PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 00/04458
GO6F 17/21, 17/30, 3/00, 13/00 Al L.

(43) International Publication Date: 27 January 2000 (27.01.00)

(21) International Application Number: PCT/US99/15951 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,

(22) International Filing Date: 14 July 1999 (14.07.99) GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR,

KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,

(30) Priority Data: SL, TJ, T™™, TR, TT, UA, UG, UZ, VN, YU, ZW, European
60/092,710 14 July 1998 (14.07.98) uUs patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
09/314,863 19 May 1999 (19.05.99) UsS IE, IT, LU, MC, NL, PT, SE).

(71) Applicant: MASSACHUSETTS INSTITUTE OF TECHNOL- | Published
OGY [US/US];, 77 Massachusetts Avenue N.E.-25-230, With international search report.
Cambridge, MA 02139 (US).

(72) Inventors: LEIGHTON, F., Thomson; 15 Charlesden Park,
Newtonville, MA 02160 (US). LEWIN, Daniel, M.; 292
Vassar Street #D6, Cambridge, MA 02139 (US).

(74) Agent: JUDSON, David, H.; Hughes & Luce, L.L.P., 1717
Main Street, Suite 2800, Dallas, TX 75210 (US).

(54) Title: GLOBAL DOCUMENT HOSTING SYSTEM UTILIZING EMBEDDED CONTENT DISTRIBUTED GHOST SERVERS

CONTENT
PROVIDER

~
e e |} A

SR 2 VN
GHOST J=— USER -

DNS SERVER

“TOP LEVEL"
DNS SERVER

“LOW LEVEL"
DNS SERVER

(57) Abstract

A network architecture or framework that supports hosting and content distribution on a truly global scale. The framework allows a
Content Provider to replicate and serve its most popular content at an unlimited number of points throughout the world. The framework
comprises a set of servers operating in a distributed manner. The actual content to be served is preferably supported on a set of hosting
servers (36), sometimes referred to as ghost servers. This content comprises HTML page objects that, conventionally, are served from
a Content Provider site. In accordance with the invention, however, a base HTML document portion of a web page is served from the
Content Provider’s site (1), while one or more embedded objects for the page are served from the hosting servers (3, 4), preferably those
hosting servers (5) near the client machine. By serving the base HTML document from the Content Provider’s site, the Content Provider
maintains control over the content.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Ci
CM
CN
Ccu
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cate d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
1S
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
AU

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/04458 PCT/US99/15951
1

GLOBAL DOCUMENT HOSTING SYSTEM UTILIZING EMBEDDED CONTENT
DISTRIBUTED GHOST SERVERS
Technical Field

This invention relates generally to information retrieval
in a computer network. More particularly, the invention relates
to a novel method of hosting and distributing content on the
Internet that addresses the problems of Internet Service
Providers (ISPs) and Internet Content Providers.
Description of the Related Art

The World Wide Web is the Internet's multimedia information
retrieval system. In the Web environment, client machines
effect transactions to Web servers using the Hypertext Transfer
Protocol (HTTP), which is a known application protocol providing
users access to files (e.g., text, graphics, images, sound,
video, etc.) using a standard page description language known as
Hypertext Markup Language (HTML). HTML provides basic document
formatting and allows the developer to specify "links" to other
servers and files. In the Internet paradigm, a network path to a
server is identified by a so-called Uniform Resource Locator
(URL) having a special syntax for defining a network connection.
Use of an HTML-compatible browéer (e.g., Netscape Navigator or
Microsoft Internet Explorer) at a client machine involves
specification of a link via the URL. In response, the client
makes a request to the server identified in the link and, in

return, receives a document or other object formatted according

10

15

20

25

WO 00/04458 PCT/US99/15951

to HTML. A collection of documents supported on a Web server is
sometimes referred to as a Web site.

It is well known in the prior art for a Web site to mirror
its content at another server. Indeed, at present, the only
method for a Content Provider to place its content closer to its
readers 1s to build copies of its Web site on machines that are
located at Web hosting farms in different locations domestically
and internationally. These copies of Web sites are known as
mirror sites. Unfortunately, mirror sites place unnecessary
economic and operational burdens on Content Providers, and they
do not offer economies of scale. Economically, the overall cost
to a Content Provider with one primary site and one mirror site
is more than twice the cost of a single primary site. This
additional cost is the result of two factors: (1) the Content
Provider must contract with a separate hosting facility for each
mirror site, and (2) the Content Provider must incur additional
overhead expenses associated with keeping the mirror sites
synchronized.

In an effort to address problems associated with mirroring,
companies such as Cisco, Resonate, Bright Tiger, F5 Labs and
Alteon, are developing software and hardware that will help keep
mirror sites synchronized and load balanced. Although these
mechanisms are helpful to the Content Provider, they fail to
address the underlying problem of scalability. Even if a

Content Provider is willing to incur the costs associated with

10

15

20

25

WO 00/04458 PCT/US99/15951

3
mirroring, the technology itself will not scale beyond a few.
(i.e., less than 10) Web sites.

In addition to these economic and scalability issues,
mirroring also entails operational difficulties. A Content
Provider that uses a mirror site must not only lease and manage
physical space in distant locations, but it must also buy and
maintain the software or hardware that synchronizes and load
balances the sites. Current solutions require Content Providers
to supply personnel, technology and other items necessary to
maintain multiple Web sites. In summary, mirroring requires
Content Providers to waste economic and other resources on
functions that are not relevant to their core business of
creating content.

Moreover, Content Providers also desire to retain control
of their content. Today, some ISPs are installing caching
hardware that interrupts the link between the Content Provider
and the end-user. The effect of such caching can produce
devastating results to the Content Provider, including (1)
preventing the Content Provider from obtaining accurate hit
counts on its Web pages (thereby decreasing revenue from
advertisers), (2) preventing the Content Provider from tailoring
content and advertising to specific audiences (which severely
limits the effectiveness of the Content Provider’s Web page),
and (3) providing outdated information to its customers (which

can lead to a frustrated and angry end user).

WO 00/04458 PCT/US99/15951

There remains a significant need in the art to provide a
decentralized hosting solution that enables users to obtain
Internet content on a more efficient basis (i.e., without
burdening network resources unnecessarily) and that likewise
enables the Content Provider to maintain control over its
content.

The present invention solves these and other problems
associated with the prior art.

BRIEF SUMMARY OF THE INVENTION

It is a general object of the present invention to provide
a computer network comprising a large number of widely deployed
Internet servers that form an organic, massively fault-tolerant
infrastructure designed to serve Web content efficiently,
effectively, and reliably to end users.

Another more general object of the present invention is to
provide a fundamentally new and better method to distribute Web-
based content. The inventive architecture provides a method for
intelligently routing and replicating content over a large
network of distributed servers, preferably with no centralized
control.

Another object of the present invention is to provide a
network architecture that moves content close to the user. The
inventive architecture allows Web sites to develop large
audiences without worrying about building a massive

infrastructure to handle the associated traffic.

10

15

20

25

WO 00/04458 PCT/US99/15951

5

Still another object of the present invention is to provide
a fault-tolerant network for distributing Web content. The
network architecture is used to speed-up the delivery of richer
Web pages, and it allows Content Providers with large audiences
to serve them reliably and economically, preferably from servers
located close to end users.

A further feature of the present invention is the ability
to distribute and manage content over a large network without
disrupting the Content Provider's direct relationship with the
end user.

Yet another feature of the present invention is to provide
a distributed scalable infrastructure for the Internet that
shifts the burden of Web content distribution from the Content
Provider to a network of preferably hundreds of hosting servers
deployed, for example, on a global basis.

