WO 2005/015346 A2 |0 |00 00 0 00 O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

N
TR
271

gac N 00O O OO0 0O OO

(43) International Publication Date (10) International Publication Number
17 February 2005 (17.02.2005) PCT WO 2005/015346 A2
(51) International Patent Classification’: GO6F (72) Inventor; and
(75) Inventor/Applicant (for US only): MUKHERJEE, Ma-
(21) International Application Number: haraj [IN/US]; 12 Brothers Road, Wappingers Falls, NY
PCT/US2004/020906 12590 (US).

(22) International Filing Date: 30 June 2004 (30.06.2004) (74) Agent: ANDERSON, Jay, H.; International Business Ma-

chines Corporation, Zip 482, 2070 Route 52, Hopewell
Junction, NY 12533 (US).

(25) Filing Language: English

. (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(30) Priority Data: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
10/604,585 31 July 2003 (31.07.2003) US GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP,KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
(71) Applicant (for all designated States except US): INTER- MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
NATIONAL BUSINESS MACHINES CORPORA- PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,, SY, TJ, TM,
TION [US/US]; New Orchard Road, Armonk, NY 10504 TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

(US). ZW.

[Continued on next page]

(54) Title: DYNAMICALLY CONFIGURABLE FAULT TOLERANCE IN AUTONOMIC COMPUTING WITH MULTIPLE
SERVICE POINTS

(57) Abstract: A method is described for configuring a system (1) having
START . . .
Ly=4 a plurality of processors (2) to provide the system with at least one cluster
of processors, where each cluster has one service point (10). A distance is

e ., computed from each processor to other processors in the system (302). A
3ot~ PROCESSOR. plurality of total distances is then computed (303), where each total distance
is associated with one processor. A minimum total distance is determined
from the plurality of total distances (304). One processor is assigned to be
o the service point; this processor is the processor having the minimum total
202 %D‘;%“Ce 1 ls distance associated therewith.
it ProcessoR.

Cor
3031 pisTAN

RS
u
L]
+
(2N

Rotf~t MINIMUM

WO 2005/015346 A2

0 0000 0 O O O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/015346 PCT/US2004/020906

DYNAMICALLY CONFIGURABLE FAULT TOLERANCE IN
AUTONOMIC COMPUTING WITH MULTIPLE SERVICE POINTS

Technical Field

This invention relates to autonomic computing, and more particularly to a method for
clustering processors and assigning service points in a system for efficient, fault-tolerant,

self-configuring and self-healing operation.

Background Art

Autonomic computing, which generally refers to design of multiprocessor computing
systems which are self-monitoring, self-configuring, fault-tolerant and self-healing, is a topic
of considerable theoretical and practical interest. One important consideration in building a
successful autonomic computing system is to embed the fault tolerance of the system within
itself to enhance its self-healing mechanism. The self-healing mechanism would require that
in case of a fault the system would immediately detect the nature of the fault and try to
correct the fault. In a case where it could not correct for the fault, the system would minimize
the ensuing performance degradation by assigning the task of the faulty processor to one or
more other processors. In a typical computer architecture, this task of fault detection and
management is either done by one of the processors or by a master processor.

The processors comprising an autonomic computing system may be distributed over a
geographically large area. Furthermore, the processors may be of many different types,
running many different types of operating systems, and connected by a distributed network.
The various processors are often geographically arranged in clusters. Such an arrangement
does not permit having one master processor managing the fault tolerance of the entire
system. It is therefore advantageous to have some of the processors do the fault management.
These processors will be referred to herein as service points.

A typical system utilizing a service point is shown in Figure 1A. The system 1
includes several interconnected processors 2, with one of those processors assigned to be the

service point 10. Generally, the service point is chosen to be the processor having the

WO 2005/015346 PCT/US2004/020906

smallest distance to the other processors. The term “distance” is used herein as a measure of
the communication time required between processors. The service point has several tasks in
addition to its own regular computing load: (1) detecting a faulty processor elsewhere in the
system; (2) replacing a faulty processor by reassigning that processor’s tasks to other
processors; (3) monitoring the tasks being performed by the other processors; and (4)
balancing the load on the system to ensure optimum performance. Figure 1B illustrates a
situation where a processor 3 has had a fault detected by the service point 10, and has been
removed from the system; the remainder of the system continues to operate.

