Office de la Propriete Canadian CA 2502892 A1 2004/05/21

Intellectuelle Intellectual Property
du Canada Office (21) 2 502 892
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2003/09/30 (51) CL.Int.”/Int.CI.” GO6F 9/44
(87) Date publication PCT/PCT Publication Date: 2004/05/21 (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2005/04/20 SRC CORPORATION, INC., US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2003/030983 POZNANOVIC. DANIEL US

(87) N° publication PCT/PCT Publication No.: 2004/042929 HAMMES, JEFFREY, US:

(30) Priorité/Priority: 2002/10/31 (10/285 299) US KRAUSE, LISA, US;

STEIDEL, JON, US:
BARKER, DAVID, US:
BROOKS, JEFFREY PAUL, US

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : PROCEDE DE CONVERSION DE PROGRAMMES DANS DES LANGAGES DE PROGRAMMATION HAUT
NIVEAU EN UN PROGRAMME EXECUTABLE UNIFIE POUR PLATES-FORMES INFORMATIQUES HYBRIDES

(54) Title: PROCESS FOR CONVERTING PROGRAMS IN HIGH-LEVEL PROGRAMMING LANGUAGES TO A UNIFIED
EXECUTABLE FOR HYBRID COMPUTING PLATFORMS

100~ 104
B - T 7]

HLL CONVERTER [—106

CFG TO CFG-DFG 108

CONVERTER
il [PARTITIONER |,1 10 124
UR UNIFIED
SOURCE i
CODE FILE CFG-DFG TOHDL |12 EXECUTABLE

CONVERTER |

HDL TO BITSTREAM 114
CONVERTER

© LINKER 116 |

——

}

SUPPORT USER RUNTIME
HARDWARE HARDWARE IBRARY
LOGIC MODULES L.OGIC MODULES

(57) Abréegée/Abstract:

A system and method for compiling computer code written to conform to a high-level language standard to generate a unified
executable containing the hardware logic for a reconfigurable processor, the instructions for a traditional processor (instruction
processor), and the associated support code for managing execution on a hybrid hardware platform. Explicit knowledge of writing

,
L
X
e
e T A
e IR\ VNENEN
ity K
.I : - h.l‘_‘.:.:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2502892 A1 2004/05/21

(21) 2 502 892
(13) A1

(57) Abrege(suite)/Abstract(continued):
hardware-level design code Is not required since the problem can be represented in a high-level language syntax. A top-level driver

Invokes a standard-conforming compiler that provides syntactic and a semantic analysis. The driver invokes a compilation phase
that translates the CFG representation being generated into a hybrid controlflow-dataflow graph representation representing
optimized pipelines logic which may be processed Iinto a hardware description representation. The driver invokes a hardware
description language (HDL) compiler to produce a netlist file that can be used to start the place-and-route compilation needed to
produce a bitstream for the reconfigurable computer. The programming environment then provides support for taking the output
from the compilation driver and combining all the necessary components together to produce a unified executable capable of
running on both the Instruction processor and reconfigurable processor.

wO 2004/042929 A3 I B0 AT 100 Y RORK V0O O R0

CA 02502892 2005-04-20

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Burcau

(43) International Publication Date

21 May 2004 (21.05.2004) PCT
(51) International Patent Classification’: GO6F 9/44
(21) International Application Number:
PCT/US2003/030988
(22) International Filing Date:

30 September 2003 (30.09.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/285,299 31 October 2002 (31.10.2002) US

(71) Applicant: SRC COMPUTERS, INC. [US/US]; 4240
North Nevada Avenue, Colorado Springs, CO 80907 (US).

(72) Inventors: POZNANOVIC, Daniel; 1136 Middle Creek
Parkway, Colorado Springs, CO 80921 (US). HAMMES,
Jeffrey;, 870 Vindicator Drive, #311, Colorado Springs,
CO 80919 (US). KRAUSE, Lisa; 5841 Elliot Avenue,
South, Minneapolis, MN 55417 (US). STEIDEL, Jon;

(74)

(81)

(84)

(10) International Publication Number

WO 2004/042929 A3

5848 Oakland Avenue, South, Minneapolis, MN 55417
(US). BARKER, David; 1611 Little River Drive, Salinas,
CA 93906 (US). BROOKS, Jeffrey, Paul; 4381 Wooddale
Avenue, St. Louis, MN 55424 (US).

