

(51) Int.Cl.: **C 07 K 14/71 (2006.01)** **C 07 K 16/22 (2006.01)** **C 07 K 16/28 (2006.01)**
C 07 K 16/46 (2006.01) **C 07 K 19/00 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2024-06-17**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2024-05-01**

(86) Europæisk ansøgning nr.: **21165709.3**

(86) Europæisk indleveringsdag: **2015-02-10**

(87) Den europæiske ansøgnings publiceringsdag: **2021-10-06**

(30) Prioritet: **2014-02-10 US 201461938048 P**

(62) Stamansøgningsnr: **15717097.8**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Merck Patent GmbH, Frankfurter Strasse 250, 64293 Darmstadt, Tyskland**

(72) Opfinder: **LO, Kin-Ming, 6 Carol Lane, Lexington, MA 02420, USA**

(74) Fuldmægtig i Danmark: **Zacco Denmark A/S, Arne Jacobsens Allé 15, 2300 København S, Danmark**

(54) Benævnelse: **Målrettet TGF-Beta-inhibering**

(56) Fremdragne publikationer:
WO-A1-2010/077634
WO-A1-2013/079174
WO-A1-2013/164694
WO-A2-2011/109789
US-A1- 2005 079 559

I. MELERO ET AL: "Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination", CLINICAL CANCER RESEARCH, vol. 19, no. 5, 1 March 2013 (2013-03-01), pages 997-1008, XP055151065, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-12-2214

KYI CHRISANN ET AL: "Checkpoint blocking antibodies in cancer immunotherapy", FEBS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 588, no. 2, 23 October 2013 (2013-10-23), pages 368-376, XP028669971, ISSN: 0014-5793, DOI: 10.1016/J.FEBSLET.2013.10.015

ALEXANDER M. MENZIES ET AL: "Recent advances in melanoma systemic therapy. BRAF inhibitors, CTLA4 antibodies and beyond", EUROPEAN JOURNAL OF CANCER, vol. 49, no. 15, 1 October 2013 (2013-10-01), pages 3229-3241, XP055203734, ISSN: 0959-8049, DOI: 10.1016/j.ejca.2013.06.027

DK/EP 3889172 T3

DESCRIPTION

Description

FIELD OF THE INVENTION

[0001] This invention relates generally to bifunctional molecules including (a) a TGF β RII or fragment thereof capable of binding TGF β and (b) an antibody, or antigen binding fragment thereof, that binds to Programmed Death Ligand 1 (PD-L1), uses of such molecules (e.g., for treating cancer), and methods of making such molecules.

BACKGROUND

[0002] In cancer treatment, it has long been recognized that chemotherapy is associated with high toxicity and can lead to emergence of resistant cancer cell variants. Even with targeted therapy against overexpressed or activated oncoproteins important for tumor survival and growth, cancer cells invariably mutate and adapt to reduce dependency on the targeted pathway, such as by utilizing a redundant pathway. Cancer immunotherapy is a new paradigm in cancer treatment that instead of targeting cancer cells, focuses on the activation of the immune system. Its principle is to rearm the host's immune response, especially the adaptive T cell response, to provide immune surveillance to kill the cancer cells, in particular, the minimal residual disease that has escaped other forms of treatment, hence achieving long-lasting protective immunity.

[0003] FDA approval of the anti-CTLA-4 antibody ipilimumab for the treatment of melanoma in 2011 ushered in a new era of cancer immunotherapy. The demonstration that anti-PD-1 or anti-PD-L1 therapy induced durable responses in melanoma, kidney, and lung cancer in clinical trials further signify its coming of age (Pardoll, D.M., Nat Immunol. 2012; 13: 1129-32). However, ipilimumab therapy is limited by its toxicity profile, presumably because anti-CTLA-4 treatment, by interfering with the primary T cell inhibitory checkpoint, can lead to the generation of new autoreactive T cells. While inhibiting the PD-L1/PD-1 interaction results in dis-inhibiting existing chronic immune responses in exhausted T cells that are mostly antiviral or anticancer in nature (Wherry, E.J., Nat Immunol. 2011; 12:492-9), anti-PD-1 therapy can nevertheless sometimes result in potentially fatal lung-related autoimmune adverse events. Despite the promising clinical activities of anti-PD1 and anti-PD-L1 so far, increasing the therapeutic index, either by increasing therapeutic activity or decreasing toxicity, or both, remains a central goal in the development of immunotherapeutic.

[0004] WO 2011/109789 discloses compositions and methods for targeted immunomodulatory antibodies and fusion proteins.

SUMMARY OF THE INVENTION

[0005] The present invention is based on the discovery that a bifunctional protein containing at least portion of TGF β Receptor II (TGF β RII) that is capable of binding TGF β and antibody or antigen-binding fragment that binds to human protein Programmed Death Ligand 1 (PD-L1) can be an effective anti-tumor and anti-cancer therapeutic. The protein can exhibit a synergistic effect in cancer treatment, as compared to the effect of administering the two agents separately. The invention is defined by the claims.

[0006] Accordingly, in a first aspect, the present invention features a protein including (a) human TGF β RII, or a fragment thereof capable of binding TGF β (e.g., a soluble fragment); and (b) an antibody, or an antigen-binding fragment thereof, that binds PD-L1 and comprises: (i) a heavy chain variable region including an HVR-H1, HVR-H2, and HVR-H3 having the amino acid sequences of SYIMM, SIYPSGGITFYADTVKG, and IKLGTVTTVDY, respectively, and (ii) a light chain variable region including an HVR-L1, HVR-L2, and HVR-L3 having the amino acid sequences of TGTSSDVGGYNYVS, DVSNRPS, and SSYTSSSTRV, respectively..

[0007] In a related aspect, the invention features a polypeptide including (a) at least a variable domain of a heavy chain of an antibody that binds PD-L1 (e.g., amino acids 1-120 of SEQ ID NO: 2); and (b) human TGF β RII, or a soluble fragment thereof capable of binding TGF β (e.g., a human TGF β RII extra-cellular domain (ECD), amino acids 24-159 of SEQ ID NO: 9, or any of those described herein). The polypeptide may further include an amino acid linker connecting the C-terminus of the variable domain to the N-terminus of the human TGF β RII or soluble fragment thereof capable of binding TGF β . The polypeptide may include the amino acid sequence of SEQ ID NO: 3 or an amino acid sequence substantially identical to SEQ ID NO: 3. The antibody fragment may be an scFv, Fab, F(ab')₂, or Fv fragment.

[0008] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes SEQ ID NO: 2 and human TGF β RII. The antibody may optionally include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0009] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes SEQ ID NO: 2 and a fragment of human TGF β RII capable of binding TGF β (e.g., a soluble fragment). The antibody may optionally include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0010] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes SEQ ID NO: 2 and a human TGF β RII ECD. The antibody may include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0011] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes amino acids 1-120 of SEQ ID NO: 2 and human TGF β RII. The antibody may include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0012] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes amino acids 1-120 of SEQ ID NO: 2 and a fragment of human TGF β RII capable of binding TGF β (e.g., a soluble fragment). The antibody may include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0013] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes amino acids 1-120 of SEQ ID NO: 2 and a human TGF β RII ECD. The antibody may include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0014] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes the hypervariable regions present in SEQ ID NO: 2 and human TGF β RII. The antibody may include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0015] In certain embodiments, the protein or polypeptide includes an antibody or antigen-binding fragment thereof that includes the hypervariable regions present in SEQ ID NO: 2 and a fragment of human TGF β RII capable of binding TGF β (e.g., a soluble fragment). The antibody may include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0016] In certain embodiments, the protein or polypeptide includes an antibody or antigen-

binding fragment thereof that includes the hypervariable regions present in SEQ ID NO: 2 and a human TGF β RII ECD. The antibody may include a modified constant region (e.g., including a C-terminal Lys \rightarrow Ala substitution, a mutation of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) sequence to Ala-Thr-Ala-Thr (SEQ ID NO: 20), or a hybrid constant region including an IgG1 hinge region and an IgG2 CH2 domain).

[0017] The invention also features a nucleic acid that includes a nucleotide sequence that encodes a polypeptide described above (e.g., human TGF β RII or a fragment thereof and a variable domain of a heavy chain of an antibody which, when combined with the polypeptide, forms an antigen-binding site that binds PD-L1). In certain embodiments, the nucleic acid further includes a second nucleotide sequence encoding at least a variable domain of a light chain of an antibody which, when combined with the polypeptide, forms an antigen-binding site that binds PD-L1 (e.g., including amino acids 1-110 of SEQ ID NO: 1). The second nucleotide sequence may encode the amino acid sequence of SEQ ID NO: 1 (secreted anti-PD-L1 lambda light chain) or an amino acid sequence substantially identical to SEQ ID NO: 1.

[0018] The invention also features a cell comprising on the same or on different nucleic acids a first nucleotide sequence encoding a polypeptide comprising (a) at least a variable domain of a heavy chain of an antibody that binds human PD-L1; and (b) human TGF β 3RII, or a soluble fragment thereof capable of binding TGF β , wherein the heavy chain variable domain of the antibody includes an HVR-H1, HVR-H2, and HVR-H3 having the amino acid sequences of SYIMM, SIYPSGGITFYADTVKG, and IKLGTVTTVDY, respectively; and a second nucleotide sequence encoding at least a variable domain of a light chain of an antibody which, when combined with the polypeptide, forms an antigen-binding site that binds PD-L1, wherein the light chain variable domain of the antibody includes an HVR-L1, HVR-L2, and HVR-L3 having the amino acid sequences of TGTSSDVGGYNYVS, DVSNRPS, and SSYTSSSTRV, respectively.

[0019] The invention also features a method of producing a protein including (a) the extracellular domain of the human TGF β RII, or a fragment thereof capable of binding TGF β (e.g., a soluble fragment), and (b) an antibody, or an antigen-binding fragment thereof, that binds human PD-L1 and comprises: (i) a heavy chain variable region including an HVR-H1, HVR-H2, and HVR-H3 having the amino acid sequences of SYIMM, SIYPSGGITFYADTVKG, and IKLGTVTTVDY, respectively, and (ii) a light chain variable region including an HVR-L1, HVR-L2, and HVR-L3 having the amino acid sequences of TGTSSDVGGYNYVS, DVSNRPS, and SSYTSSSTRV, respectively. The method includes maintaining a cell described under conditions that permit expression of the protein. The method may further include harvesting the protein.

[0020] Disclosed herein are proteins including the polypeptide described above and at least a variable domain of a light chain of an antibody which, when combined with the polypeptide, forms an antigen-binding site that binds PD-L1. The protein may include (a) two polypeptides, each having an amino acid sequence consisting of the amino acid sequence of SEQ ID NO: 3, and (b) two additional polypeptides each having an amino acid sequence consisting of the

amino acid sequence of SEQ ID NO: 1.

[0021] The invention also features a protein including (a) human TGF β RII, or a fragment thereof capable of binding TGF β (e.g., a soluble fragment); and (b) an antibody, or an antigen-binding fragment thereof, that binds PD-L1 and comprises: (i) a heavy chain variable region including an HVR-H1, HVR-H2, and HVR-H3 having the amino acid sequences of SYIMM, SIYPSGGITFYADTVKG, and IKLGTVTVDY, respectively, and (ii) a light chain variable region including an HVR-L1, HVR-L2, and HVR-L3 having the amino acid sequences of TGTSSDVGGNYVS, DVSNRPS, and SSYTSSSTRV, respectively; for use in methods of inhibiting tumour growth in a patient, and/or for use in methods of treating cancer in a patient, said methods comprising administering the protein to the patient. Methods may further include administration of radiation or administration of a chemotherapeutic, a biologic, or a vaccine.

[0022] Disclosed herein are proteins for use in promoting local depletion of TGF β at a tumor, or for use in inhibiting SMAD3 phosphorylation in a cell (e.g., a tumor cell or an immune cell). Methods of promoting local depletion of TGF β are also disclosed, said methods comprising administering a protein described above, where the protein binds TGF β in solution, binds PD-L1 on a cell surface, and carries the bound TGF β into the cell (e.g., a cancer cell). Similarly, methods of inhibiting SMAD3 phosphorylation in a cell (e.g., a cancer cell or an immune cell), comprising exposing a cell in the tumor microenvironment to a protein described above are disclosed herein.

[0023] The cancer or tumor may be selected from the group consisting of colorectal, breast, ovarian, pancreatic, gastric, prostate, renal, cervical, myeloma, lymphoma, leukemia, thyroid, endometrial, uterine, bladder, neuroendocrine, head and neck, liver, nasopharyngeal, testicular, small cell lung cancer, non-small cell lung cancer, melanoma, basal cell skin cancer, squamous cell skin cancer, dermatofibrosarcoma protuberans, Merkel cell carcinoma, glioblastoma, glioma, sarcoma, mesothelioma, and myelodisplastic syndromes.

[0024] All references in the subsequent description to methods of treatment are made solely to facilitate the disclosure of compounds, pharmaceutical compositions and/or medicaments of the invention, for use in methods of treatment of the human or animal body by therapy. The invention is defined by the claims.

[0025] The term "TGF β RII" or "TGF β Receptor II" means a polypeptide having the wild-type human TGF β Receptor Type 2 Isoform A sequence (e.g., the amino acid sequence of NCBI Reference Sequence (RefSeq) Accession No. NP_001020018 (SEQ ID NO: 8)), or a polypeptide having the wild-type human TGF β Receptor Type 2 Isoform B sequence (e.g., the amino acid sequence of NCBI RefSeq Accession No. NP_003233 (SEQ ID NO: 9)) or having a sequence substantially identical the amino acid sequence of SEQ ID NO: 8 or of SEQ ID NO: 9. The TGF β RII may retain at least 0.1%, 0.5%, 1%, 5%, 10%, 25%, 35%, 50%, 75%, 90%, 95%, or 99% of the TGF β -binding activity of the wild-type sequence. The polypeptide of expressed TGF β RII lacks the signal sequence.

[0026] The term "fragment of TGF β RII capable of binding TGF β " means any portion of NCBI RefSeq Accession No. NP_001020018 (SEQ ID NO: 8) or of NCBI RefSeq Accession No. NP_003233 (SEQ ID NO: 9), or a sequence substantially identical to SEQ ID NO: 8 or SEQ ID NO: 9 that is at least 20 (e.g., at least 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 175, or 200) amino acids in length that retains at least some of the TGF β -binding activity (e.g., at least 0.1%, 0.5%, 1%, 5%, 10%, 25%, 35%, 50%, 75%, 90%, 95%, or 99%) of the wild-type receptor or of the corresponding wild-type fragment. Typically such fragment is a soluble fragment. An exemplary such fragment is a TGF β RII extra-cellular domain having the sequence of SEQ ID NO: 10.

[0027] The term "substantially identical" means a polypeptide exhibiting at least 50%, desirably 60%, 70%, 75%, or 80%, more desirably 85%, 90%, or 95%, and most desirably 99% amino acid sequence identity to a reference amino acid sequence. The length of comparison sequences will generally be at least 10 amino acids, desirably at least 15 contiguous amino acids, more desirably at least 20, 25, 50, 75, 90, 100, 150, 200, 250, 300, or 350 contiguous amino acids, and most desirably the full-length amino acid sequence.

[0028] The term "patient" means either a human or non-human animal (e.g., a mammal).

[0029] The term "treating" a disease, disorder, or condition (e.g., a cancer) in a patient means reducing at least one symptom of the disease, disorder, or condition by administrating a therapeutic agent to the patient.

[0030] The term "cancer" means a collection of cells multiplying in an abnormal manner.

[0031] Other embodiments and details of the invention are presented herein below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032]

FIG. 1A is a schematic drawing of an anti-PD-L1/TGF β Trap molecule comprising one anti-PD-L1 antibody fused to two extracellular domain (ECD) of TGF β Receptor II via a (Gly₄Ser)₄Gly linker. **FIG. 1B** is a photograph of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of anti-PD-L1/TGF β Trap under non-reducing and reducing conditions.

FIG. 2 is photograph of an SDS-PAGE gel showing analysis of extent of clipping of anti-PD-L1/TGF β Trap expressed by clone 02B15 at various population doubling levels. Anti-PD-L1/TGF β Trap from clone 02B15 after a single protein A chromatography step was analyzed by SDS-PAGE under reducing conditions. Lanes 1 and 10, See Blue Plus 2 MW Standard; lane 2, purified anti-PD-L1/TGF β Trap reference; lane 3, clone 02B15 at PDL0; lane 4, clone 02B15 at PDL30; lane 5, clone 02B15 at PDL60; and lane 6, clone 02B15 at PDL90. (PDL, population doubling level).

FIG. 3 is a graph showing FACS analysis of anti-PD-L1/TGF β Trap binding to HEK cells transfected to express human PD-L1.

FIG. 4 is a graph showing the ability of anti-PD-L1/TGF β Trap to inhibit TGF β -induced phosphorylation of SMAD3 using a pSMAD3-luciferase reporter cell line (filled circle: anti-PD-L1; X: anti-PD-L1(mut); filled square: anti-PD-L1/TGF β Trap; filled triangle: anti-PD-L1(mut)/TGF β Trap; +: anti-TGF β antibody 1D11; star: TGF β RII-Fc).

FIGS. 5A and 5B are graphs showing pharmacokinetics of intravenously administered anti-PD-L1/TGF β Trap and related proteins in mice.

FIG. 6A is a graph showing PD-L1 target-mediated endocytosis of anti-PD-L1/ TGF β Trap. **FIG. 6B** is a graph showing PD-L1 target-mediated endocytosis of anti-PD-L1. **FIG. 6C** is a graph showing percent internalization of anti-PD-L1/ TGF β Trap and anti-PD-L1 bound on HEK/PD-L1 cells.

FIGS. 7A-7C are graphs showing anti-tumor efficacy of anti-PD-L1/TGF β Trap and related proteins in the EMT-6 breast carcinoma subcutaneous model (Example 7). **FIG. 7A** shows tumor growth curves of average tumor volumes of surviving mice in different treatment groups (star: Group 1: filled circle: Group 2; filled triangle: Group 3; filled square: Group 4; open square: Group 5; filled square/dashed line: Group 6; filled square/stippled line: Group 7). **FIG. 7B** shows tumor growth curves of individual tumor volumes in different treatment groups. **FIG. 7C** is a Kaplan-Meier plot of percent survival in different treatment groups (symbols as in 7A).

FIG. 8 is a graph showing anti-tumor efficacy of anti-PD-L1/TGF β Trap and related proteins in the MC38 colorectal carcinoma subcutaneous tumor model (Example 8; star: Group 1; filled circle: Group 2; filled circle/dashed line: Group 3; filled triangle: Group 4; filled triangle/dashed line: Group 5; filled square: Group 6; filled square/dashed line: Group 7).

FIG. 9 is a graph showing anti-tumor efficacy of anti-PDL1/TGF β Trap and related proteins in an orthotopic EMT-6 breast cancer model (Example 9; star: Group 1; filled circle/dashed line: Group 2; filled triangle: Group 3; filled triangle/dashed line: Group 4; filled diamond: Group 5).

FIG. 10 is a graph showing anti-tumor efficacy of anti-PDL1/TGF β Trap and related proteins in an intramuscular MC38 colorectal carcinoma model (Example 10; star: Group 1; filled circle: Group 2; filled circle/dashed line: Group 3; filled diamond/dashed line: Group 4; filled square: Group 5; filled square/dashed line: Group 6; filled diamond: Group 7).

Fig. 11 is a graph showing anti-tumor efficacy of anti-PD-L1/TGF- β Trap and the combination of anti-PD-L1 and TGF β Trap control administered to give equivalent *in vivo* exposure in an orthotopic EMT-6 breast tumor model (Example 11; star: Group 1; filled square: Group 2; open square: Group 3; filled diamond: Group 4; open diamond: Group 5).

FIGS. 12A-12C are graphs showing anti-tumor efficacy of anti-PD-L1/TGF- β Trap and the combination of anti-PD-L1 and TGF β Trap control administered to give equivalent *in vivo* exposure in an intramuscular MC38 colorectal carcinoma model (Example 12). **FIG. 12A** shows tumor growth curves of mice treated with both intermediate and low doses of the

proteins (star: Group 1; filled squares: Group 2; open squares: Group 3; filled diamonds: Group 4; open diamonds Group 5). **FIG. 12B** (star: Group 1; filled square: Group 2; filled diamond: Group 4; *: p < 0.0001 compared to Group 1; **: p < 0.0001 compared to Group 2) and **12C** (star: Group 1; filled square: Group 3; filled diamond: Group 5; *: p < 0.0001 compared to Group 1; **: p < 0.0001 compared to Group 3) show statistical analysis of tumor growth curves of mice treated with intermediate and low doses of the proteins, respectively

FIGS. 13A-13B are graphs showing anti-tumor efficacy of anti-PD-L1(YW)/TGF- β Trap and related proteins in an orthotopic EMT-6 breast tumor model (Example 13; star: Group 1; filled circle: Group 2; filled triangle: Group 3; filled square: Group 4; filled diamond: Group 5). **FIG. 13A** shows tumor growth curves of mice in different treatment groups. **FIG. 13B** is a Kaplan-Meier plot of percent survival in different treatment groups.

FIGS. 14A-14B are graphs showing anti-tumor efficacy of anti-PD-L1(YW)/TGF- β Trap and related proteins based on (A) tumor volumes and (B) tumor weights, in an intramuscular MC38 colorectal carcinoma model (Example 14; star: Group 1; filled circle: Group 2; filled triangle: Group 3; filled square: Group 4; filled diamond: Group 5).

FIG. 15 is a graph comparing the anti-tumor efficacy of an anti-PD-1 antibody treatment with and without TGF β Trap control in an orthotopic EMT-6 breast tumor model (Example 15; star: Group 1; filled square: Group 2; filled inverted triangle: Group 3; open inverted triangle: Group 4).

FIG. 16 is a graph comparing the anti-tumor efficacy of an anti-PD-1 antibody treatment with and without TGF β Trap control in an intramuscular MC38 colorectal tumor model (Example 16; star: Group 1; filled square: Group 2; filled inverted triangle: Group 3; open inverted triangle: Group 4).

