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RECONFIGURABLE SEMANTIC PROCESSOR 

RELATED APPLICATION DATA 

0001. This application is a continuation of co-pending 
U.S. application Ser. No. 10/351,030, filed on Jan. 24, 2003, 
entitled A RECONFIGURABLE SEMANTIC PROCES 
SOR, which is incorporated by reference. 

FIELD OF THE INVENTION 

0002 This invention relates generally to digital proces 
sors and processing, and more specifically to digital seman 
tic processors for data stream processing. 

BACKGROUND OF THE INVENTION 

0003 Traditional programmable computers use a von 
Neumann, or VN, architecture. The VN architecture, in its 
simplest form, comprises a central processing unit (CPU) 
and attached memory, usually with some form of input/ 
output to allow useful operations. For example, FIG. 1 
shows a computer 20 comprising a CPU 30, a memory 
controller 40, memory 50, and input/output (I/O) devices 60. 
CPU 30 sends data requests to memory controller 40 over 
address/control bus 42; the data itself passes over a data bus 
44. Memory controller 40 communicates with memory 50 
and I/O devices 60 to perform data reads and writes as 
requested by CPU 30 (or possibly by the I/O devices). 
Although not shown, the capability exists for various 
devices to “interrupt” the CPU and cause it to switch tasks. 
0004. In a VN machine, memory 50 stores both program 
instructions and data. CPU 30 fetches program instructions 
from the memory and executes the commands contained 
therein typical instructions instruct the CPU to load data 
from memory to a register, write data to memory from a 
register, perform an arithmetic or logical operation using 
data in its onboard registers, or branch to a different instruc 
tion and continue execution. As can be appreciated, CPU 30 
spends a great deal of time fetching instructions, fetching 
data, or writing data over data bus 44. Although elaborate 
(and usually costly) schemes can be implemented to cache 
data and instructions that might be useful, implement pipe 
lining, and decrease average memory cycle time, data bus 44 
is ultimately a bottleneck on processor performance. 
0005 The VN architecture is attractive, as compared to 
gate logic, because it can be made general-purpose' and 
can be reconfigured relatively quickly; by merely loading a 
new set of program instructions, the function of a VN 
machine can be altered to perform even very complex 
functions, given enough time. The tradeoffs for the flexibil 
ity of the VN architecture are complexity and inefficiency. 
Thus the ability to do almost anything comes at the cost of 
being able to do a few simple things efficiently. 

SUMMARY OF THE INVENTION 

0006. Many digital devices either in service or on the 
near horizon fall into the general category of packet pro 
cessors. In other words, these devices communicate with 
another device or devices using packets, e.g., over a cable, 
fiber, or wireless networked or point-to-point connection, a 
backplane, etc. In many such devices, what is done with the 
data received is straightforward, but the packet protocol and 
packet processing are too complex to warrant the design of 
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special-purpose hardware. Instead, such devices use a VN 
machine to implement the protocols. 
0007. It is recognized herein that a different and attractive 
approach exists for packet processors, an approach that can 
be described more generally as a reconfigurable semantic 
processor (RSP). Such a device is preferably reconfigurable 
like a VN machine, as its processing depends on its “pro 
gramming although as will be seen this “programming is 
unlike conventional machine code used by a VN machine. 
Whereas a VN machine always executes a set of machine 
instructions that check for various data conditions sequen 
tially, the RSP responds directly to the semantics of an input 
stream. In other words, the “code” that the RSP executes is 
selected by its input. Thus for packet input, with a defined 
grammar, the RSP is ideally suited to fast and efficient 
packet processing. 

0008 Some embodiments described herein use a table 
driven predictive parser to drive direct execution of the 
protocols of a network grammar, e.g., an LL (Left-to-right 
parsing by identifying the Left-most production) parser. 
Other parsing techniques, e.g., recursive descent, LR (Left 
to-right parsing by identifying the Right-most production), 
and LALR (Look Ahead LR) may also be used in embodi 
ments of the invention. In each case, the parser responds to 
its input by launching microinstruction code segments on a 
simple execution unit. When the tables are placed in rewrit 
able storage, the RSP can be easily reconfigured, and thus a 
single RSP design can be useful in a variety of applications. 
In many applications, the entire RSP, including the tables 
necessary for its operation, can be implemented on a single, 
low-cost, low-power integrated circuit. 
0009. A number of optional features can increase the 
usefulness of Such a device. A bank of execution units can 
be used to execute different tasks, allowing parallel process 
ing. An exception unit, which can be essentially a small VN 
machine, can be connected and used to perform tasks that 
are, e.g., complex but infrequent or without severe time 
pressure. And machine-context memory interfaces can be 
made available to the execution units, so that the execution 
units do not have to understand the underlying format of the 
memory units—thus greatly simplifying the code executed 
by the execution units. 

BRIEF DESCRIPTION OF THE DRAWING 

0010. The invention may be best understood by reading 
the disclosure with reference to the drawing, wherein: 
0011 FIG. 1 contains a block diagram for a typical von 
Neumann machine; 
0012 FIG. 2 contains a block diagram for a predictive 
parser pattern recognizer previously patented by the inventor 
of the present invention; 
0013 FIG. 3 illustrates, in block form, a semantic pro 
cessor according to an embodiment of the invention; 
0014 FIG. 4 shows one possible parser table construct 
useful with embodiments of the invention; 
0.015 FIG. 5 shows one possible production rule table 
organization useful with embodiments of the invention; 
0016 FIG. 6 illustrates, in block form, one implementa 
tion for a direct execution parser (DXP) useful with embodi 
ments of the present invention; 
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0017 FIG. 7 contains a flowchart for the operation of the 
DXP shown in FIG. 6; 
0018 FIG. 8 shows a block diagram for a reconfigurable 
semantic processor according to an embodiment of the 
invention; 
0.019 FIG. 9 shows the block organization of a semantic 
code execution engine useful with embodiments of the 
invention; 
0020 FIG. 10 shows the format of an Address Resolution 
Protocol packet; and 
0021 FIG. 11 illustrates an alternate parser table imple 
mentation using a Content-Addressable Memory (CAM). 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