Agents: BURTON, Carol, W. et al.; Hogan & Hartson
LLP, Suite 1500, 1200 Seventeenth Street, Denver, CO
80202 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ., EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, L.V, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (Al, BE, BG, CH, CY, CZ, DE, DK, EL,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,

[Continued on next page]

(54) Title: PROCESS FOR CONVERTING PROGRAMS IN HIGH-LEVEL PROGRAMMING LANGUAGES TO A UNIFIED

EXECUTABLE FOR HYBRID COMPUTING PLATFORMS

124

(57) Abstract: A system and method {for
compiling computer code written to conform
to a high-level language standard to generate a
unified executable containing the hardware logic
for a reconfigurable processor, the instructions
for a traditional processor (instruction processor),
and the associated support code for managing
execution on a hybrid hardware platform. Explicit
knowledge of writing hardware-level design

UNIFIED
EXECUTABLE
I

code is not required since the problem can be
represented in a high-level language syntax. A
top-level driver invokes a standard-conforming
compiler that provides syntactic and a semantic
analysis. The driver invokes a compilation phase
that translates the CFG representation being
generated into a hybrid controlflow-dataflow
graph representation representing optimized
pipelines logic which may be processed into a
hardware description representation. The driver
invokes a hardware description language (HDL)
compiler to produce a netlist file that can be used
to start the place-and-route compilation needed
to produce a bitstream for the reconfigurable

100
N 104
[1l
I HLL CONVERTER |'106
| CFGTO CFG-DFG }-108
CONVERTER
(102 l PARTITIONER |'1 10
HLL
SOURCE -
CODE FILE CFG-DFG TOHDL |~112
CONVERTER |
HDL TO BITSTREAM 114
CONVERTER
‘ L INKER |'1 16
- . _
| SUPPORT [User
HARDWARE HARDWARE
LOGIC MODULES LOGIC MODULES

118

120

instruction processor and reconfigurable processor.

RUNTIME
LIBRARY

computer. The programming environment then
provides support for taking the output from
the compilation driver and combining all the
necessary components together to produce a
unified executable capable of running on both the

CA 02502892 2005-04-20

WO 2004/042929 A3 |HIHHVA!H B END000 WAT AN 0 A A A A

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, For two-letter codes and other abbreviations, refer to the "Guid-
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-

Published: ning of each regular issue of the PCT Gagzette.

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
25 November 2004

10

15

20

25

30

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

PROCESS FOR CONVERTING PROGRAMS IN HIGH-LEVEL
PROGRAMMING LANGUAGES TO A UNIFIED EXECUTABLE FOR
HYBRID COMPUTING PLATFORMS

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright owner has no objection
to the facsimile reproduction by anyone of the patent document of the patent
disclosure as it appears in the United States Patent and Trademark Office
patent file or records, but otherwise, reserves all copyright rights whatsoever.
The following notice applies to the software and data and described below,

inclusive of the drawing figures where applicable: © 2002 SRC Computers, Inc.
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates, in general, to adapting a high-level
language program to operate in a hybrid reconfigurable hardware-instruction
processor computing environment. More specifically, the invention relates to
converting a high level language program into a unified executable that can run

on a hybrid reconfigurable hardware-instruction processor computer.

Background

~ As instruction processors continue to increase rapidly in processing
power, they are used more often to do computationally intensive calculations
that were once exclusively done by supercomputers. However, there are still
computationally intensive tasks, including, for example, compute-intensive
image processing and hydrodynamic simulations that remain impractical 1o do

on modern instruction processors.

Reconfigurable computing is a technology receiving increased interest in
the computing arts. Traditional general purpose computing is characterized by
computer code executed serially on one or more general purpose processors.
Reconfigurable computing is characterized by programming reconfigurable

hardware, such as Field Programmable Gate Arrays (FPGAs) to execute logic

routines.