FIG. 17 is a graph comparing the anti-tumor efficacy of an anti-LAG3 or anti-TIM3 antibody treatment with and without TGF β Trap control in an orthotopic EMT-6 breast tumor model (Example 17; star: Group 1; filled square: Group 2; filled triangle: Group 3; filled inverted triangle: Group 4; open triangle: Group 5; open inverted triangle: Group 6).

FIG. 18 is a graph comparing the anti-tumor efficacy of an anti-LAG3 or anti-TIM3 antibody treatment with and without TGF β Trap control in an intramuscular MC38 colorectal tumor model (Example 18; star: Group 1; filled square: Group 2; filled triangle: Group 3; filled inverted triangle: Group 4; open triangle: Group 5; open inverted triangle: Group 6).

DETAILED DESCRIPTION

[0033] The current invention permits localized reduction in TGF β in a tumor microenvironment by capturing the TGF β using a soluble cytokine receptor (TGF β RII) tethered to an antibody moiety targeting PD-L1 found on the exterior surface of certain tumor cells or immune cells.

This bifunctional molecule, sometimes referred to in this document as an "antibody-cytokine trap," is effective precisely because the anti-PD-L1 antibody and cytokine trap are physically linked. The resulting advantage (over, for example, administration of the antibody and the receptor as separate molecules) is partly because cytokines function predominantly in the local environment through autocrine and paracrine functions. The antibody moiety directs the cytokine trap to the tumor microenvironment where it can be most effective, by neutralizing the local immunosuppressive autocrine or paracrine effects. Furthermore, in cases where the target of the antibody is internalized upon antibody binding, an effective mechanism for clearance of the cytokine/cytokine receptor complex is provided. Antibodymediated target internalization has been shown for PD-L1. This is a distinct advantage over using an anti-TGF β antibody because first, an anti-TGF β antibody might not be completely neutralizing; and second, the antibody can act as a carrier extending the half-life of the cytokine, and antibody/cytokine complexes often act as a circulating sink that builds up and ultimately dissociates to release the cytokine back in circulation (Montero-Julian et al., Blood. 1995; 85:917-24). The use of a cytokine trap to neutralize the ligand can also be a better strategy than blockading the receptor with an antibody, as in the case of CSF-1. Because CSF-1 is cleared from the circulation by receptor-mediated endocytosis, an anti-CSF-1 receptor antibody blockade caused a significant increase in circulating CSF-1 concentration (Hume et al., Blood. 2012;119:1810-20)

[0034] Indeed, as described below, treatment with the anti-PD-L1/TGF β Trap elicits a synergistic anti-tumor effect due to the simultaneous blockade of the interaction between PD-L1 on tumor cells and PD-1 on immune cells, and the neutralization of TGF β in the tumor microenvironment. As demonstrated in the following examples, anti-PDL1/TGF β Trap has efficacy superior to that of the single agent anti-PD-L1 or TGF β Trap control. Without being bound by theory, this presumably is due to a synergistic effect obtained from simultaneous blocking the two major immune escape mechanisms, and in addition, the targeted depletion of the TGF β in the tumor microenvironment by a single molecular entity. This depletion is achieved by (1) anti-PD-L1 targeting of tumor cells; (2) binding of the TGF β autocrine/paracrine in the tumor microenvironment by the TGF β Trap; and (3) destruction of the bound TGF β through the PD-L1 receptor-mediated endocytosis. The aforementioned mechanisms of action cannot be achieved by the combination therapy of the two single agents anti-PD-L1 and TGF β Trap. Furthermore, the TGF β RII fused to the C-terminus of Fc (fragment of crystallization of IgG) was several-fold more potent than the TGF β RII-Fc that places the TGF β RII at the N-terminus of Fc (see Example 3). The superb efficacy obtained with anti-PDL1/TGF β Trap also allays some concerns that the TGF β RII does not trap TGF β 2. As pointed out by Yang et al., Trends Immunol. 2010; 31:220-227, although some tumor types do secrete TGF β 2 initially, as the tumor progresses, the TGF β in the tumor microenvironment is predominantly secreted by myeloid-derived suppressor cells, which secrete TGF β 1. In addition to showing great promise as an effective immuno-oncology therapeutic, treatment with soluble TGF β RII can potentially reduce the cardiotoxicity concerns of TGF β targeting therapies, especially the TGF β RI kinase inhibitors. This is because of the important roles TGF β 2 plays in embryonic development of the heart as well as in repair of myocardial damage after ischemia and reperfusion injury (Roberts et al., J Clin Invest. 1992; 90:2056-62).

TGF β as a cancer target

[0035] TGF β had been a somewhat questionable target in cancer immunotherapy because of its paradoxical roles as the molecular Jekyll and Hyde of cancer (Berie et al., *Nat Rev Cancer*. 2006; 6:506-20). Like some other cytokines, TGF β activity is developmental stage and context dependent. Indeed TGF β can act as either a tumor promoter or a tumor suppressor, affecting tumor initiation, progression and metastasis. The mechanisms underlying this dual role of TGF β remain unclear (Yang et al., *Trends Immunol*. 2010; 31:220-227). Although it has been postulated that Smad-dependent signaling mediates the growth inhibition of TGF β signaling, while the Smad independent pathways contribute to its tumor-promoting effect, there are also data showing that the Smad-dependent pathways are involved in tumor progression (Yang et al., *Cancer Res*. 2008; 68:9107-11).

[0036] Both the TGF β ligand and the receptor have been studied intensively as therapeutic targets. There are three ligand isoforms, TGF β 1, 2 and 3, all of which exist as homodimers. There are also three TGF β receptors (TGF β R), which are called TGF β R type I, II and III (López-Casillas et al., *J Cell Biol*. 1994; 124:557-68). TGF β RI is the signaling chain and cannot bind ligand. TGF β RII binds the ligand TGF β 1 and 3, but not TGF β 2, with high affinity. The TGF β RII/TGF β complex recruits TGF β RI to form the signaling complex (Won et al., *Cancer Res*. 1999; 59:1273-7). TGF β RIII is a positive regulator of TGF β binding to its signaling receptors and binds all 3 TGF β isoforms with high affinity. On the cell surface, the TGF β /TGF β RIII complex binds TGF β RII and then recruits TGF β RI, which displaces TGF β RIII to form the signaling complex.

[0037] Although the three different TGF β isoforms all signal through the same receptor, they are known to have differential expression patterns and non-overlapping functions *in vivo*. The three different TGF- β isoform knockout mice have distinct phenotypes, indicating numerous non-compensated functions (Bujak et al., *Cardiovasc Res*. 2007; 74:184-95). While TGF β 1 null mice have hematopoiesis and vasculogenesis defects and TGF β 3 null mice display pulmonary development and defective palatogenesis, TGF β 2 null mice show various developmental abnormalities, the most prominent being multiple cardiac deformities (Bartram et al., *Circulation*. 2001; 103:2745-52; Yamagishi et al., *Anat Rec*. 2012; 295:257-67). Furthermore, TGF β is implicated to play a major role in the repair of myocardial damage after ischemia and reperfusion injury. In an adult heart, cardiomyocytes secrete TGF β , which acts as an autocrine to maintain the spontaneous beating rate. Importantly, 70-85% of the TGF β secreted by cardiomyocytes is TGF β 2 (Roberts et al., *J Clin Invest*. 1992; 90:2056-62). In summary, given the predominant roles of TGF β 1 and TGF β 2 in the tumor microenvironment and cardiac physiology, respectively, a therapeutic agent that neutralizes TGF β 1 but not TGF β 2 could provide an optimal therapeutic index by minimizing the cardiotoxicity without compromising the anti-tumor activity. This is consistent with the findings by the present inventors, who observed a lack of toxicity, including cardiotoxicity, for anti-PD-L1/TGF β Trap in monkeys.

[0038] Therapeutic approaches to neutralize TGF β include using the extracellular domains of TGF β receptors as soluble receptor traps and neutralizing antibodies. Of the receptor trap approach, soluble TGF β RIII may seem the obvious choice since it binds all the three TGF β ligands. However, TGF β RIII, which occurs naturally as a 280-330 kD glucosaminoglycan (GAG)-glycoprotein, with extracellular domain of 762 amino acid residues, is a very complex protein for biotherapeutic development. The soluble TGF β RIII devoid of GAG could be produced in insect cells and shown to be a potent TGF β neutralizing agent (Vilchis-Landeros et al, Biochem J 355:215, 2001). The two separate binding domains (the endoglin-related and the uromodulin-related) of TGF β RIII could be independently expressed, but they were shown to have affinities 20 to 100 times lower than that of the soluble TGF β RIII, and much diminished neutralizing activity (Mendoza et al., Biochemistry. 2009; 48:11755-65). On the other hand, the extracellular domain of TGF β RII is only 136 amino acid residues in length and can be produced as a glycosylated protein of 25-35 kD. The recombinant soluble TGF β RII was further shown to bind TGF β 1 with a K_D of 200 pM, which is fairly similar to the K_D of 50 pM for the full length TGF β RII on cells (Lin et al., J Biol Chem. 1995; 270:2747-54). Soluble TGF β RII-Fc was tested as an anti-cancer agent and was shown to inhibit established murine malignant mesothelioma growth in a tumor model (Suzuki et al., Clin Cancer Res. 2004; 10:5907-18). Since TGF β RII does not bind TGF β 2, and TGF β RIII binds TGF β 1 and 3 with lower affinity than TGF β RII, a fusion protein of the endoglin domain of TGF β RIII and extracellular domain of TGF β RII was produced in bacteria and was shown to inhibit the signaling of TGF β 1 and 2 in cell based assays more effectively than either TGF β RII or RIII (Verona et al., Protein Eng Des Sel. 2008; 21:463-73). Despite some encouraging anti-tumor activities in tumor models, to our knowledge no TGF β receptor trap recombinant proteins have been tested in the clinic.

[0039] Still another approach to neutralize all three isoforms of the TGF β ligands is to screen for a pan-neutralizing anti-TGF β antibody, or an anti-receptor antibody that blocks the receptor from binding to TGF β 1, 2 and 3. GC1008, a human antibody specific for all isoforms of TGF β , was in a Phase I/II study in patients with advanced malignant melanoma or renal cell carcinoma (Morris et al., J Clin Oncol 2008; 26:9028 (Meeting abstract)). Although the treatment was found to be safe and well tolerated, only limited clinical efficacy was observed, and hence it was difficult to interpret the importance of anti-TGF β therapy without further characterization of the immunological effects (Flavell et al., Nat Rev Immunol. 2010; 10:554-67). There were also TGF β -isoform-specific antibodies tested in the clinic. Metelimumab, an antibody specific for TGF β 1 was tested in Phase 2 clinical trial as a treatment to prevent excessive post-operative scarring for glaucoma surgery; and Lerdelimumab, an antibody specific for TGF β 2, was found to be safe but ineffective at improving scarring after eye surgery in a Phase 3 study (Khaw et al., Ophthalmology 2007; 114:1822-1830). Anti-TGF β RII antibodies that block the receptor from binding to all three TGF β isoforms, such as the anti-human TGF β RII antibody TR1 and antimouse TGF β RII antibody MT1, have also shown some therapeutic efficacy against primary tumor growth and metastasis in mouse models (Zhong et al., Clin Cancer Res. 2010; 16:1191-205). To date, the vast majority of the studies on TGF β targeted anticancer treatment, including small molecule inhibitors of TGF β signaling that often are quite toxic, are mostly in the preclinical stage and the anti-tumor efficacy obtained has been limited (Calone et al., Exp Oncol. 2012; 34:9-16; Connolly et al., Int J Biol Sci. 2012;

8:964-78).

[0040] The antibody-TGF β trap of the invention is a bifunctional protein containing at least portion of a human TGF β Receptor II (TGF β RII) that is capable of binding TGF β . In one embodiment, the TGF β trap polypeptide is a soluble portion of the human TGF β Receptor Type 2 Isoform A (SEQ ID NO: 8) that is capable of binding TGF β . In a further embodiment, TGF β trap polypeptide contains at least amino acids 73-184 of SEQ ID NO:8. In yet a further embodiment, the TGF β trap polypeptide contains amino acids 24-184 of SEQ ID NO:8. In another embodiment, the TGF β trap polypeptide is a soluble portion of the human TGF β Receptor Type 2 Isoform B (SEQ ID NO: 9) that is capable of binding TGF β . In a further embodiment, TGF β trap polypeptide contains at least amino acids 48-159 of SEQ ID NO:9. In yet a further embodiment, the TGF β trap polypeptide contains amino acids 24-159 of SEQ ID NO:9. In yet a further embodiment, the TGF β trap polypeptide contains amino acids 24-105 of SEQ ID NO:9.

Immune Checkpoint Dis-inhibition

[0041] The approach of targeting T cell inhibition checkpoints for dis-inhibition with therapeutic antibodies is an area of intense investigation (for a review, see Pardoll, Nat Rev Cancer. 2012; 12:253-264). The antibody moiety targets PD-L1, the counter-receptor on antigen presenting cells and tumor cells (which co-opt this counter-receptor for their own immune evasion).

[0042] The invention contemplates antibody TGF β traps that target, through their antibody moiety or antigen binding fragment thereof, T cell inhibition checkpoints for dis-inhibition. To that end the present inventors have tested the anti-tumor efficacy of combining a TGF β trap with antibodies targeting various T cell inhibition checkpoint receptor proteins, such as anti-PD-1, anti-PD-L1, anti-TIM-3 and anti-LAG3. The experimental results are further detailed in Examples 7-18. The present inventors found that combining a TGF β trap with an anti-PD-L1 antibody exhibited remarkable anti-tumor activity beyond what was observed with the monotherapies. In contrast, none of the other combinations with antibodies to the targets listed above showed any superior efficacy. In particular, one may have expected that a combination treatment of a TGF β trap with an anti-PD-1 antibody would demonstrate similar activity to the one observed with anti-PD-L1, as PD-1 / PD-L1 are cognate receptors that bind to each other to effect the immune checkpoint inhibition. However, this is not what the present inventors have found.

Anti-PD-L1 Antibodies

[0043] Antibody moieties of proteins of the invention may comprise any anti-PD-L1 antibody, or antigen-binding fragment thereof, described in the art that comprises: (i) a heavy chain variable region including an HVR-H1, HVR-H2, and HVR-H3 having the amino acid sequences

of SYIMM, SIYPSGGITFYADTVKG, and IKLGTVTTVDY, respectively, and (ii) a light chain variable region including an HVR-L1, HVR-L2, and HVR-L3 having the amino acid sequences of TGTSSDVGGNYVS, DVSNRPS, and SSYTSSSTRV, respectively. Antibodies can be monoclonal, chimeric, humanized, or human. Antibody fragments include Fab, F(ab')2, scFv and Fv fragments, which are described in further detail below.

[0044] Exemplary antibodies may comprise variable region heavy chain framework sequences juxtaposed between the HVRs according to the formula: (HC-FR1)-(HVR-H1)-(HC-FR2)-(HVR-H2)-(HC-FR3)-(HVR-H3)-(HC-FR4). For example, in one aspect, the framework sequences may be derived from human consensus framework sequences or human germline framework sequences.

[0045] In another aspect, at least one of the framework sequences is the following:

HC-FR1 is EVQLLESGGGLVQPGGSLRLSCAASGFTFS;

HC-FR2 is WWRQAPGKGLEWWS;

HC-FR3 is RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR;

HC-FR4 is WGQGTLTVSS.

[0046] Exemplary antibodies may also comprise variable region light chain framework sequences juxtaposed between the HVRs according to the formula: (LC-FR1MHVR-L1)-(LC-FR2)-(HVR-L2)-(LC-FR3)-(HVR-L3)-(LC-FR4).

[0047] For example, in one aspect, the light chain framework sequences may be derived from human consensus framework sequences or human germline framework sequences.

[0048] In another aspect, the light chain framework sequences are lambda light chain sequences.

[0049] In a further aspect, at least one of the framework sequence is the following:

LC-FR1 is QSALTQPASVSGSPGQSITISC;

LC-FR2 is WYQQHPGKAPKLMIY;

LC-FR3 is GVSNRFSGSKSGNTASLTISGLQAEDADYYC;

LC-FR4 is FGTGTVL.

[0050] In a further aspect, the heavy chain variable region includes one or more framework

sequences juxtaposed between the HVRs as: (HC-FR1)-(HVR-H1)-(HC-FR2)-(HVR-H2)-(HC-FR3)-(HVR-H3)-(HC-FR4), and the light chain variable regions include one or more framework sequences juxtaposed between the HVRs as: (LC-FR1 HVR-L1)-(LC-FR2)-(HVR-L2)-(LC-FR3)-(HVR-L3)-(LC-FR4).

[0051] In a still further aspect, the heavy chain variable region polypeptide, antibody, or antibody fragment further includes at least a C_H1 domain.

[0052] In a more specific aspect, the heavy chain variable region polypeptide, antibody, or antibody fragment further includes a C_H1, a C_H2, and a C_H3 domain.

[0053] In a still further aspect, the variable region light chain, antibody, or antibody fragment further includes a C_L domain.

[0054] In a still further aspect, the antibody further includes a C_H1, a C_H2, a C_H3, and a C_L domain.

[0055] In a still further specific aspect, the antibody further includes a human or murine constant region.

[0056] In a still further aspect, the human constant region is selected from the group consisting of IgG1, IgG2, IgG2, IgG3, IgG4.

[0057] In a still further specific aspect, the human or murine constant region is IgG1.

[0058] The invention features an anti-PD-L1 antibody including a heavy chain and a light chain variable region sequence, where:

1. (a) the heavy chain includes an HVR-H1, an HVR-H2, and an HVR-H3, having at least 80% overall sequence identity to SYIMM, SIYPSGGITFYADTVKG, and IKLGTVTTVDY, respectively, and
2. (b) the light chain includes an HVR-L1, an HVR-L2, and an HVR-L3, having at least 80% overall sequence identity to TGTSSDVGGYNYVS, DVSNRPS, and SSYTSSSTRV, respectively.

[0059] In a still further embodiment, the invention features an anti-PD-L1 antibody including a heavy chain and a light chain variable region sequence, where:

1. (a) the heavy chain sequence has at least 85% sequence identity to the heavy chain sequence:

EVQLLESGGGLVQPGGSLRLSCAASGFTFS SYIMMVWRQAPGKGLEWVS SIYPSGGITF
YADWKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVTTVDYWGQQTLVT

VSS, and

2. (b) the light chain sequence has at least 85% sequence identity to the light chain sequence:

QSALTQPASVSGSPGQSITISCTGTSSDVGGYNVSWYQQHPGKAPKLMYDVSN
RPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTKVTVL.

[0060] In a specific aspect, the sequence identity is 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.

[0061] Antibodies disclosed herein may bind to human, mouse, or cynomolgus monkey PD-L1. In a specific aspect the antibody may be capable of blocking the interaction between human, mouse, or cynomolgus monkey PD-L1 and the respective human, mouse, or cynomolgus monkey PD-1 receptors.

[0062] Antibodies disclosed herein may bind to human PD-L1 with a K_D of 5×10^{-9} M or less, preferably with a K_D of 2×10^{-9} M or less, and even more preferred with a K_D of 1×10^{-9} M or less.

[0063] Antibodies disclosed herein may bind to a functional epitope including residues Y56 and D61 of human PD-L1.

[0064] The functional epitope may further include E58, E60, Q66, R113, and M115 of human PD-L1.

[0065] Specifically, antibodies disclosed herein may bind to a conformational epitope, including residues 54-66 and 112-122 of human PD-L1.

[0066] Disclosed herein are pharmaceutical compositions comprising proteins and polypeptides including any of the above described anti-PD-L1 antibodies in combination with at least one pharmaceutically acceptable carrier.

[0067] In a still further embodiment, the invention features an isolated nucleic acid encoding a light chain or a heavy chain variable region sequence of an anti-PD-L1 antibody, wherein:

1. (a) the heavy chain includes an HVR-H1, an HVR-H2, and an HVR-H3 sequence having at least 80% sequence identity to SYIMM, SIYPSGGITFYADTVKG, and IKLGTVTVDY, respectively, or
2. (b) the light chain includes an HVR-L1, an HVR-L2, and an HVR-L3 sequence having at least 80% sequence identity to TGTSSDVGGYNVVS, DVSNRPS, and SSYTSSSTRV, respectively.

