Office de la Propriete Canadian CA 2811041 C 2015/11/17

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 81 1 041
Findustie Canada Industry Canadz 12) BREVET CANADIEN
CANADIAN PATENT
(13) C
(86) Date de depot PCT/PCT Filing Date: 2011/07/25 (51) Cl.Int./Int.Cl. GO6F 9/60 (2006.01)
(87) Date publication PCT/PCT Publication Date: 2012/03/29 (72) Inventeurs/Inventors:
- _ ATCHISON, LEE A., US;
(45) Date de delivrance/lssue Date: 2015/11/17 WHITE. BRIAN A. US:
(85) Entree phase nationale/National Entry: 2013/03/08 COHEN, PETER D., US:
(86) N° demande PCT/PCT Application No.: US 2011/045241 DE SANTIS, PETER N., US;
GARBER, MIKHAIL, US
(87) N° publication PCT/PCT Publication No.: 2012/039834 ,
S (73) Proprietaire/Owner:
(30) Prioritée/Priority: 2010/09/21 (US12/887,241) AMAZON TECHNOLOGIES INC US

(74) Agent: SMART & BIGGAR

(54) Titre : PROCEDES ET SYSTEMES DE GESTION DYNAMIQUE DE REQUETES DE CAPACITE DE TRAITEMENT
(54) Title: METHODS AND SYSTEMS FOR DYNAMICALLY MANAGING REQUESTS FOR COMPUTING CAPACITY

PROGRAM EXECUTION SERVICE

INTERACTIVE 130 116 PHYSICAL
REQUEST [\~
MANAGER ~“{ COMPUTING
SYSTEMS

|
128f\/ﬂ$\ﬁ“‘\1 9”2

{ NETWORK 9
109-\/ K\\(ji//j
VIRTUAL
MACHINES
STORAGE 120 VM
NODES -t | MANAGER
134 \
(124
@ORK }/\108
USER
COMPUTING
SYSTEMS

104

(57) Abrege/Abstract:

Embodiments of systems and methods are described for dynamically managing requests for computing capacity from a provider of
computing resources. lllustratively, the computing resources may Include program execution capabilities, data storage or
management capabillities, network bandwidth, etc. The systems or methods automatically allocate computing resources for
execution of one or more programs assoclated with the user. The systems and methods may enable the user to make changes to
the allocated resources after execution of the one or more programs has started.

SR VNN
RSN o
N 7 77
-

* . Teven, B
C an adH http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 4% @ 727 CI1pO

AR W NN
) R A R
OPIC - CIPO 191 .

w0 2012/039834 A1 |]]I DA! 0 YRR A0 00 00 WO R0 R

CA 02811041 2013-03-08

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
29 March 2012 (29.03.2012)

(10) International Publication Number

WO 2012/039834 Al

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

International Patent Classification:
GO6F 9/50 (2006.01)

International Application Number:
PCT/US2011/045241

International Filing Date:
25 July 2011 (25.07.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/887,241 21 September 2010 (21.09.2010) US

Applicant (for all designated States except US). AMA-
ZON TECHNOLOGIES, INC. [US/US]; P.O. Box
8102, Reno, NV 89507 (US).

Inventors: ATCHISON, Lee, A.; 410 Terry Avenue
North, Seattle, WA 98109-5210 (US). WHITE, Brian,
A.; 410 Terry Avenue North, Seattle, WA 98109-5210
(US). COHEN, Peter, D.; 410 Terry Avenue North, Seat-
tle, WA 98109-5210 (US). DE SANTIS, Peter, N.; 410
Terry Avenue North, Seattle, WA 98109-5210 (US).

(74)

(81)

(84)

GARBER, Mikhail;, 410 Terry Avenue North, Seattle,
WA 98109-5210 (US).

Agent: DELANEY, Karoline, A.; Knobbe Martens Ol-
son & Bear, LLP, 2040 Main Street, 14th Floor, Irvine,
CA 92614 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
/M, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR DYNAMICALLY MANAGING REQUESTS FOR COMPUTING CAPACITY

100

PROGRAM EXECUTION SERVICE

INTERACTIVE
REQUEST
MANAGER

PHYSICAL
COMPUTING
SYSTEMS

130

13 116

N

S

VIRTUAL
MACHINES

VM
18 MANAGER

N 134 \

(1 24

STORAGE
NODES

NETWORK 195

FIGURE 1

USER
COMPUTING
SYSTEMS

J

104

(57) Abstract: Embodiments of systems and methods are described for
dynamically managing requests for computing capacity from a provider of
computing resources. Illustratively, the computing resources may include
program execution capabilities, data storage or management capabilities,
network bandwidth, etc. The systems or methods automatically allocate
computing resources for execution of one or more programs assoclated
with the user. The systems and methods may enable the user to make

' 0
158 112
NETWORK 9
i M/j grams has started.

changes to the allocated resources after execution of the one or more pro-

CA 02811041 2013-03-08

wO 2012/039834 A1 MMM NFER AW A0 0 AR R

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

5

10

15

20

25

CA 02811041 2014-08-15

METHODS AND SYSTEMS FOR DYNAMICALLY MANAGING REQUESTS FOR
COMPUTING CAPACITY

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of: U.S. non-provisional application No.
12/887,241, tiled September 21, 2010.

BACKGROUND

[0002] Companies and organizations operate computer networks that interconnect
numerous computing systems to support their operations. The computing systems can be
located 1n a single geographical location (e.g., as part of a local network) or located in multiple
distinct geographical locations (e.g., connected via one or more private or public intermediate
networks). Data centers may house significant numbers of interconnected computing systems,
such as, e.g., private data centers are operated by a single organization and public data centers
operated by third parties to provide computing resources to customers. Public and private data
centers may provide network access, power, hardware resources (e.g., computing and storage),
and secure 1nstallation facilities for hardware owned by the data center, an organization, or by
other customers.

[0003] To facilitate increased utilization of data center resources, virtualization
technologies may allow a single physical computing machine to host one or more instances of
virtual machines that appear and operate as independent computer machines to a connected
computer user. With virtualization, the single physical computing device can create, maintain
or delete virtual machines in a dynamic manner. In turn, users can request computer resources
from a data center and be provided with varying numbers of virtual machine resources on an
“as needed” basis or at least on an “as requested’ basis.

[0004] As the scale and scope of data centers has increased, provisioning,

administering, and managing the physical and virtual computing resources of the data center

has become increasingly complicated.

10

5

20

25

30

CA 02811041 2014-08-15

SUMMARY

[0004a] In accordance with one embodiment, there i1s provided a computer-
implemented method for dynamically managing requests for computing capacity provided by
a program execution service, the method comprising: under control of a program execution
service that provides a plurality of computing nodes that are each configurable to execute one
or more programs of multiple users of the program execution service, receiving from a user of
the program execution service a request to generate a virtualization environment for execution
of a user application during a requested period of time, the request comprising information
associated with the user application that permits the program execution service to execute a
program based at least in part on the user application; automatically generating the
virtualization environment, the virtualization environment including a user-selectable
operating system and one or more program services provided by the program execution
service, the program services comprising (1) a load balancer configured to distribute workload
across one or more of the plurality of computing nodes or one or more instances of the
virtualization environment, (2) a monitoring interface configured to allow the user to monitor
execution of the program, (3) a load scaler configured to scale computing resources of the
program execution service in response to variations in demand for execution of the program,
and (4) a plurality of database management services; determining from the plurality of
computing nodes of the program execution service a group of computing nodes that can satisfy
the request by the user; executing one or more instances of the virtualization environment on
the group of computing nodes during the requested period of time; receiving from the user a
request to make at least one change to the virtualization environment or to the one or more
instances executing the virtualization environment on the group of computing nodes during the

requested period of time; and automatically implementing the at least one change during the

requested period of time.

[0004b] In accordance with another embodiment, there is provided a system
configured to dynamically manage requests for computing capacity of a computing service,
the system comprising: a computer memory configured to store one or more program modules
for dynamically managing requests for computing capacity of a computing service, the

computing service comprising a plurality of computing nodes; and an interactive request

-1a-

10

15

CA 02811041 2014-08-15

manager configured to communicate with the computer memory and to execute the one or
more program modules stored in the computer memory. The program modules are configured
to: recelve a request from a user to generate a virtualization environment for execution of a
user application during a usage period, the request comprising information associated with the
user application that permits the computing service to execute a program based at least in part
on the user application; generate the virtualization environment, the virtualization environment
including a user-selectable operating system and one or more program services comprising
(1) a load balancer configured to distribute workload across one or more of the plurality of
computing nodes or one or more Instances of the virtualization environment, (2) a monitoring
intertace configured to allow the user to monitor execution of the program, (3) a load scaler
configured to scale computing resources in response to variations in demand for execution of
the program, and (4) a plurality of database management services; execute one or more
instances of the virtualization environment on a group of one or more of the plurality of
computing nodes during the usage period; receive from the user a request to make at least one
change to the virtualization environment or to the one or more instances executing the
virtualization environment on the group of one or more of the plurality of computing nodes

during the usage period; and implement the at least one change during the usage period.

-1b-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Throughout the drawings, reference numbers may be re-used to indicate
correspondence between referenced elements. 'The drawings are provided to illustrate
example embodiments described herein and are not intended to limit the scope of the
disclosure.

[0006] Figure 1 1s a network diagram schematically illustrating an example of a
program execution service that can provide computing resources to multiple user computing
systems via a communication network;

[0007] Figure 2A 1s a block diagram schematic of illustrative components of an
interactive request manager configured to manage requests for computing resources by users
of a program execution service;

[0008] Figure 2B is a network diagram schematically illustrating an example
Interaction between a user computing system and an interactive request manager of a program
execution service; and

[0009] Figures 3A and 3B are flow diagrams illustrating an interactive request
manager routine implemented by an interactive request manager component.