\WDE - 80404/0022 - 189638 vi]-

10

15

20

25

30

CA 02502892 2005-04-20
WO 2004/042929 PCT/US2003/030988

Reconfigurable computing offers significant performance advances in
computation-intensive processing. For example, the reconfigurable hardware
may be programmed with a logic configuration that has more parallelism and
pipelining characteristics than a conventional instruction processor. Also, the
reconfigurable hardware may be programmed with a custom logic configuration
that is very efficient for executing the tasks assigned by the program.
Furthermore, dividing a program’s processing requirements between the
instruction processor and the reconfigurable hardware may increase the overall

processing power of the computer.

Hybrid computing platforms have been developed that include both
general-purpose processor(s) and reconfigurable hardware. An exemplary
hybrid-computing platform is the SRC-6E commercially available from SRC
Computers, Inc., in Colorado Springs, Colorado, USA. The SRC-6E system
architecture includes mdltiple general-purpose instruction processors executing
‘a standard operating system, e.g., Linux. Attached to the general-purpose

instruction processors are specially configured Multi-Adaptive Processors
(MAPs).

Unfortunately, an important stumbling block for users who may wish to
use reconfigurable computing is the difficulty of programming the reconfigurable
hardware. Conventional methods of programming reconfigurable hardware
included the use of hardware description languages (HDLs); low-level
languages that require digital circuit expertise as well as explicit handling of
timing. Thus, there remains a need for procesées that can take a program
written in a high level language and convert it into code that can be executed on

~ a hybrid reconfigurable hardware-instruction processor computer with minimal

modifications to the original program.

SUMMARY

One embodiment of the invention includes a method of converting high-
level language source code into a unified executable comprising: generating an
object file from a reconfigurable hardware portion of the high-level language

source code, and integrating the object file into the unified executable.

\WDE - 80404/0022 - 189638 v1 2

10

15

2 0

25

30

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

Another embodiment of the invention includes a method of forming a
unified executable comprising: converting a high level language program into a
control flow graph representation, converting the control flow graph
representation into a control-data flow graph representation, partitioning the
control-data flow graph into a instruction processor portion and a reconfigurable
hardware portion, converting the reconfigurable hardware portion of the control-
data flow graph into a hardware definition language portion and the instruction
processor portion into a instruction processor object file, converting the

hardware definition language portion into a reconfigurable hardware bitstream,

‘converting the reconfigurable hardware bitstream into a bitstream object file that

is readable by a instruction processor, and integrating the bitstream object file

with the instruction processor object file to form the unified executable.

Another embodiment of the invention includes a system for forming a
unified executable comprising a partitioner to partition control-dataflow graph
representations into a reconfigurable hardware portion and a instruction

processor portion.

Another embodiment of the invention includes a system for forming a
unified executable that is executable on a hybrid reconfigurable hardware-
instruction processor computer, said system comprising: a high-level language
converter to convert a high-level language into control flow graph
representationS, a control flow graph to control-dataflow graph converter io
convert the control flow graph representations into control-dataflow graph
representations, a partitioner to partition the control-dataflow grapn
representations into a reconfigurable hardware portion and a Instruction
processor portion, a control-dataflow graph to hardware definition language
converter to convert the reconfigurable hardware portion of the control-dataflow
graph representations to a hardware definition language file, a hardware
definition language to bitstream converter to convert the hardware definition
language file to a bitstream file, a bitstream to object file converter to convert
the bitstream file into a bitstream object file, and a linker to integrate the

bitstream object file into the unified executable.

