087 105 AfuGfuAfaCtcAfaGfaGfuAfuUtccfasu AS1087 1197 AfuGfaAfuaCtCfuuGfgUtuAfcAfusGsa \$1088 106 AfuGfuAfaCtcAfaGfaGfuAfuUtcCfasuf AS1089 1198 aUtgGfaAfuaCtCHGfgUfuAfcAfusGsa \$1089 107 AfuGfuAfaCtcAfaGfaGfuAfuUtcCfasuf AS1089 1200 aUtgGfaAfuaCtCHGfgUfuAfcAfusGsa \$1090 108 AfuGfuAfaCfcAfaGfaGfuAfuUtcCfasuf AS1090 1200 aUtgGfaAfuAfcUfcUfuGfgUfuAfcAfusGsa \$1091 109 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasuf AS1091 1201 aUtgGfaAfuAfcUfcUfuGfgUfuAfcAfusGsa \$1091 110 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasuf AS1092 1202 AfufgGfaAfuAfcUfuGfgUfuAfcAfusGsa \$1091 112 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasuf AS1093 1203 aUtgGfaAfuAfcuCffuGfgUfuAfcAfusGfsa \$1099 113 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasuf AS1095 1205 aUtGGfaAfuAfcUfuGfgUfuAfcAfusGfsa \$1090 113 AfuGfuAfaCfcAfaGfAGfuAfuUfcfcasUf AS1096 1205 <td>D1085</td> <td>S1085</td> <td>103</td> <td>AfuGfUfAfaCfcAfaGfaGfuauUfcCfasUf</td> <td>AS1085</td> <td>1195</td> <td>a Ufg Gf a Af Uf Af c Uf u Gf g Uf u a c Af u s Gf s a</td> <td>0.07</td> <td>0.42</td> <td>0.78</td> <td>0.120</td>	D1085	S1085	103	AfuGfUfAfaCfcAfaGfaGfuauUfcCfasUf	AS1085	1195	a Ufg Gf a Af Uf Af c Uf u Gf g Uf u a c Af u s Gf s a	0.07	0.42	0.78	0.120
1008/100 AtuGruAfaCfcAfaGfaGfuUfAtuUfcCfasu AS1087 1197 AfulGfaAfuacUfcUfuGfguUfuAfcAfusGfa 51088 106 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1088 1198 aUfgGfaAfuaCUfcUfuGfgUfuAfcAfusGfsa 51089 107 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1080 1199 aUfgGfaAfuaCUfcUfuGfgUfuAfcAfusGfsa 51090 108 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1090 1200 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 51091 109 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1091 1201 aUfgGfaAfuAfcuCfGfuAfuAfcAfuSGfsa 51092 110 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1092 1202 AfuGfaAfuAfcuCffuAfuAfcAfuSGfsa 51093 111 aucfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1093 1203 aUfGGfaAfuAfcuCffuGfgUfuAfcAfuSGfsa 51094 112 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1094 1204 aUfGGfAAfuAfcuCffuGfgUfuAfcAfuSGfsa 51095 113 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1095 1205 aUfGGfAAfuAfcUfcUfuGfgUfuAfcAfuSGfsa 51098 115 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasuUf AS1095	D1086	21086	104	aUfguAfAfccAfAfgaGfuAfuUfcCfasUf	AS1086	1196	aUfgGfaAfuAfcUfCfuuGfGfuuAfCfaUfsgsa	0.17	0.45	0.83	0.1197
\$1088 106 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1088 1198 aufgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa \$1089 107 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1080 1199 aufgGfaAfuafcUfuGfgUfuAfcAfusGfsa \$1090 108 AfuGfuAfaCfcAfaGfaGfaGfuAfuUfcCfasUf AS1090 1200 aufgGfaAfuAfcUfuGfgUfuAfcAfusGfsa \$1091 109 AfuGfuAfaCfcAfaGfAGfaTAdTudCcdAsu AS1091 1201 aufgGfaAfuAfcUfcGfuAfuSGfsa \$1092 110 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasUf AS1092 1202 AUfgGfaAfuAfcUfcGfuAfuSGfsa \$1094 11 auGfuAfaCfcAfaGfAGfuAfuUfcCfasUf AS1093 1203 aufgGfaAfuacUfcUfuGfgUfuAfcAfuSGfsa \$1095 113 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasUf AS1093 1204 aufgGfAAfuacUfcUfuGfgUfuAfcAfuSGfsa \$1095 113 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1095 1205 aufgGfAAfuacUfcUfuGfgUfuAfcAfuSGfsa \$1095 115 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1096 1206 aufgGfAAfuAfcUfcUfuGfgUfuAfcAfuSGfsa \$1099 110 AfuGfaAfuAfcCfAfaGfaGfaGfuAfuUfcCfasUf AS1099 <td< td=""><td>D1087</td><td>S1087</td><td>105</td><td>AfuGfuAfaCfcAfaGfaGfUfAfuUfcCfasu</td><td>AS1087</td><td>1197</td><td>AfUfgGfaAfuacUfcUfuGfgUfuAfcAfusGfsa</td><td>0.05</td><td>0.3</td><td>0.7</td><td>0.120</td></td<>	D1087	S1087	105	AfuGfuAfaCfcAfaGfaGfUfAfuUfcCfasu	AS1087	1197	AfUfgGfaAfuacUfcUfuGfgUfuAfcAfusGfsa	0.05	0.3	0.7	0.120
107 AtuGfuAfaCfcAfaGfaGfuJfAfuUfcCfasUf AS1089 1199 aUfgGfaAfuacUfcUfuGfgUfuAfcAfusGfsa 108 AfuGfuAfaCfcAfaGfaGfuauUfcCfasUf AS1090 1200 aUfgGfaAfuAfcUfuGfgUfuAfcAfusGfsa 109 AfuGruAfaCfcAfaGfaGfdTadTudCcdAsu AS1091 1201 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 110 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasUf AS1093 1203 AfuGfaAfuAfcuCfGfuAfuAfcAfusGfsa 111 auGfuAfaCfcAfaGfAGfuAfuUfcCfasUf AS1093 1203 aUfgGfaAfuAfcuCfGfUAfcAfuSGfsa 112 AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasUf AS1094 1204 aUfGGfaAfuAfcuCfGfUAfcAfuSGfsa 113 AfuGfuAfaCfcAfaGfaGfUAfuucCfasUf AS1095 1205 aUfGGfaAfuAfcuCfGfUAfuSGfsa 114 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1096 1206 aUfGGfaAfuAfcUfuGfgUfuAfcAfusGfsa 116 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1097 1207 aUfGGfaAfuAfcUfuGfgUfuAfcAfusGfsa 116 AfuGfuAfacCfcAfaGfaGfuAfuUfcCfasUf AS1099 1209 aUfGGfaAfuAfcUfuGfgUfuAfcAfusGfsa 117 AfuGhuAfacCfcAfaGfaGfuAfuUfcCfasUf AS1099 1209 aUfGGfaAfuAfcUfuGfgUfuAfcAfusGfs	D1088	81088	106	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1088	1198	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusgsa	0.11	0.46	8.0	0.120
\$1090 AfuGfuAfaCfCAfaGfaGfaGfuauUfcCfasUf AS1090 1200 aUfgGfaAfUGfQCUGGFQUGGFAB \$1091 109 AfuguAfacCAfaGfaGfuAdUCcCdAsu AS1091 1201 aUfgGfaAfuAfcUfuGfgUfuAfcAfuSGfaB \$1092 110 AfuGuAfaCfCAfaGfAGfuAfuUfcCfasu AS1092 1202 AfufgGfaAfuAfcuCffuGfgUfuAfcAfuSGfaB \$1093 111 auGfuAfaCfCAfaGfAGfuAfuUfcCfasUf AS1093 1203 aUfgGfaAfuAfcuCffuGfgUfuAfcAfuSGfaB \$1094 112 AfuGfuAfaCfCAfaGfAGfuAfuUfcCfasUf AS1093 1203 aUfgGfaAfuAfcuCffuGfgUfuAfcAfuSGfaB \$1095 113 AfuGfuAfaCfCAfaGfAGfuAfuUfcCfasUf AS1095 1205 aUfgGfAAfuAfcUfuGfgUfuAfcAfuSGfaB \$1095 114 AfuGfuAfaCfCAfaGfaGfaGfuAfuUfcCfasUf AS1095 1205 aUfgGfAAfuAfcUfuGfgUfuAfcAfuSGfaB \$1098 116 AfuGfuAfaCfCAfaGfaGfaGfuAfuUfcCfasUf AS1096 1208 aUfGGfAaadfAfdCUfcUfuGfgUfuAfcAfuSGfsa \$1099 117 AfuGfuAfaCfCAfaGfaGfaGfuAfuUfcCfasUf AS1091 1209 aUfGGfAaAfuAfcUfcUfuGfgUfuAfcAfuSGfsa \$1009 118 AfuGfuAfaCfCAfaGfaGfaGfuAfuUfcCfasUf AS1091 1209	6	81089	107	AfuGfuAfaCfcAfaGfaGfUfAfuUfcCfasUf	AS1089	1199	aUfgGfaAfuacUfcUfuGfgUfuAfcAfusGfsa	0.14	0.49	0.85	0.122
\$1091 AtuguAfaccAfaGfaGfdTAdTudCcdAsu AS1091 1201 aUfgGfaAfuAfcUfGfUudfcUfGfSa \$1092 110 AfuGfuAfaCfCAfaGfAfGfuAfuUfcCfasu AS1092 1202 AfuGfaAfuAfcuClfuGfgUfuAfcAfuSGSa \$1093 111 auGfuAfaCfCAfaGfAfGfuAfuUfcCfasUf AS1093 1203 aUfgGfaAfuAfcuClfuGfgUfuAfcAfuSGSa \$1094 112 AfuGfuAfaCfCAfaGfAfGfuAfuUfcCfasUf AS1094 1204 aUfgGfaAfuAfcuClfuGfgUfuAfcAfuSGSa \$1095 113 AfuGfuAfaCfCAfaGfAfGfuAfuUfcCfasUf AS1095 1205 aUfgGfAAfuAfcuClfuGfgUfuAfcAfuSGSa \$1096 114 AfuGfuAfaCfCAfaGfaGfuAfuUfCcasUf AS1095 1206 aUfgGfAAfuAfcUfcUfuGfgUfuAfcAfuSGSa \$1098 116 AfuGfuAfaCfCAfaGfaGfuAfuUfccasUf AS1099 1209 aUfgGfAAfuAfcUfcUfuGfgUfuAfcAfuSGSa \$1099 117 AfuGfuAfaCfCAfaGfaGfuAfuUfcCfasUf AS1099 1209 aUfgGfAAfuAfcUfcUfuGfgUfuAfcAfuSGFa \$1098 116 AfuguAfaccAfaGfaGfuAfuUfcCfasUf AS1099 1209 aUfgGfAAfuAfcUfcUfuGfgUfuAfcAfuSGFa \$1100 118 AfuguAfaccAfaGfAGfaGfuAfuUfccasUf AS1100 1210 aU	0	81090	108	AfuGfuAfaCfcAfaGfaGfuauUfcCfasUf	AS1090	1200	aUfgGfaAfUfAfcUfcUfuGfgUfuAfcAfusGfsa	0.1	0.41	0.85	0.125
\$1092 AfuGfuAfaCfcAfaGfAfGfuAfuUfcCfasu AS1092 1202 AfUfgGfaAfuAfcuCfuGfgUAfuCfasuGfagfAfGfuAfuUfcCfasuGfagfagfuUfuCfasuGfagfagfuUfuCfasuGfagfagfuUfuCfasuGfagfagfuUfuCfasuGfagfagfuUfuCfasuGfagfagfuUfuCfasuGfagfagfuUfuCfasuGfagfagfagfagfagfagfagfagfagfagfagfagfagf	1	S1091	109	AfuguAfaccAfaGfaGfdTAdTudCcdAsu	AS1091	1201	a Ufg Gfa Afu Afc Ufc Ufu Gfg Ufu Afc Afus Gfs a	0.16	0.38	0.77	0.125
\$109311audfudfaCfcdfaGfdfudfuUfccfasUfA\$10931203aUfgGfaAfudfucCUUfuGfgUfudfcdfuSGfa\$1094112AfuGfudfaCfcdfaGfaGfUfdfuUfccasUfA\$10941204aUfGGfaAfuacUfcUfuGfgUfuAfcdfuSGfa\$1095113AfuGfudfaCfcAfaGfAGfuAfuUfcCfasUfA\$10951205aUfGGfaAfuacUfcUfuGfgUfuAfcAfusGfsa\$1096114AfuGfudfaCfcAfaGfaGfuAfuucCfasUfA\$10971206aUfGGfAfAfuacUfcUfuGfgUfuacAfusGfsa\$1098115AfuGfudfaCfcAfaGfaGfuAfuUfccasUfA\$10981209aUfGGfAfAfuAfcUfcUfuGfgUfuAfcAfusGfsa\$1099117AfuGfudfaCfcAfaGfaGfuAfuUfccfasUfA\$10991209aUfGGfaAfuAfcUfuGfgUfuAfcAfusGfsa\$1100118AfuguAfacCfcAfaGfaGfuAfuUfccfasUfA\$11001210aUfGGfaAfuAfcUfuGfgUfuAfcAfusGfsa\$1101119AfuGfuAfaCfAfaGfaGfuAfuUfccasUfA\$11011211aUfGGfaAfuAfcuCfuGfgUfuAfcAfusGfsa	2	S1092	110	AfuGfuAfaCfcAfaGfAfGfuAfuUfcCfasu		1202	AfUfgGfaAfuAfcucUfuGfgUfuAfcAfusGfsa	0.05	0.31	0.93	0.126
\$1094AfuGfuAfaCfcAfaGfaGfUfAfuUfcCasUfAS1094\$1204aUfGGfaAfuacUfuGfgUfuAfcAfusGfsa\$1095113AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasUfAS10951205aUfGGfaAfuAfcucUfuGfgUfuAfcAfusGfsa\$1096114AfuGfuAfaCfcAfaGfaGfuAfuucCfasUfAS10971207aUfGGfAAfuAfcUfuGfgUfuAfcAfusGfsa\$1097115AfuGfuAfaCfcAfaGfaGfuAfuUfccasUfAS10991209aUfGGfAauAfcUfuGfgUfuAfcAfusGfsa\$1098117AfuGfuAfaCfcAfaGfaGfuAfuUfccfasUfAS10991209dAUdGGdAadTAfdCUfuGfgUfuAfcAfusGfsa\$1100118AfuguAfacCfcAfaGfaGfuAfuUfccfasUfAS11001210aUfGGfaAfuAfcUfuGfgUfuAfcAfusGfsa\$1101118AfuGuAfaCfcAfaGfaGfuAfuUfccasUfAS11011210aUfGGfaAfuAfcuCfuGfgUfuAfcAfusGfsa\$1101119AfuGfuAfaCfcAfaGfaGfuAfuUfccasUfAS11011211aUfGGfaAfuAfcuCfuGfgUfuAfcAfusGfsa	3	S1093	111	auGfuAfaCfcAfaGfAfGfuAfuUfcCfasUf	AS1093	1203	aUfgGfaAfuAfcucUfuGfgUfuAfcAfUfsGfsa	90'0	0.33	6.0	0.135
\$1095113AfuGfuAfaCfcAfaGfAGfuAfuUfcCfasUfAS10951205aUfgGfAAfuacucUfuGfgUfuAfcuLuGfsa\$1096114AfuGfuAfaCfcAfaGfaGfUfAfuucCfasUfAS10961206aUfgGfAfAfuacUfcUfuGfgUfuAfcAfusGfsa\$1097115AfuGfuAfaCfcAfaGfaGfuAfuucCfasUfAS10971207aUfgGfAfAfuAfcUfcUfuGfgUfuacAfusGfsa\$1098116AfuGfuAfaCfcAfaGfaGfuAfUfCcfasUfAS10981208aUfGGAAadTAfdCUfcUfuGfgUfuAfcAfusGfsa\$1009117AfuGuAfacCfcAfaGfaGfuAfuUfcCfasUfAS11001210aUfGGAAATAfdCUfuGfgUfuAfcAfusGfsa\$1100118AfuGuAfaCfcAfaGfaGfaGfuAfuUfccasUfAS11011210aUfGGfaAfuAfcuCfuGfgUfuAfcAfusGfsa\$1101119AfuGfuAfaCfcAfaGfAGfuAfuUfccasUfAS11011211aUfGGfaAfuAfcuCfuGfgUfuAfcAfusGfsa	4	S1094	112	AfuGfuAfaCfcAfaGfaGfUfAfuUfccasUf	AS1094	1204	aUfGfGfaAfuacUfcUfuGfgUfuAfcAfusGfsa	0.07	0.39	0.85	0.142
\$1096114AfuGfuAfaCfcAfaGfaGfUfAfuucCfasUfAS10961206aUfgGfAfAfuacUfcUfuGfgUfuacAfusGfsa\$1097115AfuGfuAfaCfcAfaGfaGfuAfuucCfasUfAS109712091209aUfgGfAfAfuAfcUfuGfgUfuacAfusGfsa\$1098116AfuGfuAfaCfcAfaGfaGfuAfuUfccasUfAS109812091209dAUdGGdAadTAfdCUfuGfgUfuAfcAfusGfsa\$1009117AfuGuAfaCfcAfaGfaGfuAfuUfcCfasUfAS11001210aUfgGfaAfuAfcUfuGfgUfuAfcAfusGfsa\$1101118AfuGruAfaCfcAfaGfaGfuAfuUfccasUfAS11011210aUfgGfaAfuAfcuCfuGfgUfuAfcAfusGfsa	5	S1095	113	AfuGfuAfaCfcAfaGfAfGfuAfuUfcCfasUf	AS1095	1205	aUfgGfaAfuAfcucUfuGfgUfuAfcAfusGfsa	60'0	0.39	92'0	0.146
\$1097AfuGfUfAfaCfcAfaGfaGfuAfuuccfasUfAS10971207aUfgGfAfAfuAfcUfuGfgUfuacAfusGfsa\$1098116AfuGfuAfaCfcAfaGfaGfuAfUfUfccasUfAS10981208aUfGfGfaauAfcUfcUfuGfgUfuAfcAfusGfsa\$1099117AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUfAS10991209dAUdGGdAadTAfdCUfcUfuGfgUfuAfcAfusGfsa\$1100118AfuguAfaccAfaGfaGfuAfuUfcCfasUfAS11001210aUfGfGfaAfuAfcUfuGfgUfuAfcAfusGfsa\$1101119AfuGfuAfaCfcAfaGfAGfuAfuUfccasUfAS11011211aUfGfGfaAfuAfcuCfuGfgUfuAfcAfusGfsa	9	21096	114	AfuGfuAfaCfcAfaGfaGfUfAfuucCfasUf	AS1096	1206	aUfgGfAfAfuacUfcUfuGfgUfuAfcAfusGfsa	90'0	0.38	0.85	0.147
\$1098116AfuGfuAfaCfcAfaGfaGfuAfUfUfccasUfAS109812081208AUGGGAAadTAfdCUfcUfuGfgUfuAfcAfusGfsa\$1099117AfuGuAfaCfcAfaGfaGfuAfuUfcCfasUfAS10991209AUGGGAAadTAfdCUfcUfuGfgUfuAfcUfuAfcAfusGfsa\$1100118AfuguAfaccAfaGfaGfuAfuUfcCfasUfAS11001210AUGGGAAfuAfcUfuGfgUfuAfcAfusGfsa\$1101119AfuGfuAfaCfcAfaGfAfGfuAfuUfccasUfAS1101AS11011211AUGGGFAAfuAfcuCfuGfgUfuAfcAfusGfsa	7	S1097	115	AfuGfUfAfaCfcAfaGfaGfuAfuucCfasUf	AS1097	1207	aUfgGfAfAfuAfcUfcUfuGfgUfuacAfusGfsa	0.12	0.47	0.87	0.147
\$1099117AfugfuAfaCfcAfaGfaGfuAfuUfcCfasUfAS10991209AVUdGGAAadTAfdCUfcUfuGfgUfuAfcAfusGfsa\$1100118AfuguAfaccAfaGfaGfaGfuAfuUfcCfasUfAS11001210aUfgGfaAfuAfcUfuGfgUfuAfcUfcAfusGfsa\$1101119AfuGfuAfaCfcAfaGfaGfaGfuAfuUfccasUfAS11011211aUfGfGfaAfuAfcucUfuGfgUfuAfcAfusGfsa	00	81098	116	AfuGfuAfaCfcAfaGfaGfuAfUfUfccasUf	AS1098	1208	aUfGfGfaauAfcUfcUfuGfgUfuAfcAfusGfsa	90'0	0.42	0.85	0.151
\$1100118AfuguafaccafaGfaGfuAfuUfccfasUfAS110012101210aUfGfGfaAfuAfcuClfuGfgUfuAfcutGfsa\$1101119AfuGfuAfaCfcAfaGfAfGfuAfuUfccasUfAS11011211aUfGfGfaAfuAfcucUfuGfgUfuAfcAfusGfsa	6	81099	117	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1099	1209	dAUdGGdAadTAfdCUfcUfuGfgUfuAfcAfusGfsa	0.16	0.41	0.85	0.152
$oxed{1101}_{119}$ AfuGfuAfaCfcAfaGfAfGfuAfuUfccasUf AS1101 $oxed{1211}_{1211}$ aUfGfGfaAfuAfcucUfuGfgUfuAfcAfusGfsa	0	S1100	118	AfuguAfaccAfaGfaGfuAfuUfcCfasUf	AS1100	1210	a Ufg Gfa Afu Afc Ufc Ufu Gfg Ufu Afc Afus Gfs a	0.15	0.48	0.72	0.152
	1	S1101	119	AfuGfuAfaCfcAfaGfAfGfuAfuUfccasUf		1211	aUfGfGfaAfuAfcucUfuGfgUfuAfcAfusGfsa	90.0	0.38	0.94	0.158

D1102	S1102	120	AfuGfuAfaccaagaguAfuUfcCfasUf	AS1102	1212	aUfgGfaAfuAfdCuCfdTuGfdGuUfacAfusGfsa	0.21	0.45	68.0	0.162
D1103	S1103	121	AfuGfuaaCfCfAfaGfaGfuAfuUfcCfasUf	AS1103	1213	aUfgGfaAfuAfcUfcUfuggUfUfAfcAfusGfsa	0.14	0.49	0.95	0.163
D1104	S1104	122	AfuGfuAfaccAfaGfaGfUfAfuUfcCfasUf	AS1104	1214	aUfgGfaAfuacUfcUfuGfGfUfuAfcAfusGfsa	90:0	0.36	0.92	0.163
D1105	S1105	123	AfuGfuAfaCfcAfaGfaGfuAfuucCfasUf	AS1105	1215	a Ufg Gf Af Af u Af c Uf u Gf g Uf u Af c Af u s Gf s a	0.1	0.45	0.84	0.167
D1106	21106	124	AfuGfuaaCfcAfaGfAfGfuAfuUfcCfasUf	AS1106	1216	aUfgGfaAfuAfcucUfuGfgUfUfAfcAfusGfsa	60:0	0.43	0.91	0.170
D1107	21107	125	AfuGfuAfaccAfaGfAfGfuAfuUfcCfasUf	AS1107	1217	${\tt aUfgGfaAfuAfcucUfuGfGfUfuAfcAfusGfsa}$	60:0	0.46	1	0.171
D1108	S1108	126	AfuguAfaccAfaGfaGfdTadTudCcdAsu	AS1108	1218	a Ufg Gfa A fu A fc U fc U fu Gfg U fu A fc A fu s Gfs a	0.11	0.39	0.71	0.176
D1109	S1109	127	AfuGfUfAfaCfcAfaGfaGfuAfuUfccasUf	AS1109	1219	${\tt aUfGfGfaAfuAfcUfuGfgUfuacAfusGfsa}$	0.1	0.43	6.0	0.180
D1110	S1110	128	AfuGfuAfaCfcAfaGfaguAfUfUfcCfasUf	AS1110	1220	aUfgGfaauAfCfUfcUfuGfgUfuAfcAfusGfsa	90'0	0.42	88.0	0.182
D1111	S1111	129	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1111	1221	dAUdGGdAAuAfcUfcUfuGfGfUfuAfCfAfusGfsa	0.18	0.49	62.0	0.183
D1112	S1112	130	AfuGfUfAfaccAfaGfaGfuAfuUfcCfasUf	AS1112	1222	aUfgGfaAfuAfcUfcUfuGfGfUfuacAfusGfsa	0.14	0.48	0.85	0.195
D1113	S1113	131	AfuGfuAfaCfcAfaGfaguAfuUfcCfasUf	AS1113	1223	${\tt aUfgGfaAfuAfCfUfcUfuGfgUfuAfcAfusGfsa}$	60:0	0.41	0.85	0.201
D1114	S1114	132	auGfuAfaCfcAfaGfaGfUfAfuUfcCfasUf	AS1114	1224	${\tt aUfgGfaAfuacUfcUfuGfgUfuAfcAfUfsGfsa}$	0.05	0.44	0.94	0.201
D1115	S1115	133	AfuguAfaCfcAfaGfaGfUfAfuUfcCfasUf	AS1115	1225	aUfgGfaAfuacUfcUfuGfgUfuAfCfAfusGfsa	80'0	0.41	96'0	0.204
D1116	S1116	134	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1116	1226	${\tt adTdGGfadAdTAfcUfuGfgUfuAfcAfusGfsa}$	0.15	0.47	0.79	0.208
D1117	S1117	135	AfuGfuaaCfcAfaGfaGfUfAfuUfcCfasUf	AS1117	1227	aUfgGfaAfuacUfcUfuGfgUfUfAfcAfusGfsa	80.0	0.42	0.92	0.224
D1118	S1118	136	auguaaccaagaguauuccasu	AS1118	1228	AfUfGfGfAfAfUfAfCfUfCfUfUfGfGfUfUfAfCfAfUfsgsa	0.19	0.5	0.87	0.303
D1119	S1119	137	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1119	1229	${\tt aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa}$	0.14	0.55	68.0	
D1120	S1120	138	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1120	1230	${\tt aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa}$	0.19	0.63	0.72	
D1121	S1121	139	AfuGfuAfaccAfaGfaGfuAfuUfcCfasUf	AS1121	1231	${\tt aUfgGfaAfuAfcUfcUfuGfGfUfuAfcAfusGfsa}$	0.14	0.61	0.91	
D1122	S1122	140	AfUfGfuAfaCfcAfaGfaGfuAfuUfccasUf	AS1122	1232	${\tt aUfGfGfaAfuAfcUfcUfuGfgUfuAfcausGfsa}$	0.14	0.54	96.0	
D1123	S1123	141	auGfuAfAfCfcAfaGfaGfuAfuUfcCfasUf	AS1123	1233	${\tt aUfgGfaAfuAfcUfcUfuGfguuAfcAfUfsGfsa}$	0.13	0.61	76'0	
D1124	S1124	142	AfuGfuAfaCfcAfaGfaGfuAfUfUfcCfasUf	AS1124	1234	aUfgGfaauAfcUfcUfuGfgUfuAfcAfusGfsa	0.14	0.56	0.94	
D1125	S1125	143	AfuGfuAfaCfcaaGfaGfuAfuUfcCfasUf	AS1125	1235	aUfgGfaAfuAfcUfcUfUfGfgUfuAfcAfusGfsa	0.21	0.74	96.0	
D1126	S1126	144	AfUfGfuAfaCfcAfaGfaGfuAfuucCfasUf	AS1126	1236	${\tt aUfgGfAfAfuAfcUfuGfgUfuAfcausGfsa}$	0.2	69.0	0.91	
D1127	S1127	145	AfuguAfAfCfcAfaGfaGfuAfuUfcCfasUf	AS1127	1237	${\tt aUfgGfaAfuAfcUfcUfuGfguuAfCfAfusGfsa}$	0.17	0.7	96'0	
D1128	S1128	146	AfUfGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1128	1238	a Ufg Gfa Afu Afc Ufc Ufu Gfg Ufu Afcaus Gfsa	0.19	0.62	0.85	

86.0	6.0	1.01	0.87	1.05	96.0	96.0	86.0	0.91	0.91	86.0	6.0	1.05	68'0	68.0	0.95	86.0	98.0	0.83	86.0	0.88	0.94	0.94	26.0	86.0	0.78	68.0
92'0	0.64	0.7	0.58	0.89	0.64	0.53	0.58	9.0	0.54	89.0	0.75	0.52	99'0	0.51	0.71	0.74	0.51	0.52	0.63	0.58	0.62	0.73	0.53	0.53	0.5	0.62
0.23	0.21	0.17	0.17	0.33	0.16	0.12	0.16	0.16	0.1	0.24	0.13	0.15	0.16	0.12	0.25	0.17	0.11	0.1	0.14	0.13	0.15	0.18	0.13	0.13	0.09	0.13
aUfggaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfCfUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfUfGfguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuacAfusGfsa	augGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfCfUfcUfuGfgUfuAfcausGfsa	aUfgGfaAfuAfCfUfcUfuGfgUfuacAfusGfsa	aUfgGfaAfuAfcUfCfUfuGfguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsAf	aUfgGfaAfuAfcUfCfUfuGfgUfuAfcausGfsa	aUfgGfaAfuAfcUfCfUfuGfgUfuacAfusGfsa	aUfgGfaAfuAfCfUfcUfuGfguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuggUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfUfsGfsa	aUfgGfaAfuAfcUfcUfUfGfgUfuAfcausGfsa	aUfgGfaAfuAfcUfcUfUfGfgUfuacAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfCfAfusGfsa	aUfGfGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfGfUfuAfcausGfsa	aUfgGfAfAfuAfcUfcUfuGfguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfUfAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfUfAfcausGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuacAfUfsGfsa	aUfGfGfaAfuAfcUfcUfuGfguuAfcAfusGfsa	uCfuUfgGfuUfaCfaUfgAfaAfuCfcCfasUfsc	uCfuUfgGfuuaCfaUfgAfAfAfuccCfasUfsc
1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265
AS1129	AS1130	AS1131	AS1132	AS1133	AS1134	AS1135	AS1136	AS1137	AS1138	AS1139	AS1140	AS1141	AS1142	AS1143	AS1144	AS1145	AS1146	AS1147	AS1148	AS1149	AS1150	AS1151	AS1152	AS1153	AS1154	AS1155
AfuGfuAfaCfcAfaGfaGfuAfuUfCfCfasUf	AfuGfuAfaCfcAfagaGfuAfuUfcCfasUf	AfuGfuAfAfCfcaaGfaGfuAfuUfcCfasUf	AfuGfUfAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfAfsUf	AfUfGfuAfaCfcAfaGfaguAfuUfcCfasUf	AfuGfUfAfaCfcAfaGfaguAfuUfcCfasUf	AfuGfuAfAfCfcAfagaGfuAfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfUfGfuAfaCfcAfagaGfuAfuUfcCfasUf	AfuGfUfAfaCfcAfagaGfuAfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaguAfuUfcCfasUf	AfuGfuAfaCfCfAfaGfaGfuAfuUfcCfasUf	auGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfUfGfuAfaCfcaaGfaGfuAfuUfcCfasUf	AfuGfUfAfaCfcaaGfaGfuAfuUfcCfasUf	AfuguAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfccasUf	AfUfGfuAfaccAfaGfaGfuAfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaGfuAfuucCfasUf	AfuGfuaaCfcAfaGfaGfuAfuUfcCfasUf	AfUfGfuaaCfcAfaGfaGfuAfuUfcCfasUf	auGfUfAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaGfuAfuUfccasUf	UfgGfgAfuUfuCfaUfgUfaAfcCfaAfgsAf	UfgGfGfAfuuuCfaUfgUfAfAfcCfaAfgsAf
147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173
S1129	စ္က	S1131	S1132	S1133	S1134	S1135	S1136	S1137	S1138	S1139	S1140	S1141	S1142	S1143	S1144	S1145	S1146	S1147	S1148	S1149	S1150	S1151	S1152	S1153	S1154	S1155
S11	\$1130	S1.	S	S	S	S	<u>د</u>	υ,								—			_	\vdash				٠,	النبا	

0.85	0.85	8.0	0.81	6.0	98.0	0.95	1.02	1	76.0	0.91	1	0.94	6.0	0.91	68.0	86.0	1.03	0.95	92'0	0.81	88.0	0.81	0.73	8.0	0.78	0.84
0.65	0.54	0.53	0.89	0.72	69.0	9.0	0.56	0.55	9.0	0.59	0.59	0.57	0.5	0.53	0.56	0.59	0.65	0.51	0.53	0.98	0.64	0.49	0.65	1.09	0.78	0.73
0.12	0.11	0.13	0.59	0.16	0.27	0.12	0.05	0.13	0.09	0.15	0.11	0.13	0.08	90.0	0.07	0.13	0.2	0.07	0.2	0.74	0.43	0.17	0.22	9.0	0.3	0.35
uCfuUfgGfuUfacaUfgAfAfAfuCfcCfasUfsc	uCfuUfgGfuuaCfaUfgAfaAfuCfcCfasUfsc	uCfuUfgGfuuaCfaUfgAfAfAfuCfcCfasUfsc	uCfuuGfGfuuAfcAfuGaAfauCfCfcasUfsc	uCfuUfgGfuuaCfaUfgAfAfauCfCfcasUfsc	uCfuUfgGfuUfacaUfGfAfaAfuCfcCfasUfsc	aUfgGfaAfuacUfcUfUfGfgUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfuGfGfUfuAfcAfusGfsa	aUfgGfaAfuacUfCfUfuGfgUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfUfGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuggUfuAfCfAfusGfsa	aUfgGfaauAfcUfcfUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfCfUfuggUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfuGfgUfuAfcAfUfsGfsa	aUfgGfaauAfcUfcUfuGfgUfuAfCfAfusGfsa	aUfggaAfuAfcUfcUfuGfgUfuAfcAfUfsGfsa	aUfgGfAfAfuAfcUfcUfuggUfuAfcAfusGfsa	aUfgGfaAfuAfcucUfUfGfgUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfuGfgUfUfAfcAfusGfsa	aUfggaAfuAfcUfcUfuGfgUfuAfCfAfusGfsa	augGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	augGfAfAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfggaAfuAfcUfcUfuGfgUfUfAfcAfusGfsa	augGfaAfuAfcUfcUfuGfgUfuAfcAfUfsGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa
1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292
AS1156	AS1157	AS1158	AS1159	AS1160	AS1161	AS1162	AS1163	AS1164	AS1165	AS1166	AS1167	AS1168	AS1169	AS1170	AS1171	AS1172	AS1173	AS1174	AS1175	AS1176	AS1177	AS1178	AS1179	AS1180	AS1181	AS1182
UfgGfgAfuuuCfaUfGfUfaAfcCfaAfgsAf	UfgGfgAfuUfuCfaUfgUfAfAfcCfaAfgsAf	UfgGfgAfuuuCfaUfgUfAfAfcCfaAfgsAf	UfGfggAfUfuUfcAfuGfuAfAfccAfAfgsAf	UfGfggAfUfuuCfaUfgUfAfAfcCfaAfgsAf	UfgGfgAfuUfucaUfGfUfaAfcCfaAfgsAf	AfuGfuAfaCfcaaGfaGfUfAfuUfcCfasUf	AfuGfuAfaccAfaGfaGfuAfUfUfcCfasUf	AfuGfuAfaCfcAfagaGfUfAfuUfcCfasUf	AfuGfuAfaCfcaaGfaGfuAfUfUfcCfasUf	AfuguAfaCfCfAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfagaGfuAfUfUfcCfasUf	AfuGfuAfaCfCfAfagaGfuAfuUfcCfasUf	auGfuAfaCfcAfaGfaGfuAfUfUfcCfasUf	AfuguAfaCfcAfaGfaGfuAfUfUfcCfasUf	auGfuAfaCfcAfaGfaGfuAfuUfCfCfasUf	AfuGfuAfaCfCfAfaGfaGfuAfuucCfasUf	AfuGfuAfaCfcaaGfAfGfuAfuUfcCfasUf	AfuGfuaaCfcAfaGfaGfuAfUfUfcCfasUf	AfuguAfaCfcAfaGfaGfuAfuUfCfCfasUf	auGfuAfaCfcAfaGfaGfuAfuUfcCfAfsUf	AfuGfuAfaCfcAfaGfaGfuAfuucCfAfsUf	auguaaccAfaGfaGfuAfuUfcCfasUf	AfuGfuaaCfcAfaGfaGfuAfuUfCfCfasUf	AfuguAfaCfcAfaGfaGfuAfuUfcCfAfsUf	auGfuAfaCfcAfaGfaGfuAfuUfccasu	auguaaccaaGfaGfuAfuUfcCfasUf
174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
S1156	S1157	S1158	S1159	S1160	S1161	S1162	S1163	S1164	S1165	S1166	S1167	S1168	S1169	S1170	S1171	S1172	S1173	S1174	S1175	S1176	S1177	S1178	S1179	S1180	S1181	S1182
							D1163		D1165	D1166	D1167	D1168	D1169	D1170	D1171	D1172	D1173	D1174	D1175	D1176	D1177	D1178	D1179	D1180	D1181	D1182

0.94	8.0	0.72	0.74	0.85	1.02	0.85	0.78	0.64	0.83	0.92	0.77	0.95	9.02	0.93	0.72	0.64	0.92	0.77	0.85	92'0	68.0	6.0	68.0	0.78	68.0	0.78
9.0	1.08	0.52	0.53	99.0	86.0	0.73	69.0	0.88	0.64	0.82	0.62	0.7	0.71	0.82	9.65	0.52	0.74	0.71	69.0	0.61	0.56	0.57	0.73	95.0	0.67	0.55
0.19	0.61	0.16	0.2	0.34	0.61	0.3	0.28	0.33	0.31	0.64	0.21	0.17	0.19	0.64	0.19	0.15	0.48	0.17	0.43	0.14	0.16	0.13	0.29	0.16	0.22	0.14
aUfggaAfuAfcUfcUfuGfGfUfuAfcAfusGfsa	augGfaAfuAfcUfcUfuGfgUfuAfCfAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfggaAfuAfcUfcUfUfGfgUfuAfcAfusGfsa	augGfaAfuAfcUfcUfuGfgUfUfAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	a Ufg Gfa Afu Afc Ufu Gfg Ufu Afc Afus Gfs a	a Ufg Gfa Afu Afc Ufugd Gud Tad Cad Tsgsa	aUfggaAfuAfcUfcfUfuGfgUfuAfcAfusGfsa	${\sf augGfaAfuAfcUfcUfuGfGfUfuAfcAfusGfsa}$	a Ufg Gfa Afu Afc Ufu Gfg Ufu Afc Afus Gfs a	a Ufg Gfa Afu Afc Ufu Gf Gf Ufu Af Cf Afus Gfsa	aUfggaAfuAfCfUfcUfuGfgUfuAfcAfusGfsa	augGfaAfuAfcUfcUfGfgUfuAfcAfusGfsa	a Ufg Gfa Afu Afc Ufu Gfg Ufu Afc Afus Gfs a	aUfggaAfUfAfcUfcUfuGfgUfuAfcAfusGfsa	aug Gfa Afu Afc Uf Cf Uf u Gfg Uf u Afc Afu s Gfs a	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	${\sf augGfaAfuAfCfUfcUfuGfgUfuAfcAfusGfsa}$	a Ufg Gfa Afu Afc Ufu Gfg Ufu Afc Afus Gfs a	adTdGGfaAfudAdCUfcUfuGfgUfuAfcAfusGfsa	aUfgGfdAdAdTdAcUfcUfuGfgUfuAfcAfusGfsa	adTdGdGdAAfuAfcUfcUfuGfgUfuAfcAfusGfsa	adTdGGfaAfuAfdCdTcUfuGfgUfuAfcAfusGfsa	aUfdGdGdAdAuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfGfUfuAfCfAfusGfsa
1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319
AS1183	AS1184	AS1185	AS1186	AS1187	AS1188	AS1189	AS1190	AS1191	AS1192	AS1193	AS1194	AS1195	AS1196	AS1197	AS1198	AS1199	AS1200	AS1201	AS1202	AS1203	AS1204	AS1205	AS1206	AS1207	AS1208	AS1209
AfuGfuAfaccAfaGfaGfuAfuUfCfCfasUf	AfuGfuaaCfcAfaGfaGfuAfuUfcCfAfsUf	auGfuAfaCfcAfaGfaGfuAfuuccasu	auguaaccaagaGfuAfuUfcCfasUf	AfuGfuAfaCfcaaGfaGfuAfuUfCfCfasUf	AfuGfuAfaccAfaGfaGfuAfuUfcCfAfsUf	AfuGfuAfaCfcAfaGfaGfuAfuuccasu	auguaaccaagagnaunccasu	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfagaGfuAfuUfCfCfasUf	AfuGfuAfaCfcaaGfaGfuAfuUfcCfAfsUf	AfuGfuAfaCfcAfaGfaGfuauuccasu	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaguAfuUfCfCfasUf	AfuGfuAfaCfcAfagaGfuAfuUfcCfAfsUf	auguAfaCfcAfaGfaGfuAfuUfccasu	AfuGfuAfaCfcAfaGfaGfuauUfCfCfasUf	AfuGfuAfaCfcAfaGfaguAfuUfcCfAfsUf	auguAfaCfcAfaGfaGfuAfuUfcCfasu	AfuGfuAfaCfcAfaGfaGfuauUfcCfAfsUf	auguaaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfdTdAdTdTcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuguAfaccAfaGfaGfuAfuUfcCfasUf
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227
S1183	S1184	S1185	S1186	S1187	S1188	S1189	S1190	S1191	S1192	S1193	S1194	S1195	81196	S1197	S1198	S1199	S1200	S1201	S1202	S1203	S1204	S1205	S1206	S1207	S1208	S1209
D1183	D1184	D1185	D1186	D1187	D1188	D1189	D1190	D1191	D1192	D1193	D1194	D1195	D1196	D1197	D1198	D1199	D1200	D1201	D1202	D1203	D1204	D1205	D1206	D1207	D1208	D1209