[0010] Figure 3C 1s a flow diagram that schematically illustrates an example of a
routine by which an embodiment of an interactive request manager can communicate with a
user computing system for modifying a setting of allocated computing resources.

[0011] Figure 4 i1s a flow diagram that schematically illustrates an example of a
routine by which an embodiment of an interactive request manager can communicate with a
user computing system to provide a plurality of virtualization environments for selection by a

USCT.

DETAILED DESCRIPTION

[0012] Embodiments of systems and methods are described for dynamically
managing requests for computing capacity from a provider of computing resources (a
program execution service). lllustratively, the computing resources may include program
execution capabilities, data storage or management capabilities, database management

capabilities, network bandwidth, application monitoring or logging, capabilities for taking

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

corrective action to address problems, etc. In some implementations, a user can request that a
virtualization environment be generated that can manage computer resources for the user
during a current or future usage time period. For example, the user can request a
virtualization environment be generated that can run the wuser’s custom software
application(s) and manage or reserve suitable program execution capacity, data storage
capacity, database management options, and/or network bandwidth for the user during the
usage period. 'The computing resource provider can determine which of the provider’s
computer resources can be made available to meet the user’s request and can allocate those
computer resources to the user during the requested usage period.

[0013] The usage period and/or other parameters of the user’s request may be
selected with a high degree of tlexibility to meet the user’s needs for the computer resources.
The wuser’s request may include one or more user-selectable parameters to specity
preferences, restrictions, and/or requirements by the user. For example, the user’s request
can specity that a particular program (or programs) be executed during the usage period, that
certain type or geographic distribution of computer resources be used during the usage
period, that the usage period have a desired start date, end date, and/or duration, and so forth.
In some 1mplementations, the computing resource provider places ftew or no restrictions on
the range of request parameters that can be submitted by a user.

[0014] As one possible example, the user may be able to request that a particular
program be executed on a set of computer resources, which may include computer resources
in one or more geographic locations. The user may be able to use an Application
Programming Interface (API) or other type of computing interface to communicate the
program and program execution parameters to the program execution service for generation
of a virtualization environment. For example, the user may upload a software application
using a web application archive such as a Java WAR file. The program execution service
may then automatically configure a virtualizaton environment (e.g., an “application
container’’), which can be a run-time environment that includes an application software stack
for the user’s program together with one or more infrastructure services for executing the
user’'s program on the program execution service. The application container can include a

user-selectable operating system (e.g., Linux, Windows, etc.), application server (e.g.,

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

Apache Tomcat), system or application configuration, etc. The virtualization environment
can be configured to be hosted at a specific URL. The infrastructure services can include, but
are not limited to, a load balancer to distribute workload across the requested computing
resources, a load scaler to scale computing resources 1n response to load or demand
variations, a monitoring interface that permits the user to monitor execution of the program,
data storage resources (e.g., scalable volume block storage), and so forth. In some
embodiments, the user may be able to select one or more programs or services that can be
included 1n the container. For example, the user may be able to select from a plurality of
database models (e.g., a relational database, SQL database, Oracle database, etc.). In some
embodiments, the infrastructure services can be customized to the user rather than being a
shared resource among a plurality of users. For example, in some such embodiments, the
load balancer can be individually customized to the user’s application rather than being
shared or distributed among a number of users of the program execution service.

[0015] A possible advantage of certain embodiments of the virtualization
environment 1s that the computing system allows users to have a degree of flexibility and
control over the contents of the application container, 1t the user so desires. For example, 1n
some cases, the user may provide only the user’s program, and the computing system may
automatically manage deployment of all remaining intrastructure used by the virtualization
environment. In other cases, the user may select and/or configure one or more of the
Infrastructure services included 1n the virtualization environment. In some cases, the user
may select computing resources 1n various geographic regions 1n order to achieve a desired
deployment topology for the user’s application. The deployment topology may be contigured
or selected 1n any desired manner. For example, the deployment topology may be based on
the location or region of the user’s customers in order to improve performance of the
application (e.g., reduced network latency). As another example, the deployment topology
may be configured to use computing resources 1n one Or more regions or zones (o 1Improve
the robustness of the user’s application, for instance, by improving the application’s
resiliency to failure of computing resources in a particular region or zone (e.g., due to adverse
weather conditions 1n one region or zone). Also, 1n certain embodiments, the user retains

access to the computing resources during execution of the program, and the user may take

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

control of some or all of the computing resources during execution. For example, in some
such embodiments, the user may choose to move the user’s application out of the
virtualization environment if the user so desires.

[0016] In certain fee-based implementations, the provider of the computer
resources may charge a reservation fee to the user for the request (e.g., when the request 1s
granted) and/or a usage fee for providing use of the available computer resources during the
usage period. Various types or tiers of fee arrangements are possible. For example,
computer resources may be requested for immediate user by the user (“on-demand
resources’”). In some such cases, the user might not pay a reservation tee but might pay
higher usage fees. As another example, a user might reserve computer resources for
guaranteed availability during a future usage period (“reserved resources™). The user might
be charged a reservation fee for making the reservation and also charged a usage fee based on
the amount of computer resources actually used during the usage period. In some such cases,
the usage fee for the reserved resources may be discounted from the usage fee tor on-demand
resources and/or the reservation tee may be charged closer in time to the usage period rather
than closer to the time the request was made. In another example, the computer resource
provider may allow users to bid on unused computer resources (“spot resources”). In some
such cases, the computer resource provider may set a spot price that changes based on supply
and demand for the resources, and the resources may be made available to those users whose
bid meets or exceeds the spot price.

[0017] Various aspects of the disclosure will now be described with regard to
certain examples and embodiments, which are intended to illustrate but not to limit the
disclosure.

[0018] Figure 1 1s a network diagram schematically illustrating an example of a
program execution service 100 that can provide computing resources to multiple user
computing systems 104 via a communication network 108. For example, the program
execution service 100 can manage requests from a user to execute a program, or set of
programs, on behalf of the user. At least some of the user computing systems 104 may be
remote from the program execution service 100. In this example, users can use the

computing systems 104 to access the program execution service 100 over the communication

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

network 108. The network 108 may, for example, be a publicly accessible network of linked
networks, possibly operated by various distinct parties, such as the Internet. In other
embodiments, the network 108 may be a private network, such as, for example, a corporate or
university network that 1s wholly or partially inaccessible to non-privileged users. In still
other embodiments, the network 108 may include one or more private networks with access
to and/or from the Internet.

[0019] The program execution service 100 provides a variety of functionality for
managing execution of programs for multiple users. In the example 1llustrated in Figure 1,
the program execution service 100 comprises a plurality of computing nodes 112 that can
execute programs on behalf of the users. The computing nodes 112 may comprise one or
more physical computing systems 116 and/or one or more virtual machines 120 that are
hosted on one or more physical computing systems. For example, a host computing system
may provide multiple virtual machines 120 and include a virtual machine (“VM”) manager
124 to manage those virtual machines (e.g., a hypervisor or other virtual machine monitor).

[0020] In the example 1illustrated 1in Figure 1, each of the computing nodes 112
has some amount of computing resources available for executing one or more programs.
Each computing node 112 may be configured to provide a specific amount of program
execution capacity, which may be measured, for example, by a combination of one or more
of processing capacity (e.g., number and/or size of processing units), memory capacity,
storage capacity, network bandwidth capacity, non-network communication bandwidth, etc.
In some embodiments, the program execution service 100 may provide preconfigured
computing nodes 112, with each precontigured computing node having similar and/or
equivalent amounts of resources available for executing programs on behalf of users. In
other embodiments, the program execution service 100 may provide a selection of various
different computing nodes 112 from which a user may choose for executing programs on
behalt of the user. In yet other embodiments, the program execution service 100 may
generate various computing nodes that are specific to a user and execution of the user’s
program. In some such embodiments, the computing nodes 112 may have varying amounts

and/or types of computing resources (e.g., size, speed and/or type of processing units; number

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

of processing units; amount of memory and/or storage; platform contiguration, such as 32-bit
or 64-bit, operating system, etc.).

[0021] The program execution service 100 may provide user computing systems
104 with access to storage nodes 134 that provide mass storage of data, programs, and other
user information. The storage nodes 134 may comprise any type of persistent data storage,
for example non-volatile memory devices such as, e.g., hard disk drives, optical disk drives,
etc. In the example 1llustrated 1n Figure 1, the computing nodes 112 can access the storage
nodes 134 via a network 128. The network 128 may include multiple networking devices
(not shown) such as, e.g., switches, edge routers, core routers, etc. The network 128 may, but
need not be, a different network than the network 108 shown 1n Figure 1.

[0022] Users of the program execution service 100 can interact with the program
execution service 100 via an interactive request manager 130 to request preferred and/or
required resources of the program execution service (e.g., program execution capacity and/or
storage resources). The interactive request manager 130 can be connected to the computing
nodes 112 and the storage nodes 134 via the network 128. The interactive request manager
130 can receive requests for resources from the user computing systems 104 over the network
108. A user may request via the interactive request manager 130 that the service 100 provide
one or more computing nodes for execution of a program (or programs) on behalf of the user
(or other users authorized by the user). In some embodiments, the user may request via the
interactive request manager 130 that the service 100 generate one or more computing nodes
that can manage and reserve computing resources that may be needed for execution of a
program (or programs) on behalf of the user. In various embodiments, computing resources
may be specified at the time of a request for execution of programs on behalt of a user and/or
at one or more other times, such as when a user registers and/or subscribes to use services of
the program execution service 100. In some embodiments, the interactive request manager
130 may provide subscription and/or registration services to one or more users, such that
users may specity information related to one or more programs (o execute on behalf of a user
(e.g., programs, source code, addressable locations of one or more programs, etc.), account
information (e.g., user name, billing information, etc.), terms of use, etc. In some

embodiments, after a user interacts with the interactive request manager 130 to subscribe

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

and/or register for services, the user may be 1ssued one or more request 1dentifiers (e.g., keys,
tokens, user names, passwords, etc.) that are associated with the user and are to be used 1n
conjunction with executing programs on behalf of the user. In other embodiments, a module
other than the interactive request manager 130 may be provided to perform various
operations related to subscription and/or registration services of the program execution
service 100.