In general, the present invention is a network architecture
that supports hosting on a truly global scale. The inventive
framework allows a Content Provider to replicate its most
popular content at an unlimited number of points throughout the
world. As an additional feature, the actual content that is
replicated at any one geographic location is specifically
tailored to viewers in that location. Moreover, content is
automatically sent to the location where it is requested,
without any effort or overhead on the part of a Content

Provider.

10

15

20

25

WO 00/04458 PCT/US99/15951
6

It is thus a more general object of this invention to
provide a global hosting framework to enable Content Providers
to retain control of their content.

The hosting framework of the present invention comprises a
set of servers operating in a distributed manner. The actual
content to be served is preferably supported on a set of hosting
servers (sometimes referred to as ghost servers). This content
comprises HTML page objects that, conventionally, are served
from a Content Provider site. In accordance with the invention,
however, a base HTML document portion of a Web page is served
from the Content Provider’s site while one or more embedded
objects for the page are served from the hosting servers,
preferably, those hosting servers nearest the client machine.

By serving the base HTML document from the Content Provider’s
site, the Content Provider maintains control over the content.

The determination of which hosting server to use to serve a
given embedded object is effected by other resources in the
hosting framework. In particular, the framework includes a
second set of servers (or server resources) that are configured
to provide top level Domain Name Service (DNS). In addition,
the framework also includes a third set of servers (or server
resources) that are configured to provide low level DNS
functionality. When a client machine issues an HTTP request to
the Web site for a given Web page, the base HMTL document is

served from the Web site as previously noted. Embedded objects

10

15

20

25

WO 00/04458 PCT/US99/15951

for the page preferably are served from particular hosting
servers identified by the top- and low-level DNS servers. To
locate the appropriate hosting servers to use, the top-level DNS
server determines the user’s location in the network to identify
a given low-level DNS server to respond to the request for the
embedded object. The top-level DNS server then redirects the
request to the identified low-level DNS server that, in turn,
resolves the request into an IP address for the given hosting
server that serves the object back to the client.

More generally, it is possible (and, in some cases,
desirable) to have a hierarchy of DNS servers that consisting of
several levels. The lower one moves in the hierarchy, the closer
one gets to the best region.

A further aspect of the invention is a means by which
content can be distributed and replicated through a collection
of servers so that the use of memory is optimized subject to the
constraints that there are a sufficient number of copies of any
object to satisfy the demand, the copies of objects are spread
so that no server becomes overloaded, copies tend to be located
on the same servers as time moves forward, and copies are
located in regions close to the clients that are requesting
them. Thus, servers operating within the framework do not keep
copies of all of the content database. Rather, given servers
keep copies of a minimal amount of data so that the entire

system provides the required level of service. This aspect of

10

15

20

25

WO 00/04458 PCT/US99/15951

8
the invention allows the hosting scheme to be far more effic}ent
than schemes that cache everything everywhere, or that cache
objects only in prespecified locations.

The global hosting framework is fault tolerant at each
level of operation. 1In particular, the top level DNS server
returns a list of low-level DNS servers that may be used by the
client to service the request for the embedded object.

Likewise, each hosting server preferably includes a buddy server
that 1s used to assume the hosting responsibilities of its
assoclated hosting server in the event of a failure condition.

According to the present invention, load balancing across
the set of hosting servers is achieved in part through a novel
technique for distributing the embedded object requests. In
particular, each embedded object URL is preferably modified by
prepending a virtual server hostname into the URL. More
generally, the virtual server hostname is inserted into the URL.
Preferably, the virtual server hostname includes a value
(sometimes referred to as a serial number) generated by applying
a given hash function to the URL or by encoding given
information about the object into the value. This function
serves to randomly distribute the embedded objects over a given
set of virtual server hostnames. In addition, a given
fingerprint value for the embedded object is generated by
applying a given hash function to the embedded object itself.

This given value serves as a fingerprint that identifies whether

10

15

20

25

WO 00/04458 PCT/US99/15951

9
the embedded object has been modified. Preferably, the
functions used to generate the values (i.e., for the virtual
server hostname and the fingerprint) are applied to a given Web
page in an off-line process. Thus, when an HTTP request for the
page is received, the base HTML document is served by the Web
site and some portion of the page’s embedded objects are served
from the hosting servers near (although not necessarily the
closest) to the client machine that initiated the request.

The foregoing has outlined some of the more pertinent
objects and features of the present invention. These objects
should be construed to be merely illustrative of some of the
more prominent features and applications of the invention. Many
other beneficial results can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects and
a fuller understanding of the invention may be had by referring
to the following Detailed Description of the Preferred
Embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention
and the advantages thereof, reference should be made to the
following Detailed Description taken in connection with the
accompanying drawings in which:

Figure 1 is a representative system in which the present

invention is implemented;

10

15

20

WO 00/04458 PCT/US99/15951
10

Figure 2 is a simplified representation of a markup
language document illustrating the base document and a set of
embedded objects;

Figure 3 is a high level diagram of a global hosting system
according to the present invention;

Figure 4 is a simplified flowchart illustrating a method of
processing a Web page to modified embedded object URLs that is
used in the present invention;

Figure 5 is a simplified state diagram illustrating how the
present invention responds to a HTTP request for a Web page.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A known Internet client-server system is implemented as
illustrated in Figure 1. A client machine 10 is connected to a
Web server 12 via a network 14. For illustrative purposes,
network 14 is the Internet, an intranet, an extranet or any
other known network. Web server 12 is one of a plurality of
servers which are accessible by clients, one of which is
illustrated by machine 10. A representative client machine
includes a browser 16, which is a known software tool used to
access the servers of the network. The Web server supports
files (collectively referred to as a "Web" site) in the form of
hypertext documents and objects. In the Internet paradigm, a
network path to a server is identified by a so-called Uniform

Resource Locator (URL).

10

15

20

25

WO 00/04458 PCT/US99/15951

11

A representative Web server 12 is a computer comprising a
processor 18, an operating system 20, and a Web server program
22, such as Netscape Enterprise Server. The server 12 also
includes a display supporting a graphical user interface (GUI)
for management and administration, and an Application
Programming Interface (API) that provides extensions to enable
application developers to extend and/or customize the core
functionality thereof through software programs including Common
Gateway Interface (CGI) programs, plug-ins, servlets, active
server pages, server side include (SSI) functions or the like.

A representative Web client is a personal computer that is
x86-, PowerPC®- or RISC-based, that includes an operating system
such as IBM® 0S/2® or Microsoft Windows '95, and that includes a
Web browser, such as Netscape Navigator 4.0 (or higher), having
a Java Virtual Machine (JVM) and support for application plug-
ins or helper applications. A client may also be a notebook
computer, a handheld computing device (e.g., a PDA), an Internet
appliance, or any other such device connectable to the computer
network.

As seen in Figure 2, a typical Web page comprises a markup
language (e.g. HTML) master or base document 28, and many
embedded objects (e.g., images, audio, video, or the like) 30.
Thus, in a typical page, twenty or more embedded images or
objects are quite common. Each of these images is an

independent object in the Web, retrieved (or validated for

10

15

20

25

WO 00/04458 PCT/US99/15951

12
change) separately. The common behavior of a Web client,
therefore, is to fetch the base HTML document, and then
immediately fetch the embedded objects, which are typically (but
not always) located on the same server. According to the
present invention, preferably the markup language base document
28 is served from the Web server (i.e., the Content Provider
site) whereas a given number (or perhaps all) of the embedded
objects are served from other servers. As will be seen,
preferably a given embedded object is served from a server
(other than the Web server itself) that is close to the client
machine, that is not overloaded, and that is most likely to
already have a current version of the required file.

