The present invention, comprising, as active components, one insecticidal compound I selected from the group consisting of spinosad, spinetoram, pymetrozine, tebufenpyrad, fenazaquin, fenpyroximate, flufenoxim, pyrimidifen, pyridaben, tolfenpyrad, emamectin benzoate, milbemectin, lepimectin, acequinocyl, fluacypyr, hydranmethylnon, cyhexatin, diafenthiuron, fenbutatin oxide, indoxacarb, propargite, bencloziazide, bifonazole, cartap, flonicamid, pyridalyl, thioyclam, cyanophosphafin, dicofol, flupyradofos, cyflumetofen, amidoflumet, imidacloprid, buphenuron, pyrifluquinazon and 2,2'-dimethyl-propionic acid (Z)-2-cyano-1-(2,4-dimethyl-thiazol-5-yl)-2-(2-phenyl-thiazol-4-yl)-vinyl ester and pyraclostrobin as compound II; in synergistic effective amounts.
PESTICIDAL MIXTURES COMPRISING INSECTICIDES AND PYRACLOSTROBIN

Description

The present invention relates to synergistic mixtures comprising, as active components,

1) one insecticidal compound I selected from the group consisting of spinosad, spinetoram, pymetrozine, tebufenpyrad, fenazaquin, fenpyroximate, flufenerim, pyrimidifen, pyridaben, tolfenpyrad, emamectin benzoate, milbemectin, Lepimectin, acequinocyl, fluacyprim, hydramethylnon, cyhexatin, diafenthiuron, fenbutatin oxide, indoxacarb, propargite, benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, thiocyclam, cyacobutryl, dicofol, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, pyridaben, tolfenpyrad, emamectin benzoate, milbemectin, Le-

2) pyraclostrobin as compound II; in synergistic effective amounts.

The present invention also relates to synergistic mixtures comprising, as active components,

1) one insecticidal compound I selected from the group consisting of spinosad, spinetoram, pymetrozine, tebufenpyrad, fenazaquin, fenpyroximate, flufenerim, pyrimidifen, pyridaben, tolfenpyrad, abamectin, emamectin benzoate, milbemec-

2) one fungicidal compound II selected from the group consisting of azoxystrobin, dimoxystrobin, kresoxim-methyl, orysastrobirin, picoxystrobin, pyraclostrobin, tri-

These above-referred mixtures are hereinbelow also referred as "inventive mixtures".

Moreover, the invention relates to a method for controlling phytopathogenic pests, this refers to includes phytopathogenic animal pests and phytopathogenic harmful fungi, using the inventive mixtures and to the use of compound I and compound II for pre-

paring such mixtures, and also to compositions comprising such mixtures.
In one embodiment, the present invention provides methods for the control of phytopathogenic animal pests (such as insects, acarids or nematodes) comprising contacting the animal pest (the insect, acarid or nematode) or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of the inventive mixtures.

Moreover, in another embodiment the present invention also relates to a method of protecting plants from attack or infestation by phytopathogenic animal pests (insects, acarids or nematodes) comprising contacting the plant, or the soil or water in which the plant is growing, or the plant propagation material with a pesticidally effective amount of the inventive mixture.

Moreover, the invention relates to a method for controlling phytopathogenic harmful fungi comprising contacting the phytopathogenic harmful fungi, their habitat, breeding grounds, their locus or the plants to be protected against fungal attack, the soil or plant propagation material with an effective amount of a mixture as defined above.

Additionally, the present invention also comprises a method for protection of plant propagation material from phytopathogenic pests, such as phytopathogenic animal pests (insects, arachnids or nematodes) and phytopathogenic harmful fungi comprising contacting the plant propagation materials with an inventive mixture in pesticidally effective amounts.

The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e.g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring. In a particular preferred embodiment, the term propagation material denotes seeds.

The present invention further relates to plant-protecting active ingredient mixtures having synergistically enhanced action of improving the health of plants and to a method of applying such inventive mixtures to the plants.

The compounds I and II as well as their pesticidal action and methods for producing them are generally known. For instance, the commercially available compounds may be found in The Pesticide Manual, 14th Edition, British Crop Protection Council (2006) among other publications.
One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control.

In regard to the instant invention the term "phytopathogenic pests" embrace phytopathogenic animal pests, and phytopathogenic harmful fungi. The term phytopathogenic animal pests is hereinbelow abbreviated as "animal pest" and the term phytopathogenic harmful fungi is hereinbelow abbreviated as "harmful fungi".

Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests, e.g. both animal pests and harmful fungi.

There also exists the need for pest control agents that combine knock-down activity with prolonged control, that is, fast action with long lasting action.

Another difficulty in relation to the use of pesticides is that the repeated and exclusive application of an individual pesticidal compound leads in many cases to a rapid selection of pests, that means animal pests, and harmful fungi, which have developed natural or adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help prevent or overcome resistance.

Another problem underlying the present invention is the desire for compositions that improve plants, a process which is commonly and hereinafter referred to as "plant health".

The term plant health comprises various sorts of improvements of plants that are not connected to the control of pests. For example, advantageous properties that may be mentioned are improved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system (improved root growth), improved stress tolerance (e.g. against drought, heat, salt, UV, water, cold), reduced ethylene (reduced production and/or inhibition of reception), tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination; or any other advantages familiar to a person skilled in the art.

It was therefore an object of the present invention to provide pesticidal mixtures which solve the problems of reducing the dosage rate and/or enhancing the spectrum of
activity and/or combining knock-down activity with prolonged control and/or resistance management and/or promoting the health of plants.

We have found that this object is in part or in whole achieved by the complex mixtures comprising the active compounds defined in the outset.

Especially, it has been found that the mixtures as defined in the outset show markedly enhanced action against pests compared to the control rates that are possible with the individual compounds and/or is suitable for improving the health of plants when applied to plants, parts of plants, plant propagation materials (preferably seeds), or at their locus of growth.

It has been found that the action of the inventive mixtures goes far beyond the fungicidal and/or insecticidal and/or plant health improving action of the active compounds present in the mixture alone.

Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and compound II or successive application of the compound I and compound II allows enhanced control of pests, that means animal pests, and harmful fungi, compared to the control rates that are possible with the individual compounds (synergistic mixtures, wherein the synergism is pesticidal synergism, i.e. synergistic fungicidal mixtures / synergistic insecticidal mixtures).

Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and compound II or successive application of the compound I and compound II provides enhanced plant health effects compared to the plant health effects that are possible with the individual compounds (synergistic mixtures wherein the synergism is plant health synergism).

The ratios by weight for the respective mixtures comprising insecticidal compound I and the fungicidal compound II are from 1:500 to 500:1, preferably from 1:100 to 100:1, more preferably from 1:25 to 25:1 and most preferably from 1:10 to 10:1.