WDE - 80404/0022 - 189638 vl 3

10

15

20

25

30

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

Another embodiment of the invention includes a computer program
product comprising: a computer usable medium having computer readable
program code embodied therein for causing a formation of a unified executable,
the computer readable program code comprising, computer readable program
code for causing a computer to convert a high level language source code into
a control flow graph representation, computer readable program code for
causing the computer to convert the control flow graph representation into a
control-data flow graph representation, computer readable program code for

causing the computer to partition the control-data flow graph into a instruction

| processor portion and a reconfigurable hardware portion, computer readable

program code for causing the computer to convert the reconfigurable hardware
portion of the control-data flow graph into a hardware definition language
portion and the instruction processor portioh into a instruction processor object
ﬁle, computer readable program code for causing the computer to convert the

hardware definition language portion into a reconfigurable hardware bitstream,

: computer readable program code for causing the computer to convert the

reconfigurable hardware bitstream into a bitstream object file that is readable by
a instruction processor, and computer readable program code for causing the
computer to integrate the bitstream object file with the instruction processor

object file to form the unified executable.

Additional novel features shall be set forth in part in the description that
follows, and in part will become apparent to those skilled in the art upon
examination of the following specification or may be learned by the practice of
the invention. The features and advantages of the invention may be realized
and attained by means of the instrumentalities, combinations, and methods

particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

DIN L) LA e e ——

Fig. 1 shows a system for converting a high level language (HLL)

program into a unified executable according to an embodiment of the invention;

Fig. 2 shows a flowchart for converting a HLL program into a unified

executable according to an embodiment of the invention;

WDE - 80404/0022 - 189638 vl 4

10

15

20

25

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

Fig 3 shows a flowchart for converting high-level language (HLL) source
code to a hardware logic executable according to an embodiment of the

invention;

Fig. 4 shows a flowchart for converting a instruction processor
executable to a hardware logic executable according to an embodiment of the

invention;

Fig. 5 shows a diagram for separating HLL source according to an

embodiment of the invention;

Fig. 6 shows a flowchart for converting HLL. source code Into control flow

graph representations according to an embodiment of the invention;

Fig. 7 shows a portion of a control flow graph according to an

embodiment of the invention;

Fig. 8 shows a dataflow graph according to an embodiment of the

invention:

Fig. 9 shows an example of a hybrid CFG-DFG segment according to an

embodiment of the invention;

Fig. 10 shows an example of a dataflow graph with a conditional

according to an embodiment of the invention;

Fig. 11 shows an example of concurrent code blocks according to an

embodiment of the invention;

Fig. 12 shows a flowchart for converting a CFG representation to a

hybrid control-dataflow graph according to an embodiment of the invention;

Fig. 13 shows another example of a dataflow graph according to an

embodiment of the invention;

Fig. 14 shows an example of parameter versus local variable stores

according to an embodiment of the invention;

Fig. 15 shows an example of a graphical interpretation of an op-code

sequence;

WDE - 80404/0022 - 189638 vl 5

10

15

20

25

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

Fig. 16 shows an example of DFG fragments built up from the op-code

sequence in Fig. 10 according to an embodiment of the invention;

Fig 17 shows an example of DFG fragments after removal of scalar

param indirection according to an embodiment of the invention;

Fig. 18 shows an example of a DFG block code according to an

embodiment of the invention;

Fig. 19 shows an exahple of three array references used with

: embodiments of the invention;

Fig. 20 shows op-code structures of a subroutine call and the

corresponding block code according to an embodiment of the invention;

Fig. 21 shows op-code structures of a function call and the

corresponding block code according to an embodiment of the invention;

Fig. 22 shows op-code structures of a branch and the corresponding

block code according to an embodiment of the invention;

Fig. 23 shows a portion of a CFG representation with basic blocks and
logic added to a center block to handle incoming and outgoing flow control

according to an embodiment of the invention;

Fig. 24 shows basic blocks with selector inputs tied to the blocks™ OR

nodes according to an embodiment of the invention;

Fig. 25A shows examples of op-code subtrees used with embodiments

of the invention;

Fig. 25B shows more examples of op-code subtrees used with

embodiments of the invention;

Fig. 26 shows an example DFG for a loop used with embodiments of the

invention;

Fig. 27 shows an example of a pipelined DFG without delays according

to an embodiment of the invention;

