
(12) United States Patent
Komatsu et al.

US007257,666B2

(10) Patent No.:
(45) Date of Patent:

US 7,257,666 B2
Aug. 14, 2007

(54) METHOD OF WRITING, ERASING, AND
CONTROLLING MEMORY FOR MEMORY
DEVICE

(75) Inventors: Shinpei Komatsu, Yokohama (JP);
Yumi Ishii, Yokohama (JP); Tomohiro
Hayashi, Yokohama (JP); Shogo
Shibazaki, Yokohama (JP); Hiroyuki
Itoh, Kawasaki (JP); Masaru
Takehara, Yokohama (JP)

(73) Assignee: Fujitsu Limited, Kawasaki (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 218 days.

(21) Appl. No.: 10/788,336

(22) Filed: Mar. 1, 2004

(65) Prior Publication Data

US 2004/0168017 A1 Aug. 26, 2004

Related U.S. Application Data
(62) Division of application No. 10/446,810, filed on May

29, 2003, now Pat. No. 6,766,409, which is a division
of application No. 09/688,858, filed on Oct. 17, 2000,
now Pat. No. 6,584,579, which is a division of
application No. 09/385,998, filed on Aug. 30, 1999,
now Pat. No. 6,161,163, which is a division of
application No. 08/912,692, filed on Aug. 18, 1997,
now Pat. No. 5,983,312, which is a division of
application No. 08/292.213, filed on Aug. 19, 1994,
now Pat. No. 5,802,551.

(30) Foreign Application Priority Data
Oct. 1, 1993 (JP) 5-246547

HOST
COMPUTER

CONTROLLER
LS

22

CPU 25- 25-2 25-3 25-4

(51) Int. Cl.
G06F 12/00 (2006.01)
GO6F II/OO (2006.01)

(52) U.S. Cl. 711/103; 711/100; 711/154
(58) Field of Classification Search 711/100,

711/103, 154: 714/5
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,124,948 A 6/1992 Takizawa et al.

(Continued)
FOREIGN PATENT DOCUMENTS

JP 62-283496 12/1987
JP 62-283497 12/1987

OTHER PUBLICATIONS

U.S. Appl. No. 10/785,010, filed Feb. 25, 2004, Shinpei Komatsu et
al., Fujitsu Limited.
Primary Examiner Tuan V. Thai
(74) Attorney, Agent, or Firm—Staas & Halsey LLP

(57) ABSTRACT

Data transferred from a host computer to a memory device
is written into sectors whose addresses in a memory area are
decoded by a decode table. Old data to be updated by the
above data is erased or marked with erase flags. At a
predetermined point of time, in order to create free areas,
necessary data is evacuated to a primary memory media and
unnecessary data indicated by erase flags is erased by a unit
of predetermined memory size. Part of the memory media
which has become defective is marked with a defect flag,
and is replaced by an alternate area. In doing so, the decode
table is rewritten to arrange the memory area.

4 Claims, 56 Drawing Sheets

25-5

US 7,257,666 B2
Page 2

U.S. PATENT DOCUMENTS 5,530,827 A * 6/1996 Matsui et al. T11 103
5,541,886 A * 7/1996 Hasbun ... 365,185.03

5,267,148 A 11/1993 Kosaka et al. 5,563,828. A * 10/1996 Hasbun et al. 365,185.33
5,297,148 A 3, 1994 Harari et al. 5,577,194. A * 11/1996 Wells et al. T14/8
5,341,339 A * 8, 1994 Wells 365,185.11 5,600,821 A * 2/1997 Falik et al. .. 711/173
5,357,475 A 10/1994 Hasbun et al. 5,650,969 A * 7/1997 Nijima et al. 365,200
5,375,222 A 12/1994 Robinson et al. 5,715,193 A * 2/1998 Norman 365,185.02
5,404,485 A 4, 1995 Ban T11 202 5,787,445 A * 7/1998 Daberko 707,205
E. A 2. WA, al 5,802,541 A 9, 1998 Reed T11 1
I - els et al. 6,125,424 A 9/2000 Komatsu et al.

5,459,850 A 10/1995 Clay et al. 6,366,109 B1 4/2002 Matsushita 324f765
5,471.478 A 1 1/1995 Mangan et al. 6,763,424 B2 * 7, 2004 Con1 T11 103
5,473,753 A * 12/1995 Wells et al. 714/5 W - Olley .
5,479,633. A 12/1995 Wells et al.
5,524,230 A 6, 1996 Sakalue et al. * cited by examiner

US 7,257,666 B2 Sheet 1 of 56 Aug. 14, 2007 U.S. Patent

. s is s as as a - - - - - -

|ST HETTIOHINOO
SOSO

| 2 ?72 0?

()

US 7,257,666 B2

?gSSE HOJCIV TVOI ?OT

©

?©WTH LOB-HBC] ? vivo Howns»OHHO? –W[IS XIOBHO
PS|---- - - - - - - - - - - - - - - - • • • • • • • • • • • • • • • • • • • 3-------------------------------------; <?? HOLOES SIHL HO VIVO ; --\/ LV/C)

y=|-------------------------------------* ?;|--~~~~ ~~~~ ~~~~ ~~~~******** <?|HOLOES SIHL HOSSBEGOV TVO10OT} ~SSE HOJOVÝ TVOISOOT ;-)-----¬ |longo vivo =1=Tosao ?NLIVOIGN ? – lºººººººT?v???sv?.

E

?|---;SO\/T-H LOE-REC]
?| 1ON HO HOLOES BALLOHÆG ?NLIVOIGNI; -

^-3.- .-.-.-.-.-.-.-.-.-.-.-.- ~~~~"|-92 að?

U.S. Patent Aug. 14, 2007 Sheet S of 56 US 7,257,666 B2

FG.5

WRITENG DATA

SETTING REWRITE FLAG TO ZERO Sl

S2
<61EANING UP UNDERWAdNC

ADDING TO NUMBER OF
WRITING MES

S5

SETTING NUMBER OF WRITING
TMES TO ZERO

UMBER O
WRITING TIMES ECRUAL

TO 6?

SETTING NUMBER OF WRITING
TIMES TO

LOGICA S7 YES ERROR HANDLNG
ADDRESS EXCEEDING O

LIM2
NO

S8
OLD DATA TO BE NO

REPLACED?

SETING REWRITE FLAG TO

INSEEBRINGRAARQM st HOST COMPUTER TO SRAM

S12 YES ERROR HANDLNG
ERROR IN TRANSFER2

NO

SO

SETTING REWRITE FLAG
TO ZERO

U.S. Patent Aug. 14, 2007 Sheet 6 of 56 US 7,257,666 B2

FG.6

S13
REWRITE FLAGEOUAL YES

TO ZERO2

PUTING UP ERASE FLAGATSECTORS
OF OD DATA

S5
NUMBER OF NO

WRITING TIMES ECUAL
TO 12

SETTING EVACUATION COUNTER TOZERO

CLEANING UP
POINTER SMALLER THAN

126

CLEANING UP
PONTER ECyAL TO ZERO

SELECTING TARGET OF CLEANING UP
BASED ON NUMBER OF ERASURES AND
NUMBER OF ERASABLE SECTORS OF
EACH BLOCK

WRITING CHP NO. AND BLOCKNO. OF
TARGET OF CLEANING UP INTO
EVACUATION BLOCKNO. OF WORK BLOCK

ERROR NWRITING?

SEARCH FOR DATA TO BE EVACUATED
ERASE FLAG PUT UP GOING TO NEXTSECTOR
NOLOGICAL ADDRESS:
PUTTING UP ERASE FLAG TO CURRENT
SECTOR, THEN, GOING TO NEXTSECTOR

ANOMALOUSLOGICAL ADDRESS:
PUTTING UP ERASE FLAG AND DEFECT
FLAG, AND GOING TO NEXTSECTOR

ERROR
HANDL:NG

S22

U.S. Patent Aug. 14, 2007 Sheet 7 of 56 US 7.257,666 B2

FIG.7
(5)

S23 ERROR
ERROR NWRITING HANDLENG

CLEANING UP
PONTER INDICATING 126TH

SECTOR2
NO

MoviNG DATA To BE EVACUATED FROM IS25
FLASH MEMORY TO SRAM 23

GENERATED S25 yes
HECK SUMEQUAL TO CHEC

SUM7

CHECK SUMECUAL TO FFh?

NO

SETTING CHECKSUMTOFFh, ANDPUTTING S2B
UP DEFECT FLAG ASECTORS OF EVACUATED
DAA

S29 ERROR
ERROR NWRTING : ES HANDING

SEARCHING WRITE-ENABLE SECTOR BY
STARTING FROMSECTOR INDICATED BY
WRIT POINTER

WRE-ENABLE
SECTOR FOUND

YES

MgWNGDATA STORED IN SRAM To FLASH is MEMORY

S33
ERROR IN WRITING

NO

ERROR
HANDING

U.S. Patent Aug. 14, 2007 Sheet 8 of 56 US 7.257,666 B2

FG.8

(2) (6) (4)(5)
PUTTING UP ERASE FLAG ATSECTOR OF S34
EVACUATED DATA

S35 ERROR
ERRORNWRITING? YES HANDLNG

UPDATING SECTOR MAP TABLE, AND
ADDING 1 TO EVACUATION COUNTER

NO EVACUATION COUNTER
EOUAL TO 60?

S38
EVACUATION COUNTER Y

ECQUAL TO ZERO

NO

WRITING INFORMATION ON DEFECT FLAGS OF
EVACUATED BLOCK INTO DEFECTSECTOR
MEMORY, AND ERASING TIMES INTO CLEANING
UP TARGET BLOCK ERASING TIMES
(WRITING IN WORK BLOCK)

S40 Y
ERROR N WRITING?

ERASNG CLEANED UPBLOCK

ERROR IN ERASNG?

NO

ERROR
HANDLING

ERROR
HANDLING

U.S. Patent Aug. 14, 2007 Sheet 9 of 56 US 7,257,666 B2

FIG.9

G.) G5)
WRITING INFORMATION ON DEFECT FLAGS INDEFECTIVE S43
SECTOR MEMORY BACK TO ERASED BLOCK, AND WRITING
CLEANING UP TARGET BLOCK ERASING TIMES PLUS ONE
INTO ERASING TIMESATERASED BLOCK

ADDING TO NUMBER OF ERASURES OF ERASED BLOCKINS44
TABLE FOR ERASING TIMES, AND SETTING NUMBER OF
ERASABLE SECTORSTOZERO INTABLE FOR NUMBER OF
ERASABLE SECTORS

COPYING CLEANING UP POINTERTO WORK BLOCKNO. S45
AND SETTING CLEANING UP POINTERTO ZERO

STARTING SEARCH FOR WRITE-ENABLE SECTOR FROM S46
SECTOR INDICATED BY WRITE POINTER

S47 ERROR
WRITE-ENABLE NO HANDLING
SECTOR FOUND2

YES
MOVING DATA IN SRAM TO FASH MEMORY S48

S49
ERROR IN WRITING?

NO

S50 NO
REWRITE FLAGEOUAL TO 12

ADDING TO NUMBER IN TABLE FOR NUMBER OF
ERASABLESECTORS FOR EACHSECTOR WITH ERASE
FLAG WRITTEN

UPDATING SECTOR MAP TABLE S52

STARTING SEARCH FOR WRITE-ENABLE SECTOR FROM S53
SECTOR INDICATED BY WRITE POINTER

U.S. Patent Aug. 14, 2007 Sheet 10 of 56 US 7.257,666 B2

FIG. OA

BLOCK1 BOCK2 BLOCK3 BLOCK4 BLOCKS BLOCK6

F.G. 1 OB

BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

ERASABLE

ERASABLE

U.S. Patent Aug. 14, 2007 Sheet 11 of 56 US 7,257,666 B2

FIG. OC

BLOCK BLOCK2 BOCK3 BLOCK4 BLOCK5 BLOCK6

ERASABLE

ERASABLE

FIG. OD

BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

ERASABLE

ERASABLE

U.S. Patent Aug. 14, 2007 Sheet 12 of 56 US 7,257,666 B2

FIG. OE

BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCK6

ERASABLE

FIG.1 OF

BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

ERASABLE

ERASABLE

ERASABLE

U.S. Patent Aug. 14, 2007 Sheet 13 of 56 US 7,257,666 B2

F.G. 1 OG

BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

ERASABLE

ERASAB

ERASABLE

FIG. OH

BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCK6

ERASABE

ERASABLE

U.S. Patent Aug. 14, 2007 Sheet 14 of 56 US 7,257,666 B2

FIG.O

BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

o
B ERASABLE

ERASABLE

ERASABLE M

FIG. OJ

BLOCK BOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

ERASABLE

ERASABLE

ERASABLE

ERASABLE

U.S. Patent Aug. 14, 2007 Sheet 15 of 56 US 7,257,666 B2

FG.11

WRITING METHOD

RECEIVING DATA FROM HOST COMPUTER S

S2
NUMBER OF

BLOCKS HAVING FREE SECTORS LESS
THAN N?