Preferably, the mixtures according to the present invention comprise pyraclostrobin as compound II and one insecticidal compound I, wherein compound I is selected from the group consisting of spinetoram, pymetrozine, tebufenpyrad, fenazaquin, fenpyroximate, flufeniderm, pyrimidifen, pyridaben, tolfenpyrad, emamectin benzoate, milbemectin, lepimectin, acequinocyl, fluacyprym, hydramethylnon, cyhexatin, diafenthiuron, fenbutatin oxide, indoxacarb, propargite, benclothiaz, cartap, fonicamid, pyridalyl, thiocyclam, cyenopyrafen, dicofol, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, pyrfluquinazon and 2,2-Dimethyl-propionic acid (Z)-2-cyano-1-(2,4-dimethyl-thiazol-5-yl)-2-(2-phenyl-thiazol-4-yl)-vinyl ester. More preferably, the mixtures
according to the present invention comprise pyraclostrobin as compound II and one insecticidal compound I, wherein compound I is selected from the group consisting of spinosad, spinetoram, pymetrozine, tebufenpyrad, pyridaben, tolfenpyrad and emamectin benzoate. Most preferably, the mixtures according to the present invention comprise pyraclostrobin as compound II and one insecticidal compound I, wherein compound I is selected from the group consisting of spinosad, tebufenpyrad emamectin benzoate and pymetrozine. Utmost preference is given to mixtures comprising pyraclostrobin as insecticidal compound I either spinosad or pymetrozine.

In a further embodiment, the present invention also relates to the mixtures comprising as active components,

1) one insecticidal compound I selected from the group consisting of spinozad, spinetoram, pymetrozine, tebu fenpyrad, fenazaquin, fenpyroximate, flufen erim, pyrimidifen, pyridaben, tolfen pyrad, abamectin, emamectin benzoate, milbemec tin, Lepimectin, acequinocyl, fluacypr im, hydramethylin, cyhexatin, diafenthiuron, fenbutatin oxide, in doxacarb, propargite, benclothiaz, bifenz aze, cartap, flonicamid, pyridalyl, thiocyclam, cyenopyrafen, dicofol, flupyrazofos, cyflumetofen, amido flumet, imicyafos, bistrifluron, pyri fluquinazon and 2,2-Dimethylpropionic acid (Z)-2-cyano-1-(2,4-dimethyl-thiazol-5-yl)-2-(2-phenyl-thiazol-4-yl)-vinyl ester; and

2) one fungicidal compound II selected from the group consisting of azoxystrobin, dimoxystrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin; in synergistically effective amounts, wherein mixtures explicitly set forth in table 1, which comprise

1) one insecticidal compound I selected from the group consisting of spinosad, spinetoram, pymetrozine, tebufenpyrad, pyridaben, tolfenpyrad, abamectin and emamectin benzoate; and

2) one fungicidal compound II selected from the group consisting of azoxystrobin, dimoxystrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin; in synergistically effective amounts are preferred.

In table 1, the following abbreviations are used herein:

I is compound I
II is compound II
A = azoxystrobin
P = pyraclostrobin
T = trifloxystrobin
KM = kresoxim-methyl
PIC = picoxystrobin
D = dimoxystrobin

SPIN = spinosad
SPINE = spinetoram
PYME = pymetrozine
TEBU = tebufenpyrad
PYRIDA = pyridaben
TOLFEN = tolfenpyrad
ABA = abamectin
EMA = emamectin benzoate
E = enestroburin
O = orysastrobin

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>ABA</td>
<td>P</td>
</tr>
<tr>
<td>M-2</td>
<td>SPIN</td>
<td>A</td>
</tr>
<tr>
<td>M-3</td>
<td>SPIN</td>
<td>T</td>
</tr>
<tr>
<td>M-4</td>
<td>SPIN</td>
<td>KM</td>
</tr>
<tr>
<td>M-5</td>
<td>SPIN</td>
<td>PIC</td>
</tr>
<tr>
<td>M-6</td>
<td>SPIN</td>
<td>D</td>
</tr>
<tr>
<td>M-7</td>
<td>SPIN</td>
<td>E</td>
</tr>
<tr>
<td>M-8</td>
<td>SPIN</td>
<td>O</td>
</tr>
<tr>
<td>M-9</td>
<td>SPINE</td>
<td>A</td>
</tr>
<tr>
<td>M-10</td>
<td>SPINE</td>
<td>T</td>
</tr>
<tr>
<td>M-11</td>
<td>SPINE</td>
<td>KM</td>
</tr>
<tr>
<td>M-12</td>
<td>SPINE</td>
<td>PIC</td>
</tr>
<tr>
<td>M-13</td>
<td>SPINE</td>
<td>D</td>
</tr>
<tr>
<td>M-14</td>
<td>SPINE</td>
<td>E</td>
</tr>
<tr>
<td>M-15</td>
<td>SPINE</td>
<td>O</td>
</tr>
<tr>
<td>M-16</td>
<td>PYME</td>
<td>A</td>
</tr>
<tr>
<td>M-17</td>
<td>PYME</td>
<td>T</td>
</tr>
<tr>
<td>M-18</td>
<td>PYME</td>
<td>KM</td>
</tr>
<tr>
<td>M-19</td>
<td>PYME</td>
<td>PIC</td>
</tr>
<tr>
<td>M-20</td>
<td>PYME</td>
<td>D</td>
</tr>
<tr>
<td>M-21</td>
<td>PYME</td>
<td>E</td>
</tr>
<tr>
<td>M-22</td>
<td>PYME</td>
<td>O</td>
</tr>
<tr>
<td>M-23</td>
<td>TEBU</td>
<td>A</td>
</tr>
<tr>
<td>M-24</td>
<td>TEBU</td>
<td>T</td>
</tr>
<tr>
<td>M-25</td>
<td>TEBU</td>
<td>KM</td>
</tr>
<tr>
<td>M-26</td>
<td>TEBU</td>
<td>PIC</td>
</tr>
<tr>
<td>M-27</td>
<td>TEBU</td>
<td>D</td>
</tr>
<tr>
<td>M-28</td>
<td>TEBU</td>
<td>E</td>
</tr>
<tr>
<td>M-29</td>
<td>TEBU</td>
<td>O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-30</td>
<td>PYRIDA</td>
<td>A</td>
</tr>
<tr>
<td>M-31</td>
<td>PYRIDA</td>
<td>T</td>
</tr>
<tr>
<td>M-32</td>
<td>PYRIDA</td>
<td>KM</td>
</tr>
<tr>
<td>M-33</td>
<td>PYRIDA</td>
<td>PIC</td>
</tr>
<tr>
<td>M-34</td>
<td>PYRIDA</td>
<td>D</td>
</tr>
<tr>
<td>M-35</td>
<td>PYRIDA</td>
<td>E</td>
</tr>
<tr>
<td>M-36</td>
<td>PYRIDA</td>
<td>O</td>
</tr>
<tr>
<td>M-37</td>
<td>TOLFEN</td>
<td>A</td>
</tr>
<tr>
<td>M-38</td>
<td>TOLFEN</td>
<td>T</td>
</tr>
<tr>
<td>M-39</td>
<td>TOLFEN</td>
<td>KM</td>
</tr>
<tr>
<td>M-40</td>
<td>TOLFEN</td>
<td>PIC</td>
</tr>
<tr>
<td>M-41</td>
<td>TOLFEN</td>
<td>D</td>
</tr>
<tr>
<td>M-42</td>
<td>TOLFEN</td>
<td>E</td>
</tr>
<tr>
<td>M-43</td>
<td>TOLFEN</td>
<td>O</td>
</tr>
<tr>
<td>M-44</td>
<td>ABA</td>
<td>A</td>
</tr>
<tr>
<td>M-45</td>
<td>ABA</td>
<td>T</td>
</tr>
<tr>
<td>M-46</td>
<td>ABA</td>
<td>KM</td>
</tr>
<tr>
<td>M-47</td>
<td>ABA</td>
<td>PIC</td>
</tr>
<tr>
<td>M-48</td>
<td>ABA</td>
<td>D</td>
</tr>
<tr>
<td>M-49</td>
<td>ABA</td>
<td>E</td>
</tr>
<tr>
<td>M-50</td>
<td>ABA</td>
<td>O</td>
</tr>
<tr>
<td>M-51</td>
<td>EMA</td>
<td>A</td>
</tr>
<tr>
<td>M-52</td>
<td>EMA</td>
<td>T</td>
</tr>
<tr>
<td>M-53</td>
<td>EMA</td>
<td>KM</td>
</tr>
<tr>
<td>M-54</td>
<td>EMA</td>
<td>PIC</td>
</tr>
<tr>
<td>M-55</td>
<td>EMA</td>
<td>D</td>
</tr>
<tr>
<td>M-56</td>
<td>EMA</td>
<td>E</td>
</tr>
<tr>
<td>M-57</td>
<td>EMA</td>
<td>O</td>
</tr>
</tbody>
</table>

Each of the above-mentioned inventive mixtures can further comprise one or more insecticides, fungicides, herbicides.