Though fault tolerance using redundant computation has been used for some time, the
self-healing and self-configuring features of current autonomic computation systems raise
several new concerns, for example:

(1) The self-configurable and the self-adjustable features of an autonomic system
work much better when all of the processors (including those distantly located) are uniform
and interchangeable. This means that the service points should not be special processors but
rather chosen from the same set of processors working an extra load.

(2) Usually, in parallel and scalable computer architectures the number of service
points is fixed and cannot be specified as a fraction of the number of active processors.
However, having too few service points causes the self-healing mechanism to be too slow;
having too many service points degrades the overall performance of the system.

(3) Since the autonomic computing system works in a dynamic environment, it is
important to dynamically optimize clustering and service point assignment to optimize
system performance. It should be noted that in an on-demand computing environment, the
total number of processors (and thus the composition of clusters and assignment of service
points) is constantly changing in response to the computing load.

In the self-configuring environment of an autonomic computing system, it generally is
not possible to preassign the service points. Therefore, depending on the requirements of the
situation any current processor can be dynamically assigned to be a service point. On the
other hand, creating too many service points leads to a large computational load on the
system. It is desirable, therefore, to keep the number of service points limited to a certain
fraction of the working processors.

The current problem is, therefore: given a set of processors in a distributed and

dynamic environment, and a number representing the fractional value of the ratio of the

WO 2005/015346 PCT/US2004/020906

maximum number of service points to the total number of working processors, to determine
the service points and the processors each service point would service.

The idea of clustering has been successfully applied to many other fields. However,
in all the above-noted applications areas the number of clusters cannot be specified a priori.
It is necessary to put an upper bound to the number of clusters so that the overhead for extra
service points is always bounded. The problem of clustering with a fixed limit is generally
known as intractable—that is, an efficient optimal solution does not exist. There is still a need,
however, for a solution that is efficient though suboptimal. More particularly, there is a need
for an efficient procedure for dynamically assigning the various processors in a system to
clusters, and for assigning service points within each cluster, to ensure optimum performance

(including self-configuring and self-healing) of the system.

Disclosure of Invention

The present invention addresses the above-described need by providing a method is
described for configuring a system having a plurality of processors to provide the system with
at least one cluster of processors, where each cluster has one service point. According to the
present invention, this is done by computing a distance from each processor to other
processors in the system. A plurality of total distances is then computed, where each total
distance is associated with one processor. A minimum total distance is determined from the
plurality of total distances. One processor is assigned to be the service point; this processor is
the processor having the minimum total distance associated therewith.

According to another embodiment of the invention, the method further includes
partitioning the system into a plurality of clusters. This partitioning process may include
sorting the processors in accordance with the total distance associated with each processor;
assigning each processor to one of two clusters; determining a minimum total distance for the
processors in each cluster in accordance with the plurality of total distances associated with
the processors in that cluster; and assigning as the service point for each cluster the processor
having the minimum total distance associated therewith in said cluster.

According to a further embodiment of the invention, one of two clusters is subdivided
into two clusters, thereby partitioning the system into three clusters. A minimum total

distance is determined for the processors in each of those three clusters in accordance with

3

WO 2005/015346 PCT/US2004/020906

the plurality of total distances associated with the processors in the three clusters. The
processors are assigned to the three clusters in accordance with the minimum total distance;
the processor having the minimum total distance associated therewith in each cluster is
assigned as the service point for that cluster.

According to an additional embodiment of the invention, the processors may be of
different types, and the processors are assigned to clusters in accordance therewith.

The system may be configured dynamically when a processor is added to or removed
from the system. Furthermore the partitioning of the system may be dynamically changed
when a processor is removed from the system.

In each cluster, another processor may be assigned as a backup service point, to
assume the functions of the service point if the service point is removed from the system.