Referring now to Figure 3, this operation is achieved by
the hosting system of the present invention. As will be seen,
the hosting system 35 comprises a set of widely-deployed servers
(or server resources) that form a large, fault-tolerant
infrastructure designed to serve Web content efficiently,
effectively, and reliably to end users. The servers may be
deployed globally, or across any desired geographic regions. As
will be seen, the hosting system provides a distributed
architecture for intelligently routing and replicating such
content. To this end, the global hosting system 35 comprises
three (3) basic types of servers (or server resources): hosting
servers (sometimes called ghosts) 36, top-level DNS servers 38,

and low-level DNS servers 40. Although not illustrated, there

10

15

20

WO 00/04458 PCT/US99/15951

13
may be additional levels in the DNS hierarchy. Alternatively,
there may be a single DNS level that combines the functionality
of the top level and low-level servers. In this illustrative
embodiment, the inventive framework 35 is deployed by an
Internet Service Provider (ISP), although this is not a
limitation of the present invention. The ISP or ISPs that
deploy the inventive global hosting framework 35 preferably have
a large number of machines that run both the ghost server
component 36 and the low-level DNS component 40 on their
networks. These machines are distributed throughout the
network; preferably, they are concentrated around network
exchange points 42 and network access points 44, although this
is not a requirement. In addition, the ISP preferably has a
small number of machines running the top-level DNS 38 that may
also be distributed throughout the network.

Although not meant to be limiting, preferably a given
server used in the framework 35 includes a processor, an
operating system (e.g., Linux, UNIX, Windows NT, or the like), a
Web server application, and a set of application routines used
by the invention. These routines are conveniently implemented
in software as a set of instructions executed by the processor
to perform various process or method steps as will be described
in more detail below. The servers are preferably located at the

edges of the network (e.g., in points of presence, or POPs).

10

15

20

25

WO 00/04458 PCT/US99/15951

14

Several factors may determine where the hosting servers are
placed in the network. Thus, for example, the server locations
are preferably determined by a demand driven network map that
allows the provider (e.g., the ISP) to monitor traffic requests.
By studying traffic patterns, the ISP may optimize the server
locations for the given traffic profiles.

According to the present invention, a given Web page
(comprising a base HTML document and a set of embedded objects)
is served in a distributed manner. Thus, preferably, the base
HTML document is served from the Content Provider that normally
hosts the page. The embedded objects, or some subset thereof,
are preferentially served from the hosting servers 36 and,
specifically, given hosting servers 36 that are near the client
machine that in the first instance initiated the request for the
Web page. 1In addition, preferably loads across the hosting
servers are balanced to ensure that a given embedded object may
be efficiently served from a given hosting server near the
client when such client requires that object to complete the
page.

To serve the page contents in this manner, the URL
associated with an embedded object is modified. As is well-
known, each embedded object that may be served in a page has its
own URL. Typically, the URL has a hostname identifying the
Content Provider’s site from where the object is conventionally

served, 1.e., without reference to the present invention.

10

15

20

25

WO 00/04458 PCT/US99/15951

15
According to the invention, the embedded object URL is first
modified, preferably in an off-line process, to condition the
URL to be served by the global hosting servers. A flowchart
illustrating the preferred method for modifying the object URL
is illustrated in Figure 4.

The routine begins at step 50 by determining whether all of
the embedded objects in a given page have been processed. If
so, the routine ends. If not, however, the routine gets the
next embedded object at step 52. At step 54, a virtual server
hostname is prepended into the URL for the given embedded
object. The virtual server hostname includes a value (e.g., a
number) that is generated, for example, by applying a given hash
function to the URL. As is well-known, a hash function takes
arbitrary length bit strings as inputs and produces fixed length
bit strings (hash values) as outputs. Such functions satisfy
two conditions: (1) it is infeasible to find two different
inputs that produce the same hash value, and (2) given an input
and its hash value, it is infeasible to find a different input
with the same hash value. In step 54, the URL for the embedded
object is hashed into a value xx,xxx that is then included in
the virtual server hostname. This step randomly distributes the
object fo a given virtual server hostname.

The present invention is not limited to generating the
virtual server hostname by applying a hash function as described

above. As an alternative and preferred embodiment, a virtual

10

15

20

25

WO 00/04458 PCT/US99/15951

16

server hostname is generated as follows. Consider the
representative hostname al234.g.akamaitech.net. The 1234 value,
sometimes referred to as a serial number, preferably includes
information about the object such as its size (big or small),
its anticipated popularity, the date on which the object was
created, the identity of the Web site, the type of object (e.g.,
movie or static picture), and perhaps some random bits generated
by a given random function. Of course, it is not required that
any given serial number encode all of such information or even a
significant number of such components. Indeed, in the simplest
case, the serial number may be a simple integer. In any event,
the information is encoded into a serial number in any
convenient manner. Thus, for example, a first bit is used to
denote size, a second bit is used to denote popularity, a set of
additional bits is used to denote the date, and so forth. As
noted above in the hashing example, the serial number is also
used for load balancing and for directing certain types of
traffic to certain types of servers. Typically, most URLs on
the same page have the same serial number to minimize the number
of distinguished name (DN) accesses needed per page. This
requirement is less important for larger objects.

Thus, according to the present invention, a virtual server
hostname is prepended into the URL for a given embedded object,
and this hostname includes a value (or serial number) that is

generated by applying a given function to the URL or object.

10

15

20

25

WO 00/04458 PCT/US99/15951

17
That function may be a hash function, an encoding function, or
the like.

Turning now back to the flowchart, the routine then
continues at step 56 to include a given value in the object’s
URL. Preferably, the given value is generated by applying a
given hash function to the embedded object. This step creates a
unique fingerprint of the object that is useful for determining
whether the object has been modified. Thereafter, the routine
returns to step 50 and cycles.

With the above as background, the inventive global hosting
framework is now described in the context of a specific example.
In particular, it is assumed that a user of a client machine in
Boston requests a Content Provider Web page normally hosted in
Atlanta. For illustrative purposes, It is assumed that the
Content Provider is using the global hosting architecture within
a network, which may be global, international, national,
regional, local or private. Figure 5 shows the various
components of the system and how the request from the client is
processed. This operation is not to be taken by way of
limitation, as will be explained.

Step 1: The browser sends a request to the Provider’s Web
site (Item 1). The Content Provider site in Atlanta receives
the request in the same way that it does as if the global
hosting framework were not being implemented. The difference is

in what is returned by the Provider site. Instead of returning

WO 00/04458 PCT/US99/15951

18
the usual page, according to the invention, the Web site returns
a page with embedded object URLs that are modified according to
the method illustrated in the flowchart of Figure 4. As
previously described, the URLs preferably are changed as
follows:

Assume that there are 100,000 virtual ghost servers, even
though there may only be a relatively small number (e.g., 100)
physically present on the network. These virtual ghost servers
or virtual ghosts are identified by the hostname:
ghostxxxxx.ghosting.com, where xxxxx is replaced by a number
between 0 and 99,999. After the Content Provider Web site is
updated with new information, a script executing on the Content
Provider site is run that rewrites the embedded URLs.
Preferably, the embedded URLs names are hashed into numbers
between 0 and 99,999, although this range is not a limitation of
the present invention. An embedded URL is then switched to
reference the virtual ghost with that number. For example, the
following is an embedded URL from the Provider’s site:

If the serial number for the object referred to by this URL
is the number 1467, then preferably the URL is rewritten to
read:
<IMG SRC = http:
//ghost1467.ghosting.akamai.com/www.provider.com/TECH/images/spa

ce.story.gif>.

