wo 2017/014744 A1 | I 00N OO OO0 O R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/014744 Al

26 January 2017 (26.01.2017) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 17/30 (2006.01) GO6F 17/00 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) Tat tional Application Number- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCTIUS2015/041150 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
20 July 2015 (20.07.2015) KZ, IA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. . MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: HEWLETT PACKARD ENTERPRISE DE- . L
VELOPMENT LP [US/US]; 11445 Compagq Center Drive (84) D.e51gnated. States (unle.ss othef"wzse indicated, for every
West, Houston, TX 77070 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Imventors: NOR, Igor; Kiryat Technion Technion, 32000 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Haifa (IL). BARKOL, Omer; Kiryat Technion Technion, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
32000 Haifa (IL). DK, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(74) Agents: KIRCHEYV, Ivan T. et al.; Hewlett Packard En- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, 5K,

terprise, 3404 E. Harmony Road, Mail Stop 79, Fort
Collins, CO 80528 (US).

SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PROCESSING TIME-VARYING DATA USING A GRAPH DATA STRUCTURE

100

Chiaining time-varying data

!

Frocessing the time-varying data to configure and siore an
adjacency list representation of a lime-varying graph

~4 1 Sloring af least one timestamp indicating a time of
A a relationship

l

! N Storing a neighbor pointer indicating slements
associated with entities in at least one relationship

!

Storing & distinct chain representation for each
neighbor lst, indicating distinct slements of a
corresponding neighbor list

Fig. 1

(57) Abstract: Examples of processing time-varying
data using a graph data structure are described. In one
case, an adjacency list representation of a time-varying
graph is used. In this case, vertices in the adjacency list
representation correspond to defined entities in the time-
varying data and each vertex has a corresponding neigh -
bor list. Neighbor pointers are provided indicating a re-
lationship between elements in the set of neighbor ar-
rays. A distinct chain representation is also used for each
neighbor list, wherein each distinct chain representation
indicating distinct elements of a corresponding neighbor
list that are ordered based on a relationship time from
the time-varying data.

WO 2017/014744 A1 WK 000V 000 OO0 0 O A

Declarations under Rule 4.17: Published:
— as to the identity of the inventor (Rule 4.17(i)) — with international search report (Art. 21(3))

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

WO 2017/014744 PCT/US2015/041150

PROCESSING TIME-VARYING DATA USING A GRAPH DATA STRUCTURE

BACKGROUND

10001} Many situstions arise in which time-varying data is produced. For
example, social media feeds, system logs, telecommunications systems and
network monitoring applications may all generate records of events that occur over

time.

BRIEF DESCRIPTION OF THE DRAWINGS

10002] Various fealures of the present disclosure will be apparent from the
detailed description which follows, taken in conjunction with the accompanying
drawings, which together illusirate, features of certain examples, and wherein:
10003} Figure 1 is a flow disgram showing & method for obtaining and
processing time-varying data according o an example;

10004] Figures 2A and 2B are schematic illustrations showing representations
of relationships between elements in a time-varying graph;

10005] Figure 3A-3C are schematic illustrations showing an adjacency list
representation of a time-varying graph according o an example;

10006] Figure 4 is a schematic illustration of an apparatus for loading a
tempaoral portion of data according (o an example; and

{0007} Figure 5 is a schematic illustration showing an adjacency list
representation of a time varying graph, stored on a non-transitory computer

readable meadium according to an example.

DETAILED DESCRIPTION

16008] In a social media feed a user may add or remove other users. In a
telecommunications system, connectivity between a mohbile device and & base
station may vary over time. Simitarly, repositories of electronic documenis, such as
the HyperText Markup Language (HTML) documents forming the World Wide Web,
change over ime as new documents get added and old documents are removed
or madified. It is frequently desirable to quickly and efficiently store and/or retrieve

such data.

WO 2017/014744 PCT/US2015/041150

10009] It is frequently desirable o analyze time-varying data, which may be
received as streaming data {i.e. a "data stream”). For example, the data may be
indicative of connections at given times between entities in a network such as a
computer network or a telecommunications system. As another exampile, the data
may be indicative of e-commerce transactions wherein connections between users
reprasent ransactions between those users. In certain examples described herein
this time-varying or “dynamic” data is represented as a graph in a graph data
structure. This then allows the data to be analyzed using graph processing
technigues.

10010} When analyzing time-varying data, it may be desirable to analyze an
up-to-date representation of the data and/or a representiation of the data at a given
time, or over a given time range, in the past. This lime-based guerying presents
challenges for data storage and/or refrieval. Frocessing an incoming or new event
in a data stream may take g given amount of time and computing resources and
this may vary depending on the processing methods that are being used. In one
case, a complete copy of a graph data structure could be stored every time a
change in the dala stream occurs. This would take considerable time and
resources at the time of storage bul would aid rapid retrieval of data. In certain
cases it may not be possibie to appropriately handle changes if they are received
too frequently and/or the data structure becomes (oo large. In anocther case,
changes may be stored in a log file. This would enable rapid storage of data.
However, in this case, a new graph data structure would need o be constructed
and processed with each data reirieval operation. As such, time-based queries
may iake a considerable amount of time to perform and/or fail to compilete for large
datasets and constrained resources. Given this, there is a desire for a time- and
resource-efiicient methods for storing and loading time-varying data, in particular
where that data may be represenied as graph data.