[0068] In a further aspect of the disclosure, the nucleic acid sequence for the heavy chain is:

atggagttgc ctgttaggct gttgggtctg atgttctgga ttccctgtctg ctccagcgag	60
gtgcagctgc tggaaatccgg cgaggactg gtgcagccctg gcccgtccct gagactgtct	120
tgcgcgccttccggccatccatc ttctccatc tacatcatga tgggtgtcg acaggcccct	180
ggcaaggggcc tggaaatgggt gtcctccatc taccctcccg gcccgtccct gagactgtct	240
gacaccgtga agggccgggtt caccatctcc cgggacaact ccaagaacac cctgtacctg	300
cagatgaact ccctgcgggc cgaggacacc gcccgtact actgcgcggc gatcaagctg	360
ggcaccgtga ccaccgtgga ctactggggc cagggcaccc tggtgacagt gtcctccgccc	420
tccaccaagg gcccattcggt ttcccccgt gcaccctcct ccaagagcac ctctggggc	480
acagcggccc tgggctgcct ggtcaaggac tacttcccg aaccgggtac ggtgtcgtgg	540
aactcaggcg ccctgaccag cggcgtgcac accttcccg ctgttccatc gtcctcagga	600
ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac ccagacctac	660
atctgcaacg tgaatcacaa gcccagcaac accaagggtgg acaagaaagt tgagccaaa	720
tcttgtaca aactctcacac atgcccaccc tgcccagcac ctgaactcctt ggggggaccg	780
tcagttttcc tcttcccccc aaaacccaag gacaccctca tgatctcccg gacccttag	840
gtcacatgcg tgggtgtggaa cgtgagccac gaagaccctg aggtcaagtt caactgggtac	900
gtggacggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gtacaacagc	960
acgtaccgtg tggtcagcgt ctcaccgtc ctgcaccagg actggctgaa tggcaaggag	1020
tacaagtgca aggtctccaa caaagccctc ccagccccca tcgagaaaac catctccaaa	1080
gccaaagggc agccccgaga accacagggtg tacaccctgc ccccatcagc ggtgagctg	1140
accaagaacc aggtcagcct gacccgtccgt gtcaaggct tctatcccg cgacatcgcc	1200
gtggagtggtgg agagcaatgg gcagccggag aacaactaca agaccacgccc tccctgtctg	1260
gactccgacg gtccttctt cctctatacg aagctcaccg tggacaagag caggtggcag	1320
caggggaacg tcttctcatg ctccgtgatg catgaggctc tgcacaacca ctacacgcag	1380
aagagcctct ccctgtcccc gggtaaa	1407

and the nucleic acid sequence for the light chain is:

atggagttgc ctgttaggct gttgggtctg atgttctgga ttccctgtctc cttaagccag	60
tccgccttgc cccagcctgc ctccgtctc ggctccctg gccagtcctt caccatcagc	120
tgcaccggca cctccagcga cgtggcgccg tacaactacg tgcctgttgc tcagcagcac	180
cccgcaagg cccccaagct gatgtatctac gacgtgttca accggccctc cggcgtgtcc	240
aacagattct ccggctccaa gtccggcaac accgcctccc tgaccatcag cggactgcag	300
gcagaggacg agggcgacta ctactgtccc ttctacacct cctccagcac cagagtgttc	360
ggcaccggca caaaagtgac cgtgctggc cagcccaagg ccaacccaaac cgtgacactg	420
ttccccccat cctccgagga actgcaggcc aacaaggcca ccctgtctg cctgatctca	480
gatttctatc caggcgccgt gaccgtggcc tggaaaggctg atggctccccc agtgaaggcc	540
ggcgtggaaa ccaccaagcc ctccaagcag tccaacaaca aatacgcgc ctcctccatc	600
ctgtccctga ccccgagca gtggaaagtcc caccggctt acagctgcca ggtcacacac	660
gagggttccca ccgtggaaaa gaccgtcgcc cccaccgagt gctca	705

[0069] Further exemplary anti-PD-L1 antibodies that can be used in an anti-PD-L1/TGF β Trap are described in US patent application publication US 2010/0203056. In one aspect of the disclosure, the antibody moiety is YW243.55S70. In another aspect of the disclosure, the antibody moiety is MPDL3280A.

[0070] In a further aspect of the disclosure features an anti-PD-L1 antibody moiety including a

heavy chain and a light chain variable region sequence, where:

1. (a) the heavy chain sequence has at least 85% sequence identity to the heavy chain sequence:

EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYY
ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFYWGQGTLTVSS (SEQ ID NO:12),

and

2. (b) the light chain sequence has at least 85% sequence identity to the light chain sequence:

DIQMTQSPSSLSASVGDRVITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSG
SGSGTDFTLTISLQPEDFATYYCQQYLYHPATFGQGKVEIKR (SEQ ID NO:13).

[0071] The sequence identity may be 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.

[0072] A further aspect of the disclosure features an anti-PD-L1 antibody moiety including a heavy chain and a light chain variable region sequence, where:

1. (a) the heavy chain variable region sequence is:

EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYY
ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFYWGQGTLTVSS (SEQ ID NO:12),

, and

2. (b) the light chain variable region sequence is:

DIQMTQSPSSLSASVGDRVITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSG
SGSGTDFTLTISLQPEDFATYYCQQYLYHPATFGQGKVEIKR (SEQ ID NO:13).

[0073] A further aspect of the disclosure an anti-PD-L1 antibody moiety including a heavy chain and a light chain variable region sequence, where:

1. (a) the heavy chain variable region sequence is:

EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYYADSV
KGKFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFYWGQGTLTVSA (SEQ ID NO:14),

and

2. (b) the light chain variable region sequence is:

DIQMTQSPSSLSASVGDRVITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSG
SGSGTDFTLTISLQPEDFATYYCQQYLYHPATFGQGKVEIKR (SEQ ID NO:13).

[0074] Yet further exemplary anti-PD-L1 antibodies that can be used in an anti-PD-L1/TGF β Trap are described in US patent publication US 7,943,743.

[0075] In one aspect of the disclosure, the anti-PD-L1 antibody is MDX-1105.

[0076] In yet a further aspect of the disclosure, the anti-PD-L1 antibody is MEDI-4736.

Constant region

[0077] The proteins and peptides as disclosed herein can include a constant region of an immunoglobulin or a fragment, analog, variant, mutant, or derivative of the constant region. In preferred aspects of the disclosure, the constant region is derived from a human immunoglobulin heavy chain, for example, IgG1, IgG2, IgG3, IgG4, or other classes. In one aspect of the disclosure, the constant region includes a CH2 domain. In another aspect of the disclosure, the constant region includes CH2 and CH3 domains or includes hinge-CH2-CH3. Alternatively, the constant region can include all or a portion of the hinge region, the CH2 domain and/or the CH3 domain.

[0078] In one aspect of the disclosure, the constant region contains a mutation that reduces affinity for an Fc receptor or reduces Fc effector function. For example, the constant region can contain a mutation that eliminates the glycosylation site within the constant region of an IgG heavy chain. In some aspects of the disclosure, the constant region contains mutations, deletions, or insertions at an amino acid position corresponding to Leu234, Leu235, Gly236, Gly237, Asn297, or Pro331 of IgG1 (amino acids are numbered according to EU nomenclature). In a particular aspect of the disclosure, the constant region contains a mutation at an amino acid position corresponding to Asn297 of IgG1. In alternative aspects of the disclosure, the constant region contains mutations, deletions, or insertions at an amino acid position corresponding to Leu281, Leu282, Gly283, Gly284, Asn344, or Pro378 of IgG1.

[0079] In some aspects of the disclosure, the constant region contains a CH2 domain derived from a human IgG2 or IgG4 heavy chain. Preferably, the CH2 domain contains a mutation that eliminates the glycosylation site within the CH2 domain. In one aspect of the disclosure, the mutation alters the asparagine within the Gln-Phe-Asn-Ser (SEQ ID NO: 15) amino acid sequence within the CH2 domain of the IgG2 or IgG4 heavy chain. Preferably, the mutation changes the asparagine to a glutamine. Alternatively, the mutation alters both the phenylalanine and the asparagine within the Gln-Phe-Asn-Ser (SEQ ID NO: 15) amino acid sequence. In one aspect of the disclosure, the Gln-Phe-Asn-Ser (SEQ ID NO: 15) amino acid sequence is replaced with a Gln-Ala-Gln-Ser (SEQ ID NO: 16) amino acid sequence. The asparagine within the Gln-Phe-Asn-Ser (SEQ ID NO: 15) amino acid sequence corresponds to Asn297 of IgG1.

[0080] In another aspect of the disclosure, the constant region includes a CH2 domain and at least a portion of a hinge region. The hinge region can be derived from an immunoglobulin heavy chain, e.g., IgG1, IgG2, IgG3, IgG4, or other classes. Preferably, the hinge region is derived from human IgG1, IgG2, IgG3, IgG4, or other suitable classes. More preferably the hinge region is derived from a human IgG1 heavy chain. In one aspect of the disclosure the cysteine in the Pro-Lys-Ser-Cys-Asp-Lys (SEQ ID NO: 17) amino acid sequence of the IgG1 hinge region is altered. In a preferred aspect of the disclosure the Pro-Lys-Ser-Cys-Asp-Lys (SEQ ID NO: 17) amino acid sequence is replaced with a Pro-Lys-Ser-Ser-Asp-Lys (SEQ ID NO: 18) amino acid sequence. In one aspect of the disclosure, the constant region includes a CH2 domain derived from a first antibody isotype and a hinge region derived from a second antibody isotype. In a specific aspect of the disclosure, the CH2 domain is derived from a human IgG2 or IgG4 heavy chain, while the hinge region is derived from an altered human IgG1 heavy chain.

[0081] The alteration of amino acids near the junction of the Fc portion and the non-Fc portion can dramatically increase the serum half-life of the Fc fusion protein (PCT publication WO 01/58957). Accordingly, the junction region of a protein or polypeptide of the present disclosure can contain alterations that, relative to the naturally-occurring sequences of an immunoglobulin heavy chain and erythropoietin, preferably lie within about 10 amino acids of the junction point. These amino acid changes can cause an increase in hydrophobicity. In one aspect of the disclosure, the constant region is derived from an IgG sequence in which the C-terminal lysine residue is replaced. Preferably, the C-terminal lysine of an IgG sequence is replaced with a non-lysine amino acid, such as alanine or leucine, to further increase serum half-life. In another aspect of the disclosure, the constant region is derived from an IgG sequence in which the Leu-Ser-Leu-Ser (SEQ ID NO: 19) amino acid sequence near the C-terminus of the constant region is altered to eliminate potential junctional T-cell epitopes. For example, in one aspect of the disclosure, the Leu-Ser-Leu-Ser amino acid sequence is replaced with an Ala-Thr-Ala-Thr (SEQ ID NO: 20) amino acid sequence. In other aspect of the disclosure, the amino acids within the Leu-Ser-Leu-Ser (SEQ ID NO: 19) segment are replaced with other amino acids such as glycine or proline. Detailed methods of generating amino acid substitutions of the Leu-Ser-Leu-Ser (SEQ ID NO: 19) segment near the C-terminus of an IgG1, IgG2, IgG3, IgG4, or other immunoglobulin class molecule have been described in U.S. Patent Publication No. 2003/0166877.

[0082] Suitable hinge regions for antibodies of the disclosure can be derived from IgG1, IgG2, IgG3, IgG4, and other immunoglobulin classes. The IgG1 hinge region has three cysteines, two of which are involved in disulfide bonds between the two heavy chains of the immunoglobulin. These same cysteines permit efficient and consistent disulfide bonding formation between Fc portions. Therefore, a preferred hinge region of the present disclosure is derived from IgG1, more preferably from human IgG1. In some aspects of the disclosure, the first cysteine within the human IgG1 hinge region is mutated to another amino acid, preferably serine. The IgG2 isotype hinge region has four disulfide bonds that tend to promote oligomerization and possibly incorrect disulfide bonding during secretion in recombinant systems. A suitable hinge region can be derived from an IgG2 hinge; the first two cysteines are

each preferably mutated to another amino acid. The hinge region of IgG4 is known to form interchain disulfide bonds inefficiently. However, a suitable hinge region for the present disclosure can be derived from the IgG4 hinge region, preferably containing a mutation that enhances correct formation of disulfide bonds between heavy chain-derived moieties (Angal S, et al. (1993) Mol. Immunol., 30:105-8).

[0083] In accordance with the present disclosure, the constant region can contain CH2 and/or CH3 domains and a hinge region that are derived from different antibody isotypes, i.e., a hybrid constant region. For example, in one aspect of the disclosure, the constant region contains CH2 and/or CH3 domains derived from IgG2 or IgG4 and a mutant hinge region derived from IgG1. Alternatively, a mutant hinge region from another IgG subclass is used in a hybrid constant region. For example, a mutant form of the IgG4 hinge that allows efficient disulfide bonding between the two heavy chains can be used. A mutant hinge can also be derived from an IgG2 hinge in which the first two cysteines are each mutated to another amino acid. Assembly of such hybrid constant regions has been described in U.S. Patent Publication No. 2003/0044423.

[0084] In accordance with the present disclosure, the constant region can contain one or more mutations described herein. The combinations of mutations in the Fc portion can have additive or synergistic effects on the prolonged serum half-life and increased in vivo potency of the bifunctional molecule. Thus, in one exemplary aspect of the disclosure, the constant region can contain (i) a region derived from an IgG sequence in which the Leu-Ser-Leu-Ser (SEQ ID NO: 19) amino acid sequence is replaced with an Ala-Thr-Ala-Thr (SEQ ID NO: 20) amino acid sequence; (ii) a C-terminal alanine residue instead of lysine; (iii) a CH2 domain and a hinge region that are derived from different antibody isotypes, for example, an IgG2 CH2 domain and an altered IgG1 hinge region; and (iv) a mutation that eliminates the glycosylation site within the IgG2-derived CH2 domain, for example, a Gln-Ala-Gln-Ser (SEQ ID NO: 16) amino acid sequence instead of the Gln-Phe-Asn-Ser (SEQ ID NO: 15) amino acid sequence within the IgG2-derived CH2 domain.

Antibody fragments

[0085] The proteins and polypeptides of the disclosure can also include antigen-binding fragments of antibodies. Exemplary antibody fragments include scFv, Fv, Fab, F(ab')₂, and single domain VHH fragments such as those of camelid origin.

[0086] Single-chain antibody fragments, also known as single-chain antibodies (scFvs), are recombinant polypeptides which typically bind antigens or receptors; these fragments contain at least one fragment of an antibody variable heavy-chain amino acid sequence (V_H) tethered to at least one fragment of an antibody variable light-chain sequence (V_L) with or without one or more interconnecting linkers. Such a linker may be a short, flexible peptide selected to assure that the proper three-dimensional folding of the V_L and V_H domains occurs once they

are linked so as to maintain the target molecule binding-specificity of the whole antibody from which the single-chain antibody fragment is derived. Generally, the carboxyl terminus of the V_L or V_H sequence is covalently linked by such a peptide linker to the amino acid terminus of a complementary V_L and V_H sequence. Single-chain antibody fragments can be generated by molecular cloning, antibody phage display library or similar techniques. These proteins can be produced either in eukaryotic cells or prokaryotic cells, including bacteria.

[0087] Single-chain antibody fragments contain amino acid sequences having at least one of the variable regions or CDRs of the whole antibodies described in this specification, but are lacking some or all of the constant domains of those antibodies. These constant domains are not necessary for antigen binding, but constitute a major portion of the structure of whole antibodies. Single-chain antibody fragments may therefore overcome some of the problems associated with the use of antibodies containing part or all of a constant domain. For example, single-chain antibody fragments tend to be free of undesired interactions between biological molecules and the heavy-chain constant region, or other unwanted biological activity. Additionally, single-chain antibody fragments are considerably smaller than whole antibodies and may therefore have greater capillary permeability than whole antibodies, allowing single-chain antibody fragments to localize and bind to target antigen-binding sites more efficiently. Also, antibody fragments can be produced on a relatively large scale in prokaryotic cells, thus facilitating their production. Furthermore, the relatively small size of single-chain antibody fragments makes them less likely than whole antibodies to provoke an immune response in a recipient.

[0088] Fragments of antibodies that have the same or comparable binding characteristics to those of the whole antibody are also disclosed. Such fragments may contain one or both Fab fragments or the $F(ab')_2$ fragment. The antibody fragments may contain all six CDRs of the whole antibody, although fragments containing fewer than all of such regions, such as three, four or five CDRs, are also functional.

Protein production

[0089] The antibody-cytokine trap proteins are generally produced recombinantly, using mammalian cells containing a nucleic acid engineered to express the protein. Although one example of a suitable cell line and protein production method is described in Examples 1 and 2, a wide variety of suitable vectors, cell lines and protein production methods have been used to produce antibody-based biopharmaceuticals and could be used in the synthesis of these antibody-cytokine trap proteins..

Therapeutic indications

[0090] The anti-PD-L1/TGF β Trap proteins described in the application can be used to treat

cancer or reduce tumor growth in a patient. Exemplary cancers include colorectal, breast, ovarian, pancreatic, gastric, prostate, renal, cervical, myeloma, lymphoma, leukemia, thyroid, endometrial, uterine, bladder, neuroendocrine, head and neck, liver, nasopharyngeal, testicular, small cell lung cancer, non-small cell lung cancer, melanoma, basal cell skin cancer, squamous cell skin cancer, dermatofibrosarcoma protuberans, Merkel cell carcinoma, glioblastoma, glioma, sarcoma, mesothelioma, and myelodisplastic syndromes.

[0091] The cancer or tumor to be treated with an anti-PD-L1/ TGF β Trap may be selected based on the expression or elevated expression of PD-L1 and TGF β in the tumor, the correlation of their expression levels with prognosis or disease progression, and preclinical and clinical experience on the sensitivity of the tumor to treatments targeting PD-L1 and TGF β . Such cancers or tumors include but are not limited to colorectal, breast, ovarian, pancreatic, gastric, prostate, renal, cervical, bladder, head and neck, liver, non-small cell lung cancer, melanoma, Merkel cell carcinoma, and mesothelioma.

Pharmaceutical compositions

[0092] The present invention also features pharmaceutical compositions that contain a therapeutically effective amount of a protein described herein. The composition can be formulated for use in a variety of drug delivery systems. One or more physiologically acceptable excipients or carriers can also be included in the composition for proper formulation. Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed., 1985. For a brief review of methods for drug delivery, see, e.g., Langer (Science 249:1527-1533, 1990).

[0093] The pharmaceutical compositions are intended for parenteral, intranasal, topical, oral, or local administration, such as by a transdermal means, for therapeutic treatment. The pharmaceutical compositions can be administered parenterally (e.g., by intravenous, intramuscular, or subcutaneous injection), or by oral ingestion, or by topical application or intraarticular injection at areas affected by the vascular or cancer condition. Additional routes of administration include intravascular, intra-arterial, intratumor, intraperitoneal, intraventricular, intraepidural, as well as nasal, ophthalmic, intrascleral, intraorbital, rectal, topical, or aerosol inhalation administration. Thus, the disclosure provides compositions for parenteral administration that comprise the above mention agents dissolved or suspended in an acceptable carrier, preferably an aqueous carrier, e.g., water, buffered water, saline, PBS, and the like. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents, detergents and the like. The disclosure also provides compositions for oral delivery, which may contain inert ingredients such as binders or fillers for the formulation of a tablet, a capsule, and the like. Furthermore, this disclosure provides compositions for local administration, which may contain inert ingredients such as solvents or emulsifiers for the formulation of a cream, an ointment, and the like.

[0094] These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as-is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the preparations typically will be between 3 and 11, more preferably between 5 and 9 or between 6 and 8, and most preferably between 7 and 8, such as 7 to 7.5. The resulting compositions in solid form may be packaged in multiple single dose units, each containing a fixed amount of the above-mentioned agent or agents, such as in a sealed package of tablets or capsules. The composition in solid form can also be packaged in a container for a flexible quantity, such as in a squeezable tube designed for a topically applicable cream or ointment.

[0095] The optimal dose of the antibody- TGFØ trap is based on the percent receptor occupancy by the antibody moiety to achieve maximal therapeutic effect because the cytokine trap is used in a large excess. For example, the therapeutic dose for a monoclonal antibody targeting a cellular receptor is determined such that the trough level is around 10 to 100 µg/ml, *i.e.*, 60 to 600 nM (for antibody with a dissociation constant (K_D) of 6 nM, this trough level would ensure that between 90 to 99% of the target receptors on the cells are occupied by the antibody). This is in large excess of cytokines, which are typically present in pg to ng/ml in circulation.

[0096] The optimal dose of antibody-TGF β trap polypeptide will depend on the disease being treated, the severity of the disease, and the existence of side effects. The optimal dose can be determined by routine experimentation. For parenteral administration a dose between 0.1 mg/kg and 100 mg/kg, alternatively between 0.5 mg/kg and 50 mg/kg, alternatively, between 1 mg/kg and 25 mg/kg, alternatively between 2 mg/kg and 10 mg/kg, alternatively between 5 mg/kg and 10 mg/kg is administered and may be given, for example, once weekly, once every other week, once every third week, or once monthly per treatment cycle.

EXAMPLES

[0097] The invention now being generally described, will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects of the present disclosure.

EXAMPLE 1 - DNA construction and protein expression

[0098] Anti-PD-L1/TGF β Trap is an anti-PD-L1 antibody-TGF β Receptor II fusion protein. The light chain of the molecule is identical to the light chain of the anti-PD-L1 antibody (SEQ ID NO: 1). The heavy chain of the molecule (SEQ ID NO:3) is a fusion protein comprising the heavy chain of the anti-PD-L1 antibody (SEQ ID NO:2) genetically fused to via a flexible (Gly₄Ser)₄Gly linker (SEQ ID NO: 11) to the N-terminus of the soluble TGF β Receptor II (SEQ ID NO: 10). At

the fusion junction, the C-terminal lysine residue of the antibody heavy chain was mutated to alanine to reduce proteolytic cleavage. For expression of anti-PD-L1/TGF β Trap, the DNA encoding the anti-PD-L1 light chain (SEQ ID NO:4) and the DNA encoding the anti-PD-L1/TGF β Receptor II (SEQ ID NO:5) in either the same expression vector or separate expression vectors were used to transfect mammalian cells using standard protocols for transient or stable transfection. Conditioned culture media were harvested and the anti-PD-L1/TGF β Trap fusion protein was purified by standard Protein A Sepharose chromatography. The purified protein comprising one anti-PD-L1 antibody and two soluble TGF β Receptor II molecules (FIG. 1A) has an estimated molecular weight (MW) of about 190 kilodaltons on size exclusion chromatography and SDS-polyacrylamide electrophoresis under non-reducing conditions. Under reducing conditions, the light and heavy chains have apparent MW of 28 and 75 kilodaltons, respectively (FIG. 1B).

[0099] The anti-PD-L1(mut)/TGF β Trap fusion protein, which contains an analogous heavy chain fusion polypeptide (SEQ ID NO:7) and a light chain with the mutations A31G, D52E, R99Y in the variable region that abrogate the binding to PD-L1 (SEQ ID NO:6), was similarly prepared. It was used in subsequent experiments as a TGF β Trap control.

EXAMPLE 2 - Production of anti-PD-L1/TGF β Trap as a biotherapeutic

[0100] The anti-PD-L1/TGF β Trap produced by transient transfection of human embryonic kidney 293 (HEK) cells was found to contain varying degrees of a clipped species, which appeared as a faint band with an apparent MW of about 60 kD on SDS-PAGE under reducing conditions (FIG. 1B). This band was confirmed to be the heavy chain of the anti-PD-L1/TGF β Trap cleaved at a site in the N-terminal portion of TGF β RII close to the fusion junction.

