AU9184656

(12) PATENT ABRIDGMENT (11) Document No. AU-B-84656/91 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 637527

(54) Title ORTHO-SUBSTITUTED PHENYLACETAMIDES

(51) ⁵ C A C C C	International Patent Classification(s)							
$(51)^5$	C07C 251/48	A01N 037/18	A01N 043/08	A01N 043/40				
` '	A01N 043/42	A01N 043/58	A01N 043/78	A01N 053/00				
	C07C 235/34	C07C 245/08	C07C 259/06	C07Q 309/60				
	C07C 309/61	C07C 323/20	C07C 323/57	C07C 323/62				
	C07C 323/63	C07D 213/30	C07D 213/50	C07D 213/56				
	C07D 213/64	C07D 213/70	C07D 215/36	C07D 277/64				
	C07D 277/68	C07D 277/74	C07D 307/46	C07D 307/54				
	C07D 213/643	C07D 215/227						

(21) Application No.: 84656/91

(22) Application Date: 23.09.91

(30) Priority Data

(31) Number (32) Date (33) Country 4030038 22.09.90 DE GERMANY

(43) Publication Date: 26.03.92

(44) Publication Date of Accepted Application: 27.05.93

(71) Applicant(s)

BASF AKTIENGESELLSCHAFT

(72) Inventor(s)
SIEGBERT BRAND; EBERHARD AMMERMANN; GISELA LORENZ; HUBERT SAUTER; KLAUS
OBERDORF; UWE KARDORFF; CHRISTOPH KUENAST

(74) Attorney or Agent
WATERMARK PATENT & TRADEMARK ATTORNEYS, Locked Bag 5, HAWTHORN VIC 3122

(56) Prior Art Documents
AU 16268/92 C07C 235/34
AU 23464/88 C07C 235/34
US 4415743

(57) Claim

1. An ortho-substituted phenylacetamide of the formula ${\tt I}$

where

is hydrogen, C_1 - C_{18} -alkyl, C_3 - C_8 -cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C_1 - C_4 -alkyl groups, a partially or completely halogenated C_1 - C_4 -alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C_1 - C_4 -alkyl group at C_4 one C_1 - C_4 -alkoxy group, or is C_2 - C_{10} -alkenyl, C_2 - C_4 -alkoxyl

(10) 637527

which can carry a phenyl radical, or is C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl, phenyl, phenyl- C_1 - C_4 -alkyl or phenyl- C_2 - C_4 -alkenyl or phenoxy- C_1 - C_4 -alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in each case three of the following: C_1 - C_4 -alkyl, partially or completely halogenated C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, partially or completely halogenated C_2 - C_4 -alkenyl and C_1 - C_4 -alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthio radical, where the last two radicals in turn can have one or C_1 - C_4 -alkyl;

a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a

5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C₁-C₄-alkyl radicals or one phenyl radical;

- R^2 and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;
- R^4 and R^5 are each, independently of one another, hydrogen or C_1 - C_4 -alkyl or one of the two is C_1 - C_4 -alkoxy;
- is oxygen, sulfur, -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO-O-, C₁-C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl, C₁-C₄-alkoxy, phenyl or phenoxy, it being possible for the lase two radicals in turn to have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl,

(10) 637527

 C_2 - C_4 -alkenylene or C_2 - C_4 -alkynylene, oxy- $(C_1$ - C_4)-alkylene, thio- $(C_1$ - C_4)-alkylene or C_1 - C_4 -alkyleneoxy or carbonyl- $(C_1$ - C_4)-alkylene or C_1 - C_4 -alkylene-carbonyl;

W is C_1-C_4 -alkoxyimino, C_1-C_4 -alkoxymethylene or C_1-C_4 -alkylthiomethylene,

excepting compounds where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^3 are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene.

AUSTRALIA

Patents Act 1990

ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT

Application	Number:
	Lodged:

Invention Title:

ORTHO-SUBSTITUTED PHENYLACETAMIDES

The following statement is a full description of this invention, including the best method of performing it known to :- us

Abstract of the Disclosure: Ortho-substituted phenyl-acetamides I

$$R1-Y$$
 $R2, R3$
 $C=W$
 $CO-N-R4$
 $R5$
(I)

 $(R^1 = H, alkyl, cycloalkyl, alkenyl, alkynyl, phenyl$ alkoxyalkyl, alkoxycarbonyl, alkynyl, phenoxyalkyl, phenylalkyl, phenylalkenyl or 6-membered heterocycle with 1-3 hetero atoms to which a benzene ring or a 5- or 6-membered heterocycle can be fused; R^2 and R^3 = H, CN, halogen, alkyl, alkoxy; R_4 and $R^5 = H$, alkyl and R^4 or $R^5 = alkoxy$; Y = 0, S_1 , SO_2 , N=N, O-CO, CO-O, CO-O-CH2, alkylene or haloalkylene, alkenylene, alkynylene, oxy- alkylene, thio-alkylene, alkyleneoxy, carbonylalkylene or alkylenecarbonyl, W = alkoxyimino, alkoxymethylene or alkylthiomethylene), excepting compounds where R1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R² to R⁵ are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene, are suitable as fungicides and for controlling pests.

Ortho-substituted phenylacetamides

The present invention relates to novel orthosubstituted phenylacetamides of the formula I

$$R1-Y \longrightarrow R2, R3$$

$$C=W$$

$$CO-N-R4$$

$$R5$$
(I)

5 where

10

15

25

 R^1 is hydrogen, C₁-C₁₈-alkyl, C₃-C₈-cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C1-C4-alkyl groups, a partially or completely halogenated C1-C4-alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C1-C4-alkyl group and/or one C_1-C_4 -alkoxy group, or is C_2-C_{10} -alkenyl, C_2-C_4 -alkynyl which can carry a phenyl radical, or is C1-C4-alkoxy-C,-C4-alkyl, C1-C4-alkoxycarbonyl, phenyl, phenyl-C₁-C₄-alkyl or phenyl-C₂-C₄-alkenyl or phenoxy-C₁-C₄alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in each case three of the following: C1-C4-alkyl, partially or completely halogenated C1-C4-alkyl, C2-C4-alkenyl, partially or completely halogenated C_2-C_4 -alkenyl and C_1-C_4 -alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthio radical, where the last two radicals in turn can have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl;

a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a .5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C_1 - C_4 -alkyl radicals or one phenyl radical; and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_2 - C_4 -alkoxy;

 R^4 and R^5 are each, independently of one another, hydrogen or C_1 - C_4 -alkyl or one of the two is C_1 - C_4 -alkoxy;

5

10

15

20

25

30

35

 R^2

is oxygen, sulfur, -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO-O- C₁-C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl, C₁-C₄-alkoxy, phenyl or phenoxy, it being possible for the last two radicals in turn to have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl,

 C_2-C_4 -alkenylene or C_2-C_4 -alkynylene, oxy- (C_1-C_4) -alkylene, thio- (C_1-C_4) -alkylene or C_1-C_4 -alkyleneoxy or carbonyl- (C_1-C_4) -alkylene or C_1-C_4 -alkylene-carbonyl;

W is C_1-C_4 -alkoxyimino, C_1-C_4 -alkoxymethylene or C_1-C_4 -alkylthiomethylene,

excepting compounds where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^3 are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene.

The present invention also relates to processes for preparing these compounds, to their use as fungicides and to their use as insecticides, nematicides and acaricides and to fungicidal agents and agents for controlling pests which contain these compounds as active substances.

EP-A 310 954 discloses, inter alia, fungicidal ortho-substituted phenylacetamides of the type of

compounds I, and their phenylacetonitrile precursors, where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^5 are each hydrogen, Y is carboxymethylene and W is methoxymethylene or methylthiomethylene. European patent 398 692 discloses similar compounds.

It is an object of the present invention to find novel fungicidal ortho-substituted phenylacetic acid derivatives and novel insecticidal, acaricidal and nematicidal active ingredients.

We have found that this object is achieved by the ortho-substituted phenylacetamides of the formula I defined above.

The specific meanings of the substituents in the novel compounds I are as follows: \mathbb{R}^1

- hydrogen;

5

10

15

20

30

.*:**: 35

- branched or unbranched C₁-C₁₈-alkyl such as methyl, ethyl, n-propyl, isopropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 3-methylbutyl, n-pentyl, n-hexyl, n-heptyl, 2,6-dimethylheptyl, n-octyl, n-nonyl, n-decyl, n-pentadecyl, n-heptadecyl and n-octadecyl, preferably C₁-C₁₀-alkyl;
- C₃-C₈-cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl, each of which can have from one to three substituents selected from a group of 3 halogen atoms such as fluorine, chlorine, bromine and iodine, especially fluorine and chlorine, 3 C₁-C₄-alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, and tert-butyl, partially or completely halogenated C₁-C₄-alkenyl such as 2,2-dichloroethenyl, and phenyl which can carry one or two halogen atoms as mentioned above, especially fluorine and chlorine, and/or one C₁-C₄-alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl and tert-butyl and/or one C₁-C₄-alkoxy group such as methoxy, ethoxy, n-propoxy,

isopropoxy, n-butoxy and tert-butoxy; cyclopropyl, 1-methylcyclopropyl, 2,2-dichlorocyclopropyl, 1-(2,2-dichlorovinyl)cyclopropyl, 1-phenylcyclopropyl, 1-(p-fluorophenyl)cyclopropyl, cyclohexyl and 1-methylcyclohexyl are preferred;

- C₂-C₁₀-alkenyl such as vinyl, allyl, 1-propenyl, 2-propenyl, 2-methylpropenyl, 2-butenyl, 1-methylpropenyl, 3-methyl-2-butenyl, 1,3-pentadienyl, 2,6-dimethyl-5-heptenyl and 2,6-dimethyl-1,5-heptadienyl;
- 10 C₂-C₄-alkynyl such as ethynyl and 2-propynyl, which can carry a phenyl radical, eg. 2-phenylethynyl;
 - C₁-C₄-alkoxy-C₁-C₄-alkyl such as methoxymethyl, ethoxymethyl, n-propoxymethyl, isopropoxymethyl, n-butoxymethyl, tert-butoxymethyl, 1-methoxyethyl, 2-methoxyethyl, 1-ethoxyethyl, 2-ethoxyethyl and 2-n-propoxyethyl;
 - C₁-C₄-alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl and tert-butoxycarbonyl, preferably methoxycarbonyl;
 - phenyl, phenyl-C₁-C₄-alkyl such as benzyl, phenethyl, 3-phenyl-n-propyl and 4-phenyl-n-butyl, phenyl-C₂-C₄-alkenyl such styryl and 2-phenyl-2-propenyl or phenoxy-C₁-C₄-alkyl such as phenoxymethyl, 2-phenoxyethyl, 3-phenoxypropyl and 4-phenoxybutyl, it being possible for each of the said groups to carry on the phenyl ring a total of from one to five radicals, in particular:
 - one or two nitro groups,

5

15

20

- one or two cyano groups,
- up to 5 halogen atoms as mentioned above, especially fluorine and chlorine,
- up to 3 C₁-C₄-alkyl groups as mentioned above,
- up to 3 partially or completely halogenated C₁-C₄-alkyl groups such as fluoromethyl, chloromethyl, trifluoromethyl, trichloromethyl, dichlorofluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl,

2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoro-ethyl, 2,2,2-trichloroethyl and pentafluoroethyl, especially trifluoromethyl,

- up to 3 C₂-C₄-alkenyl groups such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl and 2-methyl-2-propenyl, especially ethenyl and 2-propenyl,
- up to 3 partially or completely halogenated C_2 - C_4 -alkenyl groups such as 2-fluoroethenyl, 2-chloroethenyl, trifluoroethenyl, trichloroethenyl and 2-chloro-2-propenyl and
- up to 3 C₁-C₄-alkoxy groups such as methoxy, ethoxy,
 n-propoxy, isopropoxy, n-butoxy and tert-butoxy,
- phenyl, benzyl, phenoxy, benzyloxy or phenylthio, each of which in turn can have one or two of the following substituents: cyano, halogen as mentioned above, especially fluorine and chlorine, or C₁-C₄alkyl as mentioned above;

phenyl, 2-nitrophenyl, 4-nitrophenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2-bromophenyl, 3-bromophenyl, 4-bromophenyl, 2-iodophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, 2,6-dichlorophenyl, 2,3,4-trichlorophenyl, 2,3,5-trichlorophenyl, 2,3,6-trichlorophenyl, 3,4,5-trichlorophenyl, pentafluorophenyl, pentachlorophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 3-isopropylphenyl, 4-isopropylphenyl, 3-tert-butylphenyl, 4-tert-butylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 4-tert-butyl-2-methylphenyl, 3,5-diethylphenyl, 2,3,5-trimethylphenyl, 2,4,6-trimethylphenyl, 4-cyclohexylphenyl, 3-phenoxyphenyl, 4-phenoxyphenyl, 4-phenylthiophenyl, 3-benzyloxyphenyl, 4-benzyloxyphenyl, 2-trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoro-

20

15

5

10

.: .: 25

30

.... 35

methylphenyl, 2- Moromethylphenyl, 3-chloromethylphenyl, 4-chloromethylphenyl, benzyl, 4-chlorobenzyl, phenethyl, 4-chlorophenethyl, styryl, 4-chlorostyryl, phenoxy, 2-chlorophenoxy, 3-chlorophenoxy, 4-chlorophenoxy, 2-methylphenoxy, 3-methylphenoxy, 4-methylphenoxy, 2-trifluoromethylphenoxy, 3-trifluoromethylphenoxy, 4-trifluoromethylphenoxy, phenoxymethyl and 2-phenoxyethyl are preferred;

5

10

15

20

30

- a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a 5- or 6-membered heteroaromatic ring with a nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, for example 2-pyrrolyl, 3-pyrrolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-benzoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, benzothiazol-2-yl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-imidazolyl, 4-imidazolyl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-1,3,4-oxadiazol-2-yl, 1,3,4-thiadiazol-2-yl, 1,2,4-triazol-3-yl, 1,3,4-triazol-2-yl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidyl, 4-pyrimidyl, 5-pyrimidyl, 2-pyrazinyl, 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl,

it being possible for the heterocycles to carry a halogen atom as mentioned above, especially fluorine and chlorine, one or two C₁-C₄-alkyl groups as mentioned above, especially methyl, or a phenyl radical, for example 5-chlorobenzothiazol-2-yl, 6-chloro-2-pyridyl, 6-methyl-2-pyridyl, 6-ethyl-2-pyridyl, 6-n-propyl-2-pyridyl, 6-isopropyl-2-pyridyl, 6-n-butyl-2-pyridyl, 6-sec-butyl-2-pyridyl and 6-tert-butyl-2-pyridyl, 6-phenyl-2-pyridyl and 4,8-dimethyl-2-quinolyl;

halophenyl, C_1 - C_4 -alkylphenyl, di- $(C_1$ - C_4)-alkylphenyl and benzothiazol-2-yl are particularly preferred; R^2 , R^3

- hydrogen, cyano, halogen as mentioned above, especially fluorine and chlorine,
 - branched or unbranched C₁-C₄-alkyl as mentioned above, specially methyl, ethyl and isopropyl;
 - C₁-C₄-alkoxy as mentioned above, especially methoxy; hydrogen is particularly preferred;
- $10 R^4, R^5$

5

15

20

25

30

- hydrogen,
- branched or unbranched C₁-C₄-alkyl as mentioned above, especially methyl, ethyl, n-propyl and n-butyl;
- one of the two substituents is C₁-C₄-alkoxy as mentioned above, especially methoxy;

Y

- oxygen or sulfur;
- --SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO-Opreferably -O-CO- and -CO-O-
- C₁-C₄-alkylene which can be partially or completely halogenated, especially fluorinated or chlorinated, and which can also carry one of the following: cyano, nitro, C₁-C₄-alkyl as mentioned above, partially or completely halogenated C₁-C₄-alkyl as mentioned above, C₂-C₄-alkenyl as mentioned above, partially or completely halogenated C₂-C₄-alkenyl as mentioned above, C₁-C₄-alkoxy as mentioned above, phenyl or phenoxy, it being possible for the latter two radicals in turn to have one or two of the following substituents: cyano, halogen as mentioned above, especially fluorine and chlorine, or C₁-C₄-alkyl as mentioned above, especially methyl; methylene or ethylene is preferred;
 - C₂-C₄-alkenylene such as ethenylene, 2-propenylene and 2-butenylene, preferably ethenylene;
- 35 C₂-C₄-akynylene such as ethynylene, 2-propynylene and 2-tutynylene, preferably ethynylene;
 - oxy-(C₁-C₁)-alkylene such as oxymethylene, oxyethylene,

(1.5 %)

- oxy-n-propylene and oxy-n-butylene, preferably
 oxymethylene;
- thio-(C₁-C₄)-alkylene such as thiomethylene, thioethylene, thio-n-propylene and thio-n-butylene, preferably thiomethylene;
- C₁-C₄-alkyleneoxy such as methyleneoxy, ethyleneoxy, n-propyleneoxy and n-butyleneoxy, preferably methyleneoxy;
- carbonyl-(C₁-C₄)-alkylene such as carbonylmethylene, carbonylethylene, carbonyl-n-propylene and carbonyln-butylene, preferably carbonylmethylene;
 - C₁-C₄-alkylenecarbonyl such as methylenecarbonyl, ethylenecarbonyl, n-propylenecarbonyl and n-butylenecarbonyl, preferably methylenecarbonyl;
- carbonyloxy-(C₁-C₄)-alkylene such as carbonyloxymethylene, carbonyloxyethylene, carbonyloxy-n-propylene and carbonyloxy-n-butylene, preferably carbonyloxymethylene;

W

5

10

30

- 20 C₁-C₄-alkoxyimino such as methoxyimino, ethoxyimino, n-propoxyimino, isopropoxyimino, n-butoxyimino, secbutoxyimino and tert-butoxyimino, preferably methoxyimino;
 - C₁-C₄-alkoxymethylene such as methoxymethylene, ethoxymethylene, n-propoxymethylene, isopropoxymethylene, n-butoxymethylene, sec-butoxymethylene and tert-butoxymethylene, preferably methoxymethylene;
 - C₁-C₄-alkylthiomethylene such as methylthiomethylene, ethylthiomethylene, n-propylthiomethylene, isopropylthiomethylene, n-butylthiomethylene, sec-butylthiomethylene and tert-butylthiomethylene, preferably methylthiomethylene;

C1-C1-alkoxyimino is preferred.