\\DE - 80404/0022 - 189638 v | 6

10

15

20

25

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

Fig. 28 shows a portion of a code block after merging according to an

embodiment of the invention;

Fig. 29 shows a flowchart for partitioning CFG-DFG representations into
a reconfigurable hardware portion and a instruction processor portion according

to an embodiment of the invention;

Fig 30 shows a flowchart for forming a unified executable according to

an embodiment of the invention;

Fig. 31 shows an example MAP emulator system according to an

embodiment of the invention;

Fig. 32 shows another example of a MAP emulator system according to

an embodiment of the invention;

Fig. 33 shows a flowchart of a dataflow simulator according to an

embodiment of the invention; and

Fig. 34 shows an example of token flow in a dataflow simulation

according to an embodiment of the invention.

DETAILED DESCRIPTION

System Overview

Referring now to Fig. 1, an embodiment of a hybrid reconfigurable
hardware-instruction processor system for converting a program written in a
high level programming language into a unified executable 100 is shown. In an
embodiment, the reconfigurable hardware portion of system 100 may ihclude
multi-adaptive processors (MAPs) that may integrate field programmable gate

array (FPGA) reconfigurable circuitry with logic to control the FPGAs and

 communicate with the instruction processor portion of system 100. In another

embodiment, electronic communication between the reconfigurable hardware
and instruction processors in system 100 may include using a switch/network

adaptor port and/or a switch for linking multiple MAPs to instruction processors.

An embodiment of system 100 includes a MAP Programming

Environment that includes MAPs, instruction processors, a high level language

\DE - 80404/0022 - 189638 v1 7

10

15

20

25

30

WO 2004/042929

CA 02502892 2005-04-20
PCT/US2003/030988

(HLL) file to unified executable converter 104, support hardware logic modules
118, user hardware logic modules 120 and a runtime library 122 among other
components. In an embodiment of system 100, an HLL source code file 102 is
input into converter 104. The HLL source code file 102 may be written in a
conventional high level language such as, for example, C, C++, FORTRAN,
COBOL, BASIC, PASCAL, and Java among others.

The HLL file 102 may be input into converter 104 where it may be
converted to a unified executable 124 through the components of the converter
104. An embodiment of converter 104 may include an HLL converter 106, a
CFG to CFG-DFG converter 108, a partitioner 110, a CFG-DFG to HDL
converter 112, an HDL to bitstream converter 114 and a linker 116, among

other components.

The converter 104 may include an HLL converter 106 that converts the
high level language file into control flow graph (CFG) representations. In one
embodiment the HLL converter 106 includes a software module including logic
instructions for initiating a traditional compilation by reading the high level
language source code, parsing the source code, converting the code Into an
internal representation and a symbol table. HLL converter 106 may also
include logic instructions for performing syntactic and semantic checking of the
source code, and for generating appropriate diagnostic messages in response

to errors in the source code.

Also, HLL converter 106 may include logic instructions for optimization of
the internal representation of the source code. Among other things, HLL
converter 106 outputs a CFG representation. The CFG representation can be

further processed either by the instruction processor compiler to produce

instruction processor sequences, or passed on to another software module

such as CFG to CFG-DFG converter 108 for data flow analysis and generation

of logic for a reconfigurable processor (e.g., a MAP).

In an embodiment, the CFG to CFG-DFG converter 108 may be a
software module including logic instructions for receiving the CFG

representation created by HLL converter 106 and converting a CFG

\WDE - 80404/0022 - 189638 v1 S

10

15

20

25

30

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

representation to a control-data-flow graph representation. The control-data-
flow graph may be used throughout the remainder of the compiler phases. The
CEG to CFG-DFG converter 108 may also optimize the degree of parallelism in
the compiled code. The functions of the CFG to CFG-DFG converter 103 may
include: creating a control-data-flow graph from a CFG representation passed
by HLL converter 106 that may be used by the remaining components of
converter 104, converting basic blocks to a code block in the data flow graph,
converting input/output scalars, converting input/output arrays, dealing with
scalar references in code blocks, dealing with array references in code blocks,
constructing loop control, dealing with pointer references, dealing with calls to
instruction processor code, dealing with system calis to instruction processor
OS, expanding intrinsic function calls, expanding external function calls,
optimizing loops, optimizing multi-threads, optimizing data path and logic unit
data widths, and optimizing structure including the elimination of unneeded

structure, among other functions.