0.84	0.72	0.77	0.91	0.87	76:0	1.07	1.03	0.84	1.03	66:0	0.88	66:0	0.82		0.84	0.87	0.81	0.978	1.178	1.151	1.07	1	0.74	86.0	0.92	•
	0.59 0.	0.74 0.	0.53 0.	0.71 0.	0.67 0.	0.87 1.	0.73 1.	0.42 0.	0.71 1.	0.63 0.	0.84 0.	0.8 0.	0.52 0.	0.79 1	0.76 0.	0.64 0.	0.79 0.	0.932 0.	1.047 1.	0.967 1.		0.54 1.1	0.61 0.	0.61 0.	0.69 0.	1.09
0.14 0.5	0.14 0.	0.21 0.	0.15 0.	0.12 0.	0.18 0.	0.36 0.	0.37 0.	0.23 0.	0.43 0.	0.37 0.	0.29 0.	0.31 0.	.0 60.0	0.22 0.	0.31 0.	0.26 0.	0.33 0.	0.464 0.	0.453 1.	0.831 0.	0.09	0.11 0.	0.19 0.	0.22 0.	0.27 0.	0.54 1
aUfgdGdAdAdTAfcUfcUfuGfgUfuAfcAfusGfsa 0	aUfgGfadAdTdAdCUfcUfuGfgUfuAfcAfusGfsa 0	aUfgGfaAfuAfcUfcUfugdGudTadCadTsgsa 0	adTdGdGdAAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0	a Ufg Gfa Afu Afc Ufc Ufu Gfg Ufu Afc Afus Gfs a	aUfdGdGdAdAuAfcUfcUfuGfgUfuAfcAfusGfsa 0	aUfgGfaAfuacucuuggUfuAfcAfusgsa 0	aUfgGfaAfuAfCfUfCfUfuGfGfuuAfcAfusgsa 0	aUfGfgaAfUfacUfCfuuGfGfuuAfCfausGfsa	aUfgGfaAfuaCfUfcUfUfgGfuuAfcAfusgsa 0	aUfgGfaAfuAfcUfCfUfuGfGfuuAfcAfusgsa	aUfgGfaAfuAfcUfCfUfuGfGfuUfacAfusgsa	aUfgGfaAfuaCfuCfuUfgGfuuAfcAfusgsa	aUfgGfaaUfaCfUfcUfuGfGfuuAfcAfAgsa	aUfgGfaAfuadCudCudTgdGuuAfcAfusgsa	aUfGfgAfAfuAfCfuCfUfuGfGfuUfAfcAfUfsGfsa 0	aUfgGfaAfuadCUfcdTUfgdGuuAfcAfusgsa 0	aUfgGfAfaUfAfCfuCfUfUfgGfUfUfaCfAfUfsGfsa 0	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa	a Ufg Gfa Afu Afc Ufc Ufu Gfg Ufu Afc Afus Gfs a	AfUfgGfaAfuAfcUfcUfuGfguuAfcAfUfsGfsa 0	AfUfgGfaAfuAfcUfcUfuggUfuAfcAfusGfsa 0	AfUfggaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0	AfuGfgAfaUfaCfuCfuUfgGfuUfaCfaUfsgsAf 0	AfuGfgAfaUfaCfuCfuUfgGfuUfaCfaUfsgsAf 0	AfugføAfaUfaCfuCfuUføGfuUfaCfaUfsøsAf
1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	
AS1210	AS1211	AS1212	AS1213	AS1214	AS1215	AS1216	AS1217	AS1218	AS1219	AS1220	AS1221	AS1222	AS1223	AS1224	AS1225	AS1226	AS1227	AS1228	AS1229	AS1230	AS1231	AS1232	AS1233	AS1234	AS1235	AS1236
AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	auguaaccaaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfudTdCdCdAsUf	${\tt aUfgUfaAfcCfaAfgAfgUfaUfuCfcAfsu}$	AfuGfuAfaCfcAfaGfaGfuAfdTdTdCdCasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	AfUfguAfAfccAfAfgaGfUfauUfCfcasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	auGfuAfAfccAfaGfagUfaUfUfcCfasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	auGfuaAfccAfagAfguAfuuCfcasUf	AfuGfuAfaccaagaguAfuUfcCfasUf	augUfaacCfaagAfguaUfuccAfsu	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	auGfuAfAfCfcAfaGfaGfuAfuUfcCfasu	AfuGfuAfaCfCfAfaGfaGfuAfuUfcCfasu	AfuGfuAfaCfcAfaGfaGfuAfuUfCfCfasu	aUfgUfaAfcCfaAfgAfgUfaUfuCfcAfsu	aUfgUfaAfcCfaAfgAfgUfaUfuCfcAfsu	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf
Afu	ΑĘ	1,0					1	l			_		1	.2	243	244	245	246	247	248	249	250	11	_	_	
228 Afu(229 Af	230	231	232	233	234	235	236	237	238	239	240	241	242	77	77	2,	2	2	7	7	2	251	252	253	, 10
			51213 231	S1214 ₂₃₂	S1215 233	S1216 234	S1217 235	S1218 236	S1219 ₂₃₇	S1220 ₂₃₈	S1221 ₂₃	51222 240	S1223 _{24.}	S1224 ₂ 4	S1225 ₂ 4	S1226 2,	S1227 ₂ ,	S1228 ₂	S1229	S1230 2	S1231 2	S1232 2	S1233 25	S1234 25.	S1235 ₂₅₃	S1236 2F

D1237	51237	255	augUfaAfccaAfgAfguaUfuCfcasu	AS1237	1347	AfUfGfgAfaUfAfCfuCfuUfGfGfuUfaCfAfUfsgsa 0	0.29	0.61	0.79	
D1238	\$1238	256	AfugUfaAfccaAfgAfguaUfuCfcasu	AS1238	1348	AfUfGfgAfaUfAfCfuCfuUfGfGfuUfaCfAfusgsa 0	0.31	9.0	0.88	
D1239	S1239	257	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1239	1349	dAUdGGdAauAfcUfcUfuGfgUfuAfcAfusGfsa 0	0.2	0.67	0.85	
D1240	S1240	258	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1240	1350	dAUdGgdAauAfcUfcUfuGfgUfuAfcAfusGfsa 0	0.23	0.58	89.0	
D1241	S1241	259	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1241	1351	dAudGgdAauAfcUfcUfuGfgUfuAfcAfusGfsa	0.25	9.02	0.78	
D1242	S1242	260	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1242	1352	dAUdGgdAadTAfcUfcUfuGfgUfuAfcAfusGfsa	0.18	0.64	0.84	
D1243	S1243	261	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1243	1353	dAUdGGdAAfuAfcUfcUfuGfGfUfuAfCfAfusGfsa 0	0.19	0.72	0.87	
D1244	S1244	262	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1244	1354	dAUdGgdAadTAfdCUfcUfuGfgUfuAfcAfusGfsa	0.16	0.55	8.0	
D1245	S1245	263	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1245	1355	dAUdGGdAAuAfcUfcUfuGfgUfuAfcAfusGfsa 0	0.22	0.51	6.0	
D1246	S1246	264	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1246	1356	dAudGgdAadTAfcUfcUfuGfgUfuAfcAfusGfsa 0	0.27	0.78	99.0	
D1247	S1247	265	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf	AS1247	1357	dAdTdGdGaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0	0.16	0.57	0.97	
D1248	S1248	266	AfacaAfuguUfcUfuGfdCUdCudAudAsa	AS1248	1358	dTUdAudAgdAGfcAfaGfaAfcUfgUfusUfsu 0	90:0	60.0	0.36	0.0047
D1249	S1249	267	AfaCfaGfuGfuUfcUfuGfCfUfcUfaUfasa	AS1249	1359	UfUfaUfaGfagcAfaGfaAfcAfcUfgUfusUfsu 0	90:0	0.10	0.47	0.005
D1250	S1250	268	AfaCfaGfuGfuUfcUfugcUfcUfAfUfasAf	AS1250	1360	uUfauaGfaGfcfAfaGfaAfcAfcUfgUfusUfsu 0	0.07	0.14	0.55	0.005
D1251	S1251	269	AfaCfaGfuGfuUfcUfuGfcucUfAfUfasAf	AS1251	1361	uUfauaGfAfGfcAfaGfaAfcAfcUfgUfusUfsu 0	0.07	0.14	0.49	900.0
D1252	S1252	270	cAGuGuucuuGcucuAuAAdTdT	AS1252	1362	UuAuAGAGcAAGAAcACUGdTdT				900.0
D1253	\$1253	271	AfaCfaGfuGfuUfcUfugcUfCfUfaUfasAf	AS1253	1363	uUfaUfagaGfcfAfaGfaAfcAfcUfgUfusUfsu	0.05	0.12	0.43	900.0
D1254	S1254	272	AfaCfaGfuGfuUfCfUfuGfcUfcUfaUfasa	AS1254	1364	UfUfaUfaGfaGfcAfagaAfcAfcUfgUfusUfsu 0	90:0	0.13	0.39	900.0
D1255	S1255	273	AfaCfaGfuGfuUfcUfuGfcUfCfUfaUfasa	AS1255	1365	UfUfaUfagaGfcAfaGfaAfcAfcUfgUfusUfsu	80:0	0.17	0.48	0.007
D1256	S1256	274	AfaCfaGfuGfuUfcUfGfcUfcUfaUfasa	AS1256	1366	UfUfaUfaGfaGfcaaGfaAfcAfcUfgUfusUfsu	80.0	0.14	0.40	0.007
D1257	S1257	275	AfaCfaGfuGfuUfcUfuGfcUfCfUfaUfasAf	AS1257	1367	uUfaUfagaGfcAfaGfaAfcAfcUfgUfusUfsUf	0.07	0.12	0.40	0.007
D1258	S1258	276	AfaCfaguGfuUfCfUfuGfcUfcUfaUfasAf	AS1258	1368	uUfaUfaGfaGfcAfagaAfcAfCfUfgUfusUfsu 0	80:0	0.13	0.41	0.007
D1259	S1259	277	AfaCfAfGfuGfuUfcUfuGfcucUfaUfasAf	AS1259	1369	uUfaUfaGfAfGfcAfaGfaAfcAfcugUfusUfsu	0.05	0.11	0.35	800.0
D1260	S1260	278	AfacaGfuGfuUfCfUfuGfcUfcUfaUfasAf	AS1260	1370	uUfaUfaGfaGfcAfagaAfcAfcUfGfUfusUfsu	90'0	0.12	0.40	0.008
D1261	S1261	279	AfacaGfuGfuUfcUfuGfcUfCfUfaUfasAf	AS1261	1371	uUfaUfagaGfcAfaGfaAfcAfcUfGfUfusUfsu	90.0	0.13	0.42	800.0
D1262	S1262	280	AfaCfaGfuGfuUfcUfuGfcucUfaUfasAf	AS1262	1372	uUfaUfaGfAfGfcAfaGfaAfcAfcUfgUfusUfsu	90.0	0.13	0.37	0.008
D1263	S1263	281	cAGuGuucuuGcucuAuAAdTdT	AS1263	1373	UuAuAGAGcAAGAAcACUGdTdT				0.008

D1264	51264	282	AfaCfaGfuGfuUfcUfuGfCfUfcUfauasAf	AS1264	1374	uUfAfUfaGfagcAfaGfaAfcAfcUfgUfusUfsu	0.07	0.12	0.50	0.008
D1265	S1265	283	AfaCfaGfuguUfCfUfuGfcUfcUfaUfasAf	AS1265	1375	uUfaUfaGfaGfcAfagaAfcfAfcUfgUfusUfsu	0.12	0.13	0.48	600.0
D1266	S1266	284	AfacaGfuGfuUfcUfuGfcUfcUfAfUfasAf	AS1266	1376	uUfauaGfaGfcAfaGfaAfcAfcUfGfUfusUfsu	70.0	0.15	0.51	600.0
D1267	S1267	285	AfacaAfuguUfcUfuGfdCudCudAudAsa	AS1267	1377	dTudAudAgdAGfcAfaGfaAfcAfcAfgUfusUfsu	90.0	0.14	0.48	0.0088
D1268	S1268	286	AfaCfaGfuGfuUfCfUfuGfcucUfaUfasAf	AS1268	1378	uUfaUfaGfAfGfcAfagaAfcAfcUfgUfusUfsu	0.05	0.09	0.35	600.0
D1269	S1269	287	cAGuGuucuuGcucuAuAAdTdT	AS1269	1379	UuAuAGAGcAAGAAcACUGdTdT				600.0
D1270	S1270	288	aaCfaGfuGfuUfcUfuGfcUfCfUfaUfasAf	AS1270	1380	uUfaUfagaGfcAfaGfaAfcAfcUfgUfUfsUfsu	0.07	0.14	0.49	600.0
D1271	S1271	289	AfaCfaGfUfGfuUfcUfuGfcucUfaUfasAf	AS1271	1381	uUfaUfaGfAfGfcAfaGfaAfcacUfgUfusUfsu	90.0	0.10	98.0	600.0
D1272	S1272	290	cAGuGuucuuGcucuAuAAdTdT	AS1272	1382	UuAuAGAGcAAGAAcACUGdTdT				600.0
D1273	S1273	291	AfaCfaGfUfGfuUfcUfuGfcUfcUfaUfasAf	AS1273	1383	uUfaUfaGfaGfaAfaGfaAfcacUfgUfusUfsUf	90.0	0.13	0.51	600.0
D1274	S1274	292	AfaCfaGfuGfuUfCfUfuGfcUfcuaUfasAf	AS1274	1384	uUfaUfAfGfaGfcAfagaAfcAfcUfgUfusUfsu	90.0	0.12	0.46	0.010
D1275	S1275	293	cAGuGuucuuGcucuAuAAdTdT	AS1275	1385	UuAuAGAGcAAGAAcACUGdTdT				0.010
D1276	S1276	294	AfaCfaGfuGfuUfCfUfuGfcUfcUfauasAf	AS1276	1386	uUfAfUfaGfaGfcAfagaAfcAfcUfgUfusUfsu	90'0	0.14	0.47	0.010
D1277	S1277	295	AfaCfaguGfuUfcUfuGfcUfCfUfaUfasAf	AS1277	1387	uUfaUfagaGfcAfaGfaAfcAfCfUfgUfusUfsu	70.0	0.15	05.0	0.010
D1278	S1278	296	AfaCfaGfuGfuUfCfUfugcUfcUfaUfasAf	AS1278	1388	uUfaUfaGfaGfCfAfagaAfcAfcUfgUfusUfsu	90.0	0.13	0.43	0.010
D1279	S1279	297	cAGuGuucuuGcucuAuAAdTdT	AS1279	1389	UuAuAGAGcAAGAAcACUGdTdT				0.010
D1280	S1280	298	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasa	AS1280	1390	UfUfaUfaGfaGfcAfaGfaAfcAfcUfgUfususu	90.0	0.14	0.45	0.010
D1281	51281	299	AfaCfAfGfuGfuUfcUfuGfcUfcUfaUfasa	AS1281	1391	UfUfaUfaGfaGfcAfaGfaAfcAfcugUfusUfsu	70.0	0.18	0.46	0.011
D1282	S1282	300	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf	AS1282	1392	uUfaUfaGfaGfaAfaGfaAfcAfcUfgUfusUfsu	0.07	0.15	0.55	0.011
D1283	S1283	301	AfaCfaGfuGfuUfcUfuGfcucUfaUfasAf	AS1283	1393	uUfaUfaGfAfGfcAfaGfaAfcAfcUfgUfususu	0.07	0.12	0.45	0.011
D1284	S1284	302	AfacaGfuGfuUfcUfuGfcUfcUfaUfasAf	AS1284	1394	uUfaUfaGfaGfaAfcAfcUfGfUfusUfsu	90.0	0.13	0.48	0.011
D1285	S1285	303	AfAfCfaGfuGfuUfcUfuGfcucUfaUfasAf	AS1285	1395	uUfaUfaGfAfGfcAfaGfaAfcAfcUfguusUfsu	90.0	0.11	0.40	0.011
D1286	S1286	304	AfaCfAfGfuGfuUfcUfuGfcUfcUfauasAf	AS1286	1396	uUfAfUfaGfaGfcAfaGfaAfcAfcugUfusUfsu	90.0	0.16	0.47	0.011
D1287	S1287	305	AfaCfaGfuGfuUfcUfugcUfcUfaUfasAf	AS1287	1397	uUfaUfaGfaGfaAfcAfcUfgUfususu	0.07	0.19	0.46	0.012
D1288	S1288	306	AfaCfaGfuGfuUfcUfugcUfcUfaUfasAf	AS1288	1398	uUfaUfaGfaGfCfAfaGfaAfcAfcUfgUfusUfsu	90.0	0.17	0.46	0.012
D1289	S1289	307	AfaCfaGfuGfuUfcUfUfGfcucUfaUfasAf	AS1289	1399		0.05	60.0	0.31	0.012
D1290	81290	308	AfAfCfaGfuGfuUfcUfuGfcUfcUfaUfasa	AS1290	1400	UfUfaUfaGfaGfcAfaGfaAfcAfcUfguusUfsu	0.06	0.16	0.49	0.013

D1291	51291	309	AfaCfaGfuGfuUfCfUfuGfcUfcUfaUfasAf	AS1291	1401	uUfaUfaGfaGfcAfagaAfcAfcUfgUfusUfsUf	90:0	0.11	0.32	0.013
D1292	S1292	310	AfaCfAfGfuGfuUfcUfugcUfcUfaUfasAf	AS1292	1402	uUfaUfaGfaGfCfAfaGfaAfcAfcugUfusUfsu	90.0	0.14	0.44	0.013
D1293	S1293	311	AfaCfaGfUfGfuUfcUfuGfcUfcUfaUfasa	AS1293	1403	UfUfaUfaGfaGfcAfaGfaAfcacUfgUfusUfsu	0.07	0.16	0.39	0.013
D1294	S1294	312	AfaCfAfGfuGfuUfcUfuGfcUfcuaUfasAf	AS1294	1404	uUfaUfAfGfaGfcAfaGfaAfcAfcugUfusUfsu	0.07	0.18	0.41	0.014
D1295	S1295	313	AfaCfaGfUfGfuUfcUfuGfcUfcuaUfasAf	AS1295	1405	uUfaUfAfGfaGfcAfaGfaAfcacUfgUfusUfsu	0.07	0.18	0.47	0.014
D1296	S1296	314	adAdCagdTdGuudCdTugdCdTcudAdTasa	AS1296	1406	${\tt dTdTaudAdGagdCdAagdAdAcadCdTgudTsdTsu}$	0.12	0.21	89.0	0.0146
D1297	S1297	315	AfacaGfUfGfuUfcUfuGfcUfcUfaUfasAf	AS1297	1407	uUfaUfaGfaGfcAfaGfaAfcacUfGfUfusUfsu	90.0	0.15	0.50	0.016
D1298	81298	316	AfacfagfUfgfuUfcUfuGfcUfcUfauasAf	AS1298	1408	uUfAfUfaGfaGfcAfaGfaAfcacUfgUfusUfsu	80:0	0.17	0.50	0.016
D1299	S1299	317	AfaCfaguGfuUfcUfuGfcUfcUfaUfasAf	AS1299	1409	uUfaUfaGfaGfcAfaGfaAfcAfCfUfgUfususu	0.07	0.16	0.50	0.018
D1300	21300	318	AfaCfaGfuGfuUfcUfUfGfcUfcUfauasAf	AS1300	1410	uUfAfUfaGfaGfcaaGfaAfcAfcUfgUfusUfsu	90:0	0.12	0.43	0.020
D1301	21301	319	AfaCfaGfUfGfuUfcUfugcUfcUfaUfasAf	AS1301	1411	uUfaUfaGfaGfCfAfaGfaAfcacUfgUfusUfsu	0.07	0.17	0.45	0.021
D1302	S1302	320	AfaCfaGfuguUfcUfUfGfcUfcUfaUfasAf	AS1302	1412	uUfaUfaGfaGfcaaGfaAfCfAfcUfgUfusUfsu	90'0	0.14	0.49	0.021
D1303	S1303	321	AfAfCfaguGfuUfcUfuGfcUfcUfaUfasAf	AS1303	1413	uUfaUfaGfaGfcAfaGfaAfcAfCfUfguusUfsu	0.07	0.24	0.51	0.022
D1304	S1304	322	AfaCfaGfuGfuucUfuGfcUfcUfaUfasAf	AS1304	1414	uUfaUfaGfaGfcAfaGfAfAfcAfcUfgUfususu	60'0	0.27	0.47	0.033
D1305	S1305	323	aadCdAgudGdTucdTdTgcdTdCuadTdAsa	AS1305	1415	udTadTdAgadGdCaadGdAacdAdCugdTdTsusu	0.19	0.36	98'0	0.045
D1306	S1306	324	AfacaGfuguUfcUfuGfdCUdCUdAudAsa	AS1306	1416	dTUdAUdAGfaGfcAfaGfaAfCfAfcUfGfUfusUfsu	80.0	0.22	0.61	
D1307	21307	325	AfacaGfuguUfcUfdTGfdCUdCUdAudAsa	AS1307	1417	dTUdAUdAGfaGfcAfaGfaAfCfAfcUfGfUfusUfsu	0.13	0.39	0.84	
D1308	S1308	326	AfacaGfuguUfcUfuGfdCUdCUdAudAsa	AS1308	1418	dTUdAUdAgdAGfcAfaGfaAfcAfcUfgUfusUfsu	60'0	0.13	0.48	
D1309	81309	327	AfacaGfuguUfcUfdTGfdCUdCUdAudAsa	AS1309	1419	dTUdAUdAgdAGfdCAfaGfaAfcAfcUfgUfusUfsu	0.07	0.13	0.58	
D1310	S1310	328	AfacaAfuguUfcUfdTGfdCUdCudAudAsa	AS1310	1420	dTUdAudAgdAGfdCAfaGfaAfcAfcAfgUfusUfsu	0.07	0.14	0.55	
D1311	51311	329	AfaCfaAfuGfuUfcUfuGfcUfcUfdAdTdAsdA	AS1311	1421	dTdTdAdTaGfaGfcAfaGfaAfcAfcAfgUfusUfsu	0.10	0:30	99'0	
D1312	S1312	330	AfacaGfuguUfcUfuGfdCUdCUdAudAsa	AS1312	1422	dTUdAUdAgdAGfcAfaGfaAfcAfcUfgUfusUfsu	60'0	0.13	0.48	
D1313	S1313	331	AfAfCfaGfuGfuucUfuGfcUfcUfaUfasAf	AS1313	1423	uUfaUfaGfaGfcAfaGfAfAfcAfcUfguusUfsu	0.14	0.38	0.74	
D1314	51314	332	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf	AS1314	1424	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	0.07	0.19	0.54	
D1315	S1315	333	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf	AS1315	1425	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	0.07	0.15	0.55	
D1316	S1316	334	AfaCfaGfuGfuUfcUfuGfcUfauasAf	AS1316	1426	uUfAfUfaGfaGfcAfaGfaAfcAfcUfgUfususu	0.07	0.16	0.53	
D1317	S1317	335	AfacaGfuGfuUfcUfuGfcUfcUfaUfasAf	AS1317	1427	uUfaUfaGfaGfcAfaGfaAfcAfcUfGfUfususu	0.07	0.16	0.55	

1	3	1	8	t	2	8		5	0	10	1	2	10	3	3	C +	7	2	t	6	10	7	3	2	3	
0.61	0.53	0.61	0.58	0.84	0.62	0.78	08.0	99'0	0.70	0.55	0.71	0.76	0.65	0.53	0.73	0.54	0.57	96:0	0.54	69:0	0.55	0.57	0.63	0.86	0.73	0 66
0.32	0.16	0.16	0.14	0.49	0.20	0.25	0.18	0.21	0.31	0.15	0.19	0.27	0.21	0.17	0.25	0.18	0.38	0.50	0.19	0.20	0.16	0.17	0.22	0.56	0.37	0.20
0.10	0.08	0.08	90:0	0.15	0.07	0.08	0.08	0.07	0.10	0.07	0.08	60'0	0.07	0.07	0.08	0.07	0.14	0.16	0.08	0.08	0.07	0.08	0.08	0.21	0.14	0.08
uUfaUfaGfaGfcAfaGfaAfCfAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfususu	uUfaUfagaGfcAfaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfAfGfaAfcAfcUfgUfusUfsu	uUfaUfAfGfaGfcAfaGfaAfcAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaAfcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAfcAfcUfguusUfsu	uUfauaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfAfAfcAfcUfgUfusUfsu	uUfAfUfaGfaGfcAfaGfaAfcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAfcAfcugUfusUfsu	uuaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAfCfAfcUfgUfusUfsu	uUfaUfAfGfaGfcAfaGfaAfcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAfcacUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAfcAfCfUfgUfusUfsu	uUfaUfaGfaGfcAfAfGfaAfcAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaacAfcUfgUfusUfsu	uUfAfUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfaGfCfAfaGfaAfcAfcUfguusUfsu	uUfaUfaGfaGfcAfagaAfcAfcUfgUfusUfsu	uUfaUfAfGfaGfcAfaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAfCfAfcUfgUfususu	uUfaUfaGfaGfcAfAfGfaAfcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaacAfcUfGfUfusUfsu	uUfaUfaGfaGfcaaGfAfAfcAfcUfeUfusUfsu
1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	
AS1318	AS1319	AS1320	AS1321	AS1322	AS1323	AS1324	AS1325	AS1326	AS1327	AS1328	AS1329	AS1330	AS1331	AS1332	AS1333	AS1334	AS1335	AS1336	AS1337	AS1338	AS1339	AS1340	AS1341	AS1342	AS1343	AS1344
AfAfCfaGfuguUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfCfUfaUfasAf	AfaCfaGfuGfuUfcuuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcuaUfasAf	AfAfCfaGfuGfuUfcUfuGfcUfcUfaUfasAf	AfAfCfaGfuGfuUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcUfAfUfasAf	AfaCfaGfuGfuucUfuGfcUfcUfaUfasAf	AfAfCfaGfuGfuUfcUfuGfcUfcUfauasAf	AfaCfAfGfuGfuUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfAfsAf	AfaCfaGfuguUfcUfuGfcUfcUfaUfasAf	AfAfCfaGfuGfuUfcUfuGfcUfcuaUfasAf	AfaCfaGfUfGfuUfcUfuGfcUfcUfaUfasAf	AfaCfaguGfuUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcuuGfcUfcUfaUfasAf	AfaCfaGfuGfUfUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcUfauasAf	AfAfCfaGfuGfuUfcUfugcUfcUfaUfasAf	AfaCfaGfuGfuUfcfUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcuaUfasAf	AfaCfaGfuguUfcUfuGfcUfcUfaUfasAf	AfAfCfaGfuGfuUfcuuGfcUfcUfaUfasAf	AfacaGfuGfUfUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuucUfUfGfcUfcUfaUfasAf
336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	
18	S1319	51320	51321	S1322	51323	51324	S1325	S1326	S1327	S1328	S1329	S1330	51331	51332	S1333	S1334	S1335	51336	S1337	S1338	S1339	S1340	51341	S1342	51343	S1344
51318	S13	S	L°,	0,	L												_	_	_	-		_				$\overline{}$

0.73	06.0	0.85	0.58	0.88	0.52	0.58	0.84	0.68	0.52	0.63	0.79	0.51	0.71	0.61	0.87	0.52	0.81	0.68	0.67	0.95	0.53	0.53	0.54	0.89	0.55	0.58
0.34	0.42	0.43	0.21	0.39	0.13	0.21	0.49	0.25	0.15	0.26	0.33	0.19	0.48	0.17	0.40	0.14	0.28	0.16	0.26	0.59	0.13	0.16	0.15	0.56	0.12	0.18
0.12	0.16	0.17	0.08	0.21	90.0	0.08	0.18	0.11	0.07	0.10	0.16	0.09	0.22	0.10	0.14	0.07	0.10	90.0	0.09	0.20	90.0	80.0	0.07	0.23	90.0	0.07
uUfaUfaGfaGfcAfAfGfaAfcAfcugUfusUfsu	uUfAfUfaGfaGfcAfaGfaacAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaacAfcUfgUfusUfsUf	uUfaUfaGfaGfcAfaGfAfAfcAfcugUfusUfsu	uUfaUfAfGfaGfcAfaGfaacAfcUfgUfusUfsu	uUfaUfaGfaGfcaaGfaAfcAfCfUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAfCfAfcugUfusUfsu	uUfaUfaGfaGfcAfAfGfaAfcacUfgUfusUfsu	uUfaUfaGfAfGfcAfaGfaacAfcUfgUfusUfsu	uUfaUfaGfaGfcaaGfaAfcAfcUfGfUfusUfsu	uUfaUfaGfaGfcAfaGfAfCacUfgUfusUfsu	uUfaUfaGfaGfCfAfaGfaacAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAfcAfcugUfusUfsUf	uUfaUfaGfaGfcAfAfGfaacAfcUfgUfusUfsu	uUfaUfaGfaGfcaaGfaAfcAfcUfgUfusUfsUf	uUfaUfaGfaGfcAfaGfaacAfCfUfgUfusUfsu	uUfaUfAfGfaGfcaaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfagcAfaGfaAfcAfcUfgUfUfsUfsu	uUfauaGfaGfcAfaGfAfcAfcUfgUfusUfsu	uuaUfaGfaGfCfAfaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	uUfAfUfaGfagcAfaGfaAfcAfcUfgUfusUfsu	uUfaUfaGfagcAfaGfaAfcAfcUfgUfusUfsUf	uUfauaGfaGfcAfaGfaAfcfAfcUfgUfusUfsu	uuaUfaGfaGfcAfAfGfaAfcAfcUfgUfusUfsu	uUfaUfAfGfagcAfaGfaAfcAfcUfgUfusUfsu	uUfaUfAfGfagcAfaGfaAfcAfcUfgUfusUfsu
1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481
AS1345	AS1346	AS1347	AS1348	AS1349	AS1350	AS1351	AS1352	AS1353	AS1354	AS1355	AS1356	AS1357	AS1358	AS1359	AS1360	AS1361	AS1362	AS1363	AS1364	AS1365	AS1366	AS1367	AS1368	AS1369	AS1370	AS1371
AfaCfAfGfuGfuUfcuuGfcUfcUfaUfasAf	AfaCfaGfuGfUfUfcUfuGfcUfcUfauasAf	AfaCfaGfuGfUfuUfuGfcUfcUfaUfasAf	AfaCfAfGfuGfuucUfuGfcUfcUfaUfasAf	AfaCfaGfuGfUfuHcUfuGfcUfcuaUfasAf	AfaCfaguGfuUfcUfUfGfcUfcUfaUfasAf	AfaCfAfGfuguUfcUfuGfcUfcUfaUfasAf	AfaCfaGfUfGfuUfcuuGfcUfcUfaUfasAf	AfaCfaGfuGfUfUfcUfuGfcucUfaUfasAf	AfacaGfuGfuUfcUfUfGfcUfcUfaUfasAf	AfaCfaGfUfGfuucUfuGfcUfcUfaUfasAf	AfaCfaGfuGfUfUfcUfugcUfcUfaUfasAf	AfaCfAfGfuGfuUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfUfUfcuuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfUfGfcUfcUfaUfasAf	AfaCfaguGfUfufcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcUfUfGfcUfcuaUfasAf	aaCfaGfuGfuUfcUfuGfCfUfcUfaUfasAf	AfaCfaGfuGfuucUfuGfcUfcUfAfUfasAf	AfaCfaGfuGfuUfcUfugcUfcUfaUfAfsAf	aacaguguucuugcucuanasa	AfaCfaGfuGfuUfcUfuGfCfUfcUfauasAf	AfaCfaGfuGfuUfcUfuGfCfUfcUfaUfasAf	AfaCfaGfuguUfcUfuGfcUfcUfAfUfasAf	AfaCfaGfuGfuUfcuuGfcUfcUfaUfAfsAf	AfaCfaGfuGfuUfcUfuGfCfUfcuaUfasAf	AfaCfaGfuGfuUfcUfuGfCfUfcuaUfasAf
363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389
S1345	S1346	S1347	S1348	S1349	S1350	S1351	S1352	S1353	S1354	S1355	S1356	S1357	S1358	S1359	S1360	S1361	S1362	S1363	S1364	S1365	S1366	S1367	S1368	S1369	S1370	S1371
	D1346	D1347	D1348	D1349	D1350	D1351	D1352	D1353	D1354	D1355	D1356	D1357	D1358	D1359	D1360	D1361	D1362	D1363	D1364	D1365	D1366	D1367	D1368	D1369	D1370	D1371

0.56	68.0	0.64	0.94	96.0	0.64	0.97	62'0	0.58	96'0	69.0	0.85	0.54	0.75	06.0	0.70	09:0	0.62	92'0	0.81	0.55	0.57	1.06	0.58	0.73	0.73	98.0
0.15	0.51	0.21	0.40	0.40	0.17	0.50	0.24	0.14	0.34	0.18	0.38	0.16	0.20	0.56	0.19	0.14	0.19	0.27	98.0	0.17	0.15	89.0	0.18	0.27	0.51	0.34
90.0	0.21	80.0	0.15	0.13	80.0	0.18	80.0	0.07	0.11	80.0	0.14	0.07	80:0	0.25	80.0	0.08	80.0	80.0	0.18	0.07	0.07	0.26	90'0	60.0	0.20	0.13
uUfauaGfaGfcAfaGfaAfcAfcfUfgUfusUfsu	uuaUfaGfaGfcAfaGfAfAfcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAfCfAfcUfGfUfusUfsu	uUfaUfaGfagcAfAfGfaAfcAfcUfgUfusUfsu	uUfaUfaGfagcAfAfGfaAfcAfcUfgUfusUfsu	uUfAfUfagaGfcAfaGfaAfcAfcUfgUfusUfsu	uuaUfaGfaGfcAfaGfaAfCfAfcUfgUfusUfsu	uUfaUfaGfagcAfaGfAfAfcAfcUfgUfusUfsu	uUfauaGfaGfcAfaGfaAfcAfcUfgUfUfsUfsu	uuaUfaGfaGfcAfaGfaAfcAfCfUfgUfusUfsu	uUfaUfaGfagcAfaGfaAfCfAfcUfgUfusUfsu	uUfaUfagaGfcAfAfGfaAfcAfcUfgUfusUfsu	uUfauaGfaGfcAfaGfaAfcAfcUfgUfusUfsUf	uuaUfaGfaGfcAfaGfaAfcAfcUfGfUfusUfsu	uUfdAUdAGfaGfcAfaGfaadCadCudGdTdTsusu	uUfaUfaGfagcAfaGfaAfcAfCfUfgUfusUfsu	uUfaUfagaGfcAfaGfAfAfcAfcUfgUfusUfsu	uuaUfAfGfaGfcAfaGfaAfcAfcUfgUfusUfsu	uuaUfaGfaGfcAfaGfaAfcAfcUfgUfUfsU	${\tt uUfdAUdAGfaGfaGfaadCadCudGudTsusu}$	uUfaUfaGfagcAfaGfaAfcAfcUfGfUfusUfsu	uUfaUfagaGfcAfaGfaAfCfAfcUfgUfusUfsu	uUfauaGfaGfcAfAfGfaAfcAfcUfgUfusUfsu	uuaUfaGfAfGfcAfaGfaAfcAfcUfgUfusUfsu	uuaUfaGfaGfaAfaGfaAfcAfcUfgUfusUfsUf	uUfadTdAdGdAGfcAfaGfaGfcAfcAfgUfusUfsu	uUfAfUfaGfAfGfcAfAfGfaAfCfAfcUfGfUfusUfsu
1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1201	1502	1503	1504	1505	1506	1507	1508
AS1372	AS1373	AS1374	AS1375	AS1376	AS1377	AS1378	AS1379	AS1380	AS1381	AS1382	AS1383	AS1384	AS1385	AS1386	AS1387	AS1388	AS1389	AS1390	AS1391	AS1392	AS1393	AS1394	AS1395	AS1396	AS1397	AS1398
AfaCfaguGfuUfcUfuGfcUfcUfAfUfasAf	AfaCfaGfuGfuucUfuGfcUfcUfaUfAfsAf	AfacaGfuguUfcUfuGfcUfcUfaUfasAf	AfaCfaGfuGfuUfcuuGfCfUfcUfaUfasAf	AfaCfaGfuGfuUfcuuGfCfUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfCfUfauasAf	AfaCfaGfuguUfcUfuGfcUfcUfaUfAfsAf	AfaCfaGfuucUfuGfCfUfcUfaUfasAf	aaCfaGfuGfuUfcUfuGfcUfcUfAfUfasAf	AfaCfaguGfuUfcUfuGfcUfcUfaUfAfsAf	AfaCfaGfuguUfcUfuGfCfUfcUfaUfasAf	AfaCfaGfuGfuUfcuuGfcUfcfUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcUfAfUfasAf	AfacaGfuGfuUfcUfuGfcUfcUfaUfAfsAf	aacaguguucUfuGfcUcUaudAsa	AfaCfaguGfuUfcUfuGfCfUfcUfaUfasAf	AfaCfaGfuucUfuGfcUfCfUfaUfasAf	AfaCfaGfuGfuUfcUfuGfcUfcuaUfAfsAf	aaCfaGfuGfuUfcUfuGfcUfcUfaUfAfsAf	aacaguguucdTudGcdTcdTadTasa	AfacaGfuGfuUfcUfuGfCfUfcUfaUfasAf	AfaCfaGfuguUfcUfuGfcUfCfUfaUfasAf	AfaCfaGfuGfuUfcuuGfcUfcUfAfUfasAf	AfaCfaGfuGfuUfcUfuGfcucUfaUfAfsAf	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfAfsAf	AfaCfaAfuGfuUfcUfuGfcdAdCdTdAUfasAf	AfacaGfuguUfcuuGfcucUfauasAf
390	391	392	393	394	395	396	397	398	668	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416
S1372	51373	S1374	S1375	S1376	S1377	S1378	81379	21380	51381	S1382	S1383	S1384	S1385	21386	21387	21388	S1389	21390	S1391	S1392	S1393	S1394	S1395	21396	S1397	S1398
D1372	D1373	D1374	D1375	D1376	D1377	D1378	D1379	D1380	D1381	D1382	D1383	D1384	D1385	D1386	D1387	D1388	D1389	D1390	D1391	D1392	D1393	D1394	D1395	D1396	D1397	D1398

D1399	S1399	417	dAacadGugudTcuudGcucdTauasdA	AS1399	1509	udTdAdTadGdAdGcdAdAdGadAdCdAcdTdGdTusdTsu	0.24	0.42	0.82	
D1400	21400	418	AfaCfaAfuGfuUfcUfuGfdCdAdCdTaUfasAf	AS1400	1510	uUfaUfdAdGdAdGcAfaGfaGfcAfcAfgUfusUfsu	0.49	0.85	0.78	
D1401	S1401	419	AfaCfaAfuGfuUfcUfudGdCdAdCUfaUfasAf	AS1401	1511	uUfaUfadGdAdGdCAfaGfaGfcAfcAfgUfusUfsu	29.0	0.83	0.85	
D1402	S1402	420	aaCfAfguGfUfucUfUfgcUfCfuaUfAfsa	AS1402	1512	uUfaUfAfgaGfCfaaGfAfacAfCfugUfUfsusu	0.18	0.47	08.0	
D1403	S1403	421	AfaCfaAfuGfuUfcUfuGfcdAdCUfadTdAsAf	AS1403	1513	udTdAUfadGdAGfcAfaGfaGfcAfcAfgUfusUfsu	0.73	0.89	0.77	
D1404	S1404	422	aacAgugUucuUgcuCuauAsa	AS1404	1514	uUaUAgAGCaAGAaCACuGUUsusu	0.12	0.39	0.79	
D1405	S1405	423	AacaGuguUcuuGcucUanasA	AS1405	1515	uUAUaGAGcAAGaACAcUGUusUsu	0.12	0.37	0.77	
D1406	S1406	424	AfaCfaAfuGfuUfcUfudGdCAfcUfadTdAsAf	AS1406	1516	udTdAUfaGfadGdCAfaGfaGfcAfcAfgUfusUfsu	0.59	0.93	68'0	
D1407	S1407	425	aACagUGuuCUugCUcuAUasa	AS1407	1517	UUauAGagCAagAAcaCUguUsUsu	60.0	0.16	0.55	
D1408	S1408	426	AfaCfaAfuGfuUfcUfuGfcAfcdTdAdTdAsAf	AS1408	1518	udTdAdTdAGfaGfcAfaGfaAfcAfcAfgUfusUfsu	0.22	0.64	98.0	
D1409	S1409	427	aaCAguGUucUUgcUCuaUAsa	AS1409	1519	uUaUAgaGCaaGAacACugUUsusu	0.13	0.31	92.0	
D1410	S1410	428	AfaCfaAfuGfuUfcUfuGfcAfdCdTdAdTdAsAf	AS1410	1520	udTdAdTdAdGaGfcAfaGfaGfcAfcAfgUfusUfsu	0.77	0.94	0.93	
D1411	S1411	429	aacAfgugUfucuUfgcuCfuauAfsa	AS1411	1521	uUfaUfAfgAfGfCfaAfGfAfaCfAfCfuGfUfUfsusu	0.23	0.53	1.04	
D1412	S1412	430	aacdAgugdTucudTgcudCuaudAsa	AS1412	1522	udTadTdAgdAdGdCadAdGdAadCdAdCudGdTdTsusu	0:30	0.64	06:0	
D1413	S1413	431	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasa	AS1413	1523	UfUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	60.0	0.19	0.63	
D1414	S1414	432	AfaCfaGfuGfUfufcUfuGfcUfcUfaUfasa	AS1414	1524	UfUfaUfaGfaGfcAfaGfaacAfcUfgUfusUfsu	0.11	0.28	99:0	
D1415	S1415	433	AfaCfaGfuGfuUfcUfuGfCfUfcUfaUfasa	AS1415	1525	UfUfaUfaGfagcAfaGfaAfcAfcUfgUfusUfsu	90.0	0.13	0.53	
D1416	S1416	434	aacaguguucuugcucuanasa	AS1416	1526	UfUfAfUfAfGfAfGfCfAfGfAfGfAfCfAfCfUfGfUfUfsusu	0.20	0.53	66:0	
D1417	S1417	435	AfaCfaGfuGfuUfcUfuGfcUfcUfAfUfasa	AS1417	1527	UfUfauaGfaGfcAfaGfaAfcAfcUfgUfusUfsu	0.07	0.17	0.53	
D1418	S1418	436	aAfCfagUfGfuuCfUfugCfUfcuAfUfasa	AS1418	1528	UfUfauAfGfagCfAfagAfAfcaCfUfguUfsUfsu	80.0	0.20	0.70	
D1419	S1419	437	AfaCfAfGfuGfuUfcUfuGfcUfcUfaUfasAf	AS1419	1529	uUfaUfaGfaGfcAfaGfaAfcAfcugUfusUfsUf	0.08	0.20	0.70	
D1420	S1420	438	GfaCfuUfcUfcCfUfCfcAfgugGfaCfcUfL96	AS1420	1530	${\tt aGfgUfcCfAfCfuGfgagGfaGfaAfgUfcsCfsc}$				
D1421	S1421	439	GfaCfuUfcUfcCfUfCfcAfgUfGfGfaCfcUfL96	AS1421	1531	aGfgUfccaCfuGfgagGfaGfaAfgUfcsCfsc				
D1422	S1422	440	AfcUfuCfuCfcUfCfCfaGfuggAfcCfuGfL96	AS1422	1532	cAfgGfuCfCfAfcUfggaGfgAfgAfaGfusCfsc				
D1423	S1423	441	AfcUfuCfuCfcUfCfCfaGfuGfGfAfcCfuGfL96	AS1423	1533	cAfgGfuccAfcUfggaGfgAfgAfaGfusCfsc				
D1424	S1424	442	CfuUfcUfcCfuCfCfAfgUfggaCfcUfgAfL96	AS1424	1534	uCfaGfgUfCfCfaCfuggAfgGfaGfaAfgsUfsc				
D1425	S1425	443	CfuUfcUfcCfuCfCfAfgUfgGfAfCfcUfgAfL96	AS1425	1535	uCfaGfgucCfaCfuggAfgGfaGfaAfgsUfsc				

uUfcAfgGfUfCfcAfcugGfaGfgAfgAfasGfsu	uUfcAfgguCfcAfcugGfaGfgAfgAfasGfsu	cUfuCfaGfGfUfcCfacuGfgAfgGfaGfasAfsg	cUfuCfaggUfcCfacuGfgAfgGfaGfasAfsg	cCfuUfcAfGfGfuCfcacUfgGfaGfgAfgsAfsa	cCfuUf cagGfuCf cacUfgGfaGfgAfgsAfs a	uCfcUfuCfAfGfgUfccaCfuGfgAfgGfasGfsa	uCfcUfucaGfgUfccaCfuGfgAfgGfasGfsa	gUfcCfuUfCfAfgGfuccAfcUfgGfaGfgsAfsg	gUfcCfuucAfgGfuccAfcUfgGfaGfgsAfsg	cGfuCfcUfUfCfaGfgucCfaCfuGfgAfgsGfsa	cGfuCfcuuCfaGfgucCfaCfuGfgAfgsGfsa	uCfgUfcCfUfUfcAfgguCfcAfcUfgGfasGfsg	uCfgUfccuUfcAfgguCfcAfcUfgGfasGfsg	cUfcGfuCfCfUfuCfaggUfcCfaCfuGfgsAfsg	cUfcGfuccUfuCfaggUfcCfaCfuGfgsAfsg	cCfuCfgUfcfCfuUfcagGfuCfcAfcUfgsGfsa	cCfuCfgucCfuUfcagGfuCfcAfcUfgsGfsa	cCfcUfcGfUfCfcUfucaGfgUfcCfaCfusGfsg	cCfcUfcguCfcUfucaGfgUfcCfaCfusGfsg	uCfcCfuCfGfUfcCfuucAfgGfuCfcAfcsUfsg	uCfcCfucgUfcCfuucAfgGfuCfcAfcsUfsg	${\tt aUfcCfcUfcfGfuCfcuuCfaGfgUfcCfasCfsu}$	aUfcCfcucGfuCfcuuCfaGfgUfcCfasCfsu	cAfuCfcCfUfCfgUfccuUfcAfgGfuCfcsAfsc	cAfuCfccuCfgUfccuUfcAfgGfuCfcsAfsc	cCfaUfcCfCfUfcGfuccUfuCfaGfgUfcsCfsa
1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562
AS1426	AS1427	AS1428	AS1429	AS1430	AS1431	AS1432	AS1433	AS1434	AS1435	AS1436	AS1437	AS1438	AS1439	AS1440	AS1441	AS1442	AS1443	AS1444	AS1445	AS1446	AS1447	AS1448	AS1449	AS1450	AS1451	AS1452
UfuCfuCfcUfcCfAfGfuGfgacCfuGfaAfL96	UfucfucfcUfcCfAfGfuGfgAfCfCfuGfaAfL96	UfcUfcCfuCfcAfGfUfgGfaccUfgAfaGfL96	UfcUfcCfuCfcAfGfUfgGfaCfCfUfgAfaGfL96	CfuCfcUfcCfaGfUfGfgAfccuGfaAfgGfL96	CfuCfcUfcCfaGfUfGfgAfcCfUfGfaAfgGfL96	UfcCfuCfcAfgUfGfGfaCfcugAfaGfgAfL96	UfcCfuCfcAfgUfGfGfaCfcUfGfAfaGfgAfL96	CfcUfcCfaGfuGfGfAfcCfugaAfgGfaCfL96	CfcUfcCfaGfuGfGfAfcCfuGfAfAfgGfaCfL96	CfuCfcAfgUfgGfAfCfcUfgaaGfgAfcGfL96	CfuCfcAfgUfgGfAfcfcUfgAfAfGfgAfcGfL96	UfcCfaGfuGfgAfCfCfuGfaagGfaCfgAfL96	UfcCfaGfuGfgAfCfCfuGfaAfGfGfaCfgAfL96	CfcAfgUfgGfaCfCfUfgAfaggAfcGfaGfL96	CfcAfgUfgGfaCfCfUfgAfaGfGfAfcGfaGfL96	CfaGfuGfgAfcCfUfGfaAfggaCfgAfgGfL96	CfaGfuGfgAfcCfUfGfaAfgGfAfCfgAfgGfL96	AfgUfgGfaCfcUfGfAfaGfgacGfaGfgGfL96	AfgUfgGfaCfcUfGfAfaGfgAfCfGfaGfgGfL96	GfuGfgAfcCfuGfAfAfgGfacgAfgGfgAfL96	GfuGfgAfcCfuGfAfAfgGfaCfGfAfgGfgAfL96	UfgGfaCfcUfgAfAfGfgAfcgaGfgGfaUfL96	UfgGfaCfcUfgAfAfGfgAfcGfAfGfgGfaUfL96	GfgAfcCfuGfaAfGfGfaCfgagGfgAfuGfL96	GfgAfcCfuGfaAfGfGfaCfgAfGfGfgAfuGfL96	GfaCfcUfgAfaGfGfAfcGfaggGfaUfgGfL96
444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470
S1426	S1427	S1428	S1429	S1430	S1431	S1432	S1433	S1434	S1435	S1436	S1437	S1438	S1439	S1440	S1441	S1442	S1443	S1444	S1445	S1446	S1447	S1448	S1449	S1450	S1451	S1452
D1426	D1427	D1428	D1429	D1430	D1431	D1432	D1433	D1434	D1435	D1436	D1437	D1438	D1439	D1440	D1441	D1442	D1443	D1444	D1445	D1446	D1447	D1448	D1449	D1450	D1451	D1452