For use according to the present invention, the mixtures according to the invention can be converted into the customary formulations, for example solutions, emulsions, sus-

The agrochemical formulations may also comprise auxiliaries which are customary in agrochemical formulations. The auxiliaries used depend on the particular application form and active substance, respectively.

Examples for suitable auxiliaries are solvents, solid carriers, dispersants or emulsifiers (such as further solubilizers, protective colloids, surfactants and adhesion agents), organic and anorganic thickeners, bactericides, anti-freezing agents, anti-foaming agents, if appropriate colorants and tackifiers or binders (e.g. for seed treatment formulations).

Suitable solvents are water, organic solvents such as mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. toluene, xylene, paraffin, tetrahydro-naphthalene, alkylated naphthalenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, glycols, ketones such as cyclohexanone and gamma-butyrolactone, fatty acid dimethylamides, fatty acids and fatty acid esters and strongly polar solvents, e.g. amines such as N-methylpyrrolidone.

Solid carriers are mineral earths such as silicates, silica gels, talc, kaolins, limestone, lime, chalk, bole, loess, clays, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e.g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.

Suitable surfactants (adjuvants, wetters, tackifiers, dispersants or emulsifiers) are alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, such as ligninsulfonic acid (Borresperse® types, Borregard, Norway) phenolsulfonic acid, naphthalenesulfonic acid (Morwet® types, Akzo Nobel, U.S.A.), dibutyl-naphthalenesulfonic acid (Nekal® types, BASF, Germany), and fatty acids, alkylsulfonates, alkylarylsulfonates, alkyl sulfates, lauryl-ether sulfates, fatty alcohol sulfates, and sulfated hexa-, hepta- and octadecanolates, sulfated fatty alcohol glycol ethers, furthermore condensates of naphthalene or of naphthalenesulfonic acid with phenol and formaldehyde, polyoxy-ethylene octylphenyl ether, ethoxylated isoctylphenol, octylphenol,
nonylphenol, alkylphenyl polyglycol ethers, tributylphenyl polyglycol ether, tristearyl-
phenyl polyglycol ether, alkylaryl polyether alcohols, alcohol and fatty alcohol/ethylene
oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers, ethoxylated
polyoxypropylene, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite
waste liquors and proteins, denatured proteins, polysaccharides (e.g. methylcellulose),
hydrophobically modified starches, polyvinyl alcohols (Mowiol® types, Clariant, Swit-
zerland), polycarboxylates (Sokolan® types, BASF, Germany), polyalkoxylates, polyvi-
nylamines (Lupasol® types, BASF, Germany), polyvinylpyrrolidone and the copolymers
thereof.

Examples for thickeners (i.e. compounds that impart a modified flowability to formulat-
tions, i.e. high viscosity under static conditions and low viscosity during agitation) are
polysaccharides and organic and anorganic clays such as Xanthan gum (Kelzan®, CP
Kelco, U.S.A.), Rhodopol® 23 (Rhodia, France), Veegum® (R.T. Vanderbilt, U.S.A.) or
Attaclay® (Engelhard Corp., NJ, USA).

Bactericides may be added for preservation and stabilization of the formulation. Exam-
les for suitable bactericides are those based on dichlorophene and benzylalcohol
hemi formal (Proxel® from ICI or Acticide® RS from Thor Chemie and Kathon® MK
from Rohm & Haas) and isothiazolinone derivatives such as alkylisothiazolinones and
benzisothiazolinones (Acticide® MBS from Thor Chemie).

Examples for suitable anti-freezing agents are ethylene glycol, propylene glycol, urea
and glycerin.

Examples for anti-foaming agents are silicone emulsions (such as e.g. Silikon® SRE,
Wacker, Germany or Rhodorsil®, Rhodia, France), long chain alcohols, fatty acids,
salts of fatty acids, fluoroorganic compounds and mixtures thereof.

Suitable colorants are pigments of low water solubility and water-soluble dyes. Exam-
les to be mentioned under the designations rhodamin B, C. I. pigment red 112, C. I.
solvent red 1, pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue
15:1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 112, pigment
red 48:2, pigment red 48:1, pigment red 57:1, pigment red 53:1, pigment orange 43,
pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment
white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52,
acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.

Examples for tackifiers or binders are polyvinylpyrrolidone, polyvinylacetates, polyvinyl
alcohols and cellulose ethers (Tylose®, Shin-Etsu, Japan).

Powders, materials for spreading and dusts can be prepared by mixing or conco-
mittantly grinding the compounds the respective active compounds present in the in-
vventive mixtures and, if appropriate, further active substances, with at least one solid
carrier.

Granules, e.g. coated granules, impregnated granules and homogeneous granules,
can be prepared by binding the active substances to solid carriers. Examples of solid
carriers are mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone,
lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magne-
sium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.

Examples of formulation types are suspensions (SC, OD, FS), emulsifiable concentrates (EC), emulsions (EW, EO, ES), pastes, pastilles, wettable powders or dusts (WP, SP, SS, WS, DP, DS) or granules (GR, FG, GG, MG), which can be water-soluble or wettable, as well as gel formulations for the treatment of plant propagation materials such as seeds (GF), herein further below exemplified in detail:

1. Composition types for dilution with water
i) Water-soluble concentrates (SL, LS)
10 parts by weight of compounds of the inventive mixtures are dissolved in 90 parts by weight of water or in a water-soluble solvent. As an alternative, wetting agents or other auxiliaries are added. The active substance dissolves upon dilution with water. In this way, a formulation having a content of 10% by weight of active substance is obtained.
ii) Dispersible concentrates (DC)
20 parts by weight of compounds of the inventive mixtures are dissolved in 70 parts by weight of cyclohexanone with addition of 10 parts by weight of a dispersant, e. g. polyvinylpyrrolidone. Dilution with water gives a dispersion. The active substance content is 20% by weight.
iii) Emulsifiable concentrates (EC)
15 parts by weight of compounds of the inventive mixtures are dissolved in 75 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). Dilution with water gives an emulsion. The composition has an active substance content of 15% by weight.
iv) Emulsions (EW, EO, ES)
25 parts by weight of compounds of the inventive mixtures are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). This mixture is introduced into 30 parts by weight of water by means of an emulsifying machine (Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion. The composition has an active substance content of 25% by weight.
v) Suspensions (SC, OD, FS)
35 In an agitated ball mill, 20 parts by weight of compounds of the inventive mixtures are comminuted with addition of 10 parts by weight of dispersants and wetting agents and 70 parts by weight of water or an organic solvent to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. The active substance content in the composition is 20% by weight.
vi) Water-dispersible granules and water-soluble granules (WG, SG)
50 parts by weight of compounds of the inventive mixtures are ground finely with addition of 50 parts by weight of dispersants and wetting agents and prepared as water-
dispersible or water-soluble granules by means of technical appliances (e.g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance. The composition has an active substance content of 50% by weight.

vii) Water-dispersible powders and water-soluble powders (WP, SP, SS, WS) 75 parts by weight of compounds of the inventive mixtures are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetting agents and silica gel. Dilution with water gives a stable dispersion or solution of the active substance. The active substance content of the composition is 75% by weight.

viii) Gel (GF)
In an agitated ball mill, 20 parts by weight of compounds of the inventive mixtures are comminuted with addition of 10 parts by weight of dispersants, 1 part by weight of a gelling agent wetters and 70 parts by weight of water or of an organic solvent to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance, whereby a composition with 20% (w/w) of active substance is obtained.