In accordance with another embodiment of the invention, a computer-readable storage
medium is provided, having stored therein instructions for performing a method for
configuring a system having a plurality of processors to provide the system with at least one
cluster of processors, each cluster having one service point, This method comprises the steps
of computing a distance from each processor to other processors in the system; computing a
plurality of total distances, where each total distance is associated with one processor;
determining a minimum total distance from the plurality of total distances; and assigning as

the service point the processor having the minimum total distance associated therewith.

Brief Description of Drawings

Figure 1A illustrates a typical arrangement of processors in a system having a service
point.

Figure 1B illustrates the system of Figure 1A after a faulty processor is removed from
the system.

Figure 2 illustrates a system having multiple processors, with distances between the
processors determined in accordance with the present invention.

Figure 3A illustrates a system having multiple processors which is to be configured
into clusters with service points, in accordance with an embodiment of the invention.

Figure 3B schematically illustrates the procedure for computing the total distance
from one processor to other processors in a system, in accordance with the invention.

4

WO 2005/015346 PCT/US2004/020906

Figure 3C is a flowchart detailing steps in algorithm(N,1) in accordance with an
embodiment of the invention.

Figure 3D schematically illustrates a system divided into two clusters.

Figure 3E is a flowchart detailing steps in algorithm(N,2) in accordance with an
embodiment of the invention.

Figure 3F-1 schematically illustrates a system wherein a cluster is subdivided, in
accordance with an embodiment of the invention.

Figure 3F-2 schematically illustrates an alternative subdivision of clusters in a system.

Figure 3G is a flowchart detailing steps in algorithm(N,p) in accordance with an
embodiment of the invention.

Figure 3H shows the result of a process for configuring clusters and assigning service
points in the system of Figure 3A.

Figure 4A illustrates a system having multiple processors of different types which is -
to be configured into clusters with service points, in accordance with a further embodiment of
the invention.

Figure 4B shows the result of a process for configuring clusters and assigning service
points in the system of Figure 4A.

Figure 5A illustrates a system having multiple processors, where one processor is to
be removed from the system.

Figure 5B shows the system of Figure 5A, after a processor has been removed.

Figure 5C illustrates a system having multiple processors, where one processor is to
be added to the system.

Figure 5D illustrates a system having two clusters, where one processor is to be
removed from the system.

Figure 5E illustrates the system of Figure 5D after a processor has been removed,
where the clusters have been reconfigured.

Figure 6 illustrates a system having multiple processors configured into clusters each

having a service point, where the service point of a cluster is to be removed from the system.

Best Mode for Carrying Qut the Invention

In the following description it will be assumed that the system has a set of N

processors cl, ¢2,, cN (see Figure 2). A distance function d(i,j) is defined between
5

WO 2005/015346 PCT/US2004/020906

processors ci and cj, so that d(i,i) = 0 and d(i,j) satisfies the triangular inequality: d(i,j) +
d(j.k) is greater than or equal to d(i,k). In terms of communication between processors, this
means that communication through the j-th processor must be slower than direct
communication between the i-th and k-th processors. The distance d(i,j) is a function of the
speed of the communication network, the rate of data exchange and data volume, and the
geographic location of the processors.

A fractional value f is defined as the maximum fraction of the N processors that can
take the extra load of acting as service points. A number p=N * f then represents the
maximum number of processors acting as service points. Accordingly, the system may have
a maximum of p clusters.

According to the invention, a method is provided for assigning clusters and service
points in a system of N processors having p clusters, in several cases of increasing
complexity, as follows:

Case 1: Static system of uniform processors.

The system of processors cl, c2, , cN is to be divided into p different clusters,
where each cluster is identified with a service point so that the sum of the maximum distance
of all the processor belonging to a cluster to the corresponding service points of the cluster is
minimized.

For example, Figure 3A illustrates a system 30 having N=20 processors which is to be
divided into p=4 clusters. In this example the fraction f is thus 1/5; in practice f is much
smaller, generally in the range 1/50 to 1/100.

The method will first be described for simple cases when p = 1 and p = 2, that is, for 1
and 2 clusters. These two cases form the basis of the nontrivial case.

For p=1, that is, for a single cluster, the following algorithm is used.

Algorithm(N,1):

For i=1 to i=N do:
set d_i =SUM {d(i,j)} forj=1to N and j not equal to i;
Output i so that d_i is smallest fori=1to N.