GfaCfcUfgAfaGfGfAfcGfaGfGfGfaUfgGfL96 AS1453 1563		156	~	cCfaUfcccUfcGfuccUfuCfaGfgUfcsCfsa
AfcCfuGfaAfgGfAfCfgAfgggAfuGfgGfL96 AS1454 1564	H	1564		cCfcAfuCfCfCfuCfgucCfuUfcAfgGfusCfsc
AfcCfuGfaAfgGfAfcfgAfgGfGfAfuGfgGfL96 AS1455 1565		1565	_	cCfcAfuccCfuCfgucCfuUfcAfgGfusCfsc
CfcUfgAfaGfgAfCfGfaGfggaUfgGfgAfL96 AS1456 1566	\vdash	1566		uCfcCfaUfcfcUfcguCfcUfuCfaGfgsUfsc
CfcUfgAfaGfgAfCfGfaGfgGfAfUfgGfgAfL96 AS1457 1567		1567		uCfcCfaucCfcUfcguCfcUfuCfaGfgsUfsc
CfuGfaAfgGfaCfGfAfgGfgauGfgGfaUfL96 AS1458 1568		1568		aUfcCfcAfUfcfcCfucgUfcCfuUfcAfgsGfsu
CfuGfaAfgGfaCfGfAfgGfgAfUfGfgGfaUfL96 AS1459 1569		1569		aUfcCfcauCfcCfucgUfcCfuUfcAfgsGfsu
UfgAfaGfgAfcGfAfGfgGfaugGfgAfuUfL96 AS1460 1570		1570		aAfuCfcCfAfUfcCfcucGfuCfcUfuCfasGfsg
UfgAfaGfgAfcGfAfGfgGfaUfGfGfgAfuUfL96 AS1461 1571		1571		aAfuCfccaUfcCfcucGfuCfcUfuCfasGfsg
GfaAfgGfaCfgAfGfGfgAfuggGfaUfuUfL96 AS1462 1572		1572		aAfaUfcCfCfAfuCfccuCfgUfcCfuUfcsAfsg
GfaAfgGfaCfgAfGfGfgAfuGfGfGfaUfuUfL96 AS1463 1573		1573		aAfaUfcccAfuCfccuCfgUfcCfuUfcsAfsg
AfaGfgAfcGfaGfGfaUfgggAfuUfuCfL96 AS1464 1574	_	1574		gAfaAfuCfCfCfaUfcccUfcGfuCfcUfusCfsa
AfaGfgAfcGfaGfGfaUfgGfGfAfuUfuCfL96 AS1465 1575		1575		gAfaAfuccCfaUfcccUfcGfuCfcUfusCfsa
AfgGfaCfgAfgGfGfAfuGfggaUfuUfcAfL96 AS1466 1576		1576		uGfaAfaUfCfCfcAfuccCfuCfgUfcCfusUfsc
AfgGfaCfgAfgGfGfAfuGfgGfAfUfuUfcAfL96 AS1467 1577		1577		uGfaAfaucCfcAfuccCfuCfgUfcCfusUfsc
GfgAfcGfaGfgGfAfUfgGfgauUfuCfaUfL96 AS1468 1578		1578		aUfgAfaAfUfCfcCfaucCfcUfcGfuCfcsUfsu
GfgAfcGfaGfgGfAfUfgGfgAfUfUfuCfaUfL96 AS1469 1579		1579		aUfgAfaauCfcCfaucCfcUfcGfuCfcsUfsu
GfaCfgAfgGfgAfUfGfgGfauuUfcAfuGfL96 AS1470 1580	_	1580		cAfuGfaAfAfUfcCfcauCfcCfuCfgUfcsCfsu
GfaCfgAfgGfgAfUfGfgGfaUfUfUfcAfuGfL96 AS1471 1581		1581		cAfuGfaaaUfcCfcauCfcUCfgUfcsCfsu
AfcGfaGfgGfaUfGfGfgAfuuuCfaUfgUfL96 AS1472 1582	_	1582		aCfaUfgAfAf4CfccaUfcCfcUfcGfusCfsc
AfcGfaGfgGfaUfGfGfgAfuUfUfCfaUfgUfL96 AS1473 1583		1583		aCfaUfgaaAfuCfccaUfcCfcUfcGfusCfsc
CfgAfgGfgAfuGfGfGfaUfuucAfuGfuAfL96 AS1474 1584		1584		uAfcAfuGfAfAfaUfcccAfuCfcCfuCfgsUfsc
CfgAfgGfgAfuGfGfGfaUfuUfCfAfuGfuAfL96 AS1475 1585		1585		uAfcAfugaAfaUfcccAfuCfcCfuCfgsUfsc
GfaGfgGfaUfgGfGfAfuUfucaUfgUfaAfL96 AS1476 1586		1586		uUfaCfaUfGfAfaAfuccCfaUfcCfcUfcsGfsu
GfaGfgGfaUfgGfGfAfuUfuCfAfUfgUfaAfL96 AS1477 1587		1587		uUfaCfaugAfaAfuccCfaUfcCfcUfcsGfsu
AfgGfgAfuGfgGfAfUfuUfcauGfuAfaCfL96 AS1478 1588	-	1588		gUfuAfcAfUfGfaAfaucCfcAfuCfcCfusCfsg
AfgGfgAfuGfgGfAfUfuUfcAfUfGfuAfaCfL96 AS1479 1589		1589		gUfuAfcauGfaAfaucCfcAfuCfcCfusCfsg

GfgGfaUfgGfgAfUfUfuCfaugUfaAfcCfL96 AS1480	ccfL96	AS14		1590	gGfuUfaCfAfUfgAfaauCfcCfaUfcCfcsUfsc
GfgGfaUfgGfgAfUfUfuCfaUfGfUfaAfcCfL96 AS1481		AS1	181	1591	gGfuUfacaUfgAfaauCfcCfaUfcCfcsUfsc
GfgAfuGfgGfaUfUfUfcAfuguAfaCfcAfL96 AS1482		AS148	32	1592	uGfgUfuAfCfAfuGfaaaUfcCfcAfuCfcsCfsu
GfgAfuGfgGfaUfUfUfcAfuGfUfAfaCfcAfL96 AS1483		AS148	3	1593	uGfgUfuacAfuGfaaaUfcCfcAfuCfcsCfsu
GfaUfgGfgAfuUfUfCfaUfguaAfcCfaAfL96 AS1484		AS1484	-	1594	uUfgGfuUfAfCfaUfgaaAfuCfcCfaUfcsCfsc
GfaUfgGfgAfuUfUfCfaUfgUfAfAfcCfaAfL96 AS1485		AS1485		1595	uUfgGfuuaCfaUfgaaAfuCfcCfaUfcsCfsc
AfuGfgGfaUfuUfCfAfuGfuaaCfcAfaGfL96 AS1486		AS1486		1596	cUfuGfgUfUfAfcAfugaAfaUfcCfcAfusCfsc
AfuGfgGfaUfuUfCfAfuGfuAfAfCfcAfaGfL96 AS1487		AS1487		1597	cUfuGfguuAfcAfugaAfaUfcCfcAfusCfsc
UfgGfgAfuUfuCfAfUfgUfaacCfaAfgAfL96 AS1488		AS1488		1598	uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc
UfgGfgAfuUfuCfAfUfgUfaAfCfCfaAfgAfL96 AS1489		AS1489		1599	uCfuUfgguUfaCfaugAfaAfuCfcCfasUfsc
GfgGfaUfuUfcAfUfGfuAfaccAfaGfaGfL96 AS1490		AS1490		1600	cUfcUfuGfGfUfuAfcauGfaAfaUfcCfcsAfsu
GfgGfaUfuUfcAfUfGfuAfaCfCfAfaGfaGfL96 AS1491		AS1491		1601	cUfcUfuggUfuAfcauGfaAfaUfcCfcsAfsu
GfgAfuUfuCfaUfGfUfaAfccaAfgAfgUfL96 AS1492		AS1492		1602	aCfuCfuUfGfGfuUfacaUfgAfaAfuCfcsCfsa
GfgAfuUfuCfaUfGfUfaAfcCfAfAfgAfgUfL96 AS1493		AS1493		1603	aCfuCfuugGfuUfacaUfgAfaAfuCfcsCfsa
GfaUfuUfcAfuGfUfAfaCfcaaGfaGfuAfL96 AS1494		AS1494	_	1604	uAfcUfcUfUfGfgUfuacAfuGfaAfaUfcsCfsc
GfaUfuUfcAfuGfUfAfaCfcAfAfGfaGfuAfL96 AS1495		AS1495		1605	uAfcUfcuuGfgUfuacAfuGfaAfaUfcsCfsc
AfuUfuCfaUfgUfAfAfcCfaagAfgUfaUfL96 AS1496		AS1496	_	1606	aUfaCfuCfUfUfgGfuuaCfaUfgAfaAfusCfsc
AfuUfuCfaUfgUfAfAfcCfaAfGfAfgUfaUfL96 AS1497		AS1497		1607	aUfaCfucuUfgGfuuaCfaUfgAfaAfusCfsc
UfuUfcAfuGfuAfAfCfcAfagaGfuAfuUfL96 AS1498		AS1498		1608	aAfuAfcUfcfUfuGfguuAfcAfuGfaAfasUfsc
UfuUfcAfuGfuAfAfCfcAfaGfAfGfuAfuUfL96 AS1499		AS1499		1609	aAfuAfcucUfuGfguuAfcAfuGfaAfasUfsc
UfuCfaUfgUfaAfCfCfaAfgagUfaUfuCfL96 AS1500		AS1500	_	1610	gAfaUfaCfuUfgguUfaCfaUfgAfasAfsu
UfuCfaUfgUfaAfCfCfaAfgAfGfUfaUfuCfL96 AS1501		AS1501		1611	gAfaUfacuCfuUfgguUfaCfaUfgAfasAfsu
UfcAfuGfuAfaCfCfAfaGfaguAfuUfcCfL96 AS1502		AS1502		1612	gGfaAfuAfcfUfcUfuggUfuAfcAfuGfasAfsa
UfcAfuGfuAfaCfCfAfaGfaGfUfAfuUfcCfL96 AS1503		AS1503		1613	gGfaAfuacUfcUfuggUfuAfcAfuGfasAfsa
CfaUfgUfaAfcCfAfAfgAfguaUfuCfcAfL96 AS1504		AS1504		1614	uGfgAfaUfAfcfucfuugGfuUfaCfaUfgsAfsa
CfaUfgUfaAfcCfAfAfgAfgUf4GfufuCfcAfL96 AS1505		AS1505		1615	uGfgAfauaCfuCfuugGfuUfaCfaUfgsAfsa
AfuGfuAfaCfcAfAfGfaGfuauUfcCfaUfL96 AS1506		AS1506		1616	a Ufg G fa A f U f C u u G f g U f u A f c A f u s G f s a

aUfgGfaauAfcUfcuuGfgUfuAfcAfusGfsa	aAfuGfgAfAfUfaCfucuUfgGfuUfaCfasUfsg	aAfuGfgaaUfaCfucuUfgGfuUfaCfasUfsg	aAfaUfgGfAfAfuAfcucUfuGfgUfuAfcsAfsu	aAfaUfggaAfuAfcucUfuGfgUfuAfcsAfsu	aAfaAfuGfGfAfaUfacuCfuUfgGfuUfasCfsa	aAfaAfuggAfaUfacuCfuUfgGfuUfasCfsa	aAfaAfaUfGfGfaAfuacUfcUfuGfgUfusAfsc	aAfaAfaugGfaAfuacUfcUfuGfgUfusAfsc	uAfaAfaAfUfGfgAfauaCfuCfuUfgGfusUfsa	uAfaAfaauGfgAfauaCfuUfgGfusUfsa	gUfaAfaAfAfUfgGfaauAfcUfcUfuGfgsUfsu	gUfaAfaaaUfgGfaauAfcUfcUfuGfgsUfsu	aGfuAfaAfAfuGfgaaUfaCfuCfuUfgsGfsu	aGfuAfaaaAfuGfgaaUfaCfuCfuUfgsGfsu	uAfgUfaAfAfaUfggaAfuAfcUfcUfusGfsg	uAfgUfaaaAfaUfggaAfuAfcUfcUfusGfsg	u Ufa Gfu Af Af Afa Afugg Afa Ufa Cfu Cfus Ufsg	uUfaGfuaaAfaAfuggAfaUfaCfuCfusUfsg	uUfuAfgUfAfAfaAfaugGfaAfuAfcUfcsUfsu	uUfuAfguaAfaAfaugGfaAfuAfcUfcsUfsu	cUfuUfaGfUfAfaAfaauGfgAfaUfaCfusCfsu	cUfuUfaguAfaAfaauGfgAfaUfaCfusCfsu	gCfuUfuAfGfUfaAfaaaUfgGfaAfuAfcsUfsc	gCfuUfuagUfaAfaaaUfgGfaAfuAfcsUfsc	uGfcUfuUfAfGfuAfaaaAfuGfgAfaUfasCfsu	
1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	
AS1507	AS1508	AS1509	AS1510	AS1511	AS1512	AS1513	AS1514	AS1515	AS1516	AS1517	AS1518	AS1519	AS1520	AS1521	AS1522	AS1523	AS1524	AS1525	AS1526	AS1527	AS1528	AS1529	AS1530	AS1531	AS1532	
AfuGfuAfaCfcAfAfGfaGfuAfUfUfcCfaUfL96	UfgUfaAfcCfaAfGfAfgUfauuCfcAfuUfL96	UfgUfaAfcCfaAfGfAfgUfaUfUfCfcAfuUfL96	GfuAfaCfcAfaGfAfGfuAfuucCfaUfuUfL96	GfuAfaCfcAfaGfAfGfuAfuUfcfCfaUfuUfL96	UfaAfcCfaAfgAfGfUfaUfuccAfuUfuUfL96	UfaAfcCfaAfgAfGfUfaUfuCfCfAfuUfuUfL96	AfaCfcAfaGfaGfUfAfuUfccaUfuUfuUfL96	AfaCfcAfaGfaGfUfAfuUfcCfAfUfuUfuUfL96	AfcCfaAfgAfgUfAfUfuCfcauUfuUfuAfL96	AfcCfaAfgAfgUfAfUfuCfcAfUfUfuUfuAfL96	CfcAfaGfaGfuAfUfUfcCfauuUfuUfaCfL96	CfcAfaGfaGfuAfUfUfcCfaUfUfuUfaCfL96	CfaAfgAfgUfaUfUfCfcAfuuuUfuAfcUfL96	CfaAfgAfgUfaUfUfCfcAfuUfUfUfuAfcUfL96	AfaGfaGfuAfuUfCfCfaUfuuuUfaCfuAfL96	AfaGfaGfuAfuUfCfCfaUfuUfUfUfaCfuAfL96	AfgAfgUfaUfuCfCfAfuUfuuuAfcUfaAfL96	AfgAfgUfaUfuCfCfAfuUfuUfUfAfcUfaAfL96	GfaGfuAfuUfcCfAfUfuUfuuaCfuAfaAfL96	GfaGfuAfuUfcCfAfUfuUfuUfAfCfuAfaAfL96	AfgUfaUfuCfcAfUfuUfuacUfaAfaGfL96	AfgUfaUfuCfcAfUfuUfuAfCfUfaAfaGfL96	GfuAfuUfcCfaUfUfuUfacuAfaAfgCfL96	GfuAfuUfcCfaUfUfuUfaCfUfAfaAfgCfL96	UfaUfuCfcAfuUfUfUfuAfcuaAfaGfcAfL96	
525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	
S1507	\$1508	S1509	S1510	S1511	S1512	S1513	S1514	S1515	S1516	S1517	S1518	81519	S1520	S1521	S1522	S1523	S1524	S1525	S1526	S1527	81528	S1529	S1530	\$1531	S1532	
D1507	D1508	D1509	D1510	D1511	D1512	D1513	D1514	D1515	D1516	D1517	D1518	D1519	D1520	D1521	D1522	D1523	D1524	D1525	D1526	D1527	D1528	D1529	D1530	D1531	D1532	

cUfgCfuUfUfAfgUfaaaAfaUfgGfaAfusAfsc	cUfgCfuuuAfgUfaaaAfaUfgGfaAfusAfsc	aCfuGfcUfUfJaGfuaaAfaAfuGfgAfasUfsa	aCfuGfcuuUfaGfuaaAfaAfuGfgAfasUfsa	cAfcUfgCfUfUfuAfguaAfaAfaUfgGfasAfsu	cAfcUfgcuUfuAfguaAfaAfaUfgGfasAfsu	aCfaCfuGfCfUfuUfaguAfaAfaAfuGfgsAfsa	aCfaCfugcUfuUfaguAfaAfaAfuGfgsAfsa	a A f c A f c U f G f C f u U f u a g U f a A f a A f a U f g s G f s a	aAfcAfcugCfuUfuagUfaAfaAfaUfgsGfsa	aAfaCfaCfUfGfcUfuuaGfuAfaAfaAfusGfsg	aAfaCfacuGfcUfuuaGfuAfaAfaAfusGfsg	aAfaAfcAfCfUfgCfuuuAfgUfaAfaAfasUfsg	aAfaAfcacUfgCfuuuAfgUfaAfaAfasUfsg	gAfaAfaCfAfCfuGfcuuUfaGfuAfaAfasAfsu	gAfaAfacaCfuGfcuuUfaGfuAfaAfasAfsu	uGfaAfaAfcHfgcuUfuAfgUfaAfasAfsa	uGfaAfaacAfcUfgcuUfuAfgUfaAfasAfsa	gUfgAfaAfAfCfaCfugcUfuUfaGfuAfasAfsa	gUfgAfaaaCfaCfugcUfuUfaGfuAfasAfsa	gGfuGfaAfAfCAfcugCfuUfuAfgUfasAfsa	gGfuGfaaaAfcAfcugCfuUfuAfgUfasAfsa	aGfgUfgAfAfACfacuGfcUfuUfaGfusAfsa	aGfgUfgaaAfaCfacuGfcUfuUfaGfusAfsa	gAfgGfuGfAfAfaAfcacUfgCfuUfuAfgsUfsa	gAfgGfugaAfaAfcacUfgCfuUfuAfgsUfsa	GfaGfa IfGfΔfaΔfacaCf.i.Gfc Ifi.i IfasGfsi.
1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	7,
AS1534	AS1535	AS1536	AS1537	AS1538	AS1539	AS1540	AS1541	AS1542	AS1543	AS1544	AS1545	AS1546	AS1547	AS1548	AS1549	AS1550	AS1551	AS1552	AS1553	AS1554	AS1555	AS1556	AS1557	AS1558	AS1559	AS1560
Afu Ufc Cfa Ufu Uf Uf Ufa Cfuaa Afg Cfa Gf L96	AfuUfcCfaUfuUfUfUfaCfuAfAfAfgCfaGfL96	UfuCfcAfuUfuUfUfAfcUfaaaGfcAfgUfL96	UfuCfcAfuUfuUfUfAfcUfaAfAfGfcAfgUfL96	UfcCfaUfuUfuUfAfCfuAfaagCfaGfuGfL96	UfcCfaUfuUfuUfAfCfuAfaAfGfCfaGfuGfL96	CfcAfuUfuUfuAfCfUfaAfagcAfgUfgUfL96	CfcAfuUfuUfuAfCfUfaAfaGfCfAfgUfgUfL96	CfaUfuUfuUfaCfUfAfaAfgcaGfuGfuUfL96	CfaUfuUfuUfaCfUfAfaAfgCfAfGfuGfuUfL96	AfuUfuUfuAfcUfAfAfaGfcagUfgUfuUfL96	AfuUfuUfuAfcUfAfAfaGfcAfGfUfgUfuUfL96	UfuUfuUfaCfuAfAfAfgCfaguGfuUfuUfL96	UfuUfuUfaCfuAfAfAfgCfaGfUfGfuUfuUfL96	UfuUfuAfcUfaAfAfGfcAfgugUfuUfuCfL96	UfuUfuAfcUfaAfAfGfcAfgUfGfUfuUfuCfL96	UfuUfaCfuAfaAfGfCfaGfuguUfuUfcAfL96	UfuUfaCfuAfaAfGfCfaGfuGfUfUfuUfcAfL96	UfuAfcUfaAfaGfCfAfgUfguuUfuCfaCfL96	UfuAfcUfaAfaGfCfAfgUfgUfUfUfuCfaCfL96	UfaCfuAfaAfgCfAfGfuGfuuuUfcAfcCfL96	UfaCfuAfaAfgCfAfGfuGfuUfUfUfcAfcCfL96	AfcUfaAfaGfcAfGfUfgUfuuuCfaCfcUfL96	AfcUfaAfaGfcAfGfUfgUfuUfUfCfaCfcUfL96	CfuAfaAfgCfaGfUfGfuUfuucAfcCfuCfL96	CfuAfaAfgCfaGfUfGfuUfuUfCfAfcCfuCfL96	UfaAfaGfcAføUfGfUfuUfucaCfcUfcAfl 96
552	553	554	555	556	557	558	559	260	561	562	563	564	265	995	267	268	569	570	571	572	573	574	575	576	577	570
\$1534	S1535	S1536	S1537	S1538	S1539	S1540	S1541	S1542	S1543	S1544	S1545	S1546	S1547	S1548	S1549	S1550	S1551	S1552	S1553	S1554	S1555	S1556	S1557	S1558	S1559	\$1560
D1534	D1535	D1536	D1537	D1538	D1539	D1540	D1541	D1542	D1543	D1544	D1545	D1546	D1547	D1548	D1549	D1550	D1551	D1552	D1553	D1554	D1555	D1556	D1557	D1558	D1559	D1560

	fuUfusAfsg JfusAfse	2003112.31123	rcutusursa	rcutusursa JfusUfsa	rcotusorsa JfusUfsa fgCfusUfsu	rcorusorsa JfusUfsa fgCfusUfsu CfusUfsu	rcorusorsa JfusUfsa fgCfusUfsu cfusUfsu iuGfcsUfsu	rcorusorsa JfusUfsa fgCfusUfsu cfusUfsu uGfcsUfsu sfcsUfsu	rechtuschsa JfusUfsa fgCfusUfsu cfusUfsu inGfcsUfsu clCUfssCfsu	recrussorsa JfusUfsa fgcfusUfsu cfusUfsu uGfcsUfsu afcsUfsu fcUfgscfsu	rechtuschrad JfusUfsa fgcfusUfsu cfusUfsu inGfcsUfsu inGfcsUfsu fcUfgscfsu facfusGfsc	recrussorsa JfusUfsa fgcfusUfsu cfusUfsu uGfcsUfsu inGfcsUfsu fcUfgsCfsu facfusGfsc cfusGfsc	rectruscussa JfusUfsa fgCfusUfsu cfusUfsu inGfesUfsu ctUfgsCfsu faCfusGfsc crafesUfsg	recrussorsa JfusUfsa fgCfusUfsu cfusUfsu uGfcsUfsu inGfcsUfsu fcUfgsCfsu faCfusGfsc cfusGfsc faCfusGfsc faCfusGfsc faCfusGfsc faCfusGfsc faCfusGfsc	rectruscussa JfusUfsa fgCfusUfsu cfusUfsu inGfesUfsu inGfesUfsu cUfgsCfsu faCfusGfsc faCfusGfsc faCfusGfsc faCfusGfsc faCfasGfsc faCfasGfsc faCfasGfsc	recrussorsa JfusUfsa fgCfusUfsu cfusUfsu cfusUfsu idfcsUfsu sfcsUfsu cUfgsCfsu faCfusGfsc cfusGfsc fcAfcsUfsg AfcsUfsg AfcsUfsg CfasCfsu cfasCfsu cfasCfsu	rectruscussa JfusUfsa fgCfusUfsu cfusUfsu ivGfcsUfsu ivGfcsUfsu cUfgsCfsu faCfusGfsc faCfusGfsc faCfasCfsu faCfasCfsu faCfasCfsu faCfasCfsu faCfasCfsu	rcorusorsa JfusUfsa fgCfusUfsu cfusUfsu cfusUfsu idfcsUfsu idfcsUfsu cUfgsCfsu faCfusGfsc cfusGfsc fcAfcsUfsg AfcsUfsg	rcurusursa JfusUfsa fgCfusUfsu cfusUfsu cfusUfsu ivGfcsUfsu fgcsUfsu facfusGfsc cfusGfsc facfusGfsc facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu	rcorusorsa JfusUfsa fgCfusUfsu cfusUfsu cfusUfsu idfcsUfsu sfcsUfsu faCfusGfsc cfusGfsc cfusGfsc cfusGfsc cfasCfsu faCfasCfsu faCfasCfsu faAfcsAfsc AfcsAfsc AfcsAfsc AfcsAfsc AfacSfsa AfacSfsa AfacSfsa AfacSfsa AfacSfsa	rcorusorsa JfusUfsa grcfusUfsu cfusUfsu cfusUfsu ivGfcsUfsu sfcsUfsu sfcsUfsu coffgsCfsu facfusGfsc cfusGfsc cfusGfsc cfusGfsc cfusGfsc cfusGfsc cfusGfsc facfcsUfsg afcsUfsg afcsUfsg facfasCfsu facfasCfsu cfasCfsu cfasCfsu facfasCfsu facfasCf	rcurusursa JfusUfsa fgCfusUfsu cfusUfsu cdfcsUfsu inGfcsUfsu faCfusGfsc cfusGfsc faCfusGfsc faCfasCfsu faCfasCfsu faAfcsAfsc faAfasAfsc faAfasCfsa AfasCfsa AfasCfsa AfasCfsa AfasCfsa	rcurusursa JfusUfsa grcfusUfsu cfusUfsu ingfcsUfsu sfcsUfsu acfusGfsc cfusGfsc cfusGfsc facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsa	rcurusursa JfusUfsa gcfusUfsu cfusUfsu inGfcsUfsu sfcsUfsu acfusGfsc cfusGfsc cfusGfsc facfusGfsc facfasCfsu facfasCfsu fadfasAfsc AfasAfsc AfasAfsc AfasAfsc AfasAfsc AfasAfsc AfasAfsc AfasAfsc AfasAfsc AfasAfsc	rcurusursa JfusUfsa grcfusUfsu cfusUfsu cfusUfsu ivGfcsUfsu coffcsUfsu acfusGfsc ctusGfsc ctusGfsc facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsu facfasCfsa facfasCfsa facfasCfsa dfasAfsc facfasAfsc facfasAfsc facfasAfsc facfasAfsc adasAfsc facfasAfsc
aUfgAfgGfUfGfaAfaacAfcUfgCfuUfusAfsg aHfaAfaaiGfaAfaacAfcHfoCfuHfisAfsa		uAfuGfaGfGfUfgAfaaaCfaCfuGfcUfusUfsa	**************************************	galadaciaciudicolusoisa	uniusi aggoigniadaciaciusi colusoisa aUfaUfgAfGfGfuGfaaaAfcAfcUfgCfusUfsu	ukinoraggorgkaaactachonoonsa aUfaUfgAfGfGuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu	uniudi aggoigniaaaciaciudi cousousa aUfaUfgAfGfGfuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfuGfAfGfgUfgaaAfaCfaCfuGfcsUfsu	uAluoraggolgAlaaactactuoricousousa aUfaUfgafGfuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfuGfAfGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu	ukiusiaggolgkiaaaciaciidicousousa aUfaUfgafGfGuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfaUfGfAfgGfugaAfaAfcAfcUfgsCfsu	ukiusiaggolgkiaaaciaciusiconsonsa aUfaUfgafofofuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagofuGfaaaAfcAfcUfgcfusUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfaUfGfAfgGfugaAfaCfaCfuGfcsUfsu gCfaUfaUfGfAfgGfugaAfaAfcAfcUfgsCfsu gCfaUfaugAfgGfugaAfaAfcAfcUfgsCfsu	uAruoriaggorigariaachachusiconisonsa aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfauGfAfgGfugaAfaAfcAfcUfgsCfsu aGfcAfuAfUfGfaGfugaAfaAfcAfcUfgsCfsu aGfcAfuAfUfGfaGfugAfaAfaCfaCfusGfsc	ukiuoraggorgkiaaactactiuoronsonsa aUfaUfgagoffuGfaaaAfcAfcUfgcfusUfsu aUfaUfgagofuGfaaaAfcAfcUfgcfusUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfauGfAfgGfugaAfaAfcAfcUfgsCfsu gCfaUfaugAfgGfugaAfaAfcAfcUfgsCfsu aGfcAfuauGfaGfgugAfaAfaCfaCfusGfsc	ukiudiaggugkaaactactidicuusussa aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfauGfAfgGfugaAfaAfcAfcUfgsCfsu aGfcAfuAfUfGfaGfgugAfaAfaCfaCfusGfsc aGfcAfuauGfaGfgugAfaAfaCfaCfusGfsc aGfcAfuauGfaGfgugAfaAfaCfaCfusGfsc adfcCfaUfAfUfgAfgguGfaAfaCfaCfusGfsc	untuoriaggorganaactactioniconsonsa aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfaugAfgGfugaAfaAfcAfcUfgsCfsu aGfcAfuaHUfGfaGfgugAfaAfcAfcUfgsCfsu aGfcAfuauGfaGfgugAfaAfaCfaCfusGfsc uAfgCfauUfgAfgguGfaAfaAfaCfaCfusGfsc uAfgCfauUfgAfgguGfaAfaAfaCfaCfusGfsc	uatudraggorganaachachoncousonsa aufaufgagofguofaaaafcafcufgcfusUfsu aufaufgagofuofaaaafcafcufgcfusUfsu cafuafugagfgufgaaafacfacfuofcsUfsu cafuafugagfgufgaafacfacfuofcsUfsu gcfaUfaugafgofugaafaafcafcufgscfsu acfcaUfaugafgorgaafaafcafcufgscfsu adfcafuauffaofgugafaafacfacfusGfsc uafgcfauaufgafgugafaafacfacfusGfsc uafgcfauaUfgafgugafaafaafcafcafcsUfsg uafgcfauaUfgafgugafaafaafcafcsUfsg uafgcfauaUfgafggugafaafaafcafcsUfsg	unfubraggorganaachachubronsonsa aufaufgafgfgfugfaaaAfcAfcUfgcfusUfsu aufaufgaggfugfaaaAfcAfcUfgcfusUfsu cAfuAfugagfufgaaAfaCfaCfuGfcsUfsu cAfuAfugagfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfaufGfAfgGfugaAfaAfcAfcUfgsCfsu gCfaUfaugAfgGfugaAfaAfcAfcUfgsCfsu agfcAfuauGfaGfugAfaAfaCfaCfusGfsc adfcAfuauGfaGfgugAfaAfaCfaCfusGfsc uAfgCfauaUfgAfgguGfaAfaAfcAfcsUfsg aUfaGfcAfUfAfuGfaggUfgAfaAfaCfcsUfsg aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu	undudraggorghdaaachachdorousonsa aufaufgagofgugfaaaAfcdfcufgcfusUfsu aufaufgagofuGfaaaAfcdfcufgcfusUfsu cAfuAfugaGfuGfaaaAfaCfacfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfaugAfgGfugaAfaAfaCfaCfusGfsc aGfcAfuauGfaGfgugAfaAfaCfaCfusGfsc uAfgCfauaUfgAfgguGfaAfaAfaCfaCfusGfsc uAfgCfauaUfgAfgguGfaAfaAfaCfaCfusGfsc aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu cAfuAfgCfAfUfaUfgaggUfgAfaAfaCfasCfsu	unaudragguganaaachachanconasunau aufaufgafgfugfaaaAfcAfcufgcfusUfsu aUfaufgaggfugfaaaAfcAfcufgcfusUfsu cAfuAfugfafgugaaAfaCfacfuGfcsUfsu cAfuAfugagfugaaAfaAfcAfcufgsCfsu gcfaUfaugAfgGfugaAfaAfcAfcUfgsCfsu aGfcAfuauGfaGfgugAfaAfaCfacfusGfsc aGfcAfuauGfaGfgugAfaAfaCfacfusGfsc uAfgCfaUfAfUfgAfgguGfaAfaAfcAfcufsg aUfaGfcauAfufgAgguGfaAfaAfcAfcsUfsg aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu cAfuAfgCfaUfaUgagGfuGfaAfaAfcAscScfsu cAfuAfgcaUfaUfaggGfuGfaAfaAfaCfasCfsu cAfuAfgcaUfaUfgagGfuGfaAfaAfaCfasCfsu	unduragguganaachachdonoonsonsa aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfuGfAfGfUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu gCfaUfauGfAfgGfugaAfaAfaCfaCfusGfsc aGfcAfuauGfaGfgugAfaAfaCfaCfusGfsc uAfgCfauaUfgAfgguGfaAfaAfaCfaCfusGfsc uAfgCfauaUfgAfgguGfaAfaAfaCfasCfsu aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu cAfuAfgcGaUfaUfgagGfuGfaAfaCfasCfsu cAfuAfgcGAfUfaUfgagGfuGfaAfaAfacfasCfsu cAfuAfgcGAfUfaUfgagGfuGfaAfaAfacfasCfsa aCfaUfaGfGfuAfugaGfuGfaAfaAfacSAfsc	unfuoraggorganaacraciusconsonsa aufaufgagorganaacraciusconsonsa aufaufgagorgaaafcafcufgcfusUfsu cafuafugagorgaaafaafacfacfuofcsUfsu cafuafugagorgaaafaafcafcuofcsUfsu gcfaufaufgorgaaafaafcafcufgscfsu acfcatuaufgorgaaafaafcafcufgscfsu adfcafuauGfagorgaafaafacfacfusgfsc uafgcfaufufgorgaafaafaafcafcufsg aufagfcauaUfgafguofaafaafcafcsUfsg aufagfcauaUfgafguofaafaafcafcsUfsg aufagfcauafuofaggufgafaafaafcafcsUfsg aufagfcauaUfgagorfugaaafaafcafcsCfsu cafuafgcfafufaufgagorgaafaafaafcafcscfsu cafuafgcfafufaufgagorgaaafaafaafcafcs cafuafgcaufaufgagorgaafaafaafacfsc cafuafgcauaufgagorgaafaafaafacfsc cafuafgcauaufgagofuofaafaafacfsc acfaufagcafuafugaofgufgafaafaafacfsa	undudraggorghaaachachdoroonsonsa aufauoraggorghaaadfadfcufgcfusUfsu aufaufgaggfugfaaadfadfcufgcfusUfsu cAfuAfugagfugfaaAfaCfacfugfcsUfsu cAfuAfugagfguggaaAfaCfacfugfcsUfsu cAfuAfugagfgugaAfaAfaCfacfusGfsc agfcAfuauGfagfgugAfaAfaCfacfusGfsc uAfgCfauaUfgAfggugAfaAfaCfacfusGfsc uAfgCfauaUfgAfggugAfaAfaCfacfusGfsc aufaGfcauHfufgAfggugAfaAfaCfacfusGfsc aufaGfcauAfugfaggufgAfaAfaCfasCfsu cAfuAfgcGauAfugaggufgAfaAfaCfasCfsu cAfuAfgcGAfUfaUfgaggufgAfaAfaCfasCfsu acfaUfagcGfafuafugaggfugfaAfaAfacfasCfsa acfaUfagcAfuAfugagfgufgAfaAfaAfacSfsc acfaUfagcAfuAfugagfgufgAfaAfaAfasCfsa acfaUfagcAfuAfugagfgUfgAfaAfasCfsa acfaUfagcAfuAfugagfgUfgAfaAfasCfsa	unfuoraggorganaacraciusticusorsa aufauoraggorganaacraciusticusorsa aufaufgaggfugfaaaAfcdfcugfcsUfsu cAfuAfugagfugaaAfacfacfugfcsUfsu cAfuAfugagfugaaAfaCfacfugfcsUfsu cAfuAfugagfugaAfaAfcAfcUfgsCfsu agfcAfuauGfagfugaAfaAfaCfacfusGfsc adfcAfuauGfaggugAfaAfaCfacfusGfsc uAfgCfauaUfgAfggugAfaAfaCfacfusGfsc adfcAfuauGfaggUfgAfaAfaCfacfusGfsc aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu cAfuAfgcfAfUfaUfgagGfuGfaAfaAfcSAfsc cAfuAfgcGAfUfaUfgagGfuGfaAfaAfcSAfsc acfaUfaGfCfAfuAfugaGfgUfgAfaAfaSCfsa acfaUfaGfCfaUfaugaGfgUfgAfaAfaSCfsa acfaUfaGfCfaUfaugaGfgUfgAfaAfaScfsa aAfcAfuAfgcFaUfaugaGfgUfgAfaAfaScfsa aAfcAfuAfgcGaUfaugAfgGfuGfaAfaScfsa	untudiaggolgmaaaciacuusicoussusa aUfaUfgafGfuGfaaaAfcAfcUfgCfusUfsu aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu cAfuAfugaGfuGfaaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu cAfuAfugaGfgUfgaaAfaAfcAfcUfgsCfsu gCfaUfaugAfgGfugaAfaAfaCfaCfusGfsc aGfcAfuauGfaGfgugAfaAfaCfaCfusGfsc uAfgCfauaUfgAfgguGfaAfaAfaCfasCfsu aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu cAfuAfgcGauAfuGfaggUfgAfaAfaCfasCfsu cAfuAfgcGaUfaUfgagGfuGfaAfaAfaSfsc acfaUfagCfAfUAfugaGfgUfgAfaAfaScSa aAfcAfuagCfaUfaugaGfgUfgAfaAfasCfsa aAfcAfuagCfaUfaugAfgGfuGfaAfasAfsc aAfcAfuagCfaUfaugAfgGfuGfaAfasAfsc aAfcAfuagCfaUfaugAfgGfuGfaAfasAfsc aAfcAfuagCfaUfaugAfgGfuGfaAfasAfsc	unfuoraggorganaacraciuoronasona aufauoraggorganaacraciuoronasona aufaufgaggfugfaaaAfacffcugfcsUfsu cAfuAfugagfugaaAfacfacfugfcsUfsu cAfuAfugagfugaAfaAfacfacfuggsCfsu acfcaUfaugfggugAfaAfacfacfusgfsc adfcAfuauGfagfugAfaAfacfacfusgfsc adfcAfuauGfaggugAfaAfacfacfusgfsc uAfgCfauUfqfugaglugAfaAfacfacfusgfsc uAfgCfauUfqfugaglugAfaAfacfacfusgfsc aUfaGfcauAfugfagguGfaAfaAfacfasCfsu aUfaGfcauAfugagglugAfaAfacfasCfsu cAfuAfgCfAfUfaUfgagGfuGfaAfaAfacfasCfsa acfaUfagfcfaUfaUfgagGfuGfaAfaAfacfasCfsa acfaUfagfcfaUfaugagfgUggAfaAfasAfsc acfaUfagcfaUfaugagfgUggAfaAfasAfsc aafcAfuAfgfcfaUfaugagfgUggAfaAfasAfsc aafcAfuAfgfcfaUfaugagfgUggAfaAfasAfsc aafcAfuagGfaUfaugagfgUggAfaAfasAfsc uAfaCfauaGfcAfuauGfaggUfgAfasAfssa uAfaCfauaGfcAfuauGfagfUfgAfasAfssa	autaugagugaaacacacuusicoussusa autaufgaggfugfaaadfcdfcufgcfusUfsu autaufgaggfugfaaadfcdfcufgcfusUfsu cAfudfugagfugaadfacfacfugfcsUfsu cAfudfugagfugaadfacfacfugfcsUfsu ccfaUfaugdfgGfugadfadfacfacfugsCfsu acfcaUfaugdfgGfugadfadfacfacfusGfsc adfcAfuafUfGfaGfgugdfadfacfacfusGfsc adfcAfualUfgAfgguGfadfadfacfacfusGfsc adfcAfualUfgAfgguGfadfadfacfacfsu autagfcauaUfgAfgguGfadfadfacfasCfsu autagfcauaUfgAfgguGfadfadfacfasCfsu autagfcaudfugaggUfgAfadfacfasCfsu acfaUfagcAfUfaUfgagGfuGfadfadfasCfsa acfaUfagcAfuafugaGfgUfgAfadfasCfsa acfaUfagcAfuafugaGfgUfgAfadfasCfsa adfcAfuagCfaUfaugAfgGfuGfadfasAfsc adfcAfuagCfaUfaugAfgGfuGfadfasAfsc udfaCfauaGfcAfuauGfaGfgUfgAfasAfsa udfaCfauaGfcAfuauGfaGfgUfgAfasAfsa udfaCfauaGfcAfuauGfaGfgUfgAfasAfsa udfaCfauaGfcAfuauGfaGfgUfgAfasAfsa cUfaAfcAfuagfcAfuauGfaGfgUfgAfasAfsa
+	$^{+}$		uAfuGfaggUfgAfaaaCfaCfuGfcUfusUfsa										 	 	 	 	 	 			 				
2 1672 3 1673	+	1 1674	5 1675	5 1676	-	+	1 1	 	 	 	 	 	 		 	, , , , , , , , , , , , , , , , , , , 	 	, , , , , , , , , , , , , , , , , , , 	 	 		 		 	
AS1562 AS1563		AS1564	AS1565	AS1566		AS1567	AS1567 AS1568	AS1567 AS1568 AS1569	AS1567 AS1568 AS1569 AS1570	AS1567 AS1568 AS1569 AS1570 AS1571	AS1567 AS1568 AS1569 AS1570 AS1571 AS1571	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1573	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1573 AS1573	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1573 AS1574	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1573 AS1573 AS1573 AS1574 AS1576	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1573 AS1574 AS1576 AS1577	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1573 AS1574 AS1575 AS1575 AS1576 AS1577	AS1567 AS1568 AS1569 AS1570 AS1572 AS1573 AS1574 AS1575 AS1575 AS1576 AS1577 AS1577	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1574 AS1575 AS1576 AS1576 AS1577 AS1578 AS1578 AS1578	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1574 AS1576 AS1576 AS1577 AS1578 AS1578 AS1578 AS1578 AS1578 AS1578 AS1578	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1574 AS1576 AS1576 AS1577 AS1578 AS1578 AS1578 AS1578 AS1578 AS1578 AS1578 AS1578	AS1567 AS1568 AS1569 AS1570 AS1571 AS1573 AS1574 AS1576 AS1577 AS1578 AS1580	AS1567 AS1568 AS1569 AS1570 AS1571 AS1573 AS1574 AS1576 AS1577 AS1578 AS1578 AS1578 AS1578 AS1578 AS1580 AS1581	AS1567 AS1568 AS1569 AS1570 AS1571 AS1572 AS1574 AS1575 AS1577 AS1578 AS1578 AS1580 AS1580 AS1581 AS1582 AS1583 AS1583 AS1583	AS1567 AS1568 AS1569 AS1570 AS1571 AS1573 AS1574 AS1576 AS1577 AS1578 AS1578 AS1578 AS1580 AS1581 AS1582 AS1583 AS1583 AS1583 AS1583 AS1583
90 141 1410/1400/1400/1400/1400/1400/1400	AfaAfaCfaGfuGfUfUfuUfcAfcfcfuCfaUf196	AfaGfcAfgUfgUfUfUCfaccUfcAfuAfL96	AfaGfcAfgUfgUfUfUCfaCfCfUfcAfuAfL96	AfgCfaGfuGfuUfUfUfcAfccuCfaUfaUfL96		AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96	AfgcfagfudfuUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfCfacfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfcfacfcUfcfAfuAfuGfL96	AfgCfaGfuGfuUfUfCAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcUfCfAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96	AfgcfagfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcUfcfAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCfL96 AfgUfgUfuUfuCfAfcCfuCfAfUfaUfgCfL96 AfgUfgUfuUfuCfAfcCfuCfAfUfaUfgCfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 AfgUfgUfuUfuCfAfcCfuCfAfUfaUfgCfL96 AfgUfgUfuUfuCfAfcfcUfcauAfuGfcUfL96 AfgUfgUfuUfuCfAfcfcUfcauAfuGfcUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCfL96 AfgUfgUfuUfuCfAfCfuCfaUfaUfgCfL96 AfgUfgUfuUfuCfAfCfuCfaUfafuGfcUfL96 GfuGfuUfuUfcAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfCAfCfCfuCfauaUfgCfuAfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 AfgUfgUfuUfuCfAfcFcUfcauAfuGfcUfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCfL96 AfgUfgUfuUfuCfAfCfuCfaUfaUfgCfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfUfCAfuaUfaUfgCfuAfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 AfgUfgUfuUfuCfAfcfcUfcauAfuGfcUfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfuCauaGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfcfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfcfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 AfgUfgUfuUfuCfAfCfcUfcaUAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfl96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfl96 GfuUfuUfuCfaCfCfUfcAfuauGfcUfaUfl96 GfuUfuUfuCfaCfCfUfcAfuauGfcUfaUfl96 GfuUfuUfuCfaCfCfUfcAfuauGfcUfaUfl96 GfuUfuUfcAfcCfUfCAfuauGfcUfaUfl96	AfgCfaGfuGfuUfUfCAfcCfUfCfaUfaUf196 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGf196 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGf196 GfcAfgUfgUfuUfUfCfAfcCfucAfuAfuGf196 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCf196 AfgUfgUfuUfuCfAfcCfuCAfUfaUfgCfuGfUf196 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUf196 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAf196 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAf196 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUf196 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUf196 GfuUfuUfcAfcCfUfcAfuauGfcUfaUf196 GfuUfuUfcAfcCfUfCaUfauGfcUfaUf196 GfuUfuUfcAfcCfUfCfaUfaugCfuAfuGfl96 GfuUfuUfcAfcCfUfCfaUfaugCfuAfuGfl96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfcfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfcfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfAfcClucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCfL96 AfgUfgUfuUfuCfAfCfuCfaUfaUfgCfL96 AfgUfgUfuUfuCfAfCfcUfcaUAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfUfcAfuaUGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuaUGfcUfaUfL96 GfuUfuUfcAfcCfUfCaUfauGfcUfaUfL96 GfuUfuUfcAfcCfUfCaUfauGfClaAfuGfL96 GfuUfuUfcAfcCfUfCfaUfauGfCluAfuGfL96 GfuUfuUfcAfcCfUfCfaUfauGfUfaUfL96 GfuUfuUfcAfcCfUfCfaUfauGfUfaUfL96 GfuUfuUfcAfcCfUfCfaUfauGfUfaUfL96 GfuUfuUfcAfcCfUfCfaUfauGfUfaUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 AfgUfgUfuUfuCfAfcCfuCfaUfAfuGfcUfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfcAfcCfUfCfaUfaugCfuAfuGfL96 GfuUfuUfcAfcCfUfCfaUfaugCfuAfuGfL96 UfuUfuCfaCfcUfCfaUfaugcUfaUfgUfL96 UfuUfuCfaCfcUfCfaUfaugcUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfugcUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfugcUfaUfgUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 AfgUfgUfuUfuCfAfcCfuCauAfuGfcUfL96 AfgUfgUfuUfuCfAfCfCUfcauAfuGfcUfL96 GfuGfuUfuUfCAfCfCuCfauaUfgCfuAfL96 GfuGfuUfuUfCAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfuCfaUfaUfGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 GfuUfuUfcAfcCfUfcAfuauGfcUfaUfL96 GfuUfuUfcAfcCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuAfUfGfcUfaUfL96 UfuUfuCfaCfcUfCfaUfaUfaUfgCfuAfuGfL96 UfuUfuCfaCfcUfCfAfuAfuGfcfUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfuGfcfUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfuGfcfUfaUfgUfL96 UfuUfuCfaCfuCfAfuAfuGfcUfaUfgUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfAfcCfucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfgCfL96 AfgUfgUfuUfuCfAfcCfuCAfUfaUfgCfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfcAfcCfUfCfaUfaugcfuAfuGfL96 UfuUfuCfaCfCUfCfaUfaufgCfuAfuGfL96 UfuUfuCfaCfcUfCfaUfaufgcUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfugcUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfugcUfaUfgUfL96 UfuUfcAfcCfuCfAfuAfugcuAfuGfuUfL96 UfuUfcAfcCfuCfAfUfaUfgcuAfuGfuUfL96 UfuUfcAfcCfuCfAfUfaUfgcuAfuGfuUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 AfgUfgUfuUfuCfAfCfCUfcauAfuGfcUfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfCAfCfCUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 GfuUfuUfcAfcCfUfcAUfaugCfuAfuGfL96 UfuUfuCfaCfCUfCfaUfaUfgCfuAfuGfL96 UfuUfuCfaCfcUfCfaUfaUfgCfuAfuGfL96 UfuUfuCfaCfcUfCfaUfaUfgCfUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfuGfCfUfaUfgUfL96 UfuUfcAfcCfuCfAfuAfuGfcUfaUfgUfL96 UfuUfcAfcCfuCfAfUfaUfgctUfAfuGfuUfL96 UfuUfcAfcCfuCfAfUfaUfgctUfAfuGfuUfL96 UfuUfcAfcCfuCfAfUfaUfgctUfAfuGfuUfL96 UfuUfcAfcCfuCfAfUfaUfgctUfAfuGfuUfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfAfcCfucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucAfufaUfgCfL96 AfgUfgUfuUfuCfAfcCfuCfaUfAfuGfcUfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfCaUfaugCfuAfuGfL96 UfuUfuCfaCfCUfCfaUfaugcUfaUfgUfL96 UfuUfuCfaCfcUfCfaUfaugcUfaUfgUfL96 UfuUfuCfaCfcUfCfAfuAfugcUfaUfgUfL96 UfuUfcAfcCfuCfAfUfaUfgcuAfuGfuUfL96 UfuUfcAfcCfuCfAfUfaUfgcuAfuGfuUfL96 UfuCfaCfcUfCAfUfaUfaUfgcuAfuGfuUfL96 UfuCfaCfcUfCAfUfaUfaUfgcuAfuGfuUfL96 UfuCfaCfcUfcAfUfaUfaUfgcuAfuGfuUfL96 UfuCfaCfcUfcAfUfafuGfcuaUfgUfuAfL96	AfgCfaGfuGfuUfUfUfcAfcCfUfcfaUfaUfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfCfL96 CfaGfuGfuUfuUfCfAfcCfucAfUfaUfCfL96 AfgUfgUfuUfuCfAfcCfuCAfUfaUfCfuCfaUfL96 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 GfuGfuUfuUfcAfCfCfuCfauaUfgCfuAfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfl96 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfl96 UfuUfuCfaCfCfUfcAfuAfuGfcUfaUfgUfL96 UfuUfuCfaCfcUfCfaUfaUfgCfuAfuGfL96 UfuUfuCfaCfcUfCfAfuAfuGfCfUfaUfgUflaUfgUfL96 UfuUfcAfcCfuCfAfUfaUfgCfUfAfuGfuUfL96 UfuUfcAfcCfuCfAfUfaUfgcfUfAfuGfuUfl96 UfuUfcAfcCfuCfAfUfaUfgcfUfAfuGfuUfl96 UfuCfaCfcUfCAfUfaUfgcfuaAfuGfuUfl96 UfuCfaCfcUfCAfUfAfuGfcuAfufgUfuAfL96 UfuCfaCfcUfcAfUfAfuGfcUfafufgUfuAfL96 UfuCfaCfcUfCAfUfAfuGfcUauGfuUfaGfl96
580 Afa			583 Afa	584 Afg		585 AT												, , , , , , , , , , , , , , , , , , , 							
	S1562 5 S1563 5	S1564 5	S1565 5	S1566 ₅	S1567 ₅		S1568 5										 								
	D1563	D1564	D1565	D1566	D1567	0	1568	1568 1569	1568 1569 1570	1568 1569 1570 1571	1568 1569 1570 1571	1568 1569 1570 1571 1572 1573	D1568 D1569 D1570 D1571 D1572 D1573 D1573	1568 1569 1570 1571 1572 1573 1573	1568 1569 1570 1571 1572 1573 1574 1575	1568 1569 1570 1571 1572 1573 1574 1576	1568 1569 1570 1571 1573 1574 1575 1576 1577	1568 1569 1570 1571 1572 1574 1576 1576 1577 1578	D1568 D1569 D1570 D1572 D1573 D1574 D1575 D1576 D1577 D1578 D1578	D1568 D1569 D1570 D1571 D1572 D1574 D1576 D1576 D1578 D1578 D1578 D1578 D1578	1568 1569 1570 1571 1572 1574 1575 1576 1576 1578 1580 1580	1568 1569 1570 1571 1572 1573 1574 1576 1576 1577 1578 1578 1578 1578 1578 1578 1578	1568 1569 1570 1571 1572 1574 1575 1576 1576 1578 1580 1581 1581	1568 1570 1571 1572 1573 1574 1575 1576 1576 1578 1578 1589 1589 1583 1583	D1568 D1569 D1570 D1571 D1572 D1573 D1574 D1576 D1578 D1578 D1578 D1580 D1581 D1581 D1583 D1583 D1583

