
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0083858 A1

US 20070O83858A1

Sikdar (43) Pub. Date: Apr. 12, 2007

(54) RECONFIGURABLE SEMANTIC (52) U.S. Cl. .. 717/143; 717/136
PROCESSOR

(75) Inventor: Somsubhra Sikdar, San Jose, CA (US) (57) ABSTRACT

Correspondence Address:
MARGER JOHNSON & MCCOLLOM, P.C. Data processors and methods for their configuration and use
210 SW MORRISON STREET, SUITE 400 are disclosed. As opposed to traditional von Neumann
PORTLAND, OR 97204 (US) microprocessors, the disclosed processors are semantic pro

(73) Assignee: MISTLETOE TECHNOLOGIES, cessors—they parse an input stream and direct one or more
INC., Cupertino, CA (US) semantic execution engines to execute code segments,

depending on what is being parsed. For defined-structure
(21) Appl. No.: 11/469,342 input streams such as packet data streams, these semantic
(22) Filed: Aug. 31, 2006 processors can be both economical and fast as compared to

a von Neumann system. Several optional components can
Related U.S. Application Data augment device operation. For instance, a machine context

data interface relieves the semantic execution engines from
(63) Continuation of application No. 10/351,030, filed on managing physical memory, allows the orderly access to

Jan. 24, 2003, now Pat. No. 7,130,987. memory by multiple engines, and implements common
Publication Classification access operations. Further, a simple Von Neumann excep

tion-processing unit can be attached to a semantic execution
(51) Int. Cl. engine to execute more complicated, but infrequent or

G06F 9/45 (2006.01) non-time-critical operations.

1 OO
S-BUS JOO /

INPUT DIRECT SEANIC MASHINE
PORT EXECUTION EXECUTION AND VO
1 O2 PARSER ENGINE 104

PARSER PRODUCTION SEMANTIC
TABLE RULE TABLE CODE TABE-160

Patent Application Publication Apr. 12, 2007 Sheet 1 of 8 US 2007/0083858A1

JO 4 O / 50

MEMORY

ADDRESS /
CONTROL BUS
42

CPU DATA BUS

4 4

MEMORY
CONTROLLER

I/O
FIG.1 DEVICES SO

(PRIOR ART)

70

5
86

PARSER
ST ACK

RETURN A DIFS

MACHEADER PACKET HEADER

OUTPUTSEMANTIC
ENGINE

PREDICTIVE UPDATE
PARSER

LOOK UP OFFSET, VALUE

FIG.2 PARSER 88
(PRIOR ART) TABLE

S-BUS 100 - JOO /

INPUT DIRECT SEANIC MASINE
PORTH EXECUTION EXECUTION AND VO
1 O2 PARSER ENGINE O4

PARSER PRODUCTION SEMANTIC
TABLE RULE TABLE CODE TABE-160

FIG.3

US 2007/0083858A1

TE GJO O No.ld

Patent Application Publication Apr. 12, 2007 Sheet 2 of 8

BOJO O Hd

Patent Application Publication Apr. 12, 2007 Sheet 3 of 8

2OO
i- DXP S-BUS 26 O

28O
INPUT
STREAM COMMAND

SEQUENCE
CONTROL SEE STATUS

SEE
INTERFACE

US 2007/0083858A1

SX-BUS

skip
SCT(y)

OREG N-262 22O

PARSER
CONTROL POP/PUSH stack PSP
FINITE HANDLER
STATE

MACHINE
2 X 222

PREFIX CODE P PRCy)

P-BUS

NT CODE X
PARSER
TABLE SYMBOL O

INTERFACE PR CODEy

FIG.6
Production. PRIy
RULE TABLE
INTERFACE PR coDE y

SCTIy)
INTERFACE

25O

Patent Application Publication Apr. 12, 2007 Sheet 4 of 8 US 2007/0083858A1

SET pX= *psp
4O2 SET a=-kip 4OO

41 O 4 SO

MATCH EXAMINE PREF1X COPEP NON
TERMINAL XTCH TERMINAL

LOOKUP
Y 42O y=PTX, all 4 52

422
S. 4 S4

414 POP X
OFF STACK y VALIDN

ERROR
RECOVERY

INCREMENT
4 J8

Y

INPUT POP X
POINTER ip OFF STACK

PUSH PRIy)
4 4 O ON STACK

42

4 S6

1 SEE
WAIT AVAILABLE RESEY

O p O

4 48
4 4-6 Y

BEGIN EXECUTION
ON SEE WITH SCTIy)

45O

DXP
WAIT RELEASED

&

FIG.7
452

460

N SAS Y RESET 47O
?

US 2007/0083858A1 Patent Application Publication Apr. 12, 2007 Sheet 5 of 8

——————S[\{]–OS L-ILL-LL---|-|–|—“, ?i || || || || || || || ||S TIE- \f T-T-T-T-T-T-T-T-T-T-T-T-T-TIET? LLLLLLLLLLLLLLLLLLLL N# 33SZ # BES| # BES0#BBS

|Sng-IS L
||-èHESÈH\/ d :== NOI] [] O EXTE H- ?007

0 || G

lNIO d | flod NI

Patent Application Publication Apr. 12, 2007 Sheet 6 of 8 US 2007/0083858A1

JSOO-O
SX-BUS S-BUS

350 J6 O
SEE CONTROL S-BUS

FSM INTERFACE

S-CODE
INSTRUCTION
DECODER

PIPELINE REGISTERS

Si-BUS A-BUS V-BUS P-BUS TO EPU,
BLOCK I/O,

FIG.9 ETC.

US 2007/0083858A1 Patent Application Publication Apr. 12, 2007 Sheet 8 of 8

09XXXXXXXXXX OOXO 99" | 89XXXXXXXX 90XO 90XO 79` | 69XXXXXXXX OOXO 90XO +79° 1 99XXXXXXXXXXXX9,92 || GGXXXXXXXXXXXXZ92 || †7 GXXXXXXXXXXXX192 || | 93380 3380 4380 33*0 +3,0 ±±0 6ZI | _ ,,,,,
| 9GOXO +7OXO QOXO ZOXO LOXO 80×O 6Z | z?£55-55-55-55-55-75-TËx

ET|[^\+ ' OO (Hd

US 2007/0O83858 A1

RECONFIGURABLE SEMANTIC PROCESSOR

RELATED APPLICATION DATA

0001. This application is a continuation of co-pending
U.S. application Ser. No. 10/351,030, filed on Jan. 24, 2003,
entitled A RECONFIGURABLE SEMANTIC PROCES
SOR, which is incorporated by reference.

FIELD OF THE INVENTION

0002 This invention relates generally to digital proces
sors and processing, and more specifically to digital seman
tic processors for data stream processing.

