A. J. WHISLER. TOY BALLOON. APPLICATION FILED FEB. 18, 190

APPLICATION FILED FEB. 18, 1903. NO MODEL. A J Whisler.
BY WITNESSES:
Roger W. Januar

UNITED STATES PATENT OFFICE.

ARRAH J. WHISLER, OF NEWARK, NEW JERSEY, ASSIGNOR TO RUBBER BALLOON COMPANY OF AMERICA, OF NEW YORK, N. Y., A CORPORA-TION OF NEW YORK.

TOY BALLOON.

SPECIFICATION forming part of Letters Patent No. 726,069, dated April 21, 1903.

Application filed February 18, 1903. Serial No. 143,907. (No model.)

To all whom it may concern:

Be it known that I, ARRAH J. WHISLER, a citizen of the United States of America, and a resident of the city of Newark, in the county 5 of Essex and State of New Jersey, have invented certain new and useful Improvements in Toy Balloons, of which the following is a

specification.

My invention relates to improvements in 10 toy balloons, and more particularly to balloon-bags which are seamless-that is, formed of the desired initial shape in a single piece. It has been proposed to form these balloonbags upon a mold having the exact configu-15 ration of the desired article. I find, however, that it is impracticable to make a spherical balloon-bag upon a mold of the same form and to remove the same therefrom without injury and to have the same retain its spher-20 ical form when inflated to the size for which it was designed.

I have discovered and the gist of my invention is that a balloon-bag made upon a mold materially different in form from the 25 article to be produced, but upon which the material is properly distributed, will when inflated to the extent for which it was designed change from its original to the desired form. The reason for this is that where a spherical 30 mold is used the material will be improperly distributed and will be so thin about its central zone that when inflated it will produce a balloon circular at its middle portion, but flattened at each end, and as far as possible from

35 a spherical balloon.

According to my invention the mold is made in oval or egg-shaped form, and the coating of rubber from which the bag is made is so distributed thereon that when inflated 40 to the desired size the original shape of the bag is lost, and the parts merge into spherical form by reason of the relative distribution of the material and the tension due to the stress of inflation.

In the accompanying drawings, Figure 1 is a view in elevation, showing the mold upon which the balloon-bags are formed. Fig. 2 is view, also in elevation, of one of the bags when removed from the mold. Figs. 3 and 4

similar to Fig. 2 in different stages of initial inflation. Fig. 5 shows a balloon inflated to proper size, the scale being somewhat reduced.

In carrying out my invention I provide the 55 mold A, which has a stem or handle a extending from one end thereof. The mold A is substantially oval in form and is of about the size of an ordinary hen's egg, this size being suitable for the production of a balloon-bag 60 which when properly inflated would result in a balloon of the ordinary size, between six and eight inches in diameter, as shown on reduced scale at E, Fig. 3.

In the manufacture of the balloon-bags the 65 mold A is dipped into a solution of rubber or any equivalent material and is then so manipulated that the said material in drying upon the mold will be properly distributed that is, in zones of different thickness. The 70 dipping is repeated until a coating of the desired thickness is formed upon the mold and upon a portion of the stem a, after which said coating is dried to the necessary extent and then vulcanized. After vulcanization the bag 75 B is stripped from the mold A, the neck b of the bag B being capable of being expanded so as to pass over the widest part of the mold A without injury, due to the fact that the largest diameter of said mold is small as com- 80 pared to the largest diameter of the inflated balloon. The largest diameter of the mold is very little more than one-half of its length.

In practice the mold is dipped into the rubber or other solution, withdrawn in a sub- 85 stantially vertical position, and then inverted. While solidification is occurring, due to evaporation of the solvent, some of the solution runs down from the highest point, the inverted end opposite the neck, distributing 90 itself upon the bag so formed. The sloping portions adjacent the neck carry more of the solution from the mass than does the central portion, due to their approximation to the horizontal, while the central zone, due to its 95 approximation to the vertical, carries a somewhat thinner coating. The end portion being last withdrawn carries with it the thickwhen removed from the mold. Figs. 3 and 4 est coat, due to the attraction attending its 50 are views in elevation showing balloon-bags withdrawal from the solution. This part of 100

726,009 2

the coating, however, still possessing fluidity will when the mold is inverted distribute itself sufficiently to prevent the formation of extra thick spots or lumps, which would re-5 sult in a bulge or protuberance in the wall of the bag when inflated. With this construction an expansible bag is produced the material of which is distributed in zones of different thickness, which when inflated will re-10 sult in a balloon or the like having the ultimate shape due to the enlarged primary expansion of its thinnest zone. The thicker

the thinner to produce the desired shape. In Fig. 3 is seen the bag C in a partially-inflated state, and in Fig. 4 the bag D has been somewhat more inflated. Complete inflation results in the substantially spherical bag E,

zones expand to a less degree and merge with

The mold A, together with its stem a, is preferably made of glass; but it may also be made of hard rubber, polished wood, celluloid, porcelain, or other suitable materials to which the rubber coating will not adhere, all

25 as set forth in my concurrent application for

Having described my invention, what I

Letters Patent upon said mold.

claim as new, and desire to secure by Letters Patent, is-

1. A seamless expansible bag, having an in- 30 flatable body portion and a neck integral therewith, and adapted to assume a substantially different shape when inflated and formed of different thickness in zones in angular relation to the neck.

2. A seamless rubber balloon-bag made in substantially oval or egg-shaped form and of different thickness in different zones, whereby it is adapted when inflated to assume

spherical shape.

3. A seamless rubber balloon-bag for a spherical balloon of different thickness in different zones and formed with its median diameter substantially less than the length between its ends, and having a neck at one end 45 of materially-reduced dimensions, said bag adapted when inflated to assume spherical

Signed at New York, N. Y., this 17th day

of February, 1903.

ARRAH J. WHISLER.

Witnesses:

FRANKLAND JANNUS, Joseph V. MITCHELL.