YES

SELECTING m BLOCKS AS EVACUEE IN DESCENDING S3
ORDER OF NUMBER OF ERASABLE SECTORS

NO

SELECTING in BLOCKS AS EVACUEE INASCENDING S4
ORDER OF NUMBER OF ERASABLE SECTORS

MOVING DATA NEVACUEE BLOCK TO FREE BLOCK S5
WITH OFFERENT BLOCK SELECTED AS DESTINATION
BLOCK, MBLOCK FORMING ONE FROTATION

ERASING EVACUATED BLOCK S6

PUTTING UP ERASE FLAG AT PHYSICAL SECTOR WITHS7
WRR SECTOR DENTICAL TO THAT OF DATA TO BE

WRITING DATA INTO FLASH MEMORY S8

END

U.S. Patent Aug. 14, 2007 Sheet 16 of 56 US 7,257,666 B2

F.G. 12A
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

(EVACUATION
AREA)

FG.2B
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

BLOCK3 BLOCK4 BLOCKS BLOCK6

(EVACUATION
AREA)

U.S. Patent Aug. 14, 2007 Sheet 17 of 56 US 7,257,666 B2

FG.12D
BLOCKf BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

ERASABLE ERASABLE ERASABLE

ERASABLE ERASABLE

ERASABLE

ERASABLE

ERASABLE

(EVACUAON
AREA)

F.G. 2E
BLOCK1 BLOCK2 BOCK3 BLOCK4 BLOCK5 BLOCKS

ERASABLE ERASABLE

FG.12F
BLOCK BLOCK2 BOCK3 BLOCK4

ERASABLE

ERASAB

ERASABLE
(EVACUATION
AREA)

ERASABL

ERASABLE

(EVACUATION
AREA

U.S. Patent Aug. 14, 2007 Sheet 18 of 56 US 7,257,666 B2

FIG. 12G
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

ERASABLE

G

ERASABLE ERASABE

G ERASABLE
ERASABLE

ERASABL

ERASABL ERASABLE

(EVACUATION
AREA)

FIG.2H
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

ERASABLE

ERASABLE

ERASAB

ERASAB

ERASABLE

ERASABLE

ERASABLE

(EVACUATION
AREA)

FIG. 12
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

(EVACUATION
AREA)

U.S. Patent Aug. 14, 2007 Sheet 19 of 56 US 7,257,666 B2

FIG.12J
BLOCK3 BLOCK4 BLOCK5 BLOCK6

FIG.2K
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

BLOCK2

(EVACUATION
AREA)

(EVACUATION
AREA)

FG.2L
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLAOCKS

K

(EVACUATION
AREA)

U.S. Patent Aug. 14, 2007 Sheet 20 of 56 US 7,257,666 B2

FIG.13

STORING BLOCKNO. OF CURRENT EVACUATION S
AREAN MEMORY

PONTING CURRENT EVACUATION AREA ASTARGET S2

SHIFTING TARGET BACKWARD BY ONE BLOCKN S3
WRITING DIRECTION

S4
TARGE BLOCK

ECUAL TO BLOCKNO. STORED IN
MEMORY?

YES

S5
NUMBER OF

ERASABLE SECTORS GREATER
THAN in

YES

SELECTING TARGETAS EVACUEE S6

MOVING WRITE POINTER TO FIRST SECTOR OF S7
EVACUATION AREA

MOVING DATA OF EVACUEE TO EVACUATION AREA S

ERASNG EVACUEE BLOCK S9

ASSIGNING EVACUEE BLOCK TO EVACUATION AREA SO

END

U.S. Patent Aug. 14, 2007 Sheet 21 of 56 US 7,257,666 B2

F.G. 14A
BLOCKO BLOCK BLOCK2 BLOCK3 - BLOCK4 - BLOCK5 BLOCK6

(BACKUP
AREA) AREA)

F.G. 14B
BLOCKO BLOCK BLOCK2 LOCK3 BLOCK4 BLOCK5 BLOCKS

(BACKUP (EVACUATION
AREA) AREA)

FIG. 4C
BLOCKO BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

ERASABL

ERASABLE

(EVACUATION
AREA)

U.S. Patent Aug. 14, 2007 Sheet 22 of 56 US 7,257,666 B2

FG. 4D

BLOCKO BLOCK1 BLOCK2 - BLOCK3 - BLOCK4 - BLOCK5 BLOCK6
ERASAB

ERASABLE

RASABLE

ERASABLE

ERASABLE

(EVACUATION
AREA)

F.G. 14E

BLOCKO BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

ERASABLE

ERASABLE

ERASABLE

(BACKUP (EVACUATION
AREA) AREA)

U.S. Patent Aug. 14, 2007 Sheet 23 of 56 US 7,257,666 B2

FG.14F
BLOCKO BLOCK1 BLOCK2 BLOCK3 - BLOCK4 - BLOCK5 BLOCK6

ERASABLE ERASABLE

ERASABLE ERASABLE

ERASABLE ERASABLE

RASABLE ERASABLE

ERASABLE

(BACKUP (EVACUATION
AREA) AREA)

FG.14G
BLOCKO BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

ERASABLE

ERASABLE

ERASABE

ERASABLE

ERASABLE

(BACKUP (EVACUATION
AREA) AREA)

FIG.14H
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

ERASABLE

ERASABLE

(BACKUP (EVACUATION
AREA) AREA)

U.S. Patent Aug. 14, 2007 Sheet 24 of 56 US 7,257,666 B2

F.G. 14
BLOCKO BLOCK1 BLOCK2 BLOCK3 - BLOCK4 - BLOCK5 BLOCK6

(BACKUP (EVACUATION
AREA) AREA)

F.G. 14
BLOCKO BLOCK BLOCK2 OCK3 BLOCK4 B

ERASABL

ERASABLE

(BACKUP (EVACUATION (UNABLE TO
AREA) AREA) BE USED)

FG.14K
BLOCKO BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

ERASABLE

ERASABLE

((BACKUP (EVACUATION
AREA) AREA)

U.S. Patent Aug. 14, 2007 Sheet 25 of 56 US 7,257,666 B2

F.G. 14
BCCK3 BLOCK4

(BACKUP (EVACUATION (UNABLE TO
AREA) AREA) BE USED)

F.G. 14M
BLOCKO BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

ERASABLE ERASAB

RASAB

(EVACUATION (UNABLE TO
AREA) BE USED)

FIG. 4N
BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

(BACKUP
AREA)

U.S. Patent Aug. 14, 2007 Sheet 26 of 56 US 7.257,666 B2

FG.14O
BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCK6

ERASABLE

ERASABLE

(UNABLE (EVACUATION (UNABLE
TO BE AREA) TO BE
USED) USED)

FIG.14P
BOCKD BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

(BACKUP (UNABLE (UNABLE (EVACUATION
AREA) TO BE O BE AREA)

USED) USED)

U.S. Patent Aug. 14, 2007 Sheet 27 of 56 US 7.257,666 B2

F.G. 4O
BLOCK4 - BLOCK5 BLOCKS

BACKUP UNABLE (UNABLE (EVACUATION
SS (BE TO BE AREA)

USED) USED)

BLOCKO BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

EACKUP UNABLE (UNABLE (EVACUATION SS (; BE TO BE AREA)
USED) USED)

U.S. Patent Aug. 14, 2007 Sheet 28 of 56 US 7,257,666 B2

FIG.15

S1
ERASABLE SECTORS YES
N BACKUP AREA?

LOCATING WRITE POINTER AT FIRST SECTOR OF
BACKUP AREA

DAAN BACKUP AREA?

ASSIGNING BACKUP AREATO EVACUATION AREA

NO ERASABLE SECOR

YES

SELECTING BLOCKWTH ARGEST NUMBER OF S6
ERASABLE SECTORS AS EVACUEE

MOVING DATA S7

ERASENGEVACUEE BLOCK S8

ASSIGNING EVACUEE BLOCK TO EVACUATION AREA S

NUMBER OF
DATAN BACKUP AREA LARGER

AN NUMBER OF FREE SECTORSOUTSD
EVACUATION AREA

ABOR

YES

U.S. Patent Aug. 14, 2007 Sheet 29 Of 56 US 7,257,666 B2

FG.16A
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

WRE FLAG EXECUNG
FAG

F.G. 6B
BLOCK BLOCK2 BOCK3 BOCK4 BLOCKS BLOCKS

WRTE FLAG EXECUTING
FAG

FG.6C
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

WRITE FLAG EXECUTNG
FLAG

U.S. Patent Aug. 14, 2007 Sheet 30 of 56 US 7,257,666 B2

FIG.16D
BLOCK1 BLOCK2 BLOCK3 BLOCK4. BLOCK5 BLOCKS

WRITE FLAG EXECUTENG
FLAG

FIG.16E
BLOCK1 BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

WRITE FLAG EXECUTING
FLAG

FIG.16F
BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCKS BLOCKS

WRITE FLAG EXECUTING
FLAG

U.S. Patent Aug. 14, 2007 Sheet 31 of 56 US 7,257,666 B2

FIG.17

ERASING METHOD

S1

-signanese- YES

WRITING EXECUTENG FLAG ENTO LAST BLOCK
TO BE PROCESSED

CLEARNG PROCESS TARGET S3

S4
WRITE FLAG

IN PROCESS TARGET BLOCK

ERASING PROCESS TARGET BLOCK

FORWARDING PROCESS TARGET TO NEXT BLOCK S6

S7 =EEggenessB
NO

END

US 7,257,666 B2 Sheet 32 of 56 Aug. 14, 2007 U.S. Patent

• • • • • • • • •2292

?ST HETTIOHINOO

HELLflc|WOO LSOH

US 7,257,666 B2 Sheet 33 of 56 Aug. 14, 2007 U.S. Patent

************ --~~~ ~~- - - - - - - - - - - - - - ---- _ _ _ _ _ _ __ __. _ _

ß-?’ HOLOES ß-8 HOLOES B-Z HOLOES 88- ? HOLOES

********* - - - - - - - - - - ~- - ----------._. __ _ _ _ _ _ _ _• • • • != !=);

| | | | | [| |-

-

- - - = = = = = - - - - -********** --~~~~ ------- ~- - - - - - - ----.--._. ______..._

8-?7 HO LOBS ß-9 HO LOBS ß- ? HOLOES

US 7.257,666 B2

- as as a

?~~~~ ~~~~~ ~~~~ - - - - - - - - - - - - -------------- __ _ _ _ _ _ _ _..;--------I

|-Q2

P

WOHdBB

U.S. Patent Aug. 14, 2007 Sheet 35 of 56 US 7,257,666 B2

FG.2OA

231

DATABUS

SECTOR
CONVERSION
UNIT Hackup SECTOR 1-A

SECTOR 2-A

SECTOR 3-A

SECTOR 4-A

U.S. Patent

SECTOR
NO.

UNIT

SECTOR
CONVERSION

Aug. 14, 2007

231

DATABUS

Sheet 36 of 56 US 7,257,666 B2

FG.20B

SECTOR-A

BACKUP 2 DEFECTIVE

SECTOR 2-A

SECTOR 3-A

U.S. Patent Aug. 14, 2007 Sheet 37 of 56 US 7,257,666 B2

261 25
SECTOR rus

BACKUP BLOCK

BACKUP BLOCK
BACKUP 2A

BACKUP 28

BLOCK 1

sector isectoric sector
BLOCK2
SECTOR 4-N-SA

SECTOR 4-N-SB

SECTOR 4-SC BACKUP 2C

SECTOR 4-6D BACKUP 2D

SECTOR
CONVERSION
UNIT

A

SECTOR 4-6

U.S. Patent Aug. 14, 2007 Sheet 38 of 56 US 7,257,666 B2

FIG 21B

261

SECTOR 1-3

SECTOR
CONVERSION
UNT

DEFECTIVE BLOCK

DEFECTIVE
SECTOR 1 -3B

SECTOR 1 -3C

SECTOR 1 -3D
A

BLOCK2

Heroes

ECTOR ru-3A
SECTOR 1 -3B

SECTOR 1 -3C

SECTOR 1 -3D

SECTOR 4-6

SECTOR 4-6C

SECTOR 4-6D

U.S. Patent Aug. 14, 2007 Sheet 39 of 56 US 7,257,666 B2

SECTOR 1 -3
SECTOR
CONVERSION
UNIT SECTOR 4-6

SECTOR4-N-SB

SECTOR4-N-SD

U.S. Patent Aug. 14, 2007 Sheet 40 of 56 US 7,257,666 B2

FG.22B

261

SECTOR 1-3

SECTOR
CONVERSION
UNIT

sectoric sectors
SOCK2

SECTOR 4-6B

SECTOR 4-SC

SECTOR 4-6D

SECTOR 4-6 DEFECTIVE

BACKUP B

BACKUP C

BACKUP D

U.S. Patent Aug. 14, 2007 Sheet 41 of 56 US 7,257,666 B2

FIG.23A

261 25
SECTOR -3

SECTOR -3A BACKUP A

SECTOR 1 -3B BACKUP 1B

SECTOR 1 N-3C BACKUP 1C

SECTOR N-3D BACKUP D

BACKUP BLOCK2
BACKUP 2A

BACKUP 2B

SECTOR
CONVERSION
UNIT

A

SECTOR 4-6

BLOCK2
SECTOR 4-SA

SECTOR 4-6B

B

SECTOR 4-6C BACKUP 2C

SECTOR4-N-6D BACKUP 2D

us so uses as as o as as as up area sess so up as as a hous s as a mosa in p as as we as a uses as a s.