[0023] In some embodiments, the interactive request manager 130 1s executed or
embodied by one or more physical or virtual computing systems. For example, in some
embodiments, a server computing system that has components including a CPU, 1I/O
components, storage, and memory may be used to execute the interactive request manager
130. The I/O components include a display, a network connection to the network 128, a
computer-readable media drive, and other I/O devices (e.g., a keyboard, a mouse, speakers,
etc.). An embodiment of the interactive request manager 130 can be stored as one or more
executable program modules 1n the memory of the server, and the interactive request manager
130 can interact with computing nodes 112 (e.g., physical computing systems 116 and/or
VMs 120) over the network 128. The interactive request manager 130 can receive requests
from users for computing resources of the program execution service 100 via the network
108.

[0024] Figure 2A 1s a block diagram schematic of illustrative components of an
embodiment of the interactive request manager 130 that 1s configured for managing requests
for execution of programs on behalt of users. In this embodiment, the interactive request
manager includes a resource generation module 204, a resource scheduling module 208,
monitoring and reporting module 212, and a billing module 216.

[0025] The resource generation module 204 receives requests from users for
computing resources of the program execution service 100 such as, e.g., a request that one or
more computing nodes be generated to manage and reserve available computing resources for
execution of a user’s program (or programs) during a usage period. The user may request
that program execution computing nodes be made available immediately, may request that
program execution computing nodes be generated at a future time, or may request program

execution computing nodes be generated based on other criteria. Requests for program

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

execution computing nodes may be received by the resource generation module 204 1n
various ways. For example, a request can be received directly from a user (e.g., via an
interactive console or other GUI provided by the program execution service), from an
executing program of a user that automatically 1nitiates the execution of other programs or
other 1nstances of itself, from programming tools (e.g., command-line tools, integrated
development environments (e.g., Eclipse), etc.), from a program that interacts with the
Interactive request manager via an Application Programming Interface (“API”) provided by

the program execution service (e.2., an API that uses Web services), and so torth.

[0026] Requests for computing nodes may include a number and/or type of
computing nodes, a minimum and/or maximum number of computing nodes to use, a usage
period during which availability of the computing nodes 1s to be guaranteed, an expiration
time for the request, etc. The request may specity that only a certain program (or programs)
be executed on the generated computing nodes during the usage period. The request for
computing nodes may include other types of preterences, requirements, and/or restrictions
(e.g., amount of storage capacity or network bandwidth, geographical and/or logical location
for the nodes, termination criteria, etc.).

[0027] In some embodiments, the request includes the user’s program (or
programs), and the resource generation module 204 automatically provides infrastructure
resources such that the user’s program (or programs) can be executed by the program
execution service 100. For example, the resource generation module 204 may automatically
configure a virtualization environment that can be a run-time environment that includes an
application software stack for the user’s program together with one or more infrastructure
services for executing the user’s program. The virtualization environment can include a user-
selectable operating system (e.g., Linux, Windows, etc.), application server (e.g., Apache
Tomcat), and system or application configuration, etc. The virtualization environment can be
contigured to be hosted at a specitic URL. The infrastructure services can include, but are
not limited to, a load balancer to distribute workload (e.g., application traffic) across the
requested computing resources, a load scaler to scale computing resources 1n response to load
or demand variations, a monitoring interface that permits the user to monitor execution of the

program, data storage resources (e.g2., scalable volume block storage), and so forth. In some

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

embodiments, the user may be able to select one or more programs or services provided by
the program execution service 100 that can be included 1n the virtualization environment.
For example, the user may be able to select from a plurality of database models (e.g., a
relational database, SQL database, Oracle database, etc.). In some embodiments, the
infrastructure services can be customized to the user rather than being a shared resource
among a plurality of users of the program execution service 100. For example, in some such
embodiments, the load balancer can be individually customized to the user’s application
rather than being shared or distributed among a number of users of the program execution
service 100. In some embodiments, the virtualization environment can be configured to
permit a user’'s application to spawn process threads or to open any suitable port for
communication with other applications (e.g., a port other than port 80). For example, the
virtualization environment may support a hypertext transter protocol secure port (HTTPS).

[0028] A possible advantage of certain embodiments of the interactive request
manager 130 1s that a user may simply upload a custom application to the program execution
service 100, and the interactive request manager 130 then can generate a virtualization
environment that includes the resources and application stack used to execute the user’s
custom application on the program execution service 100. The amount of user interaction
with the interactive request manager 130 needed for enabling execution of the user’s program
may range from relatively little interaction (e.g., little more than uploading the program using
a Java WAR tile) to a relatively high degree of interaction (e.g., the user may customize
substantially all aspects of the virtualization environment). Accordingly, embodiments of the
interactive request manager 130 may provide a relatively high degree of flexibility and
customizability for the virtualization environment. In some implementations, the program
execution service 100 (or other provider) makes available one or more standard or default
virtualization environments for use by users of the service 100.

[0029] The request for program execution capacity may specity a usage period
during which the computing resources are to be made available to the user. In some
implementations, the program execution service 100 may provide a guarantee to the user that
the requested computing resources will be available during the usage period. The usage

period may be specitied 1in various manners 1n various embodiments. For example, the usage

_10-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

period may indicate a specified duration of time (e.g., a number of hours, days, weeks,
months, years, etc.) beginning at an 1nitial time and ending at an expiration time. The 1nitial
time and/or expiration time may include time of day (e.g., 7:00 a.m.) and date (e.g., January
23, 2010). The 1nitial time can be at some future time, for example, one or more hours, days,
weeks, or years 1n the future. In some cases, the future usage period may begin later than the
time of the request (or contirmation of the request) by at least a certain period of time, such
as, e.g., by at least one hour, one day, one week, one month, or more 1n the future.

[0030] In some implementations of the interactive request manager 130, a delay
period may occur between a time that a request for computing nodes 1s received by the
interactive request manager 130 and a time that the request 1s granted or a time that a
confirmation 1s provided to the user. For example, the delay period may occur due to various
processing operations, management operations, accounting operations, etc. performed by the
interactive request manager 130 or the program execution service 100. In some such
implementations, the requested usage period refers to a time period that occurs after (or
substantially after) such delay periods are taken into account. For example, 1n certain
implementations, the delay period may be seconds, minutes, or a few hours. In certain such
implementations, the initial time of a requested future usage period may be a time 1n the
future that exceeds such a delay period. The 1initial time 1n certain other implementations of
the interactive request manager 130 may be the time at which the user’s request 1s submitted,
received, or granted by the program execution service 100.

[0031] In some cases, the request may indicate that the usage period is not to
expire until specitically terminated by the user (e.g., there may be no set expiration time).
The duration may be 1n a range from one hour to one week, one week to one month, one or
more months, one or more years, or some other duration. In some embodiments, the usage
period may include a combination of the above (or other) factors to provide the user with a
high degree of tlexibility in scheduling the computer resources.

[0032] In some cases, after the program service 100 generates the computing
nodes that satisty the request of the user, the user can make one or more changes (o settings
of the program or of the one or more computing nodes. For example, the user may change

the amount or type of storage or network bandwidth associated with the one or more

_11-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

computing nodes, may change the usage period or termination criteria associated with the one
or more computing nodes, may terminate execution of the program, etc. The user can request
the one or more changes 1n various ways, as discussed herein. For instance, the user can
request the one or more changes via a GUI, command-line tool, integrated development
environment (e.g., Eclipse), API call, etc.

[0033] After the request for computing nodes is received by the resource
generation module 204, the resource scheduling module 208 can schedule and allocate
computing nodes to tultill the request. For example, after receiving a request for program
execution capacity, the resource scheduling module 208 may determine one or more
computing nodes 112 to use for program execution. In some embodiments, the determination
of the computing nodes 112 to be used 1s performed at the time of the request even 1t the
request 1s for future availability. In other embodiments, the determination of the computing
nodes 1s deferred to a later time such as, e.g., prior to the beginning of the usage period so
that the determination can be based on information that 1s then available.

[0034] The resource scheduling module 208 may allocate one or more computing
nodes from the computing nodes 112 for availability by the user during a requested usage
period. In some embodiments, one or more specific computing nodes 112 (e.g., one or more
specific physical computing nodes 116 and/or virtual computing nodes 120) are allocated for
priority use by the user (or authorized users) for the entire usage period.

[0035] In other embodiments, rather than allocate specitic computing nodes to a
specific user for the usage period, the resource scheduling module 208 may instead allocate
computing nodes from a computing node pool. The computing node pool may include an
appropriate amount of computing nodes with sufficient resources to satisty requests for
program execution by the user or authorized users. In some such embodiments, after a
request 1s received during the usage period to execute one or more programs, an appropriate
amount of computing nodes sufficient to execute the one or more programs may be selected
from the computing node pool, and program execution 1s 1nitiated on the selected nodes.
After the selected amount of computing nodes are no longer used for executing the request
(e.g., after termination and/or completion of the requested execution), those computing nodes

may be returned to the computing node pool for use by the user or other authorized users

_12-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

during the usage period. In some implementations, nodes of the computing node pool are
allocated for dedicated, exclusive, or preterential use by the user (or authorized users). In
some such implementations, nodes of the computing node pool that are not in use by the user
(or authorized users) may be allocated to other users tfor program execution, and if such nodes
are needed by the user (or authorized users) to ftultill the requested capacity, the other user’s
program can be terminated.