10011} Certain examples described herein allow Tor useful processing of time-
varying data. Cerfain examples obtain lime-varying data, said data indicating at
least one relationship between two defined entities that occurs at a given fime. This
may, for example, represent a nelwork connection or transaction between two
computing devices, or a recorded grouping or coupling between user accounts.

The time-varying data is then processed to configure and store an adjacency list

WO 2017/014744 PCT/US2015/041150

representation of a time-varying graph based on the time-varying data. Vertices in
the adjacency list representation correspond o defined entities in the time-varying
data and each vertex has a corresponding neighbor list. The processing comprises
storing, in association with the adiscency list representation, at least one
timestamp indicating a respeclive time of the at least one relationship. A neighbor
pointer is also stored, indicating elementis associated with the defined entities in
the al least one relationship in respective neighbor lists. For each neighbor list, a
distinet chain representation is stored, each distinct chain representation indicating
distinct elements of a corresponding neighbor list that are ordered based on a
relationship time from the time-varying data.

[0012] Storing time-varying data as described in examples herein takes less
time and uses fewer resources than storing, for each change (such as a new
connection}, a complete representation of the data at a given time. However, { aiso
allows for fast and efficient ipading of the dafa, for example to returmn a
reprasentation of the data al a reguest point or interval in time, as compared o a
log-based approach.

10013] To refrieval or load time-varying data, in certain examples described
herein, a time interval is obtained associated with a temporal portion of a time-
varying graph, e.g. the graph as described above. The adjacency list
representation of the time-varying graph may then be loaded. This may comprise
searching vertices of the adjacency list representation to locate a vertex with an
associated relationship time within the requested time interval. For the located
vertex, a last element is then determined within the neighbor list for the localed
vertex that has an associated relationship time within the time interval. This may
represent the first or last connection of the vertex in guestion within the time
interval.

[0014] Elements in the adjacency list representation may then be retrieved,
starting from the determined iast element. In an exampie, this retrieving comprises
traversing, based on at the neighbor pointers, elements within the neighbor lists
that have an associated relationship time within the time interval and that form part
of one of the distinct chain representalions. The searching of vertices and
determining a last element within the neighbor list for the located vertex may
comprise a binary search, and the retrieving of elements may comprise a breadth-

WO 2017/014744 PCT/US2015/041150

first search. In this manner, a representation of the graph data corresponding to
the time interval may be retrieved faster and more efficiently than in a system in
which the stored data comprises merely a log of each change.

[0015] As noted above, cerlain examples described herein provide for
processing of graph data so that it may be both siored and subsequently relrieved
more efficiently, in terms of time andior computing resources, than with
comparative techniques.

10016} Figure 1 shows a method 100 for processing time-varying data
according to an example. In this case, the time-varying data, obtained at biock 110,
indicates at least one relationship between two defined entities that occurs at a
given time. Time-varying data may relate {0 an event stream, e.g. a series of events
wherein each event involves two or more entities and occurs at a defined time. The
gntities may be computers in a network, and the at least one relationship may
indicate a connection between these computers, e.g. as extracted by a packst
sniffing tool. As another example, the entities may comprise elements of a
telecommunications network, such as mobile devices and base stations or core
network elements, with the at least one relationship similarly representing a
connection between these elements. As a further example, the entities may
reprasent users in a computing application, e.g. as identified by a user account
having an appropriate user identifier. The relationship in this case may comprise
adding a particular second user (o a user list of 3 first user. In another case, the
relationship may comprise a hyperlink and the entities may comprise HTML
documents on the World Wide Web. It will be clear to one skilled in the art that the
presently described method is applicable 1o other forms of data indicating
relationships between entities.

10017] At block 120, the time-varying data is processed o configure and store
an adjacency list representation of a time-varying graph, based on the time-varying
data. Vertices in the adjacency list representation correspond to defined entities in
the time varying data and each vertex has a corresponding neighbaor list. The
neighbor list indicates vertices with which connections exist {¢ the vertex in
question. In certain cases, the adjacency list represeniation may comprise a
plurality of array data structures. For example, a first array data structure may siore
a list of vertices and sach entry in the list of verlices may have a corresponding

WO 2017/014744 PCT/US2015/041150

linked array data structure implementing a neighbor list. These array struciure may
be dynamic, e.¢g. they may change in size over time.