10

15

20

25

WO 00/04458 PCT/US99/15951

19

The use of serial numbers in this manner distributes the
embedded URLs roughly evenly over the 100,000 virtual ghost
server names. Note that the Provider site can still personalize
the page by rearranging the various objects on the screen
according to individual preferences. Moreover, the Provider can
also insert advertisements dynamically and count how many people
view each ad.

According to the preferred embodiment, an additional
modification to the embedded URLs is made to ensure that the
global hosting system does not serve stale information. As
previously described, preferably a hash of the data contained in
the embedded URL is also inserted into the embedded URL itself.
That is, each embedded URL may contain a fingerprint of the data
to which it points. When the underlying information changes, so
does the fingerprint, and this prevents users from referencing
old data.

The second hash takes as input a stream of bits and outputs
what is sometimes referred to as a fingerprint of the stream.
The important property of the fingerprint is that two different
streams almost surely produce two different fingerprints.
Examples of such hashes are the MD2 and MD5 hash functions,
however, other more transparent methods such as a simple
checksum may be used. For concreteness, assume that the output
of the hash is a 128 bit signature. This signature can be

interpreted as a number and then inserted into the embedded URL.

10

15

20

25

WO 00/04458 PCT/US99/15951
20
For example, if the hash of the data in the picture .
space.story.gif froﬁ the Provider web site is the number 28765,
then the modified embedded URL would actually look as follows:
<IMG
SRC=http://ghost1467.ghosting.akamai.com/28765/www.provider.com
/TECH/images/space.story.gif">.

Whenever a page is changed, preferably the hash for each
embedded URL is recomputed and the URL is rewritten if
necessary. If any of the URL’s data changes, for example, a new
and different picture is inserted with the name space.story.gif,
then the hash of the data is different and therefore the URL
itself will be different. This scheme prevents the system from
serving data that is stale as a result of updates to the
original page.

For example, assume that the picture space.story.gif is
replaced with a more up-to-date version on the Content Provider
server. Because the data of the pictures changes, the hash of
the URL changes as well. Thus, the new embedded URL looks the
same except that a new number is inserted for the fingerprint.
Any user that requests the page after the update receives a page
that points to the new picture. The old picture is never
referenced and cannot be mistakenly returned in place of the
more up-to-date information.

In summary, preferably there are two hashing operations

that are done to modify the pages of the Content Provider.

10

15

20

25

WO 00/04458 PCT/US99/15951

21

First, hashing can be a component of the process by which a .
serial number is selected to transform the domain name into a
virtual ghost name. As will be seen, this first transformation
serves to redirect clients to the global hosting system to
retrieve the embedded URLs. Next, a hash of the data pointed to
by the embedded URLs is computed and inserted into the URL.
This second transformation serves to protect against serving
stale and out-of-date content from the ghost servers.
Preferably, these two transformations are performed off-line and
therefore do not pose potential performance bottlenecks.

Generalizing, the preferred URL schema is as follows. The
illustrative domain www.domainname.com/frontpage.jpg is
transformed into:

XXXX.yy.zzzz.net/aaaa/www.domainname.com/frontpage.jpg,
where:

XXXX = serial number field

vy = lower level DNS field

2222 top level DNS field

1l

aaaa other information (e.g., fingerprint) field.

If additional levels of the DNS hierarchy are used, then
there may be additional lower level DNS fields, e.g.,
XXXX.Y1Y1.Y2Y2 zzz.net/aaaa/.

Step 2: After receiving the initial page from the Content

Provider site, the browser needs to load the embedded URLs to

display the page. The first step in doing this is to contact

10

15

20

WO 00/04458 PCT/US99/15951

22
the DNS server on the user’s machine (or at the user’s ISP) to
resolve the altered hostname, in this case:
ghostl467.ghosting.akamai.com. As will be seen, the global
hosting architecture of the present invention manipulates the
DNS system so that the name is resolved to one of the ghosts
that is near the client and is likely to have the page already.
To appreciate how this is done, the following describes the
progress of the DNS query that was initiated by the client.

Step 3: As previously described, preferably there are two
types of DNS servers in the inventive system: top-level and
low-level. The top level DNS servers 38 for ghosting.com have a
special function that is different from regular DNS servers like
those of the .com domain. The top level DNS servers 38 include
appropriate control routines that are used to determine where in
the network a user is located, and then to direct the user to a
akamai.com (i.e., a low level DNS) server 40 that is close-by.
Like the .com domain, akamai.com preferably has a number of top-
level DNS servers 38 spread throughout the network for fault
tolerance. Thus, a given top level DNS server 38 directs the
user to a region in the Internet (having a collection of hosting
servers 36 that may be used to satisfy the request for a given
embedded object) whereas the low level DNS server 40 (within the
identified region) identifies a particular hosting server within

that collection from which the object is actually served.

10

15

20

25

WO 00/04458 PCT/US99/15951

23

More generally, as noted above, the DNS process can contain
several levels of processing, each of which serves to better
direct the client to a ghost server. The ghost server name can
also have more fields. For example, “al23.g.g.akamaitech.net”
may be used instead of “al23.ghost.akamai.com.” 1If only one DNS
level is used, a representative URL could be “al23.akamai.com. ”

Although other techniques may be used, the user’s location
in the network preferably is deduced by looking at the IP
address of the client machine making the request. In the
present example, tﬂe DNS server is running on the machine of the
user, although this is not a requirement. If the user is using
an ISP DNS server, for example, the routines make the assumption
that the user is located near (in the Internet sense) this
server. Alternatively, the user's location or IP address could
be directly encoded into the request sent to the top level DNS.
To determine the physical location of an IP address in the
network, preferably, the top level DNS server builds a network
map that is then used to identify the relevant location.

Thus, for example, when a request comes in to a top level
DNS for a resolution for al234.g.akamaitech.net, the top level
DNS looks at the return address of the requester and then
formulates the response based on that address according to a
network map. In this example, the al234 is a serial number, the
g is a field that refers to the lower level DNS, and akamaitech

refers to the top level DNS. The network map preferably

10

15

20

WO 00/04458 PCT/US99/15951

24
contains a list of all Internet Protocol (IP) blocks and, for
each IP block, the map determines where to direct the request.
The map preferably is updated continually based on network
conditions and traffic.

After determining where in the network the request
originated, the top level DNS server redirects the DNS request
to a low level DNS server close to the user in the network. The
ability to redirect requests is a standard feature in the DNS
system. In addition, this redirection can be done in such a way
that if the local low level DNS server is down, there is a
backup server that is contacted.

Preferably, the TTL (time to live) stamp on these top level
DNS redirections for the ghosting.com domain is set to be long.
This allows DNS caching at the user’s DNS servers and/or the
ISP’s DNS servers to prevent the top level DNS servers from
being overloaded. 1If the TTL for ghosting.akamai.com in the DNS
server at the user’s machine or ISP has expired, then a top
level server is contacted, and a new redirection to a local low
level ghosting.akamai.com DNS server is returned with a new TTL
stamp. It should be noted the system does not cause a
substantially larger number of top level DNS lookups than what
is done in the current centralized hosting solutions. This is
because the TTL of the top level redirections are set to be high

and, thus, the vast majority of users are directed by their

10

15

20

25

WO 00/04458 PCT/US99/15951

25
local DNS straight to a nearby low level ghosting.akamai.com DNS
server.

Moreover, fault tolerance for the top level DNS servers is
provided automatically by DNS similarly to what is done for the
popular .com domain. Fault tolerance for the low level DNS
servers preferably is provided by returning a list of possible
low level DNS servers instead of just a single server. If one
of the low level DNS servers is down, the user will still be
able to contact one on the list that is up and running.