0022. The inventor of the present application is a co 
inventor on a previous patent entitled “Pattern Recognition 
in Data Communications Using Predictive Parsers’. U.S. 
Pat. No. 5,916,305, issued Jun. 29, 1999. Although overall 
the device described in the 305 patent is quite different from 
the present invention, it is instructive as a general introduc 
tion to the use of a rudimentary predictive parser in con 
junction with a network protocol, as a pattern matcher. 
0023 FIG. 2 shows a block diagram of a device 80 as 
described in the 305 patent. A semantic engine 82 reads a 
packet 70, and passes the packet data octets as values to 
predictive parser 84. Predictive parser 84 examines each 
value (octet) that is passed to it. First, parser 84 performs a 
table lookup using the value and the offset of that values 
location from the beginning of packet 70 as an index into 
parser table 88. Parser table 88 stores, for each combination 
of value and offset, one of four possible values: A, meaning 
accept the value at that offset; D, meaning that the com 
bination of value and offset is a “don’t care’: F, meaning 
failure as the value at the offset is not part of the pattern to 
be recognized; and S, for an end symbol. 
0024 Parser stack 86 is not a true “stack” in the normal 
meaning of the word (or as applied to the invention embodi 
ments to be described shortly)—it merely keeps a state 
variable for each “filter that parser 84 is trying to match. 
Each state variable is initialized to an entry state. As table 
entries are Subsequently returned for each value and offset, 
the stack updates each stack variable. For instance, if an A 
is returned for a stack variable, that stack variable moves 
from the entry state to a partial match state. If a F is 
returned, that stack variable moves from either the entry 
state or the partial match state to a failure state. If a D is 
returned, that stack variable maintains its current state. And 
if a 'S' is returned while the state variable is in the entry state 
or the partial match state, the state variable transitions to the 
match state. 

0025. Once semantic engine 82 has passed all packet 
values to predictive parser 84, parser 84 returns a match 
value based on the parser stack States. Semantic engine 82 
then takes some output action depending on the Success or 
failure of the match. It should be noted that the parser does 
not control or coordinate the device function, but instead 
merely acts as an ancillary pattern matcher to a larger 
system. Each possible pattern to be distinguished requires a 
new column in the parser table, such that in a hardware 
implementation device 80 can match only a limited number 
of input patterns. And a parser table row is required for each 
input octet position, even if that input octet position cannot 
affect the match outcome. 
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0026. The embodiments described herein take a decid 
edly different approach to data processing. FIG. 3 shows a 
semantic processor 100 according to an embodiment of the 
invention. Rather than merely matching specific input pat 
terns to specific stored patterns, semantic processor 100 
contains a direct execution parser (DXP) 200 that controls 
the processing of input packets. As DXP 200 parses data 
received at the input port 102, it expands and executes actual 
grammar productions in response to the input, and instructs 
semantic code execution engine (SEE) 300 to process seg 
ments of the input, or perform other operations, as the 
grammar eXecutes. 
0027. This structure, with a sophisticated grammar parser 
that assigns machine context tasks to an execution engine, as 
the data requires, is both flexible and powerful. In preferred 
embodiments, the semantic processor is reconfigurable, and 
thus has the appeal of a VN machine without the high 
overhead. Because the semantic processor only responds to 
the input it is given, it can operate efficiently with a smaller 
instruction set than a VN machine. The instruction set also 
benefits because the semantic processor allows processing in 
a machine context. 

0028 Semantic processor 100 uses at least three tables. 
Code segments for SEE 300 are stored in semantic code 
table 160. Complex grammatical production rules are stored 
in a production rule table 140. Codes for retrieving those 
production rules are stored in a parser table 120. The codes 
in parser table 120 also allow DXP 200 to detect whether, for 
a given production rule, a code segment from semantic code 
table 160 should be loaded and executed by SEE 300. 
0029. Some embodiments of the present invention con 
tain many more elements than those shown in FIG. 3, but 
these essential elements appear in every system or software 
embodiment. A description of each block in FIG. 3 will thus 
be given before more complex embodiments are addressed. 
0030 FIG. 4 shows a general block diagram for a parser 
table 120. A production rule code memory 122 stores table 
values, e.g., in a row-column format. The rows of the table 
are indexed by a non-terminal code. The columns of the 
table are indexed by an input data value. 
0031 Practically, codes for many different grammars can 
exist at the same time in production rule code memory 122. 
For instance, as shown, one set of codes can pertain to MAC 
(Media Access Control) packet header format parsing, and 
other sets of codes can pertain to Address Resolution Pro 
tocol (ARP) packet processing, Internet Protocol (IP) packet 
processing, Transmission Control Protocol (TCP) packet 
processing, Real-time Transport Protocol (RTP) packet pro 
cessing, etc. Non-terminal codes need not be assigned in any 
particular order in production rule code memory 122., nor in 
blocks pertaining to a particular protocol as shown. 
0032. Addressor 124 receives non-terminal (NT) codes 
and data values from DXP 200. Addressor 124 translates 
NT code, data value pairs into a physical location in 
production rule code memory 122, retrieves the production 
rule (PR) code stored at that location, and returns the PR 
code to the DXP. Although conceptually it is often useful to 
view the structure of production rule code memory 122 as a 
matrix with one PR code stored for each unique combination 
of NT code and data value, the present invention is not so 
limited. Different types of memory and memory organiza 
tion may be appropriate for different applications (one of 
which is illustrated in FIG. 11). 
0033 Parser table 120 can be located on or off-chip, 
when DXP 200 and SEE 300 are integrated together in a 
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circuit. For instance, a static RAM located on-chip can serve 
as parser table 120. Alternately, off-chip DRAM storage can 
store parser table 120, with addressor 124 serving as or 
communicating with a memory controller for the DRAM. In 
other embodiments, the parser table can be located in 
off-chip memory, with an on-chip cache capable of holding 
a section of the parser table. Addressor 124 may not be 
necessary in Some implementations, but when used can be 
part of parser 200, part of parser table 120, or an interme 
diate functional block. Note that it is possible to implement 
a look-ahead capability for parser table 120, by giving 
addressor 124 visibility into the next input value on the input 
stream and the next value on the DXP's parser stack. 
0034 FIG. 5 illustrates one possible implementation for 
production rule table 140. Production rule memory 142 
stores the actual production rule sequences of terminal and 
non-terminal symbols, e.g., as null-terminated chains of 
consecutive memory addresses. An addressor 144 receives 
PR codes, either from DXP 200 or directly from parser table 
120. 