BACKGROUND OF THE INVENTION

0003 Traditional programmable computers use a von
Neumann, or VN, architecture. The VN architecture, in its
simplest form, comprises a central processing unit (CPU)
and attached memory, usually with some form of input/
output to allow useful operations. For example, FIG. 1
shows a computer 20 comprising a CPU 30, a memory
controller 40, memory 50, and input/output (I/O) devices 60.
CPU 30 sends data requests to memory controller 40 over
address/control bus 42; the data itself passes over a data bus
44. Memory controller 40 communicates with memory 50
and I/O devices 60 to perform data reads and writes as
requested by CPU 30 (or possibly by the I/O devices).
Although not shown, the capability exists for various
devices to “interrupt” the CPU and cause it to switch tasks.
0004. In a VN machine, memory 50 stores both program
instructions and data. CPU 30 fetches program instructions
from the memory and executes the commands contained
therein typical instructions instruct the CPU to load data
from memory to a register, write data to memory from a
register, perform an arithmetic or logical operation using
data in its onboard registers, or branch to a different instruc
tion and continue execution. As can be appreciated, CPU 30
spends a great deal of time fetching instructions, fetching
data, or writing data over data bus 44. Although elaborate
(and usually costly) schemes can be implemented to cache
data and instructions that might be useful, implement pipe
lining, and decrease average memory cycle time, data bus 44
is ultimately a bottleneck on processor performance.
0005 The VN architecture is attractive, as compared to
gate logic, because it can be made general-purpose' and
can be reconfigured relatively quickly; by merely loading a
new set of program instructions, the function of a VN
machine can be altered to perform even very complex
functions, given enough time. The tradeoffs for the flexibil
ity of the VN architecture are complexity and inefficiency.
Thus the ability to do almost anything comes at the cost of
being able to do a few simple things efficiently.

SUMMARY OF THE INVENTION

0006. Many digital devices either in service or on the
near horizon fall into the general category of packet pro
cessors. In other words, these devices communicate with
another device or devices using packets, e.g., over a cable,
fiber, or wireless networked or point-to-point connection, a
backplane, etc. In many such devices, what is done with the
data received is straightforward, but the packet protocol and
packet processing are too complex to warrant the design of

Apr. 12, 2007

special-purpose hardware. Instead, such devices use a VN
machine to implement the protocols.
0007. It is recognized herein that a different and attractive
approach exists for packet processors, an approach that can
be described more generally as a reconfigurable semantic
processor (RSP). Such a device is preferably reconfigurable
like a VN machine, as its processing depends on its “pro
gramming although as will be seen this “programming is
unlike conventional machine code used by a VN machine.
Whereas a VN machine always executes a set of machine
instructions that check for various data conditions sequen
tially, the RSP responds directly to the semantics of an input
stream. In other words, the “code” that the RSP executes is
selected by its input. Thus for packet input, with a defined
grammar, the RSP is ideally suited to fast and efficient
packet processing.

0008 Some embodiments described herein use a table
driven predictive parser to drive direct execution of the
protocols of a network grammar, e.g., an LL (Left-to-right
parsing by identifying the Left-most production) parser.
Other parsing techniques, e.g., recursive descent, LR (Left
to-right parsing by identifying the Right-most production),
and LALR (Look Ahead LR) may also be used in embodi
ments of the invention. In each case, the parser responds to
its input by launching microinstruction code segments on a
simple execution unit. When the tables are placed in rewrit
able storage, the RSP can be easily reconfigured, and thus a
single RSP design can be useful in a variety of applications.
In many applications, the entire RSP, including the tables
necessary for its operation, can be implemented on a single,
low-cost, low-power integrated circuit.
0009. A number of optional features can increase the
usefulness of Such a device. A bank of execution units can
be used to execute different tasks, allowing parallel process
ing. An exception unit, which can be essentially a small VN
machine, can be connected and used to perform tasks that
are, e.g., complex but infrequent or without severe time
pressure. And machine-context memory interfaces can be
made available to the execution units, so that the execution
units do not have to understand the underlying format of the
memory units—thus greatly simplifying the code executed
by the execution units.

BRIEF DESCRIPTION OF THE DRAWING

0010. The invention may be best understood by reading
the disclosure with reference to the drawing, wherein:
0011 FIG. 1 contains a block diagram for a typical von
Neumann machine;
0012 FIG. 2 contains a block diagram for a predictive
parser pattern recognizer previously patented by the inventor
of the present invention;
0013 FIG. 3 illustrates, in block form, a semantic pro
cessor according to an embodiment of the invention;
0014 FIG. 4 shows one possible parser table construct
useful with embodiments of the invention;
0.015 FIG. 5 shows one possible production rule table
organization useful with embodiments of the invention;
0016 FIG. 6 illustrates, in block form, one implementa
tion for a direct execution parser (DXP) useful with embodi
ments of the present invention;

US 2007/0O83858 A1

0017 FIG. 7 contains a flowchart for the operation of the
DXP shown in FIG. 6;
0018 FIG. 8 shows a block diagram for a reconfigurable
semantic processor according to an embodiment of the
invention;
0.019 FIG. 9 shows the block organization of a semantic
code execution engine useful with embodiments of the
invention;
0020 FIG. 10 shows the format of an Address Resolution
Protocol packet; and
0021 FIG. 11 illustrates an alternate parser table imple
mentation using a Content-Addressable Memory (CAM).

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0022. The inventor of the present application is a co
inventor on a previous patent entitled “Pattern Recognition
in Data Communications Using Predictive Parsers’. U.S.
Pat. No. 5,916,305, issued Jun. 29, 1999. Although overall
the device described in the 305 patent is quite different from
the present invention, it is instructive as a general introduc
tion to the use of a rudimentary predictive parser in con
junction with a network protocol, as a pattern matcher.
0023 FIG. 2 shows a block diagram of a device 80 as
described in the 305 patent. A semantic engine 82 reads a
packet 70, and passes the packet data octets as values to
predictive parser 84. Predictive parser 84 examines each
value (octet) that is passed to it. First, parser 84 performs a
table lookup using the value and the offset of that values
location from the beginning of packet 70 as an index into
parser table 88. Parser table 88 stores, for each combination
of value and offset, one of four possible values: A, meaning
accept the value at that offset; D, meaning that the com
bination of value and offset is a “don’t care’: F, meaning
failure as the value at the offset is not part of the pattern to
be recognized; and S, for an end symbol.
0024 Parser stack 86 is not a true “stack” in the normal
meaning of the word (or as applied to the invention embodi
ments to be described shortly)—it merely keeps a state
variable for each “filter that parser 84 is trying to match.
Each state variable is initialized to an entry state. As table
entries are Subsequently returned for each value and offset,
the stack updates each stack variable. For instance, if an A
is returned for a stack variable, that stack variable moves
from the entry state to a partial match state. If a F is
returned, that stack variable moves from either the entry
state or the partial match state to a failure state. If a D is
returned, that stack variable maintains its current state. And
if a 'S' is returned while the state variable is in the entry state
or the partial match state, the state variable transitions to the
match state.