10018] In Figure 1, the processing at block 120 includes a number of sub-
blocks. At sub-block 130, al least one timestamp indicating a respective time of the
at least one relationship is stored. For example, the timestamp may indicate a time
of connection between two computers in a network.

[0019] At sub-block 140, the processing comprises storing a neighbor pointer
indicating elements associated with the defined entities in the st least one
relationship in respective neighbor lists. For example, a connection may exist
between vertices A and B. B would then be in the neighbor list of A, and A would
be in the neighbor list of B. In such a siluation, a neighbor peinter associated with
the representation of A in the neighbor list of B would point to the representation of
8 in the neighbor list of A, For example, the neighbor pointer may comprise a tuple
data structure that stores the indices of A and B in their respective neighbor lists,
in certain cases together with a timestamp indicating the time of connection. Inone
case, the timestamp is stored in association with the neighbor pointer.

[0020] At sub-biock 150, a distinct chain representation s stored for each
neighbor list. The distinct chain representation indicates distinet elements of a
corresponding neighbor list. As such, if a given element is repeated in a neighbor
list, the distinct chain representation would indicate one instance of that element.
The distinct chain representation may be implemented as a hash table.

10021] Figures 2A and 2B show examples of relationships between elements
that may be stored as described above. The relgtionships are shown as edges
between verlices of a ime-varying graph 200, The time-varying graph comprises
vertices V1 (210}, Vz (220, V3 (230) and Va (240). Figure 2A relates to a first time
or time period 11, Al time 11, a connection occurs between vertex V1 {(210) and vertex
V2 {220). This is represented by edge 215. Figure 2B relates 1o a time or time period
te, at which time a connection occurs between vertex V1 (210} and vertex Vs (230).
This is represented by edge 225.

10022} Figures 3A-3C are schematic illustrations that show an adjacency list
representation of a time-varying graph according to an example. In Figure 3A, an

array or vertex list 300, which may be a dynamic array, is stored in which elemenis

WO 2017/014744 PCT/US2015/041150

310-1 ... 310-n represent vertices of the time-varying graph V1 ... Vn, including
vertices Vi (310-1) and V; (310+).

10023] For each verlex a corresponding array is siored representing a
corraspanding neighbor list (320-1 ... 320-n). These neighbor lists 320 may also
comprise dynamic arrays. Each neighbor list 320 comprises a list of vertex
identifiers, each identifier indicating a connection between the identified vertex in
the neighbor list and the corresponding veriex in the vertex list 300, For example,
Figure 3A shows that a connection exists in the time-varying graph between veriex
Viand vertex V. This may comprise the edge 215 or 225 as shown in one of Figures
2A and 2B. As such, the neighbor list 320-1 of vertex Vi includes an element 330+
corresponding to vertex ¥V, and the neighbor list 320 of vertex V) will include an
element 330-i corresponding to veriex Vi, The elements of the neighbor lists 320-1
... 320-n may be stored in an order indicating the order in which the connections
occurred. For example, in Figure 3A elements to the right-hand side of the Figure
may reprasent newer conneactions, wherein a far right element represents the most
recent connection or graph edge.

10024} Figure 3A also indicates schematically a neighbor pointer 340 that is
stored. The neighbor pointer 340 indicates a connection between the element 330-
i corresponding to vertex Vj in the neighbor list 320~ of vertex V), and the element
330+ corresponding to vertex Vi in the neighbor list 3204 of vertex V. The neighbor
pointer 340 may comprise references 1o memory locations storing identifiers for
vertices Vi and V. Given a known element in one of the neighbor lists 330+ and
330+, the neighbor point 340 enables the corresponding element in the other
neighbor list to be located.

10025] Certain examples described above enable events from a dala stream
{time-varying data)} to be efficiently stored. If data is stored as described above,
efficient loading or relrieval of data is enabled. An example of retrieving a portion
of data corresponding to a particular time interval will now be described.

[0026] Given an adjacency list representation, as schematically shown in
Figure 3A, a retrieval operation begins by searching vertices of the vertex list 300
to locate any vertex with an associated relalionship time within the time interval.
This may for example be a binary search. A second search, which may aiso be a
binary search, is then performed within the neighbor list 330 of the located vertex,

WO 2017/014744 PCT/US2015/041150

to find a vertex with an associated relationship time within the time inferval, This
may for example correspond (o the first or last relationship in the neighbor list within
the time interval. Elements of the adjacency list representation may then be
retrieved by starting at the determined element and fraversing, based on the
neighbor pointers, elemenis within neighbor lists that have an associated
relationship time within the time interval. This may for example be a breadih-first
search. This retrieval operation relrieves vertices and edges or connections from
the graph data structure that are within the gueried time interval.