Figure 3B illustrates a system having N=10 processors where the distance d(1,]) is
computed for processor cl. The sum of the distances d(1,2), d(1,3), ..., d(1,10) is the total
distance for processor c1.

Figure 3C is a flowchart illustrating algorithm (N,1). Beginning with the first
processor (i=1 in step 301), the distance is computed between that processor and each of the

6

WO 2005/015346 PCT/US2004/020906

other processors (step 302). The sum of these distances is the total distance for the i-th
processor in the cluster (step 303). The processor whose total distance is the minimum (step
304) would then be the service point for the cluster.

For p = 2, that is, for two clusters, the following algorithm is used, in which the
method of algorithm(N,1) is used iteratively. As an initial step, the entire set of N processors
is treated as a single cluster, and the foregoing algorithm (N, 1) is used to compute a total
distance for each processor; that is, each of the N processors has a total distance representing
the sum of distances from that processor to the other processors. This distance for the i-th
processor is denoted as d(i,1). The N processors may then be sorted according to this
distance.

Algorithm(N,2):

1. Sort the processors by distance d(i,1).
2. Intitialize two clusters L1 and 1.2, where L1 contains all N processors and L2 contains O
Processors.
2.i Compute the point of service for L1 and its smallest distance using algorithm(N,1);
2.ii Initialize d_O to that distance.
3. Scan the processors cl, c2,, cN in their sorted order:

3.i: For each processor ¢_i, remove it from L1 and put it in L2.

3.ii. Compute the point of service for both L1 and L2 and the smallest sum of
distances d_1li and d_2i

3.1i1i. Set the sum of distances d_i=d_1i+d_2i
4. Choose the distance di fori= 1 to N so that d_i is minimum and output the clusters L.1 and
L2 for that distance.

Figure 3D is a schematic illustration of the system 30, with N=10 processors, divided
into two clusters 1.1 and L2. Figure 3E shows a flowchart illustrating algorithm(N,2). As
noted above, the total distance for each processor in the system is first computed using
algorithm(N, 1) (step 321), and the processors are then sorted according to this distance (step
322). In the initial assignment of clusters, all 10 processors are in cluster L1, and no clusters
are in cluster L2. The initial minimum total distance d_O is thus the same as that previously
computed using algorithm (N, 1) (step 323). Each processor (proceeding in the sorted order
by distance, as computed using algorithm(N, 1), beginning with the smallest distance) is
successively moved from cluster L1 to cluster L2 (step 324), and the minimum total distance
for each cluster is computed using algorithm(N, 1) for each iteration (step 325). In the i-th

7

WO 2005/015346 PCT/US2004/020906

iteration, the minimum distance is denoted d_1i for cluster L1 and d_2j for cluster L2. A
combined minimum distance d_i = d_1i + d_21i is then computed (step 326). In one of the N
iterations, the value of d_i will be a minimum; this value is chosen as the total distance for
the system, with the corresponding cluster assignments (step 327).

For the non-trivial case of p clusters the above algorithm(N,2) is used iteratively. At
each stage, each of the created clusters is divided into two parts using algorithm(N,2); the
cluster assignments that minimize the total distance function are then identified.

For example, the system of N=10 processors shown in Figure 3D is divided into two
clusters L1 and L2, as the algorithm(N,2) is performed. Then in the next stage, cluster L1 is
divided into two clusters L1.1 and 1.1.2, while L2 is left intact (Figure 3F-1). The total
distance (denoted d2.1) is then computed, as the sum of the cluster distances of L1.1, L2.1
and L2. Then cluster L2 is divided into two clusters 1.2.1 and 1.2.2, with 1.1 left intact
(Figure3F-2). The total distance (now given as d2.2) is again computed, as the sum of the
cluster distances of L1, L2.1 and L2.2. The smaller of d2.1 and d2.2 is chosen, along with
the cluster configuration corresponding thereto. Thus if d2.1 < d2.2, then the clusters L1.1,
L1.2 and L2 are chosen. The subdivisions L1.1 and L1.2 are renamed L1 and L3 respectively,
and the total distance for this set of clusters d3 is set equal to d2.1.