Particularly suitable ortho-substituted phenylacetamides I are shown in Table 1, with compounds with R^2 and R^3 each being hydrogen, R^4 being methyl, R^5 being hydrogen and W being methoxymino or methoxymethylene

being particularly preferred. Very particularly suitable are 2-methoxyimino-2-[2-(o-methylphenoxymethyl)phenyl]-acetic acid N-methylamide and 2-methoxyimino-2-[2-(o-methylphenoxymethyl)phenyl] acetic acid N-methoxy-amide.

5

10

15

Preparation of compounds I may result in E/Z isomer mixtures where the two isomers differ by the alkoxy or alky thio of the substituent W being cis or trans to the amide moiety. If required, the isomers can be separated by conventional methods, eg. by crystallization or chromatography. Compounds with the E configuration (alkoxy or alkylthio of the substituent W trans to the amide moiety) are particularly preferred.

The ortho-substituted phenylacetamides I can be obtained in a variety of ways, preferably by one of the following methods:

a) reaction of phenylacetic acid derivatives II with amines III

L is halogen, especially chlorine and bromine, or C_1 - C_4 -alkoxy, especially methoxy.

Preparation of ortho-substituted phenylacetamides I where R^4 or R^5 is C_1+C_4 -alkoxy preferably starts from a phenylacetyl chloride II (L = Cl).

The reaction is normally carried out by conventional methods (eg. Organikum, 16th edition 1985, pages 409-412) in an inert solvent or diluent, advantageously in the presence of a base.

Particularly suitable solvents or diluents are chlorohydrocarbons such as dichloromethane, ethers such

as dioxane, and alcohols such as methanol and ethanol.

Examples of suitable bases are alkali metal hydroxides such as sodium and potassium hydroxide, alkali metal carbonates such as sodium and potassium carbonate, alkali metal alcoholates such as sodium methylate and sodium ethylate, especially tertiary amines such as triethylamine and heteroaromatic amines such as pyridine and 4-dimethylaminopyridine. However, it is also possible to use the amine III itself as base, for complete reaction in not less than the stoichiometric amount based on II.

All the starting compounds are expediently employed in approximately the stoichiometric ratio, but in some cases an excess of one component, of up to about 10 mol%, may be advisable.

If the amine III is used as base, it is present in a larger excess.

The reaction is generally carried out at from 0 to 120°C, in particular at the boiling point of the solvent.

If L is halogen, the reaction can also be carried out in a 2-phase system with phase-transfer catalysis. It is possible and advantageous to use for this mixture of a chlorohydrocarbon such as methylene chloride, aqueous alkali, eg. sodium hydroxide solution, and a phase-transfer catalyst such as tetra-n-butylammonium hydroxide. In this case, the reaction is carried out at, for example, from 10°C to the boiling point of one of the components of the solvent mixture.

The reaction is normally carried out under atmospheric pressure. An increase or reduction in the pressure is possible but generally has no advantages.

Phenylacetic acid derivatives II where L is halogen are known or can be prepared by known processes (eg. Organikum, 16th edition 1985, pages 415, 622 and 423).

The phenylacetic acid derivatives II where L is

20

5

10

15

. 25

30

.....35

 C_1-C_4 -alkoxy are disclosed in EP-A 178 826 and EP-A 226 917 (X = =CH-O-alkyl), EP-A 244 077 (X = =CH-S-alkyl) and EP-A 253 213 and EP-A 254 426 (X = =N-O-alkyl) or can be prepared by similar processes.

For example, the phenylacetic acid derivatives II with Y = oxymethylene, thiomethylene or $-CO-O-CH_2-$ are obtained by nucleophilic substitution on benzyl halides VI

5

10

$$R^{1-OH/base}$$

$$- H-Br$$

$$R^{1-O-CH_2}$$

$$CO-O-alkyl$$

$$R^{1-SH/base}$$

$$R^{1-S-CH_2}$$

$$R^{1-S-CH_2-l}$$

$$R^{1-S-CH_2-l}$$

$$R^{1-S-CH_2-l}$$

$$R^{1-S-CH_2-l}$$

$$R^{1-S-CH_2-l}$$

$$R^{1-S-CH_2-l}$$

b) Hydrolysis of phenylacetonitriles IV

The hydrolysis of the phenylacetonitriles IV is normally catalyzed by acid or base by conventional methods [cf., for example, Beckwith in: Zabicky The Chemistry of Amides, pages 119 to 125 (1970) and Synthesis, 243 (1980)] in an inert solvent or diluent.

Particularly suitable solvents are alcohols such as tert-butanol and ethylene glycol.

Particularly suitable acids are concentrated mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and preferred bases are alkali metal hydroxides such as sodium and potassium hydroxide.

5

10

15

The reaction is normally carried out at from 0 to 200°C, in particular from 20°C to the boiling point of the solvent.

The statements made for method (a) apply to the ratios of amounts and the pressure.

Phenylacetonitriles of the formula IV are disclosed, for example, in EP-A 310 954 or can be prepared by the methods described therein.

The ortho-substituted phenylacetamides I where R⁴ and R⁵ are each hydrogen can be alkylated on the amide nitrogen by conventional processes [eg. Challis in: Zabicky The Chemistry of Amides, pages 731-857 (1970)]:

Alk is C_1-C_4 -alkyl, X is halogen, especially bromine and iodine.

This normally entails conversion of the phenylacetamides I where R⁴ and R⁵ are each hydrogen, in an inert solvent or diluent, with a base into the anions and reaction of the latter with an alkyl halide, preferably an alkyl iodide.

Particularly suitable solvents or diluents are ethers such as tetrahydrofuran and dioxane.

Particularly suitable bases are alkali metal hydroxides such as sedium and potassium hydroxide and

alkali metal hydrides such as sodium and potassium hydride.

The reaction is generally carried out at from 0 to 100°C, in particular at the boiling point of the solvent.

The statements made for method (a) apply to the ratio of amounts and the pressure.

The ortho-substituted phenylacetamides I are suitable as fungicides and for controlling pests such as insects, nematodes and acarids.

The ortho-substituted phenylacetamides I have excellent activity against a wide spectrum of fungi which are pathogenic for plants, especially from the classes of Ascomycetes and Basidiomycetes. Some of them have systemic activity and can be employed as leaf and soil fungicides.

They are particularly important for controlling a large number of fungi on various crops such as wheat, rye, barley, oats, rice, corn, grass, cotton, soybean, coffee, sugarcane, grapevines, fruit and ornamental plants and vegetables such as cucumbers, beans and pumpkins, and on the seeds of these plants.

They are particularly suitable for controlling the following plant diseases:

Erysiphe graminis (powdery mildew) in cereals,

Erysiphe cichoracearum and Sphaerotheca fuliginea on pumpkins,

Podosphaera leucotricha on apples, Uncinula necator on grapevines,

Puccinia species on cereals,

5

10

20

Rhizoctonia species on cotton and lawns, Ustilago species on cereals and sugarcane, Venturia inaequalis (scab) on apples, Helminthosporium species on cereals, Septoria nodorum on wheat,

Botrytis cinerea (gray mold) on strawberries, grapevines, Cercospora arachidicola on peanuts, Pseudocercosporella herpotrichoides on wheat, barley, Pyricularia oryzae on rice,

Phytophthora infestans on potatoes and tomatoes,

Fusarium and Verticillium species on various plants,

Plasmopara viticola on grapevines,

Alternaria species on vegetables and fruit.

The compounds are applied by treating the fungi or the plants, seeds, materials or soil to be protected from fungal attack with a fungicidal amount of the active ingredients. The application is carried out before or after infection of the materials, plants or seeds by the fungi.

The ortho-substituted phenylacetamides I are also suitable for controlling pests from the classes of insects, arachnids and nematodes. They can be employed as pesticides in crop protection and in the hygiene, store protection and veterinary sectors.

The insect pests include:

- from the order of Lepidoptera, for example Agrotis Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, lignosellus, Eupoecilia Elasmopalpus ambiguella, Evetria bouliana, Feltia subterranea, Galleria mello-Grapholita funebrana, Grapholita Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, malinellus, Keifferia Hyponomeuta lycopersicella, Lambdina fiscellaria, Laphygma exiqua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis

..15

5

10

20

25

. . . 30

flamea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scarbra, Plutella xylostella, Pseudoplusia includens, Phyacionia frustrana, Scrobipalpula absoluta, Sitotroga cerelella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis;

5

10

20

- from the order of Coleoptera, for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorrynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Diabrotica 12-punctata, Diabrotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Onlema oryzae, Otiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sitophilus granaria;
- from the order of Diptera, for example Aedes aegypti,
 Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Ceratitis capitata, Chrysomya bezziana,
 Chrysomya hominivorax, Chrysomya macellaria, Contarinia
 sorghicola, Cordylobia anthropophaga, Culex pipiens,
 Dacus cucurbitae, Dacus oleae, Dasineura brassicae,

Fannia canicularis, Gasterophilus intestinalis, Glossia morsitans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Musca domestica, Oestrus ovis, Oscinella frit, stabulans, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula oleracea and Tipula paludosa;

5

10

- from the order of Thysanoptera, for example Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci;
- from the order of Hymenoptera, for example Athalia rosae, Atta cephalotes, Atta sexdens, Atta texana, Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaonis, Solenopsis geminata and Solenopsis invicta;
- from the order of Heteroptera, for example Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euchistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis and Thyanta perditor;
- from the order of Homoptera, for example Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis pomi, Aphis sambuci, Brachycaudus cardui, Brevicoryne brassicae, Cerosipha gossypii, Dreyfusia nordmannianae, Dreyfusia piceae, Dyasphis radicola, Dysaulacorthum pseudosolani, Empoasca fabae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Metopolophium dirhodum, Myzodes persicae, Myzus cerasi, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Sappaphis mala, Sappaphis mali,

Schizaphis graminum, Schizoneura lanuginosa, Trialeurodes vaporariorum and Viteus vitifolii;

- from the order of Isoptera, for example Calotermes flavicollis, Leucotermes flavipes, Reticulitermes lucifugus and Termes natalensis;

5

10

- from the order of Orthoptera, for example Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus birittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynamorus;
- from the class of Arachnoidea, for example arachnids (Acarina) such as Amblyomma americanum, Amblyomma persicus, Boophilus annulatus, variegatum, Argas Boophilus decoloratus, Boophilus microplus, Brevipalpus phoenicis, Bryobia praetiosa, Dermacentor silvarum, Eotetranychus carpini, Eriophyes sheldoni, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobins megnini, Paratetranychus pilosus, Permanyssus gallinae, Phyllocaptrata oleivora, Polyphagotarsonemus latus, Psoroptes ovis, Rhipiappendiculatus, Rhipicephalus cephalus evertsi, scabiei, Tetranychus Sarcoptes cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae;
- from the class of nematodes, for example root knot nematodes, eg. Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, cyst-forming nematodes, eg. Globodera rostochiensis, Heterodera avenae, Heterodera glycinae, Heterodera schatii, Heterodera triflolii, stem and leaf eelworms, eg. Belonolaimus longicaudatus, Ditylenchus destructor, Ditylenchus dipsaci, Heliocotylenchus multicinctus, Longidorus elongatus, Radopholus similis, Rotylenchus robustus,

Trichodorus primitivus, Tylenchorhynchus claytoni, Tylenchorhynchus dubius, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus and Pratylenchus goodeyi.

10

5

The active ingredients can be converted into conventional formulations such as solutions, emulsions, suspensions, dusts, powders, pastes and granules. The application forms depend on the purposes for which they are used; they ought in every case to ensure fine and uniform distribution of the ortho-substituted phenylacetamide. The formulations are prepared in a conventional manner, eg. by extending the active ingredient with solvents and/or carriers, if required using emulsifiers and dispersants, it being possible to use other organic solvents as auxiliary solvents when water is used as diluent.

....

Suitable for preparing directly sprayable solutions, emulsions, pastes or oil dispersions are mineral oil fractions of medium to high boiling point such as kerosine or diesel oil, also coaltar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, eg. benzene, toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or derivatives thereof, methanol, ethanol, propanol, butanol, chloroform, tetrachloromethane, cyclohexanol, cyclohexanone, chlorobenzene, isophorone, highly polar solvents, eg. dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone and water.

35

Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (oil dispersions) by adding water. To prepare emulsions, pastes or oil dispersions, the substances can be homogenized, as such or dissolved in an oil or solvent, using wetting agents, adhesion promoters, dispersants or emulsifiers in water. However, concentrates suitable for dilution with water can also be prepared from active substance, wetting agent, adhesion promoter, dispersant

or emulsifier and, possibly, solvent or oil.

5

10

35

Suitable surfactants are alkali metal, alkaline earth metal and ammonium salts of ligninsulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalenesulfonic acid, alkylarylsulfonates, sulfates, alkylsulfonates, fatty alcohol sulfates and fatty acids and their alkali metal and alkaline earth metal salts, salts of sulfated fatty alcohol glycol ethers, products of the condensation of sulfonated naphthalene and naphthalene derivatives with formaldehyde, products of the condensation of naphthalene or naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ether, tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ether, ethoxylated polyoxypropylene, lauryl alcohol polyglycol ether acetal, sorbitol ester, lignin sulfite waste liquors and methylcellulose.

Powders and dusting and broadcasting agents can be prepared by mixing or grinding together the active substances with a solid carrier.

The concentrations of active ingredient in the formulations ready for use can vary within wide limits.

The agents very generally contain from 0.0001 to 95, preferably from 0.01 to 90, % by weight of active ingredient.

Formulations containing more than 95% by weight of active ingredient can be applied very successfully by the ultra low volume (ULV) method, in which case even the active ingredient without additives can be used.