0025. Once semantic engine 82 has passed all packet
values to predictive parser 84, parser 84 returns a match
value based on the parser stack States. Semantic engine 82
then takes some output action depending on the Success or
failure of the match. It should be noted that the parser does
not control or coordinate the device function, but instead
merely acts as an ancillary pattern matcher to a larger
system. Each possible pattern to be distinguished requires a
new column in the parser table, such that in a hardware
implementation device 80 can match only a limited number
of input patterns. And a parser table row is required for each
input octet position, even if that input octet position cannot
affect the match outcome.

Apr. 12, 2007

0026. The embodiments described herein take a decid
edly different approach to data processing. FIG. 3 shows a
semantic processor 100 according to an embodiment of the
invention. Rather than merely matching specific input pat
terns to specific stored patterns, semantic processor 100
contains a direct execution parser (DXP) 200 that controls
the processing of input packets. As DXP 200 parses data
received at the input port 102, it expands and executes actual
grammar productions in response to the input, and instructs
semantic code execution engine (SEE) 300 to process seg
ments of the input, or perform other operations, as the
grammar eXecutes.
0027. This structure, with a sophisticated grammar parser
that assigns machine context tasks to an execution engine, as
the data requires, is both flexible and powerful. In preferred
embodiments, the semantic processor is reconfigurable, and
thus has the appeal of a VN machine without the high
overhead. Because the semantic processor only responds to
the input it is given, it can operate efficiently with a smaller
instruction set than a VN machine. The instruction set also
benefits because the semantic processor allows processing in
a machine context.

0028 Semantic processor 100 uses at least three tables.
Code segments for SEE 300 are stored in semantic code
table 160. Complex grammatical production rules are stored
in a production rule table 140. Codes for retrieving those
production rules are stored in a parser table 120. The codes
in parser table 120 also allow DXP 200 to detect whether, for
a given production rule, a code segment from semantic code
table 160 should be loaded and executed by SEE 300.
0029. Some embodiments of the present invention con
tain many more elements than those shown in FIG. 3, but
these essential elements appear in every system or software
embodiment. A description of each block in FIG. 3 will thus
be given before more complex embodiments are addressed.
0030 FIG. 4 shows a general block diagram for a parser
table 120. A production rule code memory 122 stores table
values, e.g., in a row-column format. The rows of the table
are indexed by a non-terminal code. The columns of the
table are indexed by an input data value.
0031 Practically, codes for many different grammars can
exist at the same time in production rule code memory 122.
For instance, as shown, one set of codes can pertain to MAC
(Media Access Control) packet header format parsing, and
other sets of codes can pertain to Address Resolution Pro
tocol (ARP) packet processing, Internet Protocol (IP) packet
processing, Transmission Control Protocol (TCP) packet
processing, Real-time Transport Protocol (RTP) packet pro
cessing, etc. Non-terminal codes need not be assigned in any
particular order in production rule code memory 122., nor in
blocks pertaining to a particular protocol as shown.
0032. Addressor 124 receives non-terminal (NT) codes
and data values from DXP 200. Addressor 124 translates
NT code, data value pairs into a physical location in
production rule code memory 122, retrieves the production
rule (PR) code stored at that location, and returns the PR
code to the DXP. Although conceptually it is often useful to
view the structure of production rule code memory 122 as a
matrix with one PR code stored for each unique combination
of NT code and data value, the present invention is not so
limited. Different types of memory and memory organiza
tion may be appropriate for different applications (one of
which is illustrated in FIG. 11).
0033 Parser table 120 can be located on or off-chip,
when DXP 200 and SEE 300 are integrated together in a

US 2007/0O83858 A1

circuit. For instance, a static RAM located on-chip can serve
as parser table 120. Alternately, off-chip DRAM storage can
store parser table 120, with addressor 124 serving as or
communicating with a memory controller for the DRAM. In
other embodiments, the parser table can be located in
off-chip memory, with an on-chip cache capable of holding
a section of the parser table. Addressor 124 may not be
necessary in Some implementations, but when used can be
part of parser 200, part of parser table 120, or an interme
diate functional block. Note that it is possible to implement
a look-ahead capability for parser table 120, by giving
addressor 124 visibility into the next input value on the input
stream and the next value on the DXP's parser stack.
0034 FIG. 5 illustrates one possible implementation for
production rule table 140. Production rule memory 142
stores the actual production rule sequences of terminal and
non-terminal symbols, e.g., as null-terminated chains of
consecutive memory addresses. An addressor 144 receives
PR codes, either from DXP 200 or directly from parser table
120.

0035. As production rules can have various lengths, it is
preferable to take an approach that allows easy indexing into
memory 142. In one approach, the PR code could be
arithmetically manipulated to determine a production rule's
physical memory starting address (this would be possible,
for instance, if the production rules were sorted by expanded
length, and then PR codes were assigned according to a
rules sorted position). The PR code could also be the actual
PR starting address, although in Some applications this may
make the PR codes unnecessarily lengthy. In the approach
shown in FIG. 5, a pointer table 150 is populated with a PR
starting address for each PR code. Addressor 144 retrieves
a production rule by querying pointer table 150 using the PR
code as an address. Pointer table 150 returns a PR starting
address PRADD. Addressor 144 then retrieves PR data
from production rule memory 142 using this starting
address. Addressor 144 increments the starting address and
continues to retrieve PR data until a NULL character is
detected.

0036 FIG. 5 shows a second column in table 150, which
is used to store a semantic code (SC) starting address. When
DXP 200 queries addressor 144 with a PR code, the
addressor not only returns the corresponding production
rule, but also the SC starting address for a SEE task to be
performed. Where no SEE task is needed for a given
production rule, the SC starting address is set to a NULL
address.

0037 FIG. 6 shows one possible block implementation
for DXP 200. Parser control finite state machine (FSM) 210
controls and sequences overall DXP operation, based on
inputs from the other logical blocks in FIG. 6. Stack handler
220 and stack 222 store and sequence the production rules
executed by DXP 200. Parser table interface 230 allows
DXP 200 to retrieve PR codes from an attached parser table.
Production rule table interface 240 allows DXP 200 to
retrieve production rules from an attached production rule
table. And Semcode table interface 250 allows DXP 200 to
identify the memory location of semantic code segments
associated with production rules (in the illustrated embodi
ment, interfaces 240 and 250 are partially combined).
0038. Input stream sequence control 260 and register 262
retrieve input data symbols from the Si-Bus. Comparator
270 compares input symbols with symbols from parser stack
222. Finally, SEE interface 280 is used to dispatch tasks to
one or more SEEs communicating with DXP 200 on the
SX-Bus.

Apr. 12, 2007

0.039 The basic operation of the blocks in FIG. 6 will
now be described with reference to the flowchart in FIG. 7.
At the beginning of each parsing cycle (flowchart block
400), stack handler 220 retrieves a production symbol pX
pointed to by its top-of-stack pointer psp. The production
symbol pX is split into two constituent parts, a prefix p and
a symbol X. Prefix p codes the type of the symbol X, e.g.,
according to the following mapping for a two-bit prefix:

TABLE 1.