[0036] During the usage period, the user (or authorized users) may submit
requests to the interactive request manager 130 for execution of one or more programs on the
allocated computing nodes. Requests for program execution may include various
information to be used 1n the 1nitiation of the execution of one or more programs, such as an
executable or other copy of a program to be executed, an indication of a program that was
previously registered or otherwise supplied for execution, and a number of 1nstances of the
program that are to be executed simultancously (e.g., expressed as a single desired number of
Instances, as a minimum and maximum number of desired instances, etc.). The request may
specily a number and/or type of computing nodes for execution of a program, a minimum
and/or maximum number of computing nodes to use, an expiration time for the request, a
preferred execution time and/or time period of execution, etc. The request may include other
types of preferences and/or requirements for execution of one or more programs (e.g.,
resource allocation, geographical and/or logical location for execution, proximity of
execution to other programs and/or computing nodes, timing-related criteria, termination
criteria, etc.).

[0037] The resource scheduling module 208 may determine which of the
allocated computing nodes to use for execution of each program instance 1n a variety of ways,
including based on any preferences, restrictions, and/or requirements specified 1n the request
or otherwise specified for the program and/or associated user. For example, 1f criteria are
determined for preferred and/or required resources for execution of a program 1nstance (e.g.,
memory and/or storage; CPU type, cycles or other performance metric; network capacity;
plattorm type, etc.), the determination of an appropriate computing node to execute a
program instance may be based at least in part on whether a computing node has sufficient

resources available to satisty those resource criteria.

13-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

[0033] During the usage period, requests received by the resource generation
module 204 to execute programs on behalf of the user or authorized users on the allocated
computing nodes may result 1n initiation of program execution on one or more of the
allocated computing nodes. In some cases, sutficient requests for program execution may be
received during the usage period such that all of the allocated computing nodes are 1n use
(e.g., executing programs). Further requests for program execution received during the usage
period may be refused or may be held or queued by the resource scheduling module 208 until

one or more nodes becomes available.

[0039] In some embodiments, the resource scheduling module 208 may perform
one or more management operations with respect to tultilling requests, such as, for example,
enforcing usage period or other restrictions associated with requests, freeing-up computing
resources to fultill the requests, authorizing and/or authenticating the requests and/or the
requesting users, etc. For example, in some cases, the request from the user may specity that
only a certain user (or users) 1s authorized to have access to the allocated computing nodes
during the usage period. In some cases, the request from the user may specity that only one
or more specified programs be executed on the allocated nodes during the usage period.
Other restrictions can include restrictions on duration of execution of a program, restrictions
on fees incurred during execution of the program, etc. Combinations of one or more of the
above restrictions (or other restrictions) may be specified by the user and checked by the
interactive request manager 130 before permitting access to the allocated computing nodes.

[0040] In some implementations, after the usage period expires, the resource
scheduling module 208 releases the allocated computing nodes (e.g., dedicated computing
nodes or nodes 1n a computing node pool) for use by others. In some such implementations,
programs that are executing when the usage period expires are terminated. In other
implementations, such executing programs are not terminated and are allowed to continue
execution until a higher priority user requests access to the computing node.

[0041] In the embodiment illustrated in Figure 2A, the monitoring and reporting
module 212 monitors and tracks usage of the allocated computing nodes during the usage
period and reports information and statistics on the usage to the user. For example, the

monitoring and reporting module 212 may track usage patterns of users executing programs

_14-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

on the allocated computing nodes. Usage patterns can include the number or identity of users
accessing the nodes, the start/end times and durations of program execution, and/or other
user-specitied patterns or diagnostics. In some such embodiments, the monitoring and
reporting module 212 may provide interactive feedback to the user including, e.g., indications
of when and/or for how long programs may be likely to execute on the computing nodes,
actual or predicted demand for the nodes, etc. In some embodiments, the monitoring and
reporting module 212 can generate a report detailing or summarizing the usage statistics and
communicate the report to the user via electronic mail or provide access to the report, usage
statistics, or interactive feedback via Web services.

[0042] Some program execution services 100 may be fee-based such that the
service executes programs or allocates computing resources on behalt of a user 1n exchange
for payment of one or more fees by that user. In some tee-based services, the interactive
request manager 130 may optionally include the billing module 216 schematically 1llustrated
in Figure 2A. For example, in some embodiments, fees may be charged to a user based on an
amount and/or type of program execution capacity allocated for executing one or more
programs on behalt of a user, such as based on one or more of a number of processing units,
an amount of memory, an amount of storage, an amount of network resources, etc., allocated
for executing programs of the user. In some embodiments, fees may be based on other
factors, such as various characteristics of the computing resources used to execute programs,
such as, for example, based on CPU capabilities or performance, platform type (e.g., 32-bit,
04-bit, etc.), etc. In some embodiments, fees may be charged on the basis of a variety of use
factors, such as a price per use of the service, a price per unit of time that computing services
are used, a price per storage used, a price per data transterred 1n and/or out, etc.

[0043] Fees may be based on various other factors, such as related to requests for
program execution capacity and/or various properties related to executing programs (e.g.,
continuity of execution, fault tolerance, etc.). In at least some embodiments, a program
execution service may offer one or more of various tiers, types and/or levels of services or
functionality for executing programs on behalf of multiple users, and 1n some such

embodiments, various fees may be associated with the various tiers, types and/or levels of

_15-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

services. The billing module 216 can monitor and track usage of the computer resources and
calculate tees due for the usage.

[0044] The user may be charged a fixed fee payment (e.g., upfront or periodically
billed) for reserving computing capacity and, in some cases, 18 charged other use fees (e.g.,
variable fees associated with use of various resources, such as electricity, physical rack space,
network utilization, etc.). As an example, a user who makes a request for availability of
computing resources during a usage period may be charged a reservation tee when the request
1S made or when the request 1s granted by the program execution service 100. 'The
reservation fee may be based on, for example, the amount of resources requested, the start
time and/or duration of the usage period, whether the service will be required to purchase
additional computing hardware to tulfill the request, etc. For example, the reservation fee
may be higher 1f the start time 1s in the near future than if the start time 1s farther out. In
addition, the user (or authorized users) may be charged a usage fee for utilizing the resources
during the usage period. For example, an authorized user that requests, during the usage
period, execution of a program on the allocated computing nodes, may be charged a usage fee
based on, for example, the duration of execution of the program, the type of the resources
used to execute the program, etc. As discussed above, various types or tiers of fee
arrangements are possible. For example, a user that requests on-demand resources for
immediate use may not be charged a reservation fee but may be charged a higher usage fee
than that charged to users that pay a reservation fee to make a reservation for resources for
future usage periods.

[0045] The billing module 216 may track the usage, calculate appropriate fees,
and bill the user and/or the authorized user (or provide billing information to an accounting
module or service). In some cases, the request by the user may indicate that some or all of
the usage fees incurred by authorized users be billed to the user rather than to the authorized
users. In some such cases, the billing module 216 may appropriately portion the fees among
the user and authorized users.

[0046] The 1nteractive request manager 130 can be configured differently than
illustrated 1n Figure 2A. For example, various functionalities provided by the illustrated

modules can be combined, rearranged, added, or deleted. In some embodiments, additional

_16-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

or different processors or modules may perform some or all of the functionalities described
with reference to the example embodiment 1llustrated 1in Figure 2A. Many implementation
variations are possible.

[0047] Although described generally 1n terms of management of program
execution capacity, in other embodiments, the interactive request manager 130 can be
configured to manage additional or alternative types of computing-related resources for use
by multiple users and to provide flexible guarantees for availability of these computing-
related resources. These resources may include one or more of the following: persistent data
storage capabilities (e.g., on non-volatile memory devices, such as hard disk drives);
temporary data storage capabilities (e.g., on volatile memory, such as RAM); message
queuing and/or passing capabilities; other types of communication capabilities (e.g., network
sockets, virtual communication circuits, etc.); database management capabilities; dedicated
bandwidth or other network-related resources; non-network bandwidth; 1nput device
capabilities; output device capabilities; CPU cycles or other instruction execution
capabilities; etc.

[00438] Figure 2B 1s a network diagram schematically illustrating an example
interaction between a user computing system 104a and an interactive request manager 130 of
a program execution service 100. The program execution service 100 can provide computing
resources to multiple user computing systems 104a, 104b, . . ., 104n. In this i1llustrative
example, the program execution service 100 provides an API for the user computing systems
104a, 104b, . . ., 104n to programmatically interact with the interactive request manager 130.
Figure 2B 1llustratively shows the user computing system 104a communicating a request for
program execution on computing resources of the program execution service 100 using a
request APIL. The request API (1) 1s communicated via the network 108 and (2) 1s received
by the interactive request manager 130 of the program execution service 100. The request
API can include information about the user’s request such as, e.g., the user’s program (e.g.,
an executable or other copy of a program to be executed, or an indication of a program that
was previously registered or otherwise supplied for execution, etc.), the number and/or type
of computing nodes, a minimum and/or maximum number of computing nodes to use, a

usage period during which availability of the computing nodes 1s requested (or 1s to be

~17-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

guaranteed to be available), an expiration time for the request, etc. The request API can
include other information about the request such as, e.g., preferences, requirements, and/or
restrictions related to the user’s program or the user’s needs for the computing resources. For
example, the request API can include information on which users are to be granted access to
the computing resources during the usage period, which program (or programs) can be
executed during the usage period, an amount of storage capacity or network bandwidth,
geographical and/or logical location for the nodes, termination criteria, etc.

