‘)00 OO

A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 February 2001 (08.02.2001)

A 00 O 0O

(10) International Publication Number

WO 01/09792 A2

(51) International Patent Classification’: GOG6F 17/60

(21) International Application Number: PCT/US00/20549

(22) International Filing Date: 28 July 2000 (28.07.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/364,091 30 July 1999 (30.07.1999) US

(71) Applicant (for all designated States except US): AC
PROPERTIES BV [NL/NL]; Parkstraat 83, NL-2514 JG
’s Gravenhage, The Hague (NL).

(72) Inventor; and

(75) Inventor/Applicant (for US only): UNDERWOOD, Roy,
A. [US/US]; 4436 Hearthmoor Court, Long Grove, IL
60047 (US).

(74) Agent: HICKMAN, Paul, L.; Hickman Coleman &
Hughes, LLP, P.O. Box 52037, Palo Alto, CA (US).

(81) Designated States (national): AL, AM, AT, AU, AZ, BA,
BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES,
FI, GB, GE, GH, GM, HR, HU, ID, IL,, IS, JP, KE, KG, KP,
KR,KZ,LC,LK,LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, T1, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,

CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazelte.

o (54) Title: A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR AN E-COMMERCE BASED USER FRAME-
&\ WORK DESIGN FOR MAINTAINING USER PREFERENCES, ROLES AND DETAILS

097

=

(57) Abstract: A system, method and article of manufacture are provided for managing user information. A site server is provided
=~ with information stored thereon including preferences, roles, and details relating to users. A database separate from the site server is
also provided. The database has information stored thereon including preferences, roles, and details relating to the users. An identity
of one of the users is authenticated. A single interface is displayed which provides the user access to both the site server and the
database upon authentication of the identity of the user. The user is allowed to view and change the information that is stored on the
site server and the database and that is associated with the user. The single interface is tailored based on the information associated

with the user.

10

15

20

25

30

35

WO 01/09792 PCT/US00/20549

A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR AN E-COMMERCE
BASED USER FRAMEWORK DESIGN FOR MAINTAINING USER PREFERENCES,
h ROLES AND DETAILS

FIELD OF THE INVENTION

The present invention relates to software framework designs and more particularly to managing

user preferences, roles and details in a user framework design.
BACKGROUND OF THE INVENTION

An important use of computers is the transfer of information over a network. Currently, the
largest computer network in existence is the Internet. The Internet is a worldwide interconnection
of computer networks that communicate using a common protocol. Millions of computers, from

low end personal computers to high-end super computers are coupled to the Internet.

The Internet grew out of work funded in the 1960s by the U.S. Defense Department's Advanced
Research Projects Agency. For a long time, Internet was used by researchers in universities and
national laboratories to share information. As the existence of the Internet became more widely
known, many users outside of the academic/research community (e.g., employees of large

corporations) started to use Internet to carry electronic mail.

In 1989, a new type of information system known as the World-Wide-Web (""the Web") was
introduced to the Internet. Early development of the Web took place at CERN, the European
Particle Physics Laboratory. The Web is a wide-area hypermedia information retrieval system
aimed to give wide access to a large universe of documents. At that time, the Web was known to
and used by the academic/research community only. There was no easily available tool which

allows a technically untrained person to access the Web.

In 1993, researchers at the National Center for Supercomputing Applications (NCSA) released a
Web browser called "Mosaic" that implemented a graphical user interface (GUI). Mosaic’s
graphical user interface was simple to learn yet powerful. The Mosaic browser allows a user to
retrieve documents from the World-Wide-Web using simple point-and-click commands. Because
the user does not have to be technically trained and the browser is pleasant to use, it has the

potential of opening up the Internet to the masses.

10

15

WO 01/09792 PCT/US00/20549

The architecture of the Web follows a conventional client-server model. The terms "client" and
"server" are used to refer to a computer's general role as a requester of data (the client) or
provider of data (the server). Under the Web environment, Web browsers reside in clients and
Web documents reside in servers. Web clients and Web servers communicate using a protocol
called "HyperText Transfer Protocol" (HTTP). A browser opens a connection to a server and
initiates a request for a document. The server delivers the requested document, typically in the
form of a text document coded in a standard Hypertext Markup Language (HTML) format, and
when the connection is closed in the above interaction, the server serves a passive role, i.e., it

accepts commands from the client and cannot request the client to perform any action.

The communication model under the conventional Web environment provides a very limited
level of interaction between clients and servers. In many systems, increasing the level of
interaction between components in the systems often makes the systems more robust, but
increasing the interaction increases the complexity of the interaction and typically slows the rate
of the interaction. Thus, the conventional Web environment provides less complex, faster

interactions because of the Web's level of interaction between clients and servers.

10

15

WO 01/09792 PCT/US00/20549

SUMMARY OF THE INVENTION

A system, method and article of manufacture are provided for managing user information. A site
server is provided with information stored thereon including preferences, roles, and details
relating to users. A database separate from the site server is also provided. The database has
information stored thereon including preferences, roles, and details relating to the users. An
identity of one of the users is authenticated. A single interface is displayed which provides the
user access to both the site server and the database upon authentication of the identity of the user.
The user is allowed to view and change the information that is stored on the site server and the
database and that is associated with the user. The single interface is tailored based on the

information associated with the user.

In one embodiment of the present invention, the identity of the user may be authenticated by
verifying a user name and a password, a secure sockets layer (SSL) certificate, and/or a log-in
form. Further, the preferences relating to the users may include a currency in which monetary
values are displayed and a language in which text is displayed. Also, the roles relating to the
users may include a customer, a manager, and an employee. Additionally, the details of the users

may include a user name and a legal name.

10

15

20

25

30

WO 01/09792 PCT/US00/20549

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood when consideration is given to the following detailed

description thereof. Such description makes reference to the annexed drawings wherein:

Figure 1 illustrates an exemplary hardware implementation of one embodiment of the present

invention;

Figure 1.1 illustrates a flowchart for a codes table framework that maintains application
consistency by referencing text phrases through a short codes framework according to an

embodiment of the present invention;

Figure 1.2 is a flowchart depicting a method for providing an interface between a first server and

a second server with a proxy component situated therebetween;

Figure 1.3 shows the execution architecture for components that make up the SAP Framework

Execution Architecture according to an embodiment of the present invention;

Figure 1.4 is a flowchart illustrating a method for sharing context objects among a plurality of

components executed on a transaction server;

Figure 2 illustrates the create component instances method according to an embodiment of the

present invention;

Figure 3 illustrates multiple components in the same transaction context according to an

embodiment of the present invention;

Figure 4 illustrates the forcing of a component’s database operations to use a separate transaction

according to an embodiment of the present invention;

Figure 5 illustrates the compose work form multiple activities in the same transaction according

to an embodiment of the present invention;

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 6 illustrates JIT activation where MTS intercepts the Customer creation request, starts a
process for the Customer package containing Customer component, creates the ContextObject

and returns a reference to the client according to an embodiment of the present invention;

Figure 7 illustrates JIT activation when the customer object has been deactivated (the customer

object is grayed out) according to an embodiment of the present invention;

Figure 8 is a flowchart depicting a method for providing an activity framework;

Figure 8.1 is an illustration of the MTS runtime environment according to an embodiment of the

present invention;

Figure 9 is a flowchart illustrating a method for accessing services within a server without a need

for knowledge of an application program interface of the server;

Figure 9.1 illustrates the different layers in a Site Server framework architecture according to an

embodiment of the present invention;

Figure 10 illustrates schema attributes and classes, with class “Role” and attribute “RoleName”

shown;

Figure 11 illustrates the creating of Container “Roles” according to an embodiment of the present

invention;

Figure 12 is an illustration of a graphic display at a point where a user has right-clicked on the
Schema folder and selected New — Attribute according to an embodiment of the present

invention;

Figure 13 illustrates the adding of different Roles according to an embodiment of the present

invention;

Figure 14 illustrates an example of the graphic display showing the attributes of member “Joe

Bloggs” according to an embodiment of the present invention;

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 15 is a flowchart that illustrates a method for handling events in a system;

Figure 15.1 illustrates a ReTA Event Handler framework that manages the informational,
warning and error events that an application raises according to an embodiment of the present

invention;

Figure 16 is a flowchart depicting a method for managing user information;

Figure 16.1 illustrates a User framework which enables two approaches to maintaining user

information according to an embodiment of the present invention;

Figure 17 is a flowchart that illustrates a method for managing business objects in a system that

includes a plurality of sub-activities which each include sub-activity logic adapted to generate an
output based on an input received from a user upon execution, and a plurality of activities which
each execute the sub-activities in a unique manner upon being selected for accomplishing a goal

associated with the activity;

Figure 17.1 shows a SubActivity component using the Persistence framework to retrieve a

Customer Object from the Database according to an embodiment of the present invention;

Figure 18 is a flow chart depicting a method for persisting information during a user session;

Figure 18.1 illustrates a Session Flow Diagram — On Session Start according to an embodiment

of the present invention;

Figure 19 illustrates a Session Flow Diagram — On Start ASP Page according to an embodiment

of the present invention;
Figure 20 is a flow chart illustrating a method for generating a graphical user interface;
Figure 20.1 is an illustration showing the steps for generating a HTML page consisting of a form

with a TextBox, a DropDown list and a PushButton according to an embodiment of the present

invention;

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 21 is a flow chart depicting a method for software configuration management

Figure 21.1 is an illustration of an IDEA framework on which the ReTA Development

Architecture Design is based according to an embodiment of the present invention;

Figure 22 illustrates the Configuration Management Life Cycle according to an embodiment of

the present invention;

Figure 23 illustrates the change control ‘pipeline’ and each phase within the pipeline according to

an embodiment of the present invention;

Figure 24 depicts the application of Roles within the Microsoft Transaction Server (MTS)

management console according to an embodiment of the present invention;

Figure 25 illustrates an environment migration process that guides development within ReTA

engagement environments according to an embodiment of the present invention;

Figure 26 is an illustration of a Development/Unit test for existing applications according to an

embodiment of the present invention;

Figure 27 illustrates an assembly test for existing applications according to an embodiment of the

present invention;

Figure 28 illustrates a system test for existing applications according to an embodiment of the

present invention;

Figure 29 is a flowchart for production of existing applications according to an embodiment of

the present invention;

Figure 30 illustrates a graphic display of Visual Source Safe according to an embodiment of the

present invention;

Figure 31 illustrates a frame of PVCS Version Manager I-Net Client according to an embodiment

of the present invention;

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 32 is an illustration of a Build Source Control Model according to an embodiment of the

present invention;