Examples of such formulations are:

I. a solution of 90 parts by weight of compound No. 87 and 10 parts by weight of N-methyl- α -pyrrolidone, which is suitable for application in the form of very small drops;

- II. a mixture of 20 parts by weight of compound No. 93, 80 parts by weight of xylene, 10 parts by weight of the adduct of 8 to 10 moles of ethylene oxide and 1 mole of oleic acid N-monoethanolamide, 5 parts by weight of calcium dodecylbenzenesulfonate, 5 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil; a fine dispersion of the solution in water is used;
- III. An aqueous dispersion of 20 parts by weight of compound No. 133, 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil;
- IV. an aqueous dispersion of 20 parts by weight of compound No. 242, 25 parts by weight of cyclohexanol, 65 parts by weight of a mineral oil fraction of boiling point 210 to 280°C and 10 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil;
- V. a mixture, ground in a hammer mill, of 80 parts by weight of compound No. 252, 3 parts by weight of sodium diisobutylnaphthalene-α-sulfonate, 10 parts by weight of the sodium salt of a ligninsulfonic acid from a sulfite waste liquor and 7 parts by weight of powdered silica gel; a fine dispersion of the mixture in water can be sprayed;
- VI. an intimate mixture of 3 parts by weight of compound No. 449 and 97 parts by weight of finely divided kaolin; this dusting agent contains 3% by weight of active ingredient;
- VII. an intimate mixture of 30 parts by weight of compound No. 494, 92 parts by weight of powdered silica gel and 8 parts by weight of liquid paraffin which has been sprayed on to the surface of this silica gel; this formulation makes the active ingredient adhere well;
- VIII. a stable aqueous dispersion of 40 parts by weight

10

5

15

20

25

30

of compound No. 585, 10 parts by weight of the sodium salt of a phenolsulfonic acid/urea/formaldehyde condensate, 2 parts by weight of silica gel and 48 parts by weight of water, which can be further diluted;

IX. a stable oily dispersion of 20 parts by weight of compound No. 587, 2 parts by weight of calcium dodecylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 20 parts by weight of the sodium salt of a phenolsulfonic acid/urea/form-aldehyde condensate and 68 parts by weight of a liquid paraffin.

Granules, eg. coated, impregnated or homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Examples of solid carriers are mineral earths such as silica gel, silicic acids, silicates, talc, kaolin, attapulgite, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products such as cereal flour, bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.

The application rates in fungicidal agents depend on the nature of the desired effect and range from 0.02 to 3 kg of active ingredient per ha. The novel compounds can also be used to protect materials (wood), eg. against Paecilomyces variotii.

For treating seeds, in general from 0.001 to 50 g, preferably 0.01 to 10 g, of active ingredient are required per kilogram of seeds.

The application rate for controlling insects in the open is from 0.02 to 10, preferably 0.1 to 2.0 kg/ha active ingredient.

In these application forms, the novel agents can also be mixed with other active ingredients, eg. with

10

5

15

20

25

••••

30

• • • •

herbicides, insecticides, growth regulators, fungicides or fertilizers. These agents can be added to the novel agents in the ratio of from 1:10 to 10:1 by weight, where appropriate just before application (tank mix). Mixing with fungicides or insecticides in many cases results in an extension of the spectrum of action.

5

10

15

20

The agents and the formulations prepared therefrom ready for use, such as solutions, emulsions, suspensions, powders, dusts, pastes or granules, are applied in a conventional manner, for example by spraying, atomizing, dusting, broadcasting, treating seeds or watering.

PREPARATION EXAMPLES

EXAMPLE 1

2-Methoxyimino-2-[2-(m-chlorophenoxymethyl)phenyl]acetamide

7.0 g (23 mmol) of 2-methoxyimino-2-[2-(m-chlorophenoxymethyl)phenyl]acetonitrile were added to a mixture of 50 ml of glycol and 10 ml of a 25% by weight aqueous solution of potassium hydroxide, and the reaction mixture was then heated at 80°C for 2 hours. The solid was then separated off, washed with methyl tert-butyl ether and dried. Yield: 58%;

¹H-NMR (in CDCl₃, TMS as standard): d = 4.00(s,3H);5.18(s,2H); 6.10(sbr,1H); 6.75(sbr,1H); 6.78(d,1H); 6.92(m,2H); 7.10-7.50(m,5H).

EXAMPLE 2

2-Methoxyimino-2-[2-(o,p-dimethylphenoxymethyl)phenyl]-acetic acid N-methylamide

$$H_3C$$
 CH_3
 $C=N-OCH_3$
 $CO=N-CH_3$
 $CO=N-CH_3$
 $CO=N-CH_3$

(compound No. 494)

0.465 g (15 mmol) of monomethylamine dried over potassium hydroxide was passed at about 25°C into a solution of 5.0 g (15 mmol) of 2-methoxyimino-2-[2-(0,p-dimethylphenoxymethyl)phenyl]acetyl chloride in 30 ml of dichloromethane. This mixture was stirred for one hour and then diluted with 70 ml of dichloromethane. By-products were extracted with 100 ml of water and then the organic phase was worked up in a conventional manner to give the product. Yield: 88% (oil);

1-NMR (in CDCl₃, TMS as standard): d = 2.20(s,3H);
2.25(s,3H); 2.90(d,3H); 3.94(s,3H); 4.93(s,2H);

5

10

20

6.70-7.60(m,7H).

EXAMPLE 3

2-Methoxyimino-2-(2-benzyloxyphenyl)acetic acid N,N-dimethylamide

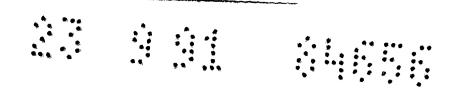
A solution of 4.9 g (16.4 mmol) of methyl 2-methoxyimino-2-(2-benzyloxyphenyl)acetate and 0.9 g (20 mmol) of dimethylamine in 20 ml of methanol was stirred at about 25°C for 60 hours. After removal of the solvent, the crude product was purified by chromatography on silica gel (methyl tert-butyl ether/n-hexane mixture as eluent). Yield: 66%;

25 $^{1}H-NMR$ (in CDCl₃, TMS as standard): d = 3.38(s,3H); 3.49(s,3H); 4.01(s,3H); 5.03(s,2H); 6.90-7.10(m,2H); 7.30-7.40(m,6H); 8.75(d,1H).

EXAMPLE 4

2-Methoxyimino-2-[2-(o,p-dimethylphenoxymethyl)phenyl]-acetic acid N,N-dimethylamide

$$H_3$$
C CH_2 $C=N-OCH_3$ (compound No. 252)


0.675 g (15 mmol) of dried dimethylamine was reacted with 5.0 g (15 mmol) of 2-methoxyimino-2-[2-(0,p-dimethylphenoxymethyl)phenyl]acetyl chloride in a similar manner to Example 2. Yield: 78% (oil);

5

10

¹H-NMR (in CDCl₃, TMS as standard): d = 2.20(s, 3H); 2.23(s,3H); 3.02(s,3H); 3.18(s,3H); 3.95(s,3H); 5.02(s,2H); 6.60-7.60(m,7H).

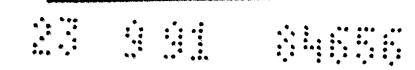
Further final products I which were or can be prepared in the same way are listed in Table 1.

Table

$$I \qquad (R^2, R^3 = H)$$

No. y	R ¹	R ⁴	R ⁵	W	Physical data	
1 ch2	н					
2 CHC I	H	н	H	N-осн ₃		~
3 CHBr	Н	н	Ħ	N-OCH3		
4 CHE	H	H	н	N~осн ₃		<i>!</i>
5 сн ₂ -сн ₂	с ₆ н ₅	н	H	N-ОСН3		25 55
6 CH2-CH2	2-F-C ₆ H ₄	H	H	и-осн3		t
7 сн2-сн2	3-F-C ₆ H ₄	н	н	N-ОСН3		
8 си2-си2	4-F-C6H4	H	Ħ	N-осн ₃		
9 сн2-сн2	2-c1-c ₆ H ₄	Н	H	N-осн ₃		
10 сн2-сн2	3-C1-C6H4	Н	H	N~осн ₃		o
11 сн2-ен2	4-61-6614	H	H	и-осн3		
12 CH2-CH2	2-Br-C ₆ H ₄	н	Ħ	N-ОСН ₃		Ö
13 CH2-CH2	4-Br-C ₆ H ₄	H	н	N-ОСН3		0050/41900
14 CH2-CH2	2-I-c ₆ H ₄	н	Ħ	и -осн ₃		/4.1
5 ch2-ch2	2-0614	н	H	и-осн3		0 63
22	2-сн ₃ -с _ь н ₄	H	н	N- 0СН3		0

Table (continuation)


Ma	v	R ¹	R ⁴	R ⁵	W	Physical data
No.	¥	R			***	Injuicus adea
16	си2-си2	3-сн3-е6н4	н	н	N-OCH3	
17	Сн2-сн2	4-сн3-с6н4	Ħ	н	N-OCH3	
18	сн2-сн2	2-осн ₃ -с ₆ н ₄	H	H	N-ОСН3	
19	Сн2-сн2	3-осн3-с6н4	Ĥ	Ħ	N-OCH3	
20	CH2-CH2	4-осн3-с6н4	н	H	N-OCH3	
21	CH2-CH2	2-CF3-C6H4	н	H	N-OCH3	
22	CH2-CH2	3-CF3-C6H4	н	н	м ~осн ₃	
23	Си2-Си2	4-CF3-C6H4	н	н	N-OCH3	
24	CH2-CH2	2,4-C12-C6H3	A	H	N-OCH3	
25	CH2-CH2	2,4-(CH3)2-C6H3	н	H	N-OCH3	
26	CH2-CH2	2, 4, 6-(CH3)3-C6H2	н	H	N-OCH3	
27	CH2-CH2	Pyridin-3-yl	н	Ħ	м-осн3	
28	CH2-CH2	Furan-2-yl	н	H	N-ОСН3	
29	CH2-CH2	6-CH3-Pyridin-2-yl	н	н	N-OCH3	
30	CH2-CH2	Benzothiazol-2-yl	н	H	N-OCH3	
31	Сн≈Сн	С ₆ Н <u>5</u> .	н	H	м-осн ₃	
32	сн=сн	2-F-С ₆ н ₄	н	H	N-ОСН3	
33	ен=ен	3-F-C6H4	н	н	н −осн ₃	
34	CH=CH	4-F-C6H4	Ŋ	Н	и -осн ₃	
35	ен=ен	2-c1-c ₆ H ₄	н	н	N-OCH3	
36	сн=ен	3-C1-C6H4	H	Н	N-OCH3	
37	Сн=Сн	4-C1-C6H4	Ħ	н	N-0CH3	
38	CH=CH	2-Br-C6H4	н	н	N-OCH3	
39	€н≈сн	4-Br-C6H4	Н	Ėì	N-OCH3	

	-	R ¹	\mathbf{R}^4	\mathbf{R}^{5}	W	Physical data
lo.		****			N. OCHa	
40	сн=сн	2-I-C6H4	H	H	N-OCH3	
41	CH=CH	2-CH3-C6H4	н	Н	N-OCH3	
42	CH=CH	3-CH3-C6H4	н	Н	N-OCH3	
43	CH=CH	4-CH3-C6H4	H	H	N-OCH3	
44	сн=сн	2-осн3-С6Н4	H	Ħ	и-оснз	
	CH=CH	3-осн3-с6н4	H	H	N-OCH3	
45	CH=CH	4-0CH3-C6H4	Ħ	н	и-оснз	
46		2-CF3-C6H4	н	H	и-оснз	
47	CH=CH	3-CF3-C6H4	H	Н	и-оснз	
48	ен=ен	4-CF3-C6H4	H	H	N-OCH3	
49	CH=CH		н	H	м -осн ₃	
50		2,4-C12-C6H3	H	Н	N-ÓCH3	
51	CH=CH	2,4-(CH ₃) ₂ -C ₆ H ₃	H	н	N-OCH3	
52		2, 4, 6-(CH ₃) ₃ -C ₆ H ₂	н	н	N-OCH3	
53	CH=CH	Pyridin-3-yl	н	H	N-OCH3	
54	, сн=сн	Furan-2-yl	H	H	N-OCH3	
55	CH=CH	6-CH3-Pyridin-2-yl	 Н	н	м-осн3	
56	CH=CH	Benzothiazol-2-yl		н	N-OCH3	
57	CH20	C6H5		H	N-OCH3	
58	3 CH ₂ O	2-F-C6H4	H	., Н	N-OCH3	
59		3-F-C6H4	H		N-0CH3	
6		4-F-C6H4	H	н	_	
6	-	2-61-66H4	Ħ	H	N-0CH3	
6	•	3-61-C6H4	Н	Н	N-0CH3	
6	_	4-61-0 ₀ H4	н	ti	N-OCH3	

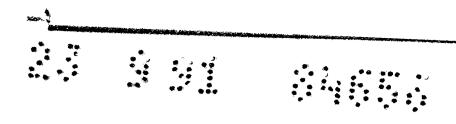
- 27 -

O.Z. 0050/41900

No.	Ą	R ¹	R ⁴	R ^{5.}	W	Physical data
64	Си20	2-Br-E6H4	Н	Ħ	n -осн ₃	
65	СН20	4-8r-C6H4	H	н	N-OCH3	
66	CH20	2-I -E6H4	H	н	N-OCH3	
67	Сн20	2-ен3-с6н4	н	H	N-осн ₃	
68	€н20	3-си3-с6и4	H	H	и-осн3	
69	CH20	4-CH3-C6H4	н	н	N-OCH3	
70	CH ₂ O	2-оси3-с6и4	н	H	N-OCH3	
71	СН20	3-осн3-с6н4	н	н	м-осн3	
72	CH ₂ O	4-0CH3-C6H4	H	H	N-ОСН3	
73	CH20	2-cf3-c6H4	H	H	N-ОСН3	
74	CH20	3-CF3-C6H4	н	H	N-OCH3	
75	CH20	4-cf3-c6H4	н	н	N~OCH3	
76	CH ₂ O	2,4-C12-C6H3	н	H	n-осн ₃	
72	CH ₂ O	2, 4-(CH ₃) ₂ -C ₆ H ₃	ห	н	N-OCH3	
78	СН20	2, 4, 6-(CH3) 3-C6H2	н	Ħ	N~OCH3	
79	€н20	Pyridin-3-yl	អ	H	м -осн ₃	
80	Сн20	Furan-2-yl	Ħ	Ħ	N-OCH3	
81	си20	6-CH3-Pyridin-2-yl	н	и	N-OCH3	
82	СН20	Benzothiazol-2-yl	સ	н	N-ОСН3	
83	0-сн2	H	н	H	и-осиз	
84	0-CH ₂	С6Н5	Ħ	H	n-och3	
85	O-CH ₂	2-F-C6H4	н	н	N -осн ₃	
86	0-CH2	3-F-C6H4	11	H	N~OCH3	

0050/41900

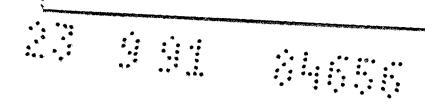
	R³	R		R ⁵ W	Physical data
87 о-сн ₂	4-F-C6H4.	н	н	и-осн3	
88 о-сн ₂	2-c1-c6H4				1050, 824 cm ⁻¹
в9 о~е́н ₂	3-C1-C6H4	н	H	и-осн3	
_		н	Ħ	м ~осн ₃	M.p.104-50C; IR(K8r): 3416, 1663, 1559, 1482, 1249
90 0~CH ₂	4-C1-C6H4				1045, 904, 775 cm ⁻¹
91 0-CH ₂	2-Br-c6H4	H	H	N~OCH3	M.p. 105-100C
~	2004	н	н	N~0C#3	M.p. 88-900C 14-1401000
				•	M.p. 88-90°C; $1H$ -NMR(COC13): $0=4.13(s, 3H), 5.35$
12 0-ен2	4-Br-C6H4				(s2H), 6.85 (m, 2H), 7.25 (m, 1H), 7.58 (m, 3H), 7.78 (d, 1H), 7.86 (d, 1H)
3 0-CH2	2-I-C6H4	н	H	N-осн ₃	(-/-m/,/.00/a,[H]
	z z couř	н	H	N-ОСН ₃	M.D. 148-5000 10400 1
4 0-CH2	2-сн3-с6н4			٠.	M.p.148-50°C; IR(KBr): 3373, 1652, 1474, 1249, 1055
5 0-CH ₂	3-сиз-с6и4	H	H	м~оснз	7.13
6 0-CH ₂	4-сн ₃ -с ₆ н ₄	Ħ	Н	м-осн ₃	
7 0-CH ₂	2-004- 0-4	H	Н	N-OCH3	M-n 100-200 rates
8 0-сн2	2-осн ₃ -с ₆ н ₄	H	H	и-осн3	M.p.100-2°C; IR(KBr): 1674, 1510, 1239, 1042, 814
9 0-CH ₂	3-00H3-06H4	н	н	N-0СН3	·
0 0-CH ₂	4-0CH3-C6H4	H	н	N-0CH3	
- 0-сн ₂	2-CF ₃ -C ₆ H ₄	н	н	N-0CH3	
? 0~CH ₂	3-CF ₃ -C ₆ H ₄	Ħ	Ħ	N-0CH3	
о~сн ₂	4-CF3-C614	Ħ	н	N-осн ₃	
0-CH ₂	2,4-C12-C6H3	H	н	и-осн3	•
0-си2	2, 4-(cH ₃) ₂ -c ₆ H ₃	Ĥ	H	и-осн ₃	·
2 02	2, 4, 6-(CH ₃) ₃ -C ₆ H ₂	н	В	N-осн ₃	