[0027] Figure 3B shows a representation of a neighbor list 330 for a given
vertex in Figure 3A. The neighbor list 330-B comprises elements corresponding to
connections from the given vertex to other vertices in the graph data siructure, the
other vertices being represented by the characters a, b, ¢, d, ¢ {e.g. said characlers
comprise identifiers for the vertices). Multiple connections occur between the given
veriex and some of the other vertices, and as such the neighbor list 330-B may
comprise multiple elements corregponding 1o a single other vertex. For example,
the repeated inciusion of the identifier for verlex a, may represent multiple
connections over time between the given vertex and vertex a.

[0028] In the present described example, when retrieving graph data for a
requested time or time interval, a distinct chain representation is used to determine
all vertices that have connections that occur within that time interval. In this case,
it is deemed sufficient 1o know that at least one connection occurred between two
vertices in a requested time interval, without retuming further information regarding
the nature of any connections within the time interval. By relurning information
regarding entities active within a time period, but reducing the amount of
information regarding specific connections within that time period, graph retrieval
operations may be increased in speed. In this case, a distinct chain representation
350 is stored for each neighbor list. The distinct chain representation indicates
distinct elements of its corresponding neighbor list. That is to say, it skips repeated
instances of the elements corresponding to connections with the same vertex. In
Figure 3B, the distinct chain representation indicates the first occurrence of a
connection o a particular other vertex. In other embodiments, it may for example

indicate the last occurrence of a connection o a particuiar other vertex.

WO 2017/014744 PCT/US2015/041150

10029] As Hiustrated in Figure 3B, in one example, the distinct chain
representation may comprise at least one pointer, each said pointer being
associated with a distinct element of the corresponding neighbor list and
referencing a further distinct element of the corresponding neighbor list. In this
manner, a set of pointers may link the distinct elemeanis of the neighbor list. As
another example, the distingt chain representation may comprise a hash table
indicaling distinct elements of the corresponding neighbor list. The distinet chain
representation may comprise at least one timestamp associated with an element
of the distinel chain representation. For example, wherg the distingt chain
representation comprises at least one pointer associated with a distinct slement of
the corresponding neighbor list, a timestamp may be associated with each of these
pointers indicating the time at which that pointer was created. Figure 3C shows the
array structure of Figure 3A, wherein a distinct chain representation 350-1 ... 350-
n is stored for each neighbor list 320-1 ... 320

[0030] In certain examples, the use of a distinct ¢chain representation may be
extended to include additional information regarding connections within a
requested time or time period. In this case, at least one count indicating a number
of relationships between at least two defined entities occurring in 2 given lime
interval may be stored in association with the adjacency list representation. in one
example, this count may be determined by storing a succingt data structure for
egach neighbor list. In this case, a succinct data structure is a data structure that
uses an amount a space within a defingd threshold of the information-thaoretic
lower bound. Unlike certain lossless data compression algorithms, succinct data
structures may be used “in-place” without decompression. A succinct data
structure may be based on a succingt indexable diclionary and enable “rank” and
“select” methods. The at least one count may then be retrieved by comparing,
using the succinct data structure of a first element associated with one of the two
defined entities, a rank of a second element associated with ancther of the two
defined entities at the start and end of the given time interval. Typically such a rank
function Rank{value, location) indicates the number of times that the given value
appears in an array from the beginning up to the given localfion. For example, it
may be desirable (o calculate the number of limes the vertex V| appears in the
neighbor list of vertex Vi within the time interval {1, f2). This may be achieved by,

WO 2017/014744 PCT/US2015/041150

for Vi, sublracting Rank(V, t1} from Rank{V;, 1z). This provides the number of
relationships between vertices Viand Viin the time interval (ty, 2}

10031] Retumning to Figure 3C, when an indication of a new connection
between vertices Vi and V) is obtained, for example as part of streaming data, an
element corresponding o Vi is stored at one end of the neighbor list 3204
corresponding o Vi, and an element corresponding o V) is stored at one end of the
neighbor list 320-1 corresponding (o Vi. A neighbor pointer is then slored indicating
the connection between these elements. The distinct chain representation is also
updated. For example, as described above, the distinct chain representation may
identity the most recent connection between a veriex and each relevant other
vertex. On obtaining a new conneclion between vertices Vi and V), The distinct
chain representation is updated to identify that connection instead of any previous
connection between vertices Vi and V. A timestamp may also be stored, indicative
of the time of updating the distinct chain representation. As such, for each new
glement {0 be added 10 a neighbor list, storing a distinct chain representation for
said neighbor list comprises adding the new element o an end of the distinct ¢chain
representation and removing any element having a same value as the new element
from the distinct chain representatlion. For example, starting from Figure 3B, a new
connection o element ¢ would result in the links from b to ¢ and ¢ o ¢ being
removed and replaced with a new link from & to d {in addition to a new link from ¢
to a). This process takes a constant period of time (O(1)} for each new connection
and s0 is independent of the size of the dataset. It is thus straightforward o assign
computing resources for the storage of new connections.