[0049] In the example shown in Figure 2B, the interactive request manager 130
communicates a confirmation API (3) via the network 108 which 1s (4) received by the user
computing system 104a. The confirmation API can include information related to whether
the program execution service 100 can grant the request (in whole or in part) during the
requested usage period (or during a ditferent usage period). The contirmation API may also
include one or more request 1dentifiers (e.g., keys, tokens, user names, passwords, etc.) that
are associated with the user’s request and that are to be used 1n conjunction with accessing
the allocated computing resources during the usage period. The confirmation API can
include other information such as, e.g., information confirming that the user’s preterences,
requirements, and/or restrictions can be met.

[0050] Figure 2B illustratively shows the wuser computing system 104a
programmatically interacting via the API with the interactive request manager 130 of the
program execution service 100. The program execution service 100 can receive requests for
availability of the service’s computing resources from other user computing systems (e.g.,
user computing systems 104b, . .., 104n) via the API and can communicate confirmations (o
the other user computing systems via the API (such requests and confirmations are not shown
in the 1llustrative example in Fig. 2B). The interactive request manager 130 (or other suitable
component) can schedule the requests from multiple user computing systems and can allocate
computing resources during the various requested usage periods. Other types of
programmatic 1nteractions (additionally or alternatively) between the program execution
service 100 and the user computing systems are possible. For example, a request can be

received directly from a user (e.g., via an interactive console or other GUI provided by the

18-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

program execution service), from an executing program of a user that automatically initiates
the execution of other programs or other 1nstances of 1itselt, etc.

[0051] As an additional illustrative example of the interaction between a user
computing system 104a and an interactive request manager 130 of a program execution
service 100, a user may request the interactive request manager 130 to generate an application
container for the user’s program. Using the request API (1), the user can upload a program,
such as, via a Java WAR file. The user can upload the program using a web browser,
command line tools, or an integrated development environment. The program may be any
application desired by the user. For example, the program may be a web application. The
interactive request manager 130 can then receive the program (e.g., request API (2)). The
Interactive request manager 30 may then process the user's request by automatically
generating an application container for the user’s program. 'The application container can
comprise other services for the user to enable the user’s program to be scalable and fault-
tolerant. In some embodiments, the interactive request manager 30 automatically generates
the application container (including infrastructure services) without further input from the
user. In other embodiments, the user can choose to exert a degree of control over the
generation of the application container (e.g., by selecting and/or contiguring the infrastructure
services included 1n the container). An application container can be created that generates an
application stack, auto-scaling, load-balancing, versioning, storage, and/or other services on
behalt of the user. For instance, the interactive request manager 130 may generate an
instance of a Linux operating system, an Apache Tomcat server, an Oracle relational
database, along with one or more services such as, €.g., load-balancing, monitoring, and auto-
scaling for executing the user’s program. The interactive request manager 130 may then
contirm creation of the application container to the user via confirmation APIs (3) and (4).

[0052] After receiving the contirmation API (4), the user may make changes to
the program locally. For example, the user may update and/or test the application locally
using an integrated development environment and may once again send the updated program
to the 1nteractive request manager 130 (e.g., via a subsequent request API (1), (2)). The
interactive request manager 130, as discussed above, may automatically generate or update

the application container for the revised program (with or without further user input). After

_19-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

generation of the application container, the user can make changes to the services that were
generated by the interactive request manager 130. The user can make these changes using a
webpage, interactive console, etc. before or atter execution of the user’s program has begun.
For example, the user may prefer a Windows operating system rather than a Linux operating
system or prefer a Microsoft SQL database rather than an Oracle database and can request,
e.g., using the API or an interactive console, that the interactive request manager 130 make
these changes. As another example, the user may desire to change the settings for an Apache
Tomcat server instance, such as a port used and request the change using, e.g., the API or the
interactive console. As yet another example, the user may prefer that load-balancing be
turned off and can request the interactive request manager 130 to disable load balancing.
Accordingly, the user can request any kind of change desired, and the interactive request
manager 130 can attempt to implement the user’s desired change. The user can also share the
application container with any other user. At any time, the user may also request that the
user’s program be deleted and the computing resources of the application container be de-

allocated.

[0053] As discussed herein, the application container may also comprise
monitoring services for the user’s program. The monitoring services can monitor the
performance of the user’s program and/or the services within the application container. For
instance, the monitoring services may monitor the performance of the load-balancing and/or
auto scaling service or monitor the performance of the server. The monitoring services may
provide a report of the performance to the user. The monitoring services can also take
corrective action 1f any problem arises during execution of the user’s program. For example,
if the monitoring services detect that the user’s program 1s not responding (€.g., one or more
computing nodes have failed), then the monitoring services can restart the one or more
computing nodes and/or request additional computing nodes to take over for tailed nodes. As
another example, if the demand for the user’s application increases such that there 1s a risk of
atfecting pertormance of the wuser’s program, the monitoring services can allocation
additional computing resources on behalf of the user’s program and/or notify the user of the
allocation. The user can specity to the interactive request manager 130 how or when to be

notified. For instance, the user may specify using an API or an interactive console that the

220)-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

interactive request manager 130 communicate an electronic mail message to the user when
any error occurs. As another example, the user may specity that the interactive request
manager 130 communicate the electronic mail message to the user about any error and
receive authorization from the user beftore taking any corrective action. The user can
configure the notification settings in any way desired. The foregoing are intended as
illustrative examples of the types of interaction between a user and various embodiments of
the 1nteractive request manager 130 and are not intended to be limiting.

[0054] Figures 3A and 3B are flow diagrams that schematically 1llustrate an
example embodiment of an interactive request manager routine 300. In some
implementations, the routine 300 can be provided by embodiments of the interactive request
manager 130 of the program execution service 100 described with reference to Figures 1 and
2. The example routine 300 1s described 1n terms of a first user that makes a request for
program execution capacity, €.g2., a program to execute on one or more computing nodes of
the program execution service, during a usage period (see, e.g., Fig. 3A), and a second user
that requests changes to program execution capacity during the usage period (see, e.g., Fig.
3B). As will be discussed below, the first user and the second user need not be different
users and may refer to the same user. The example routine 300 1s intended to 1llustrate, but
not to limit, various aspects of the interactive request manager 130.

[0055] With reference to Figure 3A, at block 304, a request 1s received by the
interactive request manager 130 from the first user for execution of a program (or programs)
by the program execution service 100 during a usage period. As discussed above, the request
may include the program(s), a number and/or type of computing nodes, a minimum and/or
maximum number of computing nodes to use, a future usage period during which availability
of the computing nodes 1s to be guaranteed, an expiration time for the request, etc. 'The
request may specity that only a certain user (or users) be granted access to the computing
nodes during the usage period or that only a certain program (or programs) be executed on
the computing nodes during the usage period. The request for computing resources may
include other types of preterences, requirements, and/or restrictions (e.g., amount of memory
or storage capacity, network bandwidth, geographical and/or logical location for the nodes,

termination criteria, etc.).

01-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

[0056] At block 308, the interactive request manager 130 determines whether the
request can be fulfilled. For example, in some cases, the program execution service 100 may
have sufficient capacity to meet the request or the usage period 1s suttficiently far in the future
that additional computing resources can be acquired (1f needed). If the request can be
fultilled, at block 320 confirmation that the request can be fulfilled 1s provided to the first
user. For example, a message may be communicated to the first user via electronic mail, or
the program execution service may provide the confirmation via Web services or via an
interactive console or other GUI provided by the program execution service. The
confirmation may be provided via a confirmation API as discussed with reference to Figure
2B.

[0057] If the request cannot be fulfilled, in whole or in part, the routine 300
continues to block 312 where the interactive request manager attempts to determine whether
the request can be tultilled, in whole or 1n part, differently than requested. For example, the
routine 300 may determine that the request can be fulfilled during a different usage period or
that the request can be fulfilled 1n part (e.g., with fewer nodes than requested) during the
requested usage period. In some cases, the routine 300 at block 312 may determine that the
request can be fulfilled during the requested usage period contingent on one or more
additional events. For example, the routine 300 may determine that the request can be
fultilled contingent on suftficient additional computing resources being acquired by the
program execution service and contingent on those additional resources being delivered and
installed prior to the beginning of the requested usage period. At block 316, the routine 300
provides 1nformation to the first user regarding one or more possible modifications or
contingencies related to the request and then the routine 300 ends. For example, a message
may be communicated to the first user via electronic mail, or the program execution service
may provide the information via Web services or via an interactive console or other GUI
provided by the program execution service. The information may be provided via an API
(see, e.g., Fig. 2B). The first user can use the information on the possible modifications or
contingencies related to the request and then resubmit a new request if desired.

[0058] In the illustrated embodiment, if the request can be fulfilled, the routine

300 continues to block 324 where the interactive request manager generates a virtualization

Kol

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

environment (e.g., an application container) that includes the user’s program and suitable
infrastructure for executing the program on the program execution service. The interactive
request manager determines a group of computing nodes that can execute the virtualization
environment. In some 1mplementations, the user may request a particular number,
geographic distribution, etc. for the computing nodes to be used for execution of the program.
The number (and/or geographic distribution) of computing nodes in the group of computing
nodes may, but need not, be different from the number of computing nodes requested by the
user. For example, the number of computing nodes 1n the group may be less than the
requested number, because the program execution service has sufficient excess computing
capacity in the event that the number of computing nodes actually requested during the usage
period 1s greater than the number of computing nodes 1n the group. In other cases, the
number of computing nodes 1n the group may be greater than the number requested to
attempt to ensure that there will be enough computing nodes to safely meet anticipated
demand during the usage period (e.g., to provide reserve nodes 1n case of failure of one or
more of the computing nodes 1n the group). In various embodiments, the user can make one
or more changes to the settings associated with the virtualization environment or the group of
nodes (e.g., amount or type of storage capacity or network bandwidth, geographical and/or
logical location for the nodes, termination criteria, etc.). The routine 300 can verity that the
one or more changes can be fulfilled or satistied. At block 328, the group of computing
nodes 1s allocated for availability of the first user during the usage period. As discussed
above with reference to the resource scheduling module 208, the allocated group of
computing nodes may comprise specific computing nodes or nodes selected from a
computing node pool.