U.S. Patent Aug. 14, 2007 Sheet 42 of 56 US 7,257,666 B2

FIG.23B

261 25

CTV BLOCK DEF5 E
SECTOR 1 -3A

SECTOR 2-3B

SECTOR 2-N-3C

SECTOR 2-3D

BLOCK

A

SECTOR 4-6C
SECTOR 4-N-SD

U.S. Patent Aug. 14, 2007 Sheet 43 of 56 US 7,257,666 B2

FG.24A

REWRITING PROCESS

REGUEST FROM HOST COMPUTER FOR S1
WRITING OF SECTOR ATA

CPU22 RECOGNIZING FROMMESSAGE S2
SENT BY CONTROLLERLS 2 THAT THERE
IS RECUEST FOR WRITING SECTOR DATA

CPU 22 READING EEPROM 26 AND DENTIFYING S3
DESTINATION ADDRESS OF SECTOR DATA

CPU 22 ACCESSING FLASH MEMORIES 25- S4
TO 25-5 TO CHECK IF THERE IS SECTOR
DATA AREADY WRITTEN

S5
NO-SECTOR DATA ALREADY WRITTEN

YES

CPU22 ACCESSING EEPROM26 TO GET DATA S6
INDICATING LOCATION OF ANOTHER SECTOR
USED FOR WRITING SECTOR DATA

ERASING PARTNENT DATAN FLASH MEMORY S7

U.S. Patent Aug. 14, 2007 Sheet 44 of 56 US 7,257,666 B2

FG.24B

TRANSFERRING DATA FROM
HOST COMPUTER TO SRAM S8
23, AND WAITING FOR
TRANSFER TO END

CPU22 SENDING MESSAGE OF
WRITING SECTOR DATA TO
CONTROLLER LS 21, WHICH
THEN WRESSECTOR DATA
FROM SRAM 23 TO FLASH
MEMORY

S9

CPU22 RECEIVING MESSAGE S10
OF COMPLETION OF WRITING
SECTOR DATA FROM
CONTROLLER LS 21

REWRITE DATAN EEPROM
26 TO CHANGE SECTOR
ADDRESS

ERROR IN WRITING2

ALTERNATE
SECTOR NEXISTENCE

U.S. Patent Aug. 14, 2007 Sheet 45 of 56 US 7.257,666 B2

FIG.24C

ANY FLASRNS
EMORY IN THE PROCESS OF

BEING ERASED?
NO

S15
WANG FOR ERASING TO
FINISH, AND WRITING
SECTOR DATA INTO SECTOR
JUST ERASED

S16
SENDINGERROR MESSAGE
TO HOST COMPUTER

S17

YES

HOST COMPUTER SENDING
COMMAND FOR ANSFERRING
DATA IN FLASH MEMORY TO
ANOTHER MEMORY STORAGE
AND REWRITING EEPROM 26

MEMORY DEVICE MODIFYING IS 18
EEPROM26 IN RESPONSE TO
COMMAND FROM HOST
COMPUTER, MAKING MORE
THAN ONE SECTOR AVAILABLE
FOR ONE LOGICAL SECTOR

END

U.S. Patent Aug. 14, 2007 Sheet 46 of 56 US 7.257,666 B2

FG25A

SECTOR O

301 3O2 --

DECODED
ADDRESS OF
OOOOH

DECODED
ADDRESS OF
SECTOR O

SECTOR O

8888H OOOOH

FIG.25C

301 302 --

DECODED
ADDRESS OF
2222H

DECODED
ADDRESS OF
SECTOR O

2222H 8888H

U.S. Patent Aug. 14, 2007 Sheet 47 of 56 US 7,257,666 B2

FIG.26

BLOCK BLOCK2 BLOCK3 BLOCK4 BLOCK5 BLOCKS

ERASABLE ERASABLE ERASABLE

ERASABLE ERASABLE

E C RASABLE

ERASABE

(EVACUATION
AREA)

U.S. Patent Aug. 14, 2007 Sheet 48 of 56 US 7,257,666 B2

FIG.27

DATA PROCESSENG METHOD

SENDING SIZE OF DATA TO BE WRT TEN S1
TO MEMORY DEVICE TO OBTAN LENGTH
OF TIME NECESSARY FOR WRITING

OBTANNGELECTRIC POWER TO BE S2
CONSUMED FOR WRITING BY MULTIPLYING
CONSUMED ELECTRIC POWER PER HOUR
WITH LENGTH OF TIME NECESSARY FOR
WRNG

AVAILABLE
ELECTRIC POWER CARGER THAN ELECTRIC

POWER TO B5 CONSUMED
NO

countER
MEASURE

YES

WRITING DATA INTO MEMORY S4

ACTUAL TIME
LENGTH TAKEN TO WRITE DATA EXCEEDING

ESTMATE OF TIME
LENGTH2

YES

COUNTER
MEASURE

WRITING PROCESS FINISHED?

YES

U.S. Patent Aug. 14, 2007 Sheet 49 of 56 US 7.257,666 B2

FG.28A

Z Z 57bses 5 b3 be b1 5.

FIG.28B

bO FLAG STATUS
b4
bX-----

bO OF PERMANENT HIGH LEVEL

b4 OF PERMANENT HIGH LEVEL

U.S. Patent Aug. 14, 2007 Sheet 50 of 56 US 7.257,666 B2

FG.29A

FLAG REGISTER 1
Z b7 be b5b4 b3b2b1 56

FG.29B

FLAG REGISTER 2

53 b1 56% b7 b5b5b4 b3%b1 55%

FG.29C

bO OF FLAG REGISTER FLAG STATUS
bO OF FLAG REGISTER 2
b2 OF FLAG REGISTER 2

US 7.257,666 B2 U.S. Patent

US 7,257,666 B2 U.S. Patent

US 7,257,666 B2
1.

METHOD OF WRITING, ERASING, AND
CONTROLLING MEMORY FOR MEMORY

DEVICE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of application Ser. No.
10/446,810 filed May 29, 2003, now U.S. Pat. No. 6,766,
409, which is a divisional of application Ser. No. 09/688,858
filed Oct. 17, 2000, now issued as U.S. Pat. No. 6,584,579,
which is a divisional of application Ser. No. 09/385,998 filed
Aug. 30, 1999, now issued as U.S. Pat. No. 6,161,163, which
is a divisional of application Ser. No. 08/912,692 filed Aug.
18, 1997, now issued as U.S. Pat. No. 5,983,312, which is
a divisional of application Ser. No. 08/292.213 filed Aug. 19,
1994, now issued as U.S. Pat. No. 5,802,551.

This application is related to application Ser. No. 09/010,
795 filed Jan. 22, 1998, now issued as U.S. Pat. No.
6,125,424.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to a method of controlling

the writing and erasing of information in flash memories and
the like used as an external storage device for personal
computers. This type of memory is incapable of having
information written over existing information.

2. Description of the Prior Art
In recent years, there has been wide attention on external

storage devices which use flash memory. The flash memory
does not require a backup power Supply because of its
non-volatile characteristic, can be rewritten electrically, and,
also, is inexpensive. However, the flash memory has short
comings as follows.

First, it is impossible to write information over existing
information. Also, it is impossible to erase information by
the unit of byte, but possible by the unit of sector, block, or
chip. Thus, a rewrite can not be done byte by byte as in the
conventional memory so that the rewriting speed as well as
the erasing speed is relatively slow compared to the reading
speed.

Second, there is a limit in the number of erasures that the
flash memory can tolerate, and a typical flash memory can
not be used after a hundred thousand to one million erasures.
Thus, areas which experience a larger number of erasures
become defective faster than other areas so that the total area
available for storing information decreases unless the num
ber of erasures are roughly averaged across all the sectors or
all the blocks, whichever is used as the unit of erasing.

Since the flash memory has shortcomings as listed above,
various counter measures should be taken in using the flash
memory, which range from preparing an evacuation area and
evacuating data at the time of rewriting, providing a control
table for controlling the writing and erasing of information,
to preparing a way to save the situation when defective
sectors or defective blocks are generated.
As described above, the flash memory has such advan

tages as a non-volatile characteristic and electrical rewrite
capability, but also has many inadequacies as well, so that
those inadequacies must be surmounted before using it for a
practical purpose.

Accordingly, there is a need in the flash memory field for
a method of writing, erasing, and controlling a memory so
that those shortcomings are obviated to facilitate use of flash
memory for practical purposes.

10

15

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

Accordingly, it is a general object of the present invention
to provide a method of writing, erasing, and controlling a
flash memory, which method satisfies the need described
above.

It is another and more specific object of the present
invention to provide an efficient method of writing erasing,
and controlling a memory for a memory device whose
memory can not write information over existing information
and can not erase information by the unit of byte.

It is yet another object of the present invention to provide
a method of writing, erasing, and controlling the memory,
which method can average the numbers of erasures all over
the memory area.

In order to achieve these objects, a method of writing and
erasing data in a memory device with a memory area having
a plurality of blocks each with a plurality of sectors, with the
memory device erasing data by the unit of one block,
comprises the steps of selecting a first predetermined num
ber of blocks from a top of a first list in which the blocks are
ranked in a descending order of a number of necessary
sectors in each of the blocks, selecting a second predeter
mined number of blocks from a top of a second list in which
the blocks are ranked in a descending order of a number of
necessary sectors in each of the blocks, and evacuating the
necessary sectors from the first predetermined number of
blocks and a second predetermined number of blocks to
other blocks which have free sectors.

It is still another object of the present invention to provide
a method of writing, erasing, and controlling the memory,
which method can increase its writing speed.

In order to achieve this object, a management method of
writing data in a memory device with a memory area having
a plurality of sectors unable to be overwritten, with a
memory device erasing data by the unit of one sector,
comprising the steps of providing at least two sectors for
each sector number, writing data into one of the two sectors,
the noted on being a free sector, and erasing data in the other
sector of the two sectors simultaneously with the step of
writing data in the other sector.

It is a further object of the present invention to provide a
method of writing, erasing, and controlling the memory, by
a method which can increase the reliability of the memory
management.

It is a yet further object if the present invention to provide
a method of writing, erasing, and controlling the memory, by
a method which can provide a counter measure when
defective areas are generated.

In order to achieve those objects, a method of managing
a memory device with a memory area having a possibility
that part of the memory area is destroyed, and having a
decoderable to be rewritten for indicating locations where
data is stored in the memory area, comprising the steps of
arranging two decoders in a series to form the decoder, and
rewriting at least one of the two decoders when part of the
memory area or part of the two decoders is destroyed, so that
this part of the memory area or this part of the two decoders
is not accessed.

Other objects and further features of the present invention
will be apparent from the following detailed description
when read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a structure of a
memory device serving as a basis for the present invention;

US 7,257,666 B2
3

FIG. 2 is an illustration showing contents of an SRAM of
the memory device of FIG. 1;

FIGS. 3 to 4 are illustrations showing contents of flash
memories of 25-1 to 25-5 of the memory device of FIG. 1.

FIGS. 5 to 9 are a flow chart showing a writing process
according to the present invention;

FIGS. 10A to 10J are illustrative drawings showing an
embodiment of averaging the numbers of erasures according
to the present invention;

FIG. 11 is a flow chart showing a process of averaging the
numbers of erasures;

FIGS. 12A to 12L are illustrative drawings showing an
embodiment of erasing unnecessary data according to the
present invention;

FIG. 13 is a flow chart showing a process of erasing
unnecessary data;

FIGS. 14A to 14R are illustrative drawings showing an
embodiment of creating a free area according to the present
invention;

FIG. 15 is a flow chart showing a process of creating a
free area;

FIGS. 16A to 16F are illustrative drawings showing an
embodiment of a erasing process according to the present
invention;

FIG. 17 is a flow chart showing an erasing process;
FIG. 18 is a block diagram of a system structure of an

embodiment for enhancing a writing speed according to the
prevent invention;

FIGS. 19A and 19B are illustrative drawings showing a
first embodiment of enhancing a writing speed according to
the present invention;

FIGS. 20A and 20B are illustrative drawings showing a
second embodiment of enhancing a writing speed according
to the present invention;

FIGS. 21A and 21B are illustrative drawings showing a
third embodiment of enhancing a writing speed according to
the present invention;

FIGS. 22A and 22B are illustrative drawings showing a
fourth embodiment of enhancing a writing speed according
to the present invention;

FIGS. 23A and 23B are illustrative drawings showing a
fifth embodiment of enhancing a writing speed according to
the present invention;

FIGS. 24A to 24C are a flow chart showing a process of
enhancing a writing speed;

FIGS. 25A to 25C are block diagrams showing embodi
ments of doubling a decoding unit for address conversion
according to the present invention;

FIG. 26 is an illustrative drawing used for describing an
embodiment of estimating the length of time required for
writing data;

FIG. 27 is a flow chart showing a process of estimating the
length of time required for writing data;

FIGS. 28A to 28C are illustrative drawings showing a first
embodiment of a flag check process;

FIGS. 29A to 29C are illustrative drawings showing a
second embodiment of a flag check process;

FIG. 30 is an illustration showing a structure of a memory
area for an embodiment of reducing the size of the man
agement table according to the present invention; and

FIGS. 31A to 31E are illustrative drawings showing an
embodiment of reducing the size of a management table.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the rest of the description, the following topics will be
described in the following order: A. Structure of System
Serving as Basis for Present Invention, B. Writing/Erasing
Process for Data Evacuation and Free Area Creation, C.

10

15

25

30

35

40

45

50

55

60

65

4
Enhancement of Erasing Process, D. Enhancement of Writ
ing Speed and Allocation of Backup Areas in Case of
Defective Sectors, E. Enhancement of Reliability of Decod
ing Unit for Address Conversion, F. Process of Estimating
Writing Time, G. Enhancement of Reliability of Flag Check
Process, and H. Memory Management Method of Reducing
Size of Management Table.
A. Structure of System Serving as Basis for Present Inven
tion

FIG. 1 is a block diagram showing the structure of a
memory device 20 which uses flash memories and serves as
a basis for the present invention.