[0032] In some embodiments, representations of relationships may be
removed from the adjacency list representation. For exampie, relationships may
be removed after a given amount of time has elapsed. Removing a relationship
between vertices Vi and V) comprises removing elements corresponding to the
relationship from the neighbor list 320-i of vertex Vi and from the neighbor list 320-
j of vertex V. A timestamp may be stored indicating the time at which the removal
occurred. As the elements of geach neighbor list are time-ordered, removal of the
earliest stored relationship comprises removing the first element of the

corresponding neighbor lists.

WO 2017/014744 PCT/US2015/041150
10

10033] Certain examples described above enable evenis from a dala stream,
{time-varying data) to be efficiently stored. In the following passages examples of
a corresponding loading or data retrieval operation are described. These examples
gnable portions of a time-varying graph data structure to be retrieved in response
te a query having a parlicular time or time period.

[0034] I an example data retrieval operation, a time interval associated with
a temporal portion of a time-varying graph is first oblained. A representation of the
time-varying graph data may then be ioaded that corresponds to that time interval.
In this example, vertices of the above-described adjacency list representation are
searched 1o locate a vertex with an associated relationship time within the time
interval. This may be, for example, a binary search. For the located veriex, a
search, which again may be a binary search, is performed within its neighbor list
to determine an element that has an associaled relationship time within the time
interval. This may correspond o the first relationship in the neighbor list within the
time interval, in examples in which the distinct chain repraesentation indicates the
first occurrence of each vertex, such that the element is represented in the distinet
chain representation. Similarly, in examples in which the distinct c¢hain
representation indicates the last occurrence of each vertex, this may
advantageously correspond to the last relationship in the neighbor list within the
time interval.

10035] Elements in the adjacency list representation may then be retrieved by
starting at the determined element and traversing, based on the neighbor pointers,
elements within neighbor lists that have an associated relationship time within the
time interval and that form part of one of the distinct chain representations. This
may for example be a breadth-first search. Upon following a neighbor pointer, this
may comprise advancing through the distinct chain until the last element of the time
interval, then travelling backward uniil reaching the end of the time interval. In this
manner, a representation of the relationships associated with the time period may
be efficiently loaded.

10036] If a binary searches are used these may take Qlog(E)) time fo perform,
where £ is the number of edges or connections present in the graph data siructure.
Without a distinct chain representation, a breadth first search may take O{(Vi + Ei)

time to perform, where Virepresents the number of vertices or entities within the

WO 2017/014744 PCT/US2015/041150
11

requested time interval and i represents the number of edges or connections
within the requested time interval. In this case, a complexity of the loading
operation is Oog(E+ Vi + Ei). When a distinct chain representation is used, a
breadth first search may take O{Vi™ + E/™} time to perform, where V" represents the
number of unique or distinct vertices or entities within the requested time interval
and E"represents the number of unique or distinct edges or connections within the
requested time interval. In this case, a complexity of the lpading operation is
Ciog(E)+ V" + E"). In both cases, the time required may be modelled and
appropriate computing resources may be assigned to perform the operation.
10037] Figure 4 shows a schematic illustration of an apparatus for loading a
ternporal portion of data representing a time varying graph according to an example
400. The apparatus comprises a data interface 410 o oblain a time interval
associated with the temporal portion, and a graph search proceassor 420 (o load an
adjacency list representation of the time varying data, for example stored as
described above. In the example of Figure 4 the graph search processor 420
comprises a number of modules 430. These include a vertex list search module
440, a neighbor list search module 450 and a graph traversal module 460.

[0038] The veriex list search module 440 is configured to search a vertex list
of the adjacency list representation o locate a vertex with an associated
relationship time within the time interval. The search may for example be a binary
search. The vertex list search moduie 440 is configured 1o pass the located veriex
to the neighbor list search module 450. The neighbor list search maoduie 450
determines a last element within a neighbor list for the located vertex that has an
associated relationship time within the time interval. This may be performed using
a binary search.

[0039] Following the operations of the vertex list search module 440 and the
neighbor list search module 450, the graph traversal module 460 is configured to
retrieve elements in the adjacency list representation starting from the last element
determined by the neighbor list search module 450. The graph fraversal module
460 is configured o traverse elements within neighbor lists of the adjacency list
representation that have an associated relationship time within the time interval

and that form part of a distinct chain representation for example as described

WO 2017/014744 PCT/US2015/041150
12

above. The graph traversal module 480 may be configured fo perform the
traversing as a breadth-first traversal.

(0040} The fraversing is based on at least one neighbor pointer indicating
connected elemeants in the graph from respective neighbor lists, each distinct chain
representation indicaling distinct elements of a corresponding neighbor list that are
ordered based on a relationship time. The graph traversal module 460 may be
configured to traverse new elements by advancing through the distinct chain
representation until a last element in the time interval is located and then by
traversing the distinct chain representation in a reverse direction uniil an end of the
time interval is reached. The fraversing may comprise traversing at least one
neighbor list corresponding to an element referenced by the at least one neighbor
pointer.