The Later

No.	Y	R ¹ .	R ⁴	R ⁵	W	Physical data	
	O-CHZ	2-сиз-4-с1-с6из	ы			lateat data	
107	Q-CHZ	3-t-C4H9-C6H4	H	H	н- осн ₃		
108	O-CH2	4-С6Н5-С6Н4	н	H	N -OCH ₃		
109	O-CH2	2-c1, 4-сн ₃ -с ₆ н ₃	H	H	N-OCH3		
	0-сн2	Pyridin-2-yl	н	Н	N- ОСН3		
	0-CH2	6-CH3-Pyridin-2-yl	Ħ	н	N −QCH ₃		
	0-CH2	2-C1-Pyridin-2-y1	н	Ή	N-OCH3		
	0-CH2		Ħ	H	и -осн ₃		•
	0	Benzothiazol-2-yl H	H	H	м -осн ₃		
115			н	н	N-OCH3		_
116		C ₆ H ₅	н	H	и -осн ₃		~ 1
	0	3-C6H5-C6H4	H	н	и-осн3		<u>د</u> 2
118		3-0С3H4-С6H4	н	H	N -осн ₃		3
		Pyridin-2-yl	Ħ	H	№ ОСН3		
	0	6-C6H5-Pyridin-2-yl	н	H	N-0СH ₃ .		
	0	CH2-CH=CH2	Ħ	H	-		
21		3-c ₆ н ₅ 0-c ₆ н ₄	н	H	и-о́сн3		
22		3-C6H5S-C6H4	н	H	N-OCH3		
	0	3-c ₆ н ₅ сн ₂ 0-с ₆ н ₄	H		N- ОСН3		0
24 (сн3	н	H.	и -осн ₃		
	C=C	С ₆ H ₅	и н	H	и ~осн ₃		۵
26 5	S-	С6Н5		Н	N -осн ₃		05
27 5		2-c1-c6H4	н	H	N-осн ₃		0/
	5-сн2	С645	н	Н	м-осн3		0050/41900
	-CH2	4-61-C0H4	H	н	и -осн ₃		90
	-	D4	Н	н	и-осн3		0

No.	. У	R ¹	R ⁴	R ⁵	W	Physical data	
130	S-CH ₂	4-сн3-с6н4	н	н	N-OCH ₃		
131	S-CH ₂	6-CH ₃ -Pyridin-2-yl	н	н	N-OCH ₃		
132	S-CH2	6-Cl-Pyridin-2-yl	H	Н	N-OCH3		
133	S-CH2	Benzothiazol-2-yl	t.t	н	й-осн3	M.p. 171-8°C; IR(KBr): 3388, 3155, 1672, 1650, 1429 1037, 989, 748 cm ⁻¹	,
134	S-CH2	5-Cl-Benzothiazol-2-yl	н	н	N-OCH3	, ,	
135	S-CH2	6-Cl-Benzothiazol-2-yl	H	н	N-0CH ₃		
136	-co-o-	СН3	н	н	N-OCH3		
137	-CO-O-	С ₆ H5	н	н	N-OCH3		•
138	-0-CO-	СН3	Н	н	N-OCH3		(
139	-0-co-	С6Н5	H	Н	N-OCH ₃		•
140	-0-€0-	H	н	H	N-0CH ₃		,
141	-со-сн2-	Н	н	н	N-OCH3		
142	-со-сн2-	СНЗ	н	н	N-OCH3		
143	-со-сн2-	С6Н5	H	Ħ	N-OCH3		
144	-со-сн2-	2-сн3-€6н4	H	н	/N-OCH3		
145	-со-сн2-	2,4-(CH ₃) ₂ C ₆ H ₃	н	н	N-OCH ₃		
146	-co-cH ₂ -	2-C1-C6H4	н	H	N-ОСН ₃		
147	-сн2-со-	н	н	Н	N-осн ₃		c
148	-сн2-со-	€6Н5	н	н	N-ОСН3		0
149	-N=N-	С6Н5	.H	н	Ń-OCH3		Š
150	CH ₂	H	сн3	СИЗ	N-OCH3		47300
150	Сн2	H	.сн ₃	СН3	N-0CH3		Š
151	CHCI	н	снз	сн3	N-0CH ₃		٠



ISZ CHBr	R ¹	R ⁴	R ⁵	W	Physical data	
153 CHI 154 CH2-CH2 155 CH2-CH2	н С ₆ н ₅ 2-F-С ₆ н ₄	сн ₃ сн ₃ сн ₃		и-осн ³ и-осн ³		
156 CH ₂ -CH ₂ 157 CH ₂ -CH ₂ 158 CH ₂ -CH ₂ 159 CH ₂ -CH ₂	3-F-C6H4 4-F-C6H4 2-C1-C6H4 3-C1-C6H4	СН ₃ СН ₃ СН ₃ СН ₃	сн ₃ сн ₃	и-осн3 и-осн3 и-осн3		
160 CH ₂ -CH ₂ 161 CH ₂ -CH ₂ 162 CH ₂ -CH ₂	4-C1-C6H4 2-Br-C6H4 4-Br-C6H4 2-I-C6H4	сн ₃ сн ₃ сн ₃ сн ₃	СН3 N	1-осн ₃ 1-осн ₃ -осн ₃		
164 CH2-CH2 165 CH2-CH2 166 CH2-CH2 167 CH2-CH2	2-сн ₃ -с _{бн₄} 3-сн ₃ -с _{бн₄} 4-сн ₃ -с _{бн₄} 2-осн ₃ -с _{бн₄}	сн ₃ сн ₃ сн ₃	СН3 N СН3 N	-осн ₃ -осн ₃ -осн ₃		ند د
68 сн ₂ -сн ₂ 69 сн ₂ -сн ₂ 70 сн ₂ -сн ₂	³ -осн ₃ -с _{6н4} 4-осн3-с _{6н4} ?-¢f3-с _{бн4}	сн ³ сн ³ сн ³	СH3 N-	осн ₃ осн ₃ осн ₃		
¹² сн ₂ -сн ₂ 4 ¹³ сн ₂ -сн ₂ 2 ¹⁴ сн ₂ -сн ₂ 2	I-CF3-С6H4 CF3-С6H4 , 4-С12-С6H3 , 4-(CH3)2-С6H3	сн ₃ -сн ₃ -сн ₃	СН3 N-6 СН3 N-6			2. 005
~ 2 4,	4,6-(cH3)3-C6H2	A	СН3 N-0 СН3 N 0			50/41900

Vo.	Y	R ¹	R ⁴	R ⁵	W	Physical data
76	сн2-сн2	Pyridin-3-yl	СНЗ	СНЗ	Ñ-ОСН3	
77	CH2-CH2	Furan-2-yl	сн3	СНЗ	N-OCH3	
78	CH2-CH2	6-CH ₃ -Pyridin-2-yl	сн3	СНЗ	N-OCH3	
79	сн2-сн2	Benzothiazol-2-yl	сн3	СНЗ	N-OCH3	
80	CH=CH	С ₆ н ₅	сн3	снз	N-OCH3	
81	Сн=Сн	2-F-C ₆ H ₄	Сн3.	СНЗ	N-OCH3	
82	CH=CH	3-F-C ₆ H ₄	СНЗ	СНЗ	N-OCH3	
83	CH=CH	4-F-C6H4	CH ₃	сн3	N-OCH3	
84	CH=CH	2-¢1-¢ ₆ H ₄	СН3	сн3	N-OCH3	
85	Сн=Сн	3-C1-C6H4	СНЗ	снз	N-OCH3	
86	CH=CH	4-C1-C6H	сн3	СНЗ	N-OCH3	
87	CH=CH	2-Br-C6H4	сн3	CH ₃	N-OCH3	
88	CH=CH	4-Br-C6H4	€н3	CH3	N-0CH3	
89	Сн=Сн	2-I-C ₆ H ₄	сн3	СНЗ	N-OCH3	
90	CH=CH	2-сн ₃ -с ₆ н ₄	СНЗ	СН3	N-OCH3	
91	CH=CH	3-сн ₃ -с ₆ н ₄	сн ₃	СН3	N-OCH3	
92	CH=CH	4-сн3-с6н4	Снз	СНЗ	N-OCH 3	
93	Сн=Сн	2-осн ₃ -с ₆ н ₄	СНЗ	сн3	N-OCH3	
94	Сн=Сн	3-осн ₃ -с ₆ н ₄	снз	СНЗ	M-0CH3	
95	Сн=Сн	4-осн ₃ -с ₆ н ₄	СНЗ	CH ₃	N-OCH3	
96	Сн=Сн	2-cf3-c614	сн3	CH3	N-OCH ₃	
97	Сн=Сн	3-cf3-c6H4	Сиз	енз Снз	N-OCH3	
98	Сн=Сн	4-cf3-c6H4	С Н3	ол. Сиз	N-0CH ₃	
99	Сн=Сн	2, 4-612-C6H3	сн3	сн3	N-0CH ₃	

0050/41900

200 CH=CH	R ¹	R ⁴	R ⁵	W	Physical data	
200 CH=CH 201 CH=CH	2, 4-(cH ₃) ₂ -c ₆ H ₃	сн ₃	Снз	N 000		
202 CH≈CH	2, 4, 6-(CH ₃) ₃ -C ₆ H ₂	сн3	СН3	N-OCH3		
203 Сн≈Сн	Pyridin-3-yl Furan-2-yl	сн3	сн ₃ .	N-0CH3		
204 CH=CH	6-CHangunia:	сн3	сн3	и~осн ₃		
205 сн=сн	6-CH3-Pyridin-2-yl	снз	сн3	и осн ₃ №-осн ₃		
206 сн ₂ 0	Benzothiazol-2-yl C ₆ H ₅	сн3	Снз	и-оси ₃		
207 CH ₂ O	2-F-C6H4	сн3	СНЗ	N~0¢H ₃		
108 сн20	3-F-C6H4	сн3	СH ₃	м-осн ₃		
109 сн20	4-F-C6H4	CH ₃	CH3	N-0CH3		
10 CH20	2-C1-C6H4	€н3	СНЗ	и-оси3		i
11 сн ₂ 0	3-C1-C6H4	снз	сн ₃	и-осиз		ω 4•
12 сн ₂ 0	4-C1-C6H4	снз	сн3	N -осн ₃		1
13 сн ₂ о	2-Br-C6H4	сн3	сн3	и-осн3		
14 CH20	4-8r-C6H4	сн3	Сиз	N-OCH3		
15 EH20	2- I-C6H4	сн₃	СНЗ	и-осн3		
16. сн ₂ о	2-сн3-с6н4	сн₃		N-OCH3		
7 сн20	3-сн ₃ -с _{6н4}	сн3	сиз	м -осн ₃		0
8 сн ₂ о	4-сн ₃ -с ₆ н ₄	сн ₃		и-осн ₃		0.2
9 сн ₂ о	2-осн ₃ -с _{6н6}	сн3		N-OCH3		•
0 сн ₂ 0	3-осн ₃ -с ₆ н ₄	снз		N-OCH3		00
1 сн20	4-осн ₃ -с _{6нь}	сиз		v-осн ₃		50
5 сн ⁵ о	2-cf ₃ -c ₆ H ₄	снз		v- осн ₃		14.
3 си ⁵ о	3-CF3-C6H4	CHJ		1-осн3		190
	- <i>,</i>	сиз		осн		00

No. Y	R ¹	R4	\mathbb{R}^5	W	Physical data
24 CH ₂ G	4-CF3-C6H4	сн3	сн3	N-0СH3	
25 CH20	2,4-C12-C6H3	СН3	CH3	N-0CH3	
26 CH ₂ Q	2,4-(cH3)2-C6H3	сн ₃	ÇH3	N-0CH3	
27 CH ₂ O	2, 4, 6-(CH3)3-C6H2	сн ₃	сн ₃		
28 сн20	Pyridin-3-yl	СН3	СНЗ	N-OCH3	
29 CH ₂ O	Furan-2-yl	сн3	_	N-OCH3	
30 CH ₂ 0	6-CH3-Pyridin-2-yl	сн ₃ с̂н ₃	СНЗ	N-OCH3	
31 °CH2O	Benzothiazol-2-yl	=	СНЗ	N -ОСН3	
32 OCH ₂	С6H5	СН3	СНЗ	N-ОСН3	
33 осн ₂	2-F-С ₆ н ₄	сн3	снз	и -осн ₃	
4 OCH2	3-F-C6H4	СН3	СНЗ	и -осн ₃	
15 OCH2	4-F-C6H4	Снз	снз	N-OCH3	
6 0€н2	2-C1-C6H4	снз	сн3	и-осн3	
7 осн2	3-C1-C6H4	СНЗ	сн3	N-OCH3	
8 OCH ₂	4-C1-C6H4	CH3	сн3	м -осн ₃	
9 OCH ₂	2-Br-C6H4	сн3	снз	и-осн3	
0 OCH ₂		сн3	снз	м-осн 3	
l OCH2	4-Br-C ₆ H ₄	сн ₃	снз	N-OCH3	
2 OCH2	2-I-C ₆ H ₄	сн3	ен3	N-OCH3	
e oenz	2-сн ₃ -с ₆ н ₄	снз	снз	N-ОСН 3	M.p. 75° C; $1H$ -NMR(CDC13) 2.2 θ (s, $3H$); 3.02 3.17(2s, $6H$); 3.97(s, $3H$); 5.17(s, $2H$); 6.85
з осн ₂	3-сн ₃ -с ₆ н ₄	Gн ₃	сн3	n-осн ₃	(m, 2H); 7.15(m, 2H), 7.40(m, 3H); 7.60(d, 1H
4 och ₂	4-сн3-с6н4	СНЗ	сн ₃	и-осиз	
5 осн ₂	2-0CH3-С6H4	сн3	сн ₃	и-оси3 и-оси3	

335

1.1

No.) <u>,</u>	¥	R ¹	R ⁴	R ⁵	W	Physical data	
246	00	CH ₂	3-осн3-с6н4	CHS	CU			
247	00	CH2	4-осн3-с6н4	СН3	снз	N-осн ₃		
248		CH2	2-6F3-C6H4	СН3	снз	и -осн ₃		
249		CH ₂	3-CF3-C6H4	СНЗ	снз	N-0СН _{3.}		
250		Сн2	4-CF3-C6H4	СНЗ	сн3	й-осн3		
251		:н ₂	2,4-Cl ₂ -C ₆ H ₃	СНЗ	СНЗ	N-OCH3		
252		H2	2 A-16Halaman	снз	снз	N-06H3		
	-		2,4-(cH ₃) ₂ -c ₆ H ₃	сн3	СНЗ	N-OCH3	oil; 1H-NMR(CDCl3): 6= 2.23(s, 3H); 2.27(s, 3H);	•
							3.03, 3.182s, 6H);3.93(s, 3H);5.02(s, 2H);6.75	
253	OC	Ha	2 4 6-164-) - 6-4				(a, 1h); 6.9 $(m, 2h)$, 7.35 $(m, 3h)$; 7.57 $(a, 1h)$	1.
254		H2	2, 4, 6-(CH ₃) ₃ -C ₆ H ₂	снз	снз	N -осн ₃	· · · · · · · · · · · · · · · · · · ·	36
255			2-CH3, 4-C1-C6H3	сн3	снз	N-OCH3		1
256	OC	-	3-t-C4Hg-C6H4	сн3	снз	N-OCH3		
257			2-с1, 4-сн3-с6н3	снз	СНЗ	N -ОСН3		
	OCI	_	4-С645-С644	сн3	СНЗ	N-OCH ₃		
258 250	OCI		Pyridin-2-y-l	СНЗ	СНЗ	N-OCH3		
259	OCI		6-CH3-Pyridin-2-yl	СНЗ	сн3	N-OCH3		_
260	OCI	-	6-C1-Pyridin-2-y1	сн3	Сн3	N-0CH3		0
261	OCI	H2	Benzothiazol-2-yl	СН3	сн ₃	N-OCH3		23
262			H	снз	СНЗ	N-0CH3		00
263			С ₆ н ₅	Ċн ₃	сн ₃	N-0CH3		ഗ
264			3-C6H5-C6H4	Сн3	_	-		0/
265			3-n-€3H7~0-€6H4	сиз		N-OCH3		41
266			Pyridin-2-yl	сн3	_	N-OCH3		0/41900
267	0		6-C6H5-Pyridin-2-yt	сн3		и-оснз		0
			•	2113	CH3	и-осиз		

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
268	0	ен2-сн=сн2	сн3	снз	м~осн ₃	
269	0	3-С6450-С644	сн3	снз	N-0CH3	
270	0	3-C6H5S-C6H4	Сн3∿	снз	N-OCH3	
271	0	3-C6H5CH2O-C6H4	СНЗ	снз	N-OCH3	
272	C=C	СНЗ	сн3	сн3	N-OCH3	
273	C=C	C6H5	снз	снз	N-OCH3	
274	S	C6H5	СНЗ	ен3	N-OCH3	
275	S	2-C1-C6H4	СНЗ	ch3	N-OCH3	
276	S-CH2	С6H5	СНЗ	СНЗ	и-осн3	
277	S-CH2	4-C1-C6H4	сн3	ен3	N-OCH3	
278	S-CH2	4-CH3-C6H4	СНЗ	Снз	N-0СH3	
279	S-CH2	2-CH ₃ -Pyridin-2-ył	сн3	снз	N-OCH3	
280	S-CH2	6-Ct-Pyridin-2-yl	СНЗ	СНЗ	N-OCH3	
281	S-CH2	Benzothiazól-2-yl	сн3	СНЗ	N-OCH3	
282	S-CH2	5-Cl-Benzothiazol-2-yl	СНЗ	cn ₃	N-OCH3	
283	S-CH2	6-Cl-Benzothiazol-2-yl	сн3	СНЗ	и-осиз	
284	co-o-	СНЗ	сн3	CH3	N-OCH3	
285	CO-0-	C6H5	сн3	сн3	N-OCH3	
286	0-00-	СИЗ	снз	снз	N-OCH3	
287	0-60-	€6н5	сн3	си3	N-OCH3	
288	0~CO~	н	сн3	сиз	N-OCH3	
289	со-сн2	Ħ	cn ₃	си3	м -осн ₃	
290	со-си2	сн ₃	СНЗ	CH3	N-ОСН3	
291	со-си2	C _b H ₅	снз	СИЗ	N-OCH3	

. .