In FIG. 1, a memory device 20 such as a memory card
comprises a control LSI (Large Scale Integrated Circuit) 21,
a processor 22 for controlling the rewriting and erasing of
data, a SRAM (Static Random Access Memory) 23 for
storing various types of tables and serving as a data evacu
ation buffer at the time of writing data, a clock generator 24,
and flash memories 25-1 to 25-5. The memory device is
connected to a host computer.

In FIG. 1, when the data transferred from the host
computer to the SRAM 23 is written to the flash memories
25-1 to 25-5, the data should be written to a vacant area
because the flash memories 25-1 to 25-5 can not write
information over existing information. Thus, such a measure
should betaken as putting up an erase flag on old data whose
new data has been written into a vacant area. When erase
flags are used, contents of the memory are cleaned up and
put in order by evacuating data having no erase flags to the
evacuation area of the SRAM 23 by the unit of a predeter
mined size, erasing the areas of the memory to which data
is to be written, and writing the evacuated data back to the
memory.

FIG. 2 shows memory contents of the SRAM 23. As
shown in FIG. 2, data stored in the SRAM 23 are as follows:

(1) Table for Erasing Times
This holds the number of erasures for each block of the

flash memory.

(2) Table for Number of Erasable Sectors
This holds the number of erase flags (i.e., the number of

erasable sectors) for each block.

(3) Write Pointer
This holds the chip No., the block No. and the sector

address No. of the starting point to write data into the flash
memory.

(4) Work Block No.
This holds the, chip No. and the block No. indicating the

current work-block No.

(5) Cleaning Up Pointer
This holds the chip No., the block No., and the sector

address No. of the place which is being cleaned up.

(6) Rewrite Flag
This shows whether the data to be written is brand new or

replacing corresponding old data.

(7) Number of Writing Times
This holds the number of times that writing is carried out

during the time of cleaning up.

(8) Evacuation Counter
This holds the number of sectors evacuated at the time of

cleaning up.

US 7,257,666 B2
5

(9) Number of Chips
This holds the number of the flash chips in the memory

card.

(10) Sector Map Table
This holds chip numbers, block numbers, and sector

address numbers for logical address conversion.
FIGS. 3 and 4 show memory contents of the flash memory

25-1 to 25-5, where each sector stores the management
information and data shown in the following as (1) through
(5). In this example, there are 126 sectors, each of which
stores the management information and data of (1) through
(5), and, also, the management information of (6) through
(14) is stored in the area entailing the 126th sector.
(1) Defect Flag

This shows the status of the sector, and is marked when
the sector becomes defective and cannot be used any more.
(2) Erase Flag

This shows the data status of the sector and is marked
when data of the sector becomes obsolete, for example, after
a rewrite.

(3) Logical Address
This shows the logical address of the sector.

(4) Data
This holds data of the sector.

(5) Check Sum
This holds the checksum of data written in the sector.

(6) Defective Sector Memory
This shows defective sectors of the block in the process of

being cleaned up.
(7) Cleaning Up Target Block Erasing Times

This shows how many times the block in the process of
being cleaned up is erased at the time of cleaning up.
(8) Erasing Times

This shows how many times the block is erased.
(9) Evacuation Block No.

This holds the chip No. and the block No. of the block
whose data is evacuated.

(10) Start Erasing
This flag is marked at the beginning of erasing the block

in the process of being cleaned up.
(11) End Erasing

This flag is marked at the end of erasing the block in the
process of being cleaned up.
(12) All Erase Target

This flag is marked when this block is the target of “all
erase’.

(13) Free Block
This flag is marked when there is data in the block.

(14) Block Status
This shows the status of the block, and is marked when the

block becomes defective and cannot be used any more.
FIGS. 5 to 10 are a flow chart of a process of the processor

22 in writing data to the flash memories 25-1 to 25-5. With
reference to FIGS. 5 to 10, the writing operation will be
described in detail.
At a step S1 of FIG. 5, Rewrite Flag of the SRAM 23

which shows the data to be written is brand-new or replacing
the old data is set to 0. At a step S2, it is determined whether
cleaning up is underway. If it is not, go to a step S5, where

10

15

25

30

35

40

45

50

55

60

65

6
Number of Writing Times of the SRAM 23 showing the
number of times that writing is carried out during the time
of cleaning up is set to 0, and, then, a step S7 is the next step.

If cleaning up is underway, go to a step S3, where Number
of Writing Times is added 1. At a step S4, a check is made
if Number of Writing Times is equal to 6. If it is, go to a step
S6, where Number of Writing Times is set to 1. If it is not,
go to the step S7.
The process described above makes Sure that cleaning up

is not carried out when Number of Writing Times is from 2
to 5, but is carried out only when Number of Writing Times
is 1, so that cleaning up occurs after five times writing data
to the flash memory to avoid excessive occurrence of
cleaning up.
At the step S7, a check is made whether the logical

address of the data to be written exceeds its limit, and if it
does, error handling should be carried out.

If the logical address does not exceed its limit, go to a step
S8, where a check is made if there is old data, i.e., if the data
to be written is brand-new or replacing the old data. If it is
not brand-new, the Rewrite Flag of the SRAM 23 is set to
1 at a step S9, and, then, a step S11 is the next step to
proceed. If the data to be written is, brand-new, the Rewrite
Flag of the SRAM 23 is set to 0 at a step S10, and, then, the
step S11 is the next step.
At the step S11, data is transferred from the host computer

to the SRAM 23, and a check is made at a step S12 whether
an error occurred during the transfer. If it did, error handling
must be carried out. If there is no error, go to a step S13 of
FIG. 6, where Rewrite Flag is checked to see if the data to
be written is brand-new. If it is not brand-new, i.e., the data
is to be rewritten, Erase Flag is marked at the sector holding
the old data at a step S14, and, then, a step S15 is the next
step.
At the step S15, a check is made whether Number of

Writing Times of the SRAM 23 is 1. If it is 1, the flash
memory is cleaned up at the steps following the step S15. If
Number of Writing Times is not 1, go to a step S46 of FIG.
9 and the data stored in the SRAM 23 is written into the flash
memory.

At a step S16, Evacuation Counter of the SRAM 23,
which holds the number of sectors evacuated at the time of
cleaning up, is set to 0. At a step S17, a check is made
whether a Cleaning Up Pointer indicating the address of the
sector being cleaned up is Smaller than 126. If it is not
smaller than 126, cleaning up is finished, and a step S38 of
FIG. 8 is the next step. If Cleaning Up Pointer is smaller than
126, proceed to a step S18, where a check is made if
Cleaning Up Pointer is 0. If it is not 0, go to a step S22.

If Cleaning Up Pointer is 0, the target of cleaning up is
selected by using the number of erasures and erasable
sectors of each block obtained from the tables of the SRAM
23. At a step 20, the chip No. and the block No. of the target
of cleaning up is written into Evacuation Block No. of the
Work Block in the flash memory.
At a step S21, a check is made if there occurred an error

in writing the chip No. and the block No., and if it did, error
handling must be carried out. If no errors occurred, go to the
step S22.
At the step S22, a search is made for data to be evacuated.

That is, if Erase Flag of the current sector is marked, go to
the next sector. If there is no logical address written, Erase
Flag is marked at the current sector, and the next sector is
searched for. If the logical address is anomalous, Erase Flag
and Defect Flag are both marked, and the next sector is
searched for.

US 7,257,666 B2
7

At a step S23 of FIG. 7, a check is made whether there has
been an error. If not, it is checked whether Cleaning Up
Pointer indicates the 126th sector, and if it does, cleaning up
is finished, and a step S38 of FIG. 8 is the next step.

If Cleaning Up Pointer is not 126, proceed to a step S2.5,
where data to be evacuated is moved from the flash memory
to the SRAM 23. At a step S26, it is checked whether the
check sum generated corresponds to Check Sum of the
sector in the flash memory (refer to FIG. 3). If it does not
correspond, a check is made at a step S27 whether the check
sum is FFh.

If the checksum is not FFh, Check Sum is set to FFh and
Defect Flag is marked at a step S28 for the sector of the data
attempted to be evacuated, and, a step S29 is the next step
to proceed. At the step S29, a check is made if there occurred
an error, and if not, proceed to a step S30.

If the check sum corresponds to Check Sum at the step
S26 or turns out to be FFhat the step S27, go to the step S30.
At the step S30, a search for a write-enable sector is started
from the sector indicated by Write Pointer. Then, at a step
S31, it is checked whether there is a write-enable sector. If
there is not, error handling must be carried out. If there is a
write-enable sector, go to a step S32, where the data stored
in the SRAM 23 is moved to the flash memory.

At a step S33, a check is made whether an error occurred
in writing the data, and if it did, go back to the step S30. If
no errors occurred, go to a step S34 of FIG. 8, where Erase
Flag of the sector whose data has been evacuated is marked.
At a step S35, a check is made whether an error occurred

in writing Erase Flag. If no error occurred, Sector Map Table
is updated at a step S36, and Evacuation Counter is incre
mented by 1 in the SRAM 23.

Then, at the step S37, it is checked whether evacuation
has occurred a predetermined number of times (60 times in
the preferred embodiment). If it did, stop the cleaning up of
the flash memory to go to the step S38. If the number of
times of evacuation is less than 60, go back to the step S22
of FIG. 6 to repeat the process described above.

If Evacuation Counter is 60 or Cleaning Up Counter turns
out to be no less than 126 at the step S17 of FIG. 6, a check
is made at the step S38 whether Evacuation Counter is 0.

If Evacuation Counter is 0, i.e., if Cleaning Up Counter is
no less than 126 and there has been no evacuation, go to a
step S39, and processes like writing Defect Flags to defec
tive sector memories are carried out at the Successive steps
starting from the step S39.

In other words, if Evacuation Counter is 0, it means that
the processing time was short enough to carry out pending
processing, so that processes like writing Defect Flags to
defective sector memories are carried out at the steps start
ing with S38. If Evacuation Counter is not 0, go to a step S46
of FIG. 9. Moving the data in the SRAM 23 to the flash
memory and the following processes are carried out from
that point.

At the step S39, information on Defect Flags of the
evacuated block is written into Defect Sector Memory (FIG.
4) and Erasing Times of the evacuated block is written into
Cleaning Up Target Block Erasing Times (FIG. 4) both at the
block of the evacuation destination (Work-Block). At a step
S40, a check is made whether an error occurred in writing
those. If no error occurred, go to a step S41, where the
cleaned up block is erased. At a step S42, a check is made
whether an error occurred in erasing the block, and if there
is no errors, go to a step S43 of FIG. 9, where information
on Defect Flags stored in Defect Sector Memory is written

10

15

25

30

35

40

45

50

55

60

65

8
back to the erased block and Cleaning Up Target Block
Erasing Times plus one is written into Erasing Times of the
erased block.
At a step S44, the number of erasures of the erased block

is incremented by 1 in Table for Erasing Times, and the
number of erasable sectors is set to 0 in Table for Number
of Erasable Sectors. At a step S45, Cleaning Up Pointer is
copied to Work Block No., and, then, set to 0.

Then, at the step S46, a search for a write-enable sector is
started from the sector indicated by Write Pointer. At a step
S47, a check is made whether there is a write-enable sector.
If there is, go to a step S48, where the data stored in the
SRAM 23 is moved to the flash memory. At a step S49, it is
checked if an error occurred in writing the data.

If an error occurred, go back to the step S46, and if it did
not, go to a step S50. At the step S50, a check is made
whether Rewrite Flag is 1, i.e., whether the data written is
brand-new. If Rewrite Flag is 1, a number in Table for
Number of Erasable Sectors (FIG. 2) is added 1 at a step S51
for each sector into which Erase Flag was written. The step
S52 is the next step to proceed.

In the case that Rewrite Flag turns out to be 0 at the step
S50, Sector Map Table (FIG. 2) is updated at the step 52, and
a search is made for a write-enable sector by starting from
the sector indicated by Write Pointer in preparation for the
next writing process. This is the end of the process.
B. Writing/Erasing Process for Data Evacuation and Free
Area Creation
As described above, the flash memory has a limit in the

number of times that erasing can be carried out, so that the
numbers of erasures need to be averaged across the memory
area for an effective use of the entire memory.

Also, it is not possible to write data over existing data So
that data for rewrite needs to be written into new sectors
while the old data is marked by flags and the like so as to be
erased later at a convenient time.

Thus, it is necessary to set aside free memory areas for
new data to be written by erasing old erasable data in the
memory. Also, when the free areas become dysfunctional
due to defective blocks and the like, it is necessary to take
a counter measure to create new free areas.
The processing of memory areas according to a preferred

embodiment of the present invention will be described, such
as, a counter measure for creating free areas in the case of
defective blocks.

(1) First Embodiment (Averaging of Number of Erasing
Times)
As described above, the flash memory has a limit in the

number of times that erasing can be carried out, so that the
number of erasures need to be averaged across the memory
area for an effective use of the entire memory.

This embodiment shows a method that can reduce a
variation in the number of erasures across the memory area
without explicitly taking into account those numbers. In this
embodiment, with a memory in which writing can be done
by the unit of sector and erasing can be done by the unit of
block, the numbers of erasures can be averaged over by
moving sectors to new blocks from blocks with a relatively
large number of erasable sectors and blocks with a relatively
small number of erasable sectors.

This embodiment will be described in the following.
FIGS. 10A to 10J show a writing process of this embodi

ment and an example of writing logical sectors A to O into
a flash memory which has six blocks each with six sectors.