The partitioner 110 may be a software module including logic
instructions for sizing the logic to fit in the available resources of the hybrid
computing system. The partitioner 110 may receive as an input the control-
data-flow graph generated by CFG to CFG-DFG converter 108 and may map
the control-data-flow graph onto the available resources such that performance

is optimized.

In an exemplary embodiment, partitioner 110 may receive as input the
following information: logic unit sizes from hardware logic module information
file, chip sizes from resource file, interface size and speed from resource file,
data storage performance and sizes from resource file, partitioning syntax input
from the programmer, such as pragmas or directives, profiling information from
control-dataflow graph (CFG-DFG) emulator and profiling information from the

instruction processor profiling tool.

In an exemplary embodiment, the partitioner 110 may also include logic
instructions for annotating the CFG-DFG with the above information and

estimating performance parameters of sub-graphs based on execution in the

WDE - 80404/0022 - 189638 vl 9

10

15

20

25

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

instruction processor and the MAP. The partitioner 110 may further include
logic instructions for assessing the sizing of the logic and allocating the logic

based on, e.qg., the resources of the integrated circuits and the MAP.

The partitioner 110 may also include logic instructions for defining
interface logic on the MAP and assigning MAP proxy code to the instruction
processor. The MAP proxy provides a target for the instruction processor code
that transitions to a thread of control on the MAP. The MAP proxy accepts a
call, and initiates any parameter passing required to the MAP. The MAP proxy

may also receives requests from the MAP.

The output of the partitioner 110 may include a CFG-DFG that may be
implemented as logic in the MAP, and a CFG-DFG that may be implemented

on the instruction processor.

CFG-DFG to HDL converter 112 may be a software module that

“includes logic instructions for converting the CFG-DFG into a hardware

definition of the physical logic that will be instantiated in the reconfigurable
processor(s) that in the MAP(s). CFG-DFG to HDL converter 112 receives as
an input a CFG-DFG file from CFG to CFG-DFG converter 108 and converts
the CFG-DFG file to an internal representation. The hardware logic module
information file is also read to provide node input, output and latency
information. Nodes and paths between nodes are checked for compatibility

and bit width consistency.

Some nodes are inlined rather than instantiating the node. Inlining
refers to generating the hardware definition rather than referring to the definition
as a instantiated logic module. All of the nodes in the CFG-DFG are checked
for proper node dependency and consistent data flow. Each node is then
instantiated, and then all wiring connecting the nodes is declared. An output file
containing the hardware definition language is created. The output file may be

written in a hardware definition language such as Verilog or EDIF.

The HDL to bitstream converter 114 may include conventional synthesis

tools for compiling Verilog to EDIF, and Place and Route tools for converting

\\DE - 80404/0022 - 189638 vi 10

10

15

20

25

30

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

EDIF files to a bitstream that is loadable into MAP may be used to process the
output of the CFG-DFG to HDL converter 112.

The linker 116 may be a software module that includes logic instructions
for taking object files including bitstream object files, instruction processor files

and other object files and integrating them to form the unified executable 124.

In another embodiment, system 100 may include a conventional in-
struction processor compiler (not shown) that may be used to compile the portion

of the high level language that is not converted to logic to be run in the MAP.

System 100 may also include a bitstream configurator (not shown) that
may include a software module that includes logic instructions for creating a
unified executable file. The bitstream file is encapsulated as a compiled C
routine that can be incorporated into an executable file using a compiler and
standard linker. The executable containing the application instruction processor
instructions, the MAP logic bitstream, as well as any required library code may

be referred to as the unified executable.