Figure 33 illustrates an Assembly Test phase control mode according to an embodiment of the

present invention;

Figure 34 illustrates a Microsoft Visual SourceSafe 'Labels' dialog box according to an

embodiment of the present invention;

Figure 35 illustrates a Database Diagram within Visual Studio according to an embodiment of

the present invention;

Figure 36 illustrates Object Modeling within Rational Rose according to an embodiment of the

present invention;

Figure 37 illustrates directly calling a wrapped CICS component according to an embodiment of

the present invention;

Figure 38 illustrates indirectly calling a wrapped CICS component according to an embodiment

of the present invention;

Figure 39 illustrates RSW eTest Automated Testing Tool according to an embodiment of the

present invention;

Figure 40 is an illustration which describes the physical configuration necessary for ReTA

development according to an embodiment of the present invention;

Figure 41 illustrates the application & architecture configuration for a typical ReTA Build

environment according to an embodiment of the present invention;

Figure 42 illustrates the application & architecture configuration for a typical ReTA Build

environment according to an embodiment of the present invention;

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Figure 43 illustrates an IDEA Framework with components in scope ReTA Phase 1 according to

an embodiment of the present invention;

Figure 44 illustrates a NCAF Framework with the shaded components in scope for Phase 1

according to an embodiment of the present invention;

Figure 45 illustrates a MODEnc Framework according to an embodiment of the present

invention,;

Figure 46 illustrates a NCAF Framework according to an embodiment of the present invention;

Figure 47 illustrates the components that comprise the ReTA execution architecture and their

physical location according to an embodiment of the present invention;

Figure 48 illustrates a MODEnc Framework for Operations Architecture according to an

embodiment of the present invention;

Figure 49 is an illustrative representation of a solicited event resulting from the direct
(synchronous) polling of a network component by a network management station according to an

embodiment of the present invention;

Figure 50 is an illustrative representation of when an unsolicited event occurs when a network
component sends (asynchronously) data to the network management station according to an

embodiment of the present invention;

Figure 51 illustrates event management in a net-centric environment according to an embodiment

of the present invention;

Figure 52 illustrates event management in an Intranet-based net-centric model according to an

embodiment of the present invention;

Figure 53 illustrates event management when using an Extranet-based net-centric model

according to an embodiment of the present invention;

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Figure 54 illustrates the tables and relationships required for the ReTA Phase 1 Architecture

Frameworks according to an embodiment of the present invention;

Figure 55 illustrates tables and relationships required for the ReTA Phase 1 validation

application according to an embodiment of the present invention;

Figure 56 illustrates the physical configuration of a possible ReTA-engagement development

environment according to an embodiment of the present invention,;

Figure 57 illustrates the physical configuration of possible ReTA-based Assembly, Product and

Performance testing environments according to an embodiment of the present invention;

Figure 58 illustrates Separate Web and Application Servers according to an embodiment of the

present invention;

Figure 59 illustrates a Single Web and Application Server according to an embodiment of the

present invention;

Figure 60 illustrates a Commerce Membership Server [Membership Authentication] properties

view according to an embodiment of the present invention;

Figure 61 illustrates a Membership Directory Manager Properties Dialog according to an

embodiment of the present invention;

Figure 62 is an illustration of a Membership Server Mapping Property according to an

embodiment of the present invention;

Figure 63 is an illustration of a Create New Site Foundation Wizard according to an embodiment

of the present invention;

Figure 64 illustrates the web application being placed under the “Member” directory of “cm” in

Windows Explorer according to an embodiment of the present invention;

10

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 65 depicts a typical ReTA engagement development environment according to an

embodiment of the present invention;

Figure 66 illustrates the development environment configuration for a ReTA Phase 1 engagement

according to an embodiment of the present invention;
Figure 67 illustrates an interface associated with the ability of inserting or removing statements
within a block without worrying about adding or removing braces according to an embodiment of

the present invention;

Figure 68 shows a Visual J++ Build Environment according to an embodiment of the present

invention;

Figure 69 shows an interface for attaching to the MTS Process for debugging according to an

embodiment of the present invention;

Figure 70 shows an interface for debugging an Active Server Page (example global.asa file)

according to an embodiment of the present invention;

Figure 71 illustrates an example of Rose generated java file and javadoc comments according to

an embodiment of the present invention;
Figure 72 is a flowchart illustrating a method for testing a technical architecture;

Figure 72.1 illustrates the application & architecture configuration for a typical ReTA Build

environment according to an embodiment of the present invention;
Figure 73 illustrates that the code for technology architecture assembly test may be migrated
from the technology architecture component test environment as defined in the migration

procedures according to an embodiment of the present invention;

Figure 74 illustrates the application & architecture configuration for a typical ReTA Build

environment according to an embodiment of the present invention;

11

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Figure 75 illustrates the physical characteristics of the testing environment to be utilized during

the Performance Testing Phases according to an embodiment of the present invention;

Figure 76 is a flow chart depicting a method for managing change requests in an e-commerce

environment;

Figure 76.1 illustrates a framework associated with the change tracker according to an

embodiment of the present invention;

Figure 77 illustrates the Change Tracker Main Window according to an embodiment of the

present invention;

Figure 78 illustrates the Change Request Detail Screen according to an embodiment of the

present invention;

Figure 79 illustrates a History of Changes Window according to an embodiment of the present

invention;

Figure 80 illustrates the Ad-Hoc Reporting Window according to an embodiment of the present

invention;

Figure 81 illustrates the Manager Reporting Window according to an embodiment of the present

invention;

Figure 82 illustrates the Migration Checklist Window according to an embodiment of the present

invention;

Figure 83 is a flow chart illustrating a method for managing issues in an e-commerce

environment;

Figure 83.1 illustrates the Issue Tracker Main Screen according to an embodiment of the present

invention;

Figure 84 illustrates the New Issue Screen according to an embodiment of the present invention;

12

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 85 illustrates the Modify Issue Screen according to an embodiment of the present

invention;

Figure 86 illustrates the Report Selection Screen according to an embodiment of the present

invention;
Figure 87 is a flow chart depicting a method for network performance modeling;

Figure 87.1 illustrates the end to end process associated with Performance Modeling according to

an embodiment of the present invention;

Figure 88 illustrates the Effective Network Performance Management according to an

embodiment of the present invention;

Figure 89 illustrates an example of overhead introduced at lower layers according to an

embodiment of the present invention;

Figure 90 illustrates a graph depicting a Network Usage Profile according to an embodiment of

the present invention;
Figure 91 illustrates a Network Layout according to an embodiment of the present invention;

Figure 92 illustrates how the four tool categories relate to each other according to an embodiment

of the present invention;

Figure 93 is a flow chart depicting a method for managing software modules during

development;

Figure 93.1 illustrates the PVCS Migration Flow according to an embodiment of the present

mvention;

Figure 94 illustrates SCM Planning according to an embodiment of the present invention;

13

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Figure 95 illustrates an Identify CM Units & Baselines Process Flow according to an

embodiment of the present invention;

Figure 96 illustrates a manner in which CM Repositories and Practices Process Flow are

established according to an embodiment of the present invention;

Figure 97 illustrates the Establish Change Control Process according to an embodiment of the

present invention;

Figure 98 illustrates Collect Metrics and Identify CI Activities according to an embodiment of

the present invention;

Figure 99 illustrates the Review/Establish Project Security according to an embodiment of the

present invention;

Figure 100 illustrates the Determine Training Requirements according to an embodiment of the

present invention;

Figure 101 illustrates the Create Project CM Plan according to an embodiment of the present

invention;

Figure 102 shows the Manage CM Repository Process Flow according to an embodiment of the

present invention;

Figure 103 is a flow chart illustrating a method for providing a system investigation report

workbench;
Figure 103.1 illustrates a SIR Workbench Main Window screen which provides navigation
buttons for adding new SIRs, viewing existing SIRs, viewing/printing existing reports and help

according to an embodiment of the present invention;

Figure 104 illustrates New SIR window displayed upon select the New button on the Main

Window according to an embodiment of the present invention;

14

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 105 illustrates a window for reviewing and modifying existing SIRs according to an

embodiment of the present invention;

Figure 106 illustrates the Change Control Details Window according to an embodiment of the

present invention;

Figure 107 illustrates a Report Selection Screen upon selection the Report button from the main

menu according to an embodiment of the present invention;

Figure 108 illustrates a graphic display of SourceSafe Administrator according to an embodiment

of the present invention;

Figure 109 illustrates a configuration of a project tree within Visual SourceSafe Explorer

according to an embodiment of the present invention;
Figure 109.1 illustrates a dialog box of the projection tree in Figure 109 designed to allow
developers to quickly located and retrieve desired projects and/or files according to an

embodiment of the present invention;

Figure 110 illustrates a graphic display when the user gets the latest of the server-side application

code from VSS according to an embodiment of the present invention;

Figure 111 illustrates a window that appears where selection the Recursive checkbox permits

copying of any sub-projects according to an embodiment of the present invention;

Figure 112 illustrates a History window displayed upon selection of View History menu item

according to an embodiment of the present invention;

Figure 113 illustrates the VSS Explorer reflecting the status of the checked out files for other
develbpers to see at a point where one can open the local project or files and make any desired

changes according to an embodiment of the present invention;

Figure 114 illustrates Check In from within the VSS Explorer according to an embodiment of the

present invention;

15

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 115 illustrates the prompting for Check In details according to an embodiment of the

present invention;

Figure 116 illustrates a label creation dialog box according to an embodiment of the present

invention;

Figure 117 illustrates a History of Project dialog box according to an embodiment of the present

invention;

Figure 118 illustrates a History Details dialog according to an embodiment of the present

invention;

Figure 119 illustrates the end to end evaluation process of an Internet firewall for ReTA

according to an embodiment of the present invention;

Figure 120 is a chart of Firewall Products according to an embodiment of the present invention;

Figure 121 depicts the two firewall vendors selected for the product evaluation stage according to

an embodiment of the present invention;

Figure 122 is a diagram of the Activity Framework classes with the VBActivityWrapper

according to an embodiment of the present invention;

Figure 123 illustrates the relationships IVB Activity interface according to an embodiment of the

present invention;

Figure 124 is a flow chart depicting a method for providing a global internetworking gateway

architecture in an e-commerce environment;

Figure 124.1 illustrates a simple high level internetworking gateway architecture according to an

embodiment of the present invention;

16

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 125 illustrates an Internetworking Gateway with a Specialized Proxy/Cache Server

according to an embodiment of the present invention;

Figure 126 illustrates a high level global internetworking gateway architecture according to an

embodiment of the present invention;

Figure 127 shows an illustrative West Coast internetworking gateway architecture according to

an embodiment of the present invention;

Figure 128 shows a Remote Access Internetworking Gateway architecture according to an

embodiment of the present invention;

Figure 129 illustrates an Internetworking Gateway with Partner collaboration on Internet

Development according to an embodiment of the present invention;

Figure 130 illustrates a persistable business object extending Persistence. RetaPersistableOb;.