Also, in the following description, M blocks (2 in this
embodiment) are evacuated when a number of blocks having

US 7,257,666 B2

free sectors becomes N (2 in this embodiment), and m block
in a descending order of the number of erasable sectors (1
block in this embodiment) and in block in an ascending order
of the number of erasable sectors (1 block in this embodi
ment) are selected and evacuated simultaneously.

In evacuating blocks, as described above, sectors with no
Erase Flag attached are moved to the SRAM 23 of FIG. 1,
and, then, are moved from the SRAM 23 to new blocks.

In FIG. 10A, sectors A, B, C, D, E, F, G, H, and I are
written into blocks 1 and 2 successively by starting from the
first sector.

In FIG. 10B, the sectors C and D are written again. Since
the same sectors C and D already exist, Erase Flags are
marked at the existing sector C and D, and the new sector C
and D are written into the places following the sector I.

Then, in FIG. 10C, sectors J, K, L, M, N, and O are
written into the blocks 3 and 4. Since there are no existing
sectors identical to the sectors to be newly written, those
sectors are written into the places following the last written
SectOr.

In FIG. 10D, sectors H, I, J, K, L, M, and N are written.
Since there exist the identical sectors, Erase Flags are
marked, and the new sectors H, I, J, K, L, M, and N are
written into the places following the last entry.

In FIGS. 10E and 10F, the sectors C and D are written
again. At this time, however, as the number of free blocks is
2, an evacuation process has to take place.

For evacuation, two blocks are selected which are the
block 3 with the largest number of erasable sectors and the
block 4 with the smallest number of erasable sectors, and the
sectors of those two blocks are mixed and written into the
free blocks 5 and 6 in such a way that the sectors are
distributed evenly in each destination block.
As a result, as shown in FIG. 10F, the sector O, I, K, and

Mare written into the block 5, and the sector H, J, L, and N
in the block 6, which frees the block 3 and 4.

In FIG. 10F, the sector C and Dare written into the block
5 after putting up Erase Flags in the block 2 of the existing
sectors C and D.

In FIG. 10G, sectors H, I, and J are written. As in the
previous cases, Erase Flags are marked in the blocks 5 and
6 since there are existing sectors identical to the sectors to
be newly written. The sectors H and I are first written into
the block 6, but only two free blocks are left at this point of
time so that an evacuation process has to take place again.
As shown in FIG. 10H, two blocks are selected which are

the block 2 with the largest number of erasable sectors and
the block 6 with the smallest number of erasable sectors, and
the sectors of those two blocks are mixed and written into
the free blocks 3 and 4 in such a way that the sectors are
distributed evenly in each destination block.

Then, as shown in FIG. 101, the sector J is written. Since
there is an existing identical sector again, Erase Flag is
marked in the block 4 of the existing sector J, and the new
sector J is written into the block 3.

In FIG. 10J, sectors E, F, and G are written. As in the
previous cases, there are identical sectors so that Erase Flags
are put up in the block 1 and 3. Then, the sector E, F, and G
are written into the block 3 and 4.

FIG. 11 is a flow chart of the process of this embodiment,
which will be described below.

At a step S1, data is received from the host computer. At
a step S2, a check is made whether the number of blocks
having at least one free sector is less than N. If it is not less
than N, go to a step S7. If it is less than N. m blocks are
selected as an evacuee at a step S3 in a descending order of
the number of erasable sectors, and n blocks are also

10

15

25

30

35

40

45

50

55

60

65

10
selected as an evacuee at a step S4 in an ascending order of
the number of erasable sectors.
At a step S5, data in the evacuee blocks are moved to free

blocks. A different block is selected as a destination block
each time one sector is written, and the M blocks form each
rotation for M sectors so that the M+1th sector is written into
the first block of the second rotation. At a step S6, the blocks
which are evacuated are erased.
At the step S7, if there are existing logical sectors

identical to the logical sectors to be newly written, Erase
Flags are marked at the old identical sectors. At a step S8,
data received from the host computer is written into the flash
memory.

In general, there are sectors storing Such data which are
rarely rewritten as data for system programs, and sectors
storing data which are often rewritten. Thus, data evacuation
without taking this into account may lead to that the blocks
with sectors rarely rewritten end up having a small number
of erasures.

In this embodiment, as described above, blocks with a
large number of erasable sectors (i.e., blocks with a large
number of sectors often rewritten) and blocks with a small
number of erasable sectors (i.e., blocks with a large number
of sectors rarely rewritten) are selected for evacuation, and
the sectors from those blocks are mixed to be distributed to
new blocks. This results in that each block has a mixture of
sectors often rewritten and sectors rarely rewritten so that
the numbers of erasures across blocks can be averaged over.

This embodiment carries out a writing process by using
the method described above so that a variation in the
numbers of erasures across the memory area can be reduced
without explicitly taking into account those numbers, which
leads to a longer life of Such memories as the flash memory
having a limited number of tolerable erasures. Also, since a
variation in the numbers of erasures can be reduced without
counting those numbers, it is possible to manage the
memory space without setting aside a memory area for a
counting use.

(2) Second Embodiment (Creation of Free Areas by Erasing
Erasable Data)
As described above, flash memories cannot write data

over existing data before erasing the existing data. Thus, it
is required to mark Erase Flags at the existing identical
sectors, which should be erased later on at a time of
convenience.

This embodiment shows area processing for erasing out
erasable data with Erase Flags from a memory. This area
processing can be carried out during a free time interval
among other processes so that free areas can be set aside
beforehand to reduce the processing time required for writ
1ng.

FIGS. 12A to 12L show a writing/erasing process of this
embodiment, which will be described below. First of all, this
embodiment has the following as its basis.

1. There are six blocks each with six sectors Reading/
writing is carried out by the unit of sector and erasing by unit
of block.

2. The method of writing is of add-on writing, i.e., when
writing a logical sector having the same address as that of
logical sector existing in the memory, the physical sector of
the existing logical sector is marked with Erase Flag.

3. The area for add-on writing is 5 blocks plus an
evacuation area block (blocks 1 through 6).

4. When there are writing areas any more, data in the
unerasable physical sectors of the block which has the
largest number of physical sectors with Erase Flags are

US 7,257,666 B2
11

moved to an evacuation area, and this block is erased. Then,
the block just erased is used as an evacuation area block, and
the previous evacuation area is in turn used as a writing area.
(This whole process is called evacuation process.)

5. The addresses of the sectors sent from the host com
puter are A through N.

6. When there are more than merasable sectors in a block,
this block is the target of area processing of this embodi
ment.

In FIGS. 12A to 12L, an arrow shown to the left of a block
shows the location of Write Pointer indicating the point of
writing data.

In FIG. 12A, logical sectors A through G are written.
Since there are no identical logical sectors, the logical
sectors A through G are written into the points successively
indicated by Write Pointer. In FIG. 12A, after writing the
logical sectors A through G. Write Pointer indicates the
sector following the last entry of the logical sector G.

In FIG. 12B, the logical sectors A and D through G are
written. Since there exist the identical logical sectors A, D,
E, F, and G, the logical sectors A and D through G are written
in the same manner as in FIG. 12A after putting up Erase
Flags at those identical logical sectors.

In FIG. 12C, logical sectors H through N are written.
Since there are no identical logical sectors, the logical
sectors H through N are written into the points successively
indicated by Write Pointer without taking any other action.

In FIG. 12D, the logical sectors A and G through L are
written. Since there exist the identical logical sectors A, G,
H, I, J, K, and L, the logical sectors A and G through L are
written after putting up Erase Flags at those identical logical
SectOrS.

In FIG. 12E, the logical sectors A and H through J are
written. Since there exist the identical logical sectors A, H,
I, and J, the logical sectors A and H through J are written
after putting up Erase Flags at those identical logical sectors.

In FIG. 12F, it is attempted to write the logical sectors A
and I through L. Since there are no writing areas left,
however, an evacuation process has to take place. That is,
data in the block with the largest number of physical sectors
with Erase Flag (block 3) are moved to the evacuation area
block (block 6), and the block 3 which has just been
evacuated is erased. Then, the block 3 is used as an evacu
ation area, and the previous evacuation area (block 6) is
newly used as a writing area.

FIG. 12F shows the result of the above described process.
Then, as shown in FIG. 12G, the logical sectors A and I

through L are written. Since there exist the identical logical
sectors A, I, J, K, and L, the logical sectors A and I through
L are written after putting up Erase Flags at those identical
logical sectors. At this point of time, Write Pointer indicates
the first sector of the evacuation area block (block 3).
As a result of the process described above, there are many

of the erasable sectors so that the area processing of this
embodiment is carried out.

First, by taking as a target the block (block 2) which is
located immediately before the evacuation area (block 3) in
the writing direction, an evacuation process is carried out
between the blocks 2 and 3. As a result, as shown in FIG.
12H, the block 2 becomes an evacuation area, and the block
3 has unerasable data transferred from the block 2.

Then, an evacuation process is carried out between the
blocks 1 and 2 in the same manner as above. As a result, as
shown in FIG. 121, the block 1 becomes an evacuation area,
and the block 2 has unerasable data transferred from the
block 1.

10

15

25

30

35

40

45

50

55

60

65

12
Furthermore, an evacuation process is carried out between

the blocks 5 and 1 in the same manner as above. As a result,
as shown in FIG. 12.J., the block 5 becomes an evacuation
area, and the block 1 has unerasable data transferred from
the block 5. Here, the block 6 is not a target of area
processing since the block 6 does not have erasable data.

Similarly, an evacuation process also is carried out
between the blocks 4 and 5 in the same manner as above. As
a result, as shown in FIG. 12K, the block 4 becomes an
evacuation area, and the block 5 has unerasable data trans
ferred from the block 4. At this point, the location of the
evacuation area has reached the location of the initial
evacuation area so that the process is finished.

With the process described above, erasable data is all
deleted from the memory space.
When writing the logical sectors A and H through J, as

shown in FIG. 12L, those sectors are written in the same
manner as before after putting up Erase Flags since there are
identical sectors.

FIG. 13 shows a flow chart of a process of this second
embodiment, which will be described below.
At a step S1, the block No. of the current evacuation area

is stored in a memory. At a step S2, the current evacuation
area is pointed to as a target. At a step S3, a new target is
pointed to by going backward by one block in a writing
direction.

At a step S4, a comparison is made between the target
block and the block No. stored in the memory at the step S1.
If they are the same, this is the end of the process.

If these two blocks are different, go to a step S5, where a
comparison is made between the number of erasable sectors
of the target block and a predetermined number m. If the
number of the erasable sectors is no more than m, go back
to the step S3 and repeat the above process. If the number
of the erasable sectors is more than m, go to a step S6, where
the target is selected as an evacuee. Then, at a step S7, Write
Pointer is moved to the first sector of the evacuation area.

At a step S8, data of the evacuee is moved to the
evacuation area. At a step S9, the evacuee block is erased.
At a step S10, the evacuee block is assigned to a new
evacuation area. Then, go to the step S3 to repeat the
process.

In this embodiment, area processing described above can
eliminate all the erasable data. Thus, performing this area
processing beforehand can reduce the time required for the
writing process.

Also, since the target is selected so as to move backward
in a writing direction, all the free space exists between the
evacuation area and Write Pointer indicating the point of
writing data. Thus, no matter when the process is terminated,
it is possible to write data from the point indicated by Write
Pointer. Also, the procedure required to take care of a
situation after the termination of the process can be made
minimum, and the termination of the process without going
all the way does not become a problem.

(3) Third Embodiment (Counter Measure for Creating Free
Areas)
The flash memory needs a free area in the memory space

for writing data. This embodiment shows a counter measure
for creating free areas, when free areas prepared previously
become unable to be used any more due to defective blocks
and the like.

FIGS. 14A to 14R show a process of creating free areas
according to this embodiment of the present invention, and

US 7,257,666 B2
13

this embodiment will be described by using FIGS. 14A to
14R. First of all, this embodiment has the following as its
basis.

1. There are seven blocks each with six sectors. Reading/
writing is carried out by the unit of sector, and erasing by the
unit of block.

2. The method of writing is of add-on writing, i.e., when
writing a logical sector having the same address as that of
logical sector existing in the memory, the physical sector of
the existing logical sector is marked with Erase Flag.

3. One block is set aside as a backup area (block 0) in case
of a malfunction. The area for add-on writing is 5 blocks
plus an evacuation area block (blocks 1 through 6).

4. When there are no more writing areas, data in the
unerasable physical sectors of the block which has the
largest number of physical sectors with Erase Flags attached
are moved to an evacuation area, and this block is erased.
Then, the block just erased is used as an evacuation area
block, and the previous evacuation area is in turn used as a
writing area. (This whole process is called evacuation pro
cess.)

5. The addresses of sectors sent from the host computer
are A through P.

In FIG. 14A, sectors A through G are written. Since there
are no identical logical sectors, the logical sectors A through
G are written without taking any other action.

In FIG. 14B, the logical sectors A and D through G are
written. Since there exist the identical logical sectors A, D,
E, F, and G, the logical sectors A and D through G are written
after putting up Erase Flags at those identical logical sectors.

In FIG. 14C, logical sectors H through N are written.
Since there are no identical logical sectors, the logical
sectors H through N are written without taking any other
action.

In FIG. 14D, the logical sectors A and G through L are
written. Since there exist the identical logical sectors A, G,
H, I, J, K, and L, the logical sectors A and G through L are
written after putting up Erase Flags at those identical logical
SectOrS.