In the same manner, at any iterative stage q+1, where q = 2, ..., N-1, there are existing
clusters L1,, L_g. Then q sets of q+1 clusters are created by dividing each of the clusters
L1, ..., L_q one at a time into two parts L_{j.1} and L_{j.2} for j = 1,, ¢ while keeping all
other clusters intact. The distance d_{q.1},, {d_{q.q}} is then computed for each of these
clusters. The smallest distance among these distances is chosen, along with the
corresponding cluster configuration. Suppose that d_{m,j} =min { d_{q.1}, ...,

{d_{q.q}} }. Then the corresponding cluster {L1,L2,Lm.1,Lm.2,, Lq} is chosen.
Then the distance d_{q+1} is set equal to d_{m,j}, Lm=Lm.1 and L_{q+1} =Lm.2. This
process yields a set of q+1 clusters, each with its own service point.

The algorithm for p clusters is as follows:

Algorithm (N,p):

0. Divide the set of processors into two clusters by using algorithm(N,2).
1. for i=2 to p do:
1.1. forj=1toido
1.1.1 Divide Lj to Lj.1 and L;j.2 using algorithm(N,2).
1.1.2 Sum the total distance of the clusters and call it d_{i.j}
8

WO 2005/015346 PCT/US2004/020906

1.2 Setd_{i+1} =min {d_{ij} I forj=1toi}.
Let the value of j for which the minimum occurs be j=m,
1.3 Set Lm =Lm.1
1.4 Set L_{i+1} =Lm.2
2. Return the results L1, ... Lp

Figure 3G shows a flowchart for the foregoing algorithm(N,p). The system is first
divided into two clusters using the algorithm(N,2) (step 351). An iteration is then performed
where the j-th cluster is divided into two using algorithm(N,2) (step 352), and the total
distance for all of the clusters (including the two subdivided clusters) is computed (step 353).
The minimum of these total distances is found (step 354), and the cluster configuration
corresponding thereto is chosen (step 355). The clusters are then renamed as described above
with reference to Figures 3F-1 and 3F-2 (step 356). The clusters are redivided until a set of p
clusters is found (step 357). The system then has a set of p clusters, each with one service
point. A result of this process is shown schematically in Figure 3H (compare Figure 3A), for

=20 processors and p=4 clusters. The system 30 is divided into four clusters 31, 32, 33, 34
with respective service points 311, 312, 313, 314.

Case 2: Static system of non-uniform processors.

Figure 4A is a schematic illustration of a system 40 where the processors are not all
uniform, but are pregrouped according to their operating systems and/or technology and the
service point for a type of processor must be of the same type. In system 40, the processors
are of two types 41 and 42. It will be appreciated that the different types of processors may
communicate with each other over a network running a processor-independent protocol such
as TCP/IP. For example, an autonomic computing environment may be set up using a set of
Windows-based processors running on Intel chips and a set of servers running AIX. The
service point for the Intel systems must be an Intel system and the service point for the AIX
system must be an AIX based system. The system 40 thus must be divided into clusters so
that all processors in a cluster are of the same type.

The solution for this case can be obtained from that of Case 1 discussed above.
Suppose there are m different types of processors and the service point for each of these
different types can be only from its own kind. In this case we first check if m < p, where p is
the maximum number of clusters. If m >=p (which is very unlikely in a practical system),
then the clusters are simply grouped according to the type of processors. For m < p, the
clusters are initialized by grouping the processors into m clusters L1, ..., Lm each containing

9

WO 2005/015346 PCT/US2004/020906

only the same type of clusters. Then the algorithm(N ,p) is applied to these m clusters. A
result of this process is shown schematically in Figure 4B, with N=20, m=2 and p=4.
Processors 41 are grouped into clusters 411, 412, 413, while processors 42 are grouped into
cluster 420.

Case 3. Dynamic system: processors entering and leaving system.