According to an embodiment of the present invention;

Figure 131 illustrates layers of a shared property group manager according to an embodiment of

the present invention;

Figure 132 is a flow chart depicting a method for initializing a database used with an issue

tracker;

Figure 132.1 illustrates configuring of an issue tracker tool for normal operation according to an

embodiment of the present invention;

Figure 133 illustrates a dialog box prompting to confirm the removal of linked tables within a

database;

Figure 134 illustrates a New Table’ dialog window being displayed upon selection of a ‘New’

button in order to insert a new table according to an embodiment of the present invention;

17

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Figure 135 illustrates a prompting by Access for selecting tables to link according to an

embodiment of the present invention;

Figure 136 illustrates a dialog box indicating linked tables according to an embodiment of the

present invention;

Figure 137 illustrates a “Welcome Form’ window according to an embodiment of the present

invention;

Figure 138 illustrates a ‘Issue Form’ window according to an embodiment of the present

invention;

Figure 139 illustrates a window which permits modification of the available reports within the

Issue tool according to an embodiment of the present invention;

Figure 140 illustrates a window displayed permitting modification of desired report elements to

the new project name according to an embodiment of the present invention;

Figure 141 illustrates a Team Code Table window which allows adding and deleting of project

locations according to an embodiment of the present invention;

Figure 142 illustrates a Team Membership Table window which allows adding and deleting of

team members according to an embodiment of the present invention;

Figure 143 illustrates a Project Phases Table window which allows changing of project phases

according to an embodiment of the present invention;

Figure 144 illustrates a Startup window which allows changing of the title of a database

according to an embodiment of the present invention;

Figure 145 is a flowchart depicting a method for generating software based on business

components;

18

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Figure 145.1 illustrates a relationship between business components and partitioned business

components according to an embodiment of the present invention;

Figure 146 illustrates how a Billing Business Component may create an invoice according to an

embodiment of the present invention;

Figure 147 illustrates the relationship between the spectrum of Business Components and the

types of Partitioned Business Components according to an embodiment of the present invention;

Figure 148 illustrates the flow of workflow, dialog flow, and/or user interface designs to a User

Interface Component according to an embodiment of the present invention;
Figure 149 is a diagram of the Eagle Application Model which illustrates how the different types
of Partitioned Business Components may interact with each other according to an embodiment of

the present invention;

Figure 150 illustrates what makes up a Partitioned Business Component according to an

embodiment of the present invention;

Figure 151 illustrates the role of patterns and frameworks according to an embodiment of the

present invention;

Figure 152 illustrates a Business Component Identifying Methodology according to an

embodiment of the present invention;

Figure 153 is a flow chart depicting an exemplary embodiment of a resources e-commerce

technical architecture;

Figure 154 is a flow chart illustrating a second exemplary embodiment of a method for

maintaining data in an e-commerce based technical architecture;

Figure 155 is a flow chart illustraing an exemplary embodiment of a method for providing a

resources e-commerce technical architecture;

19

WO 01/09792 PCT/US00/20549

Figure 156 illustrates another exemplary embodiment of a method for providing a resources e-

commerce technical architecture; and

Figure 157 illustrates an additional exemplary embodiment of a method for providing a resources

e-commerce technical architecture.

20

10

15

20

25

30

WO 01/09792 PCT/US00/20549

DETAILED DESCRIPTION OF THE INVENTION

The Resources eCommerce Technology Architecture '(ReTA) 1s a solution that allows the use of
packaged components to be integrated into a client based eCommerce solution. Before the
present invention, the Resources architecture offerings provided services that supported the
construction, execution and operation of very large custom built solutions. In the last few years,
client needs have shifted towards requirements for solutions that continually integrate well with
third party applications (i.e., data warehouse and portion of the present description management
systems). Previous engagements have proven that it is difficult to integrate these applications
into a new solution. As application vendors continue to produce new releases that incorporate
technical advancements, it is even more difficult to ensure that these integrated applications

continue to work with a given solution.

The ReTA approach to constructing, executing and operating a solution emphasizes the ability to
change solution components with minimal impact on the solution as a whole. From this
approach, ReTA views third party applications as another component in the overall solution.
ReTA is component based, which means the engagement can choose to take only the pieces it
needs to meet its specific business requirements. ReTA is especially suited to building small
applications, implementing tools and packages, integrating applications and web enabling

applications.

ReTA leverages the best capabilities from established market leaders such as Microsoft, SAP and
Oracle. In addition, ReTA leverages some of the Resources prior efforts to integrate solutions.
The present invention is an assembly of these best capabilities that helps to ensure a holistic
delivered solution.

In short, the benefits ReTA provides to the Resources practice and clients are:

e Save engagement teams the redundant effort of repeatedly evaluating the same

technology.

21

10

15

20.

25

30

WO 01/09792 PCT/US00/20549
e Help engagement teams avoid the risk of combining solution components that may be

difficult to get to work together.

e Make it cost effective and low risk to apply upgrades to each of the solution products

without negatively affecting the other solution components.

e Show the clients a solution to a real challenge that cannot be offered by SAP, Microsoft,

IBM, Oracle or many technology startups involved in eCommerce work.

e Focus the Resources architecture offering on common technology choices that coexist

nicely.

In accordance with at least one embodiment of the present invention, a system is provided for
affording various features which support a resources eCommerce Technical Architecture. The
present invention may be enabled using a hardware implementation such as that illustrated in
Figure 1. Further, various functional and user interface features of one embodiment of the
present invention may be enabled using software programming, i.e. object oriented programming
(OOP).

HARDWARE OVERVIEW

A representative hardware environment of a preferred embodiment of the present invention is
depicted in Figure 1, which illustrates a typical hardware configuration of a workstation having a
central processing unit 110, such as a microprocessor, and a number of other units interconnected
via a system bus 112. The workstation shown in Figure 1 includes Random Access Memory
(RAM) 114, Read Only Memory (ROM) 116, an I/O adapter 118 for connecting peripheral
devices such as disk storage units 120 to the bus 112, a user interface adapter 122 for connecting
a keyboard 124, a mouse 126, a speaker 128, a microphone 132, and/or other user interface
devices such as a touch screen (not shown) to the bus 112, communication adapter 134 for
connecting the workstation to a communication network (e.g., a data processing network) and a
display adapter 136 for connecting the bus 112 to a display device 138. The workstation
typically has resident thereon an operating system such as the Microsoft Windows NT or
Windows/95 Operating System (OS), the IBM OS/2 operating system, the MAC OS, or UNIX
operating system.

22

10

15

20

25

30

WO 01/09792 PCT/US00/20549

SOFTWARE OVERVIEW

Object oriented programming (OOP) has become increasingly used to develop complex
applications. As OOP moves toward the mainstream of software design and development,
various software solutions re(iuire adaptation to make use of the benefits of OOP. A need exists
for the principles of OOP to be applied to a messaging interface of an electronic messaging

system such that a set of OOP classes and objects for the messaging interface can be provided.

OORP is a process of developing computer software using objects, including the steps of analyzing
the problem, designing the system, and constructing the program. An object is a software
package that contains both data and a collection of related structures and procedures. Since it
contains both data and a collection of structures and procedures, it can be visualized as a self-
sufficient component that does not require other additional structures, procedures or data to
perform its specific task. OOP, therefore, views a computer program as a collection of largely
autonomous components, called objects, each of which is responsible for a specific task. This
concept of packaging data, structures, and procedures together in one component or module is

called encapsulation.

In general, OOP components are reusable software modules which present an interface that
conforms to an object model and which are accessed at run-time through a component integration
architecture. A component integration architecture is a set of architecture mechanisms which
allow software modules in different process spaces to utilize each other’s capabilities or
functions. This is generally done by assuming a common component object model on which to
build the architecture. It is worthwhile to differentiate between an object and a class of objects at
this point. An object is a single instance of the class of objects, which is often just called a class.

A class of objects can be viewed as a blueprint, from which many objects can be formed.

OOP allows the programmer to create an object that is a part of another object. For example, the
object representing a piston engine is said to have a composition-relationship with the object
representing a piston. In reality, a piston engine comprises a piston, valves and many other
components; the fact that a piston is an element of a piston engine can be logically and

semantically represented in OOP by two objects.

23

10

15

20

25

30

WO 01/09792 PCT/US00/20549
OOP also allows creation of an object that “depends from” another object. If there are two
objects, one representing a piston engine and the other representing a piston engine wherein the
piston is made of ceramic, then the relationship between the two objects is not that of
composition. A ceramic piston engine does not make up a piston engine. Rather it is merely one
kind of piston engine that has one more limitation than the piston engine; its piston is made of
ceramic. In this case, the object representing the ceramic piston engine is called a derived object,
and it inherits all of the aspects of the object representing the piston engine and adds further
limitation or detail to it. The object representing the ceramic piston engine “depends from” the
object representing the piston engine. The relationship between these objects is called

inheritance.

When the object or class representing the ceramic piston engine inherits all of the aspects of the
objects representing the piston engine, it inherits the thermal characteristics of a standard piston
defined in the piston engine class. However, the ceramic piston engine object overrides these
ceramic specific thermal characteristics, which are typically different from those associated with
a metal piston. It skips over the original and uses new functions related to ceramic pistons.
Different kinds of piston engines have different characteristics, but may have the same
underlying functions associated with them (e.g., how many pistons in the engine, ignition
sequences, lubrication, etc.). To access each of these functions in any piston engine object, a
programmer would call the same functions with the same names, but each type of piston engine
may have different/overriding implementations of functions behind the same name. This ability
to hide different implementations of a function behind the same name is called polymorphism

and it greatly simplifies communication among objects.

With the concepts of composition-relationship, encapsulation, inheritance and polymorphism, an
object can represent just about anything in the real world. In fact, the logical perception of the
reality is the only limit on determining the kinds of things that can become objects in object-
oriented software. Some typical categories are as follows:

. Objects can represent physical objects, such as automobiles in a traffic-flow simulation,
electrical components in a circuit-design program, countries in an economics model, or
aircraft in an air-traffic-control system.

. Objects can represent elements of the computer-user environment such as windows,

menus or graphics objects.