uCfuAfaCfAfUfaGfcauAfuGfaGfgUfgsAfsa	uCfuAfacaUfaGfcauAfuGfaGfgUfgsAfsa	uUfcUfaAfCfAfuAfgcaUfaUfgAfgGfusGfsa	uUfcUfaacAfuAfgcaUfaUfgAfgGfusGfsa	cUfuCfuAfAfCfaUfagcAfuAfuGfaGfgsUfsg	cUfuCfuaaCfaUfagcAfuAfuGfaGfgsUfsg	aCfuUfcUfAfAfcAfuagCfaUfaUfgAfgsGfsu	aCfuUfcuaAfcAfuagCfaUfaUfgAfgsGfsu	gAfcUfuCfUfAfaCfauaGfcAfuAfuGfasGfsg	gAfcUfucuAfaCfauaGfcAfuAfuGfasGfsg	gGfaCfuUfCfUfaAfcauAfgCfaUfaUfgsAfsg	gGfaCfuucUfaAfcauAfgCfaUfaUfgsAfsg	uGfgAfcUfUfCfuAfacaUfaGfcAfuAfusGfsa	uGfgAfcuuCfuAfacaUfaGfcAfuAfusGfsa	cUfgGfaCfUfUfcUfaacAfuAfgCfaUfasUfsg	cUfgGfacuUfcUfaacAfuAfgCfaUfasUfsg	cCfuGfgAfCfUfuCfuaaCfaUfaGfcAfusAfsu	cCfuGfgacUfuCfuaaCfaUfaGfcAfusAfsu	gCfcUfgGfAfCfuUfcuaAfcAfuAfgCfasUfsa	gCfcUfggaCfuUfcuaAfcAfuAfgCfasUfsa	uGfcCfuGfGfAfcUfucuAfaCfaUfaGfcsAfsu	uGfcCfuggAfcUfucuAfaCfaUfaGfcsAfsu	cUfgCfcUfGfGfaCfuucUfaAfcAfuAfgsCfsa	cUfgCfcugGfaCfuucUfaAfcAfuAfgsCfsa	uCfuGfcCfUfGfgAfcuuCfuAfaCfaUfasGfsc	uCfuGfccuGfgAfcuuCfuAfaCfaUfasGfsc	cUfcUfgCfCfUfgGfacuUfcUfaAfcAfusAfsg
1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724
AS1588	AS1589	AS1590	AS1591	AS1592	AS1593	AS1594	AS1595	AS1596	AS1597	AS1598	AS1599	AS1600	AS1601	AS1602	AS1603	AS1604	AS1605	AS1606	AS1607	AS1608	AS1609	AS1610	AS1611	AS1612	AS1613	AS1614
CfaCfcUfcAfuAfUfGfcUfaugUfuAfgAfL96	CfaCfcUfcAfuAfUfGfcUfaUfGfUfuAfgAfL96	AfcCfuCfaUfaUfGfCfuAfuguUfaGfaAfL96	AfcCfuCfaUfaUfGfCfuAfuGfUfUfaGfaAfL96	CfcUfcAfuAfuGfCfUfaUfguuAfgAfaGfL96	CfcUfcAfuAfuGfCfUfaUfgUfUfAfgAfaGfL96	CfuCfaUfaUfgCfUfAfuGfuuaGfaAfgUfL96	CfuCfaUfaUfgCfUfAfuGfuUfAfGfaAfgUfL96	UfcAfuAfuGfcUfAfUfgUfuagAfaGfuCfL96	UfcAfuAfuGfcUfAfUfgUfuAfGfAfaGfuCfL96	CfaUfaUfgCfuAfUfGfuUfagaAfgUfcCfL96	CfaUfaUfgCfuAfUfGfuUfaGfAfAfgUfcCfL96	AfuAfuGfcUfaUfGfUfuAfgaaGfuCfcAfL96	AfuAfuGfcUfaUfGfUfuAfgAfAfGfuCfcAfL96	UfaUfgCfuAfuGfUfUfaGfaagUfcCfaGfL96	UfaUfgCfuAfuGfUfUfaGfaAfGfUfcCfaGfL96	AfuGfcUfaUfgUfUfAfgAfaguCfcAfgGfL96	AfuGfcUfaUfgUfUfAfgAfaGfUfCfcAfgGfL96	UfgCfuAfuGfuUfAfGfaAfgucCfaGfgCfL96	UfgCfuAfuGfuUfAfGfaAfgUfCfCfaGfgCfL96	GfcUfaUfgUfuAfGfAfaGfuccAfgGfcAfL96	GfcUfaUfgUfuAfGfAfaGfuCfCfAfgGfcAfL96	CfuAfuGfuUfaGfAfAfgUfccaGfgCfaGfL96	CfuAfuGfuUfaGfAfAfgUfcCfAfGfgCfaGfL96	UfaUfgUfuAfgAfAfGfuCfcagGfcAfgAfL96	UfaUfgUfuAfgAfAfGfuCfcAfGfGfcAfgAfL96	AfuGfuUfaGfaAfGfUfcCfaggCfaGfaGfL96
909	607	809	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632
S1588	S1589	S1590	S1591	S1592	S1593	S1594	S1595	S1596	S1597	S1598	81599	S1600	21601	S1602	S1603	S1604	S1605	S1606	S1607	S1608	S1609	S1610	S1611	S1612	S1613	S1614
D1588	D1589	D1590	D1591	D1592	D1593	D1594	D1595	D1596	D1597	D1598	D1599	D1600	D1601	D1602	D1603	D1604	D1605	D1606	D1607	D1608	D1609	D1610	D1611	D1612	D1613	D1614

cUfcUfgccUfgGfacuUfcUfaAfcAfusAfsg	uCfuCfuGfCfuGfgacUfuCfuAfaCfasUfsa	uCfuCfugcCfuGfgacUfuCfuAfaCfasUfsa	gUfcUfcUfGfCfcUfggaCfuUfcUfaAfcsAfsu	gUfcUfcugCfcUfggaCfuUfcUfaAfcsAfsu	uGfuCfuCfUfGfcCfuggAfcUfuCfuAfasCfsa	uGfuCfucuGfcCfuggAfcUfuCfuAfasCfsa	uUfgUfcUfCfUfgCfcugGfaCfuUfcUfasAfsc	uUfgUfcucUfgCfcugGfaCfuUfcUfasAfsc	aUfuGfuCfUfCfuGfccuGfgAfcUfuCfusAfsa	aUfuGfucuCfuGfccuGfgAfcUfuCfusAfsa	uAfuUfgUfCfUfcUfgccUfgGfaCfuUfcsUfsa	uAfuUfgucUfcUfgccUfgGfaCfuUfcsUfsa	uUfaUfuGfUfCfuCfugcCfuGfgAfcUfusCfsu	uUfaUfuguCfuCfugcCfuGfgAfcUfusCfsu	uUfuAfuUfGfUfcUfcugCfcUfgGfaCfusUfsc	uUfuAfuugUfcUfcugCfcUfgGfaCfusUfsc	uUfuUfaUfUfGfuCfucuGfcCfuGfgAfcsUfsu	uUfuUfauuGfuCfucuGfcCfuGfgAfcsUfsu	gUfuUfuAfUfUfgUfcucUfgCfcUfgGfasCfsu	gUfuUfuauUfgUfcucUfgCfcUfgGfasCfsu	uGfuUfuUfAfUfuGfucuCfuGfcCfuGfgsAfsc	uGfuUfuuaUfuGfucCfuGfgCfuGfgsAfsc	aUfgUfuUfUfAfuUfgucUfcUfgCfcUfgsGfsa	aUfgUfuuuAfuUfgucUfcUfgCfcUfgsGfsa	aAfuGfuUfUfUfaUfuguCfuCfuGfcCfusGfsg	
1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	
AS1615	AS1616	AS1617	AS1618	AS1619	AS1620	AS1621	AS1622	AS1623	AS1624	AS1625	AS1626	AS1627	AS1628	AS1629	AS1630	AS1631	AS1632	AS1633	AS1634	AS1635	AS1636	AS1637	AS1638	AS1639	AS1640	
AfuGfuUfaGfaAfGfUfcCfaGfGfCfaGfaGfL96	UfgUfuAfgAfaGfUfCfcAfggcAfgAfgAfL96	UfgUfuAfgAfaGfUfCfcAfgGfCfAfgAfgAfL96	GfuUfaGfaAfgUfCfCfaGfgcaGfaGfaCfL96	GfuUfaGfaAfgUfCfCfaGfgCfAfGfaGfaCfL96	UfuAfgAfaGfuCfCfAfgGfcagAfgAfcAfL96	UfuAfgAfaGfuCfCfAfgGfcAfGfAfgAfcAfL96	UfaGfaAfgUfcCfAfGfgCfagaGfaCfaAfL96	UfaGfaAfgUfcCfAfGfgCfaGfAfGfaCfaAfL96	AfgAfaGfuCfcAfGfcAfgagAfcAfaUfL96	AfgAfaGfuCfcAfGfGAfgAfGfAfcAfaUfL96	GfaAfgUfcCfaGfGfCfaGfagaCfaAfuAfL96	GfaAfgUfcCfaGfGfCfaGfaGfAfCfaAfuAfL96	AfaGfuCfcAfgGfCfAfgAfgacAfaUfaAfL96	AfaGfuCfcAfgGfCfAfgAfgAfCfAfaUfaAfL96	AfgUfcCfaGfgCfAfGfaGfacaAfuAfaAfL96	AfgUfcCfaGfgCfAfGfaGfaCfAfAfuAfaAfL96	GfuCfcAfgGfcAfGfAfgAfcaaUfaAfaAfL96	GfuCfcAfgGfcAfGfAfgAfcAfAfUfaAfaAfL96	UfcCfaGfgCfaGfAfGfaCfaauAfaAfaCfL96	UfcCfaGfgCfaGfAfGfaCfaAfUfAfaAfaCfL96	CfcAfgGfcAfgAfGfAfcAfauaAfaAfcAfL96	CfcAfgGfcAfgAfGfAfcAfaUfAfAfaAfcAfL96	CfaGfgCfaGfaGfAfCfaAfuaaAfaCfaUfL96	CfaGfgCfaGfaftCfaAfuAfAfAfaCfaUfL96	AfgGfcAfgAfgAfcfAfaUfaaaAfcAfuUfL96	
633	634	635	989	637	889	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	959	657	859	
\$1615	S1616	S1617	S1618	S1619	S1620	51621	S1622	S1623	S1624	S1625	S1626	S1627	81628	81629	S1630	S1631	S1632	S1633	S1634	S1635	21636	51637	\$1638	S1639	S1640	
D1615	D1616	D1617	D1618	D1619	D1620	D1621	D1622	D1623	D1624	D1625	D1626	D1627	D1628	D1629	D1630	D1631	D1632	D1633	D1634	D1635	D1636	D1637	D1638	D1639	D1640	

factorilitea	rguesonsg aCfuGfcsCfsu		fuGfcsCfsu	fuGfcsCfsu cUfcUfgsCfsc	fuGfcsCfsu cUfcUfgsCfsc ifcUfgsCfsc	fuGfcsCfsu cUfcUfgsCfsc ifcUfgsCfsc	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc uCfuCfusGfsc fuCfusGfsc	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc aCfuCfusGfsc fuCfusGfsc	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc .uCfuCfusGfsc .fuCfusGfsc fuCfusGfsc fuCfusGfsc fcUfcsUfsg	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc aCfuCfusGfsc sUfcUfcsUfsg fcUfcsUfsg fcUfcsUfsg	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc aCfuCfusGfsc stufcUfsGfsc fcUfcsUfsg fcUfcsUfsg fcUfcsUfsg fcUfcsUfsg	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc aCfuCfusGfsc ftuCfusGfsc cuCfuCfusGfsc ftuCfusGfsc dGfuCfusGfsu dfuCfusCfsu fuCfusCfsu	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc aCfuCfusGfsc ftuCfusGfsc ftuCfusGfsc ftuCfusGfsc ftuCfusGfsc ftuCfusGfsc adfuCfusGfsc ftuCfusGfsc ftuCfusGfsc ftuCfusGfsu ftuCfusCfsu ftuCfusCfsu ftuCfusCfsu ftuCfusCfsu ftuCfusCfsu	fuGfcsCfsu cUfcUfgsCfsc fcUfgsCfsc fcUfgsCfsc fcUfgsCfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsu fuCfusCfsu fuCfusCfsu fuCfusCfsu	fuGfcsCfsu 2-UfcUfgsCfsc fcUfgsCfsc 1-CfuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fcUfcsUfsg fcUfcsUfsg fcUfcsUfsg fcUfcsUfsc fgUfcufscfsu fuCfusCfsu fuCfusCfsu fuGfucStsc fgUfcsUfsc fgUfcsUfsc fgUfcsUfsc	fuGfcsCfsu UfcUfgsCfsc fcUfgsCfsc IcfucfusGfsc fuCfusGfsc UfcUfcsUfsg fcUfcsUfsg fcUfcsUfsg iGfuCfusCfsu fuCfusCfsu fuCfusCfsu UfgUfcsUfsc UfgUfcsUfsc UfgUfcsUfsc UfgUfcsUfsc UfgUfcsUfsc UfgUfcsUfsc UfgUfcsUfsc	fuGfcsCfsu UfcUfgsCfsc fcUfgsCfsc LCfuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc iUfcUfcsUfsg fcUfcsUfsg IGfuCfusCfsu LUfgUfcsUfsc aUfgUfcsUfsc fgUfcsUfsc fgUfcsUfsc fgUfcsUfsc fgUfcsUfsc lufgUfcsUfsc fgUfcsUfsc fgUfcsUfsc lufgUfcsUfsc fgUfcsUfsc fgUfcsUfsc lufgUfcsUfsc fgUfcsUfsc fgUfcsUfsc fgUfcsUfsc fgUfuGfusCfsu fuGfusCfsu lufgUfcsUfsc	fuGfcsCfsu UfcUfgsCfsc fcUfgsCfsc IcfucfusGfsc iuCfusGfsc iuCfusGfsc iuCfusGfsc iuCfusGfsc iuCfusGfsc iuCfusGfsc iuCfusGfsc iuCfusGfsu iuCfusCfsu iuUfgufcsUfsc	fuGfcsCfsu UfcUfgsCfsc fcUfgsCfsc LCfuCfusGfsc fuCfusGfsc UfcUfcsUfsg IGfuCfusGfsu IUfgUfcsUfsc IufgufcsUf	fuGfcsCfsu UfcUfgsCfsc IcfuCfusGfsc IcfuC	fugfescfsu UfcUfgsCfsc tcUfgsCfsc LcfucfusGfsc tucfusGfsc tucfusGfsc tucfusGfsc tucfusGfsc tucfusGfsc tucfusGfsc tucfusGfsc tucfusGfsc tucfusGfsc tuftufesUfsc tuffucfusCfsu tuffucfusCfsu tuffucfusCfsu tuffucfusCfsu tuffucfusCfsu tuffucfusCfsu tuffucfusCfsu tuffucfusCfsu tuffucfusCfsu tuffucfusGfsu tuffucfsuffsc tuffutgsUfsc tuffutgsUfsc	fuefescfsu UfcUfgsCfsc IcfucfusGfsc Icfuc	fuGfcsCfsu UfcUfgsCfsc fcUfgsCfsc tCfuCfusGfsc tuCfuCfusGfsc tuCfuCfusGfsc tuCfuSfsc tuCfuSfsc tuCfuSfsc iUfcUfcsUfsg iGfuCfusCfsu tuCfuScfsu tuCfasUfsc tuCfuScfsu tuCfasUfsc tuCfuScfsu tuCfasUfsc tuCfuScfsu tuCfasUfsc tuCfuScfsu tuCfasUfsc tuCfuScfsu tuCfasUfsc	fuefescfsu UfcUfgsCfsc IcfucfusGfsc Icfuc	fuGfcsCfsu UfcUfgsCfsc fcUfgsCfsc LCfuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc fuCfusGfsc iUfcUfcsUfsc iUfcUfcsUfsc iUfgUfcsUfsc iufgUfcsUfsc iufgUfcsUfsc iufgUfcsUfsc iufgUfcsUfsc iuffuUfgsUfsc iuffuUfgsUfsc
	rauueructuctuercscrsu	gGfaAfuguUfuUfauuGfuCfuCfuGfcsCfsu		a Gfg Afa Uf Gf Uf u Uf u u Uf g Uf c Uf g S Cf s c	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgSCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgSCfsc	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaAfUfGfuUfuuaUfuGfuCfuCfusGfsc	a Grig Afau f Gfufuu fuau u Urgufcu f cufgs Cfsca Grig Afaug U fuu fuau Ufgufcu f cufgs Cfsca e Afg Gfau f fuu au Ufgufcu f u Cfus Gfsca f g Gfaau Gfu U f u au Ufu Gfu Cfus Gfsca f g Gfaau Gfu U f u au Ufu Gfu Cfus Gfsc	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaAfUfGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfUfgUfuuaAfuUfgUfcUfcsUfsg	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaaUffuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaAfUfGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfgGfAfAfuGfuuuUfaUfuGfuCfusGfsu	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfgGfAffuGfuuuUfaUfuGfuCfusCfsu cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgScfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgScfsc cAfgGfaaAfUfGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfgGfAfAfuGfuuuUfaUfuGfuCfusCfsu cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu cAfcAfggaAfuGfuuuUfaUfuUfuUfgUfcsUfsc	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaatGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfggaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu uCfaCfaGfGfAfaUfguuUfuAfuUfgUfcsUfsc uCfaCfaggAfaUfguuUfuAfuUfgUfcsUfsc	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu uCfaCfaGfGfAfaUfguuUfuAfuUfgUfcsUfsc uCfaCfaggAfaUfguuUfuAfuUfgUfcsUfsc uUfcAfcAfGfGfaAfuguUfuUfaUfgUfcsUfsc	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaatGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuUfaUfuGfuCfusCfsu cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu uCfaCfaGfGfAfaUfguuUfaUfuGfuCfusCfsu uCfaCfaggAfaUfguuUfuAfuUfgUfcsUfsc uCfaCfaggAfaUfguuUfuAfuUfgUfcsUfsc uUfcAfcAfGfaAfuguUfuAfuUfgUfcsUfsc uUfcAfcAfGfaAfuguUfuUfaUfuGfusCfsu uUfcAfcAfGfaAfuguUfuUfaUfaUfuGfusCfsu	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgScfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgScfsc cAfgGfaadfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu uCfaCfagfGfAfaUfguuUfuAfuUfgUfcsUfsc uUfcAfcAfGfGfaAfuguUfuUfaUfuGfucGfusCfsu uUfcAfcAfGfGfAfuguUfuUfaUfuGfusCfsu uUfcAfcAfGfgAfaugUfuUfaUfuGfusCfsu	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaadfUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuUfaUfuGfuCfusCfsu cAfcAfgGfAfAfuGfuuuUfaUfuGfuCfusCfsu uCfaCfaGfGfAfaUfguuUfuAfuUfgUfcsUfsc uCfaCfaGfGfAfaUfguuUfuAfuUfgUfcsUfsc uUfcAfcAfGfGaAfuguUfuUfaUfaUfuGfusCfsu uUfcAfcAfGfGaAfuguUfuUfaUfaUfuGfusCfsu uUfcAfcagGfaAfuguUfuUfaUfaUfuGfusCfsu uUfuCfacaGfAfauguUfuUfuUfaUfaUfgsUfsc uUfuCfacaGfAfauguUfuUfuUfaUfgsUfsc	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaaugUfuUfuauUfgUfcUfcUfgsCfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaauGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfggaaUfgUfuuuHaUfuUfuUfcUfcsUfsu cAfcAfggaAfuGfuuuUfaUfuUfuUfcUfcsUfsc uCfaCfaggAfaUfguuUfuUfaUfuUfgUfcsUfsc uUfcAfcAfGfGfaAfuguUfuUfaUfuUfgUfcsUfsc uUfcAfcagGfaAfuguUfuUfaUfuUfaUfuGfusCfsu uUfcAfcagGfaAfuguUfuUfaUfuUfaUfuGfusCfsu uUfuCfaCfafGfgAfaugUfuUfuUfuUfaUfuGfusCfsu uUfuCfacaGfgAfaugUfuUfuUfuUfuUfgsUfsc cUfuUfcAfCAfGfgAauGfuUfuUfuUfuUfgsUfsc	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgScfSc aGfgAfaugUfuUfuauUfgUfcUfcUfgScfSc cAfgGfaAfUfGfuUfuuaUfuGfuCfuCfuSGfSc cAfgGfaauGfuUfuuaUfuGfuCfuCfuSGfSc aCfaGfgaaUfgUfuuuAfuUfgUfcUfcSUfSg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcSUfSg aCfaGfgaaUfgUfuuuUfaUfuGfuCfuSCfSu cAfcAfgGfAfAfuGfuuuUfaUfuGfuCfuSCfSu cAfcAfgGfAfAfuGfuuuUfaUfuGfuCfuSCfSu uCfaCfaGfGfAfaUfguuUfuAfuUfgUfcSUfSc uUfcAfcAfGfGfaAfuguUfuUfaUfaUfuGfuSCfSu uUfcAfcAfGfGfaAfuguUfuUfaUfaUfuGfuSCfSu uUfuCfaCaGfAfaUguUfuUfuUfaUfuGfuSGfSc cUfuUfcAfcaGfAfaugUfuUfuUfaUfaUfgSUfSc cUfuUfcAfcaGfAfagauGfuUfuUfaUfaUfgSUfSc cUfuUfcacAfGfGfaauGfuUfuUfaUfaUfuSGfSu cUfuUfcacAfGfGfaauGfuUfuUfaUfaUfuSGfSu	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgScfsc aGfgAfaugUfuUfuauUfgUfcUfcUfgScfsc cAfgGfaadfUfGfuUfuuaUfuGfuCfuCfusGfsc cAfgGfaadfUfGfuUfuuaUfuGfuCfuCfusGfsc aCfaGfgAfAfUfgUfuuaAfuUfgUfcUfcsUfsg aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcsUfsg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg cAfcAfggaAfuGfuuuUfaUfuUfuUfcUfcsUfsc uCfaCfaGfGfAfaUfguuUfuUfaUfuUfgUfcsUfsc uUfcAfcAfGfGfaAfuguUfuUfaUfuUfgUfcsUfsc uUfcAfcagGfaAfuguUfuUfaUfuGfusCfsu uUfcAfcagGfaAfuguUfuUfaUfuGfusCfsu uUfcAfcagGfaAfuguUfuUfaUfuGfusCfsu cUfuUfcAfcAfGfgAfaugUfuUfuUfaUfuGfusGfsu cUfuUfcAfCfAfGfgaauGfuUfuUfaUfuJfuSfsu cUfuUfcacAfgGfaauGfuUfuUfaUfuUfaUfusGfsu cCfuUfuCfaCfAfCfaGfgaaUfgUfuUfuUfaUfuSfsu	aGfgAfaUfGfUfuJtuauUfgUfcUfcUfgScfSc aGfgAfaugUfuUfuauUfgUfcUfcUfgScfSc cAfgGfaAfUfGfuUfuuaUfuGfuCfuCfuSGfSc cAfgGfaauGfuUfuuaUfuGfuCfuCfuSGfSc aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcSUfSg aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcSUfSg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcSUfSg cAfcAfggAfAfuguuUfaUfuGfuCfuSCfSu cAfcAfggAfaUfguuUfuAfuUfgUfcSUfSc uCfaCfaGfGfAfaUfguuUfuAfuUfgUfcSUfSc uUfcAfcagGfaAfuguUfuUfaUfuGfuSCfSu uUfcAfcagGfaAfuguUfuUfaUfaUfuGfuSCfSu uUfcAfcagGfaAfuguUfuUfaUfaUfuGfuSCfSu uUfcAfcagGfaAfuguUfuUfaUfuGfuSGSUfSc cUfuUfcAcGfGfgAfaugUfuUfuUfaUfuGfuSGfSu cCfuUfuCfacAfGfgaauGfuUfuUfaUfuSGfSu cCfuUfuCfacAfGfgaauGfuUfuUfaUfuAfuSfSsu cCfuUfuCfacAfGfgaaUfgUfuUfuAfuUfgSUfSg cCfuUfucGAfGfgaaUfgUfuUfuAfuSfSu	a diga fau tieru fuu fuu uu uu fu fu fu fu fu fu fu fu	fuauUfgUfcUfcUfgsCfsc auUfgUfcUfcUfgsCfsc fuuaUfuGfuCfuCfusGfsc uaUfuGfuCfuCfusGfsc uaUfuGfuCfuCfusGfsc fuuuAfuUfgUfcUfcsUfsg fuuuUfaUfuGfuCfusCfsu tguuUfuAfuUfgUfcsUfsc uuUfuAfuUfgUfcsUfsc uuUfuUfuAfuUfgUfcsUfsc uuUfuUfuUfaUfuGfusCfsu guUfuUfuUfaUfuGfusCfsu faugUfuUfuUfaUfuGfusCfsu faugUfuUfuUfaUfuGfusCfsu faugUfuUfuAfuUfgsUfsc faauGfuUfuUfaUfuSfsu auGfuUfuUfaUfuSfsu sadfuUfuUfaUfuSfsu sadfuUfuUfaUfuSfsu sadfuUfuUfaUfuSfsu sadfuUfuUfaUfuSfsu sadfuUfuUfaUfuSfsu sadfuUfuUfaUfuSfsu	aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgScfSc aGfgAfaugUfuUfuauUfgUfcUfcUfgScfSc cAfgGfaaAfUfGfuUfuuaUfuGfuCfuCfuSGfSc cAfgGfaaAfUfGfuUfuuaUfuGfuCfuCfuSGfSc cAfgGfaauGfuUfuuaUfuGfuCfuCfuSGfSc aCfaGfgAfAfUfgUfuuuAfuUfgUfcUfcSUfSg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcSUfSg aCfaGfgaaUfgUfuuuAfuUfgUfcUfcSUfSg cAfcAfggaAfuGfuuuUfaUfuUfgUfcSUfSc uCfaCfaGfGfAfaUfguuUfuUfaUfuGfuCfuSCfSu uUfcAfcAfGfGfaAfuguUfuUfaUfuGfuSCfSu uUfcAfcAfGfGfAfuguUfuUfaUfuGfuSCfSu uUfcAfcAfGfGfAfaugUfuUfaUfuGfuSCfSu uUfCAfcAfGfGfAaugUfuUfuUfaUfuGfuSCfSu cUfuUfcAfCfAfGfgaauGfuUfuUfaUfuAfuUfgSUfSc cUfuUfcacAfgGfaauGfuUfuUfuUfaUfuSGfSu cCfuUfucGAfCfAfGfgaaUfgUfuUfuUfaUfuSGfSu cCfuUfuCfAfCfAfGfgaaUfgUfuUfuUfaSUfSg cCfuUfuCfAfCfAfGgaaUfgUfuUfuUfaSUfSg cCfuUfuCfAfCfAfggaAfuGfuUfuUfaSUfSu gCfcUfuuCfAfCfAfggaAfuGfuUfuUfaSUfSu aCfcUfuuCAfcAfggaAfuGfuUfuUfaSUfSu gCfcUfuuCAfcAfggaAfuGfuUfuUfaSUfSu aCfcUfuuCAfcAfggaAfuGfuUfuUfaSUfSu	a diga fia Uf Gilul fua u Uf gu ficu ficu figs Cfsc a diga fa u Uf diua u Uf gu ficu ficu figs Cfsc a diga fa u Uf u Ufuu a u Uf u Cfu Cfu s Gfsc c Afg Gfa a u Gfu Ufuu a Ufu Gfu Cfu Cfu s Gfsc a c fa gfa a fu Ufuu a Ufu Ufu Ufu Ufu Cfu Cfu s Gfsc a c fa diga a u Ufuu u Afu Ufg Ufc Ufc s Ufsg a c fa diga a u Ufuu u Afu Ufg Ufc Ufc s Ufsg a c fa diga a u Ufuu u Ufa Ufu Gfu Cfu s Cfsu a c fa c fa ga a Afu gu u Ufu Afu Ufg Ufc S Ufsc a c fa c fa ga a Afu gu u Ufu Afu Ufg Ufc S Ufsc a u Cfa c fa ga a Afu gu u Ufu Afu Ufg Ufc S Ufsc a u Ufc A fc a g Gfa Afu gu Ufu Ufa Ufu Gfu s Cfsu a u U fa Afc a g Gfa Afu gu Ufu Ufa Ufu Gfu s Cfsu a u U fa Afc a g Gfa a u Gfu Ufu Ufa Ufu S Gfsu a u U fa C fa a Gfa fa a u Gfu Ufu Ufa Ufu S Gfsu c c fu U fa C fa f g a a u Gfu Ufu Ufa Ufu S Gfsu c c fu U fu C fa f g a a u Gfu Ufu Ufa S Ufsc c c fu U fu c C f a g a a u Gfu Ufu Ufa S Ufsc c c fu U fu c C f a c f g a a u G fu Ufu Ufa S Ufsu c c fu U fu c f a f g a a u G fu Ufu Ufa S Ufsu c c f a c f a c f a g a a f a u G f a u G f a u C f a c f a g a f a u C f a c f
gGfaAfuGfUfUfuUfauuGfuCfuCfuGfcsCfsu		gGfaAfuguUfuUfauuG	aGfgAfaUfGfUfuUfuau		aGfgAfaugUfuUfuauU	aGfgAfaugUfuUfuauU cAfgGfaAfUfGfuUfuua	aGfgAfaugUfuUfuauU cAfgGfaAfUfGfuUfuua cAfgGfaauGfuUfuuaU	aGfgAfaugUfuUfuauU cAfgGfaAfUfGfuUfuua cAfgGfaauGfuUfuuaU aCfaGfgAfAfUfgUfuuu	aGfgAfaugUfuUfuauU cAfgGfaaHUfGfuUfuuaU cAfgGfaauGfuUfuuaU aCfaGfgAfAfUfgUfuuu aCfaGfgaaUfgUfuuuAf	aGfgAfaugUfuUfuauU cAfgGfaAfUfGfuUfuua cAfgGfaauGfuUfuuaU aCfaGfgAfAfUfgUfuuuAi aCfaGfgaaUfgUfuuuAi cAfcAfgGfAfAfuGfuuu	aGfgAfaugUfuUfuua cAfgGfaaUGfuUfuuaU cAfgGfaauGfuUfuuaU aCfaGfgAfAfUfgUfuuuAf aCfaGfgaaUfgUfuuuAf cAfcAfgGfAfAfuGfuuu cAfcAfggaAfuGfuuuUf	aGfgAfaugUfuUfuauU cAfgGfaAfUfGfuUfuua cAfgGfaauGfuUfuuaU aCfaGfgaaUfgUfuuuAt cAfcAfgGfAfAfuGfuuu cAfcAfggaAfuGfuuUUf	aGfgAfaugUfuUfuuau cAfgGfaauGfuUfuuaU cAfgGfaauGfuUfuuaU aCfaGfgAfAfUfgUfuuuAf aCfaGfgaaUfgUfuuuAf cAfcAfggaAfuGfuuu cAfcAfggaAfuGfuuuUf uCfaCfaGfGfAfaUfguuUf	aGfgAfaugUfuUfuauU cAfgGfaatUfGfuUfuua cAfgGfaauGfuUfuuaU aCfaGfgaaUfgUfuuuAt cAfcAfgGfAfAfuGfuuu cAfcAfggaAfuGfuuUUf uCfaCfaggAfaUfguuUf uUfcAfcAfGfGfAfuUUf	aGfgAfaugUfuUfuauU cAfgGfaauGfuUfuuaU aCfaGfgaaUfgUfuuud aCfaGfgaaUfgUfuuud cAfcAfgGfAfAfuGfuuu cAfcAfgGAfAfuGfuuuUf uCfaCfagGAfaUfguuUf uUfcAfcAfGfGfaAfugu	aGfgAfaugUfuUfuauUcAfgGfaaUfGfuUfuuaUcAfgGfaaUfgUfuuuAfaCfGfgaaUfgUfuuuAfaCfafgGfAfAfuGfuuUfuCfaCfaggAfaUfguuUfuUfaCfaggAfaUfguuUfuUfaCfaggAfaUfguuUfuUfaCfagGfaAfuguUfuUfuCfaCfagGfaAfuguUfuUfaCfaCfaGfGfAfaguUfuUfuCfaCfaGfGfAfaguUfuUfuCfaCfaGfGfAfaguUf	aGfgAfaugUfuUfuauU cAfgGfaauGfuUfuuaU aCfaGfgaaUfgUfuuud aCfaGfgaaUfgUfuuud cAfcAfgGfAfAfuGfuuuU cAfcAfgGfAfAfuGfuuuU uCfaCfaGfGfAfaUfguu uUfcAfcagGfaAfugu uUfcAfcagGfaAfugu uUfuCfacGfgfAfaug	aGfgAfaugUfuUfuauUcAfgGfaaUfGfuUfuuaacAfgGfaaUfgUfuuuAfaCfaGfgaaUfgUfuuuAfaCfaGfgAfAfuGfuuUfuCfaCfaggAfaUfguuUfuUfaCfaggAfaUfguuUfuUfaCfaGfGfAfaUfguuUfuUfuCfaCfaGfGfAfauguUfuUfuCfaCaGfgAfaugUfuUfuCfaCaGfgAfaugUUfuCfaCaGfgAfaugUUfuCfaCaGfgAfaugUUfuCfaCaGfgAfaugUUfuCfaCaGfgAfaugUUfuCfaCaGfgAfaugUUfuCfaCaGfgAfaugUfuUfuCfaCaGfgAfaugUfuUfuCfaCaGfgAfaugUf	aGfgAfaugUfuUfuauU cAfgGfaaUfUUfuuaU aCfaGfgaaUfgUfuuuA aCfaGfgaaUfgUfuuuA aCfaCfgaaUfgUfuuuA cAfcAfgGfAfAfuGfuuUU uCfaCfaGfGfAfaUfguu uUfcAfcagGfaAfuguUU uUfuCfaCfAfGfgaAfugu uUfuCfaCfAfGfgAfaugu uUfuCfacGfgAfauguUf cUfuUfcaCfAfGfgAfaugU cUfuUfcaCfAfGfgAfaugU	aGfgAfaugUfuUfuauUcAfgGfaaUfGfuUfuuaacAfgGfaaUfgUfuuuAfacAfggaaUfgUfuuuAfacAfggaAfuGfuuuUfuCfaCfaggAfaUfguuUfuUfacAfcAfGfgAfauguUfuUfacAfcAfGfgAfauguUfuUfcAfcAfGfgAfauguUfcUfcAfcAfGfgaauGfcAfgGfaauGfcUUfuCfaCfAfGfgaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaauGfcUUfuCfAfCfAfGfaau	aGfgAfaugUfuUfuauU cAfgGfaatUfGfuUfuua aCfaGfgaaUfgUfuuuA aCfaGfgaaUfgUfuuuA cAfcAfgGfAfafuGfuuuUf uCfaCfaGfGfAfaUfguu uUfcAfcagGfaAfuguUU uUfcAfcagGfaAfuguUf uUfuCfacAfGfgfaafugu uUfuCfacAfGfgfaaau cUfuUfcaCAfGfgaau cCfuUfucGAfCfaGfgaau cCfuUfucaCfaGfgaau	aGfgAfaugUfuUfuauU cAfgGfaaHUfGfuUfuua aCfaGfgAfAfUfgUfuuuAt aCfaGfgaaUfgUfuuuAt cAfcAfggaAfuGfuuuUf uUfcAfcAfGfAfaUfguuUf uUfcAfcAfGfGAfuguUf uUfuCfaCfAfGfgAfauguUf cUfuUfcacAfgGfaauGf cCfuUfucaCfaGfgaaUf gCfcUfuCfAfCfAfggaaUf	a de figada un Ufundua un Ufunche Ufeu feu Charges Caste Grad Faugu Huu Ufuna Ufun Ghuche Ufus Gfscafgeda au Gfuu Huua Ufun Gfuche Charge Graau Gfuu Huua Ufun Gfuch Chars Ufagaa Ufgu Huuu Afuu Ufgu feu Chasufsgaa Ufgu Huuu Afuu Ufgu Heu Chasufsga Cafea fega Afuu Ufua Ufuu Gfuchus Cfsuu Cfac Gaga Afu Gfuuu Ufuu Afuu Ufgu Heu Ufasu Cfac Cfag Gfa Afuguu Ufuu Hau Ufu Gfus Cfsuu Ufac Afa Gfa Afuguu Ufuu Ufau Ufuu Gfus Cfau Ufuc Afa Gfa Afuguu Ufuu Ufau Ufuu Gfus Cfuu Ufuc Gac Gfa Afa Gfa au Gfuu Ufuu Ufau Ufasu Ufac Cfau Offa Gfa au Gfuu Ufuu Ufau Ufus Gfsuc Cfuu Ufuc Cfa Gfga au Gfuu Ufuu Ufau Ufus Gfsuc Cfuu Ufuc Cfa Gfga au Gfuu Ufuu Ufau Ufus Gfsu Cfuu Ufuc Afa Gfga au Gfuu Ufuu Ufas Ufsa Gfau Cfuu Ufuc Afa Gfga au Gfuu Ufuu Ufas Ufsa Gfcu Ufuu Cfa Cfa Gfga a Ufau Ufuu Ufas Ufsa Ufsa Cfcu Ufuu C Afa Cfa Gfga a Afu Gfuu Ufuu Ufas Ufsa Cfcu Ufuu C Afa Cfa Gfga a Afu Gfuu Ufu Ufas Ufsa Cfcu Ufuu C Afa Cfa Gfaga a Afu Gfuu Ufu Ufas Ufsa Cfcu Ufuu C Afa Cfa Gfaga a Afu Gfuu Ufuu Ufas Ufsa	adfgAfaugUfuUfuauU cafgGfaaUGfuUfuua aCfaGfgaaUfgUfuuua aCfaGfgaaUfgUfuuua aCfaGfgaaUfgUfuuua cafcafgGfAfAfuGfuuuUf cafcAfgGfAfAfuGfuuuUf uUfcAfcagGfaAfugu uUfcAfcafGfGfaAfugu uUfuCfaCfAfGfgaAfugu uUfuCfaCfAfGfgAfaug cUfuUfcaCfAfGfgaau cCfuUfucaCfaGfgaaUf cCfuUfuCaCfaGfgaaUf cCfuUfuCaCfaGfgaaUf gCfcUfuuCAfCAfggaaUf gCfcUfuuCAfCAfggaaUf	aGfgAfaugUfuUfuauU cAfgGfaatUfGfuUfuua aCfaGfgaaUfgUfuuuA aCfaGfgaaUfgUfuuuA cAfcAfgGfAfaUfguu cAfcAfgGfAfaUfguu uCfaCfaGfGfAfaUfguu uUfcAfcagGfaAfugu uUfuCfaCfAfGfgaatugu uUfuCfacAfGfgAfaugUf cUfuUfcaCfAfGfgaau cCfuUfuCfAfCfAfgGfaau cCfuUfuCfAfCfAfgGfaau cCfuUfuCfAfCfAfggaa gCfcUfuUfCfAfCAfggaa gCfcUfuUfCfAfCAfggaa uGfcCfuUtUfCfAfCAfggaa uGfcCfuUfUfCfAfCAfggaa uGfcCfuUfUfCfAfCAfggaa uGfcCfuUfUfCfAfCAfggaa uGfcCfuUfUfCfAfCAfggaa
1754 gG		1755 gG	1756 aG		1/5/ 40										 	 	 	 	 	 	 	 	 	 	
+	⊢	AS1645 1	AS1646 1	AS1647 1		AS1648 1	_	-		- 	 	 	 	 		- 									
+	GICAIBAIGAICAIAIOIAAIAACAIUOICCILGO	GfcAfgAfgAfcAfAfUfaAfaAfCfAfuUfcCfL96	CfaGfaGfaCfaAfUfAfaAfacaUfuCfcUfL96	CfaGfaGfaCfaAfUfAfaAfaCfAfUfuCfcUfL96		AfgAfgAfcAfaUfAfAfaAfcauUfcCfuGfL96	9	9	96	9 90	9 9	9 9 9	9 9 9	9 9 9	9 9 9	9 9 9	9 9 9 9	9 9 9 9	يو و و و و	9 9 9	9 9 9 9 9	9 9 9 9	9 9 9 9 9	و و و و و و	0 0 0 0 0 0 0
662 Gfc	-		664 CfaC	665 CfaC		666 Afg/																			
21015	S1644 66;	S1645 66	S1646 66	S1647 66!	21648	\dashv	+		+	+			 				 	 							
•	. 1 ~,	<u> </u>	٠,	-,	-,	$\frac{1}{2}$	1 ,	10, 5,	0, 0, 0,		0, 0, 0, 0,	0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0											D1649 D1650 D1651 D1652 D1653 D1654 D1655 D1656 D1657 D1659 D1660 D1661 D1662 D1663 D1666 D1666 D1666 D1666 D1666 D1666