[0101] Stable clones expressing anti-PD-L1/TGF β Trap were generated in the CHO-S host cell line, which was pre-adapted for growth in serum-free media in suspension culture. Cells were transfected with an expression vector containing a gene encoding the anti-PD-L1-TGF β RII protein and a glutamine synthetase selection marker. Subsequent selection of stable integrants was made with L-methionine sulfoximine (MSX). Anti-PD-L1/TGF β Trap expressing cell lines were generated using a minipool approach, followed by the deposition of single cells into 384-well plates, using a Beckton-Dickinson fluorescence activated cell sorter (FACS Aria II). Growth, productivity, and protein quality were evaluated in a generic platform fed-batch assay. Based on these analyses, 14 clones were selected as lead candidates for further studies. A stability study with the clones was carried out to ~90 PDL (population doubling level) from research cell banks established during scale up of clones. At the conclusion of mini-pool development it was discovered that the heavy chain-linker-TGF β RII subunit underwent clipping, as was seen in transient expression. All clones in the stability study produced the clipped species, although it was shown in the protein A-purified material that the percent clipped species relative to the intact subunit varied with each clone. In addition, an improved purification process consisting a protein A chromatography followed by strong cation exchange was developed to reduce co-purification of the clipped species. Even with the improved

process, purified material with the required final levels of clipped species of <5% could only be achieved using clones producing low levels of clipping. Based on these combined analyses, clone 02B15 was selected as the final candidate clone. Analysis of anti-PD-L1/TGF β Trap expressed by this clone at zero PDL, thirty PDL, sixty PDL and ninety PDL shows that the percentage of clipping did not increase with population doubling levels (FIG. 2).

EXAMPLE 3 - Fluorescence-activated cell sorting (FACS) analysis of binding of anti-PD-L1/TGF β Trap and controls to human PD-L1 on cells

[0102] The binding of anti-PD-L1 antibody and fusion proteins on HEK cells stably transfected to express human PD-L1 was studied using the following procedure.

[0103] The following exemplary procedure was used determine PD-L1 binding by FACS:

1. a. 50 μ l serial dilutions of test samples were set up in FACS buffer.
2. b. 50 μ l of HEK cells stably transfected to express human PD-L1 at 5×10^6 cells/ml were dispensed to the wells with test samples and mixed.
3. c. Plate(s) were incubated in the dark on ice for 1 hour.
4. d. Cells were pelleted at 300x g for 5 minutes.
5. e. Supernatant was decanted and cells were resuspended in 300 μ l FACS buffer and re-pelleted at 300x g for 5.
6. f. Sample rinse was repeated.
7. g. Cells were resuspended in 100 μ l FACS buffer containing DyLight 488 conjugated whole IgG Goat Anti-Human IgG, Fc γ (1:300 diluted).
8. h. Plate(s) was incubated in the dark on ice for 45 minutes.
9. i. Cells were pelleted at 300x g for 5.
10. j. Supernatant was decanted and cells were resuspended in 300 μ l FACS buffer and re-pelleted at 300x g for 5 minutes
11. k. Sample rinse was repeated and cells were finally resuspended in 200 μ l FACS buffer.
12. l. Data was acquired on FACS Caliber and was analyzed using Microsoft Excel. EC50 was calculated using non-linear regression (Sigmoidal dose-response) with Graphpad PrismS.

[0104] As shown in Fig. 3, FACS analysis showed that the anti-PD-L1/TGF β Trap fusion protein retains similar binding affinity as the positive control anti-PD-L1 antibody on HEK cells stably transfected to express human PD-L1 (HEK/PD-L1 cells). The EC50's for anti-PD-L1/TGF β Trap and anti-PD-L1 are 0.116 μ g/ml (0.64 nM) and 0.061 μ g/ml (0.41 nM), respectively. The observed MFI (mean fluorescent intensity) was specific to binding to human PD-L1 since no MFI was observed on the parental HEK cells that were not transfected. The anti-PD-L1(mut)/TGF β Trap negative control did not show any binding to the HEK cells stably transfected to express human PD-L1.

EXAMPLE 4 - Determination of ability of anti-PD-L1/TGF β Trap to inhibit TGF β induced phosphorylation of SMAD3

[0105] The ability of anti-PD-L1/TGF β Trap to neutralize TGF β was determined using 4T1 cells carrying a SMAD3-luciferase reporter. In the assay detailed below, inhibition of TGF β -induced phosphorylation of SMAD3 was measured using a luciferase reporter under the control of the SMAD3 promoter.

[0106] An exemplary assay to evaluate potency to inhibit TGF β -induced reporter activity was performed as follows.

1. 1. One day prior to the study, 4T1 cells carrying SMAD3-luciferase reporter were fed.
2. 2. On day 0, cells were plated in a Biocoat 96-well plate at a concentration of 5×10^4 cells/well in 100 μ l of fresh media and incubated overnight at 37°C and 5% CO₂.
3. 3. On day 1:
 1. i. 50 μ l of fresh complete media containing indicated concentration of anti-PD-L1/TGF β trap samples to be tested or its controls was added to the wells and incubated for one hour. All samples were tested in triplicates.
 2. ii. 50 μ l of fresh complete media containing 20 ng/ml human TGF β was added to each well and samples were incubated overnight (final concentration in the well is 5 ng/ml).
4. 4. On day 2:
 1. i. 100 μ l culture supernatant was removed and 100 μ l fresh complete media, containing 150 μ g/ml D-Luciferin was added, and samples were incubated for at least five minutes.
 2. ii. Luminescence was measured using Envision 2104 plate reader by recording CPM.
5. 5. Data was analyzed using MS Excel or Graphpad prism 5. Luciferase activity was recorded as CPM. Inhibitory Activity of (%) was calculated using the following equation:
6. 6. Nonlinear regression fit was carried out using Sigmoidal dose-response (variable slope) of Graphpad prism 5. IC₅₀ values were calculated.

[0107] FIG. 4 shows that anti-PD-L1/TGF β Trap inhibits TGF β -induced pSMAD3 reporter activity in a dose dependent manner. The fact that the anti-PD-L1(mut)/TGF β Trap control had comparable potency and IC₅₀ (concentration required to inhibit 50% of the maximal activity) plus the fact that the anti-PD-L1 antibody had no effect showed that this inhibition of signaling is independent of anti-PD-L1 activity. Surprisingly, anti-PD-L1/TGF β Trap was several-fold more potent than TGF β RII-Fc (R&D Systems), which places the TGF β RII at the N-terminus instead of the C-terminus of the fusion protein. It is also noteworthy that anti-PD-L1/TGF β Trap is significantly more potent than 1D11 (GC1008), the anti-TGF β antibody that was tested in

patients with advanced malignant melanoma or renal cell carcinoma (Morris et al., J Clin Oncol 2008; 26:9028 (Meeting abstract)). In this assay, 1D11 and TGF β RII-Fc showed similar activity.

EXAMPLE 5 - Pharmacokinetic (PK) analysis in mice

[0108] Eighteen male C57BL/6 mice, 5-6 weeks old, were randomly assigned to 3 groups (N=6/group), and each group received one of the three proteins (anti-PD-L1/TGF β Trap, anti-PD-L1(mut)/TGF β Trap, and anti-PD-L1). Mouse body weight was recorded before dosing. After a brief warm-up under a heating lamp, each mouse received 120 μ g of protein in 200 μ l intravenously (IV) via the tail vein regardless of its body weight. Each group dosed with the same protein was further divided into 2 subgroups (n=3). Blood samples were alternately taken from each of two subgroups, *i.e.* one subgroup was withdrawn for blood samples at 1h, 24h, 72h, and 168h, whereas another subgroup was for blood samples at 7h, 48h, 120h, and 240h. At each time point, approximate 50 μ l of blood samples were collected from each mouse via tail vein using a heparinized micro glass capillary (100 μ l in capacity). The blood sample was then transferred to a tube pre-coated with Li-Heparin and kept at 4 °C. Within 10 min of collection, the blood samples were spun at 14,000 rpm for 10 min. At least 20 μ l of plasma sample was transferred into a new set of pre-labeled tubes and stored at -20 °C until the day of analysis.

[0109] The ELISA to measure total human IgG used goat anti-Human IgG (H+L) (heavy and light chains) (Jackson ImmunoResearch Laboratories) coated wells for capture and peroxidase-AffiniPure mouse anti-Human IgG, F(ab')2 (Jackson ImmunoResearch Laboratories) for detection. The ELISA to measure fully functional anti-PD-L1 antibody and/or fusion protein used PD-L1-Fc (extracellular domain of human PD-L1 fused to Fc) coated wells (coated at 1.25 μ g/ml) for capture and peroxidase-AffiniPure mouse anti-Human IgG, F(ab')2 for detection. The ELISA to measure fully functional anti-PD-L1 and intact TGF β RII used PD-L1-Fc coated wells for capture and biotinylated anti-human TGF β RII (R&D Systems) for detection.

[0110] FIG. 5A shows that the anti-PD-L1/TGF β Trap fusion protein had a PK profile very similar to that of the anti-PD-L1 antibody. For example, as measured by the total human IgG ELISA, the serum concentrations at the 168 hr time point of anti-PD-L1/TGF β Trap and anti-PD-L1 were 16.8 and 16.2 μ g/ml, respectively, and the respective area under the curve (AUC) from 0 to 168 hr were 4102 and 3841 hr- μ g/ml. Similarly, when the serum concentrations were measured by the total functional anti-PD-L1 ELISA, the serum concentrations at the 168 hr time point of anti-PD-L1/TGF β Trap and anti-PD-L1 were 9.5 and 11.1 μ g/ml, respectively, and the respective AUC from 0 to 168 hr were 3562 and 3086 hr- μ g/ml. The serum concentration of intact anti-PD-L1/TGF β Trap fusion protein was determined by the ELISA, which detects fully functional anti-PD-L1 and the fused TGF β RII. In this case, the serum concentration of anti-PD-L1/TGF β Trap was 5.9 μ g/ml at the 168 hr time point and the AUC (0 to 168 hr) was 2656 hr- μ g/ml, which were somewhat lower than those from the fully functional anti-PD-L1 ELISA, presumably due to degradation of the TGF β RII moiety after receptor-mediated endocytosis.

Antibody binding to PD-L1 has been shown to result in PD-L1-mediated endocytosis, and an antibody-X fusion protein is known to undergo degradation of the X moiety after receptor-mediated endocytosis (Gillies et al., Clin Cancer Res. 2002; 8:210-6). This is supported by the finding in FIG. 5 that when the antibody moiety does not bind PD-L1, as in the anti-PD-L1(mut)/TGF β Trap control, the exposure is about 3 times higher, with a serum concentration of 53 μ g/ml at the 168 hr time point and AUC(0 to 168 hr) of 9585 hr- μ g/ml, suggesting that at least part of the clearance is receptor-mediated.

[0111] In order to confirm the ~3-fold difference in exposure between anti-PD-L1/TGF β Trap and anti-PD-L1(mut)/TGF β Trap, the pharmacokinetics experiment was repeated and the concentrations of the intact fusion proteins in the serum samples were determined. Mice (B6.129S2 female mice, 8 wks old, Jackson Lab) were injected with anti-PD-L1/TGF β Trap or anti-PD-L1(mut)/TGF β Trap (164 μ g/mouse). The serum concentrations of the two fusion proteins were measured by an ELISA using anti-human IgG Fab (Jackson Immunoresearch, West Grove, PA) for capture and biotinylated anti-human TGF β RII (R&D Systems, Minneapolis, MN) and peroxidase-conjugated streptavidin (Zymed/ThermoFisher Scientific, Grand Island, NY) to detect intact anti-PD-L1/TGF β Trap proteins. The serum concentrations of the intact fusion proteins at various time points were shown in the Table below and plotted in FIG. 5B. The total area under the curve (AUC) up to 336 hr is 11781 hr- μ g/ml for anti-PD-L1/TGF β Trap and 35575 hr- μ g/ml for anti-PD-L1(mut)/TGF β Trap (Table 1), therefore confirming the three-fold higher exposure of the Trap control molecule.

Table 1. Exposures of anti-PD-L1/TGF β Trap and the anti-PD-L1(mut)/TGF β Trap control as determined by the area under the curve (AUC) in the pharmacokinetics graph in Fig. 5B.

Time (h)	AUC (h* μ g/ml)	
	Anti-PD-L1/TGF β Trap	Anti-PD-L1(mut)/TGF β Trap
7	72	173
24	1161	2789
48	1306	3511
72	1113	2968
120	2327	5192
168	2014	5225
240	2159	7530
336	1629	8188
total	11781	35575

EXAMPLE 6 - PD-L1 target-mediated endocytosis of anti-PD-L1/ TGF β Trap

[0112] Receptor-mediated endocytosis was studied using the Alexa Fluor 488 quenching techniques according to manufacturer's protocol (Life Technologies, Carlsbad, CA). Briefly,

HEK cells expressing PD-L1 (HEK/PD-L1 cells) were incubated with 10 μ g/ml Alexa Fluor 488-conjugated anti-PD-L1/TGF β Trap on ice for about 1 hr and washed 4 times with cold media. Washed cells were then pulsed at 37 °C for 0.25, 0.5, 0.75, 1, 1.5, 2, 3 and 4 hr to allow internalization. Cell samples at each time point were then divided into two portions. One portion was incubated on ice and total fluorescence from the Alexa Fluor 488-conjugated anti-PD-L1/TGF β Trap bound on the cell surface and internalized was measured; the other portion was incubated with anti-Alexa Fluor 488 at 4 °C for about an hour and the non-quenchable fluorescence from the internalized Alexa Fluor 488-conjugated anti-PD-L1/TGF β Trap was measured. A graph showing a time course of the non-quenchable and total mean fluorescence intensity (MFI) of anti-PD-L1/TGF β Trap at 37 °C is shown in FIG. 6A. The receptor-mediated internalization kinetics is very similar to that of the anti-PD-L1 antibody, which is shown in FIG. 6B. The percentage of receptor-mediated internalization of anti-PD-L1/TGF β Trap and anti-PD-L1 on HEK/PD-L1 cells at various time points at 37 °C is shown in FIG. 6C, using the following formula to account for the fact that the quenching by the anti-Alexa Fluor 488 is not 100%:

EXAMPLE 7 - Anti-PD-L1/TGF β Trap demonstrated a superior anti-tumor effect that is synergistic of anti-PD-L1 and TGF β Trap activities in the EMT-6 (breast carcinoma) subcutaneous model

[0113] 8-12 week old female Jh (Igh-J^{tm1Dhu}) Balb/C mice (Taconic Farms, Hudson, NY) were inoculated with 0.5×10^6 viable EMT6 cells in 0.1 ml PBS on the right flanks subcutaneously. About five days later, when tumors reached an average size of 20-30 mm³, mice were sorted into groups (N=10) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0). Group 1 received 400 μ g of isotype antibody control three times weekly (or "eod" (every other day); Group 2 received 400 μ g of anti-PD-L1 antibody three times weekly; Group 3 received 164 μ g of anti-PD-L1(mut)/TGF β Trap three times weekly; Group 4 received 492 μ g of anti-PD-L1/TGF β Trap three times weekly; Group 5 received 492 μ g of anti-PD-L1/TGF β Trap twice weekly (equimolar to 400 μ g of anti-PD-L1 antibody); Group 6 received 164 μ g of anti-PD-L1/TGF β Trap three times weekly; and Group 7 received 55 μ g of anti-PD-L1/TGF β Trap three times weekly. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula: tumor volume (mm³) = length \times width \times height \times 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0114] All the treatments were well tolerated. The inhibition of tumor growth by the various treatments is shown in FIG. 7A, which showed the average tumor volumes of the surviving mice, and FIG. 7B, which showed the individual tumor volume of the surviving mice, noting that

mice with tumors over 2500 mm³ had to be euthanized. Anti-PD-L1/TGF β Trap demonstrated potent anti-tumor efficacy, achieving T/C ratios of 0.30, 0.40, and 0.44 for the high (492 μ g, Group 4), medium (164 μ g, Group 6), and low (55 μ g, Group 7) dose groups, respectively on Day 28.). While the anti-PD-L1 antibody (Group 2, T/C =0.87, p>0.05, on Day 16, the last day for which the average tumor volume of all the mice were available, *i.e.*, before mice with tumors over 2500 mm³ were euthanized) or the TGF β Trap control (Group 2, T/C =0.97 on Day 16, p>0.05) alone had marginal efficacy in this model, combining the two agents in a single molecule resulted in profound synergistic anti-tumor effect. This is evident in the median survival times observed for the 492 μ g dose (58 and greater than 80 days, respectively, for three times weekly dosing and twice weekly dosing) and 164 μ g dose (35 days) of the fusion protein (log rank test: p<0.0001) (FIG. 7C). Importantly, anti-PD-L1/TGF β Trap at the medium dose of 164 μ g (Group 6), with a median survival of 35 days, was far more efficacious than the same dose of anti-PD-L1(mut)/TGF β Trap (Group 3) or three times the equivalent dose of anti-PD-L1 (Group 2), both of which yielded a median survival of 22 days, respectively (log rank test: p<0.0001). This synergistic anti-tumor activity is especially striking because the exposure of the TGF β Trap moiety of the 164 μ g dose of PD-L1(mut)/TGF β Trap should be about 3 times higher than that of the 164 μ g dose of PD-L1/TGF β Trap due to receptor-mediated clearance of the latter (see Examples 5 and 6). It is remarkable that tumors in mice which received the high dose of anti-PD-L1/TGF β Trap continued to regress after dosing was stopped on Day 18 (3 of 10 from Group 4 and 6 of 10 from Group 5 with complete regressions at day 78), demonstrating the long-lasting immunologic anti-tumor effect of targeting the two immunosuppressive mechanisms simultaneously (FIG. 7C). It is also noteworthy that the efficacy for Group 4 is not any better than that of Group 5, suggesting that the dose of 492 μ g administered twice weekly was near the saturating dose, or was a more optimal dosing regimen than the 492 μ g administered three times weekly.

[0115] The protective effect of the anti-tumor immunity elicited by the anti-PD-L1/TGF β Trap treatment was evident when the mice with tumors in complete regression were challenged with 25,000 viable EMT6 cells injected subcutaneously. While all ten naive mice in a control group developed tumors to an average tumor volume of 726 mm³ by Day 18 post challenge, none of the eleven mice previously treated with PD-E1/TGF β Trap (three from Group 4, six from Group 5, and one each from Groups 6 and 7) showed any sign of tumor growth.

EXAMPLE 8 - Anti-PD-L1/TGF- β Trap showed profound synergistic anti-tumor activity in the MC38 (colorectal carcinoma) subcutaneous tumor model.

[0116] 8-12 week old female B6.129S2-Ighmtm1Cgn/J mice (Jackson Laboratory, Bar Harbor, ME) were injected with 0.5×10^6 viable MC38 tumor cells in 0.1 ml PBS subcutaneously into the right flank. About eight days later, when average tumor size reached about 80-100 mm³, mice were sorted into groups (N=10) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0). Group 1 received 400 μ g of isotype

antibody control; Group 2 received 400 µg of anti-PD-L1 antibody; Group 3 received 133 µg of anti-PD-L1 antibody; Group 4 received 492 µg of anti-PD-L1(mut)/TGF β Trap; Group 5 received 164 µg of anti-PD-L1(mut)/TGF β Trap; Group 6 received 492 µg of anti-PD-L1/TGF β Trap; and Group 7 received 164 µg of anti-PD-L1/TGF β Trap. The treatment was administered three times weekly for two weeks. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula: tumor volume (mm³) = length × width × height × 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0117] All the treatments were well tolerated. The inhibition of tumor growth by the various treatments is shown in FIG. 8. On day 19 of the study, anti-PD-L1/TGF β Trap demonstrated potent dose-dependent anti-tumor efficacy, achieving T/C ratios of 0.18 (p<0.001) and 0.38 (p<0.001) for the high (492 µg, Group 6) and low (164 µg, Group 7) dose groups, respectively. On the other hand, neither anti-PD-L1 or anti-PD-L1(mut)/TGF β Trap showed any anti-tumor activity at all. Therefore, a profound synergistic anti-tumor activity was obtained when the anti-PD-L1 antibody and the TGF β Trap moiety were combined into one molecule to target these two immunosuppressive mechanisms simultaneously.

EXAMPLE 9 - Anti-PDL1/TGF β Trap was effective in the EMT-6 orthotopic model of metastatic breast cancer.

[0118] 8-12 week old female Jh (Igh-Jtm1Dhu) Balb/C mice (Taconic Farms, Hudson, NY) were inoculated with 0.25×10^6 viable EMT6 cells in 0.1 ml PBS into the right mammary pad. About a week later, when average tumor size reached about 50 mm³, mice were sorted into groups (N=10) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0). Group 1 received 133 µg of isotype antibody control; Group 2 received 133 µg of anti-PD-L1 antibody; Group 3 received 164 µg of anti-PD-L1(mut)/TGF β Trap; Group 4 received 164 µg of anti-PD-L1/TGF β Trap; and Group 5 received a combination of 133 µg of anti-PD-L1 and 164 µg of anti-PD-L1(mut)/TGF β Trap. Treatment was repeated on Days 0, 2, 4, 7, 9, 11 (*i.e.* 3 times weekly for two weeks). Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula: tumor volume (mm³) = length × width × height × 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0119] All treatments were well tolerated. The inhibition of tumor growth by the various treatments is shown in FIG. 9. Anti-PD-L1/TGF β Trap demonstrated potent anti-tumor efficacy,

achieving T/C ratio of 0.03 ($p<0.001$) on Day 21. On the other hand, equimolar doses of anti-PD-L1 or anti-PD-L1(mut)/TGF β Trap were less efficacious, giving T/C ratios of 0.31 ($p<0.001$ vs. Group 1; $p<0.001$ vs. Group 4) and 0.68 ($p<0.001$ vs. Group 1; $p<0.001$ vs. Group 4), respectively. The combination therapy of equimolar doses of anti-PD-L1 and anti-PD-L1(mut)/TGF β Trap achieved almost identical anti-tumor efficacy as the fusion protein, although the exposure of the TGF β Trap of the fusion protein (Group 4) was estimated to be about 3-fold lower than that of the anti-PD-L1(mut)/TGF β Trap in the combination (Group 5) based on pharmacokinetics analysis (see Example 5). It is also remarkable that the tumors in Groups 4 and 5 continued to regress after the last day of dosing, e.g., average tumor size decreased from 212 mm³ on Day 11, the last day of dosing, to 26 mm³ on Day 24 for anti-PD-L1/TGF β Trap treatment, demonstrating the long-lasting immunologic anti-tumor effect of targeting the two immunosuppressive mechanisms simultaneously.