10041] The apparatus 400 may further comprise a data storage device {not
shown in Figure 4} configured to siore the adjacency list representation. Figure 5
shows an example computer-readable medium 510 that may implement the data
storage device. In such examples, the processor may be configured o receive data
indicating at least one relationship between two defined entities that occurs at 8
given time and o store, as part of the adjacency list representation, at least one
timestamp indicating a respective time of the at least one relationship. The
processor may also be configured to store, as part of the adjacency list
representation, a neighbor pointer indicating elements associated with the defined
gntities in the at least one relationship in respective neighbor lists, and to update,
as part of the adjacency list representation, distinct chain representations for each
neighbor list corresponding 1o the defined entities.

10042] Figure 5 depicts a non-transitory computer-readable medium 510
storing data 520 representative of a dynamic graph. The computer-readable
medium 510 may be connected to a processor B30, The compulerreadable
medium 510 may comprise any machine-readable storage media, e.g. such as a
memory and/or a storage device. Machine-readable storage media can comprise
any one of many physical media such as, for example, electronic, magnstic,
optical, electromagnetic, or semiconductor media. More specific examples of
suitable machine-readable media include, but are not limited to, a hard drive, a
random access memory (RAM), a read-only memory {(ROM), an erasable

WO 2017/014744 PCT/US2015/041150
13

programmabie read-only memory, or g porfable disc. In one case, the processor
530 may be arranged (o store data 520 in memory such as RAM during active
storing and/or loading of graph data. In another example, processor 530 may be
arranged to store data 520 in a persisient storage device such as a hard disk or
solid state device as part of g sloring and/or loading operation.

[0043] Tuming o Figure 5, the data 520 comprises an adjacency dala
structure 540, the adjacency data structure comprising an array of vertices 545 and
a set of neighbor pointer arrays 548 corresponding 1o said vertices, for example as
described above. The data 520 further comprises data 550 representative of
neighbor pointers associated with the adjacency data structure. Each neighbor
pointer indicates a graph relationship between slements in the set of neighbor
arrays, each neighbor pointer comprising a timestamp indicating a graph
relationship time. In addition, the data 520 comprises dala 560 representative of a
distinct chain representation for each neighbor array, each distinct chain
representation indicating distinct elements of a corresponding neighbor array, the
distinct elements being ordered based on corresponding graph relationship times.
[0044] Hence, the data 520 may comprise the data that is generated as part
of the siore operation described above. it may also comprise data that is
interrogated o load a portion of a time-varying graph as described above.

[0045] Certain examples described above allow for efficient storing and
subsequent ioading of time-varying graph data, for example received as streaming
data. As explained above, storing a log file of received events allows for rapid
storage and requires relatively low disk space. However, refrieving data involves
constructing a new graph data structure for each relrieval operation, which may
take a considerable amount of time to perform and/or fail o complete for large
datasets and constrained resources. Conversely, storing a complete copy of a
graph data structure for each received event allows for efficient retrieval but
requires significant time and resources at the time of storage. Certain examples
described herein allow for such data to be efficiently received, stored, and
subsequently loaded. This allows for such processing and silorage to be
implemented with a reduced time and computing resource burdens.

10046} The preceding description has been presented to illustrale and

describe examples of the principles described. This description is not intended o

WO 2017/014744 PCT/US2015/041150
14

be exhaustive or {o limit these principles to any precise form disclosed. Many
maodifications and variations are possible in light of the above teaching. tisto be
understood that any feature described in relation to any one example may be used
alone, or in combination with other features described, and may also be used in
combination with any features of any other of the examples, or any combination of

any other of the examples.

WO 2017/014744 PCT/US2015/041150
15

What is claimed is:

1. A method for processing time-varying data, comprising:
abtaining time-varying data, said data indicating at least one relationship
petween two defined entities that occurs at a given time; and
processing the time-varying data to configure and store an adiacency list
representation of a time-varying graph based on the time-varying data,
wherein vertices in the adjacency list representation correspond o
defined entities in the time-varying data and each vertex has a
corresponding neighbor list,
wherein said processing comprises:
storing, in association with the adjacency list representation, at least
one timestamp indicating a respective time of the at least one relationship;
storing a neighbor pointer indicating elements associated with the
defined entities in the at least one relationship in respective neighbor lists;
and
storing a distinct chain representation for each neighbor list, each
distinct chain representation indicating distinct elements of a corresponding
neighbor list that are ordered based on a relationship time from the fime-

varying data.

2. The method of claim 1, wherein the distingt chain reprasentation
comprises at least one pointer, each said pointer being associated with a distinct
element of the corresponding neighbor list and referencing a further distinet
element of the corresponding neighbor list.

3. The method of claim 1, wherein the distinct chain representation
comprises a hash table indicating distinct elements of the corresponding neighbor
list.