gUfgCfcuuUfcAfcagGfaAfuGfuUfusUfsa	aGfuGfcCfUfUfuCfacaGfgAfaUfgUfusUfsu	$a {\tt GfuGfccuUfuCfacaGfgAfaUfgUfusUfsu}$	${\sf aAfgUfgCfCfUfuUfcacAfgGfaAfuGfusUfsu}$	a Afg Ufg cc Ufu Uf cac Afg Gf a Afu Gf us Uf su	a A fa G fu G f C f L U f u c a C fa G f g A f a U f g s U f s u	a A fa G fugc C fu U fu ca C fa G fg A fa U fg s U fs u	a A f a A f g U f G f C f c U f u u c A f c A f g G f a A f u s G f s u	a A f a A f g u g C f c U f u u c A f c A f g G f a A f u s G f s u	gAfaAfaGfUfGfcCfuuuCfaCfaGfgAfasUfsg	gAfaAfaguGfcCfuuuCfaCfaGfgAfasUfsg	u Gfa Afa Af Gf Ufg Cf cuu Uf c Afc Afg Gfas Afs u	u Gfa Afa ag Ufg Cf cuu Uf c Afc Afg Gfas Afs u	${\tt aUfgAfaAfafefuGfccuUfuCfaCfaGfgsAfsa}$	${\tt aUfgAfaaaGfuGfccuUfuCfaCfaGfgsAfsa}$	a A fu G f a A f A f g U f g c c U f u U f c A f c A f g S f s a	a A fu G faa a A fg U fg c c U fu U f c A f c A fg s G f s a factor of the first	gAfa UfgAfAfAfa Gfugc Cfu Ufu Cfa Cfas Gfsg	gAfaUfgaaAfaGfugcCfuUfuCfaCfasGfsg	gGfaAfuGfAfAfaAfgugCfcUfuUfcAfcsAfsg	gGfaAfugaAfgugCfcUfuUfcAfcsAfsg	uGfgAfaUfGfAfaAfaguGfcCfuUfuCfasCfsa	uGfgAfaugAfaAfaguGfcCfuUfuCfasCfsa	${\tt gUfgGfaAfUfGfaAfaagUfgCfcUfuUfcsAfsc}$	${\tt gUfgGfaauGfaAfaagUfgCfcUfuUfcsAfsc}$	a Gfu Gfg Af Af Ufg Af a a Gfu Gfc Cfu Ufus Cfs a	a Gfu Gfgaa Ufg Afaaa Gfu Gfc Cfu Ufu s Cfs a
1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805
AS1669	AS1670	AS1671	AS1672	AS1673	AS1674	AS1675	AS1676	AS1677	AS1678	AS1679	AS1680	AS1681	AS1682	AS1683	AS1684	AS1685	AS1686	AS1687	AS1688	AS1689	AS1690	AS1691	AS1692	AS1693	AS1694	AS1695
AfaAfcAfuUfcCfUfGfuGfaAfAfGfgCfaCfL96	AfaCfaUfuCfcUfGfUfgAfaagGfcAfcUfL96	AfaCfaUfuCfcUfGfUfgAfaAfGfGfcAfcUfL96	AfcAfuUfcCfuGfUfGfaAfaggCfaCfuUfL96	AfcAfuUfcCfuGfUfGfaAfaGfGfCfaCfuUfL96	CfaUfuCfcUfgUfGfAfaAfggcAfcUfuUfL96	CfaUfuCfcUfgUfGfAfaAfgGfCfAfcUfuUfL96	AfuUfcCfuGfuGfAfAfaGfgcaCfuUfuUfL96	AfuUfcCfuGfuGfAfAfaGfgCfAfCfuUfuUfL96	UfuCfcUfgUfgAfAfAfgGfcacUfuUfuCfL96	UfuCfcUfgUfgAfAfAfgGfcAfCfUfuUfuCfL96	UfcCfuGfuGfaAfAfGfgCfacuUfuUfcAfL96	UfcCfuGfuGfaAfAfGfgCfaCfUfUfuUfcAfL96	CfcUfgUfgAfaAfGfGfcAfcuuUfuCfaUfL96	CfcUfgUfgAfaAfGfGfcAfcUfUfUfuCfaUfL96	CfuGfuGfaAfaGfGfCfaCfuuuUfcAfuUfL96	CfuGfuGfaAfaGfGfCfaCfuUfUfUfcAfuUfL96	UfgUfgAfaAfgGfCfAfcUfuuuCfaUfuCfL96	UfgUfgAfaAfgGfCfAfcUfuUfUfCfaUfuCfL96	GfuGfaAfaGfgCfAfCfuUfuucAfuUfcCfL96	GfuGfaAfaGfgCfAfCfuUfuUfcfAfuUfcCfL96	UfgAfaAfgGfcAfCfUfuUfucaUfuCfcAfL96	UfgAfaAfgGfcAfCfUfuUfuCfAfUfuCfcAfL96	GfaAfaGfgCfaCfUfUfuUfcauUfcCfaCfL96	GfaAfaGfgCfaCfUfUfuUfcAfUfUfcCfaCfL96	AfaAfgGfcAfcUfUfuCfauuCfcAfcUfL96	AfaAfgGfcAfcUfUfuCfaUfUfCfcAfcUfL96
687	889	689	069	691	692	693	694	695	969	269	869	669	700	701	702	703	704	705	902	707	708	709	710	711	712	713
S1669	S1670	S1671	S1672	S1673	S1674	S1675	S1676	S1677	S1678	S1679	S1680	S1681	S1682	S1683	S1684	S1685	S1686	S1687	S1688	S1689	S1690	S1691	S1692	S1693	S1694	S1695
D1669	D1670	D1671	D1672	D1673	D1674	D1675	D1676	D1677	D1678	D1679	D1680	D1681	D1682	D1683	D1684	D1685	D1686	D1687	D1688	D1689	D1690	D1691	D1692	D1693	D1694	D1695

aAfgUfgGfAfAfuGfaaaAfgUfgCfcUfusUfsc	aAfgUfggaAfuGfaaaAfgUfgCfcUfusUfsc	aAfaGfuGfGfAfaUfgaaAfaGfuGfcCfusUfsu	aAfaGfuggAfaUfgaaAfaGfuGfcCfusUfsu	uAfaAfgUfGfGfaAfugaAfaAfgUfgCfcsUfsu	uAfaAfgugGfaAfugaAfaAfgUfgCfcsUfsu	uUfaAfaGfUfGfgAfaugAfaAfaGfuGfcsCfsu	uUfaAfaguGfgAfaugAfaAfaGfuGfcsCfsu	gUfuAfaAfGfUfgGfaauGfaAfaAfgUfgsCfsc	gUfuAfaagUfgGfaauGfaAfaAfgUfgsCfsc	aGfuUfaAfAfGfuGfgaaUfgAfaAfaGfusGfsc	aGfuUfaaaGfuGfgaaUfgAfaAfaGfusGfsc	aAfgUfuAfAfAfgUfggaAfuGfaAfaAfgsUfsg	aAfgUfuaaAfgUfggaAfuGfaAfaAfgsUfsg	cAfaGfuUfAfAfaGfuggAfaUfgAfaAfasGfsu	cAfaGfuuaAfaGfuggAfaUfgAfaAfasGfsu	uCfaAfgUfUfAfaAfgugGfaAfuGfaAfasAfsg	uCfaAfguuAfaAfgugGfaAfuGfaAfasAfsg	aUfcAfaGfUfUfaAfaguGfgAfaUfgAfasAfsa	aUfcAfaguUfaAfaguGfgAfaUfgAfasAfsa	aAfuCfaAfGfUfuAfaagUfgGfaAfuGfasAfsa	aAfuCfaagUfuAfaagUfgGfaAfuGfasAfsa	aAfaUfcAfAfGfuUfaaaGfuGfgAfaUfgsAfsa		aAfaUfcaaGfuUfaaaGfuGfgAfaUfgsAfsa	aAfaUfcaaGfuUfaaaGfuGfgAfaUfgsAfsa aAfaAfuCfAfAfgUfuaaAfgUfgGfaAfusGfsa	aAfaUfcaaGfuUfaaaGfuGfgAfaUfgsAfsa aAfaAfuCfAfAfgUfuaaAfgUfgGfaAfusGfsa aAfaAfucaAfgUfuaaAfgUfgGfaAfusGfsa
9	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828		1829	1829	1829 1830 1831
ASTORO	AS1697	AS1698	AS1699	AS1700	AS1701	AS1702	AS1703	AS1704	AS1705	AS1706	AS1707	AS1708	AS1709	AS1710	AS1711	AS1712	AS1713	AS1714	AS1715	AS1716	AS1717	AS1718	AS1719		AS1720	AS1720 AS1721
AfaGfgCfaCfuUfUfUfcAfuucCfaCfuUfL96	AfaGfgCfaCfuUfUfUfcAfuUfcfCfaCfuUfL96	AfgGfcAfcUfuUfUfCfaUfuccAfcUfuUfL96	AfgGfcAfcUfuUfUfCfaUfuCfCfAfcUfuUfL96	GfgCfaCfuUfuUfCfAfuUfccaCfuUfuAfL96	GfgCfaCfuUfuUfCfAfuUfcCfAfCfuUfuAfL96	GfcAfcUfuUfuCfAfUfuCfcacUfuUfaAfL96	GfcAfcUfuUfuCfAfUfuCfcAfCfUfuUfaAfL96	CfaCfuUfuUfcAfUfUfcCfacuUfuAfaCfL96	CfaCfuUfuUfcAfUfUfcCfaCfUfUfuAfaCfL96	AfcUfuUfuCfaUfUfCfcAfcuuUfaAfcUfL96	AfcUfuUfuCfaUfUfCfcAfcUfUfUfaAfcUfL96	CfuUfuUfcAfuUfCfCfaCfuuuAfaCfuUfL96	CfuUfuUfcAfuUfCfCfaCfuUfUfAfaCfuUfL96	UfuUfuCfaUfuCfCfAfcUfuuaAfcUfuGfL96	UfuUfuCfaUfuCfCfAfcUfuUfAfAfcUfuGfL96	UfuUfcAfuUfcCfAfCfuUfuaaCfuUfgAfL96	UfuUfcAfuUfcCfAfCfuUfuAfAfCfuUfgAfL96	UfuCfaUfuCfcAfCfUfuUfaacUfuGfaUfL96	UfuCfaUfuCfcAfCfUfuUfaAfCfUfuGfaUfL96	UfcAfuUfcCfaCfUfUfuAfacuUfgAfuUfL96	UfcAfuUfcCfaCfUfUfuAfaCfUfUfgAfuUfL96	CfaUfuCfcAfcUfUfufaAfcuuGfaUfuUfL96	90	CIADIUCICAICOI OI OI ANICOI OI AOI AOI AOI AOI AOI AOI AOI AOI AO	Afu Ufc Cfa Cfu Uf Uf Afa Cfu ug Afu Ufu Ufu Ufu 06	Afu Ufc Cfa Cfu Uf Uf Afa Cfu ug Afu Ufu Ufu Ufu Ufu B6 Afu Ufc Cfa Cfu Uf Uf Afa Cfu Uf Gf Afu Ufu Ufu Ufu B6
714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	727	, 7,	738	738
S1696	21697	81698	21699	S1700	51701	S1702	S1703	S1704	S1705	S1706	S1707	81708	S1709	S1710	S1711	S1712	S1713	S1714	S1715	S1716	S1717	S1718	S1719		S1720	S1720 S1721
D1696	D1697	D1698	D1699	D1700	D1701	D1702	D1703	D1704	D1705	D1706	D1707	D1708	D1709	D1710	D1711	D1712	D1713	D1714	D1715	D1716	D1717	D1718	D1719		D1720	D1720 D1721

aAfaAfaucAfaGfuuaAfaGfuGfgAfasUfsg	aAfaAfUfCfaAfguuAfaAfgUfgGfasAfsu	a A f a A f a a u C f a A f g u u A f a A f g U f g G f a s A f s u	uAfaAfaAfUfcAfaguUfaAfaGfuGfgsAfsa	${\sf uAfaAfaaaUfcAfaguUfaAfaGfuGfgsAfsa}$	uUfaAfaAfAfuCfaagUfuAfaAfgUfgsGfsa	uUfaAfaaaAfuCfaagUfuAfaAfgUfgsGfsa	u U f u A f a A f A f A f a U f c a a G f u U f a A f a G f u S f s g	uUfuAfaaaAfaUfcaaGfuUfaAfaGfuSfsg	aUfuUfaAfAfAfaAfucaAfgUfuAfaAfgsUfsg	aUfuUfaaaAfaAfucaAfgUfuAfaAfgsUfsg	aAfuUfuAfAfAfaAfaucAfaGfuUfaAfasGfsu	a A fu U fu a a A f a A f a u c A f a G f u U f a A f a S f s u	gAfaUfuUfAfAfaAfaauCfaAfgUfuAfasAfsg	gAfaUfuuaAfaAfaauCfaAfgUfuAfasAfsg	gGfaAfuUfUfAfaAfaaaUfcAfaGfuUfasAfsa	gGfaAfuuuAfaAfaaaUfcAfaGfuUfasAfsa	gGfgAfaUfUfaAfaaaAfuCfaAfgUfusAfsa	gGfgAfauuUfaAfaaaAfuCfaAfgUfusAfsa	aGfgGfaAfUfUfuAfaaaAfaUfcAfaGfusUfsa	aGfgGfaauUfuAfaaaAfaUfcAfaGfusUfsa	aAfgGfgAfAfUfuUfaaaAfaAfuCfaAfgsUfsu	aAfgGfgaaUfuUfaaaAfaAfuCfaAfgsUfsu	uAfaGfgGfAfAfuUfuaaAfaAfaUfcAfasGfsu	uAfaGfggaAfuUfuaaAfaAfaUfcAfasGfsu	aUfaAfgGfGfAfaUfuuaAfaAfaAfuCfasAfsg	
1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	L
AS1723	AS1724	AS1725	AS1726	AS1727	AS1728	AS1729	AS1730	AS1731	AS1732	AS1733	AS1734	AS1735	AS1736	AS1737	AS1738	AS1739	AS1740	AS1741	AS1742	AS1743	AS1744	AS1745	AS1746	AS1747	AS1748	
UfuCfcAfcUfuUfAfAfcUfuGfAfUfuUfuUfL96	UfcCfaCfuUfuAfAfCfuUfgauUfuUfuUfL96	UfcCfaCfuUfuAfAfCfuUfgAfUfuUfuUfuUf196	CfcAfcUfuUfaAfCfUfuGfauuUfuUfuAfL96	CfcAfcUfuUfaAfCfUfuGfaUfUfuUfuUfuAfL96	CfaCfuUfuAfaCfUfUfgAfuuuUfuUfaAfL96	CfaCfuUfuAfaCfUfUfgAfuUfUfufuUfaAfL96	AfcUfuUfaAfcUfUfGfaUfuuuUfuAfaAfL96	AfcUfuUfaAfcUfUfGfaUfuUfUfUfuAfaAfL96	CfuUfuAfaCfuUfGfAfuUfuuuUfaAfaUfL96	CfuUfuAfaCfuUfGfAfuUfuUfUfUfaAfaUfL96	UfuUfaAfcUfuGfAfUfuUfuuuAfaAfuUfL96	UfuUfaAfcUfuGfAfUfuUfuUfUfAfaAfuUfL96	UfuAfaCfuUfgAfUfUfuUfuuaAfaUfuCfL96	UfuAfaCfuUfgAfUfUfuUfuUfAfAfaUfuCfL96	UfaAfcUfuGfaUfUfUfuUfuaaAfuUfcCfL96	UfaAfcUfuGfaUfUfUUfuAfAfAfuUfcCfL96	AfacfuUfgAfuUfUfuUfaaaUfuCfcCfL96	AfaCfuUfgAfuUfUfUUfaAfAfUfuCfcCfL96	AfcUfuGfaUfuUfUfuAfaauUfcCfcUfL96	AfcUfuGfaUfuUfUfuAfaAfUfUfcCfcUfL96	CfuUfgAfuUfuUfUfUfaAfauuCfcCfuUfL96	CfuUfgAfuUfuUfUfUfaAfaUfUfCfcCfuUfL96	UfuGfaUfuUfuUfUfAfaAfuucCfcUfuAfL96	UfuGfaUfuUfuUfUfAfaAfuUfcfCfcUfuAfL96	UfgAfuUfuUfuUfAfAfaUfuccCfuUfaUfL96	
741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	260	761	762	763	764	765	99/	
\$1723	S1724	S1725	S1726	S1727	S1728	81729	S1730	51731	S1732	S1733	S1734	S1735	51736	S1737	S1738	81739	S1740	S1741	S1742	S1743	S1744	S1745	S1746	S1747	S1748	
D1723	D1724	D1725	D1726	D1727	D1728	D1729	D1730	D1731	D1732	D1733	D1734	D1735	D1736	D1737	D1738	D1739	D1740	D1741	D1742	D1743	D1744	D1745	D1746	D1747	D1748	

GfaUfuUfuUfuAfAfafuUfcccUfuAfuUfL96 AS1750
GfaUfuUfuUfuAfAfAfuUfcCfCfUfuAfuUfL96
AfuUfuUfuUfaAfAfUfuCfccuUfaUfuGfL96
AfuUfuUfaUfaAfAfUfuCfcCfUfUfaUfuGfL96
UfuUfuUfuAfaAfUfUfcCfcuuAfuUfgUfL96
UfuUfuUfuAfaAfUfUfcCfcUfUfAfuUfgUfL96
UfuUfuUfaAfaUfUfCfcCfuuaUfuGfuCfL96
UfuUfuUfaAfaUfUfCfcCfuUfAfUfuGfuCfL96
UfuUfuAfaAfuUfCfCfcUfuauUfgUfcCfL96
UfuUfuAfaAfuUfCfCfcUfuAfUfUfgUfcCfL96
UfuUfaAfaUfuCfCfcfuUfauuGfuCfcCfL96
UfuUfaAfaUfuCfCfuUfaUfUfGfuCfcCfL96
UfuAfaAfuUfcCfCfUfuAfuugUfcCfcUfL96
UfuAfaAfuUfcCfCfUfuAfuUfGfUfcCfcUfL96
UfaAfaUfuCfcCfUfUfaUfuguCfcCfuUfL96
UfaAfaUfuCfcCfUfUfaUfuGfUfCfcCfuUfL96
AfaAfuUfcCfcUfUfAfuUfgucCfcUfuCfL96
AfaAfuUfcCfcUfUfAfuUfgUfCfCfcUfuCfL96
AfaUfuCfcCfuUfAfUfuGfuccCfuUfcCfL96
AfaUfuCfcCfuUfAfUfuGfuCfCfCfuUfcCfL96
AfuUfcCfcUfuAfUfUfgUfcccUfuCfcAfL96
AfuUfcCfcUfuAfUfUfgUfcCfCfUfuCfcAfL96
UfuCfcCfuUfaUfUfGfuCfccuUfcCfaAfL96
UfuCfcCfuUfaUfUfGfuCfcCfUfUfcCfaAfL96
UfcCfcUfuAfuUfGfUfcCfcuuCfcAfaAfL96
UfcCfcUfuAfuUfGfUfcCfcUfUfCfcAfaAfL96
CfcCfuUfaUfuGfUfCfcCfuucCfaAfaAfL96

																										_
uUfuUfggaAfgGfgacAfaUfaAfgGfgsAfsa	uUfuUfuGfGfAfaGfggaCfaAfuAfaGfgsGfsa	uUfuUfuggAfaGfggaCfaAfuAfaGfgsGfsa	uUfuUfGfGfaAfgggAfcAfaUfaAfgsGfsg	uUfuUfuugGfaAfgggAfcAfaUfaAfgsGfsg	uUfuUfuUfUfGfgAfaggGfaCfaAfuAfasGfsg	uUfuUfuuuGfgAfaggGfaCfaAfuAfasGfsg	uUfuUfuUfUfgGfaagGfgAfcAfaUfasAfsg	uUfuUfuuuUfgGfaagGfgAfcAfaUfasAfsg	cUfuUfuUfUfUGfgaaGfgGfaCfaAfusAfsa	cUfuUfuuuUfuGfgaaGfgGfaCfaAfusAfsa	uCfuUfuUfUfuUfggaAfgGfgAfcAfasUfsa	uCfuUfuuuUfuUfggaAfgGfgAfcAfasUfsa	cUfcUfuUfUfUfuggAfaGfgGfaCfasAfsu	cUfcUfuuuUfuUfuggAfaGfgGfaCfasAfsu	uCfuCfuUfUfUfuugGfaAfgGfgAfcsAfsa	uCfuCfuuuUfuUfuugGfaAfgGfgAfcsAfsa	uUfcUfcUfUfuUfuuuGfgAfaGfgGfasCfsa	uUfcUfcuuUfuUfuuGfgAfaGfgGfasCfsa	${\tt aUfuCfuCfUfUfuUfuuUfgGfaAfgGfgsAfsc}$	aUfuCfucuUfuUfuuuUfgGfaAfgGfgsAfsc	gAfuUfcUfcfUfuUfuuUfuGfgAfaGfgsGfsa	gAfuUfcucUfuUfuuUfuGfgAfaGfgsGfsa	uGfaUfuCfUfCfuUfuuuUfuUfgGfaAfgsGfsg	uGfaUfucuCfuUfuuuUfuUfgGfaAfgsGfsg	uUfgAfuUfcfUfcUfuuuUfuUfuGfgAfasGfsg	
1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	
AS1777	AS1778	AS1779	AS1780	AS1781	AS1782	AS1783	AS1784	AS1785	AS1786	AS1787	AS1788	AS1789	AS1790	AS1791	AS1792	AS1793	AS1794	AS1795	AS1796	AS1797	AS1798	AS1799	AS1800	AS1801	AS1802	
CfcCfuUfaUfuGfUfCfcCfuUfCfCfaAfaAfL96	CfcUfuAfuUfgUfCfCfcUfuccAfaAfaAfL96	CfcUfuAfuUfgUfCfCfcUfuCfCfAfaAfaAfL96	CfuUfaUfuGfuCfCfuUfccaAfaAfaAfL96	CfuUfaUfuGfuCfCfuUfcCfAfAfaAfaAfL96	UfuAfuUfgUfcCfCfUfuCfcaaAfaAfaAfL96	UfuAfuUfgUfcCfCfUfuCfcAfAfAfaAfaAfL96	UfaUfuGfuCfcCfUfUfcCfaaaAfaAfaAfL96	UfaUfuGfuCfcCfUfUfcCfaAfAfAfaAf196	AfuUfgUfcCfcUfUfCfcAfaaaAfaAfaGfL96	AfuUfgUfcCfcUfUfCfcAfaAfAfAfaAfaGfL96	UfuGfuCfcCfuUfCfCfaAfaaaAfaAfgAfL96	UfuGfuCfcCfuUfCfCfaAfaAfAfAfaAfgAfL96	UfgUfcCfcUfuCfCfAfaAfaaaAfaGfaGfL96	UfgUfcCfcUfuCfCfAfaAfaAfAfAfaGfaGfL96	GfuCfcCfuUfcCfAfAfaAfaaaAfgAfgAfL96	GfuCfcCfuUfcCfAfAfaAfaAfAfAfgAfgAfL96	UfcCfcUfuCfcAfAfAfaAfaaaGfaGfaAfL96	UfcCfcUfuCfcAfAfAfaAfaAfAfGfaGfaAfL96	CfcCfuUfcCfaAfAfAfaAfaagAfgAfaUfL96	CfcCfuUfcCfaAfAfAfaAfaAfGfAfgAfaUfL96	CfcUfuCfcAfaAfAfaAfagaGfaAfuCfL96	CfcUfuCfcAfaAfaAfaAfaGfAfGfaAfuCfL96	CfuUfcCfaAfaAfAfaAfgagAfaUfcAfL96	CfuUfcCfaAfaAfAfaAfgAfGfAfaUfcAfL96	UfuCfcAfaAfaAfAfaGfagaAfuCfaAfL96	
795	962	767	862	662	008	801	802	£08	804	508	908	208	808	608	810	811	812	813	814	815	816	817	818	819	820	
S1777	S1778	S1779	S1780	51781	S1782	S1783	S1784	21785	51786	S1787	21788	S1789	S1790	51791	S1792	S1793	S1794	S1795	S1796	S1797	81798	S1799	21800	51801	S1802	
D1777	D1778	D1779	D1780	D1781	D1782	D1783	D1784	D1785	D1786	D1787	D1788	D1789	D1790	D1791	D1792	D1793	D1794	D1795	D1796	D1797	D1798	D1799	D1800	D1801	D1802	

- ds Δ fs σ	GfgsAfsa	fgsAfsa	•	UfgsGfsa	UfgsGfsa fgsGfsa	UfgsGfsa igsGfsa UfusGfsg	UfgsGfsa ·gsGfsa UfusGfsg ·usGfsg	UfgsGfsa gsGfsa UfusGfsg 'usGfsg UfusUfsg	UfgsGfsa gsGfsa UfusGfsg usGfsg UfusUfsg	UfgsGfsa gsGfsa UfusGfsg UfusGfsg usUfsg	UfgsGfsa gsGfsa UfusGfsg usGfsg usGfsg usUfsg	UfgsGfsa gsGfsa UfusGfsg UfusUfsg usUfsg UfusUfsg	UfgsGfsa gsGfsa UfusGfsg usGfsg usGfsg usUfsg usUfsg usUfsu usUfsu usUfsu	UfgsGfsa gsGfsa UfusGfsg UfusUfsg UsUfsg UsUfsg UsUfsu usUfsu UfusUfsu	UfgsGfsa gsGfsa UfusGfsg usGfsg usGfsg usUfsg usUfsg usUfsu usUfsu usUfsu usUfsu usUfsu	UfgsGfsa gsGfsa UfusGfsg usGfsg UfusUfsg usUfsg usUfsu UfusUfsu usUfsu UfusUfsu UfusUfsu UfusUfsu UfusUfsu	UfgsGfsa gsGfsa UfusGfsg UfusUfsg usUfsg usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu	UfgsGfsa gsGfsa UfusGfsg usGfsg usUfssg usUfsg usUfsu	UfgsGfsa gsGfsa UfusGfsg UfusGfsg UsUfsg UsUfsg UsUfsu usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu	UfgsGfsa gsGfsa UfusGfsg usGfsg usGfsg usUfsg usUfsg usUfsu UfusUfsu usUfsu UfusUfsu usUfsu usUfsu usUfsu usUfsu cusUfsu cusUfsu cusUfsu cusUfsu cusUfsu	UfgsGfsa gsGfsa UfusGfsg UfusGfsg UfusUfsg UsUfsg UsUfsg UsUfsu UfusUfsu UfusUfsu UsUfsu UsUfsu CfusUfsu UsUfsu UsUfsu UsUfsu UsUfsu UsUfsu UsUfsu	UfgsGfsa gsGfsa UfusGfsg usGfsg usGfsg usUfsg usUfsg usUfsu	UfgsGfsa gsGfsa UfusGfsg UfusGfsg UfusUfsg UsUfsg UsUfsu	UfgsGfsa gsGfsa UfusGfsg usGfsg usGfsg usUfsg usUfsg usUfsu cfusUfsu	UfgsGfsa gsGfsa UfusGfsg usGfsg usGfsg usUfssc usUfsg usUfsu usUfsu UfusUfsu usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu usUfsu cfusUfsu cfusUfsu csUfsu csUfsu csUfsu csUfsu csUfsu csUfsu
u Ofu Ofe Af Uf Of Cun Ofu Ofu Ofes Afsa		uUfuUfgauUfcUfcuuUfuUfuUfuGfgsAfsa	aUfuUfuGfAfUfuCfucuUfuUfuUfuUfgsGfsa		aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuUfGfAfuUfcucUfuUfuUfuUfusGfsg	aUfuUfugaUfuCfucuUfuUfuUfuUfuUfgsGfsa aAfuUfuUfGfAfuUfcuCUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuSGfsg	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuUfGfAfuUfcucUfuUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuUfUfGfaUfucuCfuUfuUfuUfusUfsg	aUfuUfugaUfuCfucuUfuUfuUfuUfgSGfsa aAfuUfuUfGfAfuUfcucUfuUfuUfuUfuSGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfuSGfsg aAfaUfuUfUfGfaUfucCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuUfGfAfuUfcucUfuUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuUfUfGfaUfucuCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuUfUfUfgAfuucUfcUfuUfuUfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuuGfAfuUfcucUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuUfUfUfgAfuucUfcUfuUfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuUfGfAfuUfcucUfuUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuUfUfUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfusUfsu uAfaAfaUfUfUfuGfauuCfuCfuUfuUfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfuUfgsGfsa aAfuUfuuGfAfuUfcucUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuUfGfAfuUfcucUfuUfuUfuUfuuGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfuUfgsGfsa aAfuUfuuGfAfuUfcucUfuUfuUfuUfuuGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuUfUfUfgAfuucUfcUfuUfuUfusUfsg aAfaAfuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuuGfAfuUfcuCUfuUfuUfuUfuUfusGfsg aAfuUfuuGfAfuUfcuCUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuuUfUfufgAfuucUfcUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu gUfaAfaAfUfUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaAfUfUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaAfUfUfuUfgauUfcUfcUfuUfusUfsu	aufuufugaufucfucuufuufuufuufgsGfsa aafuufuufGfafuufcucUfuufuufuufuusGfsg aafuufuugafuufcucUfuufuufuufusGfsg aafaUfuuuGfaUfucucfuufuufuufusUfsg aafaAfuuudfaUfucucfuufuufuufusUfsg aafaAfuuuUfgafuucUfcUfuUfuufuufusUfsu aafaAfuuuUfgafuucUfcUfuUfuufuufusUfsu uafaAfauuUfuGfauuCfuCfuUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu uGfuAfaaaUfuUfugaUfucfucfuUfusUfsu uGfuAfaaaUfuUfugaUfucfucfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuUfGfAfuUfcuCUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuUfuGfauuCfuCfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu gUfaAfaaUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaaUfuUfgauUfcUfcUfuUfusUfsu uGfuAfaAfUfuUfugaUfcUfcUfuUfusUfsu uGfuAfaAfAfUfuUfugaUfuCfuCfuUfusUfsu uGfuAfaAfAfUfuUfugaUfuCfuCfuUfusUfsu	aufuultugaufucfucuuthulfuufuultgsGfsa aafuufuulGfafuucuufuufuultuufuusGfsg aafuufuugafuufcucUfuufuufuultusUfsg aafaufuuuuGfaufucucfuufuufuultusUfsg aafaafuulUfgafuucUfcufuufuultusUfsu aafaafuuuUfgafuucUfcufuufuultusUfsu aafaafauuUfgafuucUfcufuufuultusUfsu uafaafauuUfuuGfauuCfuCfuUfuUfusUfsu gUfaafaauUfuUfgauUfcUfcUfuUfusUfsu gUfaafaauUfuUfgauUfcUfcUfuUfusUfsu uGfuafaaaUfuUfugaUfucfucfuUfusUfsu uGfuafaaaufuUfuugaUfucfucfuUfusUfsu uUfgUfaaaafuUfuugaUfucfucfuUfusUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuuGaUfuCfucuUfuUfuUfuUfusGfsg aAfuUfuuGfAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuuUfUfUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuUfuGfauuCfuCfuUfuUfusUfsu uAfaAfauUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaaUfuUfgauUfcUfcUfuUfusUfsu uGfuAfaAfUfUfugaUfuCfuCfuUfusUfsu uUfgUfaAfaAfUfuUfuagAfuUfcUfcUfusUfsu uUfgUfaaAfAfAfuUfuugAfuUfcUfcUfusUfsu uUfgUfaaaAfuUfuugAfuUfcUfcUfusUfsu	aufuulugaufucfucuufuufuufuufgsgfsa aafuufuufgfafuufcucufuufuufuufuusgfsg aafuufuugafuufcucufuufuufuufuusgfsg aafaufuuudfaufucucfuufuufuufusufsg aafaafuulufgafuucufcufuufuufuufusufsu aafaafuuulfgafuucufcufuufuufuufusufsu aafaafauulfugauufcufcufuufuufusufsu uafaafaauufuufgauufcufcufuufuufusufsu gufaafaauufuufgauufcufcufuufuufusufsu uGfuafaafufuuugauufcufcufuufusufsu uufgufaaaafuufuugaufuufcufcufuufusufsu uufgufaaaafuufuugafuufcufcufuufusufsu uufgufaaaafuufuugafuufcufcufusufsu uufgufaaaafuufuugafuufcufcufusufsu uufugaaaafaufuugafuufcufcufusufsu	aUfuUfugaUfuCfucuUfuUfuUfuUfgsGfsa aAfuUfuuGaUfuCfucuUfuUfuUfuUfusGfsg aAfaUfuuGfAfuUfcuChuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaAfuuUfUfUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuUfuUfuGfauuCfuUfuUfuUfusUfsu aAfaAfuuUfuGfauuCfuCfuUfuUfusUfsu uAfaAfauUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaAfUfUfuUfgauUfcUfcUfuUfusUfsu uGfuAfaAfUfUfugaUfcUfcUfuUfusUfsu uUfgUfaAfaAfUfuugafuUfcUfcUfusUfsu uUfgUfaaaAfuUfuugafuUfcUfcUfusUfsu uUfuGfuaaAfaUfuugafuUfcUfcUfusUfsu uUfuGfuaaAfaUfuuuGfaUfuCfuCfusUfsu uUfuGfuaaAfaUfuuuGfaUfuCfuCfusUfsu uUfuGfuaaAfaUfuuuGfaUfuCfuCfusUfsu	aufuutugaufucfucuutuufuufuutuufgsGfsa aafuufuufgfafuufcucUfuufuufuufuusGfsg aafaufuuugfautuccutuutuufuufuutusUfsg aafaufuuugfautucucfuutuufuutusUfsg aafaafuuuufgafuucUfcufuufuufuutusUfsu aafaafuuuutgafuucUfcufuufuutusUfsu aafaafauutuufgafuucUfcufuutuutusUfsu aafaafauutuufgauutcucfucfuutuutusUfsu uafaafaauutuutgaautcufcufuutuutusUfsu gUfaafaauutuutgaautucfucfuutuutusUfsu uGfuafaafafuutuugaautucfucfuutuutusUfsu uUfgUfaaaafuutuuugafuutcutcutuutusUfsu uUfgUfaaaafautuuuugafuutcutcututusUfsu uUfuugaaafaututuugafuutcutcutusUfsu uUfuugaaafaututuugafuutcutcututusUfsu uUfuufaaaafautuuuufgafuutcucfuctusUfsu cutuutgaaafautuuutgafuutcucfuctusUfsu	aufuultugaUfucfucuulfuUfuUfuUfgsGfsa aAfuUfuugaUfucfucuUfuUfuUfuUfusGfsg aAfuUfuugAfuUfcucUfuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfusUfsu aAfaAfauuUfgAfuucUfcUfuUfuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu uGfuAfaaaUfuUfugaUfuCfuCfuUfusUfsu uUfgUfaaaAfuUfuugAfuUfcUfcUfusUfsu uUfgUfaaaAfuUfuugAfuUfcUfcUfusUfsu uUfuGfuaaAfaUfuuuGfaUfuCfuCfusUfsu cUfuUfgufaAfafaUfuuuGfaUfuCfuCfusUfsu cUfuUfguaAfaAfuuuUfgAfuUfcUfcSUfsu cUfuUfguaAfaAfuuuUfgAfuUfcUfcSUfsu cUfuUfguaAfaAfuuuUfgAfuUfcUfcSUfsu	aUfuUfugaUfuCfucuUfuUfuUfuUfuUfuSGfsa aAfuUfuugaUfuCfucuUfuUfuUfuUfuuGfsg aAfuUfuugAfuUfcuChuUfuUfuUfusGfsg aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsu aAfaUfuuuGfaUfucuCfuUfuUfuUfusUfsu aAfaAfuuuUfgAfuucUfcUfuUfuUfuuUfusUfsu aAfaAfauuUfuGfauuCfuCfuUfuUfuuUfusUfsu uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu gUfaAfaauUfuUfgauUfcUfcUfuUfusUfsu uGfuAfaaaUfuUfugaUfcUfcUfuUfusUfsu uUfgUfaaaAfuUfuugAfuUfcUfcUfuUfusUfsu uUfgUfaaaAfafuuuuGfaUfuCfuCfucUfusUfsu uUfuGfuaaAfafuuuuGfaUfuCfuCfusUfsu cUfuUfguaAfaAfuuuUfgAfuUfcUfcUfcSUfsu cUfuUfguaAfaAfuuuUfgAfuUfcUfcSUfsu uCfuUfguaAfaAfuuuUfgAfuUfcUfcSUfsu cUfuUfguaAfaAfauuUfuGfaUfuCfusCfsu uCfuUfuGfuAfAfaauuUfuGfaUfuCfusCfsu
													 	 	 			 	 		 	 	 		