System 100 may also include a Binary Translator (not shown), which is a
companion tool to the cbnverter 104. Converter 104 may take high-level
language source code as input and create a CFG representation and a unified
executable. The Binéry Translator may take an executable file and covert it into
a CFG representation, and provides that to a secondary input to converter 104,

bypassing the need for source code.

System 100 also includes modules 118 and 120 and library 122 that
may provide a run-time environment for the HLL to unified executable
conversion process. The run-time environment may include library routines that
are included in the instruction processor portion of each application. These
library routines provide support services for the MAP. This includes resource
allocation and deallocation, communication between instruction processor and
MAP, debugging, and performance analysis. At least three distinct
environments may be supported by the run-time routines: 1) execution with
MAP hardware, 2) execution with emulated MAP and dataflow graph emulation,

3) execution with emulated MAP and simulated user logic.

\\DE - 80404/0022 - 189638 v 11

CA 02502892 2005-04-20
WO 2004/042929 PCT/US2003/030988

10

15

20

25

30

Method Overview

Referring now to Fig. 2, a method of converting a high level language
(HLL) into a unified executable 200 according to an embodiment of the
invention is shown. The method 200 may start with the conversion of an HLL
program into a control flow graph (CFG) at step 202. In an embodiment,
conversion 202 of the HLL program to a specified CFG format may be
performed by a conventional HLL compiler. Conversion 202 of the HLL
program to CFG may include using a compiler to parse the HLL program into
CFG representations and to generate instruction bode that is executable on a
instruction processor. The instruction code may then be written to object files

that may be linked together with a linker-loader that resolves addresses.

The programming language used in the HLL program may be a
conventional high level language such as C, C++, FORTRAN, COBOL, BASIC,
Java and PASCAL, among others. The HLL program may include a variety of
data entities including scalars, arrays and user-specified aggregates, among
others, and their associated operators. The HLL program may also include

function calls, subroutines, loops, and conditionals, among other operations.

In an embodiment of the invention, the next step of method 200 may be
the conversion of the CFG representations into hybrid control-dataflow graph

representations (CFG-DFG) at step 204. Briefly, this conversion 204 may

“include separating the CFG representations into its component basic blocks,

adding load and store data to the top and bottom of the basic blocks, and
converting the basic blocks into code blocks of CFG-DFG representations. A

more detailed description of conversion 204 is provided below.

The next step of method 200 may be the partitioning of the CFG-DFG
representations into a reconfigurable hardware portion and a instruction
processor portion, at step 206. In one embodiment, the CFG-DFG
representations may be input into a partitioner program that may scan the data
and divide it into a portion for the reconfigurable hardware and a portion for the
instruction processor. In another embodiment, the partitioner program may

receive instructions from a user inserted partitioning syntax, for example a C

\\DE - 80404/0022 - 189638 v1 12

10

15

20

25

30

WO 2004/042929

CA 02502892 2005-04-20

pragma or a compiler directive, that guides how the CFG-DFG code is
partitioned into reconfigurable hardware and instruction processor portions. For
example, a pragma may instruct the partitioner program to put a particular loop
operation in the instruction processor portion of the partitioned CFG-DFG
representations. The pragmas may be included in the original HLL program

source code or may be provided directly to the partitioner program.

At this point in this embodiment of method 200, the partitioned CFG-
DFG representations from the partitioning step 206 may be split into separate
process steps. The instruction processor portion from partition step 106 may
be converted into a instruction processor object file 208. In one embodiment,
the instruction processor portion of the hybrid CFG-DFG representations Is
converted back into CFG representations and then may be converted into
instruction code that is executable on a instruction processor. The instruction
code may then be written to object files that may be linked together with a
linker-loader that resolves addresses. In another embodiment, the instruction
orocessor portion of the hybrid CFG-DFG representations may be identified
with portions of the original CFG representations and those portions of the

original CFG representations may be converted to object files.

Turning now to the reconfigurable hardware portion of the CFG-DFG
representations from partitioning step 206, this portion may be converied from
CFG-DFG representations into a hardware definition language (HDL) file 210.

The hardware definition language may include conventional HDLs such as

‘Verilog and EDIF among others.