Fault tolerance can also be handled via an “overflow
control” mechanism wherein the client is redirected to a low-
level DNS in a region that is known to have sufficient capacity
to serve the object. This alternate approach is very useful in
scenarios where there is a larée amount of demand from a
specific region or when there is reduced capacity in a region.
In general, the clients are directed to regions in a way that
minimizes the overall latency experienced by clients subject to
the constraint that no region becomes overloaded. Minimizing
overall latency subject to the regional capacity constraints
preferably is achieved using a min-cost multicommodity flow
algorithm.

Step 4: At this point, the user has the address of a
close-by ghosting.com DNS server 38. The user’s local DNS server
contacts the close-by low level DNS server 40 and requests a

translation for the name ghostl467.ghosting.akamai.com. The

10

15

20

25

WO 00/04458 PCT/US99/15951

26
local DNS server is responsible for returning the IP address of
one of the ghost servers 36 on the network that is close to the
user, not overloaded, and most likely to already have the
required data.

The basic mechanism for mapping the virtual ghost names to
real ghosts is hashing. One preferred technique is so-called
consistent hashing, as described in U.S. Serial No. 09/042,228,
filed March 13, 1998, and in U.S. Serial No. 09/088,825, filed
June 2, 1998, each titled Method And Apparatus For Distributing
Requests Among A Plurality Of Resources, and owned by the
Massachusetts Institute of Technology, which applications are
incorporated herein by reference. Consistent hash functions
make the system robust under machine failures and crashes. It
also allows the system to grow gracefully, without changing
where most items are located and without perfect information
about the system.

According to the invention, the virtual ghost names may be
hashed into real ghost addresses using a table lookup, where the
table is continually updated based on network conditions and
traffic in such a way to insure load balancing and fault
tolerance. Preferably, a table of resolutions is created for
each serial number. For example, serial number 1 resolves to
ghost 2 and 5, serial number 2 resolves to ghost 3, serial
number 3 resolves to ghosts 2,3,4, and so forth. The goal is to

define the resolutions so that no ghost exceeds its capacity and

10

15

20

25

WO 00/04458 PCT/US99/15951

27
that the total number of all ghosts in all resolutions is
minimized. This is done to assure that the system can take
maximal advantage of the available memory at each region. This
is a major advantage over existing load balancing schemes that
tend to cache everything everywhere or that only cache certain
objects in certain locations no matter what the loads are. In
general, it is desirable to make assignments so that resolutions
tend to stay consistent over time provided that the loads do not
change too much in a short period of time. This mechanism
preferably also takes into account how close the ghost is to the
user, and how heavily loaded the ghost is at the moment.

Note that the same virtual ghost preferably is translated
to different real ghost addresses according to where the user is
located in the network. For example, assume that ghost server
18.98.0.17 is located in the United States and that ghost server
132.68.1.28 is located in Israel. A DNS request for
ghost1l487.ghosting.akamai.com originating in Boston will resolve
to 18.98.0.17, while a request originating in Tel-Aviv will
resolve to 132.68.1.28.

The low-level DNS servers monitor the various ghost servers
to take into account their loads while translating virtual ghost
names into real addresses. This is handled by a software
routine that runs on the ghosts and on the low level DNS
servers. In one embodiment, the load information is circulated

among the servers in a region so that they can compute

10

15

20

WO 00/04458 PCT/US99/15951

28
resolutions for each serial number. One algorithm for computing
resolutions works as follows. The server first computes the
projected load (based on number of user requests) for each
serial number. The serial numbers are then processed in
increasing order of load. For each serial number, a random
priority list of desired servers is assigned using a consistent
hashing method. Each serial number is then resolved to the
smallest initial segment of servers from the priority list so
that no server becomes overloaded. For example, if the priority
list for a serial number is 2,5,3,1,6, then an attempt is made
first to try to map the load for the serial number to ghost 2.
If this overloads ghost 2, then the load is assigned to both
ghosts 2 and 5. 1If this produced too much load on either of
those servers, then the load is assigned to ghosts 2,3, and 5,
and so forth. The projected load on a server can be computed by
looking at all resolutions that contain that server and by
adding the amount of load that is likely to be sent to that
server from that serial number. This method of producing
resolutions is most effective when used in an iterative fashion,
wherein the assignments starts in a default state, where every
serial number is mapped to every ghost. By refining the
resolution table according to the previous procedure, the load
is balanced using the minimum amount of replication (thereby

maximally conserving the available memory in a region).

10

15

20

25

WO 00/04458 PCT/US99/15951

29

The TTL for these low level DNS translations is set to be
short to allow a quick response when heavy load is detected on
one of the ghosts. The TTL is a parameter that can be
manipulated by the system to insure a balance between timely
response to high load on ghosts and the load induced on the low
level DNS servers. Note, however, that even if the TTL for the
low level DNS translation is set to 1-2 minutes, only a few of
the users actually have to do a low level DNS lookup. Most
users will see a DNS translation that is cached on their machine
or at their ISP. Thus, most users go directly from their local
DNS server to the close-by ghost that has the data they want.
Those users that actually do a low level DNS lookup have a very
small added latency, however this latency is small compared to
the advantage of retrieving most of the data from close by.

As noted above, fault tolerance for the low level DNS
servers is provided by having the top level DNS return a list of
possible low level DNS servers instead of a single server
address. The user’s DNS system caches this list (part of the
standard DNS system), and contacts one of the other servers on
the list if the first one is down for some reason. The low
level DNS servers make use of a standard feature of DNS to
provide an extra level of fault tolerance for the ghost servers.
When a name is translated, instead of returning a single name, a
list of names is returned. If for some reason the primary fault

tolerance method for the ghosts (known as the Buddy system,

10

15

20

25

WO 00/04458 PCT/US99/15951

30
which is described below) fails, the client browser will contact
one of the other ghosts on the list.

Step 5: The browser then makes a request for an object
named al23.ghosting.akamai.com/.../www.provider.com/TECH/
images/space.story.gif from the close-by ghost. Note that the
name of the original server (www.provider.com) preferably is
included as part of the URL. The software running on the ghost
parses the page name into the original host name and the real
page name. If a copy of the file is already stored on the
ghost, then the data is returned immediately. If, however, no
copy of the data on the ghost exists, a copy is retrieved from
the original server or another ghost server. Note that the
ghost knows who the original server was because the name was
encoded into the URL that was passed to the ghost from the
browser. Once a copy has been retrieved it is returned to the
user, and preferably it is also stored on the ghost for
answering future requests.

As an additional safeguard, it may be preferable to check
that the user is indeed close to the server. This can be done
by examining the IP address of the client before responding to
the request for the file. This is useful in the rare case when
the client’s DNS server is far away from the client. In such a
case, the ghost server can redirect the user to a closer server
(or to another virtual address that is likely to be resolved to

a server that is closer to the client). If the redirect is to a

10

15

20

25

WO 00/04458 PCT/US99/15951

31
virtual server, then it must be tagged to prevent further
redirections from taking place. 1In the preferred embodiment,
redirection would only be done for large objects; thus, a check
may be made before applying a redirection to be sure that the
object being requested exceeds a certain overall size.

Performance for long downloads can also be improved by
dynamically changing the server to which a client is connected
based on changing network conditions. This is especially
helpful for audio and video downloads (where the connections can
be long and where quality is especially important). In such
cases, the user can be directed to an alternate server in mid-
stream. The control structure for redirecting the client can be
similar to that described above, but it can also include
software that is placed in the client’s browser or media player.
The software monitors the performance of the client’s connection
and perhaps the status of the network as well. If it is deemed
that the client’s connection can be improved by changing the
server, then the system directs the client to a new server for
the rest of the connection.