2. Composition types to be applied undiluted
ix) Dustable powders (DP, DS)
5 parts by weight of compounds of the inventive mixtures are ground finely and mixed intimately with 95 parts by weight of finely divided kaolin. This gives a dustable composition having an active substance content of 5% by weight.

x) Granules (GR, FG, GG, MG)
0.5 parts by weight of compounds of the inventive mixtures is ground finely and associated with 99.5 parts by weight of carriers. Current methods are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted having an active substance content of 0.5% by weight.

xi) ULV solutions (UL)
10 parts by weight of compounds of the inventive mixtures are dissolved in 90 parts by weight of an organic solvent, e.g. xylene. This gives a composition to be applied undiluted having an active substance content of 10% by weight.

The agrochemical formulations generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, most preferably between 0.5 and 90%, by weight of active substances. The compounds of the inventive mixtures are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).

The compounds of the inventive mixtures can be used as such or in the form of their compositions, e.g. in the form of directly sprayable solutions, powders, suspensions, dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading, brushing, immersing or pouring. The application forms depend entirely on the intended purposes;
it is intended to ensure in each case the finest possible distribution of the compounds present in the inventive mixtures.

Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier. Alternatively, it is possible to prepare concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water.

The active substance concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.001 to 1% by weight of compounds of the inventive mixtures.

The compounds of the inventive mixtures may also be used successfully in the ultralow-volume process (ULV), it being possible to apply compositions comprising over 95% by weight of active substance, or even to apply the active substance without additives.

Various types of oils, wetters, adjuvants, herbicides, fungicides, other pesticides, or bactericides may be added to the active compounds, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compounds of the inventive mixtures in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.

Compositions of this invention may also contain fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners. These may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix). For example, the plant(s) may be sprayed with a composition of this invention either before or after being treated with the fertilizers.

The compounds contained in the mixtures as defined above can be applied simultaneously, that is jointly or separately, or in succession, wherein the time interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s). The order of application is not essential for working of the present invention.

According to this invention, the compound I and compound II is to be understood to denote, that at least the compound I and compound II occur simultaneously at the site of action (i.e. the pests, such as harmful fungi and animal pests such as insects, ara-
chinds or nematods to be controlled or their habitats such as infected plants, plant propagation materials, particularly seeds, surfaces, materials or the soil as well as plants, plant propagation materials, particularly seeds, soil, surfaces, materials or rooms to be protected from fungal or animal attack) in a effective amount.

This can be obtained by applying the compound I and compound II simultaneously, either jointly (e.g. as tank-mix) or sperately, or in succession, wherein the time interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s). The order of application is not essential for working of the present invention.

In the mixtures of the present invention, the weight ratio of the compounds generally depends from the properties of the compounds of the inventive mixtures.

The compounds of the inventive mixtures can be used individually or already partially or completely mixed with one another to prepare the composition according to the invention. It is also possible for them to be packaged and used further as combination composition such as a kit of parts.

In one embodiment of the invention, the kits may include one or more, including all, components that may be used to prepare a subject agrochemical composition. E.g., kits may include the compound I and compound II and/or an adjuvant component and/or a further pesticidal compound (e.g. insecticide or herbicide) and/or a growth regulator component). One or more of the components may already be combined together or pre-formulated. In those embodiments where more than two components are provided in a kit, the components may already be combined together and as such are packaged in a single container such as a vial, bottle, can, pouch, bag or canister. In other embodiments, two or more components of a kit may be packaged separately, i.e., not pre-formulated. As such, kits may include one or more separate containers such as vials, cans, bottles, pouches, bags or canisters, each container containing a separate component for an agrochemical composition. In both forms, a component of the kit may be applied separately from or together with the further components or as a component of a combination composition according to the invention for preparing the composition according to the invention.

The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank or a spray plane. Here, the agrochemical composition is made up with water and/or buffer to the desired application concentration, it being possible, if appropriate, to add further auxiliaries, and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 50 to 500 liters of the ready-to-use spray liquor are applied per hectare
of agricultural useful area, preferably 100 to 400 liters.

According to one embodiment, individual compounds of the inventive mixtures formulated as composition (or formulation) such as parts of a kit or parts of the inventive mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate (tank mix).

In a further embodiment, either individual compounds of the inventive mixtures formulated as composition or partially premixed components, e.g. components comprising the compound I and compound II may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate (tank mix).

In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e.g. components comprising the compound I and compound II, can be applied jointly (e.g. after tankmix) or consecutively.

As said above, the present invention comprises a method for controlling pests, that means animal pests and harmful fungi, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material (preferably seed) are treated with an pesticidally effective amount of a mixture.

Advantageously, the inventive mixtures are suitable for controlling the following harmful fungi:

Albugo spp. (white rust) on ornamentals, vegetables (e.g. A. Candida) and sunflowers (e.g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicaceae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e.g. A. solani or A. alternata), tomatoes (e.g. A. solani or A. alternata) and wheat; Aphano-
myces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e.g. A. triticci (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e.g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e.g. spot blotch (B. sorokiniana) on cereals and e.g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e.g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e.g. strawberries), vegetables (e.g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce, Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e.g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e.g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e.g. C. beticola), sugar cane, vegetables, coffee, soybeans (e.g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e.g. C. fulvum: leaf mold) and cereals, e.g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals;
Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypii), corn (e. g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindenuthianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C. sa-sakii (sheath blight) on rice; Corynespora cassicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. liriodendri, teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritic-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeonomiella chlamydospora (earlier Phaeo-accremonium chlamydosporum), Phaeoaecronium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gib-berella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxy- sporum on tomatoes, F. solani on soybeans and F. verticilliiodes on corn; Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grain-staining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijienis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. para-
sativa), onions (e.g. *P. destructor*), tobacco (*P. tabacina*) and soybeans (e.g. *P. manshurica*); *Phakopsora* pachyrhizi and *P. meibomiae* (soybean rust) on soybeans; *Phialophora* spp. e.g. on vines (e.g. *P. tracheiphila* and *P. tetraspora*) and soybeans (e.g. *P. gregata*; stem rot); *Phoma lingam* (root and stem rot) on rape and cabbage and *P. betae* (root rot, leaf spot and damping-off) on sugar beets; *Phomopsis* spp. on sunflowers, vines (e.g. *P. viticola*; can and leaf spot) and soybeans (e.g. stem rot: *P. phaseoli*, teleomorph: *Diaporthe phaseolorum*); *Physoderma maydis* (brown spots) on corn; *Phytophthora* spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e.g. *P. capsici*), soybeans (e.g. *P. megasperma*, syn. *P. sojae*), potatoes and tomatoes (e.g. *P. infestans*; late blight) and broad-leaved trees (e.g. *P. ramorum*; sudden oak death); *Plasmidiophora brassicae* (club root) on cabbage, rape, radish and other plants; *Plasmodiophora* spp., e.g. *P. viticola* (grapevine downy mildew) on vines and *P. halstedii* on sunflowers; *Podosphaera* spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e.g. *P. leucotricha* on apples; *Polymyxa* spp., e.g. on cereals, such as barley and wheat (*P. graminis*) and sugar beets (*P. betae*) and thereby transmitted viral diseases; *Pseudocercosporella herpotrichoides* (eyespot, teleomorph: *Tapesia yallundae*) on cereals, e.g. wheat or barley; *Pseudoperonospora* (downy mildew) on various plants, e.g. *P. cubensis* on cucurbits or *P. humili* on hop; *Pseudozeicula* tracheiphila (red fire disease or *rotbrenner*), anamorph: *Phialophora* on vines; *Puccinia* spp. (rusts) on various plants, e.g. *P. triticina* (brown or leaf rust), *P. striiformis* (stripe or yellow rust), *P. hordei* (dwarf rust), *P. graminis* (stem or black rust) or *P. recondita* (brown or leaf rust) on cereals, such as e.g. wheat, barley or rye, *P. kuehnii* (orange rust) on sugar cane and *P. asparagi* on asparagus; *Pyrenophora* (anamorph: *Drechslera* tritici-repentis) (tan spot) on wheat or *P. feres* (net blotch) on barley; *Pyricularia* spp., e.g. *P. oryzae* (teleomorph: *Magnaporthe grisea*, rice blast) on rice and *P. grisea* on turf and cereals; *Pythium* spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e.g. *P. ultimum* or *P. apanidermatum*); *Ramularia* spp., e.g. *R. collo-cygni* (Ramularia leaf spots, Physiological leaf spots) on barley and *R. beticola* on sugar beets; *Rhizoctonia* spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e.g. *R. solani* (root and stem rot) on soybeans, *R. solani* (sheath blight) on rice or *R. cerealis* (Rhizoctonia spring blight) on wheat or barley; *Rhizopus stolonifer* (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; *Rhynchosporium secalis* (scald) on barley, rye and triticale; *Sarocladium oryzae* and *S. attenuatum* (sheath rot) on rice; *Sclerotinia* spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e.g. *S. sclerotiorum*) and soybeans (e.g. *S. rolfsii* or *S. sclerotiorum*); *Septoria* spp. on various plants, e.g. *S. glycines* (brown spot) on soybeans, *S. tritici* (Septoria blotch) on wheat and *S. * (syn. *Stagonospora*) nodorum (*Stagonospora* blotch) on cereals; *Uncinula* (syn. *Erysiphe*) necator (powdery mildew, anamorph: *Oidium tuckeri*) on vines; *Setosphaeria* spp. (leaf blight) on corn (e.g. *S. turcicum*, syn. *Helminthosporium turcicum*) and turf; *Sphacelotheca* spp. (smut) on corn, (e.g. *S. reiliana*; head smut), sorghum and sugar
cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e.g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e.g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e.g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e.g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e.g. U. occulta (stem smut) on rye; Uromyces spp. (rust) on vegetables, such as beans (e.g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e.g. U. betae); Ustilago spp. (loose smut) on cereals (e.g. U. nuda and U. avenae), corn (e.g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e.g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e.g. V. dahliae on strawberries, rape, potatoes and tomatoes.

The inventive mixtures are also suitable for controlling fungal diseases occurring in the protection of materials (e.g. wood, paper, paint dispersions, fiber or fabrics) and in the protection of stored products. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi:: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Por- ria spp., Serpula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichorma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisiae.

The inventive mixtures exhibit also outstanding action against animal pests from the following orders:

insects from the order of the lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia miruncinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grand/
osella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bou-
liana, Feltia subterranea, Galleria mellonella, Grapholita funebrana, Grapholita mo-
lesta, Heliotis armigera, Heliotis virescens, Heliotis zeas, Hellula undalis, Hibernia
defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lykoperciscella, Lamb-
dina fiscellaria, Laphyagma exigua, Leucoptera coffea, Leucoptera scitella, Lithocol-
letis blandardella, Lobesia botrana, Lobosstege sticticalis, Lymantria dispar, Lymantria
monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseud-
dotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma
sauca, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris bras-
sicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frus-
trana, Scrobipalpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera
frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatomoea pityocampa, Tortrix
viridana, Trichoplusia ni and Zeiraphera canadensis.

beetles (Coleoptera), for example Agrius sinuatus, Agriotes lineatus, Agriotes obscu-
rus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus
pomorum, Aphthona euphrioidae, Atheta haemorrhoidalis, Atomaria linearis, Blastop-
thagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus
lentis, Bytiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata,
Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus
vespertinus, Crioceris asparagi, Ctenicera ssp., Diabrotica longicornis, Diabrotica
semipunctata, Diabrotica 12-punctata Diabrotica speciosa, Diabrotica virgifera, Epila-
chna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera
brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus,
Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus
communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha,
Oulema oryzae, Ortiorrhynchos sulcatus, Otiorrhynchos ovatus, Phaedon cockleariae,
Phyllobius pyri, Phyllothis chrysocephala, Phyllothis sp., Phyllothera horticola,
Phyllothetra nemorum, Phyllothetra striolata, Popillia japonica, Sitona lineatus and Sito-
philus granaria,

flies, mosquitoes (Diptera), e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, An-
strepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus,
Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles min-
mus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitius capitata, Chrysomya
bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis,
Chrysops silacea, Chrysops atlanticus, Cochiomyia hominivorax, Contarinia sorghica
Cordylobia anthropophaga, Culicoides fures, Culex pipiens, Culex nigripalpus, Culex
quinquefasciatus, Culex tarsalis, Culiseta inornata, Culiseta melanura, Dacus cucurbiti-
tae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura,
Delia radicum, Dermatobia hominis, Fannia canicularis, Geomyza Tripunctata, Gaster-
ophilus intestinalis, Glossina morsitans, Glossina palpalis, Glossina fuscipes, Glossina

thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella Occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,

termites (Isoptera), e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Termes natalensis, and Coptotermes formosanus,

cockroaches (Blattaria - Blattodea), e.g. Blattella germanica, Blattella asahinae, Pen- planeta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta australasiae, and Blatta orientalis,

true bugs (Hemiptera), e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadra, Solubea insularis, Thyanta perditor, Acyrthosiphon onobrychis, Adelges laricis, Aphidoidea nasturii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphus gossypii, Aphus grossulariae, Aphus schneideri, Aphus spiraecola, Aphus sambuci, Acyrthosiphon pisum, Aulacorthum solani, Bemisia argentinifolia, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus hornii, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmanniana, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macro- siphon rosae, Megoura viciea, Melanaphis pyrarius, Metopolophium dirhodum, Myzus persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilapavarta lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus ascalonicus, Rhopalmospis maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum,
Toxoptera aurantiiaud, Viteus vitifolii, Cimex lectularius, Cimex hemipterus, Reduvius senilis, Triatoma spp., and Arilus critatus.