In FIG. 14E, the logical sectors A and H through J are
written. Since there exist the identical logical sectors A, H,
I, and J, the logical sectors A and H through J are written
after putting up Erase Flags at those identical logical sectors.

In FIG. 14F, it is attempted to write the logical sectors A
and I through L. Since there are no writing areas left,
however, an evacuation process has to be carried out. That
is, unerasable data in the block with the largest number of
data with Erase Flags (block 3) are moved to the evacuation
area block (block 6), and the block 3 which has been just
evacuated is erased. Then, the block 3 is used as an evacu
ation area, and the previous evacuation area (block 6) is
newly used as a writing area.

Then, in FIG. 14G, the logical sectors A and I through L
are written into the block 6.

In FIG. 14H, it is attempted to write the logical sectors A,
M, and N. Since there are no writing areas left, however, an
evacuation process has to be carried out. That is, unerasable
data in the block with the largest number of data with Erase
Flags (block 5) are moved to the evacuation area block
(block 3), and the block 5 which has been just evacuated is
erased. Then, the block 5 is used as an evacuation area, and
the previous evacuation area (block 3) is newly used as a
writing area.

At this point, assume that the block 5 becomes unable to
be used any more due to a failure of erasing the block 5.
There are no evacuation areas in this case, so that a counter
measure has to be taken.

5

10

15

25

30

35

40

45

50

55

60

65

14
As shown in FIG. 14I, an evacuation process is carried out

by taking the backup block 0 as an acting evacuation area.
That is, unerasable data in the block with the largest number
of erasable data in FIG. 14H (block 1) are moved to the
acting evacuation area block (block 0), and the block 1
which has just been evacuated is erased. Then, the block 1
is used as an evacuation area. Then, as shown in FIG. 14J,
the backup block (block 0) is evacuated. That is, the logical
sectors B and C of the backup area (block 0) used as an
acting evacuation area are moved to the block 3.

Through the above process, a backup area and an evacu
ation area are created, and the logical sectors A, M., and N
are written into the block 3 as shown in FIG. 14.K.

Then, it is attempted to write the logical sectors A, G, H,
O, and P. Since there are no writing areas left, however, an
evacuation process is carried out as shown in FIG. 14L. That
is, unerasable data in the block with the largest number of
erasable data (block 4) are moved to the evacuation area
block (block 1), and the block 4 which has been just
evacuated is erased. Then, the block 4 is used as an evacu
ation area.

In FIG. 14M, the logical sectors A, G, H, O, and P are
written. Since there exist the identical sectors A, G, and H,
the logical sectors A, G, and H are written into the block
rafter putting up Erase Flags. The logical sectors O and Pare
just written into the block 1 without doing anything else.

Then, in FIG. 14N, writing the logical sector A is
attempted. Since there are no writing areas left, an evacua
tion process is carried out. As a result, the block 2 becomes
a new evacuation area, and the sectors D, E, and F in the
block 2 are moved to the block 4.

If the block 2 then becomes unable to be used any more
due to a failure erasing the block, no evacuation area is left
so that the counter measure same as before is taken. That is,
data in the block with the largest number of erasable data
(block 3) are moved to the acting evacuation area block
(block 0), and the block 3, which has been just evacuated, is
erased. Then, the block 3 is used as an evacuation area. FIG.
14O shows the result of this.

Should this ongoing process be stopped at this point of
time due to a power failure and the like, the host computer
upon the restart of the process can conclude that this process
was on the way to creating a free area since there is some
data but no erasable sectors in the backup area.
As continuation of the process, a counter measure to

create free areas is taken so that the sectors I and J of the
block 6 are moved to the backup area (block 0), and the
sectors K and L of the block 6 are moved to the block 3. FIG.
14P shows the result of this action.
At this point, the number of free sectors other than the

sectors of the evacuation area has become larger than the
number of data in the backup area (block 0), a search is made
for a free sector by moving Write Pointer from the last sector
of the evacuation area. Then, the data of the backup area
(block 0) are moved to the free areas found by the search.

In case that this ongoing process is stopped due to a power
failure and the like at the moment when sectors B, C, M, and
N of the backup area (block 0) moved to the block 3 as
shown in FIG. 14Q, the host due the are computer upon the
restart of the process can conclude that the process of
creating a free block is at the step of moving data out of the
backup area since there are some erasable data left therein.
As a continuation of the process, the logical sector I and

J of the backup area (block 0) are moved to the block 4 in
FIG. 14R. This is the end of the process.

FIG. 15 shows a flow chart of the process of creating free
areas according to the second embodiment of the present

US 7,257,666 B2
15

invention. The process of the second embodiment will be
described below by using this flow chart.

At a step S1, a check is made whether there are erasable
sectors in the backup area, and if there are, go to a step S11.
If there are no erasable sectors, go to a step S2, where Write
Pointer is located at the first sector of the backup area. At a
step S3, then, a check is made if there is data in the backup
area. If there is data, go to a step S10, and if there is no data,
proceed to a step S4, where the backup area is assigned to
the evacuation area.

At a step S5, a check is made whether there are no
erasable sectors in all the blocks. If there are no erasable
sectors, free areas cannot be created so that the process is
aborted at the step S5. If there are erasable sectors, proceed
to a step S6, where the block with the largest number of
erasable sectors is selected as an evacuee. At a step S7, data
in the block of the evacuee are moved to the backup area
serving as the evacuation area.
At a step S8, the block of the evacuee is erased, and at a

step S9, the block of the evacuee is in turn newly assigned
to the evacuation area.

At the step S10, a check is made whether the number of
data in the backup area is larger than the number of free
sectors outside the evacuation area. If it is larger, go back to
the step S5 to repeat the above process. If the number of data
in the backup area is not larger, proceed to a step S11, where
a free sector is searched for by moving Write Flag in the
writing direction starting from the next sector of the evacu
ation area. At a step S12, data in the backup area are moved
to the free sectors found at the step S11. At a step S13, the
backup area is erased. This is the end of the process.

In this embodiment, free areas are created as described
above. Thus, even if some blocks become unable to be used
in the memory space, a counter measure can be taken to
create a free area. This prevents the memory device from
ceasing to function in Such a case.

Also, even if the process is terminated during processing
due to a power failure and the like, it is easy to decide at
what step the process was terminated so that this decision
making process can be simplified.

C. Enhancement of Erasing Process
As described above, flash memories cannot write data

over existing data before erasing the existing data. This
embodiment shows a method that can perform an efficient
erasing process for erasing the entire memory space and that
can restart the erasing process in the case of process termi
nation by providing both Write Flag for indicating that there
is written data and Executing Flag for indicating that an
erasing process for erasing the entire memory space is
underway.

With reference to FIGS. 16A and 16F, the process of this
embodiment will be described below. In this embodiment,
there are six blocks, where each block is provided with an
area for storing Write Flag and the block 6 is provided with
an area for storing Executing Flag indicating that an entire
space erasing process is underway.

In FIG. 16A, the blocks 1, 2, and 4 have Write Flags
which were written into the block 1, 2, and 4 at the time of
writing data into those blocks.

Then, before starting the initialization process of erasing
the entire memory space, Executing Flag is written into the
block 6 as shown in FIG. 16B.

In FIG.16C, the block 1 which has Write Flag is erased,
and Write Flag is deleted also.

In FIG. 16D, the block 2 which has Write Flag is erased,
and Write Flag is deleted also.

10

15

25

30

35

40

45

50

55

60

65

16
Even if the process moves to a stop sequence by some

reason and, then, is restarted later on, it can be concluded
straightaway that an initialization process is underway since
there is Executing Flag written in the block 6. Thus, the
initialization process can be resumed.

In FIG.16E, since there are no Write Flags written in the
block 1, 2, and 3, the block 4 is erased and the Write Flag
thereof is deleted also.

In FIG. 16F, since there are no Write Flags written in the
block 1 through 5, the block 6 is erased to delete the
Executing Flag thereof.

FIG. 17 shows a flow chart of this embodiment, which
will be described below.
At a step S1, a check is made whether there is an

Executing Flag, and if there is, go to a step S3. If there is no
Executing Flag, an Executing Flag is written into the last
block to be processed.
At the step S3, the process target is cleared. At a step S4,

a check is made whether Write Flag is set in the process
target block. If it is not set, go to a step S6, and if it is set,
go to a step S5 to erase the process target block. At the step
S6, the process target is proceeded to the next block.
At a step S7, it is checked if Executing Flag is set, and if

it is set, go back to the step S4 to repeat the above process.
If no Executing Flag is set, end the process.

Since Write Flag is provided as described above in this
embodiment, unnecessary erasing can be avoided, which
leads to a shorter processing time and a longer life of the
memory media.

Also, Executing Flag is provided to indicate that the
initialization process is underway, so that an unexpected
termination of the process can be handled.
D. Enhancement of Writing Speed and Allocation of Backup
Areas in Case of Defective Sectors
As described above, flash memories cannot write data

over existing data before erasing the existing data. Thus, it
is necessary to mark sectors with Erase Flags when there are
identical sectors and to erase sectors marked with Erase
Flags later on at a time of convenience. This means that a
writing process takes a relatively long time.

Also, the flash memory has a limit in the number of
erasures, and cannot be erased anymore after experiencing
erasing this limiting number of times. Thus, when there
occurred defective sectors, it is required that a counter
measure be taken by allocating backup areas.

This embodiment which will be described below shows a
method of assigning backup areas in the case of defective
sectors and enhancing the memory writing speed by elimi
nating the time lag at the time of writing in the memory to
which data cannot be written over existing data and cannot
be erased by the unit of sector.

FIG. 18 shows a block diagram showing the structure of
a system according to this embodiment. The system of FIG.
18 differs from the system of FIG. 1 only in an additional
EEPROM 26. The EEPROM 26 contains a decoding table
for address conversion. When part of the flash memory
becomes defective, a counter measure is taken by rewriting
the EEPROM 26. In FIG. 18, the EEPROM 26 is used for
storing a decoding table, but any memories capable of
rewrite, e.g., the flash memory, can be used for that purpose.
(1) First Embodiment

FIGS. 19A and 19B show block diagrams of a system
according to a first embodiment. In FIG. 19A, a sector
conversion unit 261 includes the EEPROM 26 (or ROM
capable of rewrite, e.g., a flash memory). A flash memory
25-1 includes a first area A, a second area B, and a backup

US 7,257,666 B2
17

area C. The first area A and the second area B are provided
with four sectors 1 through 4.

In FIG. 19A, when writing data into the sector 1, a check
is made on the first area A and the second area B. If the first
area A already has other data therein, the data is written into
the second area B. At the same time, the sector 1-A of the
first area A is erased.

If an error occurred in writing the data, a sector of the
backup area C is used as an alternate sector.

That is, ROM in the sector conversion unit 261 is rewrit
ten in order to use a sector of the backup area C Substituting
for the sector 1-A of the first area A, which had an error in
writing the data. The result is shown in FIG. 19B, where one
sector of the backup area C is allocated for the sector 1-A.
As described above, when errors occur, sectors of the

backup area are allocated as long as there remain sectors in
the backup area. When there are no more sectors in the
backup area, all the data in the flash memory 25-1 are
evacuated to external areas like the SRAM 23 of FIG. 18.
The ROM in the sector conversion unit 261 are rewritten to
divide an available space into a data space and a backup
space. By excluding defective sectors, sectors are allocated
Successively in a descending order or an ascending order of
the address depending on the type of the system.

In this embodiment, the writing and erasing of data can be
performed simultaneously so that the time lag at the time of
writing can be eliminated and a writing speed can be
increased. Also, since backup areas are provided to Substi
tute for defective sectors, the development of defective
sectors is not a problem.
(2) Second Embodiment

FIGS. 20A and 20B are block diagrams of a system
according to a second embodiment. In FIG. 20A, a sector
conversion unit 261 includes an EEPROM or other ROM
capable of rewrite, e.g., a flash.memory. A flash memory 25
includes a first area A and a backup area C. The first area A
is provided with four sectors 1 through 4. A primary memory
media 23 is the SRAM 23 of FIG. 18 and the like.

In FIG. 20A, while data is being transferred to the primary
memory media 231, a check is made on a sector into which
the data is to be written. If the sector already has data, the
sector is erased. If the transfer of the data is completed
before finishing erasing the sector, the system waits until the
erasing of the sector is finished. If the transfer of the data is
completed after finishing erasing the sector, the data is
written upon the end of transfer.

If an error occurs during the writing of the data, the ROM
of the sector conversion unit 261 is rewritten, and a sector
1-A is written into the backup area C as shown in FIG. 20B
(showing the case that an error occurred in the sector 1-A).
Unless there occurs an error in sectors, the backup area C is
not used for writing data.

In this embodiment as described above, a sector is erased
when it already has data while data to be written is being
transferred to the primary memory media 231. Thus, the
time lag at the time of writing can be eliminated as in the first
embodiment, and a writing speed can be enhanced. Also,
since backup areas are provided to substitute for defective
sectors, the development of defective sectors is not a prob
lem.

(3) Third Embodiment
FIGS. 21A and 21B are block diagrams of a system

according to a third embodiment. In FIG. 21A, a sector
conversion unit 261 includes an EEPROM or other ROM
capable of rewrite, e.g., a flash memory. A flash memory 25
includes a block 1, a block 2, a backup block 1, and a backup

10

15

25

30

35

40

45

50

55

60

65

18
block 2. The blocks 1 and 2 are provided with sectors
1-to-3A to 1-to-3D and sectors 4-to-6A to 4-to-6D, respec
tively.