24

10

15

20

25

30

WO 01/09792 PCT/US00/20549
. An object can represent an inventory, such as a personnel file or a table of the latitudes
and longitudes of cities.
. An object can represent user-defined data types such as time, angles, and complex

numbers, or points on the plane.

With this enormous capability of an object to represent just about any logically separable matters,
OOP allows the software developer to design and implement a computer program that is a model
of some aspects of reality, whether that reality is a physical entity, a process, a system, or a
composition of matter. Since the object can represent anything, the software developer can

create an object which can be used as a component in a larger software project in the future.

If 90% of a new OOP software program consists of proven, existing components made from
preexisting reusable objects, then only the remaining 10% of the new software project has to be
written and tested from scratch. Since 90% already came from an inventory of extensively tested
reusable objects, the potential domain from which an error could originate is 10% of the
program. As aresult, OOP enables software developers to build objects out of other, previously

built objects.

This process closely resembles complex machinery being built out of assemblies and sub-
assemblies. OOP technology, therefore, makes software engineering more like hardware
engineering in that software is built from existing components, which are available to the
developer as objects. All this adds up to an improved quality of the software as well as an

increase in the speed of its development.

Programming languages are beginning to fully support the OOP principles, such as
encapsulation, inheritance, polymorphism, and composition-relationship. With the advent of the
C++ language, many commercial software developers have embraced OOP. C++ is an OOP
language that offers a fast, machine-executable code. Furthermore, C++ is suitable for both
commercial-application and systems-programming projects. For now, C++ appears to be the
most popular choice among many OOP programmers, but there is a host of other OOP languages,
such as Smalltalk, Common Lisp Object System (CLOS), and Eiffel. Additionally, OOP
capabilities are being added to more traditional popular computer programming

languages such as Pascal.

25

10

15

20

25

30

WO 01/09792 PCT/US00/20549

The benefits of object classes can be summarized, as follows:

Objects and their corresponding classes break down complex programming problems into
many smaller, simpler problems.

Encapsulation enforces data abstraction through the organization of data into small,
independent objects that can communicate with each other. Encapsulation protects the
data in an object from accidental damage, but allows other objects to interact with that
data by calling the object’s member functions and structures.

Subclassing and inheritance make it possible to extend and modify objects through
deriving new kinds of objects from the standard classes available in the system. Thus,
new capabilities are created without having to start from scratch.

Polymorphism and multiple inheritance make it possible for different programmers to
mix and match characteristics of many different classes and create specialized objects that
can still work with related objects in predictable ways.

Class hierarchies and containment hierarchies provide a flexible mechanism for modeling
real-world objects and the relationships among them.

Libraries of reusable classes are useful in many situations, but they also have some
limitations. For example: '

Complexity. In a complex system, the class hierarchies for related classes can become
extremely confusing, with many dozens or even hundreds of classes.

Flow of control. A program written with the aid of class libraries is still responsible for
the flow of control (i.e., it must control the interactions among all the objects created
from a particular library). The programmer has to decide which functions to call at what
times for which kinds of objects.

Duplication of effort. Although class libraries allow programmers to use and reuse many
small pieces of code, each programmer puts those pieces together in a different way.

Two different programmers can use the same set of class libraries to write two programs
that do exactly the same thing but whose internal structure (i.e., design) may be quite
different, depending on hundreds of small decisions each programmer makes along the
way. Inevitably, similar pieces of code end up doing similar things in slightly different

ways and do not work as well together as they should.

Class libraries are very flexible. As programs grow more complex, more programmers are forced

to reinvent basic solutions to basic problems over and over again. A relatively new extension of

26

10

15

20

25

30

WO 01/09792 PCT/US00/20549
the class library concept is to have a framework of class libraries. This framework is more
complex and consists of significant collections of collaborating classes that capture both the
small scale patterns and major mechanisms that implement the common requirements and design
in a specific application domain. They were first developed to free application programmers
from the chores involved in displaying menus, windows, dialog boxes, and other standard user

interface elements for personal computers.

Frameworks also represent a change in the way programmers think about the interaction between
the code they write and code written by others. In the early days of procedural programming, the
programmer called libraries provided by the operating system to perform certain tasks, but
basically the program executed down the page from start to finish, and the programmer was
solely responsible for the flow of control. This was appropriate for printing out paychecks,
calculating a mathematical table, or solving other problems with a program that executed in just

one way.

The development of graphical user interfaces began to turn this procedural programming
arrangement inside out. These interfaces allow the user, rather than program logic, to drive the
program and decide when certain actions should be performed. Today, most personal computer
software accomplishes this by means of an event loop which monitors the mouse, keyboard, and
other sources of external events and calls the appropriate parts of the programmer’s code
according to actions that the user performs. The programmer no longer determines the order in
which events occur. Instead, a program is divided into separate pieces that are called at
unpredictable times and in an unpredictable order. By relinquishing control in this way to users,
the developer creates a program that is much easier to use. Nevertheless, individual pieces of the
program written by the developer still call libraries provided by the operating system to
accomplish certain tasks, and the programmer must still determine the flow of control within

each piece after it’s called by the event loop. Application code still “sits on top of” the system.

Even event loop programs require programmers to write a lot of code that should not need to be
written separately for every application. The concept of an application framework carries the
event loop concept further. Instead of dealing with all the nuts and bolts of constructing basic
menus, windows, and dialog boxes and then making all these things work together, programmers

using application frameworks start with working application code and basic user interface

27

WO 01/09792 PCT/US00/20549
elements in place. Subsequently, they build from there by replacing some of the generic

capabilities of the framework with the specific capabilities of the intended application.

Application frameworks reduce the total amount of code that a programmer has to write from
scratch. However, because the framework is really a generic application that displays windows,
supports copy and paste, and so on, the programmer can also relinquish control to a greater
degree than event loop programs permit. The framework code takes care of almost all event
handling and flow of control, and the programmer’s code is called only when the framework

needs it (e.g., to create or manipulate a proprietary data structure).

A programmer writing a framework program not only relinquishes control to the user (as is also
true for event loop programs), but also relinquishes the detailed flow of control within the
program to the framework. This approach allows the creation of more complex systems that
work together in interesting ways, as opposed to isolated programs, having custom code, being

created over and over again for similar problems.

Thus, as is explained above, a framework basically is a collection of cooperating classes that make
up a reusable design solution for a given problem domain. It typically includes objects that provide
default behavior (e.g., for menus and windows), and programmers use it by inheriting some of that
default behavior and overriding other behavior so that the framework calls application code at the

appropriate times.

There are three main differences between frameworks and class libraries:

. Behavior versus protocol. Class libraries are essentially collections of behaviors that you
can call when you want those individual behaviors in your program. A framework, on the
other hand, provides not only behavior but also the protocol or set of rules that govern the
ways in which behaviors can be combined, including rules for what a programmer is
supposed to provide versus what the framework provides.

. Call versus override. With a class library, the code the programmer instantiates objects
and calls their member functions. It’s possible to instantiate and call objects in the same
way with a framework (i.e., to treat the framework as a class library), but to take full
advantage of a framework’s reusable design, a programmer typically writes code that
overrides and is called by the framework. The framework manages the flow of control

among its objects. Writing a program involves dividing responsibilities among the

28

10

15

20

25

30

WO 01/09792 PCT/US00/20549
various pieces of software that are called by the framework rather than specifying how the
different pieces should work together.

. Implementation versus design. With class libraries, programmers reuse only
implementations, whereas with frameworks, they reuse design. A framework embodies
the way a family of related programs or pieces of software work. It represents a generic
design solution that can be adapted to a variety of specific problems in a given domain.
For example, a single framework can embody the way a user interface works, even
though two different user interfaces created with the same framework might solve quite

different interface problems.

Thus, through the development of frameworks for solutions to various problems and
programming tasks, significant reductions in the design and development effort for software can
be achieved. A preferred embodiment of the invention utilizes HyperText Markup Language
(HTML) to implement documents on the Internet together with a general-purpose secure
communication protocol for a transport medium between the client and a company. HTTP or
other protocols could be readily substituted for HTML without undue experimentation.
Information on these products is available in T. Berners-Lee, D. Connoly, "RFC 1866: Hypertext
Markup Language - 2.0" (Nov. 1995); and R. Fielding, H, Frystyk, T. Bemners-Lee, J. Gettys and
J.C. Mogul, "Hypertext Transfer Protocol -- HTTP/1.1: HTTP Working Group Internet Draft"
(May 2, 1996). HTML is a simple data format used to create hypertext documents that are
portable from one platform to another. HTML documents are SGML documents with generic
semantics that are appropriate for representing information from a wide range of domains.
HTML has been in use by the World-Wide Web global information initiative since 1990. HTML
is an application of ISO Standard 8879; 1986 Information Processing Text and Office Systems;
Standard Generalized Markup Language (SGML).

To date, Web development tools have been limited in their ability to create dynamic Web
applications which span from client to server and interoperate with existing computing resources.
Until recently, HTML has been the dominant technology used in development of Web-based

solutions. However, HTML has proven to be inadequate in the following areas:

. Poor performance;

. Restricted user interface capabilities;

. Can only produce static Web pages;

. Lack of interoperability with existing applications and data; and

29

10

15

20

25

30

WO 01/09792 PCT/US00/20549
. Inability to scale.

Sun Microsystem's Java language solves many of the client-side problems by:

. Improving performance on the client side;
. Enabling the creation of dynamic, real-time Web applications; and
. Providing the ability to create a wide variety of user interface components.

With Java, developers can create robust User Interface (UI) components. Custom "widgets"
(e.g., real-time stock tickers, animated icons, etc.) can be created, and client-side performance is
improved. Unlike HTML, Java supports the notion of client-side validation, offloading
appropriate processing onto the client for improved performance. Dynamic, real-time Web pages
can be created. Using the above-mentioned custom Ul components, dynamic Web pages can

also be created.

Sun's Java language has emerged as an industry-recognized language for "programming the
Internet." Sun defines Java as “a simple, object-oriented, distributed, interpreted, robust, secure,
architecture-neutral, portable, high-performance, multithreaded, dynamic, buzzword-compliant,
general-purpose programming language. Java supports programming for the Internet in the form
of platform-independent Java applets.” Java applets are small, specialized applications that
comply with Sun's Java Application Programming Interface (API) allowing developers to add
"interactive content” to Web documents (e.g., simple animations, page adornments, basic games,
etc.). Applets execute within a Java-compatible browser (e.g., Netscape Navigator) by copying
code from the server to client. From a language standpoint, Java's core feature set is based on
C++. Sun's Java literature states that Java is basically, "C++ with extensions from Objective C

for more dynamic method resolution.”