0035. As production rules can have various lengths, it is 
preferable to take an approach that allows easy indexing into 
memory 142. In one approach, the PR code could be 
arithmetically manipulated to determine a production rule's 
physical memory starting address (this would be possible, 
for instance, if the production rules were sorted by expanded 
length, and then PR codes were assigned according to a 
rules sorted position). The PR code could also be the actual 
PR starting address, although in Some applications this may 
make the PR codes unnecessarily lengthy. In the approach 
shown in FIG. 5, a pointer table 150 is populated with a PR 
starting address for each PR code. Addressor 144 retrieves 
a production rule by querying pointer table 150 using the PR 
code as an address. Pointer table 150 returns a PR starting 
address PRADD. Addressor 144 then retrieves PR data 
from production rule memory 142 using this starting 
address. Addressor 144 increments the starting address and 
continues to retrieve PR data until a NULL character is 
detected. 

0036 FIG. 5 shows a second column in table 150, which 
is used to store a semantic code (SC) starting address. When 
DXP 200 queries addressor 144 with a PR code, the 
addressor not only returns the corresponding production 
rule, but also the SC starting address for a SEE task to be 
performed. Where no SEE task is needed for a given 
production rule, the SC starting address is set to a NULL 
address. 

0037 FIG. 6 shows one possible block implementation 
for DXP 200. Parser control finite state machine (FSM) 210 
controls and sequences overall DXP operation, based on 
inputs from the other logical blocks in FIG. 6. Stack handler 
220 and stack 222 store and sequence the production rules 
executed by DXP 200. Parser table interface 230 allows 
DXP 200 to retrieve PR codes from an attached parser table. 
Production rule table interface 240 allows DXP 200 to 
retrieve production rules from an attached production rule 
table. And Semcode table interface 250 allows DXP 200 to 
identify the memory location of semantic code segments 
associated with production rules (in the illustrated embodi 
ment, interfaces 240 and 250 are partially combined). 
0038. Input stream sequence control 260 and register 262 
retrieve input data symbols from the Si-Bus. Comparator 
270 compares input symbols with symbols from parser stack 
222. Finally, SEE interface 280 is used to dispatch tasks to 
one or more SEEs communicating with DXP 200 on the 
SX-Bus. 
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0.039 The basic operation of the blocks in FIG. 6 will 
now be described with reference to the flowchart in FIG. 7. 
At the beginning of each parsing cycle (flowchart block 
400), stack handler 220 retrieves a production symbol pX 
pointed to by its top-of-stack pointer psp. The production 
symbol pX is split into two constituent parts, a prefix p and 
a symbol X. Prefix p codes the type of the symbol X, e.g., 
according to the following mapping for a two-bit prefix: 

TABLE 1. 

Prefix value p Type for symbol X 

OO Invalid symbol 
O1 Non-terminal symbol 
10 Terminal symbol 
11 Don't care terminal symbol; matches any input symbol 

0040. Note that instead of a prefix for a “don’t care” 
terminal symbol, the prefix can indicate a masked terminal 
symbol. A masked terminal symbol allows the specification 
of a bit mask for the input symbol, i.e., some (or all) bits of 
the terminal symbol are “don’t care' bits. The masked 
terminal symbol construct can be useful, e.g., for parsing 
packet flag fields such as occur in many network protocols. 
0041 Input stream sequence control 260 also loads the 
current input stream value pointed to by input pointer ip into 
aReg register 262. This step may not be necessary if the 
previous parsing cycle did not advance input pointer ip. 

0042. When parser control FSM 210 receives the new 
prefix code p from stack handler 220, it determines (flow 
chart block 402) which of three possible logic paths to take 
for this parsing cycle. If the prefix code indicates that X is 
a terminal symbol, path 410 is taken. If the prefix code 
indicates that X will match any input symbol, path 420 is 
taken. And if the prefix code indicates that X is a non 
terminal symbol, path 430 is taken. The processing associ 
ated with each path will be explained in turn. 
0043. When path 410 is taken, parser control FSM 200 
makes another path branch, based on the symbol match 
signal M supplied by comparator 270. Comparator 270 
compares input symbol a to Stack symbol X if the two are 
identical, signal M is asserted. If masked terminal symbols 
are allowed and a masked terminal symbol is Supplied, 
comparator 270 applies the mask such that signal M depends 
only on the unmasked Stack symbol bits. 
0044) When a particular input symbol is expected and not 
found, parser control FSM 210 enters an error recovery 
mode at block 414. Generally, error recovery will flush the 
remainder of the packet from the input (e.g., by matching the 
input with an end of frame (EOF) symbol until a match is 
detected), and popping the remaining symbols off the stack. 
A semCode segment may also be dispatched to a SEE to 
clean up any machine state data related to the errant packet. 
These and other actions may depend on the particular 
grammar being parsed at the time of the error. 
0045 Assuming that a match between a and X is found 
at block 412, further processing joins the processing path 
420. 

0046 Processing path 420 accomplishes two tasks, 
shown as blocks 422 and 424 in FIG. 7. First, parser control 
FSM 210 signals stack handler 220 to “pop” the current 
value of X off of Stack 222, e.g., by decrementing the stack 
pointer psp. Second, parser control FSM 210 signals input 
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stream sequence control 260 to increment the input pointer 
ip to the next symbol in the input stream. 
0047 Processing path 430 processes non-terminal sym 
bols appearing on stack 222. When a non-terminal symbol X 
reaches the top of the stack, processing blocks 432, 434,438, 
and 440 expand the non-terminal symbol into its corre 
sponding production rule. Parser control FSM 210 first 
signals parser table interface 230 to return a production rule 
code y=PTX,a). If y is invalid, parser control FSM 210 
performs error recovery (block 436), e.g., as described 
above. 

0.048 Assuming that PR code y is valid, parser control 
FSM 210 replaces X on stack 222 with its expanded pro 
duction rule. Parser control FSM signals production rule 
table (PRT) interface 240 and SemCode table (SCT) inter 
face 250 to perform lookups using PR codey. Parser control 
FSM 210 also signals stack handler 220 to pop the current 
value of X off of Stack 222. When PRT interface 240 returns 
production rule PRy, parser control FSM 210 signals stack 
handler 220 to push PRy onto stack 222. As each expanded 
production rule has a corresponding length, this length must 
be accounted for in the push, i.e. Some expansions may 
require multiple symbol transfers from the production rule 
table (the path width from the table to the stack handler may, 
of course, be more than one symbol wide). 
0049 Meanwhile, SCT interface 250 has returned a cor 
responding SemCode address code SCTy for production 
rule PRy). The address code SCTy may contain an actual 
physical address for the first SemCode microinstruction 
corresponding to PR codey, or some abstraction that allows 
a SEE to load that microinstruction. The address code 
SCTy may contain other information as well, such as an 
indication of which SEE (in a multiple-SEE system) should 
receive the code segment. 
0050. When commanded by parser control FSM 210, 
SEE interface 280 examines SCTy and determines whether 
a code segment needs to be dispatched to a SEE. As shown 
by decision block 442 in FIG. 7, no microinstruction execu 
tion is necessary if SCTy is not “valid', i.e., a NULL value 
is represented. Otherwise, SEE interface 280 determines 
(decision block 444) whether a SEE is currently available. 
SEE interface 280 examines a semaphore register (not 
shown) to determine SEE availability. If a particular SEE is 
indicated by SCTy. SEE interface 280 examines the sema 
phore for that SEE. If the semaphore indicates that the 
requested SEE is busy, SEE interface 280 enters wait state 
446 until the semaphore clears. If any SEE may execute the 
SemCode segment, SEE interface 280 can simply select one 
with a clear semaphore. 