Prefix value p Type for symbol X

OO Invalid symbol
O1 Non-terminal symbol
10 Terminal symbol
11 Don't care terminal symbol; matches any input symbol

0040. Note that instead of a prefix for a “don’t care”
terminal symbol, the prefix can indicate a masked terminal
symbol. A masked terminal symbol allows the specification
of a bit mask for the input symbol, i.e., some (or all) bits of
the terminal symbol are “don’t care' bits. The masked
terminal symbol construct can be useful, e.g., for parsing
packet flag fields such as occur in many network protocols.
0041 Input stream sequence control 260 also loads the
current input stream value pointed to by input pointer ip into
aReg register 262. This step may not be necessary if the
previous parsing cycle did not advance input pointer ip.

0042. When parser control FSM 210 receives the new
prefix code p from stack handler 220, it determines (flow
chart block 402) which of three possible logic paths to take
for this parsing cycle. If the prefix code indicates that X is
a terminal symbol, path 410 is taken. If the prefix code
indicates that X will match any input symbol, path 420 is
taken. And if the prefix code indicates that X is a non
terminal symbol, path 430 is taken. The processing associ
ated with each path will be explained in turn.
0043. When path 410 is taken, parser control FSM 200
makes another path branch, based on the symbol match
signal M supplied by comparator 270. Comparator 270
compares input symbol a to Stack symbol X if the two are
identical, signal M is asserted. If masked terminal symbols
are allowed and a masked terminal symbol is Supplied,
comparator 270 applies the mask such that signal M depends
only on the unmasked Stack symbol bits.
0044) When a particular input symbol is expected and not
found, parser control FSM 210 enters an error recovery
mode at block 414. Generally, error recovery will flush the
remainder of the packet from the input (e.g., by matching the
input with an end of frame (EOF) symbol until a match is
detected), and popping the remaining symbols off the stack.
A semCode segment may also be dispatched to a SEE to
clean up any machine state data related to the errant packet.
These and other actions may depend on the particular
grammar being parsed at the time of the error.
0045 Assuming that a match between a and X is found
at block 412, further processing joins the processing path
420.

0046 Processing path 420 accomplishes two tasks,
shown as blocks 422 and 424 in FIG. 7. First, parser control
FSM 210 signals stack handler 220 to “pop” the current
value of X off of Stack 222, e.g., by decrementing the stack
pointer psp. Second, parser control FSM 210 signals input

US 2007/0O83858 A1

stream sequence control 260 to increment the input pointer
ip to the next symbol in the input stream.
0047 Processing path 430 processes non-terminal sym
bols appearing on stack 222. When a non-terminal symbol X
reaches the top of the stack, processing blocks 432, 434,438,
and 440 expand the non-terminal symbol into its corre
sponding production rule. Parser control FSM 210 first
signals parser table interface 230 to return a production rule
code y=PTX,a). If y is invalid, parser control FSM 210
performs error recovery (block 436), e.g., as described
above.

0.048 Assuming that PR code y is valid, parser control
FSM 210 replaces X on stack 222 with its expanded pro
duction rule. Parser control FSM signals production rule
table (PRT) interface 240 and SemCode table (SCT) inter
face 250 to perform lookups using PR codey. Parser control
FSM 210 also signals stack handler 220 to pop the current
value of X off of Stack 222. When PRT interface 240 returns
production rule PRy, parser control FSM 210 signals stack
handler 220 to push PRy onto stack 222. As each expanded
production rule has a corresponding length, this length must
be accounted for in the push, i.e. Some expansions may
require multiple symbol transfers from the production rule
table (the path width from the table to the stack handler may,
of course, be more than one symbol wide).
0049 Meanwhile, SCT interface 250 has returned a cor
responding SemCode address code SCTy for production
rule PRy). The address code SCTy may contain an actual
physical address for the first SemCode microinstruction
corresponding to PR codey, or some abstraction that allows
a SEE to load that microinstruction. The address code
SCTy may contain other information as well, such as an
indication of which SEE (in a multiple-SEE system) should
receive the code segment.
0050. When commanded by parser control FSM 210,
SEE interface 280 examines SCTy and determines whether
a code segment needs to be dispatched to a SEE. As shown
by decision block 442 in FIG. 7, no microinstruction execu
tion is necessary if SCTy is not “valid', i.e., a NULL value
is represented. Otherwise, SEE interface 280 determines
(decision block 444) whether a SEE is currently available.
SEE interface 280 examines a semaphore register (not
shown) to determine SEE availability. If a particular SEE is
indicated by SCTy. SEE interface 280 examines the sema
phore for that SEE. If the semaphore indicates that the
requested SEE is busy, SEE interface 280 enters wait state
446 until the semaphore clears. If any SEE may execute the
SemCode segment, SEE interface 280 can simply select one
with a clear semaphore.

0051) When the semaphore is clear for the selected SEE,
SEE interface 280 captures the SX-bus and transmits SCT
y to the selected SEE. The selected SEE sets its semaphore
to indicate that it has received the request.
0052. When parser control FSM 210 first commands SEE
interface 280 to dispatch SCTy), SEE interface 280 deas
serts the SEE status line to suspend further parsing, thereby
preventing parser control FSM 210 from exiting the current
parsing cycle until SCTy is dispatched (the stack push of
the expanded production rule PRy can continue in parallel
while the SEE status line is deasserted). Whether or not DXP
200 continues to suspend parsing once SCTy has been
transferred to the selected SEE can be dependent on SCTy.
For instance, SCTy can also code how long the corre
sponding SemCode segment should block further processing

Apr. 12, 2007

by parser control FSM 210. In one embodiment, the DXU
can be released: as soon as SCTy is dispatched; as soon as
the SEE sets its semaphore; a programmable number of
clock cycles after the SEE sets its semaphore; or not until the
SEE sets and clears its semaphore. Alternately, the SEE can
have different semaphore states corresponding to these dif
ferent possibilities.
0053 At the end of each parser cycle (decision block 460
in FIG. 7), stack handler 220 will assert stack empty signal
SE to parser control FSM 210 if the stack is empty. Upon the
assertion of the SE signal, parser control FSM 210 resets its
states to wait for the beginning of the next input packet. As
long as the stack is not empty, however, the parser control
FSM returns to block 400 and begins a new parsing cycle.
0054 FIG. 8 shows a second RSP embodiment 500 with
expanded capability. Instead of the single SEE 300 shown in
FIG. 3, RSP 500 incorporates N+1 SEES 300-0 to 300-N.
RSP 500 also contains several other significant additions: an
exception processing unit (EPU) 600, an array machine
context data memory (AMCD) 700, and a variable machine
context data memory (VMCD) 800. The function of each
block in FIG. 8 will now be explained in context.
0.055 FIG. 9 illustrates the basic functional blocks of
SEE 300-0. At the heart of SEE 300-0 is an arithmetic logic
unit (ALU) 310, a set of pipeline registers 320, and a
semCode (or s-code) instruction decoder 330. An S-code
queue 340 stores microinstructions to be executed by the
SEE. The microinstructions themselves are stored in sem
Code table 160 and received by the SEES-bus interface 360.
SEE control finite state machine (FSM) 350 coordinates the
operation of the SEE blocks shown.
0056 SEE 300-0 sits idle until it receives an execution
request (from DXP 200) on the SX-bus. SEE control FSM
350 examines traffic on the SX-bus, waiting for a request
directed to SEE 300-0 (for instance, up to 16 SEEs can be
addressed with four SX-bus address lines, each SEE having
a unique address). When a request is directed to SEE 300-0,
the request contains, e.g., a starting SemCode address. SEE
control FSM 350 responds to the request by: setting its
semaphore to acknowledge that it is now busy; and instruct
ing S-bus interface 360 to drive a request on the S-bus to
retrieve the microinstruction code segment beginning with
the received starting SemCode address.
0057 S-bus interface 360 is tasked with placing S-code
instructions in queue 340 before s-code instruction decoder
330 needs them. S-bus interface does have to contend with
other SEE S-bus interfaces for access to the S-bus, therefore
it may be beneficial to download multiple sequential instruc
tions at a time in a burst. S-bus interface 360 maintains an
S-code address counter (not shown) and continues to down
load instructions sequentially unless directed otherwise by
SEE control FSM 350.