Tabl	a (conc.	Littude 2011	•	5		Physical data
No.	¥ R¹ R·	R ⁴	-R ⁵	W	Physical data	
		2-CH3-C6H4	сн3	СНЗ	N-ОСН3	
292	~	= ~ ·	СНЗ	СНЗ	и-оснз	
	CO-CH2	2,4-(CH3)2-C6H3	СНЗ	СНЗ	N-OCH3	
	CO-CH2	2-C1-C6H4	СНЗ	CH3	и-оснз	
295	co-ch ₂	Pyridin-2-yl	сн3	CH3	N-0€H3	
296	co-ch2	Furan-2-yl	-	CH3	N-OCH3	
297	CO-CH2	Benzothiazol-2-yl	CH3	CH3	N-OCH3	
298	CH2~CO	H	СНЗ	_	N-OCH3	
	CH2-CO	C6H5	СНЗ	СНЗ	_	~ .
	N=N	С6H5	СНЗ	снз	N-ОСН3	

1 80

		~1	R ⁴	\mathbb{R}^5	W	Physical data
No.	Y	R ¹				
	0014	CoHe	C ₂ H ₅	снз	N-OCH3	
	och2	C6H5	C2H5	C2H5	N-OCH3	
329	OCH ₂	C6H5	n-C3H7	СНЗ	N-ОСН3	
330	oc _{H2}	C6H5	СНЗ	H	N-OCH3	
331	CH2	H	•	H	N-OCH3	
	CHE I	H	CH3		N-OCH3	
	CHBr	H	снз	Н	-	
		Н	сиз	H	и-оснз	
	СИЈ СН2 ⁰	 H	сиз	H.	и-осн3	
4.55	4					

. . .

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
336	Сн2-0-502	Снз	СН3	н	N-ОСН3	
337	си2-0-502	с ₆ и ₄ -си ₃	СНЗ	H	N-осн ₃	
338	Сн2Сн2	€6H5	Сн∋	н	N-осн ₃	
339	сн2сн2	2-F-C6H4	СН3	н	N-0CH3	
340	CH2CH2	3-F-C6H4	СНЗ	H	N-OCH3	
341	Сн2Сн2	4-F-C6H4	СН3	н	N-OCH3	
342	си2си2	2-C1-C6H4	сн3	H	N-OCH3	
343	EH2CH2	3-C1-C6H4	сн3	#	N-OCH3	
344	CH2CH2	4-C1-C6H4	$CH_3^{\overset{\circ}{\mathfrak{I}}}$	H	м-осн ₃	
345	сн ₂ сн ₂	2-Br-C6H4	сн3	H	и -осн ₃	
346	сн2сн2	3-Br-C6H4	СН3	н	N -ОСН3	
347	CH2CH2	4-Br-C6H4	ČH3	н	N-ОСН3	
348	сн2сн2	2-I -C6H4	СЙ3	н	м-осн ₃	
349	си2си2	2-сн3-с6к4	CH3	Ħ-	м-осн ₃	
350	CH2CH2	3-сн3-с6н4	сн3	н	N-OCH3	
351	CH2CH2	4-сн3-с6н4	сн3.	н	N-OCH3	
352	CH2CH2	2-осн3-с64	сн3	н	M-OCH3	
353	сн2сн2	3-оси3-с6и4	сн3	н	N-ОСН3	
354	СН2СН2	4-осиз-с6и4	сн3	Н	N-0CH3	
355	сн2сн2	2-CF3-C6H4	снз	н	N-OCH3	
356	СН2СН2	3-сғ3-с6н4	сн3	н	N-OCH3	
357	си2си2	4-CF3-C6H4	снз	н	N-ОСН3	
358	си2си2	4-1-C3H7-C6H4	Сиз	#1	N-OCH3	
359	CH2CH2	4-t-C4H9-C6H4	сн	Ħ	и-осн3	

40 -

O.Z. 0050/41900

Table (continuation)

No,	Y	R ¹	R ⁴	R ⁵	W	Physical data
	G11 G11-	4-C6H5-C6H4	СНЗ	н	N-OCH3	
360	CH2CH2	2,4-Cl ₂ -C ₆ H ₃	CH ₃	Н	N-OCH3	
361	CH2CH2		сн3	н	N-OCH3	
362	CH2CH2	2,4-(CH3)2-C6H3	СНЗ	н	N-OCH3	
363	сн2сн2	2, 4, 6- (CH3) 3-C6H2	СНЗ	н	N-OCH3	
164	сн2сн2	2,4,6-C13-C6H2	СНЗ	н	N-OCH3	
365	сн2сн2	Pyridin-2-yl	СНЗ	Н	N-OCH3	
366	CH2CH2	Pyridin-3-yl	СНЗ	Н	N-OCH3	
367	CH2CH2	Furan-2-yl	CH3	H	N-OCH3	
368	си2си2	6-CH ₃ -Pyridin-2-yl	-	н	N-OCH3	
369	CH2CH2	6-Cl-Pyridin-2-yl	СНЗ	H	N-0CH3	
370	CH2CH2	Benzothiazol-2-yl	СНЗ		N-OCH3	
371	CH=CH	C6H5	сн3	H	N-OCH3	
372	CH=CH	2-F-C6H4	СНЗ	Ħ	•	
373		3-F-C6H4	снз	H	N-OCH3	
374		4-F-C6H4	снз	H	N-OCH3	
375		2-C1-C6H4	снз	н	N-OCH3	
376		3-61-C6H4	снз	H	N-0CH3	
377		4-C1-C6H4	снз	H	N-OCH3	
378		2-Br-C6H4	снз	Н	N-OCH3	
379		3-Br-C6H4	снз	н	и-осн3	
380		4-Br-C6H4	сн3	н	м -осн ₃	
		2-I-c ₆ H ₄	снз	H	N-ОСН3	
381		2-сн ₃ -с ₆ н ₄	снз	н	N-OCH3	
382 383		3-CH3-C6H4	снз	Н	N-OCH3	

No.	Y	R ¹	₽,	R ⁵	W	Physical data
384	Сн≃Сн	4-сн3-с6н4	СНЗ	н	n -осн ₃	
385	CH=CH	_2-осн ₃ -с ₆₄	снз	Н	N-ОСН3	
386	Сн≈Сн	3-осн ₃ -с ₆ н ₄	сн3	H	и -осн ₃	
387	Сн≃Сн	4-осн3-с6н4	сн3	н	N-OCH3	
388	€H≈ĊH	2-CF3-C6H4	СНЗ	н	N-OCH3	
389	Сн≃Сн	3-CF3-C6H4	СНЗ	Ħ	N-OCH3	
390	Сн≈Сн	4-CF3-C6H4	СИЗ	H	N-OCH3	
391	си=ен	4-1-C3H7-C6H4	сн3	н	N-OCH3	
392	Сн=Сн	4-t-C4H9-C6H4	СНЗ	Ĥ	N-OCH3	
393	ен=ен	4-C6H5-C6H4	.сн3	н	M-0CH3	
394	Сн=Сн	2,4-Cl2-C6H3	CH3	н	и-осн3	
395	CH=CH	2, 4-(CH3)2-C6H3	снз	Ĥ	N-OCH3	
396	CH=CH	2, 4, 6-(CH3) 3-C6H2	сн3	н	N-OCH3	
397	Сн=Сн	2, 4, 6-C13-C6H2	сн3	н	N-OCH3	
398	CH=CH	Pyridin-2-yl	снз	Ĥ	и -оси _з	
399	CH=CH	Pyridin-3-y _i l	сн ₃	н	N-OCH3	
400	CH=CH	Furan-2-yl	сн3	н	N-OCH3	
401	сн=сн	6-CH3-Pyrid#n-2-y1	СНЗ	н	N-0CH3	
402	CH=CH	6-Cl-Pyridin-2-yl	сн3	Ĥ	м -осн ₃	
403	сн=сн	Benzothiazo#-2-yl	сн3	H	N-0СH3	
404	сн20	C6H5	сн3	н	и-осн3	
405	СН20	2-F-C6H4	снз	14,	N-OCH3	
406	CH ₂ O	3-F-C6H4	сиз	11	N-OCH3	
407	СН20	4-F-C6H4	СИЗ	33	N-OCH3	

No.	¥	B ₁	R ⁴	R ⁵	W	Physical data
408	си20	2-61-6614	Сн ₃	n	N-OCH3	
409	CH20	3-C1-C6H4	сн3	H	N-ОСН3	
410	€н20	4-C1-C6H4	сн3	H	N-OCH3	
411	CH ₂ Q	2-Br-C6114	снэ	H	N-OCH3	
412	сн20	3-8r-C ₆ H ₄	сн3	н	N-OCH3	
413	CH ₂ O	4-8r-C6H4	сн3	н	N-OCH3	
414	CH ₂ O	2-1-C6H4	снз	H	N-OCH3	
415	CH20	2-сн3-С6н4	СНЗ	H	N-OCH3	
416	CH ₂ O	3-сн3-с6н4	СНЗ	н	N-OCH3	
417	CH ₂ O	4-сн3-С6Н4	снз	H	м -осн ₃	
418	CH20	2-осн3-с64	СНЗ	н	N-OCH3	
419	Сн20	3-осн3-с6н4	CH ₃	H	N-OCH3	
420	CH20	4-осн3-с6н4	снз	н	N-QCH3	
421	CH20	2-cf3-c6H4	Снз	Ħ	N-OCH3	
422	CH20	3-cf3-c6H4	ен3	H	н -осн ₃	
423	Си20	4-cf3-c6H4	СНЗ	н	N-OCH3	
424	CH20	4-1-C3H7-C6H4	сн3	n	N-ОСН3	
425	CH20	4-t-C4H9-C6H4	Сиз	н	м ~О¢н ₃	
426	ен20	4-C6H5-C6H4	ČH3	н	n-осн ₃	
427	СН20	2,4-Cl ₂ -C ₆ H ₃	Сн3	н	и-осиз	
428	CH20	2,4-(CH3)2-C6H3	сн3	H.	N-OCH3	
429	сн20	2, 4, 6-(CH ₃) ₃ -C ₆ H ₂	сн3	н	м -осн ₃	
430	сн20	2, 4, 6-C13-C6H2	си3	} }	N -ОСН3	
431	сн20	Pyridin-2-ył	снэ	11	N-OCH3	

No.	. У	R ¹	Ŕ ⁴	R ⁵	Ŵ	Physical data	
	сн20	Pyridin-3-yl	СНЗ	н	N-OCH3		
433	CH20	Furan-2-yl	СНЗ	H	N-OCH3		
434	СН20	6-CH3-Pyridin-2-yl	СНЗ	H	N-OCH3		
435	CH ₂ O	6-Cl-Pyridin-2-yl	снз	.н	N-0CH3		
436	CH ₂ O	Benzothiazol-2-yl	СH3	H	N-0CH3		
437	OCH ₂	H	СH3	н	N-OCH3		
\$38	OCH ₂	С ₆ н ₅	сн ₃	н.	N-OCH3		
	осн2	2-F-C6H4	сиз Сн ₃	H.	-		
	OCH ₂	3-F-C6H4	сн ₃ Сн ₃		N-OCH3		
	OCH ₂	4-F-C6H4	CH3	H	N-OCH3		
	OCH ₂	2-c1-c6H4	сн3	H	N~OCH3		
	OCH2	3-c1-c ₆ n ₄	_	H	N-0CH3		
	осн2	4-c1-c6H4	СН3 СН3	H	N-OCH3		
	осн ₂	2-Br-C6H4	-	Ĥ	N-OCH3		
	OCH ₂	3-Br-C6H4	СНЗ	н	N-0CH3		
	осн2	4-Br-C ₆ H ₄	СН3	H	и-осн3		
	осн2	2-I-C6H4	сн3	H	и-осн3		
	оси2	2-сн ₃ -с _б н ₄	Сн ₃	н	и-осн3		
	2		сн3	H	м-осн ₃	M.p. 105°C; 1H-NMR(CDC13): 0-2.22(s, 3H); 2.85(d, 3H); 3.85(s, 3H); 4.95(s, 2H); 6.70(sbr, 1H); 6.80	
50	осн2	3-сн ₃ -с ₆ н ₄	снз	н	Ñ- OCH	(mc, 2H);7.0~7.5(m, 6H)	•
51	о сн ₂	4-сиз-с6и4	сн ₃	H	N-OCH3		
	осн2	2-оен3-с64	сн ₃	ti H	N-OCH3		
	осн2	3-осн ₃ -с ₆ н ₄	_		N-OCH3		
	_	<i>3</i> ⊌ -4	снз	ŧŧ	N-OCH3		

. .