EXAMPLE 10 - Anti-PD-L1/TGF β Trap has better anti-tumor efficacy than the combination of anti-PD-L1 and TGF β Trap in an intramuscular MC38 colorectal carcinoma model.

[0120] 8-12 week old female B6.129S2-Ighm^{tm1Cgn}/J mice (Jackson Laboratory, Bar Harbor, ME) were injected with 0.5×10^6 viable MC38 tumor cells in 0.1 ml PBS intramuscularly in the right thigh. About a week later, when average tumor size reaches about 50 mm³, mice were sorted into groups (N=8) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0) and repeated again two days later (Day 2). Group 1 received 400 μ g of isotype antibody control; Group 2 received 400 μ g of anti-PD-L1 antibody; Group 3 received 133 μ g of anti-PD-L1 antibody; Group 4 received 164 μ g of anti-PD-L1(mut)/TGF β Trap; Group 5 received 492 μ g of anti-PD-L1/TGF β Trap; Group 6 received 164 μ g of anti-PD-L1/TGF β Trap; and Group 7 received a combination of 133 μ g of anti-PD-L1 and 164 μ g of anti-PD-L1(mut)/TGF β Trap. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula: tumor volume (mm³) = length \times width \times height \times 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0121] All the treatments were well tolerated. The inhibition of tumor growth by the various treatments is shown in FIG. 10. Anti-PD-L1/TGF β Trap demonstrated very potent anti-tumor efficacy, achieving T/C ratios of 0.024 ($p<0.001$) and 0.052 ($p<0.001$) for the high (492 μ g, Group 5) and low (164 μ g, Group 6) dose groups, respectively, on Day 15. On the other hand, equimolar doses of anti-PD-L1 were less efficacious, giving T/C ratios of 0.59 ($p<0.001$) and 0.45 ($p<0.001$) for the high (400 μ g, Group 2) and low (133 μ g, Group 3) dose groups, respectively. Anti-PD-L1(mut)/TGF β Trap at 164 μ g (Group 4) was completely ineffective, and it

should be pointed out that although this dose is equimolar with the low dose anti-PD-L1/TGF β Trap group (Group 6), the exposure of the TGF β Trap should be fairly similar to that of the high dose anti-PD-L1/TGF β Trap group (Group 5) because of the differences in pharmacokinetics (see Example 5). Therefore, the data demonstrated that anti-PD-L1/TGF β Trap had potent synergistic anti-tumor activity in this model. It is especially noteworthy that, anti-PD-L1/TGF β Trap was more efficacious than the combination therapy of equimolar doses of anti-PD-L1 and anti-PD-L1(mut)/TGF β Trap, which had a T/C ratio of 0.16 (p<0.001 vs. Group 1 and p>0.05 vs. Group 6) despite a higher TGF β Trap exposure of about threefold (see Example 5). In addition, anti-PD-L1/TGF β Trap treatment resulted in 4 out of 10 mice with complete tumor regression, while the combination of anti-PD-L1 and the Trap control induced complete regression in only 2 out of 10 mice (data not shown). It is also remarkable that the tumors in the mice treated with anti-PD-L1/TGF β Trap continued to regress after the last day of dosing on day 2, and stayed completely regressed thereafter (until at least Day 102), demonstrating the profound and long-lasting immunologic anti-tumor effect of this fusion protein. Without being bound by theory, the data supports a mechanism in which the anti-PD-L1/TGF β Trap fusion protein not only exploits the synergistic effect of blocking the two major immune escape pathways, but is superior to the combination therapy due to the targeting of the tumor microenvironment by a single molecular entity. Many immunosuppressive cytokines secreted by tumor cells or subverted immune cells (e.g. tumor associated macrophages, myeloid-derived suppressor cells) have autocrines or paracrine functions. Therefore, anti-PD-L1/TGF β Trap has the capability to deliver the TGF β Trap to the tumor microenvironment via binding to PD-L1+ tumor cells, where the Trap neutralizes the locally secreted TGF β . In addition, instead of acting just like a sink for bound TGF β that accumulates in circulation, anti-PD-L1/TGF β Trap bound TGF β could be effectively destroyed through the PD-L1 receptor-mediated endocytosis (Examples 5 and 6).

EXAMPLE 11 - Treatment with anti-PDL1/TGF β Trap or the combination of anti-PD-L1 and TGF β Trap control at equivalent exposure in the EMT-6 orthotopic model of metastatic breast cancer.

[0122] At equimolar doses, anti-PDL1/TGF β Trap had similar efficacy as the combination of anti-PD-L1 and TGF β Trap control in the orthotopic EMT-6 breast cancer model (Example 9). In the following study the efficacy of anti-PDL1/TGF β Trap or the combination of anti-PD-L1 and TGF β Trap control administered for equivalent exposure was tested.

[0123] 8-12 week old female Jh (Igh-J^{tm1Dhu}) Balb/C mice (Taconic Farms, Hudson, NY) were inoculated with 0.25×10^6 viable EMT6 cells in 0.1 ml PBS into the right mammary pad. About a week later, when average tumor size reached about 80 mm^3 , mice were sorted into groups (N=12) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated on Day 0 and repeated 7 days later. Group 1 received 133 μg of isotype antibody control; Group 2 received 164 μg of anti-PD-L1/TGF β Trap; Group 3 received 55 μg of anti-PD-L1/TGF β Trap; Group 4 received a combination of 133 μg of anti-

PD-L1 and 55 µg of anti-PD-L1(mut)/TGFβ Trap; and Group 5 received a combination of 44.3 µg of anti-PD-L1 and 18.3 µg of anti-PD-L1(mut)/TGFβ Trap. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula: tumor volume (mm³) = length × width × height × 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy is reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0124] All the treatments were well tolerated. Anti-PD-L1/TGFβ Trap and the combination therapy demonstrated potent anti-tumor efficacy at both dose levels tested.

EXAMPLE 12 - Anti-PD-L1/TGF-β Trap has better antitumor efficacy than the combination of anti-PD-L1 and TGFβ Trap administered to give equivalent exposure in an intramuscular MC38 colorectal carcinoma model.

[0125] The results in Example 10 suggested that at equimolar doses the anti-PD-L1/TGF-β Trap has better antitumor efficacy than the combination of anti-PD-L1 and TGFβ Trap control even though the *in vivo* exposure of anti-PD-L1(mut)/TGFβ Trap control is about 3 times that of anti-PD-L1/TGFβ Trap (Example 5). In a follow-up study the anti-tumor efficacy of anti-PD-L1/TGFβ Trap and the combination of anti-PD-L1 and anti-PD-L1(mut)/TGFβ Trap based on equal exposure was compared. Lower doses than in Example 10 were administered to avoid dosing near saturating levels.

[0126] 8-12 week old female B6.129S2-Ighm^{tm1Cgn}/J mice (Jackson Laboratory, Bar Harbor, ME) were injected with 0.5×10^6 viable MC38 tumor cells in 0.1 ml PBS intramuscularly in the right thigh. A week later, when average tumor size reached about 200 mm³, mice were sorted into groups (N=12) so that the average tumor sizes of all groups were similar. Treatment by intravenous injections was initiated (Day 0) and repeated again on Day 4. Group 1 received 133 µg of isotype antibody control; Group 2 received 164 µg of anti-PD-L1/TGFβ Trap; Group 3 received 55 µg of anti-PD-L1/TGFβ Trap; Group 4 received a combination of 133 µg of anti-PD-L1 and 55 µg of anti-PD-L1(mut)/TGFβ Trap; and Group 5 received a combination of 44.3 µg of anti-PD-L1 and 18.3 µg of anti-PD-L1(mut)/TGFβ Trap. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula: tumor volume (mm³) = length × width × height × 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy is reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0127] All the treatments were well tolerated. Anti-PD-L1/TGFβ Trap demonstrated very potent

anti-tumor efficacy, achieving T/C ratios of 0.13 (p<0.001) and 0.19 (p<0.001) for the intermediate (164 µg, Group 2, called intermediate dose relative to the high dose of 492 µg that seemed to be saturating in Example 10) and low (55 µg, Group 3) dose groups, respectively, on Day 9. On the other hand, the combination of anti-PD-L1 and anti-PD-L1(mut)/TGFβ Trap were less efficacious, giving T/C ratios of 0.34 (p<0.001) and 0.37 (p<0.001) for the intermediate (Group 4) and low (Group 5) dose groups, respectively (Fig. 12A or Table). It is especially noteworthy that when administered to give equivalent *in vivo* exposure of the anti-PD-L1 antibody and the TGFβ Trap component, anti-PD-L1/TGFβ Trap was significantly more efficacious than the combination therapy of anti-PD-L1 and anti-PD-L1(mut)/TGFβ Trap at both dose levels (at the intermediate dose, T/C of 0.13 for anti-PD-L1/TGFβ Trap vs. 0.34 for the combination p<0.0001 (Fig. 12B); at the low dose, T/C of 0.19 for anti-PD-L1/TGFβ Trap vs. 0.37 for the combination p<0.0001 (Fig. 12C)).

EXAMPLE 13 - Anti-PD-L1(YW)/TGFβ Trap has superior anti-tumor effect that is synergistic of anti-PD-L1 and TGFβ Trap activities in the EMT-6 (breast carcinoma) orthotopic model.

[0128] YW243.55S70 is a human antibody that recognizes both human and murine PD-L1 (US Patent Application Publication No. US2010/0203056 A1). Its variable region sequence of the heavy chain (VH) and variable region sequence of the light chain (VL) (provided as SEQ ID NO: 14 and SEQ ID NO: 13, respectively) were used to replace the corresponding variable region sequences of the anti-PD-L1/TGFβ Trap described in Example 1 to give anti-PD-L1(YW)/TGFβ Trap by standard molecular biology techniques. After construction of the DNA coding for anti-PD-L1(YW)/TGFβ Trap, the antibody fusion protein was expressed as described in Example 1. The anti-PD-L1 antibody YW243.55S70 is similarly expressed for comparison of efficacy in murine tumor models.

[0129] 8-12 week old female Jh (Igh-Jtm1Dhu) Balb/C mice (Taconic Farms, Hudson, NY) were inoculated with 0.25×10^6 viable EMT6 cells in 0.1 ml PBS into the right mammary pad. About a week later, when average tumor size reached about 50-100 mm³, mice were sorted into groups (N=10) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0). Group 1 received 133 µg of isotype antibody control; Group 2 received 133 µg of anti-PD-L1(YW) antibody; Group 3 received 164 µg of anti-PD-L1(mut)/TGFβ Trap; Group 4 received 164 µg of anti-PD-L1(YW)/TGFβ Trap; and Group 5 received a combination of 133 µg of anti-PD-L1(YW) and 164 µg of anti-PD-L1(mut)/TGFβ Trap. Treatment was repeated on Days 4 and 7. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula tumor volume (mm³) = length × width × height × 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy is reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0130] All the treatments were well tolerated. The inhibition of tumor growth by the various treatments is shown in FIG. 13A, which showed the average tumor volumes of the mice on Day 17, the last day for which the average tumor volume of all the mice were available, *i.e.*, before mice with tumors over 2500 mm³ were euthanized. Anti-PD-L1(YW)/TGF β Trap demonstrated potent anti-tumor efficacy, achieving a T/C ratio of 0.25 (p<0.0001) that is slightly better than that of the combination treatment in Group 5 (T/C=0.31, p<0.0001), but superior to that of the anti-PD-L1(YW) antibody in Group 2 (T/C=0.57, p<0.0001) and the TGF β Trap control in Group 3 (T/C=0.66, p<0.0001). The synergistic anti-tumor effect of the antibody fusion protein also resulted in prolonged survival of the treated mice, as shown in FIG. 13B. The anti-PD-L1/TGF β Trap treated group had a median survival time of 65 days, which was significantly better than that of the anti-PD-L1(YW) antibody treated group (24 days) or the TGF β Trap control treated group (21 days). It also compares favorably with the median survival time of 53.5 days for the combination treatment group. Despite dosing stopped after day 7, the continual tumor growth inhibition and the prolonged survival of the anti-PD-L1(YW)/TGF β Trap treated mice demonstrate the long-lasting immunologic anti-tumor effect resulting from dual blockade of the two major immunosuppressive pathways.

EXAMPLE 14 - Anti-PD-L1(YW)/TGF- β Trap has superior anti-tumor effect that is synergistic of anti-PD-L1 and TGF β Trap activities in the MC38 (colorectal carcinoma) intramuscular tumor model

[0131] 8-12 week old female B6.129S2-Ighmt¹Cgn/J mice (Jackson Laboratory, Bar Harbor, ME) were injected with 0.5×10^6 viable MC38 tumor cells in 0.1 ml PBS intramuscularly in the right thigh. About a week later, when average tumor size reaches about 150-200 mm³, mice were sorted into groups (N=10) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0) and repeated again four days later (Day 4). Group 1 received 133 μ g of isotype antibody control; Group 2 received 133 μ g of anti-PD-L1(YW) antibody; Group 3 received 164 μ g of anti-PD-L1(mut)/TGF β Trap; Group 4 received 164 μ g of anti-PD-L1(YW)/TGF β Trap; and Group 5 received a combination of 133 μ g of anti-PD-L1(YW) and 164 μ g of anti-PD-L1(mut)/TGF β Trap. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula tumor volume (mm³) = length \times width \times height \times 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0132] All the treatments were well tolerated. The inhibition of tumor growth by the various treatments is shown in FIG. 14A, which showed the average tumor volumes of the mice on Day 10, the last day for which the average tumor volume of all the mice were available. Anti-PD-L1(YW)/TGF β Trap demonstrated very potent anti-tumor efficacy, achieving a T/C ratio of 0.14

($p<0.0001$) that is slightly better than that of the combination treatment in Group 5 ($T/C=0.19$, $p<0.0001$), but superior to that of the anti-PD-L1(YW) antibody in Group 2 ($T/C=0.34$, $p<0.0001$) and the TGF β Trap control in Group 3 ($T/C=0.99$, $p<0.0001$), which had no activity in this model. The anti-tumor efficacy of anti-PD-L1(YW)/TGF β Trap was further confirmed by tumor weight measurements taken on Day 11. By this time, the isotype control group had to be euthanized because the tumors had grown beyond 2500 mm^3 . Therefore, the experiment was terminated and all the groups were euthanized and the tumor weights determined. The individual tumor weights are shown in FIG. 14B. The analysis of tumor weights confirmed that anti-PD-L1(YW)/TGF β Trap therapy significantly inhibited MC38 tumor growth ($T/C=0.13$; $p<0.0001$). The efficacy of anti-PD-L1(YW)/TGF β Trap was significantly better than that observed with anti-PD-L1 ($T/C=0.37$; $p=0.003$) or the TGF β Trap control ($T/C=1.0$, $p<0.0001$). The anti-tumor efficacy of anti-PD-L1(YW)/TGF β Trap, based on the tumor weight analysis, was not statistically better than the mice treated with the combination of anti-PD-L1 and the TGF β Trap control ($T/C=0.17$; $p=0.96$).

EXAMPLE 15 - Combination treatment of Anti-PD-1 and TGF β Trap do not provide any additive anti-tumor effect in an EMT-6 (breast carcinoma) orthotopic model

[0133] In this study we tested if the combination treatment of anti-PD-1 and TGF β Trap provides any additive anti-tumor effect in the EMT-6 orthotopic model. CT-011, also known as pidiluzumab, is a humanized anti-human PD1 antibody that was tested in the clinic for treatment of hematological malignancies (Berger et al, Clin Cancer Res. 2008; 14:3044-3051). It also recognizes murine PD-1 and has shown anti-tumor activity that synergizes with cyclophosphamide and vaccine treatment in syngeneic tumor models (Mkrtchyan et al., Eur J Immunol. 2011; 41:2977-86). The VH and VL sequences of CT-011 were used to produce a recombinant antibody with human IgG1/kappa constant regions by standard molecular biology techniques.

[0134] 8-12 week old female Jh (Igh-Jtm1Dhu) Balb/C mice (Taconic Farms, Hudson, NY) were inoculated with 0.25×10^6 viable EMT6 cells in 0.1 ml PBS into the right mammary pad. About a week later, when average tumor size reached about 100 mm^3 , mice were sorted into groups ($N=10$) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0). Group 1 received 364 μg of isotype antibody control; Group 2 received 164 μg of anti-PD-L1(mut)/TGF β Trap, which served as the TGF β Trap control; Group 3 received 200 μg of anti-PD-1(CT-011); and Group 4 received a combination of 200 μg of anti-PD-1(CT-011) and 164 μg of anti-PD-L1(mut)/TGF β Trap control. Treatment was repeated on Days 2, 4, 7, 9, and 11, *i.e.* 3 times weekly for two weeks. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula tumor volume (mm^3) = length \times width \times height \times 0.5236. Any mice with tumors over 2500 mm^3 were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with

the isotype control, respectively.

[0135] All the treatments were well tolerated. Anti-PD-1(CT-011) showed very modest antitumor efficacy (T/C = 0.87, p>0.05) in this model, while its combination with the TGF β Trap control had the same efficacy as the TGF β Trap control alone (FIG. 15).

EXAMPLE 16 - Combination treatment of Anti-PD-1 and TGF β Trap do not provide any additive anti-tumor effect in an MC38 (colorectal carcinoma) intramuscular tumor model.

[0136] In this study we tested if the combination treatment of anti-PD-1 and TGF β Trap provides any additive anti-tumor effect in the intramuscular MC38 colorectal tumor model. 8-12 week old female B6.129S2-Ighm^{tm1Cgn}/J mice (Jackson Laboratory, Bar Harbor, ME) were injected with 0.5×10^6 viable MC38 tumor cells in 0.1 mL PBS intramuscularly in the right thigh. About a week later, when average tumor size reaches about 190 mm³, mice are sorted into groups (N=10) so that the average tumor sizes of all groups are similar, and treatment by intravenous injections is initiated (Day 0). Group 1 received 364 μ g of isotype antibody control on Days 0, 2, 4, and 7; Group 2 received 164 μ g of the anti-PD-L1(mut)/TGF β Trap control on Days 0 and 2; Group 3 received 200 μ g of anti-PD-1(CT-011) on Days 0, 2, 4, and 7; and Group 4 received a combination of 200 μ g of anti-PD-1(CT-011) on Days 0, 2, 4, and 7, and 164 μ g of anti-PD-L1(mut)/TGF β Trap control on Days 0 and 2. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula tumor volume (mm³) = length \times width \times height \times 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0137] All the treatments were well tolerated. Anti-PD-1(CT-011) showed very modest antitumor efficacy (T/C = 0.87, p>0.05), while the anti-PD-L1(mut)/TGF β Trap control had no efficacy in this model, as seen in previous examples. The combination of anti-PD-1(CT-011) with the TGF β Trap control had no efficacy at all (FIG. 15).

EXAMPLE 17 - Combination treatment of TGF β Trap with either anti-LAG3 or anti-TIM-3 do not provide any additive anti-tumor effect in an EMT-6 (breast carcinoma) orthotopic model

[0138] In this study we tested if the combination treatment of TGF β Trap with either anti-LAG3 or anti-TIM3 provides any additive anti-tumor effect in the orthotopic EMT-6 breast tumor model. The anti-LAG3 antibody used is a rat IgG1 monoclonal anti-murine LAG3 antibody

C9B7W (BioXcell, Beverly, MA), which was shown to synergize with anti-murine PD-1 treatment in syngeneic tumor models (Woo et al, Cancer Res, 2011; 72:917-27). The anti-TIM-3 antibody used is a rat IgG2a monoclonal anti-murine TIM3 antibody RMT3-23 (BioXcell, Beverly, MA), which also was shown to synergize with anti-murine PD-1 treatment in syngeneic tumor models, although its efficacy as a single agent was relatively modest (Ngiow et al, Cancer Res, 2011; 71:3540-51).

[0139] 8-12 week old female Jh (Igh-Jtm1Dhu) Balb/C mice (Taconic Farms, Hudson, NY) were inoculated with 0.25×10^6 viable EMT6 cells in 0.1 ml PBS into the right mammary pad. About a week later, when average tumor size reached about 110 mm^3 , mice were sorted into groups (N=9) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections was initiated (Day 0). Group 1 received 133 μg of isotype antibody control; Group 2 received 164 μg of the anti-PD-L1(mut)/TGF β Trap control; Group 3 received 200 μg of anti-LAG3; Group 4 received 250 μg of anti-TIM3; Group 5 received a combination of 200 μg of anti-LAG3 and 164 μg of anti-PD-L1(mut)/TGF β Trap control; and Group 6 received a combination of 250 μg of anti-TIM3 and 164 μg of anti-PD-L1(mut)/TGF β Trap control. Treatment was repeated on Days 2, 4, 7, 9, and 11, *i.e.* 3 times weekly for two weeks. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula tumor volume (mm^3) = length \times width \times height \times 0.5236. Any mice with tumors over 2500 mm^3 were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0140] As observed previously, the anti-PD-L1(mut)/TGF β Trap control (Group 2) showed very modest efficacy in this EMT-6 model. Anti-TIM3 (Group 4) as a single agent showed a similarly modest efficacy as the Trap control, and in combination therapy with the Trap control (Group 6) showed no additive effect. Anti-LAG3 either as a single agent (Group 3) or in combination therapy with the Trap control (Group 5) did not show any efficacy.

EXAMPLE 18 - Combination treatment of TGF β Trap with either anti-LAG3 or anti-TIM-3 do not provide any additive anti-tumor effect in an MC38 (colorectal carcinoma) intramuscular tumor model

[0141] In this study we tested if the combination treatment of TGF β Trap with either anti-LAG3 (C9B7W) or anti-TIM3 (RMT3-23) provides any additive anti-tumor effect in the intramuscular MC38 colorectal tumor model.