This case is an extension of Case 2 where the number of processors is dynamically
changing. Processors may enter or leave the system, either because of faults or because they
are operating in an on-demand environment. In addition, a change in the number of
processors can lead to a change in the number or arrangement of clusters, so that the clusters
also are dynamically changing. Furthermore, if the processors are of more than one type (and
thus in more than one distinct group), the number of groups may be dynamically changing.
For example, Figure SA shows a situation where processor 501 in cluster 50 is to be removed
from the system. The cluster is reconfigured as cluster 51, as shown in Figure 5B. Itis
possible that the removal of processor 501 will result in a reassignment of the service point of
cluster 51.

The total distance between the processors in a cluster and the service point must be
minimized dynamically to avoid loss in performance of the system. It is possible to
recompute the clusters by using algorithm(N,p), each time one or more processors are added
to the system or taken out of the system. This approach is very costly in terms of computing
overhead and may cause significant performance degradation. Therefore, it is necessary to
dynamically update the system for each of two cases: (i) adding a processor to the system,
and (ii) removing a processor from the system. Procedures for these two cases are described
below. It is assumed that an optimal set of clusters has been previously found using the
algorithm(N,p).

(i) A new processor is added to the system: In this case, we test the added processor
against all the service points of all the existing clusters. Then the new processor is added to
the cluster that minimizes the total distance. Then algorithm(N,1) is used at thz}t cluster to
which the new processor is added to find a new service point. Note that this procedure does
not necessarily optimize the system but is very fast. This procedure is illustrated
schematically in Figure 5C. In Figure 5C, system 55 includes two clusters 551 and 552; it is
desired to add new processor 560. Processor 560 will be added to cluster 552, because the

total distance of the system is thereby kept at a minimurn.

10

WO 2005/015346 PCT/US2004/020906

(i) An existing processor is removed from the system: In this case, it is first
determined from which cluster the processor is removed. There are two cases for this
situation. l

a) If the removed processor is not the one furthest from the service point, then it does
not affect the maximum distance for that cluster. In that case, the processor is removed and
the new service point is recomputed by using algorithm(N,1) for this cluster. This situation is
illustrated in Figure 5D, where system 57 includes clusters 571 and 572, and processor 574 is
to be removed. No changes to the cluster configuration occur as a result.

b) If the removed processor is the one furthest from the service point then its removal
does affect the maximum distance from the service point of the cluster. In that case, the
processor is first removed from the cluster. In general, the system must then be rebalanced to
maintain optimum performance. When a processor is removed from the current cluster, it
may be possible to make the system more efficient by putting in another processor from
another cluster to the current cluster. This situation is illustrated in Figure 5E, where
processor 577 has been removed from the system (compare Figure SD). As a result, new
clusters 578 and 579 are formed to minimize the total distance of the system. To accomplish
this, we first note that at each step of the algorithm (N,p) to create the final set of clusters, a
previously created cluster is divided using the algorithm(N,2). Therefore the whole process of
creating clusters can be expressed in a binary tree. All the final clusters are the leaf nodes of
this binary tree.

When a processor is removed from a cluster, we consider the other sibling node of the
cluster from which the processor is removed. The processors in the sibling node are
examined as to whether moving a processor from the sibling node to the current cluster will
minimize the overall distance of the system. If the overall distance of the whole system is not
affected, no action need be taken. However, if the overall distance is decreased by moving the
processor, a processor from the sibling node is removed and placed in the current cluster, so
that the overall distance is again minimized. If the sibling node is a leaf node or an existing
cluster, no further action need be taken. Otherwise, algorithm(n,2) is used to balance its
children after removal of the processor.

The adjustments described above are local in nature and can be performed very fast;
they do not, however, globally balance the whole system. Therefore, after a number of
dynamic adjustments, the system may be considerably off balance; it may be necessary to
reoptimize the system using algorithm(N,p) from time to time.

11

WO 2005/015346 PCT/US2004/020906

Case 4: Backup for service points.

To ensure fail-safe operation of the system, the present invention also includes a
method for providing dual service points for each cluster, where a backup service point
keeps a mirror image of the information stored within the active service point and begins to
function as the active service point in case of the failure of the service point during an update.
It will be appreciated that the service points are no different from the regular processors of
the system. Therefore, it is possible that a service point may have a fault and be removed
from the system. In order to prevent system failure in this case, service information of the
service point is stored in another processor in the same cluster. For example, system 60
shown in Figure 6 includes four clusters 61, 62, 63 and 64, where the service point of cluster
61 is processor 601, and processor 602 is the backup processor. In case of a failure in the
active service point 601, the backup service point 602 assumes the functions of the service
point. Algorithm(N,1) may then be used to rebalance the cluster if necessary.