Each of the sectors 1-to-3A, ..., and 1-to-3D is one sector
having one physical address, and data with a logical address
of 1, 2, or 3 can be written into any of those sectors. That is,
the four sectors referred to as A to D are provided as areas
into which data with a logical address of 1, 2, or 3 is written.
When data is written into those sectors, a free area among A
to D is used.
The sectors 4-to-6A, and 4-to-6D are the same as

above, and a free area among A to D is used for writing data
with a logical address of 4, 5, or 6.

In this embodiment as described above, a memory space
is divided into blocks having n+1 sectors (n=3 in this
example) so that there is one additional sector in excess of
the number of logical addresses.

In FIG. 21A, when writing data with a logical address of
1, the sectors 1-to-3A, . . . , and 1-to-3D are examined to
determine if a sector of the same logical address already
exists. If it does, that sector is erased. Since there is at least
one free sector, data is written into a free sector while erasing
the above sector.

If an error occurs at the time of writing, one of the backup
blocks is used as an alternate block. For example, if the
sector 1-to-3A becomes defective, the backup block 1 is
assigned to an alternate block as shown in FIG. 21B. At the
same time, the ROM of the sector conversion unit 261 is
rewritten so as to use the backup block 1 as an alternate for
the block 1 suffering an error.
As far as there is a backup block, the process described

above is carried out. When the backup blocks are used up,
all data are evacuated to an external memory Such as the
SRAM 23 of FIG. 18, and the ROM of the sector conversion
unit 261 is rewritten so as to newly divide the memory space
into a data space and a backup space. In doing so, sectors are
allocated Successively in a descending order or an ascending
order of the address depending on the type of the system,
with defective sectors being excluded.
The sector conversion unit 261 is structured for convert

ing a logical address into a physical address in Such a way
that there are n+1 available sectors in one block by making
blocks in the unit of n+1 sectors.

When some sectors become defective, the conversion
table of the sector conversion unit 261 is rewritten as
described above so that there are always n+1 sectors in one
block.

In this embodiment as described above, one block has n+1
sectors, i.e., n sectors plus one excess sector, and erasing a
sector can be done at the same time as writing data. Thus, the
time lag at the time of writing is eliminated to enhance the
writing speed. Also, since backup areas are provided to
substitute for defective sectors, the development of defective
sectors is not a problem.

(4) Fourth Embodiment
FIGS. 22A and 22B are block diagrams of a system

according to a fourth embodiment. In FIG. 22A, a sector
conversion unit 261 includes an EEPROM or other ROM
capable of rewrite, e.g., a flash memory. A flash memory 25
includes a block 1, a block 2, and backups 1A to 1D. The
blocks 1 and 2 are provided with sectors 1-to-3A to 1-to-3D
and sectors 4-to-6A to 4-to-6D, respectively.

In this embodiment, there are n+1 sectors (n=3 in this
example) in one block as in the third embodiment so that
there is at least one free sector at anytime.

US 7,257,666 B2
19

In FIG. 22A, when writing data with a logical address of
1, the sectors 1-to-3A, and 1-to-3D are examined to deter
mine if a sector of the same logical address already exists.
If it does, that sector is erased. Since there is at least one free
sector, data is written into a free sector while erasing the
above sector.

If an error occurs at the time of writing, one of the
backups 1A to 1D is used as an alternate sector. For example,
if the sector 1-to-3A becomes defective, the backup 1A is
newly included in the block 1 as shown in FIG.22B. At the
same time, the ROM of the sector conversion unit 261 is
rewritten so as to use the backup 1A as an alternate for the
sector 1-to-3A. Thus, the backup 1A becomes a sector
1-to-3A while leaving the backups 1B to 1D for further use.
As far as there is a backup, the process described above

is carried out. When the backups are used up, all data are
evacuated to an external memory such as the SRAM 23 of
FIG. 18, and the ROM of the sector conversion unit 261 is
rewritten so that the memory space is newly divided into a
data space and a backup space. In doing so, sectors are
allocated Successively in a descending order or an ascending
order of the address depending on the type of the system,
with defective sectors being excluded.

The sector conversion unit 261 has an address conversion
table for converting a logical address into a physical address
such that there are n+1 sectors available for writing one
sector by making blocks in the unit of n+1 sectors. When
some sectors become defective, the conversion table of the
sector conversion unit 261 is rewritten so that there are
always n+1 sectors in one block.

In this embodiment as described above, one block has n+1
sectors, i.e., n sectors plus one excess sector, and erasing a
sector can be done at the same timer as writing data. Thus,
same as the first, second, and third embodiments, the time
lag at the time of writing is eliminated to enhance a writing
speed. Also, since backup areas are provided to Substitute for
defective sectors, the development of defective sectors is not
a problem.

(5) Fifth Embodiment
FIGS. 23A and 23B are block diagrams of a system

according to a fifth embodiment. In FIGS. 23A and 23B,
which have the same references as do FIGS. 22A and 22B
for the same elements, a sector conversion unit 261 includes
an EEPROM or other ROM capable of rewrite, e.g., a flash
memory. A flash memory 25 includes a block 1, a block 2.
a backup block 1, and a backup block 2. The blocks 1 and
2 are provided with sectors 1-to-3A to 1-to-3D and sectors
4-to-6A to 4-to-6D, respectively.

In this embodiment, there are n+1 sectors (n=3 in this
example) in one block as in the third embodiment so that
there is at least one free sector at anytime.

In FIG.23A, when writing data, with a logical address of
1, the sectors 1-to-3A, . . . , and 1-to-3D are examined to
determine if a sector of the same logical address already
exists. If it does, that sector is erased. Since there is at least
one free sector, data is written into a free sector while erasing
the above sector.

If an error occurs at the time of writing, one of the backup
sectors is used as an alternate sector. For example, if the
sector 1-to-3A becomes defective, the ROM of the sector
conversion unit 261 is rewritten so as to use one of the
sectors of the backup block 1 as an alternate for the sector
1-to-3A. In doing so, the backup block 1 is assigned to a
block n in a memory space. As shown in FIG. 23B, a sector

10

15

25

30

35

40

45

50

55

60

65

20
1, n, mA of the block n becomes a sector 1, i.e., the sector
1 is included in the block n while leaving the sectors 2 and
3 in the block 1.

In other words, a block need not have sectors of Succes
sive addresses, and the number of sectors in a block is
changed when there is a defective sector.
As long as there is a backup, the process described above

is carried out. When the backups are used up, all data are
evacuated to an external memory such as the SRAM 23 of
FIG. 18, and the ROM of the sector conversion unit 261 is
rewritten so that the memory space is newly divided into a
data space and a backup space. In doing so, sectors are
allocated Successively in a descending order or an ascending
order of the address depending on the type of the system,
with defective sectors being excluded.

In this embodiment, as described above, one block has
n+1 sectors, i.e., n sectors plus one excess sector, and erasing
a sector can be done at the same time as writing data. Thus,
same as the first, second, third, and fourth embodiments, the
time lag at the time of writing is eliminated to enhance the
writing speed. Also, since backup areas are provided to
substitute for defective sectors, the development of defective
sectors is not a problem.

FIGS. 24A to 24C show a flow chart of a process common
in all the above embodiments. With reference to FIGS. 24A
to 24C, a process of the embodiments shown in FIG. 18 will
be described below.
At a step S1, a host computer requests the writing of

sector data. At a step S2, the CPU 22 of FIG. 18 recognizes
from the message sent by the controller LSI 21 that there is
a request for the writing of sector data. Here, it may be
instead that the controller LSI 21 interrupts the CPU 22 to
send thereto a request for the writing of sector data.
At a step S3, the CPU 22 reads the EEPROM 26, and

identifies the destination address of the sector data. Also, the
CPU 22 accesses the flash memories 25-1 to 25-5 to look up
management information and that sort in order to check if
there is sector data already written. At a step S5, a check is
made whether there is sector data already written, and if
there is not, go to a step S8 of FIG. 24B. If there is sector
data already written, the CPU 22 accesses the EEPROM 26
at a step S6 to get data indicating the location of another
sector used for writing the sector data. Then, at a step S7.
pertinent data in the flash memories is erased (an error check
is performed later for a process efficiency), and the step S8
of FIG. 24B is the next step.
At a step S8, data is transferred from a host computer to

the SRAM 23, and proceeding to the next step waits until the
completion of the data transfer. At a step S9, the CPU 22
sends a message of the writing of the sector data to the
controller LSI 21, so that the controller writes the sector data
into the flash memories. At a step S10, the CPU 22 receives
a message of the completion of the writing of the sector data
from the controller LSI 21. At a step S11, a check is made
whether an error occurred in writing the sector data.

If no error occurred, this is the end of the process. If an
error occurred, a check is made at a step S12 to determine
whether there is an alternate sector. If there is, go to a step
S13, where data in the EEPROM 26 is rewritten to change
the sector address. Then, go back to the step S9.

If there is no alternate sector, go to a step S14 of FIG.24C,
where a check is made whether there is a flash memory in
the process of being erased at that moment of time. If there
is, go to a step S15, where the sector data, after waiting until
the completion of erasing, is written into a sector which has
been just erased. This is the end of the process.

US 7,257,666 B2
21

If no flash memories turn out to be in the process of being
erased at a step S14, an error message is sent to the host
computer at a step S16.

Then, at a step S17, the host computer sends a command
for transferring data in the flash memories into another
memory storage and rewriting the EEPROM 26. The
memory device 20 modifies the EEPROM 26 in response to
the command from the host computer in Such a way that
more than one sector is available for one logical sector sent
from the host computer. By doing this, the memory device
20 can be used again, although it has less memory Volume.

In the above, a process has been described for the case that
data is transferred to the SRAM 23 and, then, written into the
flash memories. However, it is also possible for data to be
written directly into the flash memories without having the
SRAM 23 provided (in this case, the steps S8 and S9 become
one step in the flow chart described above).
E. Enhancement of Reliability of Decoding Unit for Address
Conversion

ROMs are sometimes used for storing a conversion table
to convert a logical address into a physical address.
Although flash EEPROMs, EEPROMs, and the like can be
used instead of ROMs, the use of those ROMs is rare
because there is usually no need to change the contents of
the decoding unit.
As described above, flash memories by its nature cannot

be erased more than its limiting times so that an address of
a sector cannot be used once the sector becomes defective.
Accordingly, as described in the above embodiments 1 to 5,
flash EEPROMs, EEPROMs, and the like are used for a
decoding unit for storing a conversion table to convert a
logical address into a physical address, so that a conversion
table can be rewritten to exclude sectors once those sectors
become defective.

However, when using flash EEPROMs, EEPROMs, and
the like for storing a conversion table, those memories also
have a limit in the number of erasures, and defective sectors
will develop after erasing those memories more times than
their limit.

For the case that such memories able to be rewritten as
flash EEPROMs, EEPROMs, and the like are used for a
decoding unit, this embodiment makes the decoding unit
double in order to extend life of the decoding unit and
increase its reliability.

FIGS. 25A, 25B, and 25C show block diagrams of a
decoding unit according to this embodiment. FIG. 25A
shows a situation without a defective sector. FIG. 25B shows
a situation with a defective sector. FIG. 25C shows a
situation with the decoding unit having a defect. In FIGS.
25A, 25B, and 25C, a first decoding unit is referred to as
301, a second decoding unit as 302, and a flash memory as
25.

As shown in FIG. 25A, when a sector 0 of the flash
memory 25 is functioning, the first decoding unit 301
generates an address of 0000 has a decoded address of the
sector 0, and the second decoding unit 302 generates a
physical address of 5555 has a decoded address of 0000 h.
This physical address indicates the sector 0 in the flash
memory 25.
When the sector 0 becomes defective after erasing the

flash memory 25 more than its limiting times, the physical
address of the Sector 0 is Switched from 5555 h to 8888 h.
This is shown in FIG. 25B by rewriting the second decoding
unit 302 and switching a decoded physical address of 0000
h from 5555 h to 8888 h.

5

10

15

25

30

35

40

45

50

55

60

65

22
When the second decoding unit 302 develops a defect

therein after experiencing rewrite a number of times in the
same manner, the first decoding unit 301 is rewritten to
change a decoded address. That is, as shown in FIG. 25C,
the first decoding unit 301 is rewritten to generate 2222 has
a decoded address which is fed into the second decoding unit
302 to generate 8888 h. Thus, even if the second decoding
unit 302 develops a defect, a physical address of 8888 h can
be generated as a decoded address for the sector 0.
Making a decoding unit double, as described above, can

extend life of the decoding unit by the power of two by
rewriting one of the decoding units when the other decoding
unit develops a defect.

Let the number of erasures for a sector to become defec
tive be L, the number of erasures for the second decoding
unit to develop a defect be M, and the number of erasures for
the first decoding unit to develop a defect be N. Then, the
number of erasures for an address error to occur is (N) (M)
(L).

In general, a limiting number of erasures for flash
EEPROMs is from a hundred thousand times to a million
times, and a ten thousand times for EEPROM. In practice,
thus, doubling a decoding unit is enough to ensure the
reliability of the decoding unit.
F. Process of Estimating Writing Time
When writing data into flash memories, there is a need for

an evacuation process and the like so that it takes a longer
time to write data than when using conventional semicon
ductor memories.

In this embodiment, the length of time required for
writing data is estimated so that estimation of consumed
electric power and detection of a malfunction can be carried
Out

This embodiment will be described by using FIG. 26.
FIG. 26 shows a memory in which data of three sectors is
about to be written.