The hardware definition language file may then be converted into a
bitstream data file 212 that can be loaded into individual reconfigurable circuits
in the reconfigurable hardware. For example, the bitstream data files may be
loaded into field programmable gate arrays (FPGAs) in the Multi-Adaptive
Processors (MAPs) used in the hybrid instruction processor-reconfigurable
hardware computers of the present invention. In an embodiment, a Place &
Route program may be used to perform the HDL to bitstream conversion 212.

Based on the HDL files, the Place & Route program may instantiate and

\\DE - 80404/0022 - 189638 v1 13

PCT/US2003/030988

10

15

20

25

30

CA 02502892 2005-04-20
WO 2004/042929

interconnect hardware logic modules for the reconfigurable hardware. The
Place & Route program may also direct where modules may physically go and

how they are coupled to each other in the reconfigurable hardware.

In an embodiment of method 200, after the bitstream files are created,
they may be converted into bitstream object files at step 214. The bitstream to
object file conversion 214 may include converting the bitstream data into high-
level language source code (e.g., placing the bitstream in a C structure) and
converting the high-level language file into an object file that may be readable

by a instruction processor.

In an embodiment of method 200, after converting the bitstream files into
bitstream object files at step 214 and converting a instruction processor portion
of the CFG-DFG representations into a instruction processor object file at step
208, thé object files may be collected at step 216. Additional object files may
also be collected with the bitstream object files and the instruction processor
object files. For example, additional object files may come from previous
tarations of method 200. Additional object files may also be taken from

previous instruction processor compilations as well as from object libraries.

Once the bitstream obiject files, microprocessor object instruction
processor files and any additional object files are collected, they may be linked
together 218 to form a unified executable 220. In an embodiment, linking the
object files 218 may be done by a linker program. The unified executable 220
may be readable by a instruction processor that may execute the unified
executable 220 to configure a hybrid reconfigurable hardware-microprocessor

computer to run the HLL program.

Referring now to Fig. 3, a flowchart of a method of converting high-level
language source code to a hardware logic executable according to an
embodiment of the invention is shown. The method may start with the analysis
of high-level language (HLL) source code 302 being processed in a partition
step 304. If a partition is found in the HLL source code 302, then the code may
be divided up and converted into control flow graph (CFG) representations in
steps 306 and 308.

WDE - 80404/0022 - 189638 vl 14

PCT/US2003/030988

10

15

20

25

30

CA 02502892 2005-04-20

WO 2004/042929 PCT/US2003/030988

In one embodiment, after the partitioned portion of the HLL source code
302 is converted to CFG representations at step 308, the CFG representations
may be used to generate a MAP proxy 322 (see details of MAP proxy in High-
Level Language Converter Section), or be converted into CFG-DFG
representations for hardware logic at step 316. For a portion of the CFG
representations that results in the generation of a MAP proxy 322, that portion
may then be converted into binary instruction processor code at step 324, then
linked with all other binary files at step 326 to become part of a hardware logic
executable 328. For a portion of the CFG representations converted to CFG-
DFG representations for hardware logic at step 316, the CFG-DFG
representations may be converted into a hardware definition logic (HDL) code,
such as Verilog code at step 318, then converted to hardware logic binary at step
320 and linked with all other binary files at step 326 to become part ot the
hardware executable 328. The remaining HLL source code 302 that is not part
of the partitioned source code may be converted into CFG representations at
step 306. Then the CFG representations may be converted into instruction
processor binary code at step 324 before being linked with all other binary files

326 to become part of a hardware logic executable 328 (i.e., unified executable).

For HLL source code 302 that does not have partitions, the entire code
may be converted into CFG representations at step 310 and may be partitioned
into a reconfigurable hardware portion and a instruction processor portion at
step 312. The instructioh processor portion may be converted into instruction
processor binary code at step 324 and ultimately be formed into hardware logic
executable 328. The reconfigurable hardware portion may be partitioned and
that portion generate a MAP proxy at step 322 while that same portion is
converted into CFG-DFG representations. This partitioned portion may

ultimately <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>