发明名称
基于博弈论的大规模人群疏散最优逃生路线生成方法

摘要
本发明是为了在发生灾害时，模拟大规模人群疏散的过程中，计算出最优的疏散策略，并在此基础上对整个疏散过程中出现的拥挤现象，各个疏散路径的人群密度态势，关键路径人流情况进行分析统计，实现对人群疏散的最优策略的生成。本发明提供一种基于博弈论的大规模人群疏散路径的优化方法，根据灾害辐射区域范围，相距安全出口距离，逃生路径中安全措施个数，拥挤程度因素进行定量风险分析，定量风险分析采用蒙特卡洛模型，将评估的风险结果作为路径博弈的收益函数的输入参数，通过博弈论决定疏散路径的抉择，形成最优的疏散方案。
1. 基于博弈论的大规模人群疏散最优逃生路线生成系统, 应用采用传统的 Agent 运动模型, 结合蒙特卡洛模型评测风险, 应用博弈论解决各 Agent 拥堵冲突与路径选择问题, 通过对逃生疏散过程的模拟与分析, 产生全局的最优逃生方案。

所需设备 : 本发明采用 55 个阵列式监控摄像头 -SLP-ZS39160D,VGA6464 电脑 VGA 矩阵切换器, PC, 机, 海康硬盘录像机 DS-8016HS-S 一台, 以及用于连接 PC 和嵌入式设备的线路。摄像头布局 : 摄像头工作范围为长 30 米宽 6 米长区域, 如图 2 所示 ; 摄像头布置原则以覆盖全部走廊区域, 从正门开始布设, 如图 3 所示布置示意图, 图 3 为建筑的第一层楼布置, 其他楼层按这种原则布置, 一层共 11 个摄像头, 5 层楼共需 55 个摄像头。

本发明方法步骤如下:

(010) 部分, 视频监测具体步骤如下:

步骤 C011 : 根据摄像头拍摄的视频提取背景, 获取图像模板;

步骤 C012 : 设定时间阈值, 根据阈值法判定背景是否发生突变 ; 若背景发生突变则设置该帧图像为背景, 利用背景模型的自适应性将运动目标在背景初始化时造成的影响消除, 然后利用自适应背景更新算法, 跟踪背景细节;

步骤 C013 : 行人目标检测采用帧差法 (Frame difference) 确定行人目标;

步骤 C014 : 采用最大类间方差法形成行人的整体轮廓;

步骤 C015 : 采用模糊类形态学处理图像应用开运算, 其效果是消除细小物体, 在较细的连接点分离物体, 平滑较大学生的边界, 同时保持物体的面积不改变;

步骤 C016 : 采用聚类对粉状颗粒、分光、相似的行人, 经过聚类映射分割, 得到图像中的行人区域被分割出来, 以最小外接矩形框包围, 形成矩形目标块。在这些块中, 有包含单个行人的, 也有包含多个互相接触的行人的。多个行人相接触, 形成了图像中的合并 (merge) 问题, 利用块中目标像素点个数来估计其中所包含的人数, 在判别出多人块之后, 就要根据其面积和宽度, 来决定分割的子块个数;

步骤 C017 : 合并、分离处理, 合并、分离问题是采用摄像机垂直拍摄方式进行视频人数统计中的一个问题。能否较好的处理合并、分离问题, 是准确统计人数的关键, 首先, 在合并、分离情况出现时, 依靠多人块分割, 将含有多个目标块分割成只含有一个行人的子块, 带子块之间存在重叠, 然后, 在跟踪过程中, 根据子块重叠系数作为匹配特征, 区分出合并在一起的子块;

步骤 C018 : 行人数方法, 本方法分为两个统计方式 : 一个是统计当前场景中的行人总数, 另一个是统计通过计数线的人数。两个统计内容, 都要先依赖于统计区域的划分,采用双计数线划分统计区域, 在双线三区的基础上, 设立了释放区域;

(020) 部分, 初始化逃生配置, 具体步骤如下:

步骤 C021 : 开始, 加载三维场景, 并根据摄像头检测的人数自动初始化等数量 Agent;

步骤 C022 : 设置灾难类型, 灾害发生位置;

(030) 部分, 模拟处理过程, 具体步骤如下:

步骤 C031 : 计算各个路径的人群密度态势; 即人群疏散的过程中每个单位区域上流经的人数;

步骤 C032 : 采用 Dijkstra 算法计算出各个房间相距最近的安全出口的最短距离;