ants, bees, wasps, sawflies (Hymenoptera), e.g. Athalia roae, Atta cephalotes, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Crematogaster spp., Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaohis, Solenopsis gminata, Solenopsis invicta, Solenopsis xyloni, Pogonomyrmex barbatus, Pogonomyrmex californicus, Pheidole megacephala, Dasy- mutila occidentalis, Bombus spp. Vespula squamosa, Paravespula vulgaris, Paravespula pennsylvanica, Paravespula germanica, Dolichovespula maculata, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepithema humile,

crickets, grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllo- talpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina,

Arachnoidea, such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Amblyomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes ricinus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodo- rus turicata, Ornithonyssus bacoti, Otobius megnini, Dermaporphus gallinae, Psoroptes ovis, Rhipicephalus sanguineus, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptera oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytomonas pallidus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panony- chus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxos- celes reclusa,

fleas (Siphonaptera), e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,

silverfish, firebrat (Thysanura), e.g. Lepisma saccharina and Thermobia domestica,

centipedes (Chilopoda), e.g. Scutigera coleoptrata,
millipedes (Diplopoda), e.g. Narceus spp.,

Earwigs (Dermaptera), e.g. forficula auricularia,

lice (Phthiraptera), e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurystemus, Haematopinus suis, Linognathus vituli, Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus,

plant parasitic nematodes such as root-knot nematodes, Meloidogyne arenaria, Meloidogyne chitwoodi, Meloidogyne exigua, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica and other Meloidogyne species; cyst nematodes, Globodera rostochiensis, Globodera pallida, Globodera tabacum and other Globodera species, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; seed gall nematodes, Anguina funesta, Anguina tritici and other Anguina species; stem and foliage nematodes, Aphelenchoideus besseyi, Aphelenchoideus fragariae, Aphelenchoideus ritzemabosi and other Aphelenchoideus species; stunt nematodes, Belonolaimus longicaudatus and other Belonolaimus species; pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; ring nematodes, Criconema species, Criconemella species, Criconemoides species, and Mesocricnema species; stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and other Ditylenchus species; awl nematodes, Dolorichodorus species; spiral nematodes, Helicotylenchus diphthera, Helicotylenchus multicinctus and other Helicotylenchus species, Rotylenchus robustus and other Rotylenchus species; sheath nematodes, Hemicicliophora species and Hemicrinemoides species; Hirshmanniella species; lance nematodes, Hoplolaimus columbus, Hoplolaimus galeatus and other Hoplolaimus species; false root-knot nematodes, Nacobbus aberrans and other Nacobbus species; needle nematodes, Longidorus elongates and other Longidorus species; pin nematodes, Paratylenchus species; lesion nematodes, Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus curvatus, Pratylenchus goodeyi, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus scribneri, Pratylenchus vulnus, Pratylenchus zeae and other Pratylenchus species; Radinaphelenchus cocophilus and other Radinaphelenchus species; burrowing nematodes, Radopholus similis and other Radopholus species; reniform nematodes, Rotylenchulus reniformis and other Rotylenchulus species; Scutellonema species; stubby root nematodes, Trichodorus primitivus and other Trichodorus species; Paratrichodorus minor and other Paratrichodorus species; stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus species and Melinius species; citrus nematodes, Tylenchulus semipenetrans and other Tylenchulus species; dagger nematodes, Xiphinema americanum, Xiphinema index, Xiphinema diversicaudatum and other Xiphinema species; and other plant parasitic nematode species.
The mixtures according to the invention can be applied to any and all developmental stages of pests, such as egg, larva, pupa, and adult. The pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.

"Locus" means a plant, plant propagation material (preferably seed), soil, area, material or environment in which a pest is growing or may grow.

In general, "pesticidally effective amount" means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various mixtures / compositions used in the invention. A pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.

The inventive mixtures are particularly important for controlling a multitude of harmful fungi or insects on various cultivated plants, such as cereals, e.g. wheat, rye, barley, triticale, oats or rice; beet, e.g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e.g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconuts, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e.g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.

Preferably, the inventive mixtures of the present invention are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.

Preferably, the treatment of plant propagation materials with the inventive mixtures is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.
As said above, the present invention comprises a method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material, from which the plant grows, is treated with an plant health effective amount of an inventive mixture.

The term "plant health effective amount" denotes an amount of the inventive mixtures, which is sufficient for achieving plant health effects as defined hereinbelow. More exemplary information about amounts, ways of application and suitable ratios to be used is given below. Anyway, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic conditions.

The term "effective amount" comprises the terms "plant health effective amount" and/or "pesticidally effective amount" as the case may be.

When preparing the mixtures, it is preferred to employ the pure active compounds, to which further active compounds against pests, such as insecticides, herbicides, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need.

The inventive mixtures are employed by treating the fungi or the plants, plant propagation materials (preferably seeds), materials or soil to be protected from fungal attack with a pesticidally effective amount of the active compounds. The application can be carried out both before and after the infection of the materials, plants or plant propagation materials (preferably seeds) by the pests.

Preferably, the inventive mixtures are employed by treating the fungi or the plants or soil to be protected from pesticidal attack via foliar application with a pesticidally effective amount of the active compounds. Also herein, the application can be carried out both before and after the infection of the plants by the pests.

In the method of combating harmful fungi depending on the type of compound and the desired effect, the application rates of the mixtures according to the invention are from 0.1 g/ha to 10000 g/ha, preferably 2 g/ha to 2500 g/ha, more preferably from 5 to 1000 g/ha, most preferably from 10 to 750 g/ha, in particular from 20 to 500 g/ha.

In the method of combating animal pests (insects, acarids or nematodes) depending on the type of compound and the desired effect, the application rates of the mixtures according to the invention are from 0.1 g/ha to 10000 g/ha, preferably 1 g/ha to 5000 g/ha, more preferably from 20 to 1000 g/ha, most preferably from 10 to 750 g/ha, in particular from 20 to 500 g/ha.
The inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by animal pests (insects, acarids or nematodes) comprising contacting a plant, or soil or water in which the plant is growing.

In the context of the present invention, the term plant refers to an entire plant, a part of the plant or the propagation material of the plant.

Plants and as well as the propagation material of said plants, which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.

For example, mixtures according to the present invention can be applied (as seed treatment, spray treatment, in furrow or by any other means) also to plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://www.bio.org/speeches/pubs/er/agri_products.asp). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e.g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.

Plants that have been modified by breeding, mutagenesis or genetic engineering, e.g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbicides such as dicamba or 2,4-D; bleacher herbicides such as hydroxylphenylpyruvate dioxygenase (HPPD) inhibitors or phytoene desaturase (PDS) inhibitors; acetalactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i.e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as...
resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors. These herbicide resistance technologies are e.g. described in Pest Managem. Sci. 61, 2005, 246; 61, 2005, 258; 61, 2005, 277; 61, 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Sci. 57, 2009, 108; Austral. J. Agricult. Res. 58, 2007, 708; Science 316, 2007, 1185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e.g. Clearfield® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e.g. imazamox, or ExpressSun® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e.g. tribenuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beans and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate-tolerant, Monsanto, U.S.A.), Cultivance® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink® (glufosinate-tolerant, Bayer CropScience, Germany).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as δ-endotoxins, e.g. CryIA(b), CryIA(c), CryIF, CryI(a2), CryIIA(b), CryIIIA, CryIII(b1) or Cry9c; vegetative insecticidal proteins (VIP), e.g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e.g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such as Streptomyces toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxy steroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.