Fault tolerance for the ghosts is provided by a buddy
system, where each ghost has a designated buddy ghost. If a
ghost goes down, its buddy takes over its work (and IP addreés)
so that service is not interrupted. Another feature of the
system is that the buddy ghost does not have to sit idle waiting

for a failure. Instead, all of the machines are always active,

10

15

20

25

WO 00/04458 PCT/US99/15951

32

and when a failure happens, the load is taken over by the buddy
and then balanced by the low level DNS system to the other
active ghosts. An additional feature of the buddy system is
that fault tolerance is provided without having to wait for long
timeout periods.

As yet another safety feature of the global hosting system,
a gating mechanism can be used to keep the overall traffic for
certain objects within specified limits. One embodiment of the
gating mechanism works as follows. When the number of requests
for an object exceeds a certain specified threshold, then the
server can elect to not serve the object. This can be very
useful if the object is very large. 1Instead, the client can be
served a much smaller object that asks the client to return
later. Or, the client can be redirected. Another method of
implementing a gate is to provide the client with a “ticket”
that allows the client to receive the object at a prespecified
future time. In this method, the ghost server needs to check
the time on the ticket before serving the object.

The inventive global hosting scheme is a way for global
ISPs or conglomerates of regional ISPs to leverage their network
infrastructure to generate hosting revenue, and to save on
network bandwidth. An ISP offering the inventive global hosting
scheme can give content providers the ability to distribute
content to their users from the closest point on the ISPs

network, thus ensuring fast and reliable access. Guaranteed web

10

15

20

25

WO 00/04458 PCT/US99/15951
33

site performance is critical for any web-based business, and

global hosting allows for the creation of a service that

satisfies this need.

Global hosting according to the present invention also
allows an ISP to control how and where content traverses its
network. Global hosting servers can be set up at the edges of
the ISP’s network (at the many network exchange and access
points, for example). This enables the ISP to serve content for
sites that it hosts directly into the network exchange points
and access points. Expensive backbone links no longer have to
carry redundant traffic from the content provider’s site to the
network exchange and access points. 1Instead, the content is
served directly out of the ISP’s network, freeing valuable
network resources for other traffic.

Although global hosting reduces network traffic, it is also
a method by which global ISPs may capture a piece of the rapidly
expanding hosting market, which is currently estimated at over a
billion dollars a year.

The global hosting solution also provides numerous
advantages to Content Providers, and, in particular, an
efficient and cost-effective solution to improve the performance
of their Web sites both domestically and internationally. The
inventive hosting software ensures Content Providers with fast
and reliable Internet access by providing a means to distribute

content to their subscribers from the closest point on an ISP’s

10

15

20

25

WO 00/04458 PCT/US99/15951

34
network. In addition to other benefits described in more detail
below, the global hosting solution also provides the important
benefit of reducing network traffic.

Once inexpensive global hosting servers are installed at
the periphery of an ISP’s network (i.e., at the many network
exchange and access points), content is served directly into
network exchange and access points. As a result of this
efficient distribution of content directly from an ISP’s
network, the present invention substantially improves Web site
performance. In contrast to current content distribution
systems, the inventive global hosting solution does not require
expensive backbone links to carry redundant traffic from the
Content Provider’s Web site to the network exchange and access
points.

A summary of the specific advantages afforded by the
inventive global hosting scheme are set forth below:

1. Decreased Operational Expenses for Content Providers:

Most competing solutions require Content Provid;rs to
purchase servers at each Web site that hosts their content. As
a result, Content Providers often must negotiate separate
contracts with different ISPs around the world. In addition,
Content Providers are generally responsible for replicating the
content and maintaining servers in these remote locations.

With the present invention, ISPs are primarily responsible

for the majority of the aspects of the global hosting. Content

10

15

20

WO 00/04458 PCT/US99/15951

35
Providers preferably maintain only their single source server.
Content on this server is automatically replicated by software
to the locations where it is being accessed. No intervention or
planning is needed by the Provider (or, for that matter, the
ISP). Content Providers are offered instant access to all of
the servers on the global network; there is no need to choose
where content should be replicated or to purchase additional
servers in remote locations.

2. Intelligent and Efficient Data Replication:

Most competing solutions require Content Providers to
replicate their content on servers at a commercial hosting site
or to mirror their content on geographically distant servers.
Neither approach is particularly efficient. In the former
situation, content is still located at a single location on the
Internet (and thus it is far away from most users). In the
latter case, the entire content of a Web site is copied to
remote servers, even though only a small portion of the content
may actually need to be located remotely. Even with inexpensive
memory, the excessive cost associated with such mirroring makes
it uneconomical to mirror to more than a few sites, which means
that most users will still be far away from a mirror site.
Mirroring also has the added disadvantage that Content Providers
must insure that all sites remain consistent and current, which

is a nontrivial task for even a few sites.

10

15

20

WO 00/04458 PCT/US99/15951
36

With the present invention, content is automatically
replicated to the global server network in an intelligent and
efficient fashion. Content is replicated in only those
locations where it is needed. Moreover, when the content
changes, new copies preferably are replicated automatically
throughout the network.

3. Automatic Content Management:

Many existing solutions require active management of
content distribution, content replication and load balancing
between different servers. 1In particular, decisions about where
content will be hosted must be made manually, and the process of
replicating data is handled in a centralized push fashion. On
the contrary, the invention features passive management.
Replication is done in a demand-based pull fashion so that
content preferably is only sent to where it is truly needed.
Moreover, the process preferably is fully automated; the ISP
does not have to worry about how and where content is replicated
and/or the content provider.

4, Unlimited, Cost Effective Scalability:

Competing solutions are not scalable to more than a small
number of sites. For example, solutions based on mirroring are
typically used in connection with at most three or four sites.
The barriers to scaling include the expense of replicating the

entire site, the cost of replicating computing resources at all

10

15

20

25

WO 00/04458 PCT/US99/15951
37

nodes, and the complexity of supporting the widely varying

software packages that Content Providers use on their servers.

The unique system architecture of the present invention is
scaleable to hundreds, thousands or even millions of nodes.
Servers in the hosting network can malfunction or crash and the
system’s overall function is not affected. The global hosting
framework makes efficient use of resources; servers and client
software do not need to be replicated at every node because only
the hosting server runs at each node. 1In addition, the global
hosting server is designed to run on standard simple hardware
that is not required to be highly fault tolerant.

5. Protection against Flash Crowds:

Competing solutions do not provide the Content Provider
with protection from unexpected flash crowds. Although mirroring
and related load-balancing solutions do allow a Content Provider
to distribute locad across a collection of servers, the aggregate
capacity of the servers must be sufficient to handle peak
demands. This means that the Provider must purchase and
maintain a level of resources commensurate with the anticipated
peak load instead of the true average load. Given the highly
variable and unpredictable nature of the Internet, such
solutions are expensive and highly wasteful of resources.

The inventive hosting architecture allows ISPs to utilize a
single network of hosting servers to offer Content Providers

flash crowd insurance. That is, insurance that the network will

10

15

20

WO 00/04458 PCT/US99/15951

38
automatically adapt to and support unexpected higher load on the
Provider’s site. Because the ISP is aggregating many Providers
together on the same global network, resources are more
efficiently used.

6. Substantial Bandwidth Savings:

Competing solutions do not afford substantial bandwidth
savings to ISPs or Content Providers. Through the use of
mirroring, it is possible to save bandwidth over certain links
(i.e., between New York and Los Angeles). Without global
hosting, however, most requests for content will still need to
transit the Internet, thus incurring bandwidth costs. The
inventive hosting framework saves substantial backbone bandwidth
for ISPs that have their own backbones. Because content is
distributed throughout the network and can be placed next to
network exchange points, both ISPs and Content Providers
experience substantial savings because backbone charges are not
incurred for most content requests.