Another technology that provides similar function to JAVA is provided by Microsoft and
ActiveX Technologies, to give developers and Web designers wherewithal to build dynamic
content for the Internet and personal computers. ActiveX includes tools for developing
animation, 3-D virtual reality, video and other multimedia content. The tools use Internet
standards, work on multiple platforms, and are being supported by over 100 companies. The
group's building blocks are called ActiveX Controls, which are fast components that enable
developers to embed parts of software in hypertext markup language (HTML) pages. ActiveX

Controls work with a variety of programming languages including Microsoft Visual C++,

30

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Borland Delphi, Microsoft Visual Basic programming system and, in the future, Microsoft's

development tool for Java, code named "Jakarta." ActiveX Technologies also includes ActiveX
Server Framework, allowing developers to create server applications. One of ordinary skill in the
art readily recognizes that ActiveX could be substituted for JAVA without undue

experimentation to practice the invention.

Various aspects of ReTA will now be set forth under separate headings:

CODES TABLE FRAMEWORK

With reference to Figure 1.1, a codes table framework 140 is provided for maintaining
application consistency by referencing text phrases through a short codes framework. First, in
operation 142, a table of codes each having a text phrase associated therewith is provided. Such
table of codes is stored on a local storage medium. Next, in operation 144, the table of codes is
accessed on the local storage medium. One of the text phrases is subsequently retrieved by
selecting a corresponding one of the codes of the table, as indicated in operation 146. During
operation, modification of the text phrases associated with each of the codes of the table is

permitted. See operation 148.

The modification may be carried out during a business logic execution. Further, various services
may be provided such as retrieving a single one of the text phrases, retrieving all of the text
phrases in response to a single command, updating a single code and text phrase combination,
updating all of the code and text phrase combinations, naming the table, adding a new code and
text phrase combination, removing one of the code and text phrase combinations, and/or adding

another table.

Further, a name of the table may be stored upon retrieval of the text phrase. Further, a total
number of code and text phrase combinations in the table may be determined and stored. In the
case where a plurality of tables are provided, any number of the tables may be removed during
operation. Additional information will be now be discussed relative to the various foregoing

operations.

This portion of the present description details the ReTA Codes Table framework design from the

perspective of the application developer. The purpose of a codes table is to maintain application

31

10

15

20

WO 01/09792 PCT/US00/20549
consistency by referencing text phrases (to be displayed to the end user) through short codes.

The code and text phrase (decode) are stored in a standard table format. The codes table
component stores this table locally on the web server, thus reducing the overhead of accessing

the database each time the application needs to translate a code.

Description

The role of this framework is to store frequently used code/decode sets on the web server and
provide services that enable the application developer to retrieve the decode(s) associated with
code(s). In addition, the framework provides services to enable the developer to modify the

contents of the locally stored codes table during business logic execution.

Services

The Codes Table Framework provides the following services:

Service Detail

B Retrieve single decode value

{ Retrieve all decode values

Update single Code/Decode
7 Update all Codes/Dechesf
. Set Table Name
| Add new Code/Decode
Remove Code/Decode
Add Table

‘ Remove Table

Components

The Codes Table Framework consist of the following COM objects:
Component Service

Retrieve ecode(s) from the codes table.

Maintain the codes table.

32

WO 01/09792 PCT/US00/20549

These components are described in detailed in the following sub-sections.
AFRetrieval

5 The AFRetrieval component enables the application developer to load the specified codes table

into local memory (for faster access) and retrieve the requested decode(s).
Methods

10 The IAFRetrieval interface defines the access to the AFRetrieval component. This interface

supports the following methods:

Method Description

Retrieve the requested codes table into local -
memory and store the table name for
subsequent retrieval requests (instead of

retrieving from MTSshé;red memory). .

Search through the currently identified local
codes table and return the 'decode’ associated
with the 'code’. Refer to setTableName

@ method.

Return the number of code / decode pairs
contained in the currently identified local

codes table. Refer to setTableNdme method. ’

Return all the codes and décodes for the ﬂ

specified codes table.

15 AFMaintenance

The AFMaintenance component maintains the specified local codes table.

Methods
20

33

10

WO 01/09792 PCT/US00/20549
The IAFMaintenance interface defines the access to the AFMaintenance component. This

interface supports the following methods:
Method Description
seTableName Store the name of local codes table to be

accessed for subsequent maintenance requests.

: @@L@@@@b R , Dynamically add a code/decode pair to the
o e . currently identified local codes table. Refer to

setTableName method.

| Replace all code/decode pairs of currently
identified local codes table with the passed in
code/decode pairs. Refer to setTableName

method.

Append the passed in code/decode pairs to the
currently identified local codes table. Refer to

: setTableName method.

-vCo oD @x@l@%’ﬂ“&b&% @ Return fully populated codes table directlyr

from the database.

Remove specified code/decode pair from
currently identified local codes table. Refer to

setTableName method.

Remove the currently identified locat codes
table from local memory. Refer to V

setTableName method.

SAP FRAMEWORK DESIGN

Figure 1.2 illustrates a method 150 for providing an interface between a first server and a second
server with a proxy component situated therebetween. Initially, in operation 152, a request for a
business object is identified by an application on the first server. The first server is connected to
the second server in operation 153. In operation 154, selection criteria from the first server is
transmitted to the second server. In response to the selection criteria, the first server receives a

first recordset and a second recordset from the second server in operation 155. Business data is

34

10

15

20

25

30

WO 01/09792 PCT/US00/20549
included in the first recordset and result codes are included in the second recordset. The first and

second recordsets are mapped to the business object in operation 156 and, in operation 157, the

business object is sent to the application on the first server.

The first and second recordsets may also be mapped to the business object using a utility
conversion function. Additionally, the first and second recordsets may also be mapped to the
business object using a utility conversion function. Optionally, the recordsets may be ActiveX

data objects (ADO) recordsets.

The first server may also receive a third recordset from the second server in response to the
selection criteria. This third recordset may include errors and references to an error table on the

first server for allowing processing of the errors.

In a further embodiment of the present invention, changes to the proxy component may be
prevented from affecting the application on the first server. Additionally, generation of a
plurality of the proxy components by a user may be allowed. The following material provides a

more detailed description of the above-described method.

This portion of the present description details the ReTA SAP framework design from the
perspective of the application developer. The role of this framework is to provide designs and
templates that describe how to integrate an Internet application with a SAP server. Unlike the
other ReTA frameworks, this does not provide any code components for connecting to SAP, but
uses the SAP/DCOM component connector created jointly by Microsoft and SAP. This portion
of the present description provides a framework for the design of the architecture using the SAP

DCOM connector components to integrate with SAP.

The DCOM Component Connector provides interoperability between R/3 objects and COM
objects across a heterogeneous network through well-defined business interfaces. It provides the
development tools for connecting with SAP to standard SAP BAPI ‘s (Business Application
Programmer Interface) as well as custom developed or modified BAPI’s. The DCOM component
connector can connect to SAP on Windows NT or UNIX. The Application server needs to be R/3
Version 2.1 or higher or R/2 with 50D.

35

10

15

20

25

30

WO 01/09792 PCT/US00/20549
The ReTA SAP framework uses an adapter layer design that places a wrapper around the DCOM

component connector. The adapter layer improves developer productivity by managing some of

the lower level tasks, and improves the flexibility of the final solution.

The remainder of this portion of the present description describes the Execution and

Development Architectures for the SAP framework.

SAP Framework Execution Architecture

The DCOM Component connector uses COM proxy components that map to SAP Business
Objects. There is one proxy component for each SAP business object. The SAP business objects
can contain both the standard BAPI ‘s (Business Application Programmer Interface) as well as
custom developed or modified BAPI’s. The SAP/DCOM component generation wizard connects
to SAP, examines the SAP business object, and generates a proxy component with the same
interface. The SAP/DCOM connector component can connect to SAP on Windows NT or UNIX.
Figure 1.3 shows the execution architecture for components that make up the SAP Framework

Execution Architecture 160.

Referring again to Figure 1.3, the different layers in the SAP framework architecture are shown.
The SAP/DCOM connector generated components 162 provide the actual connection to SAP
164. These components are generated from the SAP Business Application Programmer Interface
(BAPI) 166,168. The BAPT’s are either the standard SAP BAPI’s, custom created BAPT’s or

Remote Function Calls.

The ReTA framework uses an Adapter layer to provide a thin wrapper on the SAP/DCOM
connector components. The adapter layer provides the following benefits:
e [t insulates the application from changes in the SAP/DCOM connector components.
e It provides utility functions for mapping the SAP/DCOM connector data types to the
types required by the application.

e It maps the SAP return error codes to the format required by the application.

The SAP/DCOM connector generated components use ADO (ActiveX Data Objects) recordsets
to pass data to SAP. The adapter layer components map from these recordsets to the Business

Objects or Business Data format used by the application. If a given method returns business data

36

10

15

20

25

30

WO 01/09792 PCT/US00/20549
from SAP then this is in the form of an ADO recordset. If a method updates information in SAP
then one must pass in an ADO recordset with all the data. To initialize this ADO recordset one
calls a separate standard interface method of the proxy component. SAP returns business errors

by returning a separate ADO recordset that references an error table.
The ReTA framework’s adapter layer maps the ADO recordsets that the DCOM connector uses
to the business objects or data objects used by the application. The adapter layer also maps the

error table recordset returned by SAP to the error handling mechanism used by the application.

SAP Framework Development Architecture

SAP/DCOM component connector generation
The SAP/DCOM connector portion of the present description gives a detailed description of how

to generate a COM proxy component for a given SAP BAPI. The steps for creating a proxy

component are:

e Using the DCOM Component Connector browser based tool, create a destination entry

for the SAP Application server.
e Use the DCOM Connector wizard to connect to this destination.

e Browse through the available SAP Business Objects on the remote SAP system.

e Seclect a business object and click Generate Component DLL.

The DCOM Component connector may then generate C++ and IDL files, compile these files to

create the proxy component and install this component in MTS.
SAP Adapter component design

This portion of the description describes the responsibility of the SAP adapter components and

gives a template for a component.

The SAP Adapter components are responsible for:

37

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Insulating the application from changes in the SAP BAPIL
Receiving business data from SAP

Updating business data in SAP ‘

Mapping to/from the SAP returned data types

Mapping the SAP error return codes to the error handling mechanism used by the

application.

There is a one to one mapping between the SAP Adapter components and the generated

SAP/DCOM connector components.

SAP Adapter component template

This template gives an example of an SAP connector component with one method to receive

business data and one method to send business data. It describes how to convert to/from the data

types required by the SAP Connector component and how to manage the SAP return error codes.