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
454	оси2	4-осн3-с6н4	снз	н	N-ОСИЗ	
455	OCH2	2-CF3-C6H4	Снз	H	N-0CH3	
456	оси2	3-CF3-C6H4	сн3	Н	N-ОСН3	
457	OCH ₂	4-CF3-C6H4	сн3	H	N-осн ₃	
458	оси2	2-NO ₂ -C ₆ H ₄	CH3	H	и-оснз	
459	OCH2	4-NO2-C6H4	снз	Ħ	N-OCH3	
460	OCH ₂	2-CH2C1-C6H4	CH3	H	N-OCH3	
461	OCH ₂	3-CH2C1-C6H4	СНЗ	Ĥ	N-ОСН3	
462	och ₂	4-CH2C1-C6H4	сн3	н	N-OCH3	
463	OCH ₂	2-62H5-C6H4	снз	H	N-ОСН3	
464	och ₂	3-e ₂ H5-e ₆ H ₄	СНЗ	H	n~осн3	
465	OCH ₂	4-C2H5-C6H4	снз	н	N-OCH3	
466	och ₂	3-1-C3H7-C6H4	снз	Н	N-OCH3	
467	och ₂	4-1-C3H7-C6H4	СНЗ	Ħ	N-OCH3	
468	оси2	3-t-C4H9-C6H4	сн3	Н	и-осн3	
469	осн2	4-t-C4H9-C6H4	сн ₃	Ħ	N-OCH3	
470	och2	3-C6H5-C6H4	€нз	H	и-осн3	
471	осн2	4-C6H5-C6H4	сн ₃	Ή	и -осиз	
472	och2	4-1-C3H70-C6H4	снз	н	и-осн3	
473	OCH2	4~t-C4H9O-C6H4	сиз	H	и-осиз	
474	ochz	3-с _б н ₅ 0-с _б н ₄	сн3	н	N-OCH3	
475	осн2	4-С6450-С644	снз	н	N-OCH3	
476	осн2	3-c6H5CH20-¢6H4	сн3	Ħ	и-осн3	
477	осн2	4-С6н5Сн20-С6н4	сн3	н	N-ОСН3	

	R ¹	R ⁴	R	≀ ⁵ ₩	Physical	
478 OCH2 479 OCH2 480 OCM2 481 OCM2 482 OCH2 483 OCH2 485 OCH2 486 OCH2 487 OCH2 488 OCH2 489 OCH2 91 OCH2 91 OCH2 92 OCH2 93 OCH2 94 OCH2 95 OCH2 96 OCH2 97 OCH2 98 OCH2	2, 3-C12-C6H3 2, 4-C12-C6H3 2, 5-C12-C6H3 2, 6-C12-C6H3 2, 3, 4-C13-C6H2 2, 3, 5-C13-C6H2 2, 3, 6-C13-C6H2 3, 4, 5-C13-C6H2 C6C15 C6F5 2-F, 4-C1-C6H3 2-CH3, 4-E-C6H11-C6H3 2-CH3, 4-E-C6H11-C6H3 2-CH3, 4-C3H7-C6H3 2, 3-(CH3)2-C6H3 2, 4-(CH3)2-C6H3 2, 4-(CH3)2-C6H3 2, 4, 6-(CH3)3-C6H2 3, 4-(CH3)2-C6H3 3, 5-(CH3)2-C6H3 3, 5-(CH3)2-C6H3	CH3	***************************************	N-OCH3		0.2. 0050/41900

No. Y	R ¹	R ⁴	R ³	5 W	Physical	
500 OCH ₂ 501 OCH ₂ 502 OCH ₂ 503 OCH ₂ 504 OCH ₂ 505 OCH ₂ 506 OCH ₂ 507 OCH ₂ 509 OCH ₂ 510 OCH ₂ 511 O 512 O 513 O 514 O 515 O 516 O 517 O 518 O 519 O 20 O 21 O	3,5(C2H5)2-C6H3 4-Cyclohexyl-C6H4 CH2-CH=CH2 CH2-CH=CH2 CH2-CH=CHCH3 CH2-CH=C(CH3)2 CH2-C(CH3)=CH2 CH2-G6H5 Cyclohexyl CH2-C=CH CH2CH=CH-C6H5 CH2CH2-O-C6H5 H C6H5 3-C6H5-C6H4 3-n-C3H7O-C6H4 Pyridin-2-yl CH2-CH=CH2 3-C6H5O-C6H4 3-C6H5O-C6H4 4-C6H5O-C6H4 4-C6H5O-C6H4	CH3	***************************************	N-OCH3	Physical data	0.2. 0050/41900

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
523	C≡Ć	снз	СНЗ	н	N -ОСН3	
524	C≡€	С6Н5	СНЗ	H	м-осн₃	
525	S	C6H5	снз	H	N-OCH3	
526	S.	2-C1-C6H4	сн3	н	N-OCH3	
527	SCH ₂	С6Н5	сн3	н	N-OCH3	
528	SCH ₂	2-с1-с ₆ н ₄	снз	н	N-OCH3	
529	SCH ₂	4-C1-C6H4	CH ₃	н	й-осн _з	
530	SCH ₂	4-F-C6H4	СНЗ	Ħ	N-OCH3	
531	SCH ₂	4-CH3-C6H4	СНЗ	H	N-OCH3	
532	SCH ₂	4-CH3-Pyridin-2-yl	CH ₃	Н	N-OCH3	
533	SCH ₂	6-Cl-Pyridin-2-yl	СНЗ	H	N-OCH3	
534	SCH ₂	Benzothiazol-2-yl	сн3	н	N-QCH3	
535	SCH2	5-Cl-Benzothiazol-2-yl	сн3	H	N-OCH3	
536	OCH ₂	6-Cl-Benzothiazol-2-yl	сн3	Н	N-OCH3	
537	OCH ₂	4,8-(CH3)2-Chinolin-2-yl	снз	Н	N-OCH3	
538	CO-0	СН3	сн3	Н	N-OCH3	
539	CO-O	С ₆ Н ₅	сн3	н	N-OCH3	
540	03-0	CH ₃	CH ₃	н	N-OCH3	
541	0-Ç0.	C6H5	сн3	н	N-OCH3	
542	Q-C0	С ₆ H5-СН ₂	сн3	н	N-OCH3	
543	0-c0	н	CH3	н	N-OCH3	
544	со-сн2	н	сн3	н	N-OCH3	
545	со-сн2	СНЗ	Снз	11	N-OCH3	
546	CO-CH ₂	Сбия	си3	H	и-осн3	

No. Y	R ¹	R ⁴	R ⁵	W	Physical data
547 co-ch ₂ 548 co-ch ₂ 549 co-ch ₂ 550 ch ₂ -co 551 ch ₂ -co	2-CH3-C6H4 2, 4-{CH3}2-C6H3 2-C1-C6H4 H C6H5	сн ₃ сн ₃ сн ₃ сн ₃ сн ₃	H H H H	n-осн ₃ n-осн ₃ n-осн ₃ n-осн ₃ n-осн ₃	onyoteda data

.

No. Y	\mathbf{R}^{1}		R^4	R ⁵	W	Physical data	
	<u> </u>		C2H5	H	N-OCH3	<u>.</u>	
G CH2	H		C ₂ H ₅	H	и-оснз		
O CHE !	H		C ₂ H ₅	H	N-OCH3		
CHBF	Ħ		C2H5	H	N-OCH3		
12° си ₂ си			C2H5	H	N-OCH3		
3 CH-CH			C ₂ H ₅	Ĥ	N-OCH3		
4 OCH2	C6H5		C ₂ H ₅	н	N-OCH3		
15 CH20	C6H5		C2H5	H	N-OCH3		
16 0	C6H5			H.	N-OCH3		
77 OCH2	C6H5		OCH3	н	N-OCH3		
18 CH=CH	C6H5		осн3		N-OCH3		
79 CH2	11		оснз	H	N-OCH3		
BO CHC	Ħ		OCH3	H	_		
BI CHOC	H		осн3	H	N-OCH3		
	H		осиз	снз	N-OCH3		
82 CH2	C6H5		оси3	снз	N-OCH3		
B3 OCH2			OC 2H5	H	N-OCH3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	•
84 OCH2		:H3)2-C6H3	осиз	СИЗ	N-OCH3	oil; IH-NMR(CDCl3): 8-2.24, 2.28(25, 61); 3.21(5,	i
85 OCH2	2,4-10	372 -83				3ft);3.52(br, 3ft);3.98(s, 3ft);5.05(s, 2ft);6.75 (d, 1ft);6.83(ft, 2ft), 7.40(ftc, 3ft);7.64(d, 1ft)	
86 OCH2	2-сн3	-c ₆ 114	оси3	CH3	и-осиз	M.p. 55°C; 1H-NMK (CDC13) 8-2.30(s, 3H); 3.20, 3.48(2s, 6H); 3.98(s, 3E); 5.08(s, 2H); 6.85(E, 2H); 7.10(m, 2H); 7.40(mc, 3H); 7.65(d, 1H)	

Tab	le (conti		R ⁴	R ⁵	W	Physical data
No.		R ¹	ОСН3	H	N-OCH3	M.p. 89°C;1H-NMR(CDC13) 8=2.22(s,3H);3.75(s,
i87	осн ₂	2-сн3-с6н4	505	**	-	3H);3.94(s,3H);4.98(s,2H);6.80(m,2H);7.13(m, 2H);7.25(d,1H);7.40(mc,2H);7.55(d,1H); 9.15(s,1H)
88	осн ₂	2-сн ₃ -с ₆ н ₄	с ₂ н ₅	С2Н5	N-OCH3	oil;1H-NMR(CDC13) &=1.18(t,3H);2.25(s,3H); 3.45(d,3H);3.93(s,3H);5.09(s,2H);6.85(m,2H) 7.10(mc,2H);7.4(m,3H);7.60(d,1H)
589	€H ₂	Н	снз	н	сн-осн3	- ₁
90	CHC I	H	СНЗ	н	сн-оснз	}
190 191	CHBF	н	СНЗ	Н	сн-оснз	
592	CH I	н	ен3	Н	сн-оснз	
5 9 3		ОН	СНЗ	н	сн-оснз	
	CH2-0-502	СНЗ	СНЗ	H	сн-оснз	
594 505	-	€6H4-CH3	СНЗ	:H -	сн-оснз	
595 596		C6H5	СНЗ	Н	сн-оснз	
597	- "	2-F-C6H4	€H ₃	н	сн-оснз	
598	_	3-F-C6H4	СНЗ	н	сн-оснз	
	-	4-F-C6H4	СНЗ	н	сн-оснз	
599 600		2-C1-C6H4	снз	н	сн-оснз	
601	=	3-C1-C6H4	СН3.	н	сн-осн3	
602	•	4-C1-C6H4	снз	Ħ	сн-оснз	
603	-	2-Br-C6H4	снз	н	сн-оснз	l
604	-	3-Br-C6H4	снз	н	сн-оснз	}
605	= -	4-BE-C6H4	снз	H	сн-осн	3

No.	¥	R ¹	R ⁴	R ⁵	W	Physical data
606	си2-си5	2-I-C6H4	сн3	H	сн-осн3	
607	CH2-CH2	2-сн3-с6н4	СН3	Ĥ	сн-оснз	
608	сн2-сн5	3-сн3-с6н4	CH3	Н	сн-оснз	
609	си2-си2	4-CH3-C6H4	СНЗ	H	сн-осн3	
610	си2-си2	2-осиз-с6и4	CH3	H	сн-осн3	
611	си2-си2	3-осн3-с6н4	СНЗ	Н	сн-осн3	
612	CH2-CH2	4-осн3-с6н4	СНЗ	Н	сн-осн ₃	
613	CH2-CH2	2-CF3-C6H4	С Н3∙	H	сн-осиз	
614	€H2-CH2	3-CF3-C6H4	сн3	H	сн-оснз	
615	CH2-CH2	4-CF3-C6H4	СНЗ	H	Сн-осиз	
616	Сн2~Сн2	4-1-C3H7-C6H4	снз	Ħ	Сн-осн3	
617	CH2-CH2	4-t-C4H9-C6H4	сн3	H	Сн-оснз	
618	CH2-CH2	4-C6H5-C6H4	снз	H-	сн-осн3	
619	CH2-CH2	2,4-C1 ₂ -C ₆ H ₃	СНЗ	H	сн-осн3	
620	€H2-CH2	2,4-(CH3)4-C6H3	снз	H	сн-осн3	
621	Си2-Си2	2, 4, 6-(CH ₃) ₃ -C ₆ H ₂	снз	H	сн-осн3	
622	€н2-ен2	2, 4, 6-C13-C6H2	сн3	н	сн-осн3	
623	сн2-сн2	Pyridiñ-2-yl	сн3	Ħ	си-оси3	
624	en2-ch2	Fy⊱idin-3-yl	CM3	н	сн-оснз	
625	си2-си2	furan-2-yl	сн3	ង	сн-осн3	
626	CH2-CH2	6-cm3-Pyridin-2-yl	снз	H.	си-осиз	
627	ен2-ен2	6-Cl-Pyridin-2-yl	сн3.	Ħ	си-осиз	
628	CH2-CH2	Benzothiazol-2-yl	сыз	н	си-осиз	

O.Z. 0050/41900

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
629	CH=CH	€6H5	снз	Ħ	си-оснз	
630	сн=сн	2-F-C6H4	снз	Н	сн-осиз	
631	CH=CH	3-F-C6H4.	сн3	H	ен-оснз	
632	Сн=Сн	4-F-C6H4	сн3	H	сн-оснз	
633	CH=CH	2-C }~€6H4	енз.	H	сн-осн _з	
634	сн=сн	3-C1-C6H4	СН3	н	сн-осн3	
635	CH=CH	4-C1-C6H4	СНЗ	ъH	сн-осн3	
636	CH=CH	2-Br-C ₆ H ₄	сн3	н	сн-осн3	
637	Сн=Сн	3-Br-C6H4	сн3	H	сн-осн3	
638	Сн≃Сн	4-Br-C6H4	снз	H	сн-осн3	
639	сн=сн	2-I-C6H4	СН3.	н	сн-осн3	
640	сн=сн	2-си3-с6н4	сн3	н	си-осиз	
641	сн=сн	3-CH3-C6H4	снз	H	сн-осн3	
642	CH=CH	4-CH3-C6H4	СНЗ	н	сн-оснз	
643	сн=сн	2-осн ₃ -с ₆ н ₄ .	сн3	н	сн-осн3	
644	сн=сн	3-0CH ₃ -C ₆ H ₄	снз	н	сн-осн3	
645	CH=CH	4-осн3-с6н4	СНЗ	н	сн-осн3	
646	CH=CH	2-CF3-C6H4	сн3	н	СН-ОСН ₃	
647	сн=сн	3-сғ ₃ -с ₆ н ₄	снз	Ħ	си-осиз	
648	Сн=Сн	4-CF3-C6H4	снз	Ħ	сн-осн ₃	
649	CH=CH	4-1-C3H7-C6H4	снз	н	сн-оснз	
650	сн≈сн	4-t-C4H9-C6H4	сн3	H	€н-осн3	
651	сн≈сн	4-С ₆ H ₅ -С ₆ H ₄	сн3	H	сн-оснз	
652	сн≈сн	2,4-С1 ₂ -С ₆ н ₃	ĈH3	н	сн-оснз	

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
653	Сн=Сн	2,4-(CH3)4-C6H3	снз	н	сн-осн3	
654	сн=сн	2, 4, 6-(CH3) 3-C6H2	сн3	Ħ	сн-осн3	
655	CH=CH	2, 4, 6-C13-C6H2	сн3	H	€н-осн3	
656	сн=сн	Pyridin-2-yl	СНЗ	н	сн-осн3	
657	сн=сн	.Pyridin-3-ył	снз	Ĥ	сн-оснз	
658	сн=сн	Furan-2-yl	снз	H	сн-осн3	
659	Сн=Сн	6-CH3-Pyridin-2-yl	сн3	H	сн-осн3	
660	сн=сн	6-C1-Pyridin-2-yl	снз	H	сн-оснз	
661	Сн≈Сн	Benzothiazol-2-yl	СНЗ	н	сн-оснз	
662	CH ₂ Q	C6H5	сн3	H	сн-осн3	
663	CH20	2-F-C6H4	сн3	H	сн-осн3	
664	СН20	3-F-C6H4	сн ₃	H	сн-осн3	
665	CH20	4-F-C6H4	си3	н	сн-осиз	
666	CH20	2-C1-C6H4	сн3	н	сн-оснз	
667	СН2О	3-E1-C6H4	снэ	H	сн-осн3	
668	CH20	4-C1-C6H4	сиз	H	сн-осн3	
669	снго	2-Br-C6H4	сиз	H	сн-осн ₃	
670	си20	3-Br-C6H4	€н3′	Ħ	сн-осн₃	
671	CH ₂ Ø	4-8r-C ₆ H ₄	снз	n	сн-осн3	
672	си20	2- I-c ₆ H ₄	сн3	H	сн-осн3	
673	Сн20	2-сн ₃ -с ₆ н ₄	cH ₃	H	сн-оснз.	
674	сн20	3-сн3-С6н4	сн3	Ħ	сн-осн3	
675	сн20	4-сн ₃ -€ ₆ н ₄	сиз	ft	сн-осн3	
676	€н20	2-оси3-сби4	снз	H	сн-осна	

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
677	Сн20	3-осн3-с6н4	снз	н	сн-осн3	
678	€н20	4-осн3-с6н4	сн3	н	сн-оснз	
679	€H20	2-CF3-C6H4	СНЗ	Ĥ	сн-оснз	
680	CH20	3-CF3-C6H4	СНЗ	н	сн-оснз	
681	СН20	4-CF3-C6H4	СН3	Ħ	сн-осн3	
682	CH ₂ O	4-1-C3H7-C6H4	СНЗ	H	сн-осн3	
683	си20	4-t-C4H9-C6H4	сн3	н	сн-осиз	
684	CH20	4-C6H5-C6H4	сн3	H	сн-оснз	
685	CH20	2,4-C12-C6H3	ен3	Ħ	сн-осн3	
686	СН20	2,4-(CH3)4-C6H3	снз	H	сн-осн3	
687	€H20	2,4,6-(CH3)3-C6H2	CH3	н	сн-осн3	
688	СН20	2, 4, 6-C13-C6H2	сн3	H	си-осиз	
689	С Н20	Pyridin-2-yl	сн3	H	сн-осн3	
690	CH ₂ O	Pyridin-3-yl	сн3	н	сн-осн3	
691	CH20	Furan-2-yl	сн3	H	си-осиз	
692	СН20	6-CH3-Pyridin-2-yl	€н3	H	сн-осн3	
693	CH ₂ O	6-C1-Pyridin-2-y1	сн3	H	си-осиз	
694	EH20	Benzothiazol-2-yl	сн3	H	сн-осн3	
695	осн2	н	€н3	H	сн-оснз	
696	och ₂	C6H5	сӊз	н	сн-осн3	
697	OCH2	2-F-C6H4	сн3	н	сн-осн3	
698	OCH ₂	3-F-C ₆ H ₄	сиз	H	си-осиз	
699	OCH ₂	4-F-C6H4	сн3	H	си-осиз	
700	OCH2	2-C1-C6H4	CH3	И	сн-осна	