Case 5: Dynamic number of service points.

A more general problem is the situation where the maximum allowable limit on the
number of service points p is also changed. This can happen when a significant number of
processors are either added to the system or taken out of the system at one time. This may
also happen if the fractional value f (giving the maximum allowable number of service points
p according to p =N * f) is also changed. There are two cases to consider:

(i) The new number of maximum allowable service points, p1, is greater than p. In
this case, the algorithm(N,p) is used with the current number of clusters, but the algorithm is
performed with the new number of clusters p1. This is similar to the solution described in
Case 1, where in the first step each of the p clusters is divided once while others are left intact.
The total sum of distances to the closest service point is computed in each case, and the
cluster configuration is chosen that minimizes the total sum. This process is performed
iteratively for p+1, ..., pl.

(ii) The new number of maximum allowable service points, p2 is less than p. In this
event it is necessary to recall the order in which each of the p clusters were generated (see
the above discussion of Case 1). The clusters are recombined in the reverse order until only

p2 clusters remain.

12

WO 2005/015346 PCT/US2004/020906

Industrial Applicability

This invention is applicable to computing systems having a plurality of processors,
where it is desired to configure a system to be fault-tolerant and self-healing by assigning a
service point to perform fault management tasks. In particular, the present invention is
applicable to autonomic computing systems in a dynamic environment, where the number of
processors and assignment of service points is constantly changing.

While the present invention has been described in terms of specific embodiments, it is
evident in view of the foregoing description that numerous alternatives, modifications and
variations will be apparent to those skilled in the art. Accordingly, the invention is intended
to encompass all such alternatives, modifications and variations which fall within the scope
and spirit of the invention and the following claims.

I claim:

13

WO 2005/015346 PCT/US2004/020906

Claims

1. A method for configuring a system (1) having a plurality of processors (2) to
provide the system with at least one cluster of processors, each cluster having one service
point, the method comprising the steps of:

computing (302) a distance from each processor to other processors in the system;

computing (303) a plurality of total distances, where each total distance is associated
with one processor;

determining (304) a minimum total distance from the plurality of total distances; and

assigning as the service point the processor having the minimum total distance

associated therewith.

2. A method according to claim 1, further comprising the step of partitioning the
system into a plurality of clusters (L1, L2).

3. A method according to claim 2, wherein said partitioning further comprises:

sorting (322) the processors in accordance with the total distance associated with each
Pprocessor;

assigning (324) each processor to one of two clusters;

determining (325) a minimum total distance for the processors in each cluster in
accordance with the plurality of total distances associated with the processors in said cluster;
and

assigning (327) as the service point for each cluster the processor having the

minimum total distance associated therewith in said cluster.

4. A method according to claim 3, further comprising the steps of:

subdividing (352) one of said two clusters (L1, L.2) into two subdivided clusters,
thereby partitioning the system into three clusters;

determining (354) a minimum total distance for the processors in each of said three
clusters in accordance with the plurality of total distances associated with the processors in
said three clusters;

assigning (355, 356) the processors to said three clusters in accordance with the
minimum total distance; and

14

WO 2005/015346 PCT/US2004/020906

assigning (357) as the service point for each of said three clusters the processor

having the minimum total distance associated therewith in said cluster.

5. A method according to claim 1, wherein the processors are of different types (41,

42), and the processors are assigned to clusters (411, 412, 413, 420) in accordance therewith.

6. A method according to claim 1, wherein said configuring is performed

dynamically when a processor (560) is added to the system.

7. A method according to claim 1, wherein said configuring is performed

dynamically when a processor (574) is removed from the system.

8. A method according to claim 7, wherein the partitioning of the system is

dynamically changed when a processor (577) is removed from the system.

9. A method according to claim 1, further comprising the step of assigning another

processor (602) as a backup service point.