1913	5 1916	7 1917	3 1918		ا 1919	_			 	 	 					 									
AS1805	AS1806	AS1807	AS1808	000100	ASTROB	AS1810	AS1809 AS1810 AS1811	AS1810 AS1811 AS1811 AS1812	AS1810 AS1811 AS1812 AS1813 AS1813	AS1810 AS1811 AS1812 AS1813 AS1813 AS1814	AS1810 AS1811 AS1812 AS1813 AS1813 AS1814 AS1814	AS1809 AS1810 AS1811 AS1812 AS1813 AS1814 AS1814 AS1816 AS1816	AS1810 AS1811 AS1812 AS1813 AS1814 AS1816 AS1816 AS1816 AS1816	AS1809 AS1810 AS1811 AS1812 AS1813 AS1814 AS1815 AS1816 AS1816 AS1818	AS1810 AS1811 AS1812 AS1813 AS1814 AS1814 AS1816 AS1816 AS1818 AS1818	AS1809 AS1810 AS1811 AS1812 AS1813 AS1814 AS1816 AS1816 AS1818 AS1819 AS1820 AS1820	AS1810 AS1811 AS1812 AS1813 AS1814 AS1815 AS1816 AS1818 AS1818 AS1820 AS1820	AS1810 AS1811 AS1812 AS1813 AS1814 AS1815 AS1816 AS1816 AS1818 AS1821 AS1821	AS1810 AS1811 AS1811 AS1812 AS1813 AS1814 AS1815 AS1816 AS1818 AS1819 AS1820 AS1822 AS1823	AS1810 AS1811 AS1812 AS1813 AS1814 AS1815 AS1816 AS1818 AS1820 AS1823 AS1823 AS1823	AS1809 AS1810 AS1811 AS1812 AS1813 AS1814 AS1815 AS1816 AS1819 AS1820 AS1821 AS1821 AS1822 AS1823 AS1823 AS1823	AS1819 AS1811 AS1812 AS1813 AS1814 AS1814 AS1816 AS1819 AS1820 AS1821 AS1822 AS1823 AS1823 AS1823 AS1823 AS1823	AS1819 AS1811 AS1811 AS1812 AS1814 AS1815 AS1816 AS1819 AS1820 AS1822 AS1822 AS1823 AS1823 AS1823 AS1823 AS1823 AS1823 AS1823 AS1823 AS1823	AS1810 AS1811 AS1811 AS1812 AS1813 AS1814 AS1816 AS1818 AS1820 AS1822 AS1823 AS1825 AS1825 AS1826 AS1828	AS1819 AS1811 AS1812 AS1812 AS1814 AS1814 AS1819 AS1819 AS1821 AS1822 AS1822 AS1823 AS1823 AS1824 AS1825 AS1828 AS1828 AS1828
	CfcAfaAfaAfaAfGfaGfaauCfaAfaAfL96	CfcAfaAfaAfaAfGfaGfaAfUfCfaAfaAfL96	CfaAfaAfaAfGfAfgAfaucAfaAfaUfL96	CfaAfaAfaAfGfAfgAfaUfCfAfaAfaUfL96		AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96	AfaAfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96	AfaAfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96 AfaAfaAfaAfgAfGfAfaUfcaaAfaUfuUfL96	AfaAfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96 AfaAfaAfaAfgAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaAfaAfGfAfaUfcAfAfaUfuUfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaAfaAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaaAfuUfuUfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96 AfaAfaAfaAfgAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaAfgAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaAfAfAfuUfuUfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaAfaGfAfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaaUfuUfu96 AfaAfaAfaGfaGfAfAfuCfaaaUfuUfu96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfgAfAfUfCAfAAfAfuUfuUfL96 AfaAfaAfgAfgAfAfUfCAfaAfAfUfuUfuAfL96 AfaAfaAfgAfgAfAfUfCAfaAfAfUfuUfuAfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaUUfL96 AfaAfaAfaAfaGfAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaAfaGfAfAfuCfaaaAfaUfuUfL96 AfaAfaAfaGfAGfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaafAfAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaafAfAfuUfuUfL96 AfaAfaAfaGfAfAfUfcAfaaaUfuUfuAfL96 AfaAfaAfgAfgAfAfUfcAfaaaUfuUfuAfL96 AfaAfaGfaGfAfUfCfaAfaaaUfuUfuAfL96 AfaAfaGfaGfAfUfCfaAfaauUfuUfuAfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfuAfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfGfAfaUfcaaAfaUfL96 AfaAfaAfaAfaGfAfAfuCfaaaAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaAfAfAfuUfuUfL96 AfaAfaAfgAfgAfAfUfcAfaaaUfuUfuAfL96 AfaAfaAfgAfgAfUfCfaAfaAfAfUfuUfuAfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaUUfL96 AfaAfaAfaAfaGfAfGfAfUCaaAfaUfuUfL96 AfaAfaAfaAfaGfAfAfuCfaaaAfaUfuUfL96 AfaAfaAfaGfAGfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAGfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaafaAfUfuUfuAfL96 AfaAfaAfaGfAfAfUfCAfaaaUfuUfuAfL96 AfaAfaGfaGfAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaauUfuUfaCfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucAfAfaUUfL96 AfaAfaAfaAfaGfAfGfAAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaAfAfAfuUfuUfL96 AfaAfaAfaGfAfAfUfcAfaAfAfUfuUfuAfL96 AfaAfaAfaGfAfAfUfcAfaAfAfUfuUfaAfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfuCfAfAfaUUfL96 AfaAfaAfaAfaGfAfGfAfUCaaAfaUfuUfL96 AfaAfaAfaAfaGfAfAfuCfaaAfaUfuUfL96 AfaAfaAfaGfAGfAfAtuCfaaaAfuUfuUfL96 AfaAfaAfaGfAGfAfAtuCfaaAfAfuUfuUfL96 AfaAfaAfaGfAfAfUCAfaaaUfuUfuAfL96 AfaAfaAfaGfAfAfUCAfaaaUfuUfuAfL96 AfaAfaGfaGfAfUCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAfUCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAfUCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaGfaGfaAfuCfAfaAfauuUfuAfcAfL96 AfaGfaGfaAfuCfAfaAfauuUfaCfaAfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucAfAfaUUfL96 AfaAfaAfaAfaGfAfGfAAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaAafAfuUfuUfL96 AfaAfaAfaGfAfAfUfcAfaAfAfUfuUfuAfL96 AfaAfaAfaGfaGfAfAfUfcAfaAfAfUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaAfuUfuUfaCfL96 AfaAfaGfaGfaAfUCfAfaAfauuUfuAfcAfL96 AfaAfaGfaGfaAfuCfAfaAfauuUfuAfcAfL96 AfaGfaGfaAfuCfAfaAfauuUfaCfaAfL96 AfaGfaGfaAfuCfAfaAfauuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuUfaCfaAfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucAfAfaAfuUfL96 AfaAfaAfaAfaGfAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfGfAfaUfcaaaAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfUfcAfaaaUfuUfuAfL96 AfaAfaAfaGfaGfAfUfcAfaaaUfuUfuAfL96 AfaAfaGfaGfAfUfcAfaAfaUfuUfuAfL96 AfaAfaGfaGfAfUfcAfaAfaUfuUfaCfL96 AfaAfaGfaGfAfUfcfaAfauuUfuAfcAfL96 AfaAfaGfaGfaAfUfCfaAfaauuUfuAfcAfL96 AfaAfaGfaGfaAfuCfAfaAfaUfUfuUfaCfL96 AfaAfaGfaGfaAfuCfAfaAfaUfUfuUfaCfL96 AfaAfaGfaGfaAfuCfAfaAfaUfuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuUfUfUfaCfaAfL96 AfaGfaGfaAfuCfAfAfAfaAfuUfUfUfaCfaAfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucAfAfaUUfL96 AfaAfaAfaAfaGfAfGfAAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfAfaUfcaAfAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaAfAfUfuUfuUfL96 AfaAfaAfaGfAfAfUfcAfaaAfAfUfuUfuAfL96 AfaAfaAfaGfAfAfUfcAfaAfAfUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfaUfCfAfaAfaUfUfUfuCaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuUfUfUfAcAfaAfL96 AfgAfgAfaUfcAfAfAfaUfuuUfaCfaAfAfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucAfAfaAfuUfL96 AfaAfaAfaAfaGfAfGfAaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaaAfuUfuUfuUfl96 AfaAfaGfaGfAfAfUfcAfaaaUfuUfuAfL96 AfaAfaGfaGfAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfauuUfuAfcAfL96 AfaAfaGfaGfaAfUfCfaAfaUfUfUfuUfaCfL96 AfaAfaGfaGfaAfuCfAfaAfaUfuuUfaCfaAfL96 AfaAfaGfaGfaAfuCfAfaAfaUfuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuUfuuAfcAfaAfL96 AfaGfaGfaAfuCfAfAfaUfuuuAfcAfaAfL96 AfaGfaGfaAfuCfAfAfaUfuuuAfcAfaAfL96 AfaGfaGfaAfuCfaAfAfaUfuuuAfcAfaAfL96 AfaAfgAfgAfaUfcAfAfAfaUfuuaCfaAfaGfL96 GfaGfaAfuCfaAfAfAfuUfuuaCfaAfaGfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucAfAfaAfuUfL96 AfaAfaAfaAfaGfAfGfAAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfAfaUfcaAfAfAfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaaAfAfUfuUfuUfL96 AfaAfaAfaGfaGfAfAfUfcAfaaAfUfuUfuAfL96 AfaAfaAfaGfaGfAAfUfcAfaAfAfUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaUfuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaUfuuuAfcAfaAfL96 AfaGfaAfuCfaAfAfaUfuuuAfcAfaAfL96 AfaGfaAfuCfaAfAfaUfuuuAfcAfaAfL96 GfaGfaAfuCfaAfAfaUfuuaCfaAfaGfL96 GfaGfaAfuCfaAfAfaUfuUfuAfcAfaAfL96 GfaGfaAfuCfaAfAfaUfuUfuAfcAfaAfL96 GfaGfaAfuCfaAfAfafuUfuuaCfaAfaGfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaAfaGfAfGfAaUfcaaAfaUfuUfL96 AfaAfaAfaAfaGfAfGfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfuUfL96 AfaAfaAfaGfaGfAfAfuCfaAfAfAfuUfuUfL96 AfaAfaGfaGfAfAfUfcAfaaaUfuUfuAfL96 AfaAfaGfaGfAfAfUfcAfaAfauUfuUfaCfL96 AfaAfaGfaGfAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfAfUfCfaAfauuUfuAfcAfL96 AfaAfaGfaGfaAfUfCfAfaAfauuUfuAfcAfL96 AfaAfaGfaGfaAfuCfAfaAfaUfuuuAfcAfL96 AfaAfgAfgAfaUfCfAfaAfaUfUfUfuAfcAfL96 AfaGfaGfaAfuCfAfAfaUfuuuAfcAfaAfL96 AfaGfaGfaAfuCfAfAfaUfuuuAfcAfaAfL96 AfaGfaGfaAfuCfaAfAfaUfuuuAfcAfaAfL96 AfaGfaAfuCfaAfAfaUfuUfUfAfcAfaAfL96 AfaGfaAfuCfaAfAfaUfuuuAfcAfaAfL96 AfaGfaAfuCfaAfAfAfuUfuuaCfaAfaGfL96 AfaGfaAfuCfaAfAfAfuUfuuaCfaAfaGfL96 AfgAfgAfaUfcAfAfAfuUfuuaCfaAfaGfL96 AfgAfaUfcAfaAfAfUfuUfuacAfaAfaGfL96 AfgAfaUfcAfaAfAfUfuUfuacAfaAfaGfL96	AfaAfaAfaGfAfGfaAfucaAfaAfuUfL96 AfaAfaAfaGfAfGfaAfucAfAfaUUfL96 AfaAfaAfaAfaGfAfGfAAfuCfAfAfaAfuUfL96 AfaAfaAfaAfaGfAfAfaUfcaaAfaUfuUfL96 AfaAfaAfaGfAfAfuCfaaaAfuUfuUfL96 AfaAfaAfaGfAfAfuCfaaAfAfUfuUfuUfL96 AfaAfaAfaGfAfAfUfcAfaAfAfUfuUfuAfL96 AfaAfaAfaGfAfAfUfcAfaAfAfUfuUfaCfL96 AfaAfaGfaGfAAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfaAfaauUfuUfaCfL96 AfaAfaGfaGfaAfUfCfAfaAfauuUfuAfcAfL96 AfaAfaGfaGfaAfuCfAfaAfauuUfuAfcAfL96 AfaAfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AfaGfaGfaAfuCfAfAfaUfuuuAfcAfaAfL96 AfaGfaGfaAfuCfaAfAfaUfuuuAfcAfaAfL96 AfaGfaAfuCfaAfAfAfuUfuuaCfaAfaGfL96 GfaGfaAfuCfaAfAfAfuUfuuaCfaAfaGfL96 AfaGfaAfuCfaAfAfAfuUfuuaCfaAfaGfL96 AfaGfaAfuCfaAfAfAfuUfuuacAfaAfaGfL96 AfgAfaUfcAfaAfAfUfuUfuacAfaAfaGfL96 AfgAfaUfcAfaAfAfUfuUfuacAfaAfgAfL96 AfgAfaUfcAfaAfAfUfuUfuacAfaAfgAfL96
		825 C	826 C	827 C		828 A																			
2	+	S1807 8	S1808 8	S1809 8	51810	_	+				 	 	 	 	 	 		+ + + + + + + + + + + + + + + + + + + 	+ + + + + + + + + + + + + + + + + + + 						
1	D1806	D1807	D1808	D1809	D1810		1811	1811	1811 1812 1813	1811 1812 1813 1814)1811)1812)1813)1814	1811 1812 1813 1814 1815 1816	D1811 D1812 D1813 D1814 D1815 D1816 D1816)1811 11813 11814 11815 11816 11817	1811 1812 1813 1814 1815 1816 1817 1818	1811 1813 1814 1815 1816 1817 1818 1819 1820	1811 1812 1813 1814 1815 1816 1817 1818 1820 1820	1811 1812 1813 1814 1815 1816 1816 1818 1819 1820 1821	1811 1813 1814 1815 1815 1816 1817 1818 1820 1820 1821 1821	1811 1812 1813 1814 1815 11816 11816 11817 11819 11820 11821 11823 11823	1811 1812 1813 1814 1815 1816 1817 1819 1820 1821 1822 1823	1811 1812 1813 1814 1815 1816 1819 1820 1821 1822 1823 1824 1825	1811 1812 1813 1814 1815 1816 1817 1820 1822 1822 1823 1824 1824 1826	1811 1812 1813 1814 1815 1816 1816 1820 1821 1823 1824 1824 1825 1825 1826 1827	D1811 D1812 D1813 D1814 D1815 D1816 D1816 D1817 D1820 D1822 D1823 D1824 D1825 D1825 D1825 D1826 D1826 D1827 D1828

uUfcUfuugUfaAfaauUfuUfgAfuUfcsUfsc	aUfuCfuUfUfGfuAfaaaUfuUfuGfaUfusCfsu	a Ufu Cfuuu Gfu Afaaa Ufu Ufu Gfa Ufus Cfsu	gAfuUfcUfUfgUfaaaAfuUfuUfgAfusUfsc	gAfuUfcuuUfgUfaaaAfuUfuUfgAfusUfsc	uGfaUfuCfUfUfuGfuaaAfaUfuUfuGfasUfsu	u Gfa Ufucu Ufu Gfuaa Afa Ufu Ufu Gfas Ufsu	uUfgAfuUfcfUfuUfguaAfaAfuUfuUfgsAfsu	uUfgAfuucUfuUfguaAfaAfuUfuUfgsAfsu	uUfuGfaUfUfcfuUfuguAfaAfaUfuUfusGfsa	uUfuGfauuCfuUfuguAfaAfaUfuUfusGfsa	cUfuUfgAfUfUfcUfuugUfaAfaAfuUfusUfsg	cUfuUfgauUfcUfuugUfaAfaAfuUfusUfsg	cCfuUfuGfAfUfuCfuuuGfuAfaAfaUfusUfsu	cCfuUfugaUfuCfuuuGfuAfaAfaUfusUfsu	uCfcUfuUfGfAfuUfcuuUfgUfaAfaAfusUfsu	uCfcUfuugAfuUfcuuUfgUfaAfaAfusUfsu	uUfcCfuUfUfGfaUfucuUfuGfuAfaAfasUfsu	uUfcCfuuuGfaUfucuUfuGfuAfaAfasUfsu	aUfuCfcUfUfUfgAfuucUfuUfgUfaAfasAfsu	aUfuCfcuuUfgAfuucUfuUfgUfaAfasAfsu	a Afu Ufc Cf Uf Ufu Gfauu Cfu Ufu Gfu Afas Afsa	aAfuUfccuUfuGfauuCfuUfuGfuAfasAfsa	gAfaUfuCfCfUfuUfgauUfcUfuUfgUfasAfsa	gAfaUfuccUfuUfgauUfcUfuUfgUfasAfsa	aGfaAfuUfcfCfuUfugaUfuCfuUfuGfusAfsa	aGfaAfuucCfuUfugaUfuCfuUfuGfusAfsa
uUfcUfu	aUfuCful	aUfucfur	gAfuUfcL	gAfuUfcu	uGfaUfu(uGfaUfuc	uUfgAful	uUfgAfuι	uUfuGfal	uUfuGfaı	cUfuUfg/	cUfuUfga	ccfuUfuG	ccfuUfug	nCfcUful	uCfcUfuu	uUfcCfuL	uUfcCfuu	aUfuCfcL	aUfuCfcu	aAfuUfcC	aAfuUfcc	gAfaUfuC	gAfaUfuc	aGfaAfuL	aGfaAfuu
1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967
AS1831	AS1832	AS1833	AS1834	AS1835	AS1836	AS1837	AS1838	AS1839	AS1840	AS1841	AS1842	AS1843	AS1844	AS1845	AS1846	AS1847	AS1848	AS1849	AS1850	AS1851	AS1852	AS1853	AS1854	AS1855	AS1856	AS1857
GfaAfuCfaAfaAfUfUfuUfaCfAfAfaGfaAfL96	AfaUfcAfaAfaUfUfuAfcaaAfgAfaUfL96	AfaUfcAfaAfaUfUfUfuAfcAfAfAfgAfaUfL96	AfuCfaAfaAfuUfUfUfaCfaaaGfaAfuCfL96	AfucfaAfaAfuUfUfUfaCfaAfAfGfaAfuCfL96	UfcAfaAfaUfuUfUfAfcAfaagAfaUfcAfL96	UfcAfaAfaUfuUfUfAfcAfaAfGfAfaUfcAfL96	CfaAfaAfuUfuUfAfCfaAfagaAfuCfaAfL96	CfaAfaAfuUfuUfAfCfaAfaGfAfAfuCfaAfL96	AfaAfaUfuUfuAfCfAfaAfgaaUfcAfaAfL96	AfaAfaUfuUfuAfCfAfaAfgAfAfUfcAfaAfL96	AfaAfuUfuUfaCfAfAfaGfaauCfaAfaGfL96	AfaAfuUfuUfaCfAfAfaGfaAfUfCfaAfaGfL96	AfaUfuUfuAfcAfAfAfgAfaucAfaAfgGfL96	AfaUfuUfuAfcAfAfAfgAfaUfCfAfaAfgGfL96	AfuUfuUfaCfaAfAfGfaAfucaAfaGfgAfL96	AfuUfuUfaCfaAfAfGfaAfuCfAfAfaGfgAfL96	UfuUfuAfcAfaAfGfAfaUfcaaAfgGfaAfL96	UfuUfuAfcAfaAfGfAfaUfcAfAfAfgGfaAfL96	UfuUfaCfaAfaGfAfAfuCfaaaGfgAfaUfL96	UfuUfaCfaAfaGfAfAfuCfaAfAfGfgAfaUfL96	UfuAfcAfaAfgAfUfcAfaagGfaAfuUfL96	UfuAfcAfaAfgAfAfUfcAfaAfGfGfaAfuUfL96	UfaCfaAfaGfaAfUfCfaAfaggAfaUfuCfL96	UfaCfaAfaGfaAfUfCfaAfaGfGfAfaUfuCfL96	AfcAfaAfgAfaUfCfAfaAfggaAfuUfcUfL96	AfcAfaAfgAfaUfCfAfaAfgGfAfAfuUfcUfL96
849	850	851	852	853	854	855	856	857	828	859	860	861	862	863	864	865	998	867	898	869	870	871	872	873	874	875
51831	S1832	51833	51834	S1835	51836	51837	51838	51839	S1840	S1841	S1842	51843	S1844	S1845	S1846	S1847	S1848	S1849	S1850	51851	S1852	51853	S1854	S1855	S1856	S1857
D1831	D1832	D1833	D1834	D1835	D1836	D1837	D1838	D1839	D1840	D1841	D1842	D1843	D1844	D1845	D1846	D1847	D1848	D1849	D1850	D1851	D1852	D1853	D1854	D1855	D1856	D1857

GfaAfuUfcUfaGfAfAfaGfuAfUfCfuGfgGfL96 AS1885 1995	AS1885 1995	1995		cCfcAfgauAfcUfuucUfaGfaAful	UfcsCfsu
904 AfaUfuCfuAfgAfAfAfgUfaucUfgGfgCfL96 AS1886 1996 gCfcCfaGfAfUfaCfuuuCfuAfgAfaUfusCfsc	AS1886 1996	1996	+	gCfcCfaGfAfUfaCfuuuCfuAf	gAfaUfusCfsc
905 AfaUfuCfuAfgAfafAfgUfaUfCfUfgGfgCfL96 AS1887 1997 gCfcCfagaUfaCfuuuCfuAfgAfaUfusCfsc	AS1887 1997	1997		gCfcCfagaUfaCfuuuCfuAfg4	√fa∪fusCfsc
906 AfuUfcUfaGfaAfAfGfuAfucuGfgGfcAfL96 AS1888 1998 uGfcCfcAfGfAfuAfcuuUfcUfaGfaAfusUfsc	AS1888 1998	1998		uGfcCfcAfGfAfuAfcuuUfcUf	a Gfa Afus Ufsc
907 AfuUfcUfaGfaAfAfGfuAfuCfUfGfgGfcAfL96 AS1889 1999 uGfcCfcagAfuAfcuuUfcUfaGfaAfusUfsc	AS1889 1999	1999		uGfcCfcagAfuAfcuuUfcUfaGf	aAfusUfsc
908 UfuCfuAfgAfaAfGfUfaUfcugGfgCfaGfL96 AS1890 2000 cUfgCfcCfAfGfaUfacuUfuCfuAfgAfasUfsu	AS1890 2000	2000		cUfgCfcCfAfGfaUfacuUfuCfuA	fgAfasUfsu
909 UfuCfuAfgAfaAfGfUfaUfcUfGfGfgCfaGfL96 AS1891 2001 cUfgCfccaGfaUfacuUfuCfuAfgAfasUfsu	AS1891 2001	2001		cUfgCfccaGfaUfacuUfuCfuAfg	AfasUfsu
910 UfcUfaGfaAfaGfUfAfuCfuggGfcAfgAfL96 AS1892 2002 uCfuGfcCfCfAfgAfuacUfuUfcUfaGfasAfsu	AS1892 2002	2002		uCfuGfcCfCfAfgAfuacUfuUfcl	JfaGfasAfsu
911 UfcUfaGfaAfaGfUfAfuCfuGfGfGfcAfgAfL96 AS1893 2003 uCfuGfcccAfgAfuacUfuUfcUfaGfasAfsu	AS1893 2003	2003		uCfuGfcccAfgAfuacUfuUfcUf	aGfasAfsu
912 CfuAfgAfaAfgUfAfUfcUfgggCfaGfaAfL96 AS1894 2004 uUfcUfgCfCfGGfauaCfuUfuCfuAfgsAfsa	AS1894 2004	2004		uUfcUfgCfCfCfaGfauaCfuUfuC	fuAfgsAfsa
913 CfuAfgAfaAfgUfAfUfcUfgGfGfCfaGfaAfL96 AS1895 2005 uUfcUfgccCfaGfauaCfuUfuCfuAfgsAfsa	AS1895 2005	2005		uUfcUfgccCfaGfauaCfuUfuCfu	JAfgsAfsa
914 UfaGfaAfaGfuAfUfCfuGfggcAfgAfaCfL96 AS1896 2006 BUfuCfuGfCfCfcAfgauAfcUfuUfcUfasGfsa	AS1896 2006	2006		gUfuCfuGfCfCfcAfgauAfcUfu	ıUfcUfasGfsa
915 UfaGfaAfaGfuAfUfCfuGfgGfCfAfgAfaCfL96 AS1897 2007 gUfuCfugcCfcAfgauAfcUfuUfcUfasGfsa	AS1897 2007	2007		gUfuCfugcCfcAfgauAfcUfuU	lfcUfasGfsa
916 AfgAfaAfgUfaUfGUfgGfgcaGfaAfcGfL96 AS1898 2008 cGfuUfcUfGfCfcCfagaUfaCfuUfuCfusAfsg	AS1898 2008	2008		cGfuUfcUfGfCfcCfagaUfaCfu	u Ufu Cfus Afsg
917 AfgAfaAfgUfaUfcfUfgGfgCfAfGfaAfcGfL96 AS1899 2009 cGfuUfcugCfcCfagaUfaCfuUfuCfusAfsg	AS1899 2009	2009		cGfuUfcugCfcCfagaUfaCfuUf	uCfusAfsg
918 GfaAfaGfuAfuCfUfGfgGfcagAfaCfgCfL96 AS1900 2010 gCfgUfuCfUfGfcCfcagAfuAfcUfuUfcsUfsa	AS1900 2010	2010		gCfgUfuCfUfGfcCfcagAfuAf	cUfuUfcsUfsa
919 GfaAfaGfuAfuCfUfGfgGfcAfGfAfaCfgCfL96 AS1901 2011 gCfgUfucuGfcCfcagAfuAfcUfuUfcsUfsa	AS1901 2011	2011		gCfgUfucuGfcCfcagAfuAfcl	JfuUfcsUfsa
920 AfaAfgUfaUfcUfGfGfgCfagaAfcGfcUfL96 AS1902 2012 aGfcGfuUfCfUfgCfccaGfaUfaCfuUfusCfsu	AS1902 2012	2012		aGfcGfuUfCfUfgCfccaGfaUfa	ICfuUfusCfsu
921 AfaAfgUfaUfaUfGfGfgCfaGfAfAfcGfcUfL96 AS1903 2013 aGfcGfuucUfgCfccaGfaUfaCfuUfusCfsu	AS1903 2013	2013		aGfcGfuucUfgCfccaGfaUfaC	fuUfusCfsu
922 AfaGfuAfuCfuGfGfGfCAfgaaCfgCfuAfL96 AS1904 2014 uAfgCfgUfUfCfuGfcccAfgAfuAfcUfusUfsc	AS1904 2014	2014		uAfgCfgUfUfCfuGfcccAfgAfu	uAfcUfusUfsc
923 AfaGfuAfuCfuGfGfGfcAfgAfAfCfgCfuAfL96 AS1905 2015 uAfgCfguuCfuGfcccAfgAfuAfcUfusUfsc	AS1905 2015	2015		uAfgCfguuCfuGfcccAfgAfu/	AfcUfusUfsc
924 AfgUfaUfcUfgGfGfCfaGfaacGfcUfaGfL96 AS1906 2016 cUfaGfcGfUfUfcUfgccCfaGfaUfaCfusUfsu	AS1906 2016	2016		cUfaGfcGfUfUfcUfgccCfaGf	aUfaCfusUfsu
925 AfgUfaUfcUfgGfGfCfaGfaAfCfGfcUfaGfL96 AS1907 2017 cUfaGfcguUfcUfgccCfaGfaUfaCfusUfsu	AS1907 2017	2017		cUfaGfcguUfcUfgccCfaGfaL	rfaCfusUfsu
926 GfuAfuCfuGfgGfcfAfgAfacgCfuAfgGfL96 AS1908 2018 cCfuAfgCfGfUfuCfugcCfcAfgAfuAfcsUfsu	AS1908 2018	2018		cCfuAfgCfGfUfuCfugcCfcAf	gAfuAfcsUfsu
927 GfuAfuCfuGfgGfcfAfgAfaCfGfcfuAfgGfL96 AS1909 2019 cCfuAfgcgUfuCfugcCfcAfgAfuAfcsUfsu	AS1909 2019	2019		cCfuAfgcgUfuCfugcCfcAfgA	fuAfcsUfsu
928 UfaUfcUfgGfgCfAfGfaAfcgcUfaGfgAfL96 AS1910 2020 uCfcUfaGfCffuUfcugCfcCfaGfaUfasCfsu	AS1910 2020	2020		uCfcUfaGfCfGfuUfcugCfcCfaG	sfaUfasCfsu
929 UfaUfcUfgGfgCfAfGfaAfcGfCfUfaGfgAfL96 AS1911 2021 uCfcUfagcGfuUfcugCfcCfaGfaUfasCfsu	AS1911 2021	2021		uCfcUfagcGfuUfcugCfcCfaGfaUf	asCfsu

2022 cUfcCfuAfGfCfgUfucuGfcCfcAfgAfusAfsc
2023 CUfcCfuagCfgUfucuGfcCfcAfgAfusAfsc
2024 uCfuCfcUfAfGfcGfuucUfgCfcCfaGfasUfsa
2025 uCfuCfcuaGfcGfuucUfgCfcCfaGfasUfsa
2026 cUfcUfcCfUfAfgCfguuCfuGfcCfcAfgsAfsu
2027 cUfcUfccuAfgCfguuCfuGfcCfcAfgsAfsu
2028 uCfuCfuCfUfaGfcguUfcUfgCfcCfasGfsa
2029 uCfuCfuccUfaGfcguUfcUfgCfcCfasGfsa
2030 aUfcUfcUfCfuAfgcgUfuCfuGfcCfcsAfsg
2031 aUfcUfcucCfuAfgcgUfuCfuGfcCfcsAfsg
2032 gAfuCfuCfUfcfcUfagcGfuUfcUfgCfcsCfsa
2033 gAfuCfucuCfcUfagcGfuUfcUfgCfcsCfsa
2034 gGfaUfcUfCfUfcCfuagCfgUfuCfuGfcsCfsc
2035 gGfaUfcucUfcCfuagCfgUfuCfuGfcsCfsc
2036 uGfgAfuCfUfCfuCfcuaGfcGfuUfcUfgsCfsc
2037 uGfgAfucuCfuCfcuaGfcGfuUfcUfgsCfsc
2038 uUfgGfaUfCfUfcUfccuAfgCfgUfuCfusGfsc
2039 uUfgGfaucUfcUfccuAfgCfgUfuCfusGfsc
2040 UUfuGfgAfUfCfuCfuccUfaGfcGfuUfcsUfsg
2041 UfuGfgauCfuCfuccUfaGfcGfuUfcsUfsg
2042 aUfuUfgGfAfUfcUfcucCfuAfgCfgUfusCfsu
2043 aUfuUfggaUfcUfcucCfuAfgCfgUfusCfsu
2044 aAfuUfuGfGfAfuCfucuCfcUfaGfcGfusUfsc
2045 aAfuUfuggAfuCfucuCfcUfaGfcGfusUfsc
2046 aAfaUfuUfGfGfaUfcucUfcCfuAfgCfgsUfsu
2047 aAfaUfuugGfaUfcucUfcCfuAfgCfgsUfsu
2048 BAfaAfuUfUfGfgAfucuCfuCfcUfaGfcsGfsu

gAfaAfuuuGfgAfucuCfuCfcUfaGfcsGfsu	gGfaAfaUfUfUfgGfaucUfcUfcCfuAfgsCfsg	gGfaAfauuUfgGfaucUfcUfcCfuAfgsCfsg	uGfgAfaAfUfUfuGfgauCfuCfcUfasGfsc	uGfgAfaauUfuGfgauCfuCfuCfcUfasGfsc	aUfgGfaAfAfUfuUfggaUfcUfcCfusAfsg	aUfgGfaaaUfuUfggaUfcUfcUfcCfusAfsg	aAfuGfgAfAfaUUfuggAfuCfuCfuCfcsUfsa	aAfuGfgaaAfuUfuggAfuCfuCfcsUfsa	cAfaUfgGfAfAfaUfuugGfaUfcUfcUfcsCfsu	cAfaUfggaAfaUfuugGfaUfcUfcUfcsCfsu	aCfaAfuGfGfAfaAfuuuGfgAfuCfuCfuSCfsc	aCfaAfuggAfaAfuuuGfgAfuCfuCfusCfsc	gAfcAfaUfGfGfaAfauuUfgGfaUfcUfcsUfsc	gAfcAfaugGfaAfauuUfgGfaUfcUfcsUfsc	aGfaCfaAfUfGfgAfaauUfuGfgAfuCfusCfsu	aGfaCfaauGfgAfaauUfuGfgAfuCfusCfsu	aAfgAfcAfAfUfgGfaaaUfuUfgGfaUfcsUfsc	aAfgAfcaaUfgGfaaaUfuUfgGfaUfcsUfsc	cAfaGfaCfAfAfuGfgaaAfuUfuGfgAfusCfsu	cAfaGfacaAfuGfgaaAfuUfuGfgAfusCfsu	gCfaAfgAfCfAfaUfggaAfaUfuUfgGfasUfsc	gCfaAfgacAfaUfggaAfaUfuUfgGfasUfsc	uGfcAfaGfAfCfaAfuggAfaAfuUfuGfgsAfsu	uGfcAfagaCfaAfuggAfaAfuUfuGfgsAfsu	uUfgCfaAfGfAfcAfaugGfaAfaUfuUfgsGfsa	
2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	1
AS1939	AS1940	AS1941	AS1942	AS1943	AS1944	AS1945	AS1946	AS1947	AS1948	AS1949	AS1950	AS1951	AS1952	AS1953	AS1954	AS1955	AS1956	AS1957	AS1958	AS1959	AS1960	AS1961	AS1962	AS1963	AS1964	451965
GfcUfaGfgAfgAfGfAfuCfcAfAfAfuUfuCfL96	CfuAfgGfaGfaGfAfUfcCfaaaUfuUfcCfL96	CfuAfgGfaGfaGfAfUfcCfaAfAfUfuUfcCfL96	UfaGfgAfgAfgAfUfCfcAfaauUfuCfcAfL96	UfaGfgAfgAfUfCfcAfaAfUfuCfcAfL96	AfgGfaGfaGfaUfCfCfaAfauuUfcCfaUfL96	AfgGfaGfaGfaUfCfCfaAfaUfUfCCfaUfL96	GfgAfgAfuCfCfAfaAfuuuCfcAfuUfL96	GfgAfgAfgAfuCfCfAfaAfuUfUfCfcAfuUfL96	GfaGfaGfaUfcCfAfAfaUfuucCfaUfuGfL96	GfaGfaGfaUfcCfAfAfaUfuUfCfCfaUfuGfL96	AfgAfgAfuCfcAfAfaUfuccAfuUfgUfL96	AfgAfgAfuCfcAfAfaUUfuCfCfAfuUfgUfL96	GfaGfaUfcCfaAfAfUfuUfccaUfuGfuCfL96	GfaGfaUfcCfaAfAfUfuUfcCfAfUfuGfuCfL96	AfgAfuCfcAfaAfUfuCfcauUfgUfcUfL96	AfgAfuCfcAfaAfUfuCfcAfUfUfgUfcUfL96	GfaUfcCfaAfaUfUfCCfauuGfuCfuUfL96	GfaUfcCfaAfaUfUfCCfaUfUfGfuCfuUfL96	AfuCfcAfaAfuUfUfCfcAfuugUfcUfuGfL96	AfuCfcAfaAfuUfUfCfcAfuUfGfUfcUfuGfL96	UfcCfaAfaUfuUfCfCfaUfuguCfuUfgCfL96	UfcCfaAfaUfuUfCfCfaUfuGfUfCfuUfgCfL96	CfcAfaAfuUfuCfCfAfuUfgucUfuGfcAfL96	CfcAfaAfuUfuCfCfAfuUfgUfCfUfuGfcAfL96	CfaAfaUfuUfcCfAfUfuGfucuUfgCfaAfL96	CfaAfaLlful lfcCfAfl lfuGfuCfLlfl lfgCfaAfl 96
957	958	959	960	961	962	963	964	965	996	296	896	696	970	971	972	973	974	975	926	977	978	979	086	981	982	,00
S1939	S1940	S1941	S1942	S1943	S1944	S1945	S1946	S1947	S1948	S1949	S1950	S1951	S1952	S1953	S1954	S1955	S1956	S1957	S1958	81959	81960	S1961	S1962	S1963	S1964	\$1965
D1939	D1940	D1941	D1942	D1943	D1944	D1945	D1946	D1947	D1948	D1949	D1950	D1951	D1952	D1953	D1954	D1955	D1956	D1957	D1958	D1959	D1960	D1961	D1962	D1963	D1964	D1965