0051) When the semaphore is clear for the selected SEE, 
SEE interface 280 captures the SX-bus and transmits SCT 
y to the selected SEE. The selected SEE sets its semaphore 
to indicate that it has received the request. 
0052. When parser control FSM 210 first commands SEE 
interface 280 to dispatch SCTy), SEE interface 280 deas 
serts the SEE status line to suspend further parsing, thereby 
preventing parser control FSM 210 from exiting the current 
parsing cycle until SCTy is dispatched (the stack push of 
the expanded production rule PRy can continue in parallel 
while the SEE status line is deasserted). Whether or not DXP 
200 continues to suspend parsing once SCTy has been 
transferred to the selected SEE can be dependent on SCTy. 
For instance, SCTy can also code how long the corre 
sponding SemCode segment should block further processing 
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by parser control FSM 210. In one embodiment, the DXU 
can be released: as soon as SCTy is dispatched; as soon as 
the SEE sets its semaphore; a programmable number of 
clock cycles after the SEE sets its semaphore; or not until the 
SEE sets and clears its semaphore. Alternately, the SEE can 
have different semaphore states corresponding to these dif 
ferent possibilities. 
0053 At the end of each parser cycle (decision block 460 
in FIG. 7), stack handler 220 will assert stack empty signal 
SE to parser control FSM 210 if the stack is empty. Upon the 
assertion of the SE signal, parser control FSM 210 resets its 
states to wait for the beginning of the next input packet. As 
long as the stack is not empty, however, the parser control 
FSM returns to block 400 and begins a new parsing cycle. 
0054 FIG. 8 shows a second RSP embodiment 500 with 
expanded capability. Instead of the single SEE 300 shown in 
FIG. 3, RSP 500 incorporates N+1 SEES 300-0 to 300-N. 
RSP 500 also contains several other significant additions: an 
exception processing unit (EPU) 600, an array machine 
context data memory (AMCD) 700, and a variable machine 
context data memory (VMCD) 800. The function of each 
block in FIG. 8 will now be explained in context. 
0.055 FIG. 9 illustrates the basic functional blocks of 
SEE 300-0. At the heart of SEE 300-0 is an arithmetic logic 
unit (ALU) 310, a set of pipeline registers 320, and a 
semCode (or s-code) instruction decoder 330. An S-code 
queue 340 stores microinstructions to be executed by the 
SEE. The microinstructions themselves are stored in sem 
Code table 160 and received by the SEES-bus interface 360. 
SEE control finite state machine (FSM) 350 coordinates the 
operation of the SEE blocks shown. 
0056 SEE 300-0 sits idle until it receives an execution 
request (from DXP 200) on the SX-bus. SEE control FSM 
350 examines traffic on the SX-bus, waiting for a request 
directed to SEE 300-0 (for instance, up to 16 SEEs can be 
addressed with four SX-bus address lines, each SEE having 
a unique address). When a request is directed to SEE 300-0, 
the request contains, e.g., a starting SemCode address. SEE 
control FSM 350 responds to the request by: setting its 
semaphore to acknowledge that it is now busy; and instruct 
ing S-bus interface 360 to drive a request on the S-bus to 
retrieve the microinstruction code segment beginning with 
the received starting SemCode address. 
0057 S-bus interface 360 is tasked with placing S-code 
instructions in queue 340 before s-code instruction decoder 
330 needs them. S-bus interface does have to contend with 
other SEE S-bus interfaces for access to the S-bus, therefore 
it may be beneficial to download multiple sequential instruc 
tions at a time in a burst. S-bus interface 360 maintains an 
S-code address counter (not shown) and continues to down 
load instructions sequentially unless directed otherwise by 
SEE control FSM 350. 

0.058 S-code microinstruction decoder 330 executes the 
code segment requested by the DXP on ALU 310 and 
pipeline registers 320. Although preferably a branching 
capability exists within instruction decoder 330, many code 
segments will require little or no branching due the overall 
Structure of the RSP. 

0059 ALU 310 can be conventional, e.g., having the 
capability to perform addition, comparison, shifting, etc., 
using its own register values and/or values from pipeline 
register 320. 
0060 Pipeline registers 320 allow machine-context 
access to data. As opposed to a standard CPU, the preferred 
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SEE embodiments have no notion of the physical data 
storage structure used for the data that they operate on. 
Instead, accesses to data take a machine-context transac 
tional form. Variable (e.g., Scalar) data is accessed on the 
V-bus; array data is accessed on the A-bus; and input stream 
data is accessed on the Si-bus. For instance, to read a scalar 
data element of length m octets located at a given location 
offset within a data context ct, the instruction decoder 330 
prompts the V-bus interface to issue a bus request read, ct, 
offset, m}. The context mct refers to the master context of 
the RSP; other sub-contexts will usually be created and 
destroyed as the RSP processes input data, such as a Sub 
context for a current TCP packet or active session. 
0061. Once a pipeline register has been issued a com 
mand, it handles the data transfer process. If multiple bus 
transfers are required to read or write m octets, the pipeline 
register tracks the transaction to completion. As an example, 
a six-octet field can be transferred from the stream input to 
a machine-context variable using two microinstructions: a 
first instruction reads six octets from the Si-bus to a pipeline 
register, a second instruction then writes the six octets from 
the register to the machine-context variable across the 
V-bus. The register interfaces perform however many bus 
data cycles are required to effect the transfer. 
0062 VMCD 800 serves the requests initiated on the 
V-bus. VMCD 800 has the capability to translate machine 
context variable data requests to physical memory transac 
tions. Thus VMCD 800 preferably maintains a translation 
table referencing machine context identifiers to physical 
Starting addresses, contains a mechanism for allocating and 
deallocating contexts, allows contexts to be locked by a 
given SEE, and ensures that requested transactions do not 
fall outside of the requested context’s boundaries. The actual 
storage mechanism employed can vary based on application: 
the memory could be completely internal, completely exter 
nal, a mix of the two, a cache with a large external memory, 
etc. An external memory can be shared with external 
memory for other memory sections, such as the AMCD, 
e-code table, input buffer, parser table, production rule table, 
and semCode table, in a given implementation. 
0063) The A-bus interface and AMCD 700 operate simi 

larly, but with an array machine context organization. Pref 
erably, different types of arrays and tables can be allocated, 
resized, deallocated, written to, read from, searched, and 
possibly even hashed or sorted using simple bus requests. 
The actual underlying physical memory can differ for dif 
ferent types of arrays and tables, including for example fast 
onboard RAM, external RAM or ROM, content-addressable 
memory, etc. 