[0142] 8-12 week old female B6.129S2-Ighm^{tm1Cgn}/J mice (Jackson Laboratory, Bar Harbor, ME) were injected with 0.5×10^6 viable MC38 tumor cells in 0.1 mL PBS intramuscularly in the right thigh. About a week later, when average tumor size reaches about 50 mm^3 , mice were

sorted into groups (N=8) so that the average tumor sizes of all groups were similar, and treatment by intravenous injections is initiated (Day 0). Group 1 received 133 µg of isotype antibody control; Group 2 received 164 µg of the anti-PD-L1(mut)/TGFβ Trap control; Group 3 received 200 µg of anti-LAG3; Group 4 received 250 µg of anti-TIM3; Group 5 received a combination of 200 µg of anti-LAG3 and 164 µg of anti-PD-L1(mut)/TGFβ Trap control; and Group 6 received a combination of 250 µg of anti-TIM3 and 164 µg of anti-PD-L1(mut)/TGFβ Trap control. Treatment was repeated on Days 2, 4, 7, 9, 11, 15 and 18. Body weights were measured twice weekly to monitor toxicity. Tumor volumes were determined at different time points using the formula tumor volume (mm³) = length × width × height × 0.5236. Any mice with tumors over 2500 mm³ were sacrificed following the institute's animal health protocol. Anti-tumor efficacy was reported as a T/C ratio, where T and C are the average tumor volumes of the group treated with antibody or fusion protein, and the group treated with the isotype control, respectively.

[0143] As observed previously, the anti-PD-L1(mut)/TGFβ Trap control (Group 2) did not have any efficacy in this MC38 model. Anti-LAG3 as a single agent (Group 3) showed a moderate efficacy, achieving a T/C of 0.66 (p<0.05). However, combination with the Trap control (Group 5) did not improve its efficacy. Anti-TIM3 either as a single agent (Group 4) or in combination therapy with the Trap control (Group 6) did not show any efficacy.

SEQUENCES

[0144]

SEQ ID NO: 1

Peptide sequence of the secreted anti-PD-L1 lambda light chain

QSALTQPASVSGSPGQSITISCTGTSSDVGGYNVSWYQQHPGKAPKLMYDVSNRPSGVSNRF
SGSKSGNTASLTISGLQAEDEADYYCSSYSSSTRVFGTGTKVTVLGQPKANPTVTLFPPSSEE
LQANKATLVCLISDFYPGAVTVAWKADGS PVKAGVETTKPSKQSNNKYAASSYSLTPEQWKSH
RSYSCQVTHEGSTVEKTVAPTECS

SEQ ID NO: 2

Peptide sequence of the secreted H chain of anti-PDL1

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSSIYPSGGITFYADTV
KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVTTVDYWGQGTIVTVSSASTKGPSV
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
SSSLGTQTYICNVNHPKNSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM
SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTPREEQYNSTYRVVSVLTVLHQDWLNGK
EYKCKVSNKALPAPIEKTISKAKGQPREPVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEW
ESNGQPENNYKTPPVLDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
GK

SEQ ID NO: 3

Peptide sequence of the secreted H chain of anti-PDL1/TGFβ Trap

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSSIYPSGGITFYADTV
KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVTTVDYWGQGTIVTVSSASTKGPSV
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
SSSLGTQTYICNVNHPKNSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM

SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK

EYKCKVSNKALPAPIEKTI~~SKAKGQPREPVYTLPPSREEMTKNQVSLTCLVKGFYPSDI~~AVEW
ESNGQOPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
GAGGGGGGGGGGGGGGGGGGGSGI~~PPHVQKVSNNDMIVTDNNGAVKF~~PLCKFC~~CDVRFSTCDNQ~~
KSCMSNCITS~~ICEPKQEV~~CVAVWRKNDENITLET~~VC~~CHDPKLPYHDFILEDAA~~SP~~KCIMKEKKK
PGETFFMCSCSSDECNDNII~~FSE~~YNTSNPD

SEQ ID NO: 4

DNA sequence from the translation initiation codon to the translation stop codon of the anti-PD-L1 lambda light chain (the leader sequence preceding the VL is the signal peptide from urokinase plasminogen activator)

ataggggccctgtggctagactgctgtgcgtgctggcgtgtccgacagcaaggcCAGT
CCGCCCTGACCCAGCCTGCCCTGGCTCTGGCTCCCCTGGCCAGTCCATCACCACAGCTGCAC
CGGCACCTCCAGCAGTGGCGGCTACAACATACGTGTCTGGTATCAGCAGCACCCCGGCAAG
GCCCCAAGCTGATGATCTACGACGTGCCAACCGGCCCTCCGGCGTGTCCAACAGATTCTCG
GCTCCAAGTCCGGAACACCGCCCTCCCTGACCATCAGCGGACTGCAGGCAGAGGACGAGGCCGA
CTACTACTGCTCCTCCTACACCTCCTCAGCACCAGAGTGTGGCACCGGCACAAAGTGACC
GTGCTGggccagccaaaggccaaaccaaccgtgacactgttccccccatcctcgaggaactgc
aggccaaacaaggccaccctgtgtgcctgatctcagattctatccagggccgtgaccgtggc
ctggaaaggctatggctcccaagtgaaggccggcgtggaaaccaccaagccctccaagcagtcc
aacaacaatacggccctcctacactgtccctgaccccccagcagtgaaagtcccacccgt
cctacagctgccaggtcacacacgaggcgtccaccgtggaaaagaccgtcgccccccaccgagtg
ctcaTGA

SEQ ID NO: 5

DNA sequence from the translation initiation codon to the translation stop codon (mVK SP leader: small underlined; VH: capitals; IgG1m3 with K to A mutation: small letters; (G4S)x4-G linker: bold capital letters; TGF β RII: bold underlined small letters; two stop codons: bold underlined capital letters)

atggaaaacagacaccctgctgtgggtctgtgggtgcggccacaggcGAGG
TGCAGCTGCTGGAATCCGGGGAGGACTGGTGCAGCCTGGGGCTCCCTGAGACTGTCTGGCGC
CGCCTCCGGCTTACCTCTCCAGCTACATCATGATGTGGGTGCGACAGGCCCCGGCAAGGGC
CTGGAAATGGGTGTCTCCATCTACCCCTCCGGCGGCATCACCTCTACGCCGACACCGTGAAAGG
GCCGGTTCACCATCTCCGGACAACCTCAAGAACACCCCTGTACCTGCAGATGAACCTCCCTGGCG
GGCCGAGGGACACCGCCGTGACTACTGCGCCGGATCAAGCTGGCACCGTGACCACCGTGAC
TACTGGGGCCAGGGCACCCCTGGTGACAGTGTCTCCgtacaccacggccatcggtttcc
ccctggcacccctctccaagagcacctctggggcacagcggccctggctgcctggtaagga
ctactttcccgaaaccggtgacggtgtctggggcacagcggccctggctgcctggtaagga
ttcccggtgtcctacagtcttcaggactctactccctcagcagcgtggtgaccgtgcacacc
gcagcttgggcacccagacccatctgcacacgtgaatcacaagcccaagcaacaccaagggtgaa
caagagagttaggccccaaatcttgcacaaaactcacacatgcccacccgtgcccagcacctgaa
ctccctgggggacccgtcagttccctttcccccaccaaggacaccctcatgtatctcc
ggacccctgaggtcacatgcgtggtgacgtgagccacgaagaccctgaggtcaagttcaa

gtggaggaagaacgacgaaaacatcacccctcgagaccgtgtccatgaccctaagctgccctac
cacgacttcatcctgaaagacccgcctcccccaagtgcacatcatgaaaggagaagaagcccg
gcgagaccccttcatgtgcagctgcagcagcagactgcaatgacaacatcatcttagcga
ggagtacaacaccagaacccgacTGATAA

SEQ ID NO: 6

Polypeptide sequence of the secreted lambda light chain of anti-PD-L1(mut)/ TGF β Trap, with mutations A31G,D52E,R99Y

QSALTQPASVSGSPGQSITISCTGTSSDVGGYNVSWYQQHPGKAPKLMIEVSNRPSGVSNRF
SGSKSGNTASLTISGLQAEDEADYYCSSLTYSVFGTGTKVTLGQPKANPTVTLFPPSSEE
LQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSH
RSYSCQVTHEGSTVEKTVAPTECS

SEQ ID NO: 7

Polypeptide sequence of the secreted heavy chain of anti-PD-L1(mut)/ TGF β Trap
EVQLLESGGGLVQPGGSLRLSCAASGFTFSMYMMMWVRQAPGKGLEWVSSITYPSGGITFYADSV
KGRFTISRDNSKNTLYLQMNSLRAEDTAIYYCARIKLGTVTVDYWGQGTLVTVSSASTKGPSV
FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
SSSLGTQTYICNVNWKPSNTKVDKRVEPKSCDKTHCPCPAPELLGGPSVFLFPPKPKDTLM
SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTPREEQYNSTYRVVSVLTVLHQDWLNGK
EYKCKVSNKALPAPIEKTISKAKGQPREPVTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEW
ESNGQPENNYKTPPVLDSDGSFLYSLTVDKSRWQQGNVFSCSVHEALHNHTQKSLSLSP
GAGGGGGSGGGGGGGGGGGGGGGGSIIPPHVQKSVNNNDMIVTDNNGAVKFQQLCKFCDFRSTCDNQ
KSCMSNCITSICEKPQEVCAVWRKNDENITLETVCVDPKLPYHDFILEDAASPKCIMKEKKK
PGETFFMCSCSSDECNDNIIIFSEEEYNTSNDP

SEQ ID NO: 8

Human TGF β RII Isoform A Precursor Polypeptide (NCBI RefSeq Accession No: NP_001020018)

MGRGLLRGLWPLHIVLWTRIASTIPPHVQKSDVEMEAQKDEIIICPSCNRTHPLRHINNDMIVT
DNNGAVKFPQLCKFCDFRSTCDNQKSCMSNCITSICEKPQEVCAVWRKNDENITLETVCVD
PKLPYHDFILEDAASPKCIMKEKKKGETFFMCSCSSDECNDNIIIFSEEEYNTSNDP
LIVLQFLTAERKTELGKQYWLITAFHAKGNLQEYLTRHVISWEDLRKLGSSLARGIA
HLHSDDTPCGRPKMPIVHRDLKSSNIVKNDLTCCLCDGFLSLRDLPTLSVDDLANSQVG
TARVMAPEVLESRMNLENVESFKQTDVYSMALVLWEMTSRCNAVGEVKDYEPFGSKV
REHPCVESMKDNVLRDRGRPEIPSFWLNHQGIQM
CSEEKIPEDGSLNTTK

SEQ ID NO: 9

Human TGF β RII Isoform B Precursor Polypeptide (NCBI RefSeq Accession No: NP_003233)

MGRGLLRGLWPLHIVLWTRIASTIPPHVQKSVNNNDMIVTDNNGAVKFQQLCKFCDFRSTCDNQ
KSCMSNCITSICEKPQEVCAVWRKNDENITLETVCVDPKLPYHDFILEDAASPKCIMKEKKK
PGETFFMCSCSSDECNDNIIIFSEEEYNTSNDP
LIVLQFLTAERKTELGKQYWLITAFHAKGNLQEYLTRHVISWEDLRKLGSSLARGIA
HLHSDDTPCGRPKMPIVHRDLKSSNIVKNDLTCCLCDGFLSLRDLPTLSVDDLANSQVG
TARVMAPEVLESRMNLENVESFKQTDVYSMALVLWEMTSRCNAVGEVKDYEPFGSKV
REHPCVESMKDNVLRDRGRPEIPSFWLNHQGIQM
CSEEKIPEDGSLNTTK

SEQ ID NO: 10

A Human TGF β RII Isoform B Extracellular Domain Polypeptide

IPPHVQKSVNNNDMIVTDNNGAVKFQQLCKFCDFRSTCDNQKSCMSNCITSICEKPQEVCAV
WRKNDENITLETVCVDPKLPYHDFILEDAASPKCIMKEKKKGETFFMCSCSSDECNDNIIIFSE
EYNTSNDP

SEQ ID NO: 11(Gly₄Ser)₄Gly linker

GGGGSGGGGSGGGGGSGGGGSG

SEQ ID NO: 12

Polypeptide sequence of the secreted heavy chain variable region of anti-PD-L1 antibody

MPDL3280A

EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHVRQAPGKGLEWVAWISPYGGSTYY
ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFDYWGQTLVTVSS**SEQ ID NO: 13**

Polypeptide sequence of the secreted light chain variable region of anti-PD-L1 antibody

MPDL3280A and the anti-PD-L1 antibody YW243.55S70

DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSG
SGSGTDFTLTISSLQPEDFATYYCQQYLYHPATFGQGTKVEIKR**SEQ ID NO: 14**Polypeptide sequence of the secreted heavy chain variable region of anti-PD-L1 antibody
YW243.55S70EVOLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHVRQAPGKGLEWVAWISPYGGSTYYADSV
KGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFDYWGQTLVTVSA

REFERENCES CITED IN THE DESCRIPTION

Cited references

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [WO2011109789A \[0004\]](#)
- [US20100203056A \[0069\]](#)
- [US7943743B \[0074\]](#)
- [WO0158957A \[0081\]](#)
- [US20030166877A \[0081\]](#)
- [US20030044423A \[0083\]](#)

- US20100203056A1 [0128]

Non-patent literature cited in the description

- PARDOLL, D.M.Nat Immunol., 2012, vol. 13, 1129-32 [0003]
- WHERRY, E.J.Nat Immunol., 2011, vol. 12, 492-9 [0003]
- MONTERO-JULIAN et al.Blood, 1995, vol. 85, 917-24 [0033]
- HUME et al.Blood, 2012, vol. 119, 1810-20 [0033]
- YANG et al.Trends Immunol., 2010, vol. 31, 220-227 [0034] [0035]
- ROBERTS et al.J Clin Invest., 1992, vol. 90, 2056-62 [0034] [0037]
- BIERIE et al.Nat Rev Cancer., 2006, vol. 6, 506-20 [0035]
- YANG et al.Cancer Res., 2008, vol. 68, 9107-11 [0035]
- LÓPEZ-CASILLAS et al.J Cell Biol., 1994, vol. 124, 557-68 [0036]
- WON et al.Cancer Res., 1999, vol. 59, 1273-7 [0036]
- BUJAK et al.Cardiovasc Res., 2007, vol. 74, 184-95 [0037]
- BARTRAM et al.Circulation, 2001, vol. 103, 2745-52 [0037]
- YAMAGISHI et al.Anat Rec., 2012, vol. 295, 257-67 [0037]
- VILCHIS-LANDEROS et al.Biochem J, 2001, vol. 355, 215- [0038]
- MENDOZA et al.Biochemistry, 2009, vol. 48, 11755-65 [0038]
- LIN et al.J Biol Chem., 1995, vol. 270, 2747-54 [0038]
- SUZUKI et al.Clin Cancer Res., 2004, vol. 10, 5907-18 [0038]
- VERONA et al.Protein Eng Des Sel., 2008, vol. 21, 463-73 [0038]
- MORRIS et al.Meeting abstractJ Clin Oncol, 2008, vol. 26, 9028- [0039] [0107]
- FLAVELL et al.Nat Rev Immunol., 2010, vol. 10, 554-67 [0039]
- KHAW et al.Ophthalmology, 2007, vol. 114, 1822-1830 [0039]
- ZHONG et al.Clin Cancer Res., 2010, vol. 16, 1191-205 [0039]
- CALONE et al.Exp Oncol., 2012, vol. 34, 9-16 [0039]
- CONNOLLY et al.Int J Biol Sci., 2012, vol. 8, 964-78 [0039]
- PARDOLLNat Rev Cancer., 2012, vol. 12, 253-264 [0041]
- ANGAL S et al.Mol. Immunol., 1993, vol. 30, 105-8 [0082]
- Remington's Pharmaceutical SciencesMack Publishing Company19850000 [0092]
- LANGERScience, 1990, vol. 249, 1527-1533 [0092]
- GILLIES et al.Clin Cancer Res., 2002, vol. 8, 210-6 [0110]
- BERGER et al.Clin Cancer Res., 2008, vol. 14, 3044-3051 [0133]
- MKRTICHYAN et al.Eur J Immunol., 2011, vol. 41, 2977-86 [0133]
- WOO et al.Cancer Res, 2011, vol. 72, 917-27 [0138]
- NGIOW et al.Cancer Res, 2011, vol. 71, 3540-51 [0138]

Patentkrav**1. Protein, der omfatter:**

a) human TGF β RII eller et fragment deraf, der er i stand til at binde TGF β ; og

5 b) et antistof eller antigenbindende fragment deraf, der binder humant protein
Programmeret Dødsligand 1 (PD-L1) og omfatter:

(i) en variabel region med tung kæde, der omfatter en HVR-H1, HVR-H2 og
HVR-H3, der har aminosyresekvenserne af henholdsvis SYIMM, SIYPSGGIT-
FYADTVKG og IKLGTVTTVDY, og

10 (ii) en variabel region med let kæde, der omfatter en HVR-L1, HVR-L2 og HVR-
L3 med aminosyresekvenserne af henholdsvis TGTSSDVGGNYVS,
DVSNRPS og SSYTSSSTRV.

2. Protein ifølge krav 1, yderligere omfattende en aminosyrelinker, der forbin-

15 **der C-terminalen af antistoffets tunge kæde eller det antigenbindende frag-
ment deraf, til N-terminalen af det humane TGF β RII eller fragment deraf.**

**3. Protein ifølge krav 1 eller krav 2, hvor den humane TGF β RII omfatter en
aminosyresekvens med mindst 80% sekvensidentitet med SEQ ID NO: 8 eller
20 SEQ ID NO: 9, som er mindst 20 aminosyrer lang.**

**4. Protein ifølge et hvilket som helst af kravene 1 til 3, hvor den humane
TGF β RII omfatter en aminosyresekvens af SEQ ID NO: 10.**

25 **5. Protein ifølge et hvilket som helst af kravene 1 til 4, hvor**

**(a) antistoffets tunge kæde eller det antigenbindende fragment deraf omfatter
en aminosyresekvens med mindst 85% sekvensidentitet med aminosyrese-
kvensen:**

**EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMVWRQAPGKGLEWVSSYIYPS
GGITFYADWKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVTTVD:
YWGQGTLVTYSS,**

og

(b) antistoffets lette kæde eller antigenbindende fragment deraf omfatter en aminosyresekvens med mindst 85% sekvensidentitet med aminosyresekvensen:

QSALTQPASVSGSPGQSITISCTGTSSDVGGNYVSWYQQHPGKAPKLMIYDVS
NRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTV

L.

5

6. Protein ifølge et hvilket som helst af kravene 1 til 5, hvor

(a) antistoffets tunge kæde eller det antigenbindende fragment deraf omfatter aminosyresekvensen:

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMVWRQAPGKGLEWYSSIYPS
GGITFYADWKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVITVD
YWGQGTLVTVSS.

10

og

(b) antistoffets lette kæde eller det antigenbindende fragment deraf omfatter aminosyresekvensen:

QSALTQPASVSGSPGQSITISCTGTSSDVGGNYVSWYQQHPGKAPKLMIYDVS
NRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTV

L.

15

7. Protein ifølge et hvilket som helst af kravene 1 til 6, hvor antistoffets tunge kæde omfatter en aminosyresekvens med mindst 85% sekvensidentitet med SEQ ID NO: 3.

20

8. Protein ifølge et hvilket som helst af kravene 1 til 7, hvor antistoffets lette kæde omfatter en aminosyresekvens med mindst 85% sekvensidentitet med SEQ ID NO: 1.

25

9. Nukleinsyre omfattende en første nukleotidsekvens, der koder for den humane TGF β RII, eller et fragment deraf og den variable region med tung kæde

ifølge et hvilket som helst af kravene 1-8 og en anden nukleotidsekvens, der koder for antistoffets variable region med let kæde ifølge et hvilket som helst af kravene 1-8.

5 **10.** Celle, der på den samme eller på forskellige nukleinsyrer omfatter en første nukleotidsekvens, der koder for et polypeptid, der omfatter (a) mindst et variabelt domæne af en tung kæde af et antistof, der binder humant PD-L1; og (b) human TGF β RII eller et opløseligt fragment deraf, der er i stand til at binde TGF β ,

10 hvor det variable domæne af den tunge kæde af antistoffet indbefatter en HVR-H1, HVR-H2 og HVR-H3 med aminosyresekvenserne af henholdsvis SYIMM, SIYPSGGITFYADTVKG og IKLGTVTTVDY; og

 en anden nukleotidsekvens, der koder for mindst et variabelt domæne af en let kæde af et antistof, som, når det kombineres med polypeptidet, danner et

15 antigenbindingssted, der binder PD-L1,

 hvor det variable domæne af den lette kæde af antistoffet indbefatter en HVR-L1, HVR-L2 og HVR-L3 med aminosyresekvenserne af henholdsvis TGTSSDVGGYNVVS, DVSNRPS og SSYTSSSTRV.

20 **11.** Fremgangsmåde til fremstilling af et protein omfattende a) TGF β RII eller et fragment deraf, der er i stand til at binde TGF β , og b) et antistof eller et antigenbindende fragment deraf, der binder humant protein Programmeret Dødsligand 1 (PD-L1), hvor fremgangsmåden omfatter opretholdelse af en celle ifølge krav 10 under betingelser, der tillader ekspression af proteinet, og

25 eventuelt yderligere omfattende høst af proteinet.

12. Protein ifølge krav 1 til anvendelse i terapi.

30 **13.** Farmaceutisk sammensætning omfattende en terapeutisk effektiv mængde af et protein ifølge krav 1.

14. Protein ifølge krav 1 til anvendelse i;

- (i) en fremgangsmåde til inhibering af tumorvækst hos en patient, hvilken fremgangsmåde omfatter at udsætte tumoren for proteinet; eller.
- (ii) en fremgangsmåde til behandling af cancer hos en patient, hvilken fremgangsmåde omfatter indgivelse af proteinet til cancerpatienten.

15. Protein til anvendelse ifølge krav 14, hvor fremgangsmåden yderligere omfatter at udsætte cancerpatienten for stråling og/eller indgive et kemoterapeutikum.