0.058 S-code microinstruction decoder 330 executes the
code segment requested by the DXP on ALU 310 and
pipeline registers 320. Although preferably a branching
capability exists within instruction decoder 330, many code
segments will require little or no branching due the overall
Structure of the RSP.

0059 ALU 310 can be conventional, e.g., having the
capability to perform addition, comparison, shifting, etc.,
using its own register values and/or values from pipeline
register 320.
0060 Pipeline registers 320 allow machine-context
access to data. As opposed to a standard CPU, the preferred

US 2007/0O83858 A1

SEE embodiments have no notion of the physical data
storage structure used for the data that they operate on.
Instead, accesses to data take a machine-context transac
tional form. Variable (e.g., Scalar) data is accessed on the
V-bus; array data is accessed on the A-bus; and input stream
data is accessed on the Si-bus. For instance, to read a scalar
data element of length m octets located at a given location
offset within a data context ct, the instruction decoder 330
prompts the V-bus interface to issue a bus request read, ct,
offset, m}. The context mct refers to the master context of
the RSP; other sub-contexts will usually be created and
destroyed as the RSP processes input data, such as a Sub
context for a current TCP packet or active session.
0061. Once a pipeline register has been issued a com
mand, it handles the data transfer process. If multiple bus
transfers are required to read or write m octets, the pipeline
register tracks the transaction to completion. As an example,
a six-octet field can be transferred from the stream input to
a machine-context variable using two microinstructions: a
first instruction reads six octets from the Si-bus to a pipeline
register, a second instruction then writes the six octets from
the register to the machine-context variable across the
V-bus. The register interfaces perform however many bus
data cycles are required to effect the transfer.
0062 VMCD 800 serves the requests initiated on the
V-bus. VMCD 800 has the capability to translate machine
context variable data requests to physical memory transac
tions. Thus VMCD 800 preferably maintains a translation
table referencing machine context identifiers to physical
Starting addresses, contains a mechanism for allocating and
deallocating contexts, allows contexts to be locked by a
given SEE, and ensures that requested transactions do not
fall outside of the requested context’s boundaries. The actual
storage mechanism employed can vary based on application:
the memory could be completely internal, completely exter
nal, a mix of the two, a cache with a large external memory,
etc. An external memory can be shared with external
memory for other memory sections, such as the AMCD,
e-code table, input buffer, parser table, production rule table,
and semCode table, in a given implementation.
0063) The A-bus interface and AMCD 700 operate simi

larly, but with an array machine context organization. Pref
erably, different types of arrays and tables can be allocated,
resized, deallocated, written to, read from, searched, and
possibly even hashed or sorted using simple bus requests.
The actual underlying physical memory can differ for dif
ferent types of arrays and tables, including for example fast
onboard RAM, external RAM or ROM, content-addressable
memory, etc.

0064 Returning to the description of SEE 300-0 and its
pipeline registers, each SEE can access input data from
buffer 510 across the Si-bus. And each SEE has access to the
P-bus and the current symbol on top of the parser stack this
can be useful, e.g., where the same S-code is used with
multiple production rules, but its outcome depends on the

SMAC PDU
SMACDA

SMACSA
SMAC PAYLOAD
SET2

Apr. 12, 2007

production rule that initiated it. Finally, the pipeline registers
of some SEEs can be specialized. For instance, SEE 300-1
in FIG. 8 communicates with local I/O block 520 to provide
a data path to/from, e.g., local USB or serial ATA devices
connected to local I/O block 520. And SEE 300-2 in FIG. 8
communicates with EPU 600 to provide a data path to/from
an exception unit. Although in theory each SEE could
connect separately with each of these devices, in practice the
device is simplified and suffers little performance penalty by
pairing certain SEEs with certain other functions.
0065 Exception processing unit 600 can be a standard
Von Neumann central processing unit (CPU), although in
many applications it can be a very rudimentary one. When
included, EPU 600 is preferably used to handle complex
code that either runs infrequently or is not timing-critical.
Examples are a user log-on procedure, a request to make a
local drive available remotely, error logging and recovery,
table loading at System startup, and system configuration.
EPU 600 responds to DXP requests indirectly, through
s-code segments loaded into SEE 300-2. Preferably, EPU
600 can also call upon SEE 300-2 to perform functions for
it, such as reading or writing to AMCD 700 or VMCD 800.
0.066 An e-code table 610 is preferably available to EPU
600. The e-code table contains boot instructions for the
device, and may contain executable instructions for per
forming other functions requested by the DXP. Optionally,
e-code table 610 may contain a table for translating s-code
requests into instruction addresses for code to be executed,
with the instruction addresses located in a conventional
external memory space.