0064 Returning to the description of SEE 300-0 and its 
pipeline registers, each SEE can access input data from 
buffer 510 across the Si-bus. And each SEE has access to the 
P-bus and the current symbol on top of the parser stack this 
can be useful, e.g., where the same S-code is used with 
multiple production rules, but its outcome depends on the 

SMAC PDU 
SMACDA 

SMACSA 
SMAC PAYLOAD 
SET2 
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production rule that initiated it. Finally, the pipeline registers 
of some SEEs can be specialized. For instance, SEE 300-1 
in FIG. 8 communicates with local I/O block 520 to provide 
a data path to/from, e.g., local USB or serial ATA devices 
connected to local I/O block 520. And SEE 300-2 in FIG. 8 
communicates with EPU 600 to provide a data path to/from 
an exception unit. Although in theory each SEE could 
connect separately with each of these devices, in practice the 
device is simplified and suffers little performance penalty by 
pairing certain SEEs with certain other functions. 
0065 Exception processing unit 600 can be a standard 
Von Neumann central processing unit (CPU), although in 
many applications it can be a very rudimentary one. When 
included, EPU 600 is preferably used to handle complex 
code that either runs infrequently or is not timing-critical. 
Examples are a user log-on procedure, a request to make a 
local drive available remotely, error logging and recovery, 
table loading at System startup, and system configuration. 
EPU 600 responds to DXP requests indirectly, through 
s-code segments loaded into SEE 300-2. Preferably, EPU 
600 can also call upon SEE 300-2 to perform functions for 
it, such as reading or writing to AMCD 700 or VMCD 800. 
0.066 An e-code table 610 is preferably available to EPU 
600. The e-code table contains boot instructions for the 
device, and may contain executable instructions for per 
forming other functions requested by the DXP. Optionally, 
e-code table 610 may contain a table for translating s-code 
requests into instruction addresses for code to be executed, 
with the instruction addresses located in a conventional 
external memory space. 

An Example 
0067. In order to better illustrate operation of RSP500, an 
example for an implementation of the Address Resolution 
Protocol (ARP), as described in IETF RFC 826, is presented. 
This example walks through the creation of production 
rules, parser table entries, and the functional Substance of 
s-code for handling received ARP packets. 
0068 Briefly, ARP packets allow local network nodes to 
associate each peers link-layer (hardware) address with a 
network (protocol) address for one or more network proto 
cols. This example assumes that the hardware protocol is 
Ethernet, and that the network protocol is Internet Protocol 
(IP or IPv4). Accordingly, ARP packets have the format 
shown in FIG. 10. When the opcode field is set to 1, the 
sender is trying to discover the target hardware address 
associated with the target protocol address, and is requesting 
an ARP reply packet. When the opcode field is set to 2, the 
sender is replying to an ARP request—in this case, the 
senders hardware address is the target hardware address 
that the original sender was looking for. 
0069. The following exemplary grammar describes one 
way in which RSP 500 can process ARP packets received at 
the input port. A S indicates the beginning of a production 
rule, {} enclose s-code to be performed by a SEE: 

MAC DAMAC SAMAC PAYLOAD MAC FCS EoFrame 
OXO8 OXO1 OXO2 OXO3 OXO4 OXOS 
OXFF OXFF OXFF OXFF OXFF OXFF 

ether AddType {s0: mct->curr SA = MAC SA} 

OX06 ARP BODY OX00 IP BODY 
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-continued 

ARP BODY := ARP HW TYPE ARP PROT TYPE ARP HW ADD LEN 
ARP PROT ADD LEN ARP OPARP PADDING 

ARP HW TYPE = OXOOO1 
ARP PROT TYPE := 0x0800 
ARP HW ADD LEN:= OXO6 
ARP PROT ADD LEN:= OXO4 0x00 
ARP OP := 0x01 ARP REQ ADDR 

OxO2 ARP REPLY ADDR 
ARP REQ ADDR := ARP SENDER HW ARP SENDER PROT ARP TARGET HW 

ARP TARGET PROT {s1: s-code seg1} 
ARP REPLY ADDR:= ARP SENDER HW ARP SENDER PROT ARP TARGET HW 

ARP TARGET PROT s2: s-code seg2} 
ARP SENDER HW := ether AddType 
ARP SENDER PROT:= ipAddType 
ARP TARGET HW := etherAddType 
ARP TARGET PROT:= ipAddType 
ARP PADDING := octet null s?: calc. length; throw away 
IP BODY := funresolved by this example 
MAC FCS := octet octet octet octet {s4: check FCS 
ether AddType := Octet Octet Octet Octet Octet Octet 
ipAddType := Octet Octet Octet Octet 
S-COCle. St. == Inct->n (SS de Seg1 if ARP TARGET PROT yIPAddr 

then generate ARP reply to mct->curr SA; 
s-code seg2} 
update mct->ArpCache with (s-code seg2 
ARP SENDER HW, ARP SENDER PROT, mct->time} 