The host computer of FIG. 1 first sends to the CPU 22 the
number of sectors to be written, and, then, the CPU 22
determines the length of time necessary for writing the data.
When there are not enough free sectors as in FIG. 26, an
evacuation process is carried out, and the necessary time for
writing data can he obtained as follows.

t(sec)=3x(time length for writing one sector)+(time
length for evacuating data)

The CPU 22 calculates the time length necessary for
writing data by using the above equation, and returns the
result to the host computer. The host computer calculates
electric power W1 consumed during the time of writing by
using tobtained above. W1 can be obtained by W1 (W)=t/
3600x(electric power at time of writing)

Also, the host computer reads available electric power W2
from a power Supply, and writes data into the memory.

Furthermore, the host computer checks whether writing
data into the memory is taking a longer time than t obtained
above. If waiting data does not finish exceeding t, the host
computer concludes that there is a malfunction in the
memory device, and notifies the user or takes a measure Such
as stopping the writing process.

FIG. 27 shows a flow chart of a process carried out by the
host computer in this embodiment. With reference to FIG.
27, this embodiment will be described below.
At a step S1, the size of the data to be written is sent to

the memory device to obtain the length of time necessary for
writing the data.

US 7,257,666 B2
23

At a step S2, electric power to be consumed is obtained
by multiplying consumed electric power per hour with the
length of time necessary for writing. At a step S3, available
electric power is compared with the electric power to be
consumed, and, then, if available electric power is Smaller,
a counter measure is taken. If available electric power is
larger, go to a step S4, where data is written into the memory.
Then, at a step S5, a check is made whether the actual time
length taken to write data is exceeding the estimate of that
time length. If it is exceeding, a counter measure is taken. If
it is not exceeding, go to a step S6, where it is checked if the
writing process is finished. If it is not finished, go back to the
step S5. If it is finished, this is the end of the process.

In this embodiment, as described above, electric power to
be consumed during the time of writing data is estimated by
obtaining the length of time necessary for writing, so that it
can be determined whether available electric power is
enough to carry out the writing process. Thus, termination of
a writing process due to the lack of power Supply can be
avoided to enhance the reliability of the system.

Also, a malfunction of the memory device can be detected
by comparing an estimate of the length of time necessary for
writing data with the actual time length. The time length
necessary for writing may be displayed to be shown to the
user so that the user can decide if there is a malfunction in
the memory device.
G. Enhancement of Reliability of Flag Check Process

Usually, one bit is allocated for one function of one flag,
and the status of the flag is determined by a value of this one
bit. However, the flash memory by its nature has a downside
that the flash memory cannot be erased after experiencing
excessive erasing. A memory cell Suffering a defect becomes
a permanent high level so as to be unable to return to a low
level.

Accordingly, when one bit which is allocated for one
function of one flag becomes defective, this flag cannot
perform its designed role.

This embodiment prepares more than one bit for each of
Erase Flag, Defect Flag, Parity Flag, etc., so as to enhance
the reliability of the flag.

(1) First Embodiment
FIGS. 28A, 28B, and 28C are illustrations of a first

embodiment. FIG. 28A shows a flag register, FIG. 28B a
logical product circuit for obtaining a flag status, and FIG.
28C a truth table.

In this embodiment, for example, bits b0 and b4 are used
for one function as shown in FIG. 28A. In order to check a
flag status, a logical product of these two flags is obtained as
shown in FIG. 28B.

Checking a flag status as described above makes it
possible that a correct result for a flag status is obtained even
if the bit b0 is fixed to a high level as shown in FIG. 28C.
Similarly, a correct result is obtained when the bit b4
becomes a permanent high level.

(2) Second Embodiment
FIGS. 29A, 29B, and 29C are illustrations of a second

embodiment.
FIG. 29.A shows a first flag resister, FIG. 29B a second

flag register, and FIG. 29C a logical product circuit for
obtaining a flag status.

This embodiments assigns to one function a plurality of
bits which are stored in different flag registers. For example,
a bit b0 of the flag register of FIG. 29A is used for one
function of one flag, and bits b0 and b2 of the flag register
of FIG. 29B are also used for the same function as above.

5

10

15

25

30

35

40

45

50

55

60

65

24
In order to check a flag status, a logical product of those

three flags is obtained by a logical product circuit of FIG.
29C.

Similarly to the first embodiment, this second embodi
ment can obtain a correct result even if some of the flags are
fixed to a high level.

In the second embodiment, a check of a flag status is made
by using a plurality of bits so that a correct result is obtained
unless all the bits become defective. This leads to an
enhancement on the reliability of a check result.
H. Memory Management Method of Reducing Size of
Management Table

This embodiment shows a method that can simplify a
management table and can use each block evenly in a flash
memory system whose memory is comprised of a plurality
of chips each with a plurality of blocks.

Also, in this embodiment, a data space in one chip is made
Smaller than the total memory space of the chip, and the
remaining space is used for work blocks and backup blocks
for a defective block. The data arrangement in a block is
fixed. When rewriting data which already exists in a block,
data in the block is evacuated to the SRAM 23 of FIG. 1, and
the evacuated data along with the new data is written into a
free block. The original block with the old data is erased
upon the completion of writing.

FIG. 30 shows a block diagram of a chip, a block, and a
sector according to this embodiment. As shown in FIG. 30.
the chip is 2 Mbytes which is divided into 512 blocks
No.000 to No.511. Each block is 4 kbytes and is provided
with eight 526 byte sectors No. 00 to No. 07. Here, a block
No. and a sector No. FIG. 30 indicate a physical address.
As shown in FIG. 30, each sector has a real data area of

256 byte, an ECC area for a long instruction, a defective data
flag, a defective block flag, a blockaddress, and an ECC area
of 256 byte for the real data area.
The block address stores an address value in a block

pointer stored in the SRAM 23, and the block address is
written even when a sector is concluded not to have real
data. By doing this, it can be decided that one with a larger
number of sector addresses is correct data when putting
leads in and out. When sector addresses are the same, it is
decided by a true or false value of the ECC checksum.
The defective block flag shows the condition of the block.

FFh means a normal block, and any value other than FFh
means a defective block.

The defective data flag shows the condition of the data.
FFh means normal data, and any value other than FFh means
defective data.
The ECC area for a long instruction is 4 byte at the

maximum. The ECC area for the real data area shows the
condition of real data, and a value of this area is used for data
correction and error detection.

FIGS. 31A to 31E show a writing process of this embodi
ment. This example of the embodiment shows a method of
writing and managing data when there are five chips ranging
from No.00 to No. 04 each with four work blocks.

FIG. 31A shows chips with all the blocks erased. As
shown in FIG.31A, each chip has four work blocks Work01
to Work04, into which data is written. Although writing can
be done by the unit of sector, it is impossible to write into
a sector after writing into a higher sector like writing into a
sector 004 after writing into a sector 005.

Also, it is impossible for data to be moved across chips,
and a sector arrangement in a block is fixed. When the
amount of data written does not fill 8 sectors as when sectors

US 7,257,666 B2
25

00 to 05 are written into a logical block address 00, only the
blockaddress is written for the remaining sectors (sectors 06
and 07).
When writing data of a logical address n into a chip, the

chip No. of the chip to write into is such it such integerk as 5
in n (8)(5)m+k)+1, where k, l, m, and n are all integers
with K-5 and 1<8. For example, when n is equal to 121, 121
is (8)((5)(3)+0)+1 so that k is equal to 0. Thus, data of a
logical address 121 is written into the chip of No. 0.
The writing process of this embodiment is as follows. 10

When forty of sectors No.000 to No.039 (logical address)
are written into the chips whose blocks are all erased as in
FIG.31A, the result is that Work01 of each chip contains the
data as shown in FIG. 31B.

First, data is sent from the host computer to the SRAM 23. 15
Since the sectors No.000 to 007 have logical block address
0, writing data starts from Work01 of the chip No.00, which
Work01 is indicated by the write pointer. Here, logical block
addresses are managed independently from chip to chip.

In this case, logical block address 00 does not exist prior 20
to writing, Work01 of the chip No.00 is moved to a free
block next to Work04.
When finishing writing 8 sectors, the write pointer is

moved to indicate wok01 of the chip No.01. Then, the
Sectors No.008 to No.015 are written into Work01 of the 25
chip No. 01.
When the chip No.04 is finished to be written, the write

pointer is moved to indicate Work02 of the chip No.00.
Then, the sectors No. 120 to 191 (logical address) are

written as shown in FIG. 31C. 30
First, data is sent from the host computer to the SRAM 23.

Since the sector No. 120 to 127 has logical blockaddress 03,
writing data starts from Work02 of the chip No.00, which is
indicated by the write pointer. In the same manner as above,
Work02 of the chip No.00 is moved to a free block next to 35
Work01.

Then, the sectors No. 128 to 191 are written into the chips
No.00 to No.04 in the same manner as above.

FIG. 31D shows a result of writing the sector No.002 and
003 again into the memory shown in FIG. 31C. 40

First, data of the sector No.002 and 003 is sent to the
SRAM 23. Since the sectors No.002 and No.003 have
logical block address 00 already in existence, evacuation of
old data is necessary. Since the sectors No.002 and 003
cannot be written into the first two sectors of logical block 45
address 00, data of the old logical block address 00 is
evacuated to the SRAM 23.

If data to be written corresponds to the first two sectors of
a logical block address, the data is first written into a free
block, and, then, data of the old logical block address is 50
evacuated to be moved to the free block.

In this case, the old data 000, 001, 004, 005, 006, and 007
are evacuated to the SRAM 23, and, then, the new data 002
and 003 and the old data 000, 001, 004, 005, 006, and 007
are written into Work04 of the chip No.00 which is indicated 55
by the write pointer. Writing order is 000, 001, 002, 003,
004, 005, 006, and 007.

Then, the old logical block 00 is erased, and Work4 is
allocated to the old logical block 00 as shown in FIG. 31D.

Suppose that after writing two sectors as described above, 60
power is turned off, and, then, turned on. The result is shown
in FIG. 31E, where work blocks are allocated to blocks
following the blocks in use. When allocating work blocks as
in the above, if all the work blocks cannot be allocated after
searching for free blocks by starting from a block following 65
the block currently in use, a search for free blocks is made
again by starting from the first block.

26
In the above process, if an error occurs at the time of

erasing, the defective data flag is set to 00h so that the block
is not used for reading or writing any more. That is, a counter
measure in this case is to eliminate one work block. If there
is no more work block, then the system becomes unable to
write.

If an error occurs at the time of evacuating data, the
defective block flag is put up, and, then, the data is written.
Even if an error occurs at the time of reading a block, this
block is treated as a defective block.

If an error occurs at the time of writing, the block is
marked as a defective block. Data written in the block is
evacuated, and defective block flags are put up. As in the
case of writing data, defective block flags are put up for all
the sectors of the block.

If an error occurs at the time of erasing, the block is
marked as a defective block. In this case, not only defective
block flags are set but also all areas including real data are
change to o in the block. This process is applied to all the
sectors of the block.
As described above, a chip which is used for writing is

always the same chip for a given data, and data is written
into blocks by shifting a designated block within the chip.
Thus, data management is localized within a chip so that
there is no need for a centralized management system to take
care of all the memory space. This means that the size of a
management table can be reduced and a writing speed can be
increased.

Also, in this embodiment, data is written into a work
block which is moved within a chip, so that each block can
be used evenly.

Further, the present invention is not limited to these
embodiments, but various variations and modifications may
be made without departing from the scope of the present
invention.
What is claimed is:
1. A method of managing a memory device having a

plurality of flash memory chips, each provided with a
plurality of blocks, a free block of the blocks being used for
writing new data, a block having old data replaced by the
new data being erased by a unit of one block, the method
comprising:

writing the new data into one of the flash memory chips,
wherein logical addresses are fixedly assigned to the
flash memory chips, so that one of the flash memory
chips to which a logical address of the new data is
assigned, is invariably used for writing the new data,
Such that a physical location of the new data written is
always in said same one of the flash memory chips.

2. A method of managing a memory device comprising:
fixedly assigning logical addresses to flash memory chips

of the memory device; and
writing new data of a specific logical address into a

respective flash memory chip of the flash memory chips
to which the specific logical address is fixedly assigned,
Such that the respective flash memory chip is a same
flash memory chip for a given new data, and a physical
address of the new data written is always in the
respective flash memory chip.

3. The method of claim 2, further comprising:
writing the given new data into blocks of the flash
memory chip, by shifting a designated block within the
flash memory chip.

4. A memory device comprising:
a plurality of flash memory chips, each chip comprising a

plurality of blocks, wherein a free block of the blocks
being used for writing new data; and

US 7,257,666 B2
27 28

means for fixedly assigning logical addresses to the flash flash memory chip is a same flash memory chip for a
memory chips, and writing new data of a specific given new data, a physical location of the new data
logical address into a respective flash memory chip of written is always in the respective flash memory chip.
the flash memory chips to which the specific logical
address is fixedly assigned. Such that the respective k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,257,666 B2 Page 1 of 1
APPLICATIONNO. : 10/788336
DATED : August 14, 2007
INVENTOR(S) : Tomohiro Hayashi

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title Page;
Column 1. Item (75) Inventors:

Please delete the names and the respective residents of “Yokohama (JP) for each of the
inventors other than Tomohiro Hayashi, Yokohama (JP).

Signed and Sealed this

Twenty-ninth Day of April, 2008

WDJ
JON. W. DUDAS

Director of the United States Patent and Trademark Office