No.	Y	R ¹	R4	R ⁵	W	Physical data
701	OCH2	3-c1-c6H4	сн3	н	сн-оснз	
702	осн2	4-C1-C6H4	снз	Ħ	сн-осн3	
703	OCH2	2-Br-C6H4	снз	H	сн-осн3	
704	осн2	3-Br-C6H4	сн3	H	сн-оснз	
705	OCH2	4-Br-C6H4	CH3	H	сн-осн3	
706	осн2	2- I-c ₆ H ₄	СНЗ	H	сн-осн3	
707	оси2	2-сн3-с6н4	сн3	H	сн-осн3	
708	OCH2	3-си3-сен4	снз	H	сн-осн3	
709	осн2	4-сн3-с6н4	снз	H	сн-осн3	
710	OCH2	2-оси3-с6и4	сн3	H	си-осиз	
711	осн2	3-осн ₃ -с ₆ н ₄	снз	H	сн-осн3	
712	och ₂	4-осн3-с6н4	CH3	н	€н-осн ₃	
713	OCH ₂	2-ef3-c6H4	сн3	H	сн-оснз	
714	OCH ₂	3-CF3-C6H4	сн3	н	сн-осн3	
715	OCH ₂	4-cf3-c6H4	Сн3	H	сн-осн3	
716	OCH ₂	2-NO2-C6H4	снз	Ħ	си-осиз	
717	OCH ₂	4-NO2-C6H4	снз	н	сн-осн3	
718	OCH2	2-сн ₂ с1-с ₆ н ₄	ĊH3	Ħ	си-осиз	
719	осн2	3-сн2с1-с6н4	сн ₃	н	сн-осн3	
720	осн2	4-ен ₂ с I -с ₆ н ₄	СН3	н	си-осиз	
721	осн2	2-C2H5-C6H4	сн3	H	си-осиз	
722	OCH2	3-С ₂ н5-С ₆ н ₄	сн3	Ħ	сн-оснз	
723	осн2	4-C2H5-C6H4	сиз	н	си-осиз	

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
724	OCH2	3-t-C3H7-C6H4	снз	H	сн-осн3	
725	OCH ₂	4-1-C3H7-C6H4	€н3	Ħ	сн-оснз	
726	осн2	3-t-C4H9-C6H4	снз	.Ht	сн-осиз	
727	осн2	4-t-C4H9-C6H4	ен3	н	сн-осн3	
728	OCH2	3-C6H5-C6H4	СНЗ	н	сн-осн3	
729	OCH2	4-C6H5-C6H4	сн3	Ħ	сн-оснз	
730	осн2	4-1-C3H7O-C6H4	СНЗ	H	сн-осн3	
731	OCH ₂	4-t-C4H9O-C6H4	снз	н	си-осиз	
732	осн2	3-С6450-С644	сн3	н	сн-осн3	
733	OCH2	4-C6H5O-C6H4	CH3	н	сн-оснз	
734	осн2	3-C6H5CH2O-C6H4	сн3	Ħ	сн-осн3	
735	OCH ₂	4-с6н5сн20-с6н4	снз	н	сн-осн3	
736	OCH ₂	2, 3-C1 ₂ -C ₆ H ₃	сн3	H	сн-осн3	
737	OCH2	2,4-C12-C6H3	CH3	н	сн-осиз	
738	OCH ₂	2,5-C12-C6H3	СНЗ	н	сн-осн3	
739	OCH ₂	2,6-С1 ₂ -С6H3	снз	H	си-осиз	
740	осн2	2, 3, 4-C13-C6H2	снз	Ĥ	си-осиз	
741	OCH2	2, 3, 5-E13-E6#2	€н₃	H	си-осиз	
742	OCH2	2, 3, 6-C13-C6H2	сн3	H	си-осиз	
743	осн2	c6c15	снз	Ħ	си-осиз	
744	OCH2	€6F5	снз	H	си-осиз	
745	осн2	2-F, 4-C1-C6H3	€н3	H	си-осиз	
746	OCH2	4-F, 2-C1-C6H3	сиз	H	си-осиз	
747	осн2	2-CH3, 4-t-C4H9-C6H3	си3	1.1	си-осиз	

57

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
748	OCH ₂	2-CH3, 4-Cyclohexyl-C6H3	СНЗ	н	сн-осн3	
749	OCH2	2-CH2, 4-1-C3H7, -C6H3	сн3	Ħ	сн-осн3	
750	оси2	2, 3-(CH ₃) ₂ -C ₆ H ₃	СНЗ	н	сн-оснз	
761	och ₂	2,4-(CH3)2-C6H3	СНЗ	Ħ	сн-оснз	
762	OCH ₂	2,5-(cн ₃) ₂ -с _б н ₃	сн3	Н	си-осиз	
763	OCH ₂	2, 3, 5-(CH ₃) ₃ -С _б H ₂	сн3	H	сн-оснз	
764	och ₂	2,4,6-(CH3)3-C6H2	CH3	H	сн-осн3	
765	OCH ₂	3, 4-(CH3)2-C6H3	снз	H	сн-оснз	
766	OCH2	3, 5- (CH3) 2-С6H3	си3	Ħ	ен-осн3	
767	оси2	3,5-(C2H5)2-C6H3	ČНЗ	H	сн-осн₃	
768	OCH ₂	4-Cyclonexyl-C6H4	сн3	H	си-осиз	
769	OCH ₂	сн ₂ сн=сн ₂	ĊH3	H	ен-оснз	
770	OCH2	сн2-сн=снсн3	€н3	Ħ	сн-оснз	
77£	осн2	сн2=сн=с (сн3) 2	снз	H	си-осиз	
772	OCH ₂	CH2-C (CH3)=CH2	сн3	н	сн-осн3	
773	och ₂	сн ₂ -с ₆ н ₅	ĆH3	Ħ	сн-осн3	
774	OCH ₂	Cyclahexyl	сн3	Н	сн-оснз	
775	och ₂	ен2-е≈ен	снз	Н	сн-осн3	
776	OCH2	с́н2сн≈сн-с6н5	снз	н	сн-осн3	
777	och2	сн ₂ сн ₂ -0-с ₆ н ₅	сн3	н	сн-осн3	
778	O	H	снз	H	сн-осн3	
779	•0	C6H5	cn_3	H	си-осиз	
780	O	3-С ₆ н ₅ -С ₆ н ₄	снз	Ħ	сн-оснз	
781	O [®]	3-п-С ₃ н ₇ 0-С ₆ н ₄	cn3	.11	сн-оснз	

ĭ 558

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
782	0	Pyridin-2-yl	снз	н	сн-осн3	
783	0	6-C645-Pyridin-2-yl	сн3	H	сн-оснз	
784	0	CH2-CH=CH2	сиз	H	сн-оснз	
785	0	3-C6H50-C6H4	снз	H	си-осиз	
786	O	3-6645-5-6644	CH3	H	си-осиз	
787	0	3-C6H5-CH2O-C6H4	СНЗ	H	си-осиз	
788	0	4-C6H5O-C6M4	CH3	H	сн-осн3	
789	0	4-С6450СН2-С6Н4	сн3	H	сн-осн3	
790	C=C	СНЗ	снз	Ħ	си-осиз	
791	C≈€	C6H5	снз	H	сн-осн3	
792	\$	C ₆ H ₅ .	снз	Ħ	сн-осн3	
793	S	2-C1-C6H4	снз	H	сн-оснз	
794	SCH2	C ₆ H5	снз	Ĥ	сн-оснз	
795	SCH ₂	2-C1-C6H4	CH3	н	сн-осн3	
796	SCH ₂	4-C1-C6H4	СНЗ	Ħ	сн-осн3	
797	SCH2	4-F-C6H4	снз	H	сн-оснз	
798	SCH ₂	4-сн3-с6н4	СНЗ	H	си-осиз	
799	SCH ₂	6-CH3-Pyridin-2-yl	сиз	H.	сн-осн3	
800	SCH ₂	6-Cl-Pyridin-2-yl	снз	н	сн-осн3	
801	SCH2	Benzothiazol-2-yl	снэ	н	€н-осн ₃	
802	SCH ₂	5-C1-Benzothiazol-2-yl	сн3	н	сн-осиз	
803	SCH ₂	6-CI-Benzothiazol-2-yl	СНЗ	H	сн-оснз	
804	SCH2	4,8-(CH3)2-quinolin-2-y1	CH3	Ħ	сн-оснз	

1

59 -

No.	Y	R ¹	R ⁴	R ⁵	· w	***	
805	co-o	Снз				Physical data	•
808		с _{6Н5}	сиз	H	Сн-оснз		
807	0-co	CH3	Снз	н	сн-осн ₃	•	
808	0-co	C6H5	снэ	11	сн-осн ₃		
809	0-60	сн ₂ с _{6н5}	сн3	H	сн-оснз		
310	0-60	H	си3	H	сн-оси3		
311	CO-CH ₂	H :	Снз	н	сн-оснз		
112	co-cn2	си3	сиз	H	сн-оснз		
13	CO-CH ₂	С645	сн3	Ή	сн-осн3		
	CO-CH2	2-си3-с6и4	сн3	H	сн-оснз		
	CO-CH2	2,4-(CH3)2-C6H3	СНЗ	H	сн-оснз		
16	CO-CH ₂	2-c1-c6H4	СН3	H	сн-осн3		
17 (CH2-CO	H	СНЗ	H	си-осиз		
18 (сн2-со	C6H5	снз	H	сн-осн3		
	¥=N-	C6H5.	сн3	H	сн-осн3		
	H2	H	снз	Ħ	сн-осн3		
	HC I	H	c ₂₁₁₅	H .	сн-осн3		
8 c	HBr	tt	c _{2n5}	11	си-осиз		
			cziis	H	си-осиз		
							5
							Ç

.Z. 0050/41000

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
329	сн2сн2	С6Н5	С2н5	н	сн-осн3	
830	CH=CH	C6H5	C2H5	H	сн-осн3	
331	осн2	C6H5	Ć ₂ H5	Н	сн-осн3	
332	Сн20	C ₆ H ₅	C2H5	H	сн-оснз	
833	0	C6H5	€2H5	H	сн-осн3	
834	осн2	С6Н5	осн3	н	сн-осн3	
835	Сн=Сн	С ₆ н ₅	осн3	н	сн-оснз	
B36	CH ₂	H	осн3	H	сн-осн3	
B37	CHCl	Н	осн3	H	сн-осн3	
8 38	CHBr	H	осн3	Н	сн-осн3	
839	Сн2	H	осн3	Снз	сн-осн3	
840	0€н2	€6H5	осн3	СНЗ	сн-осн3	
841	OCH ₂	С6Н5	ос ₂ н ₅	H	си-осиз	
842	CH2CH2	С ₆ Н5	н	н	CH-OMe	
843	CH=CH	C6H5	H	H	CH-OMe	
B 44	CH ₂	C ₆ H ₅	H	H	€H-OMe	
B45	осн2	C6H5	H	H	CH-OMe	
B46	0	€645	н	н	CH~OMe	
847	C=€	C ₆ H ₅	H	Ĥ	CH~OMe	
848	S	€6H5	н	H	CH-OMe	
849	sch ₂	С6Н5	н	н	CH-OMe	
850	CO-0	C ₆ H ₅	н	н	CH-OMe	
851	0-60	С6Н5	Ĥ	H	Сн-Оме	
852	со-ен2	С ₆ н ₅	H	f f	CH-OMe	

O.Z. 0050/41900

No.	Y	R ¹	R ⁴	R ⁵	W	Physical data
853	CH2-CO	C6H5	н	н	CH-OMe	
854	Си2Си2	C6H5	сн3	снз	CH-OMe	
855	CH=CH	€645	сн3	снз	CH-OMe	
856	CH20	C6H5	снз	СНЗ	CH-OMe	
857	OCH2	C6H5	сн3	Снз	CH-OMe	
858	0	Cens	снз	CH3	CH-OMe	
859	€≡€	C6H5	снз	СНЗ	Сн-Оме	
860	S	С6Н5	сиз	СНЗ	CH-OMe	
861	SCH ₂	Cans	сн3	CH3	Сн-Оме	
862	CO-0	C6H5	снз	CH3	CH-OMe	
863	o-co	C6H5	снз	CH3	CH-OMe	
864	CO-CH ₂	C6H5	сн3	СНЗ	CH-OMe	
865	СН2~СО	C6H5	сн3	СНЗ	CH-OMe	
866	OCH ₂	C6H5	С2Н5	снз	CH~OMe	
867	осн2	Č6H5	С3Н7	Снз	CH-OMe	
868	си2си2	.C6H5	н	H	сн-Sсн ₃	
869	СН≃СН	С6Н5	н	H	сн-ѕсн3	
870	сн20	C6H5	н	н	CH-SCH3	
871	OCH ₂	C6H5	н	H	CH-SCH3	
872	0	C6H5	н	н	сн-ѕснз	
873	сн2сн2	С645	снз	сиз	CH-SCH ₃	
874	сн=сн	С6Н5	снз	сиз	сн-ѕснз	
875	си20	C6H5	CH3	сиз	сн-ѕснз	
876	OCH ₂	€645	Сиз	CH ₃	CH-SCH3	

No.	¥	R ¹	R ⁴	R ⁵	W	Physical data
		Calle	снз	снз	сн-ѕснз	•
877		C6H5	СН3	н	сн-ѕснз	
878	CH2CH2	C6H5	СНЗ	H	CH-SCH3	
879	CH=CH	€6H5.	сн3	Ħ	сн-ѕсн3	
880	ен20	C6H5 .	СНЗ	Н	CH-SCH3	
881	оси2	C6H5	СН3	Н	CH-SCH3	 .
882	0	C6H5	-	H	CH-SCH3	
884	CEC	C6H5	CH3	H	CH-SCH3	
885	S	C6H5	СНЗ	" H	CH-SCH3	
886	S-CH2	C ₆ H ₅	СНЗ		CH-SCH3	
887	CO-0	C6H5	CH3	H	CH-SCH3	
888		C6H5	снз	Ħ	_	
		C6H5	снз	H	сн-ѕснз	
889			Снз	Н	сн-ѕснз	
890		C6H5	оснз	H	сн-ѕснз	
891		C6H5	осн3	СНЗ	CH-SCH3	
892	O-CH2	C6H5	•	*		

000

EXAMPLES OF USE

The comparison substance was

which is disclosed in EP-A 310 954 (compound No. 312; E/Z isomer mixture)

EXAMPLE 5

Activity against Plasmopara viticola

Leaves of potted vines of the Müller-Thurgau variety were sprayed with 0.025% by weight aqueous suspensions containing 80% by weight active ingredient (Examples 87, 89, 93, 96, 242, 252, 449, 494, 585 and 586 in the table) and 20% by weight emulsifier in dry matter. To assess the duration of action after the sprayed-on layer had dried, the plants were placed in a greenhouse for 8 days. The leaves were then infected with a suspension of Plasmopara viticola spores and the plants were placed in a chamber saturated with water vapor at 24°C for 48 hours. The vines were then grown in a greenhouse at from 20 to 30°C for 5 days and, to accelerate sporangiophore for discharge, again placed in the humidity chamber for 16 hours. The extent of the fungus attack was then assessed on the undersides of the leaves.

Compared with a control test (no treatment, 60% fungus attack) and the known comparison compound A (35% fungus attack) it was found that the fungus attack was only from 0 to 5% on the plants treated with active ingredients 87, 89, 93, 96, 242, 252, 449, 494, 585 and 586.

EXAMPLE 6

30 Activity against wheat mildew

Leaves of pot-grown wheat seedlings of the frühgold variety were sprayed with 0.025% by weight

10

5

1

20

25

aqueous formulations which contained 80% by weight active ingredient (Examples 449 and 587 in the table) and 20% by weight emulsifier in dry matter, and, 24 hours after the sprayed-on layer had dried, dusted with spores of wheat mildew (Erysiphe graminis var. tritici). The test plants were then placed in a greenhouse at from 20 to 22°C and 75 to 80% relative humidity. The extent of mildew development was assessed after 7 days.