10

16. Protein til anvendelse ifølge krav 14 eller krav 15, hvor tumoren eller kræften er valgt fra gruppen, der består af kolorektal-, bryst-, ovarie-, pancreas-, mave-, prostata-, nyre-, livmoderhals-, myelom-, lymfom-, leukæmi-, skjoldbruskkirtel-, endometrie-, livmoder-, blære-, neuroendokrin-, hoved- og hals-, lever-, nasopharyngeal-, testikel-, småcellet lungekræft, ikke-småcellet lungekræft, melanom, basalcellet hudkræft, pladecellekræft, dermatofibrosarcoma protuberans, Merkelcellekarcinom, glioblastom, gliom, sarkom, mesotheliom og myelodysplastiske syndromer.

15

17. Protein ifølge krav 1, hvor proteinet blokerer interaktionen mellem human PD-L1 og den humane PD-1 receptor.

20

DRAWINGS

Drawing

FIG. 1A

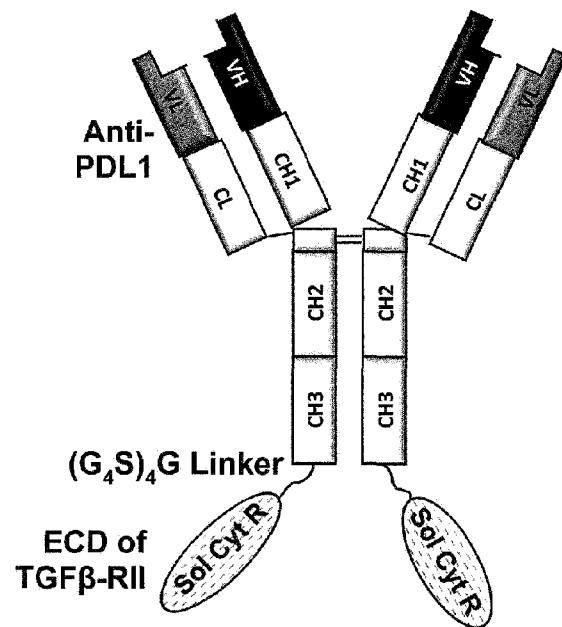


FIG. 1B

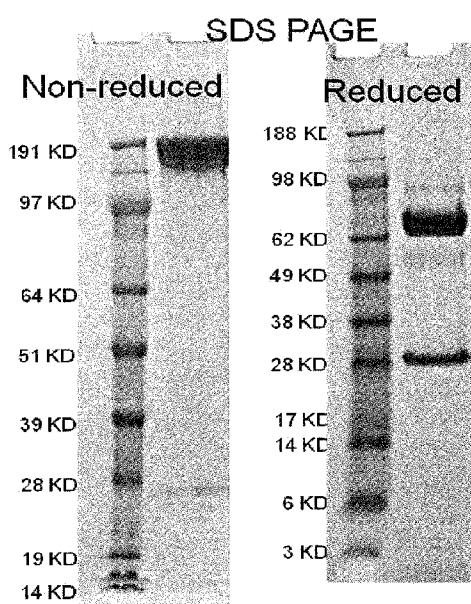
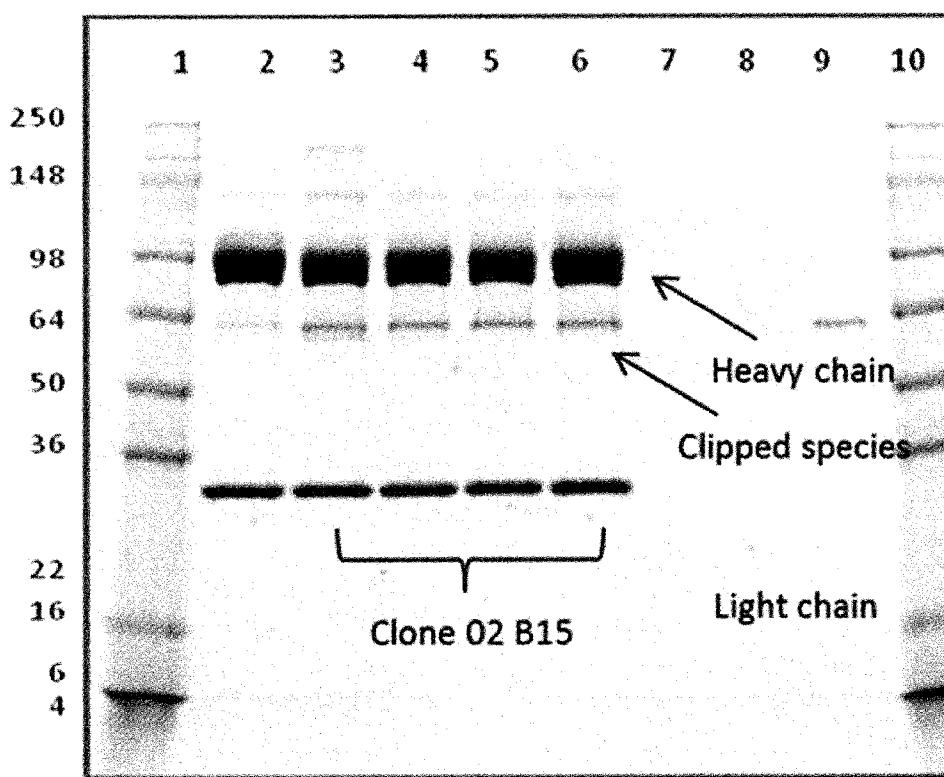



FIG. 2

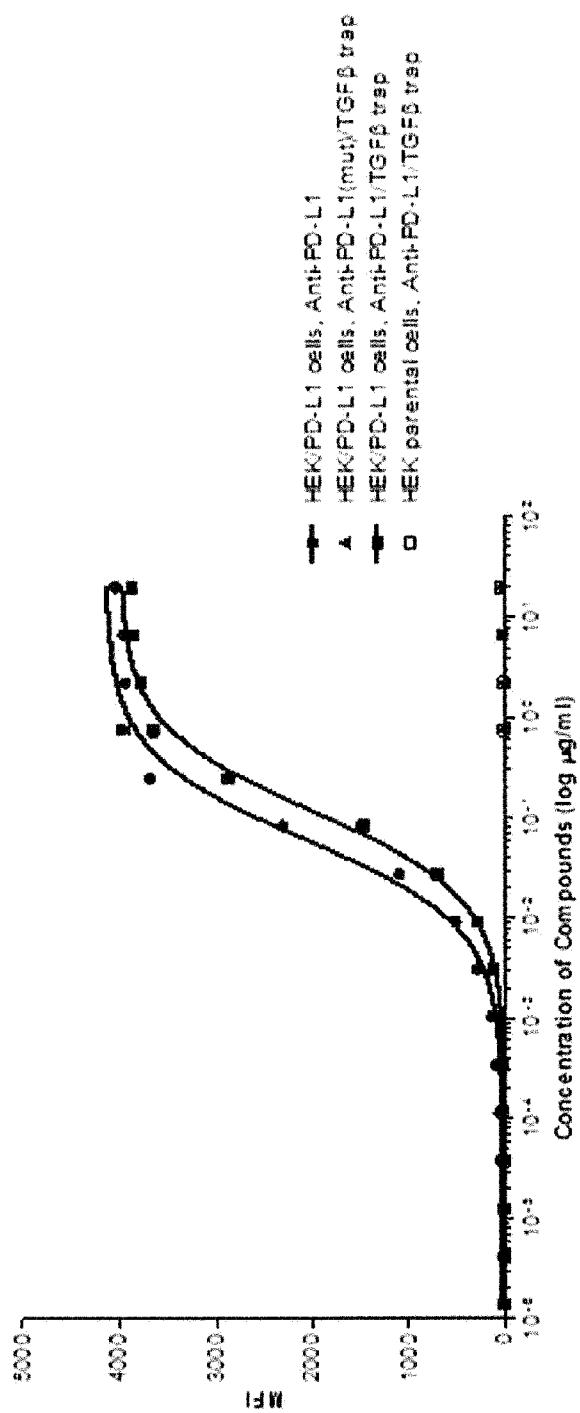
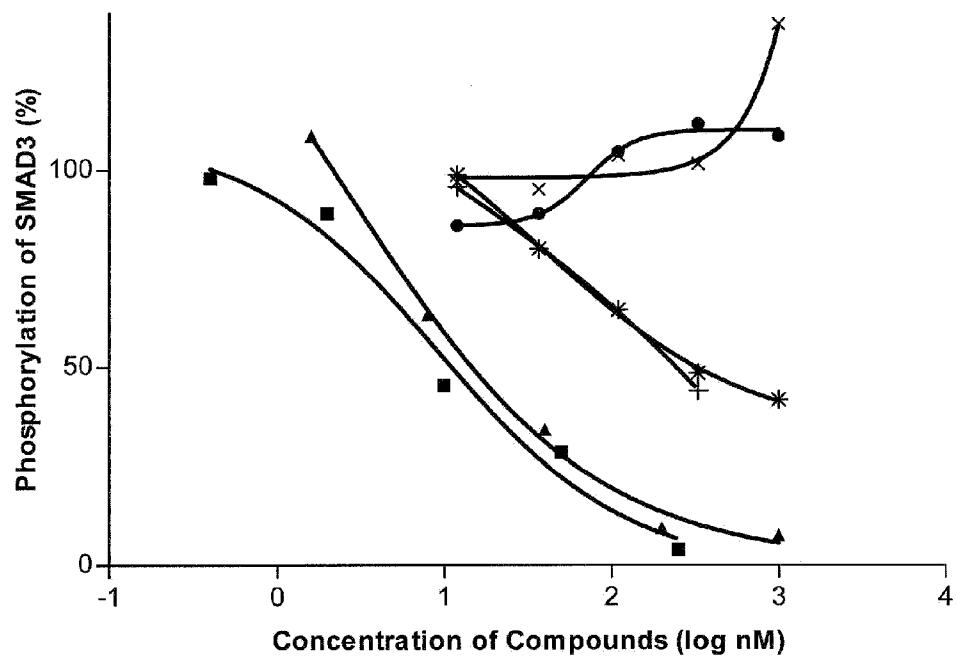



FIG. 3

FIG. 4

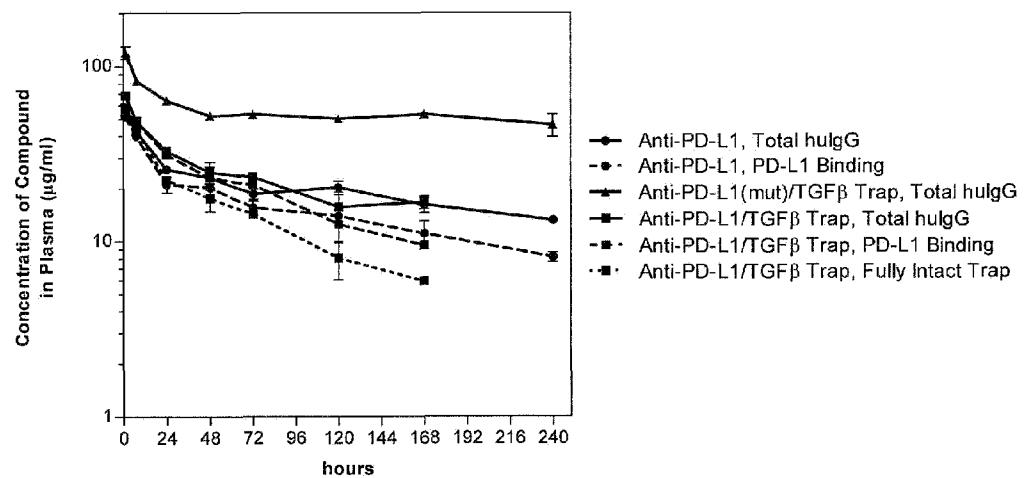
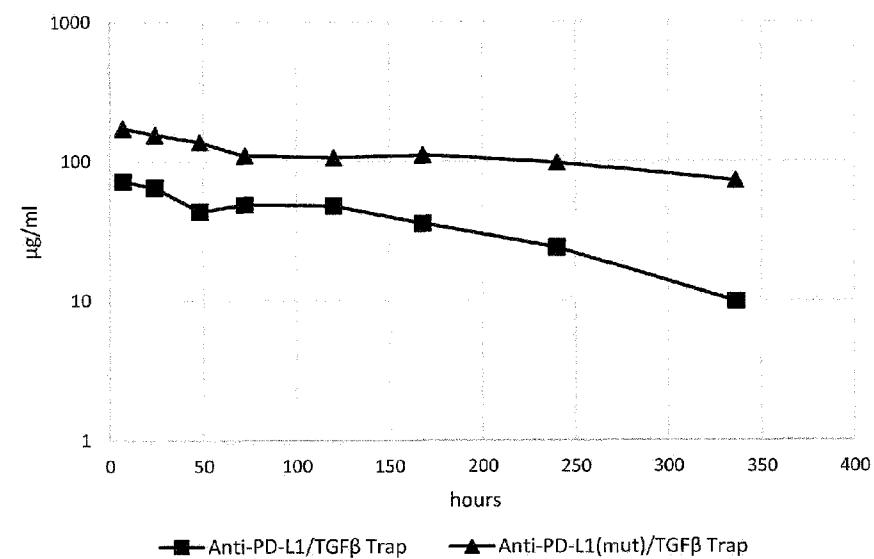


FIG. 5A**FIG. 5B**

FIG. 6A

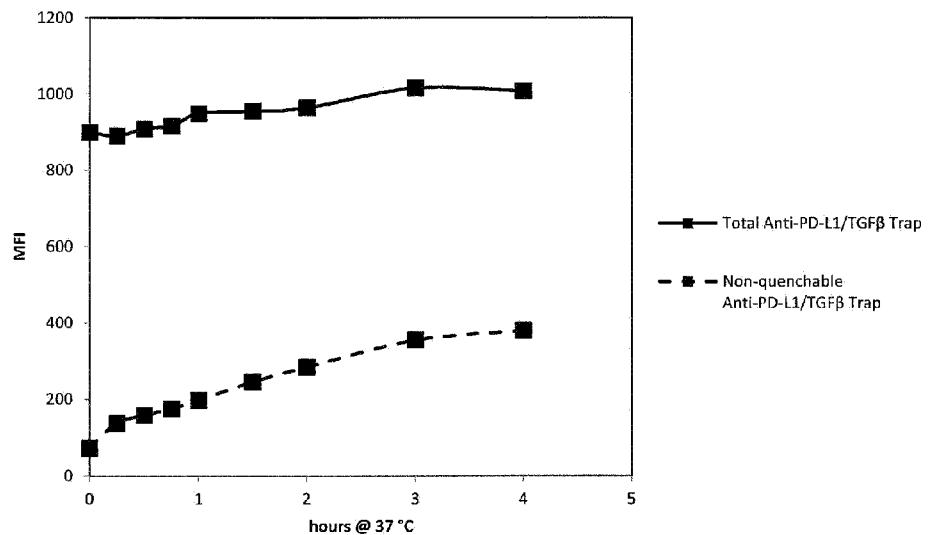


FIG. 6B

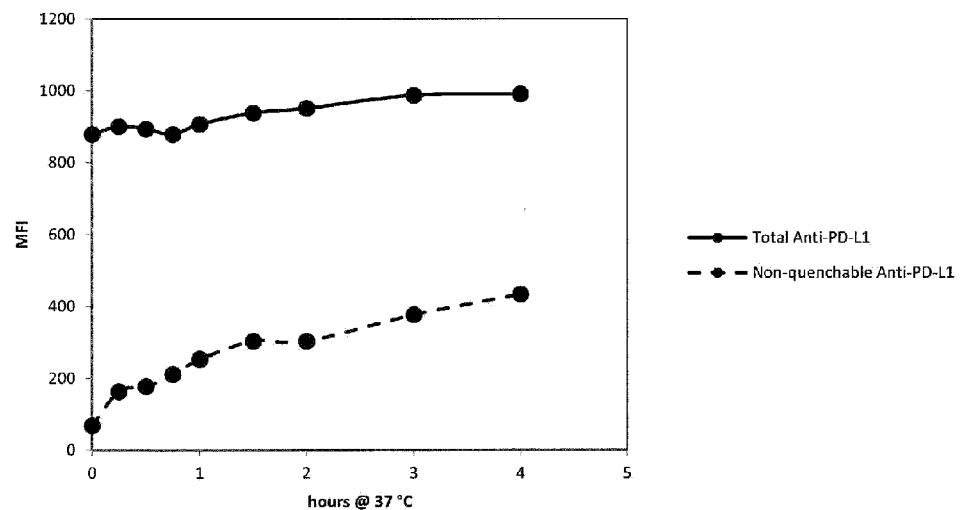


FIG. 6C

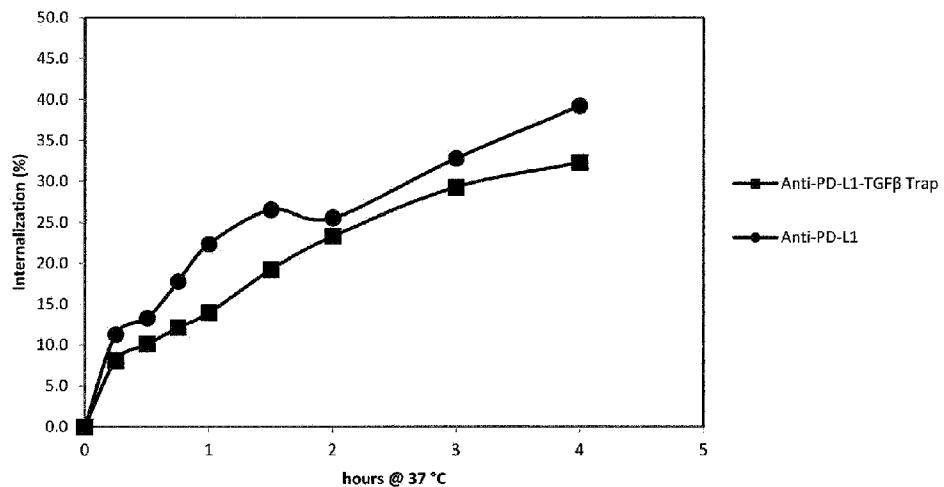
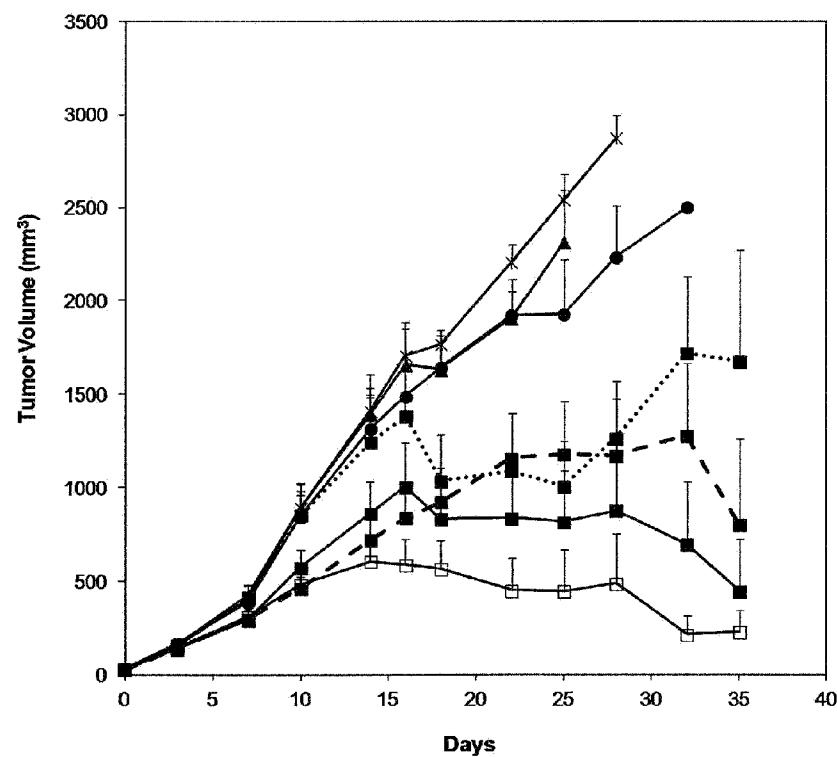