Function GetSAPData(<in>selectionCriteria, <out> businessObject):integer

Create instance of the corresponding SAP connector component

Call corresponding SAP method passing in selectionCriteria. SAP may return an ADO
Recordset with the business data and a second ADO Recordset with the Result codes.
Call an error utility function that maps the error return codes onto the applications error
handling system.

Map the return recordset onto the businessObject (possibly using utility conversion

function). Return the business object to the caller of the function.

Function SetSAPData(<in>businessObject):integer

Create instance of the corresponding SAP connector component

Call the SAP connector standard method DimAS to retrieve the recordset that may be
populated from the businessObject.

Populate the recordset from the businessObject (possibly using utility conversion
function).

Cal the corresponding SAP method passing in the recordset.

38

10

15

20

25

30

WO 01/09792 PCT/US00/20549
e (Call the error utility function that maps the error return codes onto the applications error
handling system.
e Gives an example of an adapter component that demonstrates retrieving and updating

SAP data and handling the SAP error codes.

MTS FRAMEWORK DESIGN

Figure 1.4 illustrates a method for sharing context objects among a plurality of components
executed on a transaction server. In operation 170, a first component is executed on a transaction
server. A context object is then generated for the first component in operation 172 to control a
scope of the execution of the first component. In operation 174, a call made by the first
component is identified to execute a second component. The context object of the first
component is utilized for controlling the scope of the execution of the second component in
operation 176. Optionally, the first and second components may be service order item

components.

The first component may be an activity component and the second component may be a business
component. As an option, a plurality of activity components may be provided. As another
option, a call made by the activity component may also be identified to execute a second business
component with the context object of the activity component utilized for controlling the scope of
the execution of the second business component. As a further option, a call made by the activity
component may be identified to execute an error logging component with an additional context
object separate from the context object of the activity component being utilized for controlling
the scope of the execution of the error logging component. The following material provides a

more detailed description of the above-described method.

This portion of the present description details the ReTA approach to performing “logical unit of
work” database operations in the context of transactions. Applications developed with ReTA
implement transactions through Microsoft Transaction Server (MTS). Within the MTS
transaction context, ReTA applications group business components into transactions. The
application developer designs each business component to define whether its actions should be

performed within a transaction.

39

10

15

20

25

30

WO 01/09792 PCT/US00/20549
In addition, this portion of the present description details the MTS framework features and their

implications on ReTA application design.

MTS Transactions: Application Design Implementation

Description

There are two main tasks the developer performs to design applications that use MTS to support

transactions:

¢ Code the application component to be MTS aware.

e Use MTS services to group database operations into transactions.

Design MTS aware components

Figure 2 illustrates a create component instances method 200. MTS controls the scope of
transactions by using transaction context objects. Each transaction server component has an
associated MTS context object 202, which controls the transaction context. If a component 204
needs to create instances of other components 206 during its processing, it uses the
Createlnstance method of the MTS context object to create the new object. Calling this method
ensures that the new component has an associated MTS context object 202 with the correct

transaction scope.

Group database operations into MTS transactions

The following portions of the present description include three database operations grouping

scenarios that a ReTA application developer can implement through MTS.

Compose work from multiple components in the same transaction

As illustrated in Figure 3, in this scenario, the developer composes the work of a business
activity 300 into a single transaction. Activity 300 uses business objects in components 302 and

304 to compete its work. Any database operations generated by either of these business

40

10

15

20

25

30

WO 01/09792 PCT/US00/20549

components are completed in the context of a single transaction. To achieve this functionality,
the developer uses the default transaction context scope that MTS provides. The developer sets
the transaction attribute of the Activity component to Requires a transaction and the attribute of
the business components to either Requires a transaction or Supports transactions. When the
activity component initializes, MTS creates a corresponding context object 306. Subsequently,
when the activity component initializes the business components, these business components

share the same context object and are therefore committed in the same transaction.

When the Activity completes and the reference to the activity component is removed, the
transaction is committed. If any of the database calls, fails or any of the components decides to
abort the transaction, the transaction is aborted and all the database actions performed are rolled

back.

Force a component’s database operations to use a separate transaction.

In this scenario, as illustrated in Figure 4, the developer creates a component whose database
operations are always carried out in a separate transaction. For example, an error logging
component 402 should not use the transaction context of the component generating the error.
This could cause the error logged to the database to be rolled back if an error occurs in a separate
database operation. This scenario has an activity component 400, two business components
404,406 and an error logging component 402. If an error occurs in the activity, then an error
message is sent to the error logging component (which logs the error in a database). The
transaction of the activity is rolled back, however, the transaction of the error logging component

is committed to the database.

In this scenario, the developer uses the default behavior of MTS. The error logging component is
registered as Requires a new transaction. When the activity component initializes the error
logging component, MTS creates a new transaction context for the component. If an error occurs
in the activity, the database operations for the activity is rolled back, but any database operations

that the error component generates is committed.

Compose work from multiple activities in the same transaction.

41

10

15

20

25

30

WO 01/09792 PCT/US00/20549
With reference to Figure S (which illustrates the compose work form multiple activities in the

same transaction), in this scenario, the developer creates two separate activities 500,502 whose
work sometimes need to be composed into a single transaction. To achieve this functionality
using MTS, the developer creates a third activity component 504 that calls the other two
activities. The third activity component is registered as Requires a transaction. When this
component initializes, MTS creates a new transaction context. When the activity 504 initializes
the other two activities 500,502, they share the same transaction context 506 (and any objects

they create also have the ability to share the transaction context).

MTS Features: Application Design Implications

Description

Note: A FinancialWorks Knowledge Exchange (kX) posting (Optimizing Performance) provided

most of the content for this portion of the description.

This portion of the description provides insight on the following MTS features:
¢ Connection Pooling
o Stateless/Stateful objects
e Package threading
e Transactions
e Just in Time activation
e Object creation

e Parameter Passing.

Connection Pooling

MTS and ODBC provide connection pooling. MTS/ODBC associates a connection pool with a
specific user account. Therefore, 1t is important that all data access components have a pre-
defined account to use when requesting database connections. In addition, connections are
pooled only within the same process. This implies that every MTS package may have a pool of

connections, as each MTS package runs in its own process.

42

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Note that the ODBC connections are pooled, not the ADO connections. When the application

code closes the ADO connection, the corresponding ODBC connection stays in the pool until a
configurable timeout expires (cptimeout). The configurable timeout key is in the registry under
“Hkey Local Machine\Software\ODBC\ODBCINST.INI\<driver name>\cptimeout” (with a
default value of 60 seconds). Connection pooling can be turned off by setting this value to 0. In
effect, connection pooling keeps more connections open with the database but saves the

(expensive) overhead of re-creating the connection every time.

Note: Connection pooling is a feature of the ODBC resource manager. MTS automates the

configuration of the ODBC resource to enable connection pooling.

Implications on application design:

Create accounts for account packages. Group components under the appropriate credentials and
packages. The Database server is a resource bottleneck. To improve performance, ensure high

bandwidth connections exist between application and database servers.

Connection pooling provides performance improvement especially in the case where connections

are used and released frequently such as Internet application.

Stateful and Stateless Objects

MTS supports the concept of a stateful object. However, the object must satisfy the following

conditions:

1) The object can not be transactional.

2) Even if it is marked as non-transactional, it cannot participate in a transaction (i.e. cannot
be called from a transactional object or call a transactional object). The reason is that
MTS implements an activity concept. In the activity concept, all objects participating in a
transaction (or LUW) are logically “grouped” together. Upon the completion of that
transaction, SetComplete is called and all objects in that activity are freed. Thus, no

object in the transaction holds context (state) on transaction completion.

43

10

15

20

25

30

WO 01/09792 PCT/US00/20549

3) To enable a stateful object to participate in a transaction, partition the object into two
parts: Stateful and Transactional. The Stateful part lives outside MTS and uses the
TransactionContext object to manage manually (making explicit calls to start, commit
and/or abort) the transaction inside MTS. To maintain transactional integrity, use the
TransactionContext (as opposed to the ObjectContext) to create MTS objects. Therefore,
the TransactionContext is passed inside MTS for later use of any MTS object
instantiation. On the server, the code looks like the following: Set MtsObject =

MtxTransactionContext.CreateInstance(“progid”)

Implication on application design:

In general, be deliberate with MTS and state. When working with MTS components, it is
recommended to keep the context(state) on the client and have the server components be service

driven. These components are instantiated to provide a service and then are freed.

Package Threading

Every time a package receives a method call, MTS creates a new thread to service the request.
At the time of writing this portion of the present description, MTS packages have a maximum
limit of 100 threads per package. If the number of the incoming concurrent calls exceeds 100,
MTS serializes all excess calls. Project testing (a FinacialWorks project) proved that

performance degraded significantly after reaching the 100 concurrent threads mark.

Implication on-application design:
Due to this limitation, package the application DLLs in a way to minimize thread contention.

For future releases of MTS, Microsoft claims the limit for concurrent calls may increase to 1000.

Activities

MTS defines an activity as set of objects acting on behalf of a client’s request. Every MTS
object belongs to one activity. The activity ID is recorded in the context of the object. The
objects in an activity consist of the object created by a base client and any subsequent object
created by it and all of its descendants. Objects in an activity can be distributed across several

processes (and machines).

44

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Whenever a base client creates an MTS object, a new activity is created. When a MTS object is

created from an existing context, the new object becomes part of the same activity. The object’s

context inherits the activity identifier of the creating context.

Implication on application design:

Activities define a single logical thread of execution. When a base client calls into an activity, all

subsequent requests from other clients are blocked until control is returned to the original caller.

Automatic Transaction Control

MTS initiates a transaction when a method on a transactional component is called. MTS records
the transaction ID in the component’s object context. This transaction ID is passed to other MTS

components’ context objects requiring participation in the same transaction.

MTS operates with an optimistic assumption that the transaction is going to succeed. If the
component never calls SetAbort, SetComplete, DisableCommit, or EnableCommit, the

transaction commits when the client releases its last reference to the MTS component.

If the component calls SetComplete, the transaction commits as soon as the method call returns
to the client. When the component calls SetAbort the transaction aborts as soon as the method

call returns to the client.
If the component calls DisableCommit, the transaction aborts when the client releases its last
reference to the component. If the component calls EnableCommit, the transaction commits

when the client releases its last reference to the component.

Implications on application design:

When designing the transaction timeout, consider the potential for slow system and network
response times. The application design should avoid long running transactions and attempt to

break them into smaller ones.