Compared with a control test (no treatment, 70% fungus attack) and the known comparison compound A (35% fungus attack) it was found that plants treated with active ingredients 449 and 587 had no fungus attack.

EXAMPLE 7

Activity against Pyricularia oryzae (preventive treatment)

Leaves of pot-grown rice seedlings of the Bahia variety were sprayed to run off with aqueous emulsions which contained 80% active ingredient and 20% emulsifier in dry matter and, 24 hours later, infected with an aqueous suspension of Pyricularia oryzae spores. The test plants were then placed in chambers at from 20 to 24°C and 95 to 99% relative humidity. The extent of fungus attack was determined after 6 days.

The result shows that active ingredients 242, 252, 449, 585 and 588 when used as 0.05% by weight aqueous formulation have a much better fungicidal action (93%) than the known comparison substance A (20%).

20

5

10

15

25

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An ortho-substituted phenylacetamide of the formula I

where R¹

5

is hydrogen, C₁-C₁₈-alkyl, C₃-C₈-cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C1-C4-alkyl groups, a partially or completely halogenated C₁-C₄-alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C_1 - C_4 -alkyl group and/or one C_1-C_4 -alkoxy group, or is C_2-C_{10} -alkenyl, C_2-C_4 -alkynyl which can carry a phenyl radical, or is C1-C4-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl, phenyl, phenyl-C,-C,-alkyl or phenyl-C2-C4-alkenyl or phenoxy-C1-C4alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in each case three of the following: C,-C,-alkyl, partially or completely halogenated C1-C4-alkyl, C2-C4-alkenyl, partially or completely halogenated C_2-C_4 -alkenyl and C_1-C_4 -alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthio radical, where the last two radicals in turn can have one or two of the following substituents: cyano, halogen or C,-C,-alkyl;

a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a

. •

30

5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C₁-C₄-alkyl radicals or one phenyl radical;

 R^2 and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkexy;

5

10

15

20

30

 R^4 and R^5 are each, independently of one another, hydrogen or C_1 - C_4 -alkyl or one of the two is C_1 - C_4 -alkoxy;

is oxygen, sulfur, -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO-O-, C₁-C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl, C₁-C₄-alkoxy, phenyl or phenoxy, it being possible for the last two radicals in turn to have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl,

 C_2-C_4 -alkenylene or C_2-C_4 -alkynylene, oxy- (C_1-C_4) -alkylene, thio- (C_1-C_4) -alkylene or C_1-C_4 -alkyleneoxy or carbonyl- (C_1-C_4) -alkylene or C_1-C_4 -alkylene-carbonyl;

25 W is C_1-C_4 -alkoxyimino, C_1-C_4 -alkoxymethylene or C_1-C_4 -alkylthiomethylene,

excepting compounds where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^5 are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene.

- 2. An ortho-substituted phenylacetamide of the formula I as claimed in claim 1, where \mathbb{R}^2 and \mathbb{R}^3 are each hydrogen.
- 3. An ortho-substituted phenylacetamide of the formula I as claimed in claim 1, where R², R³ and R³ are each hydrogen, R⁴ is methyl and W is methoxymino or methoxymethylene.

- 4. An ortho-substituted phenylacetamide of the formula I as claimed in claim 1, where R^1 is halophenyl, C_1-C_4 -alkylphenyl, $di-(C_1-C_4)$ -alkylphenyl or benzothiazol-2-yl, R^2 and R^3 are each hydrogen and W is C_1-C_4 -alkoxyimino.
- 5. A process for preparing an ortho-substituted phenylacetamide of the formula I

where

 R^1

LO

5

5

••••

25

30

is hydrogen, C₁-C₁₈-alkyl, C₃-C₈-cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C1-C4-alkyl groups, a partially or completely halogenated C1-C4-alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C1-C4-alkyl group and/or one C_1-C_4 -alkowy group, or is C_2-C_{10} -alkenyl, C_2-C_4 -alkynyl which can carry a phenyl radical, or is C1-C4-alkoxy- C_1-C_4 -alkyl, C_1-C_4 -alkoxycarbonyl, phenyl, phenyl- C_1-C_4 -alkyl or phenyl- C_2-C_4 -alkenyl or phenoxy- C_1-C_4 alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in each case three of the following: C1-C4-alkyl, partially or completely halogenated C_1-C_4 -alkyl, C2-C4-alkenyl, partially or completely halogenated C_2-C_4 -alkenyl and C_1-C_4 -alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthio radical, where the last two radicals in turn can have one or two of the following substituents: cyano, halogen or C1-C4-alkyl;

a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two

oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a 5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C₁-C₄-alkyl radicals or one phenyl radical;

- R^2 and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;
- R^4 and R^5 are each, independently of one another, hydrogen or C_1 - C_4 -alkyl or one of the two is C_1 - C_4 -alkoxy;
- is oxygen, sulfur, -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO-O-, C₁-C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl, C₁-C₄-alkoxy, phenyl or phenoxy, it being possible for the last two radicals in turn to have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl,
 - C_2 - C_4 -alkenylene or C_2 - C_4 -alkynylene, oxy- $(C_1$ - $C_4)$ -alkylene, thio- $(C_1$ - $C_4)$ -alkylene or C_1 - C_4 -alkyleneoxy or carbonyl- $(C_1$ - $C_4)$ -alkylene or C_1 - C_4 -alkylene-carbonyl;
 - W is C_1-C_4 -alkoxyimino, C_1-C_4 -alkoxymethylene or C_1-C_4 -alkylthiomethylene,
- excepting compounds where R¹ is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R² to R³ are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene, which comprises reacting a phenylacetic acid derivative of the formula II

10

5

15

20

25

-

30

where L is halogen or C_1 - C_4 -alkoxy, if desired in the presence of a base, with an amine of the formula III

$$H-N-R^4$$

$$\downarrow_{R^5}$$
(III)

6. A process for preparing an ortho-substituted phenylacetamide I as claimed in claim 1, where R^4 and R^5 are each hydrogen or C_1 - C_4 -alkyl, which comprises hydrolysing a phenylacetonitrile of the formula IV

$$R1-Y$$
 $R2, R3$
 $C=N$
(IV)

in the presence of an acid or base, and alkylating the product if required once or twice on the amide nitrogen.

7. A fungicidal agent containing a liquid or solid carrier and at least one ortho-substituted phenylacetamide of the formula I

$$R1-Y \longrightarrow R2, R3$$

$$CO-N-R4$$

$$R5$$
(I)

5

10

•

1.

where

 R^1 is hydrogen, C₁-C₁₈-alkyl, C₃-C₈-cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C1-C4-alkyl groups, a partially or completely halogenated C1-C4-alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C_1 - C_4 -alkyl group and/or one C_1-C_4 -alkoxy group, or is C_2-C_{10} -alkenyl, C_2-C_4 -alkynyl which can carry a phenyl radical, or is C1-C4-alkoxy-C,-C,-alkyl, C,-C,-alkoxycarbonyl, phenyl, phenyl-C,-C4-alkyl or phenyl-C2-C4-alkenyl or phenoxy-C1-C4alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in each case three of the following: C1-C4-alkyl, partially or completely halogenated C1-C4-alkyl, C,-C,-alkenyl, partially or completely halogenated C_2-C_4 -alkenyl and C_1-C_4 -alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthio radical, where the last two radicals in turn can have one or two of the following substituents: cyano, halogen or C,-C,-alkyl;

a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a 5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C₁-C₄-alkyl radicals or one phenyl radical;

- R^2 and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;
- R^* and R^5 are each, independently of one another, hydrogen or C_1 - C_4 -alkyl or one of the two is C_1 - C_4 -alkoxy;

10

5

15

••••

25

. . . 30

35

is oxygen, sulfur, -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO-O-, C₁-C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl, C₁-C₄-alkoxy, phenyl or phenoxy, it being possible for the last two radicals in turn to have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl, C₂-C₄-alkenylene or C₂-C₄-alkynylene, oxy-(C₁-C₄)-

 C_2-C_4 -alkenylene or C_2-C_4 -alkynylene, oxy- $\{C_1-C_4\}$ -alkylene, thio- $\{C_1-C_4\}$ -alkylene or C_1-C_4 -alkyleneoxy or carbonyl- $\{C_1-C_4\}$ -alkylene or C_1-C_4 -alkylene-carbonyl;

15 W is C_1-C_4 -alkoxyimino, C_1-C_4 -alkoxymethylene or C_1-C_4 -alkylthiomethylene,

excepting compounds where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^5 are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene

8. A pesticide containing inert carriers and at least one ortho-substituted phenylacetamide of the formula I

25 where

30

5

10

20

R¹ is hydrogen, C₁-C₁₈-alkyl, C₃-C₈-cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C₁-C₄-alkyl groups, a partially or completely halogenated C₁-C₄-alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C₁-C₄-alkyl group and/or one C₁-C₄-alkoxy group, or is C₂-C₁₆-alkenyl, C₂-C₄-alkynyl

which can carry a phenyl radical, or is C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl, phenyl, phenyl-C₁-C₄-alkyl or phenyl-C₂-C₄-alkenyl or phenoxy-C₁-C₄-alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in each case three of the following: C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl and C₁-C₄-alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthic radical, where the last two radicals in turn can have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl;
a 5- or 6-membered heterocycle with from one to

a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a 5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C₁-C₄-alkyl radicals or one phenyl radical;

and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

and R^5 are each, independently of one another, hydrogen or C_1 - C_4 -alkyl or one of the two is C_1 - C_4 -alkoxy;

is oxygen, sulfur, -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO+O-, C₁-C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl, C₁-C₄-alkoxy, phenyl or phenoxy, it being possible for the last two radicals

10

5

20

25

 \mathbb{R}^2

R4

Y

35

30

in turn to have one or two of the following substituents: cyano, halogen or C_1-C_4 -alkyl,

 C_2 - C_4 -alkenylene or C_2 - C_4 -alkynylene, oxy- $(C_1$ - C_4)-alkylene, thio- $(C_1$ - C_4)-alkylene or C_1 - C_4 -alkyleneoxy or carbonyl- $(C_1$ - C_4)-alkylene or C_1 - C_4 -alkylene-carbonyl;

W is C_1-C_4 -alkoxyimino, C_1-C_4 -alkoxymethylene or C_1-C_4 -alkylthiomethylene,

excepting compounds where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^5 are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene

9. A method for controlling fungi, which comprises exposing the fungi, the plants threatened by fungal attack, their habitat or the seed of the threatened plants to a fungicidally effective amount of an orthosubstituted phenylacetamide of the formula I

where

 R^1

5

10

15

30

is hydrogen, C_1 - C_{18} -alkyl, C_3 - C_8 -cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C_1 - C_4 -alkyl groups, a partially or completely halogenated C_1 - C_4 -alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C_1 - C_4 -alkyl group and/or one C_1 - C_4 -alkoxy group, or is C_2 - C_{10} -alkenyl, C_2 - C_4 -alkynyl which can carry a phenyl radical, or is C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl, phenyl, phenyl- C_1 - C_4 -alkyl or phenyl- C_2 - C_4 -alkenyl or phenoxy- C_1 - C_4 -alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in

each case three of the following: C_1 - C_4 -alkyl, partially or completely halogenated C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, partially or completely halogenated C_2 - C_4 -alkenyl and C_1 - C_4 -alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthic radical, where the last two radicals in turn can have one or two of the following substituents: cyano, halogen or C_1 - C_4 -alkyl;

a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a 5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C_1 - C_4 -alkyl radicals or one phenyl radical;

 R^2 and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

and R^5 are each, independently of one another, hydrogen or C_1 - C_4 -alkyl or one of the two is C_1 - C_4 -alkoxy;

is oxygen, sulfur, $-SO_-$, $-SO_2$ -, $-CH_2$ -O- SO_2 -, -N=N-, $-O-CO_-$, or $-CO_-$ O-, C_1 -C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C_1 -C₄-alkyl, partially or completely halogenated C_1 -C₄-alkyl, C_2 -C₄-alkenyl, partially or completely halogenated C_2 -C₄-alkenyl, C_1 -C₄-alkoxy, phenyl or phenoxy, it being possible for the last two radicals in turn to have one or two of the following substituents: cyano, halogen or C_1 -C₄-alkyl,

 C_2-C_4 -alkenylene or C_2-C_4 -alkynylene, oxy- (C_1-C_4) -alkylene, thio- (C_1-C_4) -alkylene or C_1-C_4 -alkylene or C_1-C_4 -alkylene-carbonyl;

10

5

15

20

R4

Y

25

30

35

W is C_1-C_4 -alkoxyimino, C_1-C_4 -alkoxymethylene or C_1-C_4 -alkylthiomethylene,

excepting compounds where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^5 are each hydrogen, Y is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene.

10. A method for controlling pests, which comprises exposing insects, nematodes and/or acarids, or their habitat, to an insecticidally, nematicidally or acaricidally effective amount of an ortho-substituted phenylacetamics of the formula I

where

 R^1

5

10

30

is hydrogen, C1-C18-alkyl, C3-C8-cycloalkyl which can have from one to three substituents selected from a group of 3 halogen atoms, 3 C,-C,-alkyl groups, a partially or completely halogenated C1-C4-alkenyl group and a phenyl group which can carry one or two halogen atoms and/or one C₁-C₄-alkyl group and/or one C₁-C₄alkoxy group, or is C_2 - C_{10} -alkenyl, C_2 - C_4 -alkynyl which can carry a phenyl radical, or is C₁-C₄-alkoxy-C₁-C₄alkyl, C,-C,-alkoxy@arbonyl, phenyl, phenyl-C,-C,alkyl or phenyl-C2-C4-alkenyl or phenoxy-C1-C4-alkyl where each aromatic ring can have from one to five substituents selected from a group of 2 nitro radicals, 2 cyano radicals, 5 halogen atoms and in each case three of the following: C1-C4-alkyl, partially or completely halogenated C1-C1-alkyl, C2-C1alkenyl, partially or completely halogenated C2-C1alkenyl and C,-C,-alkoxy, and of one phenyl, benzyl, phenoxy, benzyloxy or phenylthic radical, where the last two radicals in turn can have one or two of the

5

10

15

20

25

30

35

following substituents: cyano, halogen or C₁-C₁-alkyl; a 5- or 6-membered heterocycle with from one to three hetero atoms selected from a group of two oxygen, two sulfur and three nitrogen atoms, excepting compounds with two adjacent oxygen and/or sulfur atoms, it being possible for a benzene ring or a 5- or 6-membered heteroaromatic ring with one nitrogen, oxygen or sulfur atom to be fused on to the heterocycle, and it being possible for the heterocycle to carry one halogen atom, one or two C₁-C₁-alkyl radicals or one phenyl radical;

 R^2 and R^3 are each, independently of one another, hydrogen, cyano, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

R⁴ and R⁵ are each, independently of one another, hydrogen or C₁-C₄-alkyl or one of the two is C₁-C₄-alkoxy;

is oxygen, sulfur, -SO-, -SO₂-, -CH₂-O-SO₂-, -N=N-, -O-CO- or -CO-O-, C₁-C₄-alkylene which can be partially or completely halogenated and can carry one of the following: cyano, nitro, C₁-C₄-alkyl, partially or completely halogenated C₁-C₄-alkyl, C₂-C₄-alkenyl, partially or completely halogenated C₂-C₄-alkenyl, C₁-C₄-alkoxy, phenyl or phenoxy, it being possible for the last two radicals in turn to have one or two of the following substituents: cyano, halogen or C₁-C₄-alkyl,

 C_2 - C_4 -alkenylene or C_2 - C_4 -alkynylene, oxy- $(C_1$ - C_4)-alkylene, thio- $(C_1$ - C_4)-alkylene or C_1 - C_4 -alkyleneoxy or carbonyl- $(C_1$ - C_4)-alkylene or C_1 - C_4 -alkylene-carbonyl;

W is C_1 - C_4 -alkoxyimino, C_1 - C_4 -alkoxymethylene or C_1 - C_4 -alkylthiomethylene,

excepting compounds where R^1 is hydrogen, phenyl or 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyl, R^2 to R^3 are each hydrogen, T is carbonyloxymethylene and W is methoxymethylene or methylthiomethylene

DATED THIS 23rd day of September, 1991
BASE AKTIENCESELLSCHAFT

WATERMARK PATENT & TRADEMARK ATTORNEYS, 2nd Floor, The Atrium, 290 Burwood Road,