[0059] With reference to Figure 3B, during the usage period, a second user may
make one or more changes associated with execution of the first user’s program (or
programs) on the computing nodes that have been allocated to the first user. As noted above,
the second user may, but need not be, ditferent from the first user. In one example scenario,
the first user may have requested execution of the program. During the usage period, the first
user might submit one or more changes to the settings for the program executing on the

computing nodes. In this example scenario, the second user would be the same as the first

273

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

user. In some such scenarios, the request by the first user might indicate that only the first
user (and no other users) can make changes to the program execution or the allocated
computing nodes.

[0060] In other example scenarios, the second user may be a different user than
the first user. For example, the request by the first user may indicate that a specific second
user (or second users) 1s authorized to make changes with respect to the program executing
on the computing nodes during the usage period. In this example scenario, the second user
(or second users) can be ditferent users than the first user. For example, the first user may be
an application developer who 1nitially uploaded and requested program execution capacity,
and the second user may be a network administrator or application development
administrator who monitors ongoing execution of the program.

[0061] In another example scenario, the request by the first user might indicate
that any user of the program execution service 100 can make changes to the program
execution during the usage period as long as such a (second) user submits the proper
identifier information. In such a scenario, the first user might communicate an identifier
(e.g., a key, token, password, etc.) to various second users. Any of these second users would
then use the program 1dentifier in making a request for making changes during the usage
period. In some such scenarios, 1 a user requested changes to the program executing on the
allocated computing nodes but did not have (or did not submit with the request) the program
1dentifier, the interactive request manager would deny the request.

[0062] At block 336, the interactive request manager can provide an interface to
the second user to enable the second user to request one or more changes to the virtualization
environment provided for execution of the program on the computing nodes. As discussed
above, the interface can be provided 1n a variety of ways. For example, the interface could be
provided through via an interactive console or other GUI, a command-line tool, a webpage,
and 1ntegrated development environment, etc. At block 340 the request for changes from the
second user 1s received by the interactive request manager. For example, the request may be
(0 terminate an executing instance of the program, launch one or more new instances to
execute the program, to modify run-time settings of one or more of the instances, etc. As

discussed above, request may be to make changes to the allocated computing nodes such as,

4.

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

e.g., type or amount of resource allocation, geographical and/or logical location for execution,
timing-related criteria, termination criteria, etc.

[0063] At block 344, the interactive request manager determines whether the
change request from the second user can be granted or fulfilled. For example, the first user’s
request may have specified one or more requirements or restrictions to be placed on changes
that could be made to the computing nodes, and 1t the second user’s request does not satisty
some or all of the requirements or restrictions, the second user’s request may be denied. In
other cases, changes to the computing nodes may require additional resources or computation
nodes, so that the second user’s request cannot be fulfilled at the time of the second user’s
request. In such a situation, 1n various embodiments, the interactive request manager may
deny the second user’s request or may hold or queue the second user’s request until sutficient
computing nodes can be generated for use by the second user. In some implementations, the
Interactive request manager may provide information to the second user on an estimated time
when the request can be fulfilled, how the request can be modified so that the request can be

immediately tultilled, etc.

[0064] At block 343, 1t the program execution request from the second user can
be tulfilled, the program execution service implements the one or more changes on the
computing node or nodes that may be executing the program or programs of the first user.

[0065] With reference to Figure 3A, the routine 300 continues at block 352
where the interactive request manager monitors and tracks usage of the program execution on
the group of nodes allocated for program execution. As discussed with reference to the
monitoring and reporting module 212, the interactive request manager monitor usage patterns
of users (e.g., the first user) executing programs on the allocated computing nodes. Usage
patterns can include the number or 1dentity of users making changes to the allocated nodes,
the start/end times and durations of program execution, and/or other user-specitied patterns
or diagnostics. In some embodiments, at block 352 interactive teedback may be provided to
the first user or the second user including, e.g., indications of when and/or for how long
programs may be likely to execute on the allocated computing nodes, actual or predicted

demand for the nodes, etc. In some embodiments, a report can be generated detailing or

05

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

summarizing the usage statistics and provided to the first user via electronic mail or via an
interactive console or other GUI provided by the program execution service.

[0066] In embodiments in which the program execution service is fee-based, at
block 356 the interactive request manager (or other accounting or billing manager) can
calculate one or more fees. For example, the first user may be charged a reservation fee for
requesting the computing capacity, and the first user or the second user may be charged a
usage fee for program execution on the allocated nodes during the usage period.

[0067] At block 360, optionally other services can be performed by embodiments
of the routine 300. For example, various housekeeping operations may be performed
including freeing the computing nodes for use by others after the expiration of the usage
period. The routine 300 then continues to block 364 and ends.

[0068] Figure 3C is a flow diagram that schematically illustrates an example of a
routine 370 by which an embodiment of an interactive request manager can communicate
with a user computing system for confirming requests for computing resources. In some
implementations, the routine 370 can be implemented by embodiments of the interactive
request manager 130 of the program execution service 100 described with reference to
Figures 1 and 2. As discussed with reference to blocks 304 and 308 of Figure 3A, the
Interactive request manager can receive a request from a first user for program execution
capacity for a usage period and can determine whether the request for the program execution
capacity can be tultilled.

[0069] Continuing at block 374 of Figure 3C, if the request can be fulfilled, the
Interactive request manager provides a confirmation to the first user. For example, as
discussed with reference to Figure 2B and block 320 of Figure 3A, the confirmation can
include information related to whether the program execution service can grant the request
(in whole or 1n part) during the requested usage period (or during a different usage period).
The confirmation may also include one or more request i1dentifiers (e.g., keys, tokens, user
names, passwords, etc.) that are associated with the first user’s request and that are to be used
in conjunction with making changes to the computing resources during the usage period. The

confirmation can include other information such as, e.g., information confirming that the

226-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

user’s preferences, requirements, and/or restrictions can be met. In some implementations,
the confirmation 1s communicated via a contfirmation API (see, e.g., Fig. 2B).

[0070] In some cases, the program execution requirements of the first user may
change between the time the request 1s confirmed (at block 374) and the beginning of the
usage period. In some such cases, the first user may submit a modification ot the request to
the interactive request manager. For example, the moditied request may include information
on a modified program to be executed, a modified number of computing nodes or settings
associated with the computing nodes, a modified start time, termination time, and/or duration
of the usage period, or changes in other preferences or requirements of the first user. The
modified request may be to cancel the 1mitial request, in whole or 1n part. Accordingly, 1n
such cases, at block 378 the interactive request manager may receive the moditied request
from the first user and determine whether the moditied request can be fulfilled (1n whole or 1n
part).

[0071] At block 382, the interactive request manager provides an updated
confirmation to the first user, which can include information related to whether the program
execution service can grant the modified request (in whole or 1n part) during the requested
usage period (which may have been moditied in the modified request) or whether the
program execution service can grant the modified request (in whole or 1n part) during a
different usage period. 'The updated confirmation may also include one or more updated
request 1dentifiers (e.g., keys, tokens, user names, passwords, etc.) that are associated with
the first user’s modified request and that are to be used 1n conjunction with making one or
more changes to the computing resources during the (possibly updated) future usage period.
The updated confirmation can include other information such as, e.g., information confirming
that the user’s (possibly updated) preferences, requirements, and/or restrictions can be met.
In some 1mplementations, the updated confirmation 1s communicated to the first user via a
confirmation API (see, e.g., Fig. 2B).

[0072] At block 386, the interactive request manager can receive a request during
the usage period from a second user for making one or more changes to the computing
capacity allocated to the first user. The interactive request manager may process the request

from the second user generally as described with reference to Figure 3B. For example, 1n

07—

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

some 1mplementations, the request received from the second user may include the request
identifier for the allocated computing capacity that was communicated to the first user at
block 374 (and/or at block 382 1t a modified request was received from the first user).

[0073] Figure 4 1s a tlow diagram that schematically 1llustrates an example of a
routine 400 by which an embodiment of an interactive request manager can communicate
with a user computing system for providing a plurality of virtualization environments (e.g.,
application containers) for selection by the user. In some implementations, the routine 400
can be implemented by embodiments of the interactive request manager 130 of the program
execution service 100 described with reference to Figures 1 and 2. As discussed with
reference to blocks 340 of Figure 3B, the interactive request manager can be configured to
receive at least one change related to a virtualization environment generated for a user.

[0074] Continuing at block 404 of Figure 4, the interactive request manager
rece1ves from a first user a request to share a virtualization environment. For example, after
the interactive request manager has generated a virtualization environment for the first user,
the first user may decide to share the virtualization environment with other users. To enable
the sharing of the virtualization environment, the first user may communicate a request for
sharing the virtualization environment to the interactive request manager. The request may
specity which virtualization environments are to be shared. In some implementations, the
request 1s communicated via a request API (see, e.g., Fig. 2B).