0070 This example only processes a limited set of all 
possible ARP packets, namely those properly indicating 
fields consistent with an Ethernet hardware type and an IP 
protocol type; all others will fail to parse and will be 
rejected. This grammar also leaves a hook for processing IP 
packets (SIP BODY) and thus will not reject IP packets, but 
a corresponding IP grammar is not part of this example. 
0071 Stepping through the productions, SMAC PDU 
merely defines the MAC frame format. Two destination 
MAC addresses are allowed by SMAC DA: a specific 
hardware address (0x08 0x01 0x02 0x03 0x04 0x05) and a 
broadcast address of all 1s. All other MAC addresses are 
automatically rejected, as a packet without one of these two 
addresses will fail to parse. Any source address is accepted 
by SMAC SA; a SEE is called to save the source address to 
a master context table variable mct- >curr SA on the 
VMCD. SMAC PAYLOAD and SET2 combine to ensure 
that only two types of payloads are parsed, an ARP payload 
and an IP payload (further parsing of an IP payload is not 
illustrated herein). Of course, other packet types can be 
added by expanding these productions. 
0072) When the first two bytes of the MAC PAYLOAD 
indicate an ARP packet (type=0x0806), the parser next tries 
to parse SARP BODY. For simplicity, the first four elements 
of the ARP body (hardware and protocol types and address 
lengths) are shown fixed if ARP were implemented for 
another protocol as well as IP, these elements could be 
generalized (note that the generalization of the length fields 
might allow different sizes for the address fields that follow, 
a condition that would have to be accounted for in the 
production rules). 
0073. Two values for SARP OP are possible, a 1 for a 
request and a 2 for a reply. Although address parsing does 
not differ for the two values of ARP OP, the s-code to be 
executed in each case does. S-code segment 1, which is 
executed for ARP requests, compares the target protocol to 
the local IP address stored in the master context table on the 
VMCD. When these are equal, a SEE generates an ARP 
reply packet to the senders hardware and IP addresses. 

S-code segment 2 executes for both ARP requests and ARP 
replies—this segment updates an ArpCache array stored in 
the AMCD with the sender's hardware and protocol 
addresses and the time received. The “update' command to 
mct->ArpCache includes a flag or mask to identify which 
data in ArpCache should be used to perform the update: 
normally, the cache would be indexed at least by IP address. 

0.074) In an Ethernet/IP ARP packet, ARP PADDING 
will be 18 octets in length. The ARP PADDING production 
rule shown here, however, fits any number of octets. In this 
example, an S-code segment is called to calculate the pad 
ding length and “throw away that many octets, e.g., by 
advancing the input pointer. Alternately, the parser could use 
a five-octet look-ahead to the EoPrame token in the input; 
when the token is found, the preceding four octets are the 
FCS. An alternate embodiment where the parser has a 
variable symbol look-ahead capability will be explained at 
the conclusion of this example. 

0075) The MAC FCS production indicates that a SEE is 
to check the FCS attached to the packet. ASEE may actually 
compute the checksum, or the checksum may be computed 
by input buffer or other hardware, in which case the SEE 
would just compare the packet value to the calculated value 
and reject the packet if no match occurs. 

0076) To further illustrate how the RSP500 is configured 
to execute the ARP grammar above, exemplary production 
rule table and parser table values will now be given and 
explained. First, production rules will be shown, wherein 
hexadecimal notation illustrates a terminal value, decimal 
notation indicates a production rule, and "octet will match 
any octet found at the head of an input stream. A non 
terminal (NT) code is used as an index to the parser table: 
a production rule (PR) code is stored in the parser table, and 
indicates which production rule applies to a given combi 
nation of NT code and input value. 
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NT 
Code Name 

29 MAC PDU 
30 MAC DA 

31 MAC SA 
32 EtherAddType 
33 IpAddType 
34 MAC PAYLOAD 
35 ET2 

36 ARP BODY 
37 ARP HW TYPE 
38 ARP PROT TYPE 
39 ARP HW ADD LEN 
40 ARP PROT ADD LEN 
41 ARP OP 

42 ARP REQ ADDR 
43 ARP REPLY ADDR 
44 ARP SENDER HW 
45 ARP SENDER PROT 
46 ARP TARGET HW 
47 ARP TARGET PROT 
48 ARP PADDING 

49 MAC FCS 

ARP Production Rules 

Prod. 
Rule No. 

29. 
30. 
30.2 
31. 
32. 
33. 
34. 
35. 
35.2 
36. 
37. 
38. 
39. 
40. 
41. 
41.2 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
48.2 
49. 

Prod. 
Rule Code 

51 
52 
53 
S4 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

RHS Non-terminal Values 

130 131 134 
Ox08 OxO1 OxO2 
OxFF OxFF OxFF 
132 
Octet Octet Octet 
Octet Octet Octet 
Ox08 135 
OxO6 136 

148 127 
OxO3 Ox04 OxOS 
OxFF OxFF OxFF 

Octet Octet Octet 
Octet 

0x00 SIP BODY (unresolved) 
137 138 139 
OxOO OxO1 
Ox08 OxOO 

Ox04 OxOO 
OxO1 142 
OxO2 143 
144 145 146 
144 145 146 
132 
133 
132 
133 
octet 148 
null 
Octet Octet Octet 

14O 141 148 

147 
147 

Octet 

0077. In the ARP production rule table above, the RHS 
Non-terminal Values, e.g., with a special end-of-rule symbol 
attached, are what get stored in the RSP's production rule 
table. The production rule codes are “pointers' to the 

corresponding production rules; it is the PR codes that 
actually get stored in the parser table. The following parser 
table segment illustrates the relationship between PR and PR 
code: 

ARP Parser Table Values 

Head of Input Stream Data Value 

Non-Terminal All others 

NT in range 
Code Name 0x00 0x01 0x02 0x04 0x06 0x08 0xFF 0x00–0xFF 

O S (start symbol) 
27 EOFrame 
28 S (bottom of stack) 
29 MAC PDU 51 51 
30 MAC DA 52 53 
31 MAC SA S4 
32 Ether AddType 55 
33 IpAddType 56 
34 MAC PAYLOAD 57 
35 ET2 59 58 
36 ARP BODY 60 
37 ARP HW TYPE 61 
38 ARP PROT TYPE 62 
39 ARP HW ADD LEN 63 
40 ARP PROT ADD LEN 64 
41 ARP OP 65 66 
42 ARP REQ ADDR 67 
43 ARP REPLY ADDR 68 
44 ARP SENDER HW 69 
45 ARP SENDER PROT 70 
46 ARP TARGET HW 71 
47 ARP TARGET PROT 72 
48 ARP PADDING 73, 74 
49 MAC FCS 75 

*PR 148.1/.2 is implemented using look-ahead capability in either the parser or a SEE 



US 2007/0O83858 A1 

0078. The combination of an NT code and a “Head of 
InputStream Data Value' index the parser table values in the 
RSP. Note that the start symbol S. EoPrame symbol, and 
bottom of stack symbol S are special cases—the parser 
control FSM can be implemented to not reference the parser 
table for these symbols. For many NT codes, the table 
produces the same PR code regardless of the data value 
occupying the head of the input stream. In this example, all 
other NT codes have valid values for only one or two head 
of input stream values (a blank value in a cell represents an 
invalid entry). This information can be coded in a matrix 
format, with each cell filled in, or can be coded in some other 
more economical format. 