An Example
0067. In order to better illustrate operation of RSP500, an
example for an implementation of the Address Resolution
Protocol (ARP), as described in IETF RFC 826, is presented.
This example walks through the creation of production
rules, parser table entries, and the functional Substance of
s-code for handling received ARP packets.
0068 Briefly, ARP packets allow local network nodes to
associate each peers link-layer (hardware) address with a
network (protocol) address for one or more network proto
cols. This example assumes that the hardware protocol is
Ethernet, and that the network protocol is Internet Protocol
(IP or IPv4). Accordingly, ARP packets have the format
shown in FIG. 10. When the opcode field is set to 1, the
sender is trying to discover the target hardware address
associated with the target protocol address, and is requesting
an ARP reply packet. When the opcode field is set to 2, the
sender is replying to an ARP request—in this case, the
senders hardware address is the target hardware address
that the original sender was looking for.
0069. The following exemplary grammar describes one
way in which RSP 500 can process ARP packets received at
the input port. A S indicates the beginning of a production
rule, {} enclose s-code to be performed by a SEE:

MAC DAMAC SAMAC PAYLOAD MAC FCS EoFrame
OXO8 OXO1 OXO2 OXO3 OXO4 OXOS
OXFF OXFF OXFF OXFF OXFF OXFF

ether AddType {s0: mct->curr SA = MAC SA}

OX06 ARP BODY OX00 IP BODY

US 2007/0O83858 A1 Apr. 12, 2007

-continued

ARP BODY := ARP HW TYPE ARP PROT TYPE ARP HW ADD LEN
ARP PROT ADD LEN ARP OPARP PADDING

ARP HW TYPE = OXOOO1
ARP PROT TYPE := 0x0800
ARP HW ADD LEN:= OXO6
ARP PROT ADD LEN:= OXO4 0x00
ARP OP := 0x01 ARP REQ ADDR

OxO2 ARP REPLY ADDR
ARP REQ ADDR := ARP SENDER HW ARP SENDER PROT ARP TARGET HW

ARP TARGET PROT {s1: s-code seg1}
ARP REPLY ADDR:= ARP SENDER HW ARP SENDER PROT ARP TARGET HW

ARP TARGET PROT s2: s-code seg2}
ARP SENDER HW := ether AddType
ARP SENDER PROT:= ipAddType
ARP TARGET HW := etherAddType
ARP TARGET PROT:= ipAddType
ARP PADDING := octet null s?: calc. length; throw away
IP BODY := funresolved by this example
MAC FCS := octet octet octet octet {s4: check FCS
ether AddType := Octet Octet Octet Octet Octet Octet
ipAddType := Octet Octet Octet Octet
S-COCle. St. == Inct->n (SS de Seg1 if ARP TARGET PROT yIPAddr

then generate ARP reply to mct->curr SA;
s-code seg2}
update mct->ArpCache with (s-code seg2
ARP SENDER HW, ARP SENDER PROT, mct->time}

0070 This example only processes a limited set of all
possible ARP packets, namely those properly indicating
fields consistent with an Ethernet hardware type and an IP
protocol type; all others will fail to parse and will be
rejected. This grammar also leaves a hook for processing IP
packets (SIP BODY) and thus will not reject IP packets, but
a corresponding IP grammar is not part of this example.
0071 Stepping through the productions, SMAC PDU
merely defines the MAC frame format. Two destination
MAC addresses are allowed by SMAC DA: a specific
hardware address (0x08 0x01 0x02 0x03 0x04 0x05) and a
broadcast address of all 1s. All other MAC addresses are
automatically rejected, as a packet without one of these two
addresses will fail to parse. Any source address is accepted
by SMAC SA; a SEE is called to save the source address to
a master context table variable mct- >curr SA on the
VMCD. SMAC PAYLOAD and SET2 combine to ensure
that only two types of payloads are parsed, an ARP payload
and an IP payload (further parsing of an IP payload is not
illustrated herein). Of course, other packet types can be
added by expanding these productions.
0072) When the first two bytes of the MAC PAYLOAD
indicate an ARP packet (type=0x0806), the parser next tries
to parse SARP BODY. For simplicity, the first four elements
of the ARP body (hardware and protocol types and address
lengths) are shown fixed if ARP were implemented for
another protocol as well as IP, these elements could be
generalized (note that the generalization of the length fields
might allow different sizes for the address fields that follow,
a condition that would have to be accounted for in the
production rules).
0073. Two values for SARP OP are possible, a 1 for a
request and a 2 for a reply. Although address parsing does
not differ for the two values of ARP OP, the s-code to be
executed in each case does. S-code segment 1, which is
executed for ARP requests, compares the target protocol to
the local IP address stored in the master context table on the
VMCD. When these are equal, a SEE generates an ARP
reply packet to the senders hardware and IP addresses.

S-code segment 2 executes for both ARP requests and ARP
replies—this segment updates an ArpCache array stored in
the AMCD with the sender's hardware and protocol
addresses and the time received. The “update' command to
mct->ArpCache includes a flag or mask to identify which
data in ArpCache should be used to perform the update:
normally, the cache would be indexed at least by IP address.

0.074) In an Ethernet/IP ARP packet, ARP PADDING
will be 18 octets in length. The ARP PADDING production
rule shown here, however, fits any number of octets. In this
example, an S-code segment is called to calculate the pad
ding length and “throw away that many octets, e.g., by
advancing the input pointer. Alternately, the parser could use
a five-octet look-ahead to the EoPrame token in the input;
when the token is found, the preceding four octets are the
FCS. An alternate embodiment where the parser has a
variable symbol look-ahead capability will be explained at
the conclusion of this example.

0075) The MAC FCS production indicates that a SEE is
to check the FCS attached to the packet. ASEE may actually
compute the checksum, or the checksum may be computed
by input buffer or other hardware, in which case the SEE
would just compare the packet value to the calculated value
and reject the packet if no match occurs.

0076) To further illustrate how the RSP500 is configured
to execute the ARP grammar above, exemplary production
rule table and parser table values will now be given and
explained. First, production rules will be shown, wherein
hexadecimal notation illustrates a terminal value, decimal
notation indicates a production rule, and "octet will match
any octet found at the head of an input stream. A non
terminal (NT) code is used as an index to the parser table:
a production rule (PR) code is stored in the parser table, and
indicates which production rule applies to a given combi
nation of NT code and input value.

US 2007/0O83858 A1 Apr. 12, 2007

NT
Code Name

29 MAC PDU
30 MAC DA

31 MAC SA
32 EtherAddType
33 IpAddType
34 MAC PAYLOAD
35 ET2

36 ARP BODY
37 ARP HW TYPE
38 ARP PROT TYPE
39 ARP HW ADD LEN
40 ARP PROT ADD LEN
41 ARP OP

42 ARP REQ ADDR
43 ARP REPLY ADDR
44 ARP SENDER HW
45 ARP SENDER PROT
46 ARP TARGET HW
47 ARP TARGET PROT
48 ARP PADDING

49 MAC FCS

ARP Production Rules

Prod.
Rule No.

29.
30.
30.2
31.
32.
33.
34.
35.
35.2
36.
37.
38.
39.
40.
41.
41.2
42.
43.
44.
45.
46.
47.
48.
48.2
49.