7. Instant Access to the Global Network:

Competing solutions require the Content Provider to choose
manually a small collection of sites at which content will be
hosted and/or replicated. Even if the ISP has numerous hosting
sites in widely varied locations, only those sites specifically
chosen (and paid for) will be used to host content for that

Content Provider.

10

15

20

WO 00/04458 PCT/US99/15951

39

On the contrary, the global hosting solution of the present
invention allows ISPs to offer their clients instant access to
the global network of servers. To provide instant access to the
global network, content is preferably constantly and dynamically
moved around the network. For example, if a Content Provider
adds content that will be of interest to customers located in
Asia, the Content Provider will be assured that its content will
be automatically moved to servers that are also located in Asia.
In addition, the global hosting framework allows the content to
be moved very close to end users (even as close as the user’s
building in the case of the Enterprise market).

8. Designed for Global ISPs and Conglomerates:

Most competing solutions are designed to be purchased and
managed by Content Providers, many of whom are already
consistently challenged and consumed by the administrative and
operational tasks of managing a single server. The inventive
hosting scheme may be deployed by a global ISP, and it provides
a new service that can be offered to Content Providers. A
feature of the service is that it minimizes the operational and
managerial requirements of a Content Provider, thus allowing the
Content Provider to focus on its core business of creating
unique content.

9. Effective Control of Proprietary Databases and

Confidential Information:

10

15

20

25

WO 00/04458 PCT/US99/15951

40

Many competing solutions require Content Providers to .
replicate their proprietary databases to multiple geographically
distant sites. As a result, the Content Provider effectively
loses contrel over its proprietary and usually confidential
databases. To remedy these problems, the global hosting
solution of the present invention ensures that Content Providers
retain complete control over their databases. As described
above, initial requests for content are directed to the Content
Provider’s central Web site, which then implements effective and
controlled database access. Preferably, high-bandwidth, static
parts for page requests are retrieved from the global hosting
network.

10. Compatibility with Content Provider Software:

Many competing solutions require Content Providers to
utilize a specific set of servers and databases. These
particular, non-uniform requirements constrain the Content
Provider’s ability to most effectively use new technologies, and
may require expensive changes to a Content Provider’s existing
infrastructure. By eliminating these problems, the inventive
global hosting architecture effectively interfaces between the
Content Provider and the ISP, and it does not make any
assumptions about the systems or servers used by the Content
Provider. Furthermore, the Content Provider’s systems can be
upgraded, changed or completely replaced without modifying or

interrupting the inventive architecture.

10

15

20

25

WO 00/04458 PCT/US99/15951
41

11. No Interference with Dynamic Content, Personalized
Advertising or E-Commerce, and No stale content:

Many competing solutions (such as naive caching of all
content) can interfere with dynamic content, personalized
advertising and E-commerce and can serve the user with stale
content. While other software companies have attempted to
partially eliminate these issues (such as keeping counts on hits
for all cached copies), each of these solutions causes a partial
or complete loss of functionality (such as the ability to
personalize advertising). On the contrary, the global hosting
solution does not interfere with generation of dynamic content,
personalized advertising or E-commerce, because each of these
tasks preferably is handled by the central server of the Content
Provider.

12. Designed for the Global Network:

The global hosting architecture is highly scaleable and
thus may be deployed on a world-wide network basis.

The above-described functionality of each of the components
of the global hosting architecture preferably is implemented in
software executable in a processor, namely, as a set of
instructions or program code in a code module resident in the
random access memory of the computer. Until required by the
computer, the set of instructions may be stored in another
computer memory, for example, in a hard disk drive, or in a

removable memory such as an optical disk (for eventual use in a

10

15

20

WO 00/04458 PCT/US99/15951

42
CD ROM) or floppy disk (for eventual use in a floppy disk
drive), or downloaded via the Internet or other computer
network.

In addition, although the various methods described are
conveniently implemented in a general purpose computer
selectively activated or reconfigured by software, one of
ordinary skill in the art would also recognize that such methods
may be carried out in hardware, in firmware, or in more
specialized apparatus constructed to perform the required method
steps.

Further, as used herein, a Web "client" should be broadly
construed to mean any computer or component thereof directly or
indirectly connected or connectable in any known or later-
developed manner to a computer network, such as the Internet.
The term Web "server" should also be broadly construed to mean a
computer, computer platform, an adjunct to a computer or
platform, or any component thereof. Of course, a "client"
should be broadly construed to mean one who requests or gets the
file, and "server" is the entity which downloads the file.

Having thus described our invention, what we claim as new
and desire to secure by Letters Patent is set forth in the

following claims.

10

15

20

25

WO 00/04458 PCT/US99/15951
43
CLAIMS

1. A method of serving a Web page comprising a markup
language base document and a set of embedded objects each of
which is identified by a URL, wherein given embedded objects
each include a URL that has been modified to include a virtual
server hostname, the method comprising the steps of:

responsive to a request for the Web page issued from a
client machine, serving the base document to the client machine
from a content provider site; and

serving the given embedded objects to the client machine

from hosting servers identified by the virtual server hostnames.

2. The method as described in Claim 1 wherein the hosting

servers are located in a computer network near the client

machine.

3. The method as described in Claim 1 wherein the step of
serving a given embedded object to the client machine further
includes the steps of:

redirecting the request from a first level domain name
server to a second level domain name server near the client
machine; and

having the second level domain name server resolve the
virtual server hostname to identify a given set of one or more

hosting servers for serving the embedded object.

10

15

20

25

WO 00/04458 PCT/US99/15951

44

4. The method as described in Claim 1 wherein the virtual
server hostname includes a value generated by applying a given

function to the embedded object.

5. The method as described in Claim 4 wherein the value
is generated by encoding given information, the given
information selected from a group of information consisting
essentially of: size data, popularity data, creation data and

object type data.

6. The method as described in Claim 1 wherein the
modified URL includes a fingerprint value generated by applying

a given function to the embedded object.

7. The method as described in Claim 6 wherein the value

is a number generated by hashing the embedded object.

8. The method as described in Claim 1 wherein the markup

language is HTML.

9. The method as described in Claim 1 further including
the step of rewriting the modified URLs as the content provider

modifies the Web page.

10

15

20

WO 00/04458 PCT/US99/15951

45
10. A method of serving a Web page comprising a markup,
language base document and a set of embedded objects, each
embedded object identified by a URL, comprising the steps of:
prepending a hostname into the URL for a given embedded
object, server hostname including a value generated by applying
a given function to the embedded object; and

in response to a request from a client browser, serving the

web page.

11. The method as described in Claim 10 wherein the
hostname value is generated by encoding given information, the
given information selected from a group of information
consisting essentially of: size data, popularity data, creation

data and object type data.

12. The method as described in Claim 10 further including
the step of:
modifying the URL to include a fingerprint value for the

embedded object by applying a given function to the embedded

object.

13. The method as described in Claim 12 wherein the given

fingerprint value is generated by hashing the embedded object.

10

15

20

WO 00/04458 PCT/US99/15951
46 -

14. A method of processing a Web page comprising a
hypertext markup language base document and a set of embedded
objects, each embedded object identified by a URL, comprising
the steps of:

prepending a virtual server hostname into the URL for a
given embedded object, the virtual server hostname including a
value generated by applying a given function to the URL or the
given object;

wherein the given function randomly distributes the

embedded objects over a given set of virtual server hostnames.

15. The method as described in Claim 14 wherein the given

function is an encoding function.

16. The method as described in Claim 14 wherein the given
function is a hash function.

17. The method as described in Claim 14 further including
the step of:

including in the URL a given fingerprint value for the
embedded object generated by applying a given hash function to
the embedded object;

wherein the given fingerprint value identifies whether the

embedded object has been modified.