4. The method of claim 1, comprising:
obtaining a time interval associaied with a temporal portion of the time-

varying graph;

WO 2017/014744 PCT/US2015/041150
16

loading the adjacency list representation of the time-varying graph,
including:

searching vertices of the adjacency list representation to locale a
vartex with an associated relationship time within the time interval;

for the located vertex, determining a last element within the neighbor
list for the located vertex that has an associated refationship time within the
time interval;, and

retrieving elements in the adjacency list representation starting from
the determined last element, said retrieving comprising traversing, based on
at the neighbor pointers, elements within the neighbor lists that have an
associated relationship ime within the time interval and that form part of one

of the distinct chain representations.

5. The method of claim 4, wherein said searching vertices and
determining a last elemeant within the neighbor list for the located vertex comprises

a binary search and said relrieving elements comprises a breadth-first search.

0. The method of claim 1, wherein, for each new element o be added
to a neighbor list, storing a distinct chain representation for said neighbor list
comprises:

adding the new element {o an end of the distinct chain representation; and

removing any element having a same value as the new glement from the

distinct chain representation.

7. The method of claim 1, comprising sloring, in association with the
adjacency list representation, at least one count indicating a number of
relationships between the at least two defined entities occurring in & given time

interval.

8. The method of claim 7, comprising storing a succinct data structure
for each neighbor list,

wherein the at least one count is retrieved by comparing, using the succingt
data structure of a first element associated with one of the two defined entities, a

WO 2017/014744 PCT/US2015/041150
17

rank of a second element associated with another of the two definad entities at the
start and end of the given time interval.

g. Arn apparaius for loading a temporal portion of data representing a
time-varying graph comprising:

a data interface to oblain & time interval associated with the femporal
portion;

a graph search processor 1o load an adjacency list representation of the
time-varying graph, the graph search processor comprising:

a vertex list search module 1o search a veriex list of the adjacency
list representation o locate a vertex with an associated relationship time
within the time interval;

a neighbor list search module to, for the located vertex, determine a
last element within a neighbor list for the located vertex that has an
associated relationship time within the time interval; and

a graph traversal module to retrieve elements in the adjacency list
representation starting from the determined last element, the graph
fraversal module being configured o relrieve elements by traversing
elements within neighbor lists of the adjacency list representation that have
an associated relationship time within the time interval and that form part of
a distinct chain representation, said traversing being based on at least one
neighbor pointer indicating connected elements in the graph from respeclive
neighbor lists, each distinct chain representation indicating distinct elemenis
of a corresponding neighbor list that are ordered based on a relationship

time.

10. The apparatus of claim 9, wherein the vertex list search module is
configured to search the vertex list of the adjacency list representation by

performing a binary search.

11. The apparaius of claim 9, wherein the graph traversal module is
configured to traverse elements within neighbor lists by performing a breadth-first

search traversal.

WO 2017/014744 PCT/US2015/041150
18

12. The apparatus of claim 8, wherain the graph traversal module is
configured to traverse new elements by advancing through the distinct chain
representation until a last element in the time interval is located and then by
traversing the distinct chain representation in a reverse direction untii an end of the

fime interval is reached.

13. The apparatus of claim 8, wherein the graph traversal module is
configured o fraverse slements within neighbor lists by traversing at least one
neighbor list corresponding to an element referenced by the at least one neighbor
pointer.

14. The apparatus of claim 8, comprising:
a data storage device configured to store the adjacency list representation,
wherein the graph search processor is configured to:

receive dala indicating at least one relationship between two defined
entities that occurs at a given time;

store, as parl of the adjscency list representation, at least one
timestamp indicating a respective time of the at least one relationship;

store, as part of the adjacency list representation, a neighbor pointer
indicating elements associated with the defined entities in the at least one
refationship in respective neighbor lists; and

update, as part of the adjacency list representation, distinct chain
representations for each neighbor list corresponding 1o the defined entities.

15. A non-transitory computer-readable medium storing data
representative of a dynamic graph, the data comprising:

an adjacency data structure, the adjacency data structure comprising an
array of vertices and a set of neighbor arrays corresponding to said vertices;

data representative of neighbor pointers associated with the adjacency data
structure, each neighbor pointer indicating a graph relationship between elements
in the set of neighbor arrays, each neighbor pointer comprising a timestamp
indicating a graph relationship time; and

WO 2017/014744 PCT/US2015/041150
19

data representative of a distinct chain representation for each neighbor
array, each distinct chain representation indicaling distinct elements of a
corresponding neighbor array, the distinct elements being ordered based on
corresponding graph relationship times.