Prod.
Rule Code

51
52
53
S4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

RHS Non-terminal Values

130 131 134
Ox08 OxO1 OxO2
OxFF OxFF OxFF
132
Octet Octet Octet
Octet Octet Octet
Ox08 135
OxO6 136

148 127
OxO3 Ox04 OxOS
OxFF OxFF OxFF

Octet Octet Octet
Octet

0x00 SIP BODY (unresolved)
137 138 139
OxOO OxO1
Ox08 OxOO

Ox04 OxOO
OxO1 142
OxO2 143
144 145 146
144 145 146
132
133
132
133
octet 148
null
Octet Octet Octet

14O 141 148

147
147

Octet

0077. In the ARP production rule table above, the RHS
Non-terminal Values, e.g., with a special end-of-rule symbol
attached, are what get stored in the RSP's production rule
table. The production rule codes are “pointers' to the

corresponding production rules; it is the PR codes that
actually get stored in the parser table. The following parser
table segment illustrates the relationship between PR and PR
code:

ARP Parser Table Values

Head of Input Stream Data Value

Non-Terminal All others

NT in range
Code Name 0x00 0x01 0x02 0x04 0x06 0x08 0xFF 0x00–0xFF

O S (start symbol)
27 EOFrame
28 S (bottom of stack)
29 MAC PDU 51 51
30 MAC DA 52 53
31 MAC SA S4
32 Ether AddType 55
33 IpAddType 56
34 MAC PAYLOAD 57
35 ET2 59 58
36 ARP BODY 60
37 ARP HW TYPE 61
38 ARP PROT TYPE 62
39 ARP HW ADD LEN 63
40 ARP PROT ADD LEN 64
41 ARP OP 65 66
42 ARP REQ ADDR 67
43 ARP REPLY ADDR 68
44 ARP SENDER HW 69
45 ARP SENDER PROT 70
46 ARP TARGET HW 71
47 ARP TARGET PROT 72
48 ARP PADDING 73, 74
49 MAC FCS 75

*PR 148.1/.2 is implemented using look-ahead capability in either the parser or a SEE

US 2007/0O83858 A1

0078. The combination of an NT code and a “Head of
InputStream Data Value' index the parser table values in the
RSP. Note that the start symbol S. EoPrame symbol, and
bottom of stack symbol S are special cases—the parser
control FSM can be implemented to not reference the parser
table for these symbols. For many NT codes, the table
produces the same PR code regardless of the data value
occupying the head of the input stream. In this example, all
other NT codes have valid values for only one or two head
of input stream values (a blank value in a cell represents an
invalid entry). This information can be coded in a matrix
format, with each cell filled in, or can be coded in some other
more economical format.

0079 Given the tables above, an example of RSP execu
tion for an Ethernet/ARP packet is now presented. In this
example, the DXP is stepped by parser cycles, correspond
ing to one “loop' through the flowchart in FIG. 7. At each
cycle, the following machine States are tracked: the input
pointer ip, indicating the byte address of the current stream
input symbol being parsed; the input symbol pointed to by
the input pointer, *ip; the parser Stack pointerpsp, indicating

Parser
Cycle ip

O OxOO

1 OxOO

2 OxOO

3 OXO1

4 OxO2

5 OXO3

6 OXO4

7 OxOS

8 OxO6

Ox

Ox

Ox

Ox

Ox

Ox

Ox

Ox

OxOO

Apr. 12, 2007

which stack value is pointed to at the beginning of the parser
cycle; the top-of-parser-stack symbol at the beginning of
that parser cycle, psp, where non-terminal symbols are
indicated by the prefix "nt.”, and the terminal symbol t.XX
matches any input symbol; PTip, psp), the currently
indexed value of the parser table: PRTPT), the production
rule pointed to by PTI*ip, *pspl; SCTPT), the s-code
segment pointed to by PTip, psp); and ps, the entire
contents of the parser stack.

0080. The following ARP packet will be used in the
example, where all values are stated in hexadecimal nota
tion:

FF

OO
OO

3A

FF

O4
OO

75

FF

OO
OO

72

OO O2

OO O2
CO A8

3A 73

77

77
O6

68

6D 9E 08 06 OO O1

6D 9E CO A8 OO O4
3A 20 33 OD OA S3

6S 6D EF 73 84 CC

0081. This is an ARP request packet sent to a broadcast
MAC address, requesting the hardware address associated
with a network address 192.168.0.6, which in this example
is a network address assigned to the RSP. The results for
parsing this example packet are shown below in tabular
format, followed by a brief explanation. Although the
example is lengthy, it is instructive as it exercises most of the
basic functions of the RSP

ARP Packet Parser Cycle Example

Prix PRTIy : SCTIy *ps

1 nt 129 51 nt. 13 Ont.131
nt.134 int.149
nt. 127
OxFF OxFF
OxFF OxFF
OxFF OxFF
NA

NULL 129 nt. 128

5 nt.130 53 NULL .130 nt.
.149 nt.

31 nt 134
27 nt 128

10 OxF NA NA xFF Ox
xFF Ox
.131 nt.

F OxF
F OxF
34 int.
28
F OxF
F int.131
49 nt.127

149

Ox NAA NAA NA
xFF Ox
.134 int.
128

xFF int.
.149 nt.
xFF Ox
.131 nt.
27 nt.
F OxF
.134 int.
128

xFF int.
.149 nt.
.131 nt.
127 nt.

34
128

Ox NAA NAA NA F OxF
31 nt.
27 nt
F OxF
34 int.
28
nt.13
49 nt.

Ox NAA NAA NA
149

Ox NAA NAA NA
127

Ox NAA NAA NA 31 nt 134
27 nt 128
34 int. 149
28

31 S4 t.XXt.XXt.XX SO nt.

US 2007/0O83858 A1

-continued

ARP Packet Parser Cycle Example

Parser 8 X = y =
Cycle ip *ip psp *psp PTa, X PRTIy SCTIy

64 Ox3C OxEF 2 int. 149 75 t.XXt.XXt.XX S4

6S Ox3C OxEF S txx NAA NAA NA

66 Ox3D Ox73 4 txx NAA NAA NA

67 Ox3E Ox84 3 txx NAA NAA NA

68 Ox3F OxCC 2 txx NAA NAA NA
69 Ox40 ECF 1 nt. 127 frame end processing
7O Ox41 ? 0 nt. 128 waiting for start of new frame

Apr. 12, 2007
10

*ps

nt. 149 int. 127 nt 128

t.XX t.XX t.XX t.XX
nt. 127 nt 128
t.xx t.xx t.xx nt.127
nt. 128
t.xx t.xx nt.127
nt. 128
t.xx nt.127 nt.128
nt. 127 nt 128
nt. 128

0082 Generally, the detailed example above illustrates
how production rules are expanded onto the parser stack and
then processed individually, either by: matching a terminal
symbol with an input symbol (see, e.g., parser cycles 2-7);
matching a terminal don't care symbol t.XX with an input
symbol (see, e.g., parser cycles 9-14); further expanding a
non-terminal symbol either irrespective of input (see, e.g.,
parser cycle 8) or based on the current input symbol (see,
e.g., parser cycles 0, 1, 17); or executing a null cycle, in this
case to allow a SEE to adjust the input pointer to "skip'
parsing for a padding field (parser cycle 63). This example
also illustrates the calls to s-code segments at appropriate
points during the parsing process, depending on which
production rules get loaded onto the stack (parser cycles 8,
33, 62. 64). It can be appreciated that some of these code
segments can execute in parallel with continued parsing.
0083. The exemplary grammargiven above is merely one
way of implementing an ARP grammar according to an
embodiment of the invention. Some cycle inefficiencies
could be reduced by explicitly expanding some of the
non-terminals into their parent production rules, for
example. The ARP grammar could also be generalized
considerably to handle more possibilities. The coding
selected, however, is meant to illustrate basic principles and
not all possible optimizations or ARP features. Explicit
expansions may also be limited by the chosen stack size for
a given implementation.