Hybrid proteins are characterized by a new combination of protein domains, (see, e.g. WO 02/015701). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e.g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.g. in the publications mentioned above.

These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of
athropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e.g., described in the publications mentioned above, and some of which are commercially available such as YieldGard®, (corn cultivars producing the Cry1Ab toxin), YieldGard® Plus (corn cultivars producing Cry1Ab and Cry3Bb1 toxins), Starlink® (corn cultivars producing the Cry9c toxin), Herculex® RW (corn cultivars producing Cry34Ab1, Cry35Ab1 and the enzyme Phosphinothricin-N-Acetyltransferase [PAT]); NuCOTN® 33B (cotton cultivars producing the Cry1A.1 toxin), Bollgard® I (cotton cultivars producing the Cry1Ac toxin), Bollgard® II (cotton cultivars producing Cry1Ac and Cry2Ab2 toxins); VIPCOT® (cotton cultivars producing a VIP-toxin); NewLeaf® (potato cultivars producing the Cry3A toxin); Bt-Xtra®, NatureGard®, KnockOut®, BiteGard®, Protecta®, Bt11 (e.g. Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the Cry1Ab toxin and PAT enzyme), MIR604 from Syngenta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/01 881 0), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the Cry1Ac toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1F toxin and PAT enzyme).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "pathogenesis-related proteins" (PR proteins, see, e.g. EP-A 392 225), plant disease resistance genes (e.g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozyme (e.g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylovora). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.g. in the publications mentioned above.

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e.g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e.g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e.g. Nexera® rape, DOW Agro Sciences, Canada).

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content,
specifically to improve raw material production, e.g. potatoes that produce increased amounts of amylopectin (e.g. Amflora® potato, BASF SE, Germany).

In a further embodiment of the invention, the inventive mixtures are used for the protection of the seed and the seedlings’ roots and shoots, preferably the seeds.

Seed treatment can be made into the seedbox before planting into the field.

For seed treatment purposes, the weight ration in the inventive mixtures generally depends from the properties of the compounds of the inventive mixtures.

Compositions, which are especially useful for seed treatment are e.g.:

A Soluble concentrates (SL, LS)
D Emulsions (EW, EO, ES)
E Suspensions (SC, OD, FS)
F Water-dispersible granules and water-soluble granules (WG, SG)
G Water-dispersible powders and water-soluble powders (WP, SP, WS)
H Gel-Formulations (GF)
I Dustable powders (DP, DS)

These compositions can be applied to plant propagation materials, particularly seeds, diluted or undiluted. These compositions can be applied to plant propagation materials, particularly seeds, diluted or undiluted. The compositions in question give, after two- to tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying or treating agrochemical compounds and compositions thereof, respectively, on to plant propagation material, especially seeds, are known in the art, and include dressing, coating, pelleting, dusting and soaking application methods of the propagation material (and also in furrow treatment). In a preferred embodiment, the compounds or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e.g. by seed dressing, pelleting, coating and dusting.

In the treatment of plant propagation material (preferably seed), the application rates of the inventive mixture are generally for the formulated product (which usually comprises from 10 to 750 g/l of the active(s))

The invention also relates to the propagation products of plants, and especially the seed comprising, that is, coated with and/or containing, a mixture as defined above or a composition containing the mixture of two or more active ingredients or a mixture of two or more compositions each providing one of the active ingredients. The plant propaga-
tion material (preferably seed) comprises the inventive mixtures in an amount of from 0.1 g to 10 kg per 100 kg of plant propagation material (preferably seed), preferably 0.1 g to 1 kg per 100 kg of plant propagation material (preferably seed).

For example, the ratio by weight for compound II is herein preferably between 0.5 - 200 g/100kg plant propagation material (preferably seed), more preferred 1 to 50 g/100kg plant propagation material (preferably seed) and most preferred 1 to 20 g/100kg plant propagation material (preferably seed).

For example, the ratio by weight of compound I is herein preferably between 1 - 2000 g/100kg plant propagation material (preferably seed), more preferred 10 to 1000 g/100kg plant propagation material (preferably seed), most preferred 25 to 750 g/100kg plant propagation material (preferably seed) and utmost preferred 50-500 g/100kg plant propagation material (preferably seed).

The separate or joint application of the compounds of the inventive mixtures is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.

The inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through trophallaxis and transfer.

Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.

According to another preferred embodiment of the invention, for use against non phytopathogenic pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the inventive mixtures are prepared into a bait preparation.

The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel). The bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it. This attractant may be chosen from feeding stimulants or para and / or sex pheromones readily known in the art.

Methods to control infectious diseases transmitted by non-phytopathogenic insects (e.g. malaria, dengue and yellow fever, lymphatic filariasis, and leishmaniasis) with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like. Insecticidal compositions for application to fibers, fabric,
knitgoods, non-wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.

The inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).

In the case of soil treatment or of application to the pests dwelling place or nest, the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m², preferably from 0.001 to 20 g per 100 m².

Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound per m² treated material, desirably from 0.1 g to 50 g per m².

Insecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and/or insecticide.

For use in bait compositions, the typical content of active ingredient is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound. The composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.

For use in spray compositions, the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
Claims

1. Mixtures comprising, as active components,

 1) one insecticidal compound I selected from the group consisting of spinosad, spinetoram, pymetrozine, tebufenpyrad, fenazaquin, fenpyroximate, flufenerim, pyridaben, tolfenpyrad, emamectin benzoate, milbemectin, Lepimectin, acequinocyl, fluacyprim, hydramethylnon, cyhexatin, diafenthiuron, fenbutatin oxide, indoxacarb, propargite, benclothiaz, bifentrazole, carthap, flonicamid, pyridalyl, thiochlorpyracifen, dicrofyl, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, pyrifluquinazon and 2,2-Dimethyl-propionic acid (Z)-2-cyano-1-(2,4-dimethyl-thiazol-5-yl)-2-(2-phenyl-thiazol-4-yl)-vinyl ester; and

 2) pyraclostrobin as compound II;

 in synergistic effective amounts.

2. The mixture according to claim 1, wherein the insecticidal compound I is selected from the group consisting of spinosad, spinetoram, pymetrozine, tebufenpyrad, pyridaben, tolfenpyrad and emamectin benzoate.

3. The mixture according to claim 1, wherein the insecticidal compound I is selected from the group consisting of spinosad, tebufenpyrad, emamectin benzoate and pymetrozine.

4. The mixture according to claim 1, wherein the insecticidal compound I is spinosad or pymetrozine.

5. The mixture according to any of claims 1 to 4, wherein the ratio by weight of compound I : II is from 1:500 to 500:1.

6. A pesticidal composition, comprising a liquid or solid carrier and a mixture as defined in any of claims 1 to 5.

7. A method for improving the health of plants and/or increasing the yield, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material from which the plant grows is treated with an effective amount of a mixture as defined in any of claims 1 to 5.

8. A method for controlling pests, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material are treated with an effective amount of a mixture as defined in any of claims 1 to 5.
9. A method for protection of plant propagation material from pests comprising contacting the plant propagation materials with a mixture as defined in any of claims 1 to 5 in pesticidally effective amounts.

10. A method as claimed in claims 7, 8 or 9, wherein the compounds as defined in any of claims 1 to 5 are applied simultaneously, that is jointly or separately, or in succession.