步骤 C033 : 计算各个房间人群经过 C032 计算的最短路径所需的时间, 速度为房间内人
员的平均速度；

步骤 C034：应用蒙特卡洛模型评估各安全出口的风险等级，评估因素包括：随时间变化人数的变化率 p_r，安全措施 (消火栓和灭火器) 级别 $m_s = $ 路径长度 / 安全措施个数；安全通道间隔级别 $d_s = $ 安全通道相距距离 / 安全通道个数；相距灾害距离 $d_r = m_s * d_s / d_s * p_r$；步骤 C035：应用博弈论决定逃生路径，其收益函数参考因素包括：各房间最短路径，各安全出口的风险等级，逃生路径灾害风险等级，人群密度态势分布，根据收益函数值，取贝叶斯纳什均衡点，决定各个 Agent 的逃生路线。

步骤 C036：当安全出口出现拥挤现象时，用博弈论计算部分拥挤人群通过其他安全出口疏散或在拥挤出口等待的收益函数，以此来决定选择哪种策略逃生，即原地等待或选择其他路径疏散。

步骤 C037：疏散逃生模拟结束，获取过程数据。

(040) 部分，分析处理过程，具体步骤如下：
步骤 C041：根据疏散过程数据，计算各个逃生出口人群疏散态势，即疏散人数；
步骤 C042：根据疏散过程数据，计算逃生失败 Agent 逃生路线；
步骤 C043：根据疏散过程数据，分析逃生失败 Agent 可成功逃路线；
步骤 C044：输出分析结果。
基于博弈论的大规模人群疏散最优逃生路线生成方法

技术领域
[0001] 本发明方法是在复杂场景下基于博弈论的大规模人群疏散逃生优化方法。在人群较为集中、拥堵现象十分严重的情况下，也可获得令人满意的优化程度。本方法可广泛应用于各种场景下人群疏散策略的最优问题。统计分析疏散中人群逃生路径和拥挤现象问题，为建筑设计方案评估提供依据，降低高密度人群的产生概率，结合不同群聚场所的建筑结构特点和人群构成性质，提供具有针对性的最优人群疏散路径导航，提高城市公共场所人群疏散效率。另外本方法摆脱地域、时间、客流量的限制，为消防、公安、医疗等部门提供真实快速的应急预案内容，提高应急响应与协作能力。

背景技术
[0002] 近年来人群疏散模拟技术日益成熟，比较成熟的疏散模拟如：社会力模型、流体动逻辑模型、元胞自动机模型和人员运动格子气模型。流体动力学模型能模拟疏散过程，对于人的自然属性模拟不够真实，其生成的疏散策略参考价值将大大折扣。社会力模型、元胞自动机模型和人员运动格子气模型能较真实的模拟人的行为和疏散过程，由局部最优来决定全局最优，所以产生的全局疏散策略很难达到最优。因此根据人员的自然属性进行真实模拟并可以生成全局与局部最优的疏散策略的方法是解决人群疏散问题的关键点。

发明内容
[0003] 本发明的目的是为了在发生灾害时，模拟大规模人群疏散的过程中，计算出最优的疏散策略，并在此基础上对整个疏散过程中出现的拥挤现象，各个疏散路径的人群密度态势，关键路径人流情况进行分析统计，实现对人群疏散的最优策略的生成。
[0004] 本发明提供一种基于博弈论的大规模人群疏散路径的优化方法，根据灾害辐射区域范围，相对安全出口距离，逃生路径包括的安全措施个数，拥挤程度因素进行定量风险分析，定量风险分析，采用蒙特卡洛算法，将评估的风险结果作为路径博弈的收益函数的输入参数，通过博弈论决定疏散路径的抉择。在疏散的过程中每一个逃生人员作为一个Agent处理，每一个Agent拥有自己的自然属性，如：速度，心理素质等。当Agent满足（相邻Agent速度差小于0.1m/s 并且目的地为一个出口）时，对符合条件的Agent进行合并，形成一个Agent簇，通过将Agent簇作为一个Agent个体对象处理来提高系统运行效率。
[0005] 在发生危险开始疏散的过程中，第一步是选择疏散路径，以房间为基本单位应用蒙特卡洛模型，对以下因素进行评估：每个房间的计算其到达所有安全出口（Exit）的最短路径排名 Pi,i ∈IN 为房间个数。再根据 Pi 计算相距火源的危险程度（危险的辐射范围、致命程度），根据房间内所有 Agent 的平均速度 S_a 完成每个最短路径所需时间 t_a, t_a, 时间后 Exit，的拥挤情况，Exit, 相邻疏散出口个数和距离，疏散路径上安全措施情况。蒙特卡洛模型的评估值作为博弈论的收益函数的输入参数，另外输入参数还包括疏散路径的人群密度态势（人数/单位区域），获取贝叶斯纳什均衡点。根据均衡点的数值确定疏散的路径。
[0006] 另外从宏观角度出发采用博弈论可以解决拥挤情况下的冲突问题，即设当前疏散
出口 (CurExit) 的相邻疏散出口 (NeiExit) 数为 N, 到达第 i 个 NeiExit 时间为 tni, i ∈ [1, ..., N], 第 i 个疏散出口的拥挤程度 GCrowdLevel (NeiExiti), 获得到 NeiExiti, i ∈ [1, ..., N], 疏散出口风险等级列表 GHzazardLevel (NeiExiti), tni 时刻 CurExit 的拥挤程度 GCrowdLevel (CurExit), 由以上因素通过蒙特卡洛模型获得收益函数的输入参数，应用博弈论获得贝叶斯纳什均衡点，确定解决拥挤情况的 solution（是否原地等待还是选择其他路径逃生）。