45

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Note:

There is no explicit Commit method. If no objects have aborted the transaction by calling
SetAbort or disabled commitment by calling DisableCommit, MTS may automatically commit

the transaction when the client releases its object references.

Manual Transaction Control

Transactions can also be manually controlled from a base client by using the transaction context
to start and commit/abort a transaction. This is particularly useful in the case where a stateful
base client activates an MTS-managed transactional object to carry out a distributed transaction.

In order to achieve that, MTS uses the Transaction Context created by the base client.

Just-In-Time Activation

For every business object created, MTS intercepts the call and creates a sibling object called the
Object Context. It is the object context that may manage the transaction and the business object -

activation/deactivation.

One of the interface methods on the context object is SetComplete. When SetComplete is called,
the transaction (if any) is signaled as ready to be committed and the instance of the business
object is destroyed releasing all resources used by it. The next time the client issues a method
call, MTS creates a new instance of the business object and delegates the call to it (this is
assuming that the client did not release its original reference to the MTS-supplied context

wrapper). In the MTS world, this is known as JIT activation.
The following method call trace illustrates JIT activation:
e The client application starts, and the client requests an instance of the CustomeriInterface
of the Customer component.

e Set objICustomer = CreateObject(““CustomerComponent.CustomerInterface”).

e COM searches the Running Object Table to determine whether an instance of the

component is active on the client.

46

10

15

20

25

30

WO 01/09792 PCT/US00/20549
e Ifnot, COM searches the Registry for the information describing CustomerInterface and

invokes the creation of the interface.

e MTS 600 intercepts the Customer creation request 602, starts a process for the Customer
package containing Customer component 604, creates the ContextObject 606 and returns

a reference to the client. See Figure 6.

e The client application requests an operation on the Customerinterface.

e MTS invokes the operation and commits the transaction (if any) by calling SetComplete.

e MTS 700 deactivates the component, freeing the thread, the memory and returns the
result to the client. Figure 7 shows that the customer object 702 has been deactivated (the

customer object is grayed out).

To take advantage of JIT activation, the clients do not release the reference to the MTS-supplied
context wrapper (the client code does not set objICustomer = null). When the client requests a
new operation, the Context wrapper creates a new instance of the Customer component and
delegates the incoming call to it. By keeping the reference to the context wrapper, MTS does not

need to recreate the object.

Implications on application design:

To take advantage of JIT activation, client applications acquire references to the server
components as early as possible and uses them as needed. It would be ideal to obtain references
at application startup, but this has the drawback of not being reliable. If for some reason the

references were lost, this may result in run time errors.

Object Creation: New vs. CreateObject vs. Createlnstance

This portion of the description describes the appropriate usage of the different types of object

creation methods.

New:

47

10

15

20

25

30

WO 01/09792 PCT/US00/20549

The keyword “New” creates an object with private instantiation property. It is used with early

binding.

CreateObject:
Normally used with late binding and used to create objects with public instantiation property. If

other MTS object are instantiated using CreateObject (on the server), they run the risk of running

in the wrong context. CreateObject can be used from the client to instantiate any MTS object.

CreateInstance:

It is the interface method of the context object used to instantiate other MTS objects. This is the
only way to guarantee the newly created object participates in the same current transaction.
When MTS instantiates a transaction, it records the transaction ID in the component’s object
context. This transaction ID is passed to other MTS components only when Createlnstance is

used to create these objects.

Implication on application Design:

When CreateObject is used, Java/VB uses COM to create an instance of the object. If the Object
is registered in MTS, MTS loads the DLL and creates a new instance passing back a MTS-
managed handle to the object. The object gets a new MTS context.

When New is used in Java/VB, the action depends on where the object being created lives. If it
is in a different DLL, COM is used and the mechanism is the same as CreateObject. Ifit is in the
same DLL Java/VB creates the instance internally and may not create a new MTS-managed
object, whereas CreateObject may. Private classes can only be created using New since they are

not exposed to COM.

When one MTS object creates another MTS object, the new object gets a new context. If
CreateObject (or New for an object in a different DLL) is used, the contexts are independent of
each other. If a transaction is involved, the new context manages a completely different
transaction from the original. If Createlnstance is used, the new object’s context shares the same

transaction as the invoking one.

48

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Using New is only a problem in the following scenario. The application contains one DLL that
contains more than one MTS-managed class. The application wants an instance of one of these
classes to create an instance of the other (in separate contexts). New may not do this, whereas
CreateObject and Createlnstance may. However, Createlnstance is required if they are to run

under the same transaction.

Parameter Passing

If Visual Basic is the language of choice, make sure to pass parameters by value (as the default in

VB is by reference). This may help reduce network trips and hence improves performance.

If one is passing the collection object in MTS, make sure to use the Microsoft provided wrapper
collection object. The standard VB collection object is known to cause errors when running
under MTS. It is better to use a variant array instead of collection to pass information around.

It is more robust and performs better.

As parameters, MTS registered business objects are passed by reference as they use standard

marshalling

When working with MTS objects, ensure that object references are exchanged through the return
from an object creation interface such ITransactionContext.Createlnstance or
IObjectContext.Createlnstance. This allows MTS to manage context switches and Object

lifetime.

Data Access and Locking Policy

Database Locking should be in place to ensure the integrity of the database in a multi-user
environment. Locking prevents the common problem of lost updates from multiple users
updating the same record. The optimistic approach of record locking is based on the assumption
that it is rarely the case for multiple users to read and update the same records concurrently.
Such a situation is treated as exceptional processing rather than normal. Optimistic locking does
not place any locks at read time; locks are actually placed at update time. A time stamp
mechanism should be provided to ensure that at update or delete times the record has not

changed since the last time it is read. It is recommended to use optimistic locking with ADO and

49

10

15

20

25

30

WO 01/09792 PCT/US00/20549

MTS to improve performance. If the data access mechanism uses ADO disconnected

RecordSets, then the only possible locking policy is optimistic.

Implication on application Design:

If one is using optimistic locking and ADO, it is recommended that one uses disconnected
recordsets to marshal data. Project experience (FinancialWorks project) shows that the
application should avoid using the ADO RecordSet.GetRows method, as it significantly slows

performance.

Data Marshaling

Use disconnected Recordsets. This may ensure high performance result when marshaling data
across a network. Client applications have to reference an ADOR .Recrodset, which is a lighter
version of the ADODB.Recordset designed specifically for client’s use. With disconnected

Recordsets only optimistic locking can be employed.
If the marshalling of data from client to server is done by collection, beware to use the wrapper

collection provided on the MTS site. MTS may not work correctly when passing the VB

standard collection object. It is known to cause runtime errors.

ACTIVITY FRAMEWORK DESIGN

Figure 8 illustrates a method for providing an activity framework. First, in operation 800 a
plurality of sub-activities are created which each include sub-activity logic adapted to generate an
output based on an input received from a user upon execution. In operation 802, a plurality of
activities are defined, each of which execute the sub-activities in a unique manner upon being
selected for accomplishing a goal associated with the activity. Selection of one of the activities is
allowed in operation 804 by receiving user indicia. In operation 806, an interface is depicted for
allowing receipt of the input and display of the output during execution of the sub-activities

associated with the selected activity.

50

10

15

20

25

30

WO 01/09792 PCT/US00/20549

The sub-activity logic may be adapted for verifying that all required input has been received prior
to generating the output. Access to the input received from the user by each of the sub-activities

of the activities may also be allowed.

Optionally, the activity may include creating a service order. Further, the sub-activities each may

additionally include at least one business component.

The interface may include a plurality of displays that are each displayed during the execution of a
corresponding one of the sub-activities. The following material provides a more detailed

description of the above-described method.

This portion of the present description details the ReTA Activity framework design from the
perspective of the application developer. The primary role of this framework is to provide
services that support the “model view controller” (MVC) design pattern. In this pattern, the
application implements a “separation of concern” among the user interface (view), logical unit of
work (controller) and business components (model). Separating the user interface from the
business logic increases reuse of the interface and the business component. In this design
pattern, different types of interfaces can reuse the same model and the same interface can view
different models. Another goal of separating presentation and storage responsibilities is to
reduce the impact of change. For example, changing the user interface design should only impact
the user interface components and not the business logic. Through modeling the “separation of
concern” pattern, the ReTA Activity framework increases application maintainability and

flexibility. It also encourages “best practice” coding standards.

Activity Framework

Description

See Figure 8.1, which illustrates the MTS runtime environment 830. The ReTA Activity
framework distributes the application development responsibilities as follows:
o Web page (Active Server Page) (View/Controller) The application’s web page logic 832
starts the activity 834, executes the sub-activity and creates the user interfaces. No

business logic is contained directly in the web page code. The application developer

51

10

15

20

25

30

WO 01/09792 PCT/US00/20549

leverages the ReTA Session, ReTA Activity and the ReTA UI frameworks from the web
page code.

Activity Components (Controller) The application’s activity logic implements the
business process logic (functional control logic) 836. Activities support high-level
processes that are not the responsibility of any individual business components. This
includes high-level steps related to a user’s “logical unit of work”™ or business function.
Thus, activities enable multiple web pages to implement a “logical unit of work”. An
example of an activity implementing a “logical unit of work” with multiple web pages is
“Create Service Order”. In this example activity, the user selects a service to order on the
first page, enters the customer information on the second page, reviews and submits the
order on the third page and receives an order confirmation on the fourth page.

Business Components: (Model) Business components 837 implement the application’s
business entity logic. These components represent individual business entities (such as
customer or account). Each entity encapsulates its own data and behavior acting on that
data. Note: The Activity implements business logic that spans multiple business

components.

The ReTA Activity framework consists of the following three main components:

Activity

An activity 834 encompasses a combination of web pages, which fulfill a business
function. The activity has the following responsibilities:

Provide a “logical unit of work™ context to all sub-activities within the activity. The
Activity framework uses Microsoft Transaction Server (MTS) transactions to implement
the “logical unit of work” concept. On the completion of a transaction (whether
successful or abort), MTS ensures that each sub-activity may be in a consistent state
(either completed or rolled back).

Check that requested information and conditions are fulfilled before executing logic.
Maintain information shared between the pages of the activity.

Create, trigger and manage sub-activities.

Check page access authorization, when browsing through activity pages.

Release all maintained information when closed.

52

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Execute post-conditions when closed. Examples of post conditions are releasing
resources tied up for the activity or removing pessimistic locks on tables.

Commit or abort all opened sub-activities.

The activity (by itself) does not contain any business logic. Sub-activities (and their
associated business components) provide the business logic. Thus, the activity maintains

a context and provides a “logical unit of work” for a specific business functionality.