2076 cUfuGfcAfAfGfaCfaauGfgAfaAfuUfusGfsg
2077 cUfuGfcaaGfaCfaauGfgAfaAfuUfusGfsg
2078 gCfuUfgCfAfAfgAfcaaUfgGfaAfaUfusUfsg
2079 CfuUfgcaAfgAfcaaUfgGfaAfaUfusUfsg
2080 uGfcUfuGfCfAfaGfacaAfuGfgAfaAfusUfsu
2081 uGfcUfugcAfaGfacaAfuGfgAfaAfusUfsu
2082 uUfgCfuUfGfCfaAfgacAfaUfgGfaAfasUfsu
2083 uUfgCfuugCfaAfgacAfaUfgGfaAfasUfsu
2084 uUfuGfcUfUfGfcAfagaCfaAfuGfgAfasAfsu
2085 uUfuGfcuuGfcAfagaCfaAfuGfgAfasAfsu
2086 cUfuUfgCfUfUfgCfaagAfcAfaUfgGfasAfsa
2087 cUfuUfgcuUfgCfaagAfcAfaUfgGfasAfsa
2088 gCfuUfuGfCfUfuGfcaaGfaCfaAfuGfgsAfsa
2089 gCfuUfugcUfuGfcaaGfaCfaAfuGfgsAfsa
2090 uGfcUfuUfGfCfuUfgcaAfgAfcAfaUfgsGfsa
2091 uGfcUfuugCfuUfgcaAfgAfcAfaUfgsGfsa
2092 BUfgCfuUfUfGfcUfugcAfaGfaCfaAfusGfsg
2093 gUfgCfuuuGfcUfugcAfaGfaCfaAfusGfsg
2094 cGfuGfcUfUfgCfuugCfaAfgAfcAfasUfsg
2095 cGfuGfcuuUfgCfuugCfaAfgAfcAfasUfsg
2096 aCfgUfgCfUfUfuGfcuuGfcAfaGfaCfasAfsu
2097 aCfgUfgcuUfuGfcuuGfcAfaGfaCfasAfsu
2098 uAfcGfuGfCfUfuUfgcuUfgCfaAfgAfcsAfsa
2099 uAfcGfugcUfuUfgcuUfgCfaAfgAfcsAfsa
2100 aUfaCfgUfGfCfuUfugcUfuGfcAfaGfasCfsa
2101 aUfaCfgugCfuUfugcUfuGfcAfaGfasCfsa
2102 aAfuAfcGfUfGfcUfuugCfuUfgCfaAfgsAfsc

uGfcAfgAfUfCfaUfauuUfaAfuAfcGfusGfsc	uGfcAfgauCfaUfauuUfaAfuAfcGfusGfsc	cUfgCfaGfAfUfcAfuauUfuAfaUfaCfgsUfsg	cUfgCfagaUfcAfuauUfuAfaUfaCfgsUfsg	gCfuGfcAfGfAfuCfauaUfuUfaAfuAfcsGfsu	gCfuGfcagAfuCfauaUfuUfaAfuAfcsGfsu	gGfcUfgCfAfGfaUfcauAfuUfuAfaUfasCfsg	gGfcUfgcaGfaUfcauAfuUfuAfaUfasCfsg	uGfgCfuGfCfAfgAfucaUfaUfuUfaAfusAfsc	uGfgCfugcAfgAfucaUfaUfuUfaAfusAfsc	aUfgGfcUfGfCfaGfaucAfuAfuUfuAfasUfsa	aUfgGfcugCfaGfaucAfuAfuUfuAfasUfsa	aAfuGfgCfUfGfcAfgauCfaUfaUfuUfasAfsu	aAfuGfgcuGfcAfgauCfaUfaUfaUfasAfsu	uAfaUfgGfCfUfgCfagaUfcAfuAfuUfusAfsa	uAfaUfggcUfgCfagaUfcAfuAfuUfusAfsa	uUfaAfuGfGfCfuGfcagAfuCfaUfaUfusUfsa	uUfaAfuggCfuGfcagAfuCfaUfaUfusUfsa	uUfuAfaUfGfGfcUfgcaGfaUfcAfuAfusUfsu	u U fu A faug G f c U f g c a G f a U f c A f u A f u S u	uUfuUfaAfUfGfgCfugcAfgAfuCfaUfasUfsu	uUfuUfaauGfgCfugcAfgAfuCfaUfasUfsu	uUfuUfuAfAfUfgGfcugCfaGfaUfcAfusAfsu	uUfuUfuaaUfgGfcugCfaGfaUfcAfusAfsu	cUfuUfuUfAfAfuGfgcuGfcAfgAfuCfasUfsa	cUfuUfuuaAfuGfgcuGfcAfgAfuCfasUfsa	
2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	
AS2020	AS2021	AS2022	AS2023	AS2024	AS2025	AS2026	AS2027	AS2028	AS2029	AS2030	AS2031	AS2032	AS2033	AS2034	AS2035	AS2036	AS2037	AS2038	AS2039	AS2040	AS2041	AS2042	AS2043	AS2044	AS2045	
AfcGfuAfuUfaAfAfUfaUfgauCfuGfcAfL96	AfcGfuAfuUfaAfAfUfaUfgAfUfCfuGfcAfL96	CfgUfaUfuAfaAfUfAfuGfaucUfgCfaGfL96	CfgUfaUfuAfaAfUfAfuGfaUfCfUfgCfaGfL96	GfuAfuUfaAfaUfAfUfgAfucuGfcAfgCfL96	GfuAfuUfaAfaUfAfUfgAfuCfUfGfcAfgCfL96	UfaUfuAfaAfuAfUfGfaUfcugCfaGfcCfL96	UfaUfuAfaAfuAfUfGfaUfcUfGfCfaGfcCfL96	AfuUfaAfaUfaIfGfAfuCfugcAfgCfcAfL96	AfuUfaAfaUfaIdfAfuCfuGfCfAfgCfcAfL96	UfuAfaAfuAfuGfAfUfcUfgcaGfcCfaUfL96	UfuAfaAfuAfuGfAfUfcUfgCfAfGfcCfaUfL96	UfaAfaUfaUfgAfUfCfuGfcagCfcAfuUfL96	UfaAfaUfaUfgAfUfCfuGfcAfGfCfcAfuUfL96	AfaAfuAfuGfaUfCfUfgCfagcCfaUfuAfL96	AfaAfuAfuGfaUfCfUfgCfaGfCfCfaUfuAfL96	AfaUfaUfgAfuCfUfGfcAfgccAfuUfaAfL96	AfaUfaUfgAfuCfUfGfcAfgCfCfAfuUfaAfL96	AfuAfuGfaUfcUfGfCfaGfccaUfuAfaAfL96	AfuAfuGfaUfcUfGfCfaGfcCfAfUfuAfaAfL96	UfaUfgAfuCfuGfCfAfgCfcauUfaAfaAfL96	UfaUfgAfuCfuGfCfAfgCfcAfUfUfaAfaAfL96	AfuGfaUfcUfgCfAfGfcCfauuAfaAfaAfL96	AfuGfaUfcUfgCfAfGfcCfaUfUfAfaAfaAfL96	UfgAfuCfuGfcAfGfCfcAfuuaAfaAfaGfL96	UfgAfuCfuGfcAfGfCfcAfuUfAfAfaAfaGfL96	
1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	
52020	52021	\$2022	\$2023	\$2024	\$2025	52026	\$2027	\$2028	82029	\$2030	52031	52032	52033	52034	\$2035	52036	52037	\$2038	\$2039	52040	\$2041	\$2042	\$2043	\$2044	S2045	
D2020	D2021	D2022	D2023	D2024	D2025	D2026	D2027	D2028	D2029	D2030	D2031	D2032	D2033	D2034	D2035	D2036	D2037	D2038	D2039	D2040	D2041	D2042	D2043	D2044	D2045	

ucinoinunAiaoiggcoigciagiaoicsAisu	gUfcUfuUfUfUfaAfuggCfuGfcAfgAfusCfsa	gUfcUfuuuUfaAfuggCfuGfcAfgAfusCfsa	uGfuCfuUfUfUfuAfaugGfcUfgCfaGfasUfsc	uGfuCfuuuUfuAfaugGfcUfgCfaGfasUfsc	gUfgUfcUfUfuUfaauGfgCfuGfcAfgsAfsu	gUfgUfcuuUfuUfaauGfgCfuGfcAfgsAfsu	uGfuGfuCfUfUfuUfuaaUfgGfcUfgCfasGfsa	uGfuGfucuUfuUfuaaUfgGfcUfgCfasGfsa	aUfgUfGUfCfUfuUfuuaAfuGfgCfuGfcsAfsg	aUfgUfgucUfuUfuuaAfuGfgCfuGfcsAfsg	aAfuGfuGfUfCfuUfuuuAfaUfgGfcUfgsCfsa	aAfuGfuguCfuUfuuuAfaUfgGfcUfgsCfsa	gAfaUfgUfGfUfcUfuuuUfaAfuGfgCfusGfsc	gAfaUfgugUfcUfuuuUfaAfuGfgCfusGfsc	aGfaAfuGfUfGfuCfuuuUfuAfaUfgGfcsUfsg	aGfaAfuguGfuCfuuuUfuAfaUfgGfcsUfsg	cAfgAfaUfGUfgUfcuuUfuUfaAfuGfgsCfsu	cAfgAfaugUfgUfcuuUfuUfaAfuGfgsCfsu	aCfaGfaAfUfGfuGfucuUfuUfuAfaUfgsGfsc	aCfaGfaauGfuGfucuUfuUfuAfaUfgsGfsc	uAfcAfgAfAfUfgUfgucUfuUfaUfaAfusGfsg	uAfcAfgaaUfgUfgucUfuUfuUfaAfusGfsg	uUfaCfaGfAfAfuGfuguCfuUfuUfuAfasUfsg		uUfaCfagaAfuGfuguCfuUfuUfuAfasUfsg
2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180		2181
AS2047	AS2048	AS2049	AS2050	AS2051	AS2052	AS2053	AS2054	AS2055	AS2056	AS2057	AS2058	AS2059	AS2060	AS2061	AS2062	AS2063	AS2064	AS2065	AS2066	AS2067	AS2068	AS2069	AS2070	120034	A52071
GfaUfcUfgCfaGfCfCfaUfuAfAfAfaAfgAfL96	AfuCfuGfcAfgCfCfAfuUfaaaAfaGfaCfL96	AfuCfuGfcAfgCfCfAfuUfaAfAfAfaGfaCfL96	UfcUfgCfaGfcCfAfUfuAfaaaAfgAfcAfL96	UfcUfgCfaGfcCfAfUfuAfaAfAfAfgAfcAfL96	CfuGfcAfgCfcAfUfUfaAfaaaGfaCfaCfL96	CfuGfcAfgCfcAfUfUfaAfaAfAfGfaCfaCfL96	UfgCfaGfcCfaUfUfAfaAfaagAfcAfcAfL96	UfgCfaGfcCfaUfUfAfaAfaAfGfAfcAfcAfL96	GfcAfgCfcAfuUfAfAfaAfagaCfaCfaUfL96	GfcAfgCfcAfuUfAfAfaAfaGfAfCfaCfaUfL96	CfaGfcCfaUfuAfAfAfaAfgacAfcAfuUfL96	CfaGfcCfaUfuAfAfAfaAfgAfCfAfcAfuUfL96	AfgCfcAfuUfaAfAfAfaGfacaCfaUfuCfL96	AfgCfcAfuUfaAfAfAfaGfaCfAfCfaUfuCfL96	GfcCfaUfuAfaAfAfgAfcacAfuUfcUfL96	GfcCfaUfuAfaAfAfgAfcAfCfAfuUfcUfL96	CfcAfuUfaAfaAfGfaCfacaUfuCfuGfL96	CfcAfuUfaAfaAfAfGfaCfaCfAfUfuCfuGfL96	CfaUfuAfaAfaAfGfAfcAfcauUfcUfgUfL96	CfaUfuAfaAfaAfGfAfcAfcAfUfUfcUfgUfL96	AfuUfaAfaAfaGfAfCfaCfauuCfuGfuAfL96	AfuUfaAfaAfaGfAfCfaCfaUfUfCfuGfuAfL96	UfuAfaAfaAfgAfCfAfcAfuucUfgUfaAfL96		UTUATAATAATGATCTATCATUUTCTUTGUTAATLYB
1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	000	TOSS
S2047	S2048	S2049	S2050	52051	S2052	\$2053	\$2054	S2055	S2056	S2057	82028	82059	82060	\$2061	S2062	82063	S2064	S2065	S2066	S2067	82068	82069	S2070	52071	
D2047	D2048	D2049	D2050	D2051	D2052	D2053	D2054	D2055	D2056	D2057	D2058	D2059	D2060	D2061	D2062	D2063	D2064	D2065	D2066	D2067	D2068	D2069	D2070	D2071	

D2074	S2074	1092	AfaAfaAfgAfcAfCfAfuUfcugUfaAfaAfL96	AS2074	2184	uUfuUfaCfAfGfaAfuguGfuCfuUfuUfusAfsa
D2075	S2075	1093	AfaAfaAfgAfcAfCfAfuUfcUfGfUfaAfaAfL96	AS2075	2185	uUfuUfacaGfaAfuguGfuCfuUfuUfusAfsa
D2076	S2076	1094	AfaAfaGfaCfaCfAfUfuCfuguAfaAfaAfL96	AS2076	2186	uUfuUfuAfCfAfgAfaugUfgUfcUfuUfusUfsa
D2077	S2077	1095	AfaAfaGfaCfaCfAfUfuCfuGfUfAfaAfaAfL96	AS2077	2187	uUfuUfuacAfgAfaugUfgUfcUfuUfusUfsa
D2078	S2078	1096	AfaAfgAfcAfcAfUfUfcUfguaAfaAfaAfL96	AS2078	2188	uUfuUfuUfAfCfaGfaauGfuGfuCfuUfusUfsu
D2079	S2079	1097	AfaAfgAfcAfcAfUfUfcUfgUfAfAfaAfaAfL96	AS2079	2189	uUfuUfuuaCfaGfaauGfuCfuUfusUfsu
D2080	S2080	1098	AfaGfaCfaCfaUfUfCfuGfuaaAfaAfaAfL96	AS2080	2190	uUfuUfuUfuHfAfcAfgaaUfgUfgUfcUfusUfsu
D2081	S2081	1099	AfaGfaCfaCfaUfUfCfuGfuAfAfAfaAfaAfL96	AS2081	2191	uUfuUfuuuAfcAfgaaUfgUfgUfcUfusUfsu
D2082	S2082	1100	AfgAfcAfcAfuUfCfUfgUfaaaAfaAfaAfL96	AS2082	2192	uUfuUfuUfUfUfaCfagaAfuGfuGfuCfusUfsu
D2083	S2083	1101	AfgAfcAfcAfuUfCfUfgUfaAfAfAfaAfaAfL96	AS2083	2193	uUfuUfuuuUfaCfagaAfuGfuGfuCfusUfsu
D2084	S2084	1102	GfaCfaCfaUfuCfUfGfuAfaaaAfaAfaAfL96	AS2084	2194	uUfuUfuUfUfUfuAfcagAfaUfgUfgUfcsUfsu
D2085	S2085	1103	GfaCfaCfaUfuCfUfGfuAfaAfAfAfaAfaAfL96	AS2085	2195	uUfuUfuuuUfuAfcagAfaUfgUfgUfcsUfsu
D2086	S2086	1104	AfcAfcAfuUfcUfGfUfaAfaaaAfaAfaAfL96	AS2086	2196	uUfuUfuUfuUfuUfacaGfaAfuGfuGfusCfsu
D2087	S2087	1105	AfcAfcAfuUfcUfGfUfaAfaAfAfAfaAfaAfL96	AS2087	2197	uUfuUfuuuUfuUfacaGfaAfuGfuGfusCfsu
D2088	S2088	1106	CfaCfaUfuCfuGfUfAfaAfaaaAfaAfaAfL96	AS2088	2198	uUfuUfuUfuUfuUfuacAfgAfaUfgUfgsUfsc
D2089	S2089	1107	CfaCfaUfuCfuGfUfAfaAfaAfAfAfaAfaAfL96	AS2089	2199	uUfuUfuuuUfuUfuacAfgAfaUfgUfgsUfsc
D2090	S2090	1108	AfcAfuUfcUfgUfAfAfaAfaaaAfaAfaAfL96	AS2090	2200	uUfuUfuUfuUfuUfuuaCfaGfaAfuGfusGfsu
D2091	S2091	1109	AfcAfuUfcUfgUfAfAfaAfaAfAfAfaAfaAfL96	AS2091	2201	uUfuUfuuuUfuUfuuaCfaGfaAfuGfusGfsu
D2091			_			

Lowercase nucleotides (a, u, g, c) are 2'-O-methyl nucleotides; Nf (e.g., Af) is a 2'-fluoro nucleotide; s is a phosphothiorate linkage; L96 indicates a GalNAc₃ ligand.

Example 4: *In vitro* screening of RNAi Agents

Cell culture and transfections

Human Hep3B cells or rat H.II.4.E cells (ATCC, Manassas, VA) were grown to near confluence at 37 °C in an atmosphere of 5% CO2 in RPMI (ATCC) supplemented 5 with 10% FBS, streptomycin, and glutamine (ATCC) before being released from the plate by trypsinization. Transfection was carried out by adding 14.8 µl of Opti-MEM plus 0.2 µl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad CA. cat # 13778-150) to 5 µl of siRNA duplexes per well into a 96-well plate and incubated at room temperature for 15 minutes. 80 µl of complete growth media without antibiotic containing ~2 x104 Hep3B cells were then added to the siRNA mixture. Cells were incubated for either 24 or 120 hours prior to RNA purification. Single dose experiments were performed at 10nM and 0.1nM final duplex concentration and dose response experiments were done using 8, 4 fold serial dilutions with a maximum dose of 10nM final duplex concentration.

15

20

25

30

10

Total RNA isolation using DYNABEADS mRNA Isolation Kit (Invitrogen, part #: 610-12)

Cells were harvested and lysed in 150 µl of Lysis/Binding Buffer then mixed for 5 minutes at 850rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 µl Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using magnetic stand and the supernatant was removed without disturbing the beads. After removing the supernatant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing the supernatant, magnetic beads were washed 2 times with 150 µl Wash Buffer A and mixed for 1 minute. Beads were capture again and supernatant removed. Beads were then washed with 150 µl Wash Buffer B, captured and supernatant was removed. Beads were next washed with 150 µl Elution Buffer, captured and supernatant removed. Beads were allowed to dry for 2 minutes. After drying, 50 µl of Elution Buffer was added and mixed for 5 minutes at 70°C. Beads were captured on magnet for 5 minutes. 40 µl of supernatant was removed and added to another 96 well plate.

cDNA synthesis using ABI High capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, Cat #4368813)

A master mix of 1 μ1 10X Buffer, 0.4μ1 25X dNTPs, 1μ1 Random primers, 0.5 μ1 Reverse Transcriptase, 0.5 μ1 RNase inhibitor and 1.6μ1 of H₂O per reaction were added into 5 μ1 total RNA. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, CA) through the following steps: 25 °C 10 min, 37 °C 120 min, 85 °C 5 sec, 4 °C hold.

10 Real time PCR

2μl of cDNA were added to a master mix containing 0.5μl GAPDH TaqMan Probe (Applied Biosystems Cat #4326317E (human) Cat # 4308313 (rodent)), 0.5μl TTR TaqMan probe (Applied Biosystems cat # HS00174914 _m1 (human) cat # Rn00562124_m1 (rat)) and 5μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well plate (Roche cat # 04887301001). Real time PCR was done in a Roche LC 480 Real Time PCR machine (Roche). Each duplex was tested in at least two independent transfections and each transfection was assayed in duplicate, unless otherwise noted.

To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with 10nM AD-1955, or mock transfected cells. IC₅₀s were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with AD-1955 (sense sequence: cuuAcGcuGAGuAcuucGAdTsdT (SEQ ID NO: 2202); antisense sequence: UCGAAGuCUcAGCGuAAGdTsdT (SEQ ID NO: 2203)) or naïve cells over the same dose range, or to its own lowest dose. IC₅₀s were calculated for each individual transfection as well as in combination, where a single IC₅₀ was fit to the data from both transfections.

The results of gene silencing of the exemplary siRNA duplex with various motif modifications of the invention are shown in Table 1 above.

Example 5: *In vitro* Silencing Activity of Chemically Modified RNAi Agents that Target TTR

The following experiments demonstrated the beneficial effects of chemical modifications, including the introduction of triplet repeat motifs, together with a 5 GalNAc₃ ligand, on the silencing activity of RNAi agents that target TTR. The sequences of the agents investigated are provided in Table 2 below. The regions of complementarity to the TTR mRNA are as follows: the region of complementarity of RNAi agents AD-45165, AD-51546 and AD-51547 is GGATGGGATTTCATGTAACCAAGA (SEQ ID NO: 2204) and the region or complementarity of RNAi agents AD-45163, AD-51544, and AD-51545 is TTCATGTAACCAAGAGTATTCCAT (SEQ ID NO: 2205).

Protocol for assessment of IC₅₀ in Hep3B cells

15

20

25

30

The IC $_{50}$ for each modified siRNA was determined in Hep3B cells (a human hepatoma cell line) by standard reverse transfection using Lipofectamine RNAiMAX. In brief, reverse transfection was carried out by adding 5 μ L of Opti-MEM to 5 μ L of siRNA duplex per well into a 96-well plate along with 10 μ L of Opti-MEM plus 0.5 μ L of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad CA. cat # 13778-150) and incubating at room temperature for 15-20 minutes. Following incubation, 100 μ L of complete growth media without antibiotic containing 12,000-15,000 Hep3B cells was then added to each well. Cells were incubated for 24 hours at 37°C in an atmosphere of 5% CO $_2$ prior to lysis and analysis of TTR and GAPDH mRNA by bDNA (Quantigene). Seven different siRNA concentrations ranging from 10nM to 0.6pM were assessed for IC $_{50}$ determination and TTR/GAPDH for siRNA transfected cells was normalized to cells transfected with 10nM Luc siRNA. The results are shown in Table 2.

Protocol for assessment of free-uptake IC₅₀

Free uptake silencing in primary cynomolgus hepatocytes was assessed following incubation with TTR siRNA for either 4 hours or 24 hours. Silencing was measured at 24 hours from the initial exposure. In brief, 96-well culture plates were coated with 0.05%-0.1% collagen (Sigma C3867-1VL) at room temperature, 24 hours

prior to the start of the experiment. On the day of assay, siRNAs were diluted in prewarmed Plating Media consisting of DMEM supplemented with GIBCO's Maintenance Media Kit (Serum-Free, Life Technologies CM4000), and added to the collagen-coated 96-well culture plates. Cryopreserved primary cynomolgus hepatocytes were rapidly thawed in a 37°C water bath, and immediately diluted in Plating Media to a concentration of 360,000 cells/mL. A volume of cell suspension was gently pipetted on top of the pre-plated siRNAs such that the final cell count was 18,000 cells/well. The plate was lightly swirled to mix and spread cells evenly across the wells and placed in a 37°C, 5% CO₂ incubator for 24 hours prior to lysis and analysis of TTR and GAPDH mRNA by bDNA (Quantigene, Affymetrix). In the case of the 4h incubation with siRNA, the media was decanted after 4 hours of exposure to the cells, and replaced with fresh Plating Media for the remaining 20 hours of incubation. Downstream analysis for TTR and GAPDH mRNA was the same as described above. For a typical dose reponse curve, siRNAs were titrated from 1uM to 0.24nM by 4 fold serial dilution.

15

Table 2: In vitro Activity Summary for Alternating TTR-GalNAc and Variants with Triplet Motifs

Duplex ID	S (5'-3')	AS (5'-3")	Free-IC5(Free-Uptake IC50 (μM)	Hep3B IC50
1			4h	24h	(nM)
AD-45163	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfL96 (SEQ ID NO: 2206)	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa (SEQ ID NO: 2212)	0.04101	0.00820	0.0115
AD-51544	AfuGfuAfaCfcAf Af GfaGfuAfu u cCfaUfL96 (SEQ ID NO: 2207)	aUfgGf A fathAfcUfc u uGfgUfuAfcAfusGfsa (SEQ ID NO: 2213)	0.00346	0.00374	0.0014
AD-51545	AfuGfuAf Af CfcAf Af GfaGfuAfuUfcCfaUfL96 (SEQ ID NO: 2208)	aUfgGfaAfuAfcUfcuuGfguuAfcAfusGfsa (SEQ ID NO: 2214)	0.00395	0.00389	0.0018
AD-45165	UfgGfgAfuUfuCfaUfgUfaAfcCfaAfgAfL96 (SEQ ID NO: 2209)	uCfuUfgGfuUfaCfaUfgAfaAfuCfcCfasUfsc (SEQ ID NO: 2215)	0.02407	0.00869	0.0112
AD-51546	UfgGfGfAfuUfuCf Af UfgUfaAfcCf Af AfgAfL96 (SEQ ID NO: 2210)	uCfuugGfuUfaCfaugAfaAfuecCfasUfsc (SEQ ID NO: 2216)	0.00317	0.00263	0.0017
AD-51547	AD-51547 UfgGfgAfuUfuCf Af UfgUfaacCfaAfgAfL96 uCfuU (SEQ ID NO: 2211) (SEQ IC NO: 2211)	uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc 0.00460 0.00374 C (SEQ ID NO: 2217)	0.00460	0.00374	0.0028

L96 indicates a GalNAc₃ ligand; bold nucleotides indicate changes relative to the corresponding parent agent. Each bold nucleotide is at the center of a triplet Lowercase nucleotides (a, u, g, c) indicate 2'-O-methyl nucleotides; Nf (e.g., Af) indicates a 2'-fluoro nucleotide; s indicates a phosphothiorate linkage; motif.

The results are provided in Table 2 and demonstrate that modified RNAi agents that target TTR provide enhanced silencing activity.

Results: Improved Activity of Modified RNAi Agents

Parent RNAi agents with alternating chemical modifications and a GalNAc₃ ligand provided an IC₅₀ in Hep3B cells of about 0.01 nM. As shown in Figures 4-5 and in Table 2, agents modified relative to the parent agents, for example, by the addition of one or more repeating triplets of 2'-fluoro and 2'-O-methyl modifications, showed unexpectedly enhanced silencing activity, achieving IC₅₀ values in Hep3B cells that were 5-8 fold better than the corresponding parent agent.

Results: Free Uptake IC₅₀s in Hep3B cells

As shown in Table 2 and Figures 6-7, RNAi agents modified relative to the parent AD-45163 also showed enhanced free uptake silencing. The modified agents showed more than double the silencing activity of the parent after a 24 hour incubation period and nearly 10 times the silencing activity of the parent after a 4 hour incubation period.

As shown in Table 2 and Figures 8-9, RNAi agents modified relative to the parent AD-45165 also showed enhanced free uptake silencing. The modified agents showed 2-3 times the silencing activity of the parent after a 24 hour incubation period and 5-8 times the silencing activity of the parent after a 4 hour incubation period.

Taken collectively, these results demonstrate that the modified RNAi agents presented herein, e.g., AD-51544, AD-51545, AD-51546, and AD-51547, all showed unexpectedly good inhibition of TTR mRNA in *in vitro* silencing experiments.

20

15

Example 6: TTR mRNA silencing and TTR Protein Suppression in Transgenic Mice

To assess the efficacy of the RNAi agents AD-45163, AD-51544, AD-51545, AD45165, AD-51546, and AD-51547, these agents were administered to transgenic mice that express human transthyretin with the V30M mutation (see Santos, SD., Fernaandes, R., and Saraiva, MJ. (2010) *Neurobiology of Aging*, 31, 280-289). The V30M mutation is known to cause familial amyloid polyneuropathy type I in humans. See, *e.g.*, Lobato, L. (2003) *J Nephrol.*, 16(3):438-42.

10

15

20

25

30

The RNAi agents (in PBS buffer) or PBS control were administered to mice (2 male and 2 female) of 18-24 months of age in a single subcutaneous dose of 5 mg/kg or 1 mg/kg. After approximately 48 hours, mice were anesthetized with 200 µl of ketamine, and then exsanguinated by severing the right caudal artery. Whole blood was isolated and plasma was isolated and stored at -80°C until assaying. Liver tissue was collected, flash-frozen and stored at -80°C until processing.

Efficacy of treatment was evaluated by (i) measurement of TTR mRNA in liver at 48 hours post-dose, and (ii) measurement of TTR protein in plasma at pre-bleed and at 48 hours post-dose. TTR liver mRNA levels were assayed utilizing the Branched DNA assays- QuantiGene 2.0 (Panomics cat #: QS0011). Briefly, mouse liver samples were ground and tissue lysates were prepared. Liver lysis mixture (a mixture of 1 volume of lysis mixture, 2 volume of nuclease-free water and 10ul of Proteinase-K/ml for a final concentration of 20mg/ml) was incubated at 65 °C for 35 minutes. 20µl of Working Probe Set (TTR probe for gene target and GAPDH for endogenous control) and 80ul of tissue-lysate were then added into the Capture Plate. Capture Plates were incubated at 55 °C ±1 °C (aprx. 16-20hrs). The next day, the Capture Plates were washed 3 times with 1X Wash Buffer (nuclease-free water, Buffer Component 1 and Wash Buffer Component 2), then dried by centrifuging for 1 minute at 240g. 100µl of pre-Amplifier Working Reagent was added into the Capture Plate, which was sealed with aluminum foil and incubated for 1 hour at 55° C $\pm 1^{\circ}$ C. Following 1 hour incubation, the wash step was repeated, then 100µl of Amplifier Working Reagent was added. After 1 hour, the wash and dry steps were repeated, and 100µl of Label Probe was added. Capture plates

were incubated 50 °C ±1 °C for 1 hour. The plate was then washed with 1X Wash Buffer, dried and 100μl Substrate was added into the Capture Plate. Capture Plates were read using the SpectraMax Luminometer following a 5 to 15 minute incubation. bDNA data were analyzed by subtracting the average background from each triplicate sample, averaging the resultant triplicate GAPDH (control probe) and TTR (experimental probe) values, and then computing the ratio: (experimental probe-background)/(control probe-background).

Plasma TTR levels were assayed utilizing the commercially available kit "AssayMax Human Prealbumin ELISA Kit" (AssayPro, St. Charles, MO, Catalog # EP3010-1) according to manufacturer's guidelines. Briefly, mouse plasma was diluted 1:10,000 in 1X mix diluents and added to pre-coated plates along with kit standards, and incubated for 2 hours at room temperature followed by 5X washes with kit wash buffer. Fifty microliters of biotinylated prealbumin antibody was added to each well and incubated for 1 hr at room temperature, followed by 5X washes with wash buffer. Fifty microliters of streptavidin-peroxidase conjugate was added to each well and plates were incubated for 30 minutes at room temperature followed by washing as previously described. The reaction was developed by the addition of 50 µl/well of chromogen substrate and incubation for 10 minutes at room temperature with stopping of reaction by the addition of 50 µl/well of stop solution. Absorbance at 450 nm was read on a Versamax microplate reader (Molecular Devices, Sunnyvale, CA) and data were analyzed utilizing the Softmax 4.6 software package (Molecular Devices).

10

15

20

25

30

The results are shown in Figures 10-12. Figure 10 shows that the RNAi agents modified relative to the parent agents AD-45163 and AD-45165 showed RNA silencing activity that was similar or more potent compared with that of the parent agents. Figure 11 shows that the agents AD-51544 and AD-51545 showed dose dependent silencing activity and that the silencing activity of these agents at a dose of 5mg/kg was similar to that of the corresponding parent AD-45163. Figure 12 shows that the agents AD-51546 and AD-51547 also showed dose-dependent silencing activity. Furthermore, the silencing activity of AD-51546 and AD-51547 at a dose of 5mg/kg was superior to that of the corresponding parent AD-45165.

Example 7: Serum and Liver Pharmacokinetic Profiles of RNAi Agents that Target TTR in Mice

To assess the pharmacokinetic profiles of the RNAi agents AD-45163, AD-51544, AD-51545, AD-51546, and AD-51547, these agents, in PBS buffer, were administered to C57BL/6 mice using a single IV bolus or subcutaneous (SC) administration. The plasma concentrations and liver concentrations of the agents were assessed at various timepoints after the administration.

The plasma pharmacokinetic parameters are presented in Tables 3 and 4 below. The mean resident time (MRT) in plasma was about 0.2 hours after IV dosing and about 1 hour after SC dosing. At a dose of 25 mg/kg, the agents AD-51544, AD-51545, AD-51546, and AD-51547 showed similar plasma pharmacokinetic properties. Each of these agents had more than 75% bioavailability from the subcutaneous space. Their bioavailability was superior to that of the parent agent AD-45163 that was administered at a higher dose of 30 mg/kg. The subcutaneous bioavailability of AD-51544 and AD-51547 was about 100%, whereas that of AD-51545 was 90% and that of and AD-51546 was 76%.

Table 3: Summary of Plasma PK Parameter Estimates After SC Administration of TTR-GalNAc siRNAs in Mice

Parameter	30 mpk AD- 45163 (h/c	25 mpk AD- 51544 (h/c	25 mpk AD- 51545 (h/c	25 mpk AD- 51546 (h/c	25 mpk AD- 51547 (h/c
	TTR-	TTR-	TTR-	TTR-	TTR-
	GalNAc)	GalNAc)	GalNAc)	GalNAc)	GalNAc)
Plasma Tmax (h)	0.25	1	0.5	1	0.5
Plasma Cmax (μg/mL)	9.6	11.7	10.9	11.7	12.1
Plasma AUC (h*µg/mL)	12.4	21.9	19.9	20.9	25.3
F _{sc} (%)	79	100	90.1	76.0	99.2

Table 4: Plasma siRNA PK Parameters in Mice after an IV Bolus or SC Dose of AD-51544, 51545, 51546 or 51547 at 25 mg/kg

Test Article	AD-5	AD-51544	S-OV	AD-51545	S-QV	1546	AD-51546 AD-51547	1547
siRNA Dose (mg/kg)	2	25	2	25	7	25	25	5
Route of Administration	IV	SC	ΛI	SC	IV	SC	ΛI	SC
$t_{max}(h)$	0.083	1	0.083	5.0	0.083 0.5 0.083	1	0.083	0.5
C_{max} (µg/mL)	96.5a 11.7	11.7	108^{a}	10.9	128^{a}	10.9	123a	12.1
AUC _{0-last} (h·µg/mL)	21.6	21.6 21.9	22.1	19.9	27.5	20.9	20.9 25.5 25.3	25.3
$\mathrm{MRT}_{0 ext{-last}}(\mathrm{h})$	0.17	1.2	0.16	1.1	0.22	1.4	0.19	1.3
Apparent $t_{1/2\beta}$ (h) ^b	ND	ND	ND 0.49	0.49	ND	1.2	ND	0.56
$\mathrm{F_{SC}}$ (%) $^{\mathrm{c}}$	1	102	Î	90.1	-	0.97	-	99.2
o. Concentration of the 1st compline time (5 min) offer IV decine	x time (5 m	in) often I	V docing					

a: Concentration at the 1st sampling time (5 min) after IV dosing

5: Apparent elimination half-life $(t_{1/2}\beta)$ could not be determined (ND) for all 4 test articles after IV dosing as the erminal phase of the concentration-time profiles was not well defined, as a result, the $t_{1/2}\beta$ -associated PK parameters (eg, AUC_{0-∞}, CL and Vss) were not reported.

:: SC bioavailability, calculated as percentage ratio of AUC_{0-last} after SC and IV dosing at 25 mg/kg

The results also indicated that the RNAi agents AD-45163, AD-51544, AD-51545, AD-51546, and AD-51547 achieved similar or higher concentrations in the liver when administered subcutaneously than when administered by IV bolus. The liver pharmacokinetic parameters are presented in Tables 5 and 6 below. The peak concentration (C_{max}) and area under the curve (AUC_{0-last}) in the liver were two to three times higher after subcutaneous administration as compared with IV administration of the same agent at the same dose. Liver exposures were highest for AD-51547 and lowest for AD-51545. The mean resident time (MRT) and elimination half-life were 10 longer for AD-51546 and AD-51547 compared with AD-51544 and AD-51545. Following subcutaneous administration, the approximate MRTs were 40 hours for AD-51546 and 25 hours for AD-51547, whereas the MRTs for AD-51544 and AD-51545 were lower (about 6-9 hours). The elimination half life of AD-51546 and AD-51547 was also higher (41-53 hours) than was the elimination half life of AD-51544 and AD-15 51545 (6-10 hours).

Table 5: Summary of Liver PK Parameter Estimates After SC Administration of TTR-GalNAc siRNAs in Mice

Parameter	30 mpk	25 mpk	25 mpk	25 mpk AD-	25 mpk AD-
	45163	51544	51545	51546	51547
	(h/c	(h/c	(h/c	(h/c	(h/c
	TTR- GalNAc)	TTR- GalNAc)	TTR- GalNAc)	TTR- GalNAc)	TTR- GalNAc)
Liver Tmax (h)	8	4	4	2	8
Liver Cmax (µg/g)	313	126	80	117	174
Liver AUC (h*µg/g)	4519	1092	763	2131	4583

Table 6: Liver siRNA PK Parameters in Mice after an IV Bolus or SC Dose of AD-51544, 51545, 51546 or 51547 at 25 mg/kg

Test Article	AD-5	AD-51544	S-QV	AD-51545	S-QV	AD-51546	AD-51547	1547
siRNA Dose (mg/kg)	25	5	7	25	7	25	25	5
Route of Administration	IV	SC	ΛI	SC	ΛI	SC	ΛI	SC
$t_{max}(h)$	1	4	1	4	4	2	2	8
C_{max} (µg/g)	6.79	126	37.0	80.5 35.3	35.3	117	73.8	174
AUC_{0-last} (h·µg/g)	632	1092	324	763	984	2131 1429 4583	1429	4583
$\mathrm{MRT}_{0 ext{-}\mathrm{last}}(\mathrm{h})$	8.7	6.5	5.9	8.5	45.7	40.2	29.4	25.3
Apparent $t_{1/2\beta}(h)$	8.1	8.2	5.7	10.0	51.1	45.3	41.1	52.7

Example 8: In vitro Stability of RNAi Agents in Monkey Serum

The serum stability of RNAi agents AD-51544, AD-51545, AD-51546, and AD-51547 was also assessed in monkeys. The results demonstrated that the antisense and sense strands of AD-51544, AD-51545, and AD-51547 showed serum stability over a period of about 24 hours (data not shown).

Example 9: RNAi Agents Produce Lasting Suppression of TTR Protein in Non-Human Primates

The RNA silencing activity of RNAi agents AD-45163, AD-51544, AD-51545, AD-51546, and AD-51547 was assessed by measuring suppression of TTR protein in serum of cynomologous monkeys following subcutaneous administration of five 5 mg/kg doses (one dose each day for 5 days) or a single 25mg/kg dose. Pre-dose TTR protein levels in serum were assessed by averaging the levels at 11 days prior to the first dose, 7 days prior to the first dose, and 1 day prior to the first dose. Post-dose serum levels of TTR protein were assessed by determining the level in serum beginning at 1 day after the final dose (*i.e.*, study day 5 in the 5x5 mg/kg group and study day 1 in the 1x25 mg/kg group) until 49 days after the last dose (*i.e.*, study day 53 in the 5x5 mg/kg group and study day 49 in the 1x25 mg/kg group). See Figure 13.

TTR protein levels were assessed as described in Example 6. The results are shown in Figure 14 and in Tables 7 and 8.

20

25

30

A maximal suppression of TTR protein of up to about 50% was achieved in the groups that received 25 mg/kg of AD-45163, AD-51544, AD-51546, and AD-51547 (see Table 8). A greater maximal suppression of TTR protein of about 70% was achieved in the groups that received 5x5 mg/kg of AD-45163, AD-51544, AD-51546, and AD-51547 (see Table 7). The agent AD-51545 produced a lesser degree of suppression in both administration protocols. Significant suppression of about 20% or more persisted for up to 49 days after the last dose of AD-51546 and AD-51547 in both the 1x25 mg/kg and 5x5 mg/kg protocols. Generally, better suppression was achieved in the 5x5 mg/kg protocol than in the 1x25 mg/kg protocol.

D49

0.85

0.94

1.00

0.84

0.72

Table 7 Fraction Serum Transthyretin Relative to Pre-dose in Cynomolgus Monkeys (5 mg/kg daily for 5 days)

	D-11	D-11 D-7 D-1	D-1	D5	D7	D9	D11	D7 D9 D11 D14 D18 D22 D26 D32 D39 D46 D53	D18	D22	D26	D32	D39	D46	D53
AD- 45163	86.0	66.0	1.03	0.71	0.52	0.40	0.40 0.34	0.27	0.31	0.39 0.48	0.48	0.64	89.0	0.81	0.88
AD- 51544	1.02	66.0	66.0	09.0	0.47	0.37	0.37 0.35	0.39	0.39 0.48	0.58 0.66 0.74	99.0	0.74	0.83	0.91	0.92
AD- 51545	1.03	0.97	1.00	0.73	0.65		0.63 0.69	89.0	0.78	0.87	0.97	0.87 0.97 1.00	1.03	1.03 1.06 1.09	1.09
	1.01	0.97	1.02	0.59	0.42	0.35	0.35 0.30	0.32	0.43	0.58 0.66 0.77	99.0	0.77	0.92	0.93	0.97
AD- 51547	0.99	0.99	1.02	0.74	0.54	0.41	0.34	0.54 0.41 0.34 0.34	0.39	0.39 0.49 0.51 0.53	0.51	0.53	0.65	0.70 0.70 2.70	0.77

Table {	8 Fractic	on Serun	n Transt	hyretin	Relative	to Pre-	dose in (Synomol	gus Moı	ıkeys (2 .	5 mg/kg)			
	D-11	D-7	D-1	D1	D3	D5	D-11 D-7 D-1 D1 D3 D5 D7 D10 D14 D18 D22 D28 D35 D42	D10	D14	D18	D22	D28	D35	D42
AD- 45163	1.04	1.01	0.95	0.99	0.84	0.67	0.99 0.84 0.67 0.57 0.44 0.45 0.51 0.58 0.66 0.72 0.78	0.44	0.45	0.51	0.58	99.0	0.72	0.78
AD- 51544		1.01 1.04 0.95	0.95	0.92	69:0	0.57	0.92 0.69 0.57 0.49 0.48 0.56 0.65 0.69 0.77 0.83 0.87	0.48	0.56	0.65	69.0	0.77	0.83	0.87
AD- 51545	86.0	1.02	0.99	0.87	0.77	69:0	0.87 0.77 0.69 0.71 0.72 0.84 0.90 0.92 0.99 1.00 1.00	0.72	0.84	06.0	0.92	0.99	1.00	1.00
AD- 51546		1.04 1.03 0.93	0.93	0.89	0.71	0.62	0.89 0.71 0.62 0.53 0.50 0.55 0.70 0.70 0.69 0.72 0.79	0.50	0.55	0.70	0.70	69.0	0.72	0.79
AD-	96.0	0.96 1.03 1.01	1.01	1.19	06:0	0.70	1.19 0.90 0.70 0.54 0.48 0.50 0.50 0.52 0.58 0.62 0.70	0.48	0.50	0.50	0.52	0.58	0.62	0.70

Example 10: Tolerability of RNAi Agents that Target TTR

In Cytokine Evaluation in Whole Blood Assay

To assess the tolerability of RNAi agents that target TTR (including AD-45163, AD-51544, AD-51545, AD-51546, and AD-51547), each agent was tested in a whole blood assay using blood from three human donors. The agents were either 300 nM DOTAP transfected or 1 μM without transfection reagent (free siRNA). There was less than a two fold change for the following cytokines/chemokines: G-CSF, IFN-γ, IL-10, IL-12 (p70), IL1β, IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, TNFα. (Results not shown).

10

15

20

25

In Vivo Evaluation

To assess *in vivo* tolerability, RNAi agents were injected subcutaneously in CD1 mice at a dose of 125 mg/kg. No cytokine induction was observed at 2, 4, 6, 24, or 48 hours after subcutaneous injection of AD-45163. No significant cytokine induction was observed at 6 or 24 hours after subcucutaneous injection of AD-51544, AD-51545, AD-51546, or AD-51547.

To further assess *in vivo* tolerability, multiple RNAi agents (including AD-45163, AD-51544, AD-51545, AD-51546, and AD-51547) were tested by subcutaneous injection of 5 and 25 mg in non-human primates (cynomologous monkeys) with dose volumes between 1-2 ml per site. No erythema or edema was observed at injection sites.

Single SC Dose Rat Tolerability Study

To assess toxicity, rats were injected with a single subcutaneous dose of 100, 250, 500, or 750 mg/kg of AD-45163 (see Table 9). The following assessments were made: clinical signs of toxicity, body weight, hematology, clinical chemistry and coagulation, organ weights (liver & spleen); gross and microscopic evaluation (kidney, liver, lung, lymph node, spleen, testes, thymus, aorta, heart, intestine (small and large).

Table 9: Single SC Dose Rat Tolerability Study: 100, 250, 500 & 750 mg/kg of AD-45163 in Sprague Dawley Rats

Group	Dose Level (mg/kg)	Dose Volume (ml/kg)	Route & Regimen	No. Male Sprague Dawley Rats	Day of Necropsy
PBS	0		aar :	_,	
	100	10	SC Injection Day 1	7/group (5 Tox	Day 4
AD-45163	250	10	(2 sites)	animals,	Day 4
Parent	500			2 TK animals)	
	750				

The results showed no test article-related clinical signs of toxicity, effects on body weight, organ weights, or clinical chemistry. No histopathology was observed in heart, kidneys, testes, spleen, liver, and thymus. There was a non-adverse, slight test article-related increase in WBC (†68%, primarily attributed to increase in NEUT and MONO) at 750 mg/kg. These results indicate that a single-dose of up to 750 mg/kg is well tolerated in rats.

10

Tolerability of Repeated Subcutaneous Administrations in Rats

To assess the tolerability of repeated subcutaneous administrations of AD-45163, daily subcutaneous injections of 300 mg/kg were given for 5 days, and a necropsy was performed on day 6. The study design is shown in Table 10.

15

Table 10: Five Day Repeat Dose Tolerability Study in Rat

Group	Dose Level (kmg/kg	Conc (mg/mL)	No of Tox Animals	Nx Day 6
PBS	0	0	2M, 2F	2M, 2F
AD-45163	300	150	2M, 2F	2M, 2F

The following outcome variables were assessed: clinical signs, body weights, hematology, clinical chemistry and coagulation, organ weights, gross and microscopic evaluation (liver, spleen, kidney, heart, GI tract and first and last injection site). The results showed no test article-related clinical signs, body weight or organ weight effects, and also no test article-related findings in clinical hematology or chemistry. There was a possible slight prolongation of activated partial thromboplastin time (APTT) on day 6 (20.4 vs. 17.4 sec). Histopathology revealed no test article-related findings in the liver, spleen, heart, and GI tract. In the kidney, minimal to slight hypertrophy of the tubular epithelium (not adverse) was observed. At the last injection site, there was minimal multifocal mononuclear infiltration, not adverse. These results indicate that five daily 300 mg/kg doses of the parent RNAi agent AD-45163 are well tolerated in rats.

15

20

25

10

Example 11: RNAi Agents Produce Lasting Suppression of TTR Protein in Non-Human Primates

The RNA silencing activity of RNAi agent AD-51547 was assessed by measuring suppression of TTR protein in the serum of cynomologous monkeys following subcutaneous administration of a "loading phase" of the RNAi agent: five daily doses of either 2.5 mg/kg, 5 mg/kg or 10 mg/kg (one dose each day for 5 days) followed by a "maintenance phase" of the RNAi agent: weekly dosing of either 2.5 mg/kg, 5 mg/kg or 10 mg/kg for 4 weeks. Pre-dose TTR protein levels in serum were assessed by averaging the levels at 11 days prior to the first dose, 7 days prior to the first dose, and 1 day prior to the first dose. Post-dose serum levels of TTR protein were assessed by determining the level in serum relative to pre-dose beginning at 1 day after

the loading phase was completed until 40 days after the last dose of the maintenance phase (*i.e.*, study day 70).