[0007] 所需设备：本发明采用 55 个阵列式监控摄像头 -SLP-ZS39160D、VGA6464 电脑 VGA 矩阵切换器、PC 机、海康硬盘录像机 DS-8016H5-S 一台，以及用于连接 PC 和嵌入式设备的线路。摄像头布局：摄像头工作范围为 30 米宽 6 米长区域，如图 2 所示；摄像头布置原则以覆盖全部走廊区域，以正门开始布设，如图 3 所示布置示意图，图 3 为建筑的第一层布
置，其他楼层按此原则布置，一般共 11 个摄像头，5 层楼共需 55 个摄像头。

[0008] 本发明方法步骤如下：

[0009] （010）部分，视频监控具体步骤如下：

[0010] 步骤（C011）：根据摄像头拍摄的视频提取背景，获取图像轮廓；

[0011] 步骤（C012）：设定时间阈值，根据阈值法判定背景是否发生变化；若背景发生变化则设置该帧图像为背景，利用背景模型的自适应性将运动目标在背景初始化后造成的影响消除；然后利用自适应背景更新算法，跟踪背景细节；

[0012] 步骤（C013）：行人目标检测采用帧差法（Frame difference）确定行人目标；

[0013] 步骤（C014）：采用最大类间方差法形成行人的整体轮廓；

[0014] 步骤（C015）：采用数学形态学处理图像应用开运算，其效果是消除细小物体、在较为纤细的连接点分离物体、平滑较大物体的边界，同时保持物体的面积不变；

[0015] 步骤（C016）：采用多个坐标映射分割法分割相连的行人，经过坐标映射分割，图像中的行人区域被分割出来，以最小外接矩形框包围，形成矩形目标块。在这些块中，有包含单个行人的，也有包含多个互相接触的行人的。多个行人相接触，形成了图像中的合并 (merge) 问题，利用块中目标像素点个数来估计其中所包含的人数，在判别出多人块之后，就要根据其面积和宽度，来决定分割的子块个数；

[0016] 步骤（C017）：合并、分离处理，合并、分离问题是采用摄像机垂直拍摄方式进行视频人数统计中的一个问题。能否较好的处理合并、分离问题，是准确统计人数的关键。首先，在合并、分离情况出现时，依靠多人块分割，将含有多人的目标块分割成只含有一个行
人的子块，且子块之间不存在重叠；然后，在跟踪过程中，根据子块重叠系数作为匹配特征，区分出合并在一起的子块；

[0017] 步骤（C018）：行人计数方法，本方法分为两个统计方式：一个是统计当前场景中
的行人总数，另一个是统计通过计数线的人数。两个统计内容，都要首先依赖于统计区域的划分，采用双计数线划分统计区域，在双线三区的基础上，设立了释放区域；