[0075] At block 408 of the example routine 400, the interactive request manager
adds the virtualization environment(s) to a list of virtualization environments to create an
updated list of virtualization environments. ‘The updated list may include a list of the
virtualization environments that may be provided to other users of the program execution
service. In some cases, the updated list may include virtualization environments provided by
not only the first user but also by the program execution service and/or by other users of the
program execution service. Some of the virtualization environments may be provided free of
charge (o user, and other environments may be made available for a fee. The updated list
may 1nclude, for example, descriptions of the virtualization environments, name(s) of the
user(s) that generated the virtualization environments, a fee for using the virtualization

environments, recommendations on the type of applications suitable for use with the

08

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

virtualization environment, links to similar or related virtualization environments, statistics
related to the performance of the virtualization environments, settings for attributes of the
virtualization environments, etc. In some implementations, after the interactive request
manager creates an updated list, a confirmation 1s communicated to the first user via a
confirmation API (see, e.g., Fig. 2B).

[0076] At block 412, the interactive request manager may provide the updated
list of application containers to a second user of the program execution service. The second
user can be the same or different from the first user. In some implementations, the interactive
request manager provides the updated list to the second user via a web interface, GUI, API
call, etc.. For example, the second user may request the interactive request manager to
execute a program during a usage period (see, e.g., FIG. 3A). During the request process, the
Interactive request manager may provide the updated list of virtualization environments so
that the second user can request which virtualization environment should be used for
execution of the second user’s application. In some implementations, the second user may
provide one or more preferences or requirements for execution of the second user’s
application, and the interactive request manager may recommend one or more virtualization
environments that meet some or all of the second user’s preferences or requirements. For
example, the second user may indicate an expected demand for the second user’s application,
geographic location of the user’s customers, desired program execution capacity (e.g., CPU,
memory, storage, bandwidth, etc.), and so forth. The interactive request manager may
identify one or more virtualization environments that match some or all of the second user’s
preferences and provide this recommendation to the second user. In some cases, the
Interactive request manager may rank or sort the recommended virtualization environments 1n
terms of likelihood of meeting the second user’s preferences or requirements.

[0077] At block 412 of the example routine 400, the interactive request manager
may receive from the second user a selection of at least one of the virtualization
environments included 1n the updated list. In some 1implementations, the second user may
make at least one change to the one or more virtualization environments before or after
selecion. For example, the second user may change one or more settings of a particular

virtualization environment before providing information regarding the second user’s selection

20_

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

to the interactive request manager. The interactive request manager may then execute an
instance of the second user’s application using the selected virtualization environment(s)
(see, e.g., Fig. 3A).

[0078] In some embodiments, after the second user has selected at least one of
the virtualization environments, a tee may be provided to the first user who provided a
selected virtualization environment. For example, the second user may be charged one or
more fees, as discussed above, for execution of the user’s application using the at least one
selected virtualization environment (e.g., a reservation fee, a usage fee, etc). A portion of one
or more of the fees may be provided to the first user. For example, the provided fee may be a
fixed fee or a percentage of some or all of the fees charged to the second user. The provided
fee may also be a tiered fee based on the number of changes the second user has made to the
at least one selected virtualization environment, the number of users that have selected a
particular virtualizattion environment, the duration of time a particular virtualization
environment has existed or 1s used, etc.

[0079] In some implementations of the example routine 400, the second user may
choose to make changes to a selected virtualization environment. For example, the first user
may have provided a virtualization environment based on, e.g., Java, and the second user may
modity the environment such that it 1s based on another programming language (e.g., Ruby).
The second user may choose to share, with other users of the program execution service, the
modified virtualization environment that includes the changes made by the second user. The
second user may request that interactive request manager share this virtualization
environment with other users (see, e.g., block 404) and (optionally) be provided a fee for its
use. For example, a third user may select the first user’s virtualization environment, the
second user’s modified version of the first user’s virtualization environment, and/or a
virtualization environment provided by the program execution service and/or by other users.
Accordingly, a marketplace that includes a wide variety of virtualization environments (free
and/or fee-based) may be developed and made available to users of the program execution
service.

[0080] In some embodiments, a computing system configured to manage

execution of programs for users can be provided. The system may comprise an interactive

-3()-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

request manager component that 1s configured to manage execution of programs for users of
a program execution service. The interactive request manager component may be configured
to recerve from a user of the program execution service a request to generate a virtualization
environment for execution of a user application during a usage period, the request comprising
information associated with the user application that permits the program execution service (o
execute a program based at least in part on the user application, the program execution
service providing a plurality of computing nodes configurable to execute programs of
multiple users of the program execution service and generate the virtualization environment,
the virtualization environment including one or more program services comprising: (1) a load
balancer configured to distribute workload across computing resources of the virtualization
environment, (2) a monitoring intertace contigured to allow the user to monitor execution of
the program, (3) a load scaler configured to scale computing resources in response (0
variations 1n demand for execution of the program, and (4) a plurality of database
management services. The interactive request manager component may further be configured
(o execute one or more 1nstances of the virtualization environment on a group of one or more
computing nodes, determine at least one change to the virtualization environment or to the
one or more 1nstances executing the virtualization environment on the group of one or more
of the computing nodes during execution of the one or more instances of the virtualization
environment. The interactive request manager component may further be configured (o
implement the at least one change during the execution of the one or more instances of the
virtualization environment.

[0081] In some implementations, a computing system configured to manage
execution of programs for users may be provided. The system may comprise an interactive
request manager component that 1s contigured to manage execution of programs for users of
a program execution service. The interactive request manager component may be configured
o recelve a request from a first user to share, with users of the program execution service, a
first virtualization environment generated for the first user, update a list of virtualization
environments available for selection by users of the program execution service to provide an
updated list of virtualization environments that includes information related to the first

virtualization environment, and provide the updated list of virtualization environments (0

31-

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

users of the program execution service. The interactive request manager component may
further be configured to receive a selection of the first virtualization environment that 1s
included 1n the updated list from a second user of the program execution service and generate
a second virtualization environment for the second user, the second virtualization
environment based at least in part on the first virtualization environment.

[0082] Each of the processes, methods, and algorithms described in the preceding
sections may be embodied 1n, and fully or partially automated by, code modules executed by
one or more computers or computer processors. The code modules may be stored on any
type of non-transitory computer-readable medium or computer storage device, such as hard
drives, solid state memory, optical disc, and/or the like. The systems and modules may also
be transmitted as generated data signals (e.g., as part of a carrier wave or other analog or
digital propagated signal) on a variety of computer-readable transmission mediums, including
wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part
of a single or multiplexed analog signal, or as multiple discrete digital packets or frames).
The processes and algorithms may be implemented partially or wholly 1n application-specitic
circuitry. 'The results of the disclosed processes and process steps may be stored, persistently
or otherwise, 1n any type of non-transitory computer storage such as, e.g., volatile or non-
volatile storage.

[0083] The various features and processes described above may be used
independently of one another, or may be combined 1n various ways. All possible
combinations and subcombinations are intended to fall within the scope of this disclosure. In
addition, certain method or process blocks may be omitted 1n some implementations. The
methods and processes described herein are also not limited to any particular sequence, and
the blocks or states relating thereto can be performed 1n other sequences that are appropriate.
For example, described blocks or states may be performed in an order other than that
specifically disclosed, or multiple blocks or states may be combined 1n a single block or state.
The example blocks or states may be performed i1n serial, in parallel, or in some other
manner. Blocks or states may be added to, or removed from the disclosed example

embodiments. The example systems and components described herein may be configured

32

10

15

20

23

CA 02811041 2014-08-15

differently than described. For example, elements may be added to, removed from, or

rearranged compared to the disclosed example embodiments.

Pl Y 4

[0084] Conditional language used herein, such as, among others, “can,” “could,”

p R B Y 4 2% el v

“might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise
understood within the context as used, is generally intended to convey that certain
embodiments include, while other embodiments do not include, certain features, elements
and/or steps. Thus, such conditional language 1s not generally intended to imply that features,
elements and/or steps are in any way required for one or more embodiments or that one or
more embodiments necessarily include logic for deciding, with or without author input or
prompting, whether these features, elements and/or steps are included or are to be performed
in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are
synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional
elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive
sense (and not In its exclusive sense) so that when used, for example, to connect a list of
elements, the term “or”’ means one, some, or all of the elements in the list.

[0085] While certain example embodiments have been described, these
embodiments have been presented by way of example only, and are not intended to limit the
scope of the inventions disclosed herein. Thus, nothing in the foregoing description 1s intended
to imply that any particular feature, characteristic, step, module, or block 1s necessary or
indispensable. Indeed, the novel methods and systems described herein may be embodied 1n a

variety of other forms; furthermore, various omissions, substitutions and changes in the form

of the methods and systems described herein may be made within the scope of the inventions
disclosed herein. The accompanying claims and their equivalents are intended to cover such

forms or modifications as would fall within the scope of certain of the inventions disclosed

herein.

-33-

CA 02811041 2014-08-15

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A computer-implemented method for dynamically managing requests for
> computing capacity provided by a program execution service, the method comprising:
under control of a program execution service that provides a plurality of
computing nodes that are each configurable to execute one or more programs of
multiple users of the program execution service,
recetving from a user of the program execution service a request to generate a
10 virtualization environment for execution of a user application during a requested
period of time, the request comprising information associated with the user application
that permits the program execution service to execute a program based at least in part
on the user application;
automatically generating the virtualization environment, the virtualization
15 environment including a user-selectable operating system and one or more program
services provided by the program execution service, the program services comprising:
(1) a load balancer configured to distribute workload across one or more of the
plurality of computing nodes or one or more instances of the virtualization
environment, (2) a monitoring interface configured to allow the user to monitor
20 execution ot the program, (3) a load scaler configured to scale computing resources of
the program execution service in response to variations in demand for execution of the
program, and (4) a plurality of database management services;
determining from the plurality of computing nodes of the program execution
service a group of computing nodes that can satisfy the request by the user;
25 executing one or more instances of the virtualization environment on the group
of computing nodes during the requested period of time;
receiving from the user a request to make at least one change to the

virtualization environment or to the one or more instances executing the virtualization

environment on the group of computing nodes during the requested period of time; and

-34 -

10

15

20

25

CA 02811041 2014-08-15

automatically implementing the at least one change during the requested period

of time.