TTR protein levels were assessed as described in Example 6. The results are shown in Figure 15.

A maximal suppression of TTR protein of up to about 80% was achieved in all of the groups that received either 2.5 mg/kg, 5 mg/kg or 10 mg/kg of AD-51547. Nadir knockdown was achieved in all of the groups by about day 14, the suppression sustained at nadir knockdown levels with a weekly maintenance dose of either 2.5 mg/kg, 5 mg/kg or 10 mg/kg of AD-51547. The levels of TTR had not returned to baseline more than 40 days after the day of administration of the last maintenance dose for the 5 and 2.5 mg/kg dose levels.

Equivalents:

5

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.

We claim:

1. A double stranded RNAi agent comprising a sense strand complementary to an antisense strand, wherein said antisense strand comprises a region complementary to part of an mRNA encoding transthyretin (TTR), wherein each strand has about 14 to about 30 nucleotides, wherein said double stranded RNAi agent is represented by formula (III):

sense:
$$5' n_p - N_a - (X X X)_i - N_b - Y Y Y - N_b - (Z Z Z)_j - N_a - n_q 3'$$

antisense:
$$3' n_p' - N_a' - (X'X'X')_k - N_b' - Y'Y'Y' - N_b' - (Z'Z'Z')_l - N_a' - n_q' 5'$$

(III)

wherein:

15

i, j, k, and l are each independently 0 or 1;

p, p', q, and q' are each independently 0-6;

each N_a and N_a ' independently represents an oligonucleotide sequence comprising 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence comprising at least two differently modified nucleotides;

each N_b and N_{b}' independently represents an oligonucleotide sequence comprising 0-10 nucleotides which are either modified or unmodified or combinations thereof;

each n_p , n_p' , n_q , and n_q' independently represents an overhang nucleotide;

20 XXX, YYY, ZZZ, X'X'X', Y'Y'Y', and Z'Z'Z' each independently represent one motif of three identical modifications on three consecutive nucleotides;

modifications on N_b differ from the modification on Y and modifications on N_b ' differ from the modification on Y'; and

wherein the sense strand is conjugated to at least one ligand.

2. The RNAi agent of claim 1, wherein i is 1; j is 1; or both i and j are 1.

- 3. The RNAi agent of claim 1, wherein k is 1; 1 is 1; or both k and 1 are 1.
- 4. The RNAi agent of claim 1, wherein XXX is complementary to X'X'X', YYY is complementary to Y'Y'Y', and ZZZ is complementary to Z'Z'Z'.
- 5 5. The RNAi agent of claim 1, wherein the YYY motif occurs at or near the cleavage site of the sense strand.
 - 6. The RNAi agent of claim 1, wherein the Y'Y'Y' motif occurs at the 11, 12 and 13 positions of the antisense strand from the 5'-end.
 - 7. The RNAi agent of claim 6, wherein the Y' is 2'-O-methyl.
- 10 8. The RNAi agent of claim 1, wherein formula (III) is represented as formula (IIIa):

sense: $5' n_p - N_a - Y Y Y - N_b - Z Z Z - N_a - n_q 3'$ antisense: $3' n_p' - N_a' - Y'Y'Y' - N_b' - Z'Z'Z' - N_a' n_q' 5'$

(IIIa)

- wherein each N_b and N_b' independently represents an oligonucleotide sequence comprising 1-5 modified nucleotides.
 - 9. The RNAi agent of claim 1, wherein formula (III) is represented as formula (IIIb):

sense: $5' n_p - N_a - X X X - N_b - Y Y Y - N_a - n_q 3'$

20 antisense: $3' n_p' - N_a' - X'X'X' - N_b' - Y'Y'Y' - N_a' - n_q' 5'$ (IIIb)

wherein each N_b and N_b ' independently represents an oligonucleotide sequence comprising 1-5 modified nucleotides.

10. The RNAi agent claim 1, wherein formula (III) is represented as formula (IIIc):

25 sense: $5' n_p - N_a - X X X - N_b - Y Y Y - N_b - Z Z Z - N_a - n_q 3'$

antisense:
$$3' n_p' - N_a' - X'X'X' - N_b' - Y'Y'Y' - N_b' - Z'Z'Z' - N_a' - n_q' \ 5'$$
 (IIIc)

wherein each N_b and N_b' independently represents an oligonucleotide sequence comprising 1-5 modified nucleotides and each N_a and N_a' independently represents an oligonucleotide sequence comprising 2-10 modified nucleotides.

- 11. The RNAi agent of claim 1, wherein the duplex region is 15-30 nucleotide pairs in length.
- 12. The RNAi agent of claim 11, wherein the duplex region is 17-23 nucleotide pairs in length.
- 10 13. The RNAi agent of claim 11, wherein the duplex region is 17-25 nucleotide pairs in length.
 - 14. The RNAi agent of claim 11, wherein the duplex region is 23-27 nucleotide pairs in length.
- 15. The RNAi agent of claim 11, wherein the duplex region is 19-21 nucleotide pairs15 in length.
 - 16. The RNAi agent of claim 13, wherein the duplex region is 21-23 nucleotide pairs in length.
 - 17. The RNAi agent of claim 1, wherein each strand has 15-30 nucleotides.
- 18. The RNAi agent of claim 1, wherein the modifications on the nucleotides are selected from the group consisting of LNA, HNA, CeNA, 2'-methoxyethyl, 2'-O-alkyl, 2'-O-allyl, 2'-C- allyl, 2'-fluoro, 2'-deoxy, 2'-hydroxyl, and combinations thereof.
 - 19. The RNAi agent of claim 18, wherein the modifications on the nucleotides are 2'-O-methyl,2'-fluoro or both.
- 20. The RNAi agent of claim 1, wherein the ligand is one or more GalNAc25 derivatives attached through a bivalent or trivalent branched linker.

159

21. The RNAi agent of claim 1, wherein the ligand is

- 22. The RNAi agent of claim 1, wherein the ligand is attached to the 3' end of the sense strand.
- 5 23. The RNAi agent of claim 22, wherein the RNAi agent is conjugated to the ligand as shown in the following schematic

wherein X is O or S.

10 24. The RNAi agent of claim 23, wherein the RNAi agent is conjugated to the ligand as shown in the following schematic

- 25. The RNAi agent of claim 1 further comprising at least one phosphorothioate or methylphosphonate internucleotide linkage.
- 26. The RNAi agent of claim 25, wherein the phosphorothioate or
- 5 methylphosphonate internucleotide linkage is at the 3'-terminal of one strand.
 - 27. The RNAi agent of claim 26, wherein said strand is the antisense strand.
 - 28. The RNAi agent of claim 26, wherein said strand is the sense strand.
 - 29. The RNAi agent of claim 1, wherein the base pair at the 1 position of the 5'-end of the antisense strand of the duplex is an AU base pair.
- 10 30. The RNAi agent of claim 1, wherein the Y nucleotides contain a 2'-fluoro modification.
 - 31. The RNAi agent of claim 1, wherein the Y' nucleotides contain a 2'-O-methyl modification.
 - 32. The RNAi agent of claim 1, wherein p'>0.
- 15 33. The RNAi agent of claim 1, wherein p'=2.
 - 34. The RNAi agent of claim 33, wherein q'=0, p=0, q=0, and p' overhang nucleotides are complementary to the target mRNA.
 - 35. The RNAi agent of claim 33, wherein q'=0, p=0, q=0, and p' overhang nucleotides are non-complementary to the target mRNA.

ME1 15031539v.1

36. The RNAi agent of claim 33, wherein the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.

- 37. The RNAi agent of any one of claims 32-36, wherein at least one np' is linked to a neighboring nucleotide via a phosphorothioate linkage.
- 5 38. The RNAi agent of claim 37, wherein all np' are linked to neighboring nucleotides via phosphorothioate linkages.
 - 39. The RNAi agent of claim 1 selected from the group of RNAi agents listed in Table 1.
- 40. The RNAi agent of claim 1 selected from the group consisting of AD-51544,10 AD-51545, AD-51546, and AD-51547.
 - 41. The RNAi agent of claim 40, wherein the RNAi agent is AD-51547.
 - 42. A cell containing the double stranded RNAi agent of any one of claims 1 to 41.
 - 43. A pharmaceutical composition comprising an RNAi agent of any one of claims 1 to 41.
- 15 44. The pharmaceutical composition of claim 43, wherein RNAi agent is administered in an unbuffered solution.
 - 45. The pharmaceutical composition of claim 44, wherein said unbuffered solution is saline or water.
- 46. The pharmaceutical composition of claim 43, wherein said siRNA is administered with a buffer solution.
 - 47. The pharmaceutical composition of claim 46, wherein said buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof.

ME1 15031539v.1

48. The pharmaceutical composition of claim 47, wherein said buffer solution is phosphate buffered saline (PBS).

- 49. The pharmaceutical composition of claim 43, wherein said pharmaceutical composition is a liposome.
- 5 50. The pharmaceutical composition of claim 43, wherein said pharmaceutical composition is a lipid formulation.
 - 51. A method of inhibiting expression of a transthyretin (TTR) in a cell comprising contacting said cell with an RNAi agent of any one of claims 1 to 41 or with a pharmaceutical composition of any one of claims 43 to 50 in an amount effective to inhibit expression of said TTR in said cell, thereby inhibiting expression of said transthyretin (TTR) in said cell.
 - 52. The method of claim 51, wherein expression of said TTR is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 70%, at least about 80%, or at least about 90%.
- 15 53. The method of claim 51, wherein said cell is contacted *in vitro* with said RNAi agent.
 - 54. The method of claim 51, wherein said cell is present within a subject.
 - 55. The method of claim 54, wherein said subject is a human.
- 56. The method of claim 54, wherein said subject is suffering from a TTR-associated disease and said effective amount is a therapeutically effective amount.
 - 57. The method of claim 54, wherein said subject is a subject at risk for developing a TTR-associated disease and said effective amount is a prophylactically effective amount.
 - 58. The method of claim 57, wherein said subject carries a TTR gene mutation that is associated with the development of a TTR-associated disease.

25

10

59. The method of claim 56 or 57, wherein said TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.

- 60. The method of claim 54, wherein said subject has a TTR-associated amyloidosis and said method reduces an amyloid TTR deposit in said subject.
- 61. The method of claim 54, wherein said RNAi agent is administered to said subject by an administration means selected from the group consisting of subcutaneous,
- intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof.
 - 62. The method of claim 54, wherein said RNAi agent is administered to said subject via subcutaneous, intramuscular or intravenous administration.
- 63. The method of claim 62, wherein said subcutaneous administration comprises administration via a subcutaneous pump or subcutaneous depot.
 - 64. The method of claim 54, wherein said RNAi agent is administered to said subject, such that said RNAi agent is delivered to a specific site within said subject.
 - 65. The method of claim 64, wherein said site is selected from the group consisting of liver, choroid plexus, retina, and pancreas.
- 20 66. The method of claim 64, wherein said site is the liver.
 - 67. The method of claim 64, wherein delivery of said RNAi agent is mediated by an asialoglycoprotein receptor (ASGP-R) present in hepatocytes.
 - 68. The method of claim 54, wherein said RNAi agent is administered at a dose of 0.05-50 mg/kg.
- 25 69. The method of claim 54, wherein said RNAi agent is administered in two or more doses.

ME1 15031539v.1

5

70. The method of claim 69, wherein said RNAi agent is administered at intervals selected from the group consisting of once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, and once every about 96 hours.

- 5 71. The method of claim 54, further comprising assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.
 - 72. The method of claim 54, wherein administering said RNAi agent does not result in an inflammatory response in said subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN-γ, IL-10, IL-12 (p70),
- 10 IL1β, IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, TNFα, and any combinations thereof, in a sample from said subject.
 - 73. The method of claim 54, wherein said RNAi agent is administered using a pharmaceutical composition.
- 74. The method of claim 73, wherein said siRNA is administered in an unbuffered solution.
 - 75. The method of claim 74, wherein said unbuffered solution is saline or water.
 - 76. The method of claim 73, wherein said siRNA is administered with a buffer solution.
- 77. The method of claim 76, wherein said buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof.
 - 78. The method of claim 77, wherein said buffer solution is phosphate buffered saline (PBS).
 - 79. The method of claim 73, wherein said pharmaceutical composition is a liposome.

ME1 15031539v.1

80. A method of treating or preventing a TTR-associated disease in a subject, comprising administering to said subject a therapeutically effective amount or a prophylactically effective amount of an RNAi agent of any one of claims 1 to 41 or a pharmaceutical composition of any one of claims 43 to 50 thereby treating or preventing said TTR-associated disease in said subject.

- 81. The method of claim 80, wherein TTR expression in a sample derived from said subject is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 70%, at least about 80%, or at least about 90%.
- 10 82. The method of claim 80, wherein said subject is a human.
 - 83. The method of claim 80, wherein said subject is a subject suffering from a TTR-associated disease.
 - 84. The method of claim 80, wherein said subject is a subject at risk for developing a TTR-associated disease.
- 15 85. The method of claim 80, wherein said subject carries a TTR gene mutation that is associated with the development of a TTR-associated disease.
 - 86. The method of claim 80, wherein said TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.
 - 87. The method of claim 80, wherein said subject has a TTR-associated amyloidosis and said method reduces an amyloid TTR deposit in said subject.
- 88. The method of claim 80, wherein said RNAi agent is administered to said subject by an administration means selected from the group consisting of subcutaneous, intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof.

5

20

89. The method of claim 80, wherein said RNAi agent is administered to said subject via subcutaneous, intramuscular or intravenous administration.

- 90. The method of claim 89, wherein said subcutaneous administration comprises administration via a subcutaneous pump or subcutaneous depot.
- 5 91. The method of claim 80, wherein said RNAi agent is administered to said subject, such that said RNAi agent is delivered to a specific site within said subject.
 - 92. The method of claim 91, wherein said site is selected from the group consisting of liver, choroid plexus, retina, and pancreas.
 - 93. The method of claim 91 wherein said site is the liver.
- 10 94. The method of claim 91, wherein delivery of said RNAi agent is mediated by an asialoglycoprotein receptor (ASGP-R) present in hepatocytes.
 - 95. The method of claim 80, wherein said RNAi agent is administered at a dose of 0.05-50 mg/kg.
- 96. The method of claim 80, wherein said RNAi agent is administered in two or more doses.
 - 97. The method of claim 96, wherein said RNAi agent is administered at intervals selected from the group consisting of once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, and once every about 96 hours.
- 20 98. The method of claim 80, further comprising assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.
 - 99. The method of claim 80, wherein administering said RNAi agent does not result in an inflammatory response in said subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN-γ, IL-10, IL-12 (p70),
- 25 IL1β, IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, TNFα, and any combinations thereof, in a sample from said subject.

ME1 15031539v.1

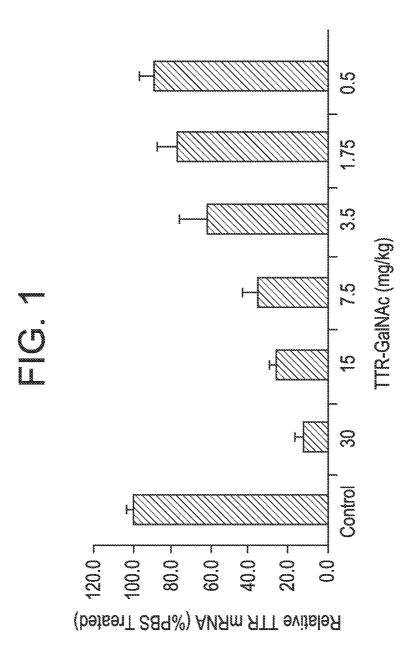
100. The method of claim 80, wherein said RNAi agent is administered using a pharmaceutical composition.

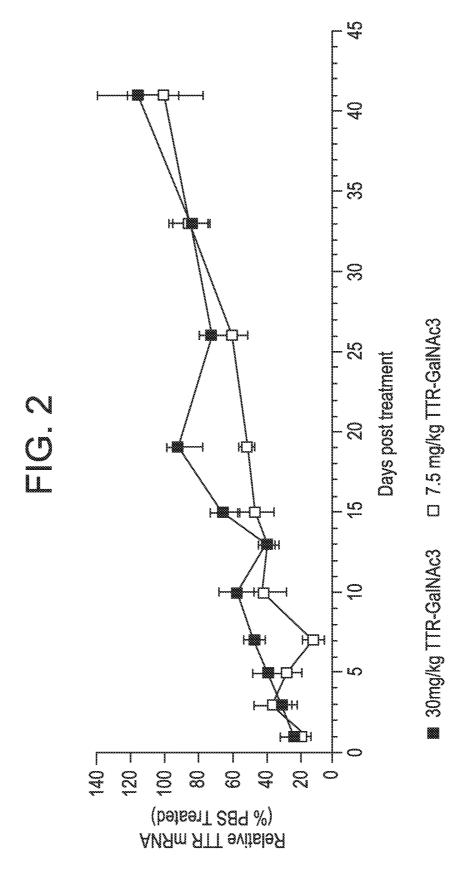
- 101. The method of claim 100, wherein said siRNA is administered in an unbuffered solution.
- 5 102. The method of claim 101, wherein said unbuffered solution is saline or water.
 - 103. The method of claim 100, wherein said siRNA is administered with a buffer solution.
 - 104. The method of claim 103, wherein said buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof.
- 10 105. The method of claim 104, wherein said buffer solution is phosphate buffered saline (PBS).
 - 106. The method of claim 100, wherein said pharmaceutical composition is a liposome.
- 107. A method of inhibiting expression of transthyretin (TTR) in a cell, comprising contacting said cell with a double stranded RNAi agent in an amount effective to inhibit
 15 expression of TTR in said cell, wherein said double stranded RNAi agent is selected from the group of RNAi agents listed in Table 1, thereby inhibiting expression of transthyretin (TTR) in said cell.
 - 108. A method of inhibiting expression of transthyretin (TTR) in a cell, comprising contacting said cell with a double stranded RNAi agent in an amount effective to inhibit expression of TTR in said cell, wherein said double stranded RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547, thereby inhibiting expression of transthyretin (TTR) in said cell.
- 109. A method of inhibiting expression of transthyretin (TTR) in a cell, comprising contacting said cell with a double stranded RNAi agent in an amount effective to inhibit
 25 expression of TTR in said cell, wherein said double stranded RNAi agent is AD-51547, thereby inhibiting expression of transthyretin (TTR) in said cell.

ME1 15031539v.1

20

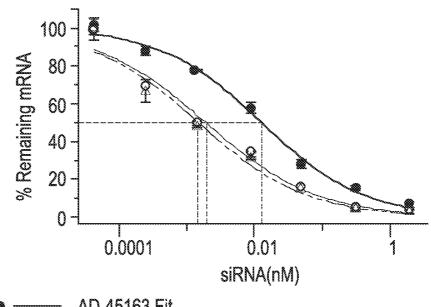
110. A method of treating or preventing a TTR-associated disease in a subject, comprising administering to said subject a therapeutically effective amount or a prophylactically effective amount of a double stranded RNAi agent, wherein said double stranded RNAi agent is selected from the group of agents listed in Table 1, thereby treating or preventing a TTR-associated disease in said subject.


- 111. A method of treating or preventing a TTR-associated disease in a subject, comprising administering to said subject a therapeutically effective amount or a prophylactically effective amount of a double stranded RNAi agent, wherein said double stranded RNAi agent is selected from the group consisting of AD-51544, AD-51545,
- 10 AD-51546, and AD-51547, thereby treating or preventing a TTR-associated disease in said subject.
 - 112. A method of treating or preventing a TTR-associated disease in a subject, comprising administering to said subject a therapeutically effective amount or a prophylactically effective amount of a double stranded RNAi agent, wherein said double stranded RNAi agent is AD-51547, thereby treating or preventing a TTR-associated disease in said subject.
 - 113. A kit for performing the method of claim 46, comprising
 - a) said RNAi agent, and


5

15

- b) instructions for use.
- 20 114. A kit for performing the method of claim 74, comprising
 - a) said RNAi agent,
 - b) instructions for use, and
 - c) optionally, means for administering said RNAi agent to said subject.

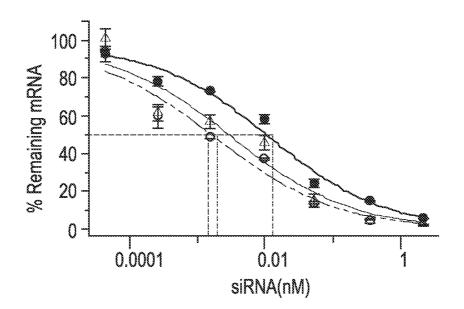


M C L

Human TTR mRNA Sequence (SEQ ID NO: 1), Gen Bank Accession No.: M10605,

{	cadaadtcca	ctcattcttg	gcaggatggc	ttctcatcgt	ctgatactac	tctgccttgc
5	tggactggta	tttgtgtctg	aggctggccc	tacgggcacc	ggtgaatcca	agtgtcctct
21	gatggtcaaa	gttctagatg	ctgtccgagg	cagtcctgcc	atcaatgtgg	ccgtgcatgt
∞	gttcagaaag	gctgctgatg	acacctggga	gccatttgcc	tctgggaaaa	ccagtgagtc
741	tggagagctg	catgggctca	caactgagga	ggaatttgta	gaagggatat	acaaagtgga
301	aatagacacc	aaatcttact	ggaaggcact	tggcatctcc	ccattccatg	agcatgcaga
361	ggtggtattc	acagccaacg	actccggccc	ccgccgctac	accattgccg	ccctgctgag
127	cccctactcc	tattccacca	cggctgtcgt	caccaatccc	aaggaatgag	ggacttctcc
₩ ₩	tccagtggac	ctgaaggacg	agggatggga	tttcatgtaa	ccaagagtat	tccattttta
747	ctaaagcagt	gttttcacct	catatgctat	gttagaagtc	caggcagaga	caataaaaca
501	ttcctgtgaa	aggc				

FIG. 4



● — AD-45163 Fit
△ — AD-51544 Fit
○ — AD-51545 Fit

SUBSTITUTE SHEET (RULE 26)

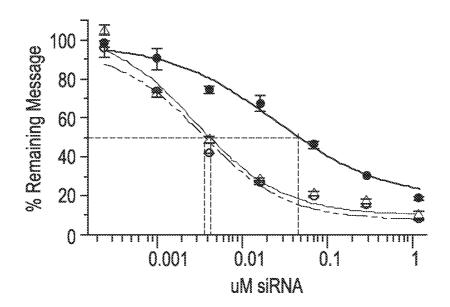

5/16

FIG. 5

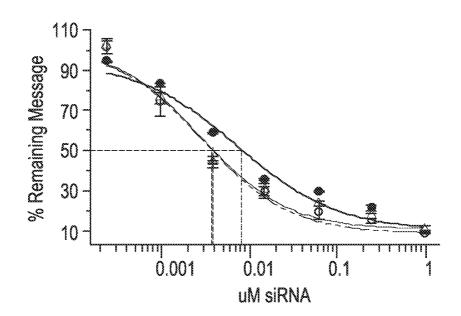
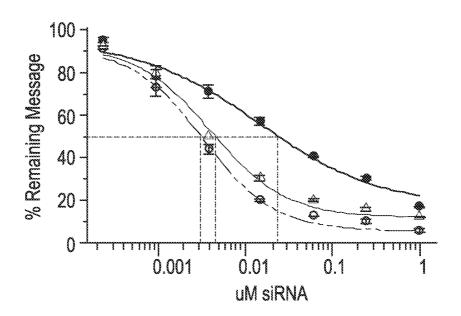

◆ — AD-45165 Fit△ -- AD-51546 Fit○ AD-51547 Fit

FIG. 6

- ——— 45163, 4hr Fit △ ——— 51544, 4hr Fit
- o 51545, 4hr Fit

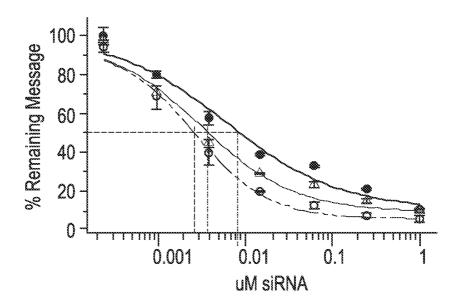
FIG. 7



• — 45163, 24hr Fit

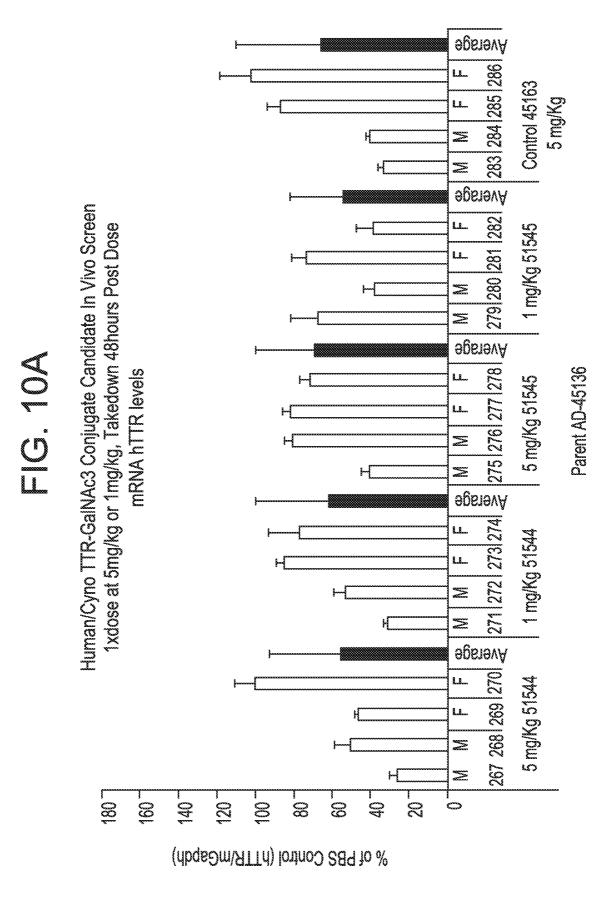
△ — 51544, 24hr Fit

o — 51545, 24hr Fit

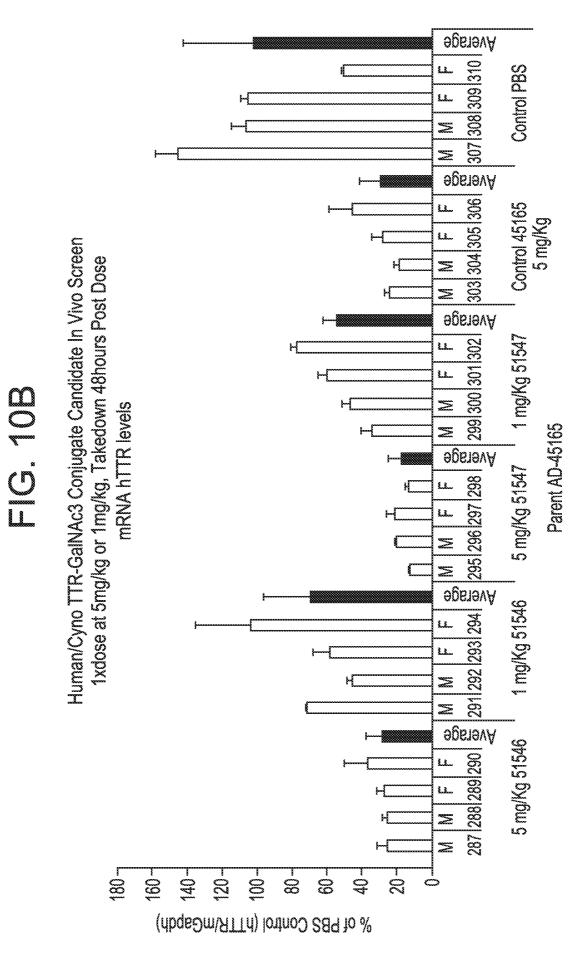

FIG. 8

- —— 45165, 4 hr Fit
- △ ----- 51546, 4 hr Fit
- o _____ 51547, 4 hr Fit

9/16

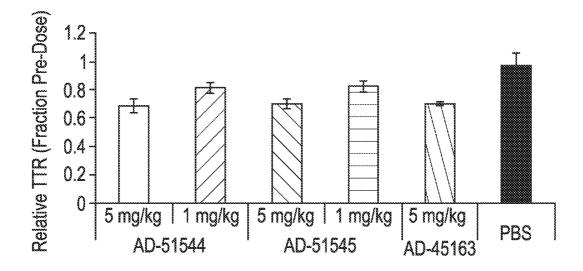

FIG. 9

- 45165, 24 hr Fit


△ ----- 51546, 24 hr Fit

o — 51547, 24 hr Fit

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

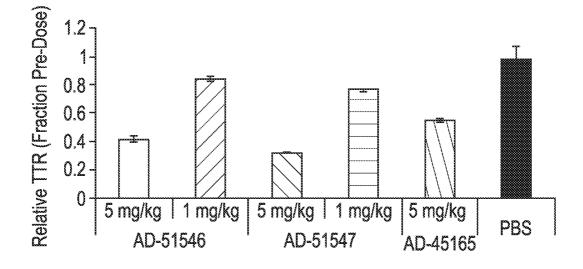
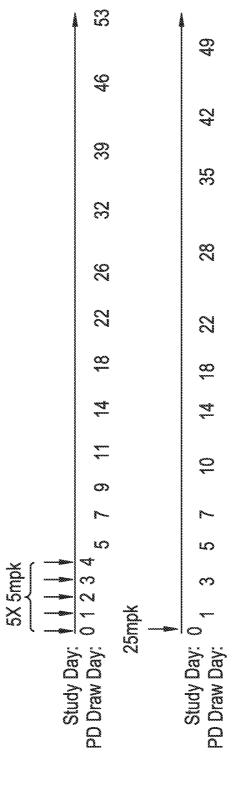
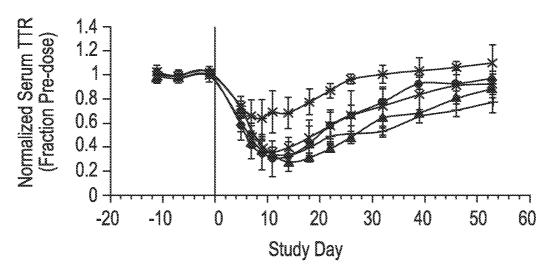

12/16

FIG. 11Relative TTR Protein - Single s.c. dose, 48h



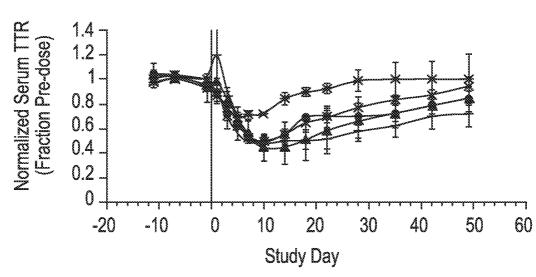
13/16

FIG. 12
Relative TTR Protein - Single s.c. dose, 48h

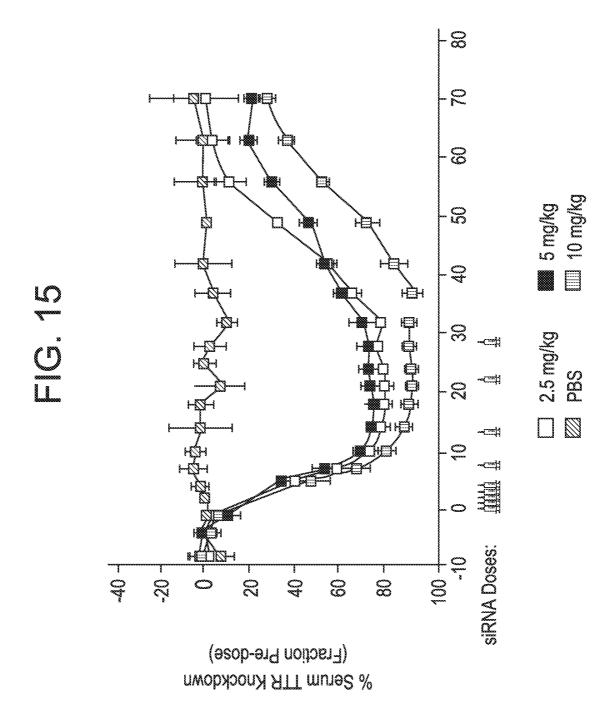


ტ <u>U</u>

15/16


FIG. 14 5X 5mg/kg

▲ 5x5 mk 45163 × 5x5 mpk 51544 * 5x5 mpk 51545


● 5x5 mpk 51546 + 5x5 mpk 51547

25mg/kg

▲ 25mpk 45163 × 25mpk 51544 * 25mpk 51545

• 25mpk 51546 + 25mpk 51547

International application No. PCT/US 12/65691

Α.	CIA	CCIEI	CAT	KOIT	OF	GIID	IECT	N/ A	TTER
Λ.	CLA	122111	CAI	I IUN	UГ	SUD.	JECI	IVI	LIER

IPC(8) - C07H 21/00; C12N 15/113; A61K 31/7088 (2012.01)

USPC - 536/24.5; 514/44A

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC(8) - C07H 21/00; C12N 15/113; A61K 31/7088 (2012.01) USPC - 536/24.5; 514/44A

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched IPC(8) - C07H 21/00; C12N 15/113; A61K 31/7088 (2012.01) USPC - 536/24.5; 514/44A

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) PatBase, ScienceDirect, GoogleScholar

Transthyretin (TTR), Ga1NAc, sense, antisense, 2'-O-methyl, 2'-fluoro, phosphorothioate, RNAi,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	US 2009/0239814 A1 (MANOHARAN et al.) 24 September 2009 (24.09.2009) Fig. 2, Fig. 10, para [0070], [0136], [0141], [0200], [0201], [0202], [0240], [0254], [0255], [0323], [0327]-[0328], [0341], [0438], [0316], [0361], [0373], [0844], [0851], [0857]	1, 4-7, 11-23, 23a, 24-30
Y	US 2011/0237646 A1 (SMITH et al.) 29 September 2011 (29.09.2011) para [0070], [0129], [0136], [0138], [0141], [0240], [0255], [0177]	1, 4-7, 11-23, 23a, 24-30
Υ .	KAWASAKI et al. "Synthesis, Hybridizationk, and Nuclease Resistance Properties of 2'-O-Aminooxyethyl (2'-O-AOE) Modified Oligonucleotides" Tetrahedron Lett.; 1999; Vol. 40; pg. 661-664. Entire document, especially abstract, Table I	1, 4-7, 11-23, 23a, 24-30
Υ ,	MANOHARAN "RNA interference and chemically modified small interfering RNAs" Current Opinion in Chemical Biology; 2004; Vol. 8; pg. 570-579. Abstract	1, 4-7, 11-23, 23a, 24-30
Υ .	CHEN et al. "Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery" J. Control. Release; 2010; Vol. 144; pg. 227-232. Abstract	1, 4-7, 11-23, 23a, 24-30
γ .	NAKAMURA et al. "Targeted conversion of the transthyretin gene in vitro and in vivo" Gene Therapy; 2004; Vol. 11; 838-846 page 839, Fig. 1 Abstract	1, 4-7, 11-23, 23a, 24-30
γ .	GAMBARI et al. "Targeting microRNAs involved in human diseases: A novel approach for modification of gene expression and drug development" Biochem. Pharmacol.; 15 November 2011; Vol. 82, No.10; pg. 1416-1429. Abstract	1, 4-7, 11-23, 23a, 24-30
		•

Further documents are listed in the continuation of Box C. * Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 15 March 2013 (15.03.2013) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-3201 Facsimile No. 571-273-3201	Y	•	modification of gene expression and drug development 2011; Vol. 82, No.10; pg. 1416-1429. Abstract	" Biod	hem. Pharmacol.; 15 November		
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 15 March 2013 (15.03.2013) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	\boxtimes	Furthe	r documents are listed in the continuation of Box C.	[
to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 15 March 2013 (15.03.2013) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300 the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be		Special	categories of cited documents:	"T"			
filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 15 March 2013 (15.03.2013) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	"A"						
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 15 March 2013 (15.03.2013) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	"E"			"X"			
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 15 March 2013 (15.03.2013) Date of mailing address of the ISA/US Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	"L"	docume	nt which may throw doubts on priority claim(s) or which is		step when the document is taken alone		
"O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 15 March 2013 (15.03.2013) Date of mailing of the international search report O 1 A P R 2013 Authorized officer: Lee W. Young PCT Helpdesk: 571-272-4300		special :	reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be		
Date of the actual completion of the international search 15 March 2013 (15.03.2013) Date of mailing of the international search report O 1 A P R 2013 Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	c accession referring to an erail abbricbare, abe, erailerinen er enter			combined with one or more other such documents, such con			
15 March 2013 (15.03.2013) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	"P"			"&" document member of the same patent family			
Name and mailing address of the ISA/US Authorized officer: Lee W. Young P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	Date	of the a	ctual completion of the international search	Date of mailing of the international search report			
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	15 M	larch 20	13 (15.03.2013)		0 1 APR 2013		
P.O. Box 1450, Alexandria, Virginia 22313-1450 PCT Helpdesk: 571-272-4300	Nam	e and m	ailing address of the ISA/US	A	uthorized officer:		
PCT Helpdesk: 571-272-4300					Lee W. Young		
Facsimile No. 571-273-3201 PCT OSP: 571-272-7774				PCT H	elpdesk: 571-272-4300		
	racsi	mile No	^{0.} 571-273-3201	PCT O	SP: 571-272-7774		

International application No.
PCT/US 12/65691

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Α	WO 2011/139917 A1 (MONIA et al.) 10 November 2011 (10.11.2011) entire document		1, 4-7, 11-23, 23a, 24-30
Α	US 2011/0256175 A1 (HOPE et al.) 20 October 2011 (20.10.2011) entire document		1, 4-7, 11-23, 23a, 24-30
			i
:			
	7		
		i	
DCT/IC/			

International application No.

PCT/US 12/65691

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)			
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3. Claims Nos.: 41-105, 112 and 113 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:SEE EXTRA SHEET			
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.			
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1, 4-7, 11-23, 23a and 24-30			
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.			

Information on patent family members

International application No. PCT/US 12/65691

Continuation of Box III: Lack of Unity of Invention

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I+: Claims 1-23, 23a, 24-40, and 106-111, directed to a double stranded RNAi agent comprising a sense strand complementary to an antisense strand, wherein said antisense strand comprises a region complementary to part of an mRNA encoding transthyretin (TTR), wherein each strand has about 14 to about 30 nucleotides, wherein said double stranded RNAi agent is represented by formula AID:

sense: 5' n.sub.p-N.sub.a-(XXX).sub.i-N.sub.b-YYY-N.sub.b-(ZZZ).subb.j-N.sub.a-n.sub.q 3' antisense: 3' n.sub.p'-N.sub.a'-(X'X'X').sub.k-N.sub.b'-Y'Y'Y'-N.sub.b'-(Z'Z'Z').sub.l-N.sub.a'-n.sub.q' 5' (III), wherein:

i, j, k, and 1 are each independently 0 or 1;

p, p', q, and q' are each independently 0-6;

each N.sub.a and N.sub.a' independently represents an oligonucleotide sequence comprising 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence comprising at least two differently modified nucleotides; each N.sub.b and N.sub.b' independently represents an oligonucleotide sequence comprising 0-10 nucleotides which are either modified or unmodified or combinations thereof;

each n.sub.p, n.sub.p', n.sub.q and n.sub.q' independently represents an overhang nucleotide; XXX, YYY, ZZZ, X'X'X', Y'Y'Y', and Z'Z'Z' each independently represent one motif of three identical modifications on three consecutive nucleotides:

modifications on N sub b differ from the modification on Y and modifications on N sub b' differ from the modification on Y': and wherein the sense strand is conjugated to at least one ligand;

wherein the first invention is defined by the first option for each and every optional position, namely:

i, j, k, and 1 are each independently 0; p, p', q, and q' are each independently 0; each N.sub.a and N.sub.a' independently represents an oligonucleotide sequence comprising 0 nucleotides; each N.sub.b and N.sub.b' independently represents an oligonucleotide sequence comprising 0 nucleotides; hence wherein the structure of the first claimed compound comprises:

5' YYY 3' 3' Y'Y'Y' 5'

(claims 1, 4-7, 11-23, 23a and 24-30) (Applicants may opt for additional inhibitory nucleic acid structures to be searched by fully specifying the structure, or by selecting a particular fully specified structure from one of the indicated tables, such as Table 1, and paying an additional invention search fee for each elected inhibitory nucleic acid structure).

The inventions listed as Groups I+ do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The special technical feature of the claims of Groups I+ are based on the particular structural features of individual double-stranded inhibitory nucleic acids directed to transthyretin, and having at least a particular motif comprising a triplet of similarly modified nucleotides in the structure of each of the strands, wherein each subgroup comprises a different invention based on the particular combinations of modifications used in the structure of the strands.

The only common technical element shared by the above groups is that they are related to modified double-stranded oligonucleotides having about 14 to 30 nucleotides directed to transthyretin having at least a motif comprising a triplet of similarly modified nucleotides in each strand, and having at least the sense strand is conjugated to a ligand. These common technical elements do not represent an improvement over the combined prior art of US 2011/0237646 A1 to Smith et al. (hereinafter "Smith") and the article entitled "Synthesis, Hybridizationk, and Nuclease Resistance Properties of 2'-O-Aminooxyethyl (2'-O-AOE) Modified Oligonucleotides" by Kawasaki et al. (hereinafter "Kawasaki"), as follows:

Smith teaches compounds and compositions for modulating the expression of transthyretin (abstract), including modified doublestranded oligonucleotides (para [0177]), which is at least 70% complementary to the human transthyretin nucleic acid, which may be an siRNA (para [0070]) of 12 to 30 linked nucleosides in length (para [0129]). The modified oligonucleotide may comprise at least one modified internucleoside linkage (para [0136]), at least one modified sugar (para [0138]), or a modified base (para [0141]). Smith further teaches wherein the compounds may be linked to one or more moieties or conjugates that enhance the activity, or cellular distribution or uptake of the compounds (para [0254]), and wherein the compounds may have stabilizing groups added to the 5' or 3' ends, such as cap structures, to prevent or reduce exonuclease degradation (para [0255]). Although Smith does not specify wherein the sense strand is conjugated to the ligand, it would have been obvious to a person of ordinary skill in the art to assess the effectiveness of conjugation of either or both of the sense and antisense strands, wherein conjugation of either to a ligand would have been anticipated to be functionally useful, based on the teaching of Smith. Further, although Smith specifies wherein the inhibitory oligonucleotides may comprise modified linkages, sugars, or bases, Smith does not specifically recite wherein the inhibitory oligonucleotides comprise at least a motif of three similarly modified nucleotides in succession. However, in a related disclosure, Kawasaki teaches modified inhibitory oligonucleotides (abstract) including a particular modification, which, when used in repeats of more than three consecutive nucleotides (Table 1) enhances the effect of stabilizing the inhibitory oligonucleotides against degradation (abstract, Table 1). It would have been obvious to a person of ordinary skill in the art to apply the teaching of Kawasaki regarding the enhanced stability of runs of repeated modified nucleotides in an inhibitory oligonucleotide to both strands of a double stranded inhibitory oligonucleotide, as taught by Smith, in order to enhance the stability of the construct and increase its nuclease resistance.

Therefore, the inventions of Groups I+ lack unity of invention under PCT Rule 13 because they do not share a same or corresponding special technical feature.

Continuation of Section 4:

Claims 41-105, 112 and 113 are multiply dependent claims that are not formed according to the second and third sentences of Rule 6.4(a).

摘要

本發明提供了靶向甲狀腺素運載蛋白 (TTR)基因的RNAi試劑 (例如雙鏈RNAi試劑)和使用這樣的RNAi試劑用於治療或預防TTR相關疾病的方法。