[0018] （020）部分，初始化逃生配置，具体步骤如下：

[0019] 步骤（C021）：开始，加载三维场景，并根据摄像头检测的人数自动初始化等数量 Agent；

[0020] 步骤（C022）：设备灾难类型、灾害发生位置；

[0021] （030）部分，模拟处理过程，具体步骤如下；
步骤 C031: 计算各个路径的人群密度态势，即人群疏散的过程中每个单位区域上
流经的人数；
步骤 C032: 采用 Dijkstra 算法计算出各个房间相距最近的安全出口的最短距
离；
步骤 C033: 计算各个房间人群经过 C032 计算的最短路径所需的时间，速度为房间
内人员的平均速度；
步骤 C034: 应用蒙特卡洛模型评估各安全出口的风险等级，评估因素包括：随时间
变化人数的变化率 p，安全措施（消防栓和灭火器）级别 m，为路径长度 / 安全措施
个数；安全通道间隔级别 d，安全通道相距距离 / 安全通道个数；相距灾害距离 d，Qs =
m*n*d/n*d*p；
步骤 C035: 应用博弈论决定逃生路径，其收益函数参考因素包括：各房间最短路
径，各安全出口的风险等级，逃生路径灾害风险等级，人群密度态势分布，根据收益函数值，
取贝叶斯纳什均衡点，决定各个 Agent 的逃生路线；
步骤 C036: 当安全事故出口出现拥挤现象时，用博弈论计算部分拥挤人群通过其他安
全出口疏散或在拥挤出口等待的收益函数，以此来决定选择哪种策略逃生，即原地等待或
选择其他路径疏散。
步骤 C037: 疏散逃生模拟结束，获取过程数据；
步骤 C038: （O4O）部分，分析处理过程，具体步骤如下：
步骤 C039: 计算疏散过程数据，计算各个逃生出口人群疏散态势，即疏散人数；
步骤 C040: 计算疏散过程数据，计算逃生失败 Agent 逃生路线；
步骤 C041: 计算疏散过程数据，分析逃生失败 Agent 可成功逃路线；
步骤 C042: 输出分析结果；
步骤 C043: 有益效果
本发明提出了一种基于博弈论的大规模人群疏散的优化方法，该方法的灵活性较
高，可对疏散的整个过程做到局部优化与全局优化的整合，达到最优的疏散效果，可以满足
对精度和效率的要求。本方法是利用蒙特卡洛模型分析出风险的程度，根据风险值应用博
弈论进行全局优化，当发生拥堵情况是本方法同样可以解决冲突问题，达到对疏散的局部
优化。另外疏散人群采用 Agent 模型可以真实模拟疏散的过程，使得生成策略具有实用
价值。本发明不仅解决全局优化与局部优化的冲突问题，同时提出具有高效率的疏散优化
算法。

附图说明
图 1 设备连接图（监控设备、矩阵切换器和控制主机）；
图 2 摄像头工作区域；
图 3 疏散楼层监控器布局；
图 4 帧差法阈值选择对比；
图 5 合并、分离情况示意；
图 6 合并、分离子块区分；
图 7 同行向行，分离、合并的实验结果；
具体实施方式:

[0042] 首先根据摄像头获取的视频提取背景,获取掩模,应用下面公式

$$R_{mn}(x, y) = \begin{cases} (1 - \alpha) \cdot B_m(x, y) + \alpha \cdot C_m(x, y) & \text{if } M_m(x, y) = 0; \\ B_m(x, y) & \text{otherwise} \end{cases}$$

[0044] 循环应用步骤 C012 检测背景变化,同时采用帧差法获取行人目标,应用下面公式,获得如图 1 所示效果。

$$R_k(x, y) = \begin{cases} 255, & \text{if } |f_k(x, y) - f_{k-1}(x, y)| > T \\ 0, & \text{else} \end{cases}$$

[0046] 根据图 4 应用步骤 C014 到步骤 C016 来确定要分割出多少个子块,执行步骤 C017 进行合并、分离操作,如图 5、6、7 所示效果,最后执行第一部分的步骤 C018,计算人数,并确定人员运动方向,计算每个摄像头监控区域的人数以及房间人数。

[0047] 运行系统模拟疏散处理,系统根据各个区域人数初始化 Agent,加载场景,设置灾害发生位置。首先以房间为基本单位,计算每个房间的逃生最短路径,然后根据每个逃生出口的疏散量和人数达到量,计算每个逃生出口拥堵的形成时间和拥堵消除时间,在产生拥堵时间范围内达到该疏散出口的所有房间或所有区域视为冲突,应用模型卡洛模型作为收益函数的输入参数,利用博弈论计算冲突房间或区域的逃生路线,这一步作为全局最优的逃生路线处理,开始人群疏散,每个 Agent 个体在逃生的过程中依据自身的属性进行疏散,当出现拥堵情况时,采用博弈论来解决冲突拥堵冲突问题,拥堵情况下博弈的参与者是路径,即是选择原地等待拥堵消除还是另选择其他路径。

[0048] 疏散结束,输出分析结果。
图 1

宽：6米；长30米

图 2
图 9