0079 Given the tables above, an example of RSP execu 
tion for an Ethernet/ARP packet is now presented. In this 
example, the DXP is stepped by parser cycles, correspond 
ing to one “loop' through the flowchart in FIG. 7. At each 
cycle, the following machine States are tracked: the input 
pointer ip, indicating the byte address of the current stream 
input symbol being parsed; the input symbol pointed to by 
the input pointer, *ip; the parser Stack pointerpsp, indicating 

Parser 
Cycle ip 

O OxOO 

1 OxOO 

2 OxOO 

3 OXO1 

4 OxO2 

5 OXO3 

6 OXO4 

7 OxOS 

8 OxO6 

Ox 

Ox 

Ox 

Ox 

Ox 

Ox 

Ox 

Ox 

OxOO 
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which stack value is pointed to at the beginning of the parser 
cycle; the top-of-parser-stack symbol at the beginning of 
that parser cycle, psp, where non-terminal symbols are 
indicated by the prefix "nt.”, and the terminal symbol t.XX 
matches any input symbol; PTip, psp), the currently 
indexed value of the parser table: PRTPT), the production 
rule pointed to by PTI*ip, *pspl; SCTPT), the s-code 
segment pointed to by PTip, psp); and ps, the entire 
contents of the parser stack. 

0080. The following ARP packet will be used in the 
example, where all values are stated in hexadecimal nota 
tion: 

FF 

OO 
OO 

3A 

FF 

O4 
OO 

75 

FF 

OO 
OO 

72 

OO O2 

OO O2 
CO A8 

3A 73 

77 

77 
O6 

68 

6D 9E 08 06 OO O1 

6D 9E CO A8 OO O4 
3A 20 33 OD OA S3 

6S 6D EF 73 84 CC 

0081. This is an ARP request packet sent to a broadcast 
MAC address, requesting the hardware address associated 
with a network address 192.168.0.6, which in this example 
is a network address assigned to the RSP. The results for 
parsing this example packet are shown below in tabular 
format, followed by a brief explanation. Although the 
example is lengthy, it is instructive as it exercises most of the 
basic functions of the RSP 

ARP Packet Parser Cycle Example 

Prix PRTIy : SCTIy *ps 

1 nt 129 51 nt. 13 Ont.131 
nt.134 int.149 
nt. 127 
OxFF OxFF 
OxFF OxFF 
OxFF OxFF 
NA 

NULL 129 nt. 128 

5 nt.130 53 NULL .130 nt. 
.149 nt. 

31 nt 134 
27 nt 128 

10 OxF NA NA xFF Ox 
xFF Ox 
.131 nt. 

F OxF 
F OxF 
34 int. 
28 
F OxF 
F int.131 
49 nt.127 

149 

Ox NAA NAA NA 
xFF Ox 
.134 int. 
128 

xFF int. 
.149 nt. 
xFF Ox 
.131 nt. 
27 nt. 
F OxF 
.134 int. 
128 

xFF int. 
.149 nt. 
.131 nt. 
127 nt. 

34 
128 

Ox NAA NAA NA F OxF 
31 nt. 
27 nt 
F OxF 
34 int. 
28 
nt.13 
49 nt. 

Ox NAA NAA NA 
149 

Ox NAA NAA NA 
127 

Ox NAA NAA NA 31 nt 134 
27 nt 128 
34 int. 149 
28 

31 S4 t.XXt.XXt.XX SO nt. 
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-continued 

ARP Packet Parser Cycle Example 

Parser 8 X = y = 
Cycle ip *ip psp *psp PTa, X PRTIy SCTIy 

64 Ox3C OxEF 2 int. 149 75 t.XXt.XXt.XX S4 

6S Ox3C OxEF S txx NAA NAA NA 

66 Ox3D Ox73 4 txx NAA NAA NA 

67 Ox3E Ox84 3 txx NAA NAA NA 

68 Ox3F OxCC 2 txx NAA NAA NA 
69 Ox40 ECF 1 nt. 127 frame end processing 
7O Ox41 ? 0 nt. 128 waiting for start of new frame 

Apr. 12, 2007 
10 

*ps 

nt. 149 int. 127 nt 128 

t.XX t.XX t.XX t.XX 
nt. 127 nt 128 
t.xx t.xx t.xx nt.127 
nt. 128 
t.xx t.xx nt.127 
nt. 128 
t.xx nt.127 nt.128 
nt. 127 nt 128 
nt. 128 

0082 Generally, the detailed example above illustrates 
how production rules are expanded onto the parser stack and 
then processed individually, either by: matching a terminal 
symbol with an input symbol (see, e.g., parser cycles 2-7); 
matching a terminal don't care symbol t.XX with an input 
symbol (see, e.g., parser cycles 9-14); further expanding a 
non-terminal symbol either irrespective of input (see, e.g., 
parser cycle 8) or based on the current input symbol (see, 
e.g., parser cycles 0, 1, 17); or executing a null cycle, in this 
case to allow a SEE to adjust the input pointer to "skip' 
parsing for a padding field (parser cycle 63). This example 
also illustrates the calls to s-code segments at appropriate 
points during the parsing process, depending on which 
production rules get loaded onto the stack (parser cycles 8, 
33, 62. 64). It can be appreciated that some of these code 
segments can execute in parallel with continued parsing. 
0083. The exemplary grammargiven above is merely one 
way of implementing an ARP grammar according to an 
embodiment of the invention. Some cycle inefficiencies 
could be reduced by explicitly expanding some of the 
non-terminals into their parent production rules, for 
example. The ARP grammar could also be generalized 
considerably to handle more possibilities. The coding 
selected, however, is meant to illustrate basic principles and 
not all possible optimizations or ARP features. Explicit 
expansions may also be limited by the chosen stack size for 
a given implementation. 

0084. In an alternate embodiment, DXP 200 can imple 
ment an LL(f(X)) parser, where the look-ahead value f(X) 
is coded in a stack symbol. Such that each stack symbol can 
specify its own look-ahead. As an example, the production 
rule for ARP PADDING in the previous example could be 
specified as 

SARP PADDING:=octet ARP PADDING|EoFrame, (LA5) 
where (LA5) indicates an input symbol look-ahead of 5 
symbols for this rule. The look-ahead value is coded into the 
production rule table, such that when the rule is executed 
DXP 200 looks up (X, C+5) in the production rule table. 