0084. In an alternate embodiment, DXP 200 can imple
ment an LL(f(X)) parser, where the look-ahead value f(X)
is coded in a stack symbol. Such that each stack symbol can
specify its own look-ahead. As an example, the production
rule for ARP PADDING in the previous example could be
specified as

SARP PADDING:=octet ARP PADDING|EoFrame, (LA5)
where (LA5) indicates an input symbol look-ahead of 5
symbols for this rule. The look-ahead value is coded into the
production rule table, such that when the rule is executed
DXP 200 looks up (X, C+5) in the production rule table.

0085. A variable look-ahead capability can also be used
to indicate that multiple input symbols are to be used in a
table lookup. For instance, the production rule for MAC DA
could be specified as
SMAC DA:=OX08 OXO1 OXO2 OXO3 OXO4 OXO5

OXFF OXFF OXFF OXFF OXFF, (LA6)

0086 Instead of creating two production rules 52 and 53
with six terminal symbols each, the parser table contains two
entries that match six symbols each, e.g., at parser table
locations (X, C)=(130, 0x08 0x01 0x02 0x03 0x04 0x05)
and (130, 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF).

0087. With such an approach, a standard row, column
matrix parser table could prove very wasteful due to the
number of addressable columns needed for up to a six-octet
input symbol width, and the sparsity of Such a matrix. One
alternate implementation, using a ternary CAM, is shown in
FIG 11.

0088 Ternary CAM900 of FIG. 11 is loaded with a table
of match addresses and corresponding production rule
codes. Each match address comprises a one-octet stack
symbol X and six octets of input symbols C.1, C2, C3, C4.
O.5. C.6. When a match address is supplied to CAM 900, it
determines whether a match exists in its parser table entries.
If a match exists, the corresponding production rule code is
returned (alternately, the address of the table entry that
caused a match is returned, which can be used as an index
into a separate table of production rule codes or pointers).

0089. One advantage of the parser table implementation
of FIG. 11 is that it is more efficient than a matrix approach,
as entries are only created for valid combinations of Stack
and input symbols. This same efficiency allows for longer
input symbols strings to be parsed in one parser cycle (up to
six input symbols are shown, but a designer could use
whatever length is convenient), thus a MAC or TP address
can be parsed in one parser cycle. Further, look-ahead
capability can be implicitly coded into the CAM, e.g., the
next six input symbols can always be supplied to the table.
For production rules corresponding to LL(1) parsing (Such
as the row for X = 136 in CAM 900), the CAM bits
corresponding to O2, C3, C4, C5, C.6 on that row are set to
a “don’t care value XX, and merely do not contribute to the
lookup. For production rules corresponding to LL(2) parsing
(such as the rows for X=134 and 135, which match a
two-octet packet type field for ARP and IP packets, respec
tively), the CAM bits corresponding to C3, C4, O.5. C.6 on
those rows are set to XX. Up to LL(6) parsing can be entered
in the table, as is shown in the two MAC address entries for
X=129. Note that if C1, C2, C3, C4, C.5 were set to XX, a true
six-symbol look-ahead can also be implemented. One last
observation is that with a ternary CAM, each bit can be set

US 2007/0O83858 A1

independently to a “don’t care” state, thus production rules
can also be set to ignore certain bits, e.g., in a flag field.
0090. A binary CAM can also function in a parser table
implementation. The primary difference is that the binary
CAM cannot store “don’t care' information explicitly, thus
leaving the parser state machine (or some other mechanism)
responsible for handling any “don’t care” functionality in
Some other manner.

0091. One of ordinary skill in the art will recognize that
the concepts taught herein can be tailored to a particular
application in many other advantageous ways. For instance,
many variations on the codes and addressing schemes pre
sented are possible. In the described embodiments, a micro
instruction code segment ends with a NULL instruction—
the occurrence of the NULL instruction can be detected
either by the S-bus interface of a SEE, by the microinstruc
tion decoder, or even by an s-code table function. The s-code
addresses do not necessarily have to be known to the SEEs:
it is possible for the SCT to track instruction pointers for
each SEE, with the instruction pointers for each SEE set by
the DXP. Although multiple memory storage areas with
different interfaces are illustrated, several of the interfaces
can share access to a common memory storage area that
serves as a physical storage space for both. Those skilled in
the art will recognize that some components, such as the
exception processing unit, can either by integrated with the
RSP or connect to the RSP as a separate unit.
0092. It is not critical how the parser table, production
rule table, and S-code table are populated for a given set of
grammars—the population can be achieved, for example,
through an EPU, a boot-code segment on one of the SEEs,
or a boot-grammar segment with the table population
instructions provided at the input port. The tables can also,
of course, be implemented with non-volatile memory so that
table reloading is not required at every power-up.
0093. The flowchart illustrating the operation of the DXP

is merely illustrative—for instance, it is recognized herein
that a given state machine implementation may accomplish
many tasks in parallel that are shown here as sequential
tasks, and may perform many operations speculatively.

0094. Although several embodiments have been shown
and described with a single input port, the description of
'an' input port merely acknowledges that at least one port
exists. The physical port arrangement can be varied depend
ing on application. For instance, depending on port band

11
Apr. 12, 2007

width and parser performance, several input ports may be
multiplexed to the same direct execution parser.
0095 Those skilled in the art recognize that other func
tional partitions are possible within the scope of the inven
tion. Further, what functions are and are not implemented on
a common integrated circuit (for a hardware implementa
tion) is a design choice, and can vary depending on appli
cation. It is also recognized that the described parser func
tions can be implemented on a general-purpose processor,
using conventional Software techniques, although this may
defeat some of the advantages present with the hardware
embodiments.

0096 Finally, although the specification may refer to
“an”, “one”, “another', or “some' embodiment(s) in several
locations, this does not necessarily mean that each Such
reference is to the same embodiment(s), or that the feature
only applies to a single embodiment.
What is claimed is:

1. A method of operating a network processor, the method
comprising:

detecting, at an input port, reception of the start of a
datagram comprising multiple data symbols;

directing a direct execution parser to parse data symbols
from the datagram according to a set of stored produc
tion rules; and

at least once during the parsing process, directing a
semantic code execution engine to execute a code
segment associated with a production rule.

2. The method of claim 1, further comprising during
execution of the code segment, executing an instruction that
generates a machine-context data request to an attached
machine context data interface, and translating the machine
context data request to at least one physical memory opera
tion.

3. The method of claim 1, further comprising:
detecting the occurrence of datagram content that cannot

be processed by a semantic code execution engine; and
directing an exception processing unit to process the

datagram content.
4. The method of claim 1, wherein executing the code

segment comprises directing a block input/output data
operation to a block input/output port.

k k k k k