WO 2017/014744 PCT/US2015/041150

174

100
110
e
Obtaining time-varying data
120 ~
N
FProcessing the lime-varying data to configure and store an
adjacency list representation of a time-varying graph
130 —4 1 Storing at least one timestamp indicating a time of
a relationship
¥
140 . . . e
~—._ Storing a neighbor pointer indicating elements
associated with entities in at least one relalionship
150 — Storing a distinet chain representation for each
T neighbor list, indicating distinct elements of a
corresponding neighbor list

WO 2017/014744

200

200

214

230

PCT/US2015/041150

240

WO 2017/014744 PCT/US2015/041150

314
320-1
s

k4

3104 | -~ 3204 330+

Z
<
i 4

N VJ- 3 Vi
T]
310-n | . 320 3\3{3“5
\\ vi“} e
) 7
300 /
320-n

2101 /32@-1
™~ V‘J_ >
3104 | o 3204 e’ WM?;@nj
™N Y. B
i N
™ ‘v’j 2 V,
2310-n | .. ™ 3204 2 P ngﬁ ,
-
NV
e A
- / > Sk _J

320-n 350-n

WO 2017/014744 PCT/US2015/041150

4/4
410 400
AN /‘/
\ interface 420
Graph Search Processor 430
R L,
§ 8
; &
, , - !
E Vertex List Search Module 440 §
; ;
: ;
g Neighbor List Search Module — !
g 450 i
: ;
; a
; Graph Traversal Module \460 E
R — i
5an -7 Processor
E
540 Computer Readable Storage Medium 510 520
T A
Adiacency data structure
545
Array of vertices 4
| E
548
Neighbor array g ™ Neighbor array

Neighbor pointers T 290 Y Neighbor pointers

Distinct chain 560 Distinct chain
representation reprasentation

-
§ 3
g g
i §
g §
§ g
g g
i §
g §
§ g
g g
i §
g §
§ g
g g
; §
| |
§

g } g
; §
g §
§ g
g g
; §
g §
§ g
g g
; §
g §
§ g
g g
; §
g §
§ g
g g
i §

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2015/041150

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 17/30(2006.01)i, GO6F 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 17/30;, GO6F 15/16; HO4L 29/08, GO6F 17/00; A63F 13/60; A63F 13/79

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electromic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: time-varying data, adjacency list, graph, relationship, distinct chain, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2014-0040378 A1 (FACEBOOK, INC.) 06 February 2014 1-15

See paragraphs [0020]-[0028] and [0032]1-[0035]; claims 21, 28, and 35; and
figures 1-3.

A US 2014-0122586 Al (THE BOEING COMPANY) 01 May 2014 1-15
See paragraphs [0056]-[0069] and [0082]-[0089]; and figures 2 and 4-5.

A US 2015-0011320 A1 (ZYNGA INC.) 08 January 2015 1-15
See paragraphs [0038]-[0039] and [0043]1-[0046]; and figures 1-2 and 6A-6B.

A WO 2013-131108 A1 (LINKEDIN CORPORATION) 06 September 2013 1-15
See paragraphs [0016]-[0020]1, [0026], and [0031]-[0036]; and figures 1-3.

A US 8,954,441 B1 (LINKEDIN CORPORATION) 10 February 2015 1-15
See column 3, lines 4-62; column 5, lines 35-64; and figures 1-2 and 5.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priotity claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search
20 April 2016 (20.04.2016)

Date of mailing of the international search report

20 April 2016 (20.04.2016)

Name and mailing address of the ISA/KR

International Application Division

Korean Intellectual Property Office

189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 35208,
Republic of Korea

Facsimile No. +82-42-481-8578

S

Authorized officer
NHO, Ji Myong

Telephone No.

+82-42-481-8528

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2015/041150
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014-0040378 Al 06/02/2014 US 2005-267940 Al 01/12/2005
US 2011-099167 Al 28/04/2011
US 2012-078957 Al 29/03/2012
US 8572221 B2 29/10/2013
US 2014-0122586 Al 01/05/2014 US 8862662 B2 14/10/2014
US 2015-0011320 Al 08/01/2015 EP 2482946 Al 08/08/2012
US 2011-0212770 Al 01/09/2011
US 2011-0212784 Al 01/09/2011
US 2011-0213716 Al 01/09/2011
US 2012-0028713 Al 02/02/2012
US 2012-0030123 Al 02/02/2012
US 2012-0071236 Al 22/03/2012
US 2012-0077596 Al 29/03/2012
US 2012-0078394 Al 29/03/2012
US 2012-0078395 Al 29/03/2012
US 2013-0084927 Al 04/04/2013
US 8241116 B2 14/08/2012
US 8317610 B2 27/11/2012
US 8333659 B2 18/12/2012
US 8771062 B2 08/07/2014
WO 2011-041566 Al 07/04/2011
WO 2013-131108 Al 06/09/2013 CN 103502975 A 08/01/2014
DE 212013000002 U1 06/09/2013
EP 2673718 Al 18/12/2013
US 2013-02564303 Al 26/09/2013
US 8954441 B1 10/02/2015 US 2015-0186459 Al 02/07/2015
WO 2015-102659 Al 09/07/2015

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