0085. A variable look-ahead capability can also be used 
to indicate that multiple input symbols are to be used in a 
table lookup. For instance, the production rule for MAC DA 
could be specified as 
SMAC DA:=OX08 OXO1 OXO2 OXO3 OXO4 OXO5 

OXFF OXFF OXFF OXFF OXFF, (LA6) 

0086 Instead of creating two production rules 52 and 53 
with six terminal symbols each, the parser table contains two 
entries that match six symbols each, e.g., at parser table 
locations (X, C)=(130, 0x08 0x01 0x02 0x03 0x04 0x05) 
and (130, 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF). 

0087. With such an approach, a standard row, column 
matrix parser table could prove very wasteful due to the 
number of addressable columns needed for up to a six-octet 
input symbol width, and the sparsity of Such a matrix. One 
alternate implementation, using a ternary CAM, is shown in 
FIG 11. 

0088 Ternary CAM900 of FIG. 11 is loaded with a table 
of match addresses and corresponding production rule 
codes. Each match address comprises a one-octet stack 
symbol X and six octets of input symbols C.1, C2, C3, C4. 
O.5. C.6. When a match address is supplied to CAM 900, it 
determines whether a match exists in its parser table entries. 
If a match exists, the corresponding production rule code is 
returned (alternately, the address of the table entry that 
caused a match is returned, which can be used as an index 
into a separate table of production rule codes or pointers). 

0089. One advantage of the parser table implementation 
of FIG. 11 is that it is more efficient than a matrix approach, 
as entries are only created for valid combinations of Stack 
and input symbols. This same efficiency allows for longer 
input symbols strings to be parsed in one parser cycle (up to 
six input symbols are shown, but a designer could use 
whatever length is convenient), thus a MAC or TP address 
can be parsed in one parser cycle. Further, look-ahead 
capability can be implicitly coded into the CAM, e.g., the 
next six input symbols can always be supplied to the table. 
For production rules corresponding to LL(1) parsing (Such 
as the row for X = 136 in CAM 900), the CAM bits 
corresponding to O2, C3, C4, C5, C.6 on that row are set to 
a “don’t care value XX, and merely do not contribute to the 
lookup. For production rules corresponding to LL(2) parsing 
(such as the rows for X=134 and 135, which match a 
two-octet packet type field for ARP and IP packets, respec 
tively), the CAM bits corresponding to C3, C4, O.5. C.6 on 
those rows are set to XX. Up to LL(6) parsing can be entered 
in the table, as is shown in the two MAC address entries for 
X=129. Note that if C1, C2, C3, C4, C.5 were set to XX, a true 
six-symbol look-ahead can also be implemented. One last 
observation is that with a ternary CAM, each bit can be set 
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independently to a “don’t care” state, thus production rules 
can also be set to ignore certain bits, e.g., in a flag field. 
0090. A binary CAM can also function in a parser table 
implementation. The primary difference is that the binary 
CAM cannot store “don’t care' information explicitly, thus 
leaving the parser state machine (or some other mechanism) 
responsible for handling any “don’t care” functionality in 
Some other manner. 

0091. One of ordinary skill in the art will recognize that 
the concepts taught herein can be tailored to a particular 
application in many other advantageous ways. For instance, 
many variations on the codes and addressing schemes pre 
sented are possible. In the described embodiments, a micro 
instruction code segment ends with a NULL instruction— 
the occurrence of the NULL instruction can be detected 
either by the S-bus interface of a SEE, by the microinstruc 
tion decoder, or even by an s-code table function. The s-code 
addresses do not necessarily have to be known to the SEEs: 
it is possible for the SCT to track instruction pointers for 
each SEE, with the instruction pointers for each SEE set by 
the DXP. Although multiple memory storage areas with 
different interfaces are illustrated, several of the interfaces 
can share access to a common memory storage area that 
serves as a physical storage space for both. Those skilled in 
the art will recognize that some components, such as the 
exception processing unit, can either by integrated with the 
RSP or connect to the RSP as a separate unit. 
0092. It is not critical how the parser table, production 
rule table, and S-code table are populated for a given set of 
grammars—the population can be achieved, for example, 
through an EPU, a boot-code segment on one of the SEEs, 
or a boot-grammar segment with the table population 
instructions provided at the input port. The tables can also, 
of course, be implemented with non-volatile memory so that 
table reloading is not required at every power-up. 
0093. The flowchart illustrating the operation of the DXP 

is merely illustrative—for instance, it is recognized herein 
that a given state machine implementation may accomplish 
many tasks in parallel that are shown here as sequential 
tasks, and may perform many operations speculatively. 

0094. Although several embodiments have been shown 
and described with a single input port, the description of 
'an' input port merely acknowledges that at least one port 
exists. The physical port arrangement can be varied depend 
ing on application. For instance, depending on port band 
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width and parser performance, several input ports may be 
multiplexed to the same direct execution parser. 
0095 Those skilled in the art recognize that other func 
tional partitions are possible within the scope of the inven 
tion. Further, what functions are and are not implemented on 
a common integrated circuit (for a hardware implementa 
tion) is a design choice, and can vary depending on appli 
cation. It is also recognized that the described parser func 
tions can be implemented on a general-purpose processor, 
using conventional Software techniques, although this may 
defeat some of the advantages present with the hardware 
embodiments. 

0096 Finally, although the specification may refer to 
“an”, “one”, “another', or “some' embodiment(s) in several 
locations, this does not necessarily mean that each Such 
reference is to the same embodiment(s), or that the feature 
only applies to a single embodiment. 
What is claimed is: 

1. A method of operating a network processor, the method 
comprising: 

detecting, at an input port, reception of the start of a 
datagram comprising multiple data symbols; 

directing a direct execution parser to parse data symbols 
from the datagram according to a set of stored produc 
tion rules; and 

at least once during the parsing process, directing a 
semantic code execution engine to execute a code 
segment associated with a production rule. 

2. The method of claim 1, further comprising during 
execution of the code segment, executing an instruction that 
generates a machine-context data request to an attached 
machine context data interface, and translating the machine 
context data request to at least one physical memory opera 
tion. 

3. The method of claim 1, further comprising: 
detecting the occurrence of datagram content that cannot 

be processed by a semantic code execution engine; and 
directing an exception processing unit to process the 

datagram content. 
4. The method of claim 1, wherein executing the code 

segment comprises directing a block input/output data 
operation to a block input/output port. 
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