15

WO 2005/015346 PCT/US2004/020906

1/0

/7
r" -
Fla. 1A

WO 2005/015346 PCT/US2004/020906

2/20

WO 2005/015346

PCT/US2004/020906

N

FIG.2

WO 2005/015346

A

4 /2

30 \

PCT/US2004/020906

f

A

A

R 4

F1G. 3A

PCT/US2004/020906

WO 2005/015346

Sf20

WO 2005/015346 PCT/US2004/020906

/20

START
Lj=14

o~ & I«
PROCESSOR. -

CoMPUTE
<02~]. DISTANCE TO

I ProcESsOR

- .

303 ~

304~

PCT/US2004/020906

T2 — N
// ﬂ -\.
/// |
- \
/ I ‘
/
/ ' t
5 7 |
Y |
\ L \
\\ |
| /
N]
e N //
© AN S
N -

FlG. 3D

WO 2005/015346 PCT/US2004/020906

3/20

Gl

32 COMPUTE
| o7AL DisTireE

‘ Fox EACH
ozttHmi_ _ |
A’Zﬁﬂ) * 1 PRocessoR,
. |

2 SoRT
382 Peocessoss

BY DISTANCE
' .

m{)muze

] cLUsTERS

313~ i1,12;
DISTAMCE A_0

<

MoVE {7k
, __|Procesyor .
314 FRoM L4 To &2

325 CoMpPOTE
__| SerRvicE PomtTs

brid, iz
|

CoMpPuTE
MIN IO

AlGOR M
(1) Jeeme

A =4 Li+4.20

i=i+4

IBENTIFY MINtMUM
CORRESPONDINIG
L1, L2 cisTERS

EAD

FiG. 3€

WO 2005/015346 PCT/US2004/020906

i\\
=
g
L.

i
\ . ' / n

WO 2005/015346

PCT/US2004/020906

FIG.2F-2

WO 2005/015346 PCT/US2004/020906

11/2e

351
\ DvIdE

ALGORITHM B SYSTEM D>
(N,2) Tl 2 avsTers

]
"
)
4 Al
u
-

. . Dmde J*
ALGOUT?’:M _____ cLoSTER.
(~:2) INTO Ti0O

]
?Mm THAT
(STANCE FoR
353~ AL crusees

4_je.i}

i+

. FID MiNiMusM
3Iv4~ DISTAKE

A_fi+1f
l g
CHeoS€E
35S ~_| CORRESPONDING
CLUSTER j=in

|
3§E ~—RENAHE CLOSTERS

@ i+

RESOLY ¢
p CLUSTERS
A

SERVICE POINTY

3577

FiG. 36

PCT/US2004/020906

WO 2005/015346

1220

— T e cnv—

He Old

g,

WO 2005/015346

A

PCT/US2004/020906

AR

A

P N

Y

FiG. 4A

PCT/US2004/020906

WO 2005/015346

WO 2005/015346 PCT/US2004/020906

I1S/a0

~
FIG. SA

/
A
N
v

WO 2005/015346

[6/20

PCT/US2004/020906

FIG.SB

WO 2005/015346 PCT/US2004/020906

[1/20 :
= \\/ 5
s BV/AN)
s/ N
u N
[=)\
\ [
\ | /
N\ ol /
N\ %
T ~
| _’// b})
— — ¢
/= —~—_ I
\
_ / n)
b~ JIN
| /
| | /.
\ | i d
\ -
\ — /

WO 2005/015346

g/R0 _
=R
-]
// - /
/ L
- s
)
4 %
o /7 / ==
E\{ ﬂ // / \
\ " //, // \
-
/ | |
/ .
D’\ -~ (£
R | 9
-/ .
| -
| | |
—

Lo Ve
B /S
] o -B/.
| I L
\ ﬂ)
\ ﬂ /

—-—-—_,.._—'—-——-/

WO 2005/015346 PCT/US2004/020906

- I13/20

~~~~~ _ | G
// i \\.\\\ (L
v u
| I /i
5 ;
R -/
, .‘ . //
\ ﬂ 7
pyd
\ y
. -



WO 2005/015346 PCT/US2004/020906

20/2 0

Flg. 6




	Abstract
	Bibliographic
	Description
	Claims
	Drawings