FIG. 7A

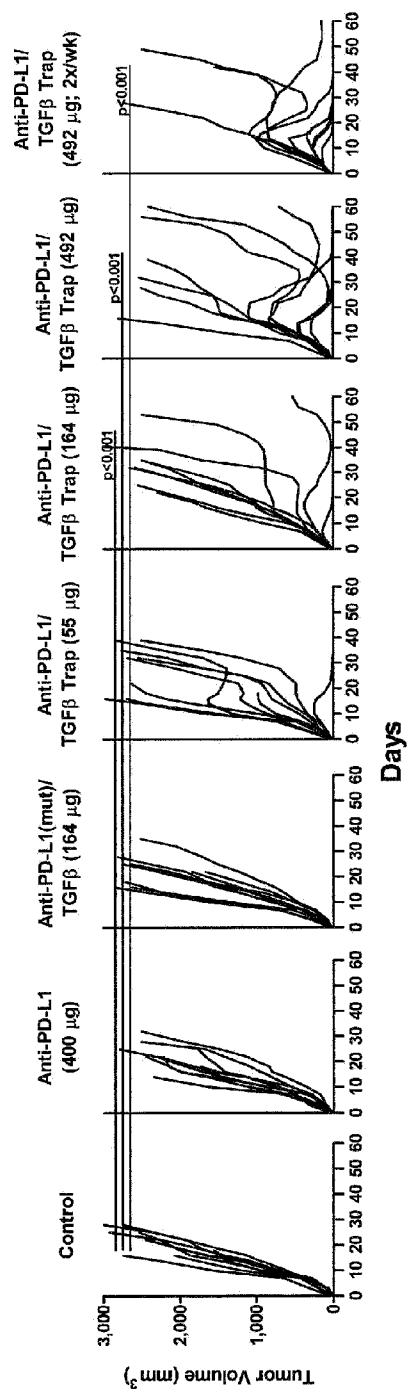


FIG. 7B

FIG. 7C

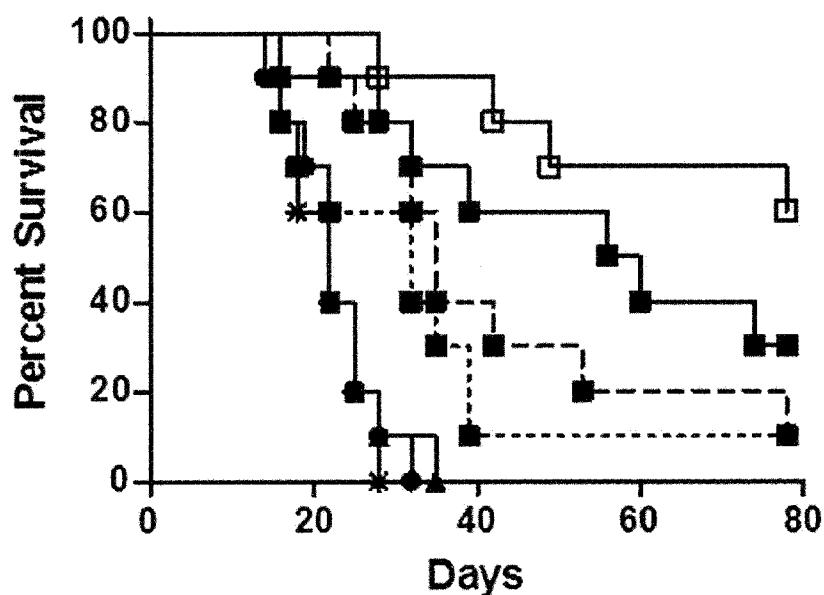


FIG. 8

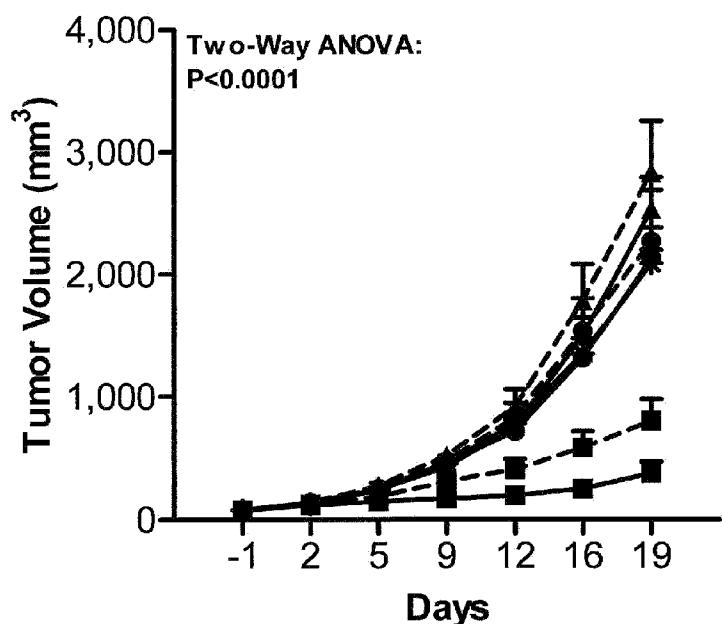


FIG. 9

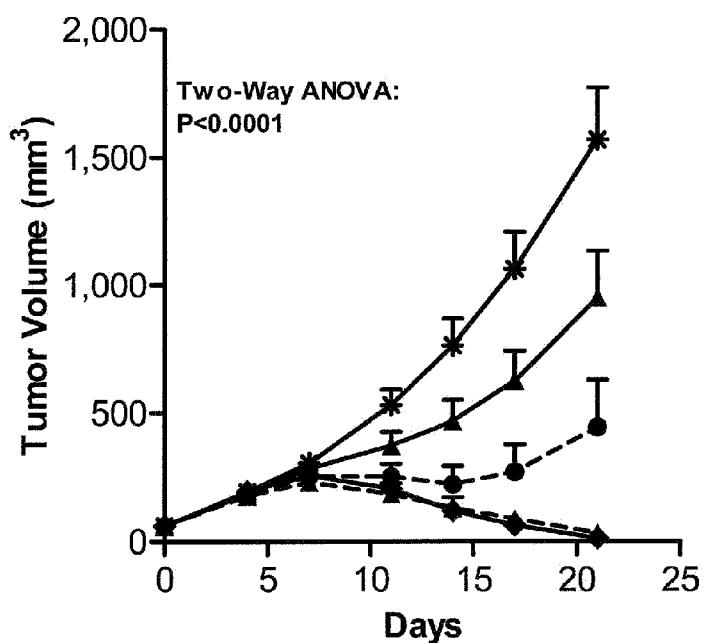


FIG. 10

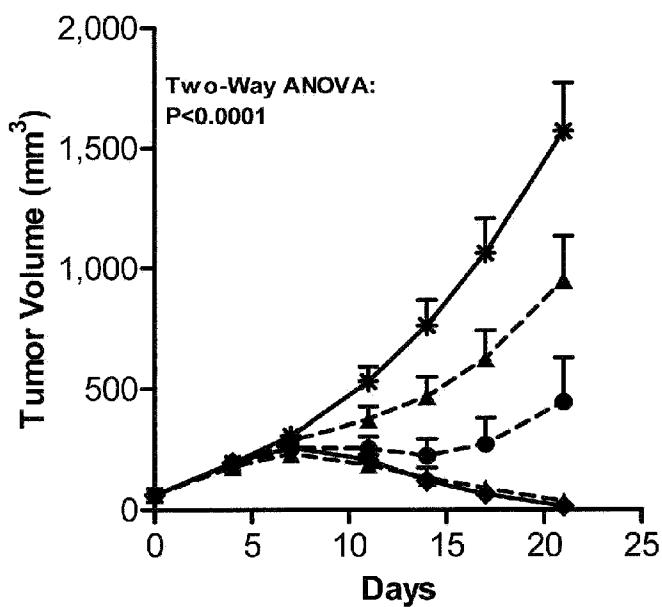


FIG. 11

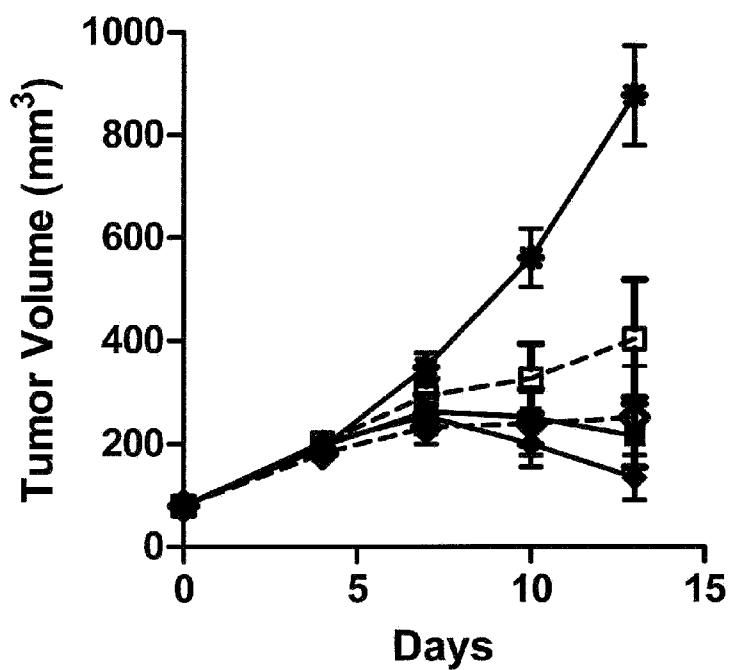


FIG. 12A

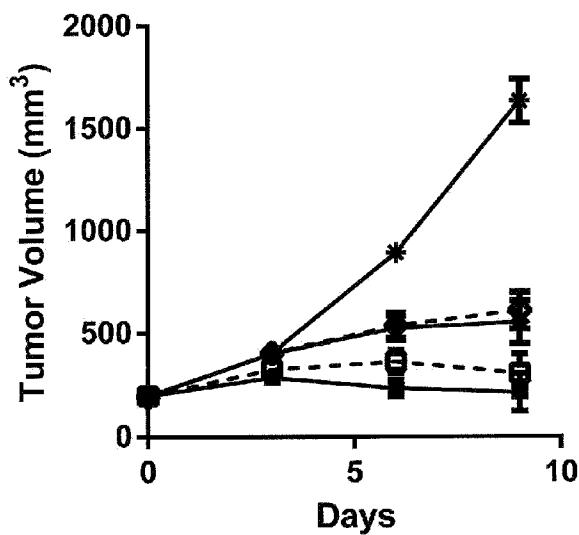


FIG. 12B

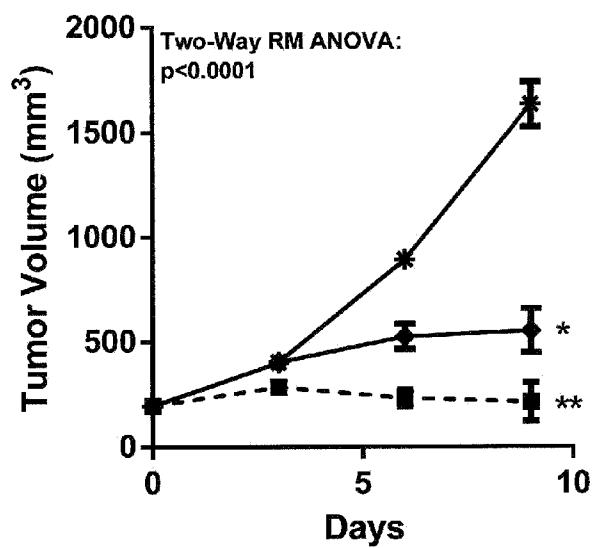


FIG. 12C

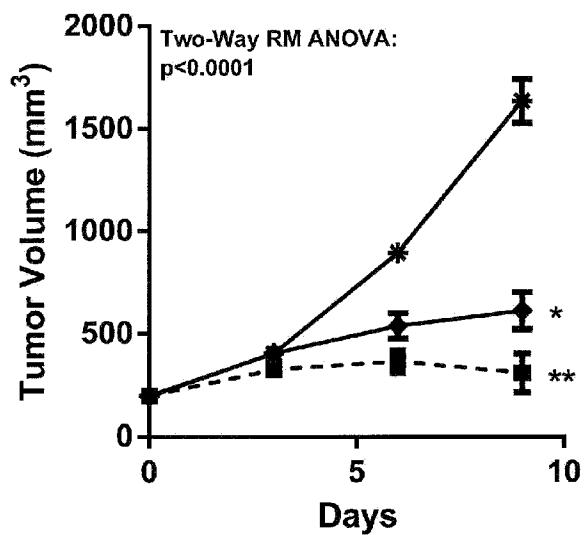


FIG. 13A

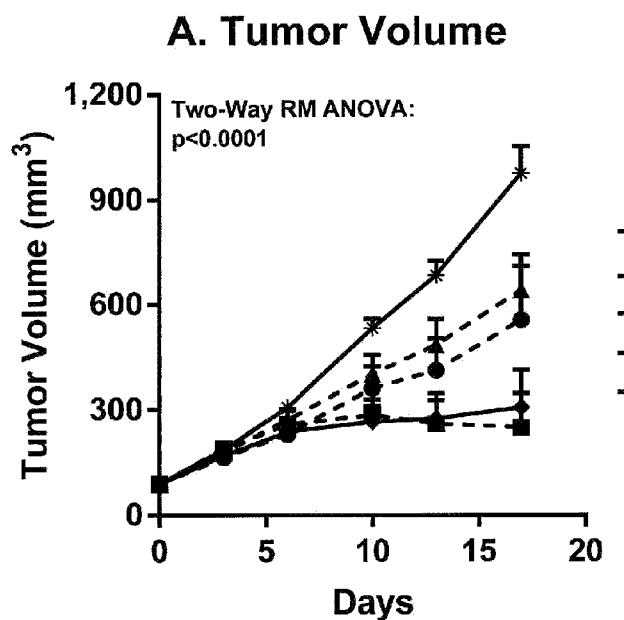


FIG. 13B

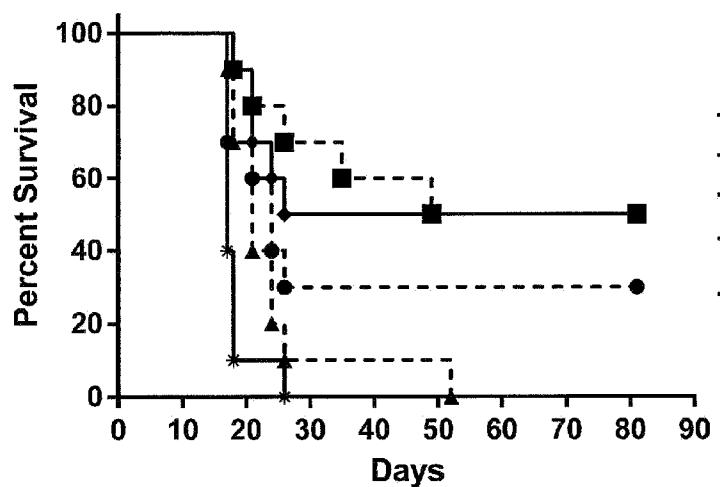

B. Survival

FIG. 14A

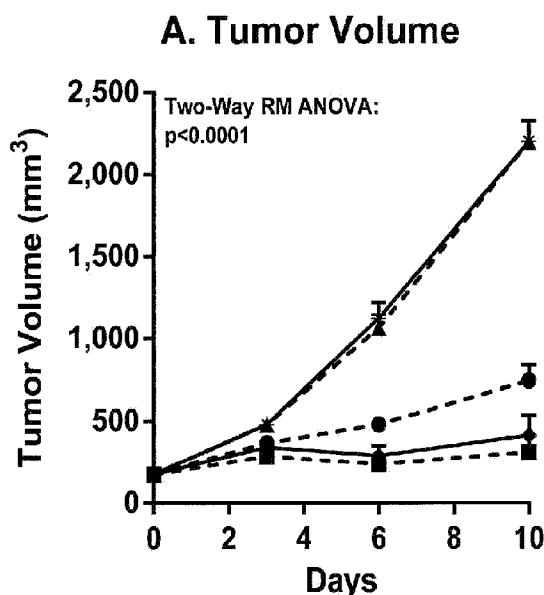


FIG. 14B

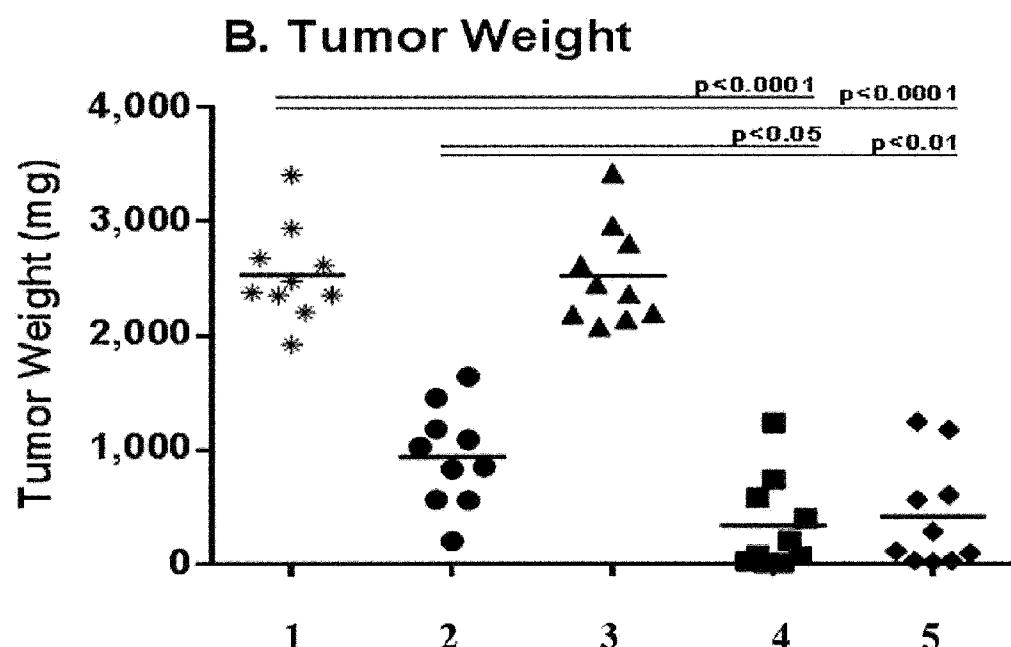


FIG. 15

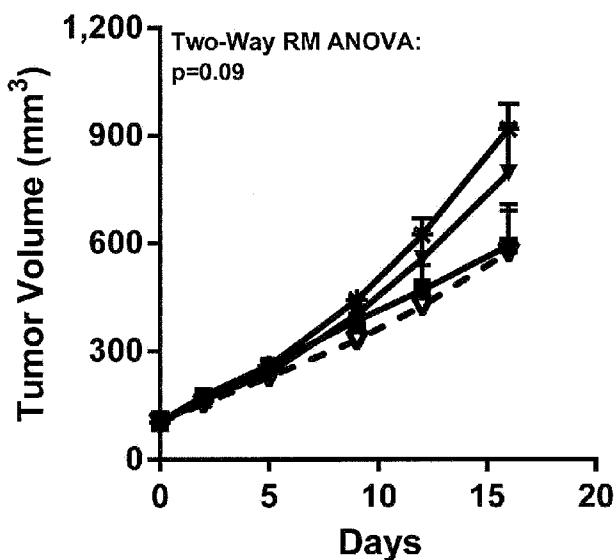


FIG. 16

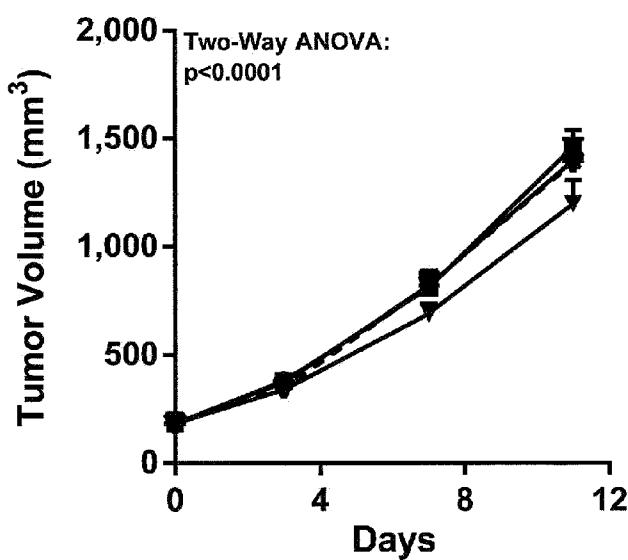
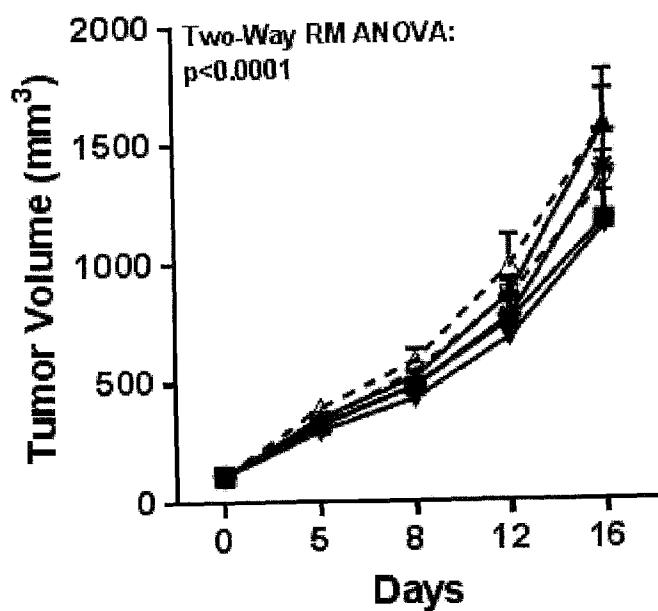
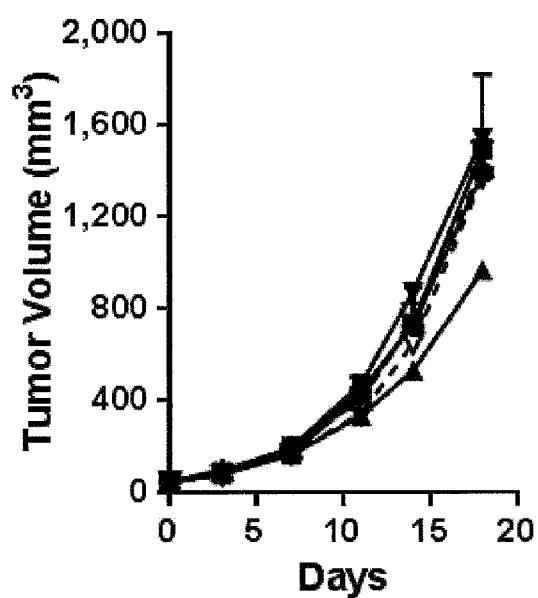
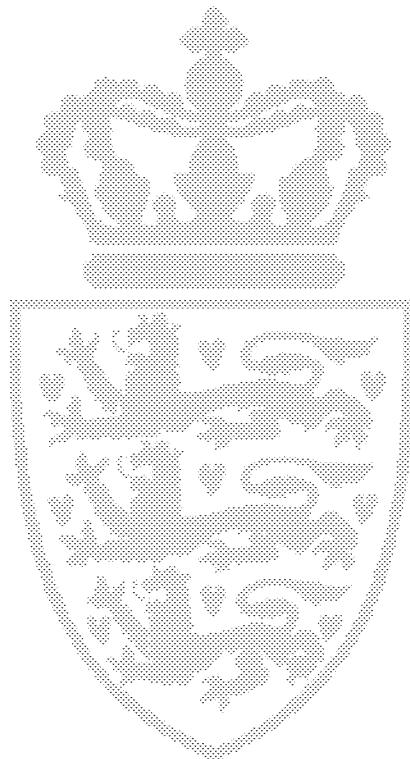


FIG. 17


FIG. 18

SEKVENSLISTE

Sekvenslisten er udeladt af skriftet og kan hentes fra det Europæiske Patent Register.

The Sequence Listing was omitted from the document and can be downloaded from the European Patent Register.