2. The method of Claim 1, further comprising providing the user with a computing
intertace for requesting generation of the virtualization environment or requesting changes to

the virtualization environment.

3. The method of Claim 1 or 2, wherein the request to generate the virtualization
environment further comprises a request for use by the program execution service of one or
more of: (1) an operating system, (2) an application server, (3) one or more computing nodes
having desired program execution capacity or geographic distribution, and (4) at least one of

the plurality of database management services.

4. 'The method of Claim 1, 2, or 3, further comprising:

automatically 1dentifying failure of at least one of the one or more instances;

and

automatically launching at least one new instance for executing the

virtualization environment on the group of computing nodes.

S. The method of Claim 1, 2, 3, or 4, further comprising:

automatically identifying failure of at least one of the group of computing

nodes;

automatically allocating at least one new computing node from the plurality of
computing nodes of the program execution service; and

automatically executing at least one new instance of the virtualization

environment on the at least one new computing node.

- 35 -

CA 02811041 2014-08-15

6. A system configured to dynamically manage requests for computing capacity ot a
computing service, the system comprising:

a computer memory configured to store one or more program modules for
dynamically managing requests for computing capacity of a computing service, the
computing service comprising a plurality of computing nodes; and

an interactive request manager configured to communicate with the computer
memory and to execute the one or more program modules stored in the computer
memory, the program modules configured to:

receive a request from a user to generate a virtualization environment
for execution of a user application during a usage period, the request
comprising information associated with the user application that permits the
computing service to execute a program based at least in part on the user
application;

generate the virtualization environment, the virtualization environment
including a user-selectable operating system and one or more program services
comprising: (1) a load balancer configured to distribute workload across one or
more of the plurality of computing nodes or one or more instances of the
virtualization environment, (2) a monitoring interface configured to allow the
user to monitor execution of the program, (3) a load scaler configured to scale
computing resources in response to variations in demand for execution of the
program, and (4) a plurality of database management services;

execute one or more instances of the virtualization environment on a
group of one or more of the plurality of computing nodes during the usage
period;

receive from the user a request to make at least one change to the
virtualization environment or to the one or more instances executing the
virtualization environment on the group of one or more of the plurality ot
computing nodes during the usage period; and

implement the at least one change during the usage period.

- 36 -

CA 02811041 2014-08-15

7. The system of Claim 6, wherein the plurality of computing nodes of the computing

service comprises one or more physical computing systems.

8. The system of Claim 7, wherein the plurality of computing nodes comprises one or

5 more virtual machines hosted on the one or more physical computing systems.

9. The system of any one of Claims 6 to 8, wherein the usage period comprises a start
time when the execution of the one or more instances 1s to begin and an end time when

execution of the one or more instances 1s to end.

10
10. The system of any one of Claims 6 to 9, wherein the program modules are further
configured to determine from the plurality of computing nodes of the computing service a

group of computing nodes that can satisty the request by the user for generation of the

virtualization environment.

15

11. The system of Claim 10, wherein the virtualization environment comprises the load
balancer, and the load balancer is configured to balance execution of the one or more instances

of the virtualization environment across the group of one or more of the plurality of computing

nodes during the usage period.

20

12. The system of Claim 10, wherein program modules are further configured to:
identify failure of at least one of the one or more 1nstances of the virtualization

environment; and

launch at least one new instance of the virtualization environment on the group

25 of one or more of the plurality of computing nodes.

13. The system of Claim 10, wherein the program modules are further configured to
notify the user if an error is detected in the usage of the one or more instances of the

virtualization environment or in the usage of the group of one or more of the plurality of

30 computing nodes.

237 -

CA 02811041 2014-08-15

14. The system of Claim 10, wherein the request to make at least one change to the
virtualization environment comprises a request to execute at least one instance of the
virtualization environment on a computing node in a different geographic location than at east
some of the computing nodes in the group of the one or more of the plurality of computing

nodes.

15. The system of any one of Claims 6 to 14, wherein the request to generate the
virtualization environment further comprises a request for execution of the user application 1n

one or more desired geographic regions.

.38 -

WO 2012/039834

CA 02811041 2013-03-08

117

PCT/US2011/045241

PROGRAM EXECUTION SERVICE

INTERAG TIVE 130 116 PHYSICAL
REQUEST [\
MANAGER -~ COMPUTING
SYSTEMS
112
128
100 NETWORK)
/\/
VIRTUAL
MACHINES
STORAGE 120 VM
NODES Y’ MANAGER
N 134 9
124
NETWORK /—\108
FIGURE 1
USER
COMPUTING
SYSTEMS

.

104

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

217

INTERACTIVE
REQUEST MANAGER

RESOURCE GENERATION b 204

RESOURCE 208
SCHEDULING o
/'\/
130
MONITORING AND 212
REPORTING ™
BILLING f\/216
A
USER
FIGURE 2A » COMPUTING

SYSTEMS

104

WO 2012/039834

(1) REQUEST
AP|

USER

1042—~_| coMPUTING
SYSTEM

CA 02811041 2013-03-08

37

PROGRAM EXECUTION SERVICE

-~

PCT/US2011/045241

100
INTERACTIVE | 130 | ~
REQUEST 7 o
MANAGER
(2) REQUEST / \
AP (3) CONFIRMATION API
108
(4) CONFIRMATION API
USER USER
104D~_| comPUTING . COMPUTING
SYSTEM SYSTEM

FIGURE 2B

WO 2012/039834

312
eV

DETERMINE IF
REQUEST CAN BE
FULFILLED
DIFFERENTLY THAN
REQUESTED

NO

CA 02811041 2013-03-08

4]7

INTERACTIVE REQUEST MANAGER

v

RECEIVE REQUEST FROM FIRST USER FOR

EXECUTION OF A PROGRAM DURING A USAGE /\394

PERIOD

¢

-y

316

'

PROVIDE
INFORMATION ON

<" N_| MODIFICATIONS TO

REQUEST TO THE
FIRST USER

CAN REQUEST BE FULFILLED?

/
AN

308 9

N,
/

300

PCT/US2011/045241

YES

PROVIDE
CONFIRMATION TO
THE FIRST USER

GENERATE VIRTUALIZATION
ENVIRONMENT THAT CAN FULFILL
REQUEST

¢ 324<>

ALLOCATE A GROUP OF NODES FOR
EXECUTION OF THE FIRST USER'S
PROGRAM DURING THE REQUESTED
USAGE PERIOD

N\ 323

MONITOR USAGE OF THE GROUP OF
NODES

L\ 392

Y

OPTIONALLY PERFORM BILLING

i/\/ases

Y

OPTIONALLY PERFORM OTHER
SERVICES

-\ 360

FIGURE 3A

v
,< D)/\/ 364

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

517

\

PROVIDE AN INTERFACE TO A SECOND USER

TO ENABLE THE USER TO MAKE AT LEAST |~ 336

ONE CHANGE TO THE VIRTUALIZATION
ENVIRONMENT

Y

RECEIVE AT LEAST ONE CHANGE

RELATED TO THE VIRTUALIZATION 340

ENVIRONMENT FROM THE SECOND USER
DURING THE USAGE PERIOD

v

NO / CAN THE AT LEAST ONE 344
\ CHANGE BE FULFILLED?

YES
Y
IMPLEMENT THE AT LEAST ONE 348
CHANGE o\

FIGURE 3B

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

6/7

@TERACTNE REQUEST MANAGEFDf\/ 370

v

PROVIDE CONFIRMATION TO FIRST USER
THAT REQUEST FOR PROGRAM 274
EXECUTION CAPACITY FOR A USAGE
PERIOD CAN BE FULFILLED

'

RECEIVE A REQUEST FROM THE FIRST
USER FOR A MODIFICATION TO THE /\978

REQUESTED PROGRAM EXECUTION
CAPACITY

'

PROVIDE UPDATED CONFIRMATION TO 382
THE FIRST USER

\
RECEIVE REQUEST DURING THE USAGE

PERIOD FROM A SECOND USER FOR 386
MAKING ONE OR MORE CHANGES TO THE ¢ _.
PROGRAM EXECUTION CAPACITY

REQUESTED BY THE FIRST USER

FIGURE 3C

CA 02811041 2013-03-08
WO 2012/039834 PCT/US2011/045241

717

400
@TERACTIVE REQUEST IVIANAGEI9/\/

v

RECEIVE A REQUEST TO SHARE A 404
VIRTUALIZATION ENVIRONMENT FROM A " _
FIRST USER

'

ADD THE RECEIVED VIRTUALIZATION

ENVIRONMENT TO A LIST OF /_\fO8
VIRTUALIZATION ENVIRONMENTS TO

PROVIDE AN UPDATED LIST

'

PROVIDE THE UPDATED LIST TO A /_\/41 2
SECOND USER

Y

RECEIVE A SELECTION OF AT LEAST ONE

OF THE THE VIRTUALIZATION 416
ENVIRONMENTS INCLUDED IN THE

UPDATED LIST FROM THE SECOND USER

FIGURE 4

100

PROGRAM EXECUTION SERVICE

INTERACTIVE

REQUEST
MANAGER

130 116
/‘\/ —~

PHYSICAL
COMPUTING

NETWOCRK

R

STORAGE

SYSTEMS
0

112

0

7

VIRTUAL
MACHINES

NODES

120
~ N\ 134

VM
MANAGER

)

('I 24

NETWORK

USER
COMPUTING

SYSTEMS

¢

104

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - abstract drawing