11. Plant propagation material, comprising the mixture as defined in any of claims 1 to 5 in an amount of from 0.01 g to 10 kg per 100 kg of plant propagation materials.
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Inv.</th>
<th>A01N43/22</th>
<th>A01N43/56</th>
<th>A01N43/707</th>
<th>A01N43/90</th>
<th>A01N47/24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add.</td>
<td>A01P3/00</td>
<td>A01P7/04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) and/or both national classification and IPC

B. FIELDS SEARCHED

- Minimum documentation searched (classification system followed by classification symbols)
 - A01N

- Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
 - EPO-Internal
 - CHEM ABS Data
 - WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 2010/003877 AI (BASF SE [DE]; KOERBER KARSTEN [DE]; KAISER FLORIAN [DE]; HADEN EGON [D]) 14 January 2010 (2010-01-14) page 47 - page 48; table B page 104 - page 105; table B.1.1 page 105 - page 106; table B.1.3 ----</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>wo 2005/094155 A2 (SYNGENTA PARTICI PATIONS AG [CH]; HOFER DI ETER [CH]; LONG DAVID [US]) 13 October 2005 (2005-10-13) paragraphs [0033], [0034], [0035], [0052] claim 1 ----</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "A" document member of the same patent family

Date of the actual completion of the international search: 21 June 2011

Date of mailing of the international search report: 09/08/2011

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:
Habermann, Jbrg
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CDS T0MLIN (ED) - T0MLIN C D S (ED): "THE PESTICIDE MANUAL (12TH EDITION) , SPINOSAD" 1 January 2000 (2000-01-01), PESTICIDE MANUAL, WORLD COMPRENDIUM; [PESTICIDE MANUAL], FARNHAM: BCPC, GB, PAGE(S) 840 - 842, XP002419982, ISBN: 978-1-901396-12-6</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>CDS T0MLIN (ED) - T0MLIN C D S (ED): "THE E-PESTICIDE MANUAL (14TH EDITION) , 710 Pyraclostrobin", 1 January 2006 (2006-01-01), British Crop Protection Council, XP002603504, the whole document</td>
<td>1-11</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos. :

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

I-II(partial ly)

Remark on Protest

□ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

<table>
<thead>
<tr>
<th>Claim(s)</th>
<th>Mixture components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1-11 (partly)</td>
<td>spinosad and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>2. 1, 2, 5-11 (al1 partly)</td>
<td>spinetoram and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>3. 1-11 (partly)</td>
<td>pymetrozine and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>4. 1-3, 5-11 (al partly)</td>
<td>tebufenpyrad and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>5. 1, 5-11 (al partly)</td>
<td>fenazaquin and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>6. 1, 5-11 (al partly)</td>
<td>fenpyroximate and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>7. 1, 5-11 (al partly)</td>
<td>flufenersim and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>8. 1, 5-11 (al partly)</td>
<td>pyrimidine and pyraclostrobin in synergistic effective amount</td>
</tr>
<tr>
<td>9. 1, 2, 5-11 (al partly)</td>
<td>pyridaben and pyraclostrobin in synergistic effective amount</td>
</tr>
</tbody>
</table>
10. Claims: 1, 2, 5-11 (al partiy)
 Mixture comprising as active components fenpyrad and
 pyraclostrobin in synergistic effective amount

11. Claims: 1-3, 5-11 (al partiy)
 Mixture comprising as active components emamectin benzoate
 and pyraclostrobin in synergistic effective amount

12. Claims: 1, 5-11 (al partiy)
 Mixture comprising as active components milbemectin and
 pyraclostrobin in synergistic effective amount

13. Claims: 1, 5-11 (al partiy)
 Mixture comprising as active components lopinectin and
 pyraclostrobin in synergistic effective amount

14. Claims: 1, 5-11 (al partiy)
 Mixture comprising as active components acequinocyl and
 pyraclostrobin in synergistic effective amount

15. Claims: 1, 5-11 (al partiy)
 Mixture comprising as active components fluacypyr and
 pyraclostrobin in synergistic effective amount

16. Claims: 1, 5-11 (al partiy)
 Mixture comprising as active components hydramethylnon and
 pyraclostrobin in synergistic effective amount

17. Claims: 1, 5-11 (al partiy)
 Mixture comprising as active components cyhexatin and
 pyraclostrobin in synergistic effective amount

18. Claims: 1, 5-11 (al partiy)
 Mixture comprising as active components diafenthiuron and
 pyraclostrobin in synergistic effective amount
19. claims: 1, 5-ll (aV parti al ly)

 Mixture comprising as active components fenbutatin oxide and
 pyraclostrobin in synergistic effecti ve amount

20. claims: 1, 5-ll (aV parti al ly)

 Mixture comprising as active components indoxacarb and
 pyraclostrobin in synergistic effecti ve amount

21. claims: 1, 5-ll (aV parti al ly)

 Mixture comprising as active components propargite and
 pyraclostrobin in synergistic effecti ve amount

22. claims: 1, 5-11 (al l parti al ly)

 Mixture comprising as active components benclothiaz and
 pyraclostrobin in synergistic effecti ve amount

23. claims: 1, 5-ll (aV parti al ly)

 Mixture comprising as active components bifenzate and
 pyraclostrobin in synergistic effecti ve amount

24. claims: 1, 5-11 (al l parti al ly)

 Mixture comprising as active components cartap and
 pyraclostrobin in synergistic effecti ve amount

25. claims: 1, 5-ll (aV parti al ly)

 Mixture comprising as active components flonicamidine and
 pyraclostrobin in synergistic effecti ve amount

26. claims: 1, 5-11 (al l parti al ly)

 Mixture comprising as active components pyridalyl and
 pyraclostrobin in synergistic effecti ve amount

27. claims: 1, 5-ll (aV parti al ly)

 Mixture comprising as active components thiocyclam and
 pyraclostrobin in synergistic effecti ve amount

<table>
<thead>
<tr>
<th>Claim Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components cyenopyrafen and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>29. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components dicofol and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>30. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components fluropyrazofos and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>31. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components cyflumetofen and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>32. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components amidoflumet and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>33. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components imicyafos and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>34. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components bifenthrin and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>35. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components pyrifluquinoxazon and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>36. 1, 5-11 (all partially)</td>
<td>Mixture comprising as active components 2,2-dimethyl propionic acid (Z)-2-cyano-l-(2,4-dimethyl thiiazol-5-yl)-2-(2-phenyl thiiazol-4-yl)vinyl ester and pyracloestrobin in synergistic effective amount</td>
</tr>
<tr>
<td>FURTHER INFORMATION CONTINUED FROM</td>
<td>PCT/ISA/ 210</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>WO 2010003877 Al</td>
<td>14-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WO 2005094155 A2	13-10-2005	AR 047078 Al	04-01-2006
		AU 2004317816 Al	13-10-2005
		BR PI0418640 A	29-05-2007
		CA 2557774 Al	13-10-2005
		CN 1946294 A	11-04-2007
		CN 101653130 A	24-02-2010
		EC SP068846 A	24-11-2006
		EP 1727427 A2	06-12-2006
		JP 2007529436 A	25-10-2007
		KR 20070003946 A	05-01-2007
		MA 28473 Bl	01-03-2007
		MX 265036 B	11-03-2009
		NZ 549164 A	26-02-2010
		ZA 200606270 A	31-10-2007