WO 00/04458 PCT/US99/15951
47
18. The method as described in Claim 17 further including
the step of recomputing the hash for the fingerprint value and

rewriting the URL if necessary when the Web page is changed.

5 19. A distributed hosting framework operative in a
computer network in which users of client machines connect to a
server via service providers, wherein the server supports pages
each comprising a markup language base document and a set of
embedded objects and wherein each embedded object is identified

10 by a URL, the framework comprising:
a first set of servers that host the embedded objects:;
at least one top level server that provides a top level
domain name service (DNS) resolution; and
at least one lower level server that provides a lower level
15 domain name service (DNS) resolution;
wherein page requests generated by the client machines are
serviced by the server and a given subset of the first set of

servers as identified by the top level and lower level servers.

20 20. The hosting framework as described in Claim 19 further

including a redundant top level server.

21. The hosting framework as described in Claim 19 further
including a redundant lower level server.

25

10

15

20

“ WO 00/04458 PCT/US99/15951

48
22. The hosting framework as described in Claim 19 wherein
a given one of the first set of servers includes a buddy server
for assuming the hosting responsibilities of the given one of

the first set of servers upon a given failure condition.

23. The hosting framework as described in Claim 19 wherein
the lower level server includes a load balancing mechanism that

balances loads across a subset of the first set of servers.

24. The hosting framework as described in Claim 23 wherein
the load balancing mechanism minimizes the amount of replication
required for the embedded objects while not exceeding a capacity

of any of the first set of servers.

25. The hosting framework as described in Claim 19 further
including an overflow control mechanism for minimizing an
overall amount of latency experienced by client machines while
not exceeding the capacity of any given subset of the first set

of servers.

26. The hosting framework as described in Claim 25 wherein
the overflow control mechanism includes a min-cost

multicommodity flow algorithm.

10

15

20

WO 00/04458 PCT/US99/15951

49
27. The hosting framework as described in Claim 19 wherein
the top level server includes a network map for use in directing

a page request generated by a client to a given one of the first

set of servers.

28. The hosting framework as described in Claim 19 wherein
a server in the first set of server includes a gating mechanism
for maintaining overall traffic for a given embedded object

within specified limits.

29. The hosting framework as described in Claim 28 wherein
the gating mechanism comprises:

means for determining whether a number of requests for the
given embedded object exceeds a given threshold; and

means responsive to the determining means for restricting

service of the given embedded object.

30. The hosting framework as described in Claim 29 wherein
the restricting means comprises means for serving an object that

is smaller than the given embedded object.

31. The hosting framework as described in Claim 29 wherein

the object is a ticket that allows a client to receive the given

embedded object at a later time.

10

15

20

25

WO 00/04458 PCT/US99/15951
50

32. A method of serving a Web page comprising a markup
language base document and a set of embedded objects each of
which is identified by a URL, wherein given embedded objects
each include a URL that has been modified to include a virtual
server hostname, the method comprising the steps of:

responsive to requests for the Web page issued from first
and second client machines, serving the base document to each
client machine from a content provider site;

serving a given embedded object to the first client machine
from a first hosting server identified by a first virtual server
hostname; and

serving the given embedded object to the second client
machine from a second hosting server also identified by the

first virtual server hostname.

33. The method as described in Claim 32 further including
the step of resolving the first virtual server hostname into an
address for the first hosting server as a function of a location

of the first client machine and local traffic conditions.

34. The method as described in Claim 32 further including
the steps of:

as the given embedded object is being served to the first
client machine, determining whether the given embedded object

can be served more efficiently from another hosting server; and

10

15

20

25

WO 00/04458 PCT/US99/15951
51
if so, serving a remainder of the given embedded object.to

the first client machine from a third hosting server.

35. A method of serving a Web page comprising a markup
language base document and a set of embedded objects each of
which is identified by a URL, wherein given embedded objects
each include a URL that has been modified to include a virtual
server hostname, the method comprising the steps of:

responsive to requests for the Web page issued from first
and second client machines, serving the base document to each
client machine from a content provider site;

resolving the virtual server hostname into a first address
and a second address;

serving a given embedded object to the first client machine
from a first hosting server located at the first address; and

serving the given embedded object to the second client
machine from a second hosting server located at the second

address.

36. The method as described in Claim 35 wherein the
virtual server hostname is resolved to the first address or the
second address according to where the request for the Web page
originates and local traffic conditions in an associated region

of the computer network.

10

WO 00/04458 PCT/US99/15951

52

37. A method of serving a Web page comprising a markup
language base document and a set of embedded objects, each
embedded object identified by a URL, comprising the steps of:

rewriting the URL of an embedded object to generate a
modified URL, the modified URL including a new hostname
prepended to an original hostname, wherein the original hostname
is maintained as part of the modified URL for use in retrieving
the embedded object whenever a cached copy of the embedded
object is not available; and

in response to a request to serve the Web page received

from a client browser, serving the Web page.

WO 00/04458 PCT/US99/15951

1/2
CLIENT
" SERVER
s
L ~12
—/
—/
g%
BROWSER °
APPLICAT[ON PROCESSOR /'18
0S | ~20
FIG. 1
WEB SERVER} 22
30 AP| \26
—
~28
N —
 —
FIG. 2
30 T30 CONTENT
— PROVIDER
= SITE

=

[—
—

CLIENT

WO 00/04458

FIG. 4

NEARBY
GHOST

3

— ——
v ()
-— - -

2/2

ALL
OBUECTS PROCESSED
9

GET NEXT OBJECT

!

PREPEND VIRTUAL
SERVER HOST NAME

PCT/US99/15951
DONE
|~52
/HASH VALUE INPUT
_~54

!

ASH PUT
/HS VALUE INPU

PREPEND HASH

VALUE AS FINGERPRINT [-56

S

CONTENT
PROVIDER
SITE

1

e

“TOP LEVEL"
DNS SERVER

Y

“LOW LEVEL"

DNS SERVER |
FIG. 5

DNS SERVER

International application No.
PCT/US99/15951

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 17/21, 17/30, 3/00, 13/00
US CL : 707/501, 10, 203; 709/201, 219; 345/329
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s. : 707/501, 10, 203; 709/201, 219; 345/329

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, DIALOG, IS&R
search terms: URL, HTTP, HTML, modify, replace, ghost, dynamic, mirror

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
AE US 5,945,989 A (FREISHTAT et al) 31 August 1999 1-37
AE US 5,933,832 A (SUZUOKA et al) 03 August 1999 1-37
AP US 5,903,723 A (BECK et al) 11 May 1999 1-37
AP US 5,870,559 A (LESHEM et al) 09 February 1999 1-37
AP US 5,832,506 A (KUZMA) 03 November 1998 1-37
A US 5,751,961 A (SMYK) 12 May 1998 1-37

D Further documents are listed in the continuation of Box C. D See patent family annex.

the pnomy date claimed

* Special categories of cited documents: T later d blished after the i 1 filing date or priority
Ar d t defining th | state of the art which s not idered date and not in conflict with the :pphcntmn but cited to understand
" ocument defining the general state of the art which is not consi th 1 th d th ti

to be of particular relevance o principle or theory underlying the invention
"ge . : . . : "Xt document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
"L* document which may throw doubts on pnonty claim(s) or which is when the document is taken alone

cited to establish the ion date of ion or other

special reason (as |poc|ﬁed) Y document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is

"0 document referring to an oral disclosure, use, exhibition or other combined with one or more other such d ts, such bi

means being obvious to a person skilled in the art
ks d d prior to the inter 1filing date but later than =g » document member of the same patent family

Date of the actual completion of the international search

29 SEPTEMBER 1999

Date of mailing of the international search report

21 OCT 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer

MICHAEL RAZAVI

Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