Sub-activity

A sub-activity 838 executes a sub-part of the overall activity business logic. The sub-activity

represents the smallest grained business logic. For example in a “Create Service Order” activity,

one sub-activity retrieves all the service types information to display on the first web page. A

sub-activity has the following responsibilities:

View

Check pre-conditions. Ensure requested information and conditions are fulfilled before
executing business logic.
Execute business logic

Execute post-conditions.

A view 840 defines the mapping between a user interface and business components containing

the values to display. The view has the following responsibilities:

Note:

Unplugging the user interface from the business component values.

Automatically and transparent to the developer, capture all the values entered by the user

and update the related business components.

Display the business component values attached to the user interface.

Trigger a sub-activity when capturing values.

Note: The Activity component maintains a separate view for each web page defined to be

part of the activity.

The ReTA Activity framework fully supports business activity components written in Java or

Visual Basic. In addition, the Activity framework provides partial support for business activity

components written C++. For C++ components, the application developer must implement the

services provided by the Activity utility classes AFView and AFViewBOMapping.

53

10

WO 01/09792 PCT/US00/20549
Services
The Activity Framework provides the following services:

Service Detail

4 Microsoft Transaction Server transaction principles

Business Component context
User Interface context — List boxes

Sub-Activity context

| Page access authorization — Activity scope

Pre-conditions — Activity level check

Post-conditions — Activity level check

| Pre-conditions — Sub-Activity level check

| Execute business logic

i Unplug user interface from business component -
| Capture user entry and update business component

| Display value attached to business cdmpohent '

Wrapper to support Activities written in Visual Basic

Components and Classes

The Activity Framework implements these services through the following COM and Class

objects:

Component Service

Implements “logical unit of work”. Manages

i collection of Sub-Activities and Views.

Implements a sub-part of the overall acﬁvity

{ business logic.

{ General purpose Collection component.

Enables Activity Components written in Visual

d Basic.

54

WO 01/09792 PCT/US00/20549

For a specific Active Server Page, defines the
mapping between a collection of user interface entry
fields and the business component instances
containing the values to display. Note: Multiple
views can exist for a single ASP. For example, a

separate view can be defined for each form on a

page.

Defines the mapping between a user interface entry
field and the business component instances

§ containing the value to display.

Defines the mapping between a user interface radio
i button field and the business component instances

containing the value to display.

i Defines the mapping between a dynalhically created
user interface entry field and the busmess

E component mstances contalmng the value to dlsplay

Defines the mapping between a user interface multl-
 line entry field and the business component

| instances containing the value to display. |

¢ Defines the mapping between a user interface drop
down combo box field and the business component

 instances containing the value to display.

§ Defines the mapping between a user interface
Selected List Box field and the busmess components

contamlng the values to display.

Defines the mapping between a user interface
ThumbNail (iconic pushbutton) field and the
business components containing the values to

display.

These components and classes are described in detailed in the following sub-portions of the

description.

55

10

15

WO 01/09792 PCT/US00/20549
AFActivity

The AFActivity component provides the structure for implementing business logic, state
management among web pages, management of views and sub-activities, and transactional
support for carrying out a “logical unit of work”. The application developer creates an activity

component for each specific business activity by extending the AFActivity component.

The activity component shares the services provided within the Activity framework allowing the
application developer to concentrate on the business logic. Application business logic is
organized into three separate areas within an activity: pre-conditions, execution, and post

conditions.

Methods

The IAFActivity, IAFContext and IAFEventListener interfaces define the access to the

AFActivity component. These interfaces support the following methods:

Method

alls this

: Sthe activity. The applica_ti eloper
B method from the ASP pége.

Release the activity and all its associated instances.

Calls the commit method. The application developer
i calls this method from the last ASP page for the

| business activity. -

Gracefully abort the activity. Abort associated sub-

| activities. Remove all references to sub-activities, .-

business components and stateful Ul components.

| Declare that the current activity and all its sub-activities
have completed their work and should be deactivated
when the currently executing method returns to the
client. This method may call the setComplete method
of MTS. (See MTS portion of the present description

for more information)

56

WO 01/09792 PCT/US00/20549

Retrieve a User Interface component instance from the

UI context of the activity.

Add a User Interface component to the Ul context of
the activity.

Execute the sub-activity related to the current page for
the Activity. Call the sub-activity precondition,

execute and postcondition methods.

If the ASP name passed as a parameter is part of the
activity, return true. This method calls the
AFTrackingManager component of the ReTA Session

framework in order to get the result.

Ask the tracking object related to the activity to check
the page authonization (uses the AF TrackingMzinager
component of the ReTA Session framework) If the |
j user is allowed to access this page, set the current page

of the act1v1ty with the page passed as parameter B

:Retum the business component value that 18 mapped to‘
. the specified Ul field (uses the Activity frarrlework;;:

View service).

Return the activity name.

E Return the name of the frame where to display the

encountered events.

Return a string containing all parameters to send to the
next page. - This string contains the names of all Ul
fields of the page and the JavaScript code needed to
retrieve their values. Called by the ReTA UI -

framework component AFScriptGenerator.

Return the starting page of the activity.

Return the next page for the current activity, based on
the current activity page saved in the AF Trackirlg
object of the activity and on the action passed as

parameter.

Return the current page.

57

WO 01/09

792 PCT/US00/20549

| Return requested business component from the activity

1 business context.

Add a business object (held by the activity’s “business

{ object context” object).

| Return the instance of the requested business object
| (held by the activity’s “business object context”

| object).

| Remove the instance of the requested business object

| (held by the activity’s “business object context”

Return all business object “labels” (held by the

| activity’s “business object context” object).

§ Method called by the ReTA Session during an ASP

f start page event to enable the architecture to capture
user entfy from previous web page. The ReTA Session"
! component holds references to all registered listeners

(Activity components).

ener object. One listener objec is

Referen the hs

associated with each registered Activity component.

Abstract Methods

The application developer implements the following abstract methods in the business activity

component:

Method . Description

§ Create a Sub-Activity.

| Return the Activity name.

Pre-conditions required before executing the Activity.

58

10

15

WO 01/09792 PCT/US00/20549

Post-conditions required after executing the Activity.

Return the list of the requested business components.

| Return all the views for the activity.

{ Return the Activity start page.

AFSubActivity

The AFSubActivity component implements a sub-part of the overall activity business logic. The
application developer creates a sub-activity component for each sub-part of a specific business
activity by extended the AFSubActivity component. As with activities, the sub-activity

workflow sequence is pre-condition, execution and post-condition.

Note:

There may be zero or more sub-activities on an ASP Page.

Methods

The IAFSubActivity interface defines the access to the AFSubActivity component. This

interface supports the following methods:

- Description

Pre-conditions required before executing the sub-

. Activity.

. Execute the small grained business process logic.

| call the setComplete method of MTS.

Check that the business components requested for the

| sub-activity are present in the Activity context. The

| requested components are defined by the application
developer through implementing the sub-activity abstract

requestedObject method.
59

10

15

WO 01/09792 PCT/US00/20549

| Store the requested component names (as defined by the

! application developer). Store the passed in activity

component reference. Store the sub-activity name.

§ Return the sub-activity name.

[Return the reference to the activity component associated

f to the sub-activity.

Abstract Methods

The application developer implements the following abstract methods in the business sub-
activity component:
Method - Description

o ettt S

B Pre-conditions required before executing the sub-

it Activity.

f| Return the requested business components for the sub-

‘activity.

AFCollection

The AFCollection component is a general purpose collection component. The collection
component can be used to store and retrieve a collection of COM components, integers or

strings.

Methods

The IAFCollection interface defines the access to the AFCollection component. This interface

supports the following methods:

Method - Description

| Number of elements in the collection component.

60

10

WO 01/09792 PCT/US00/20549

{ Add an element to the collection component.

Return the element at the requested index.

| Add a string element to the collection component.

Return the string element at the requested index.

| Add an integer element to the collection component.

Return the integer element at the requested index.

1 If collection component is storing integers, return true.

| If collection component is storing strings, return true.

Remove all the elements from the collection component.

AFVBActivityWrapper

The AFVBACctivityWrapper component enables the application developer to add Activities that

are written in Visual Basic.

Methods

The 1AFActivity, IAFContext, IAFEventListener and IAFVBActivityWrapper interfaces define
the access to the AFVBActivityWrapper component. These interfaces support the following

methods:

Description

[l Store the VB activity name, the strting page for the
| activity and the reference to the application developer’s
| VBACctivity component to the AFVBActivityWrapper

component.

61

WO 01/09792 PCT/US00/20549

Return a string containing all parameters to send to the
next page. This string contains the names of all UI
fields of the page and the JavaScript code needed to
retrieve their values. Due to non-support of class
inheritance by the VB language, the VB application
developer must implement the getPageParameter logic
? supplied by superclass AFActivity for Java
applications. The VB developer copies the required

| logic from the VB Activity shell code file.

: Method called by the ReTA Session during an ASP

; start page event to enable the architecture to capture
user entry from previous web page. The ReTA Session
component Holds references to all registered listeners
(Activity components). Due to non-support of class
inheritance by the VB language, the VB application
Adeveloper,must implement the receivéEvent logic
'svupﬁlqied by suﬁercldss AFActivity for Jayw‘zﬁ "
a'pplibatiqns. The VB developer copies the‘i?féquired -

| logic from the VB Activity shell code file.

f Start the activity. The application developer cal_ls this
method from the ASP page. i

.

I Rcturn the business component value that is mapped to

% the specified Ul field. Due to non-support of class

inheritance by the VB language, the VB application
‘ developer must implement the ulFieldValue logicp

l sitpplied by superclass AFActivity fof Java
applications. The VB developer copies the required
logic from the VB Activity shell code file.

| Release the activity and all its associated instances.
Calls the commit method. The application developer
calls this method from the last ASP page for the

business activity.

62

WO 01/09792

comnmi

PCT/US00/20549

Gracefully abort the activity. Abort associated sub-
activities. Remove all references to sub-activities,

business components and stateful Ul components.

Declare that the current activity and all its sub-activities
have completed their work and should be deactivated
when the currently executing method returns to the
client. This method may call the setComplete method
of MTS. (See MTS portion of the present description

for more information)

Retrieve a User Interface component instance from the

UI context of the activity.

Add a User Interface component to the UI context of
the activity.

Execute the sub-activity related to the current page for

the Activity. Call the sub-activity precondition,-v

execute and postcondltlon methods.

If the ASP name passed asa parameter is part of the
“activity, return true T his method calls the

AF TrackmgManager component of the ReTA Sess1on

framework in order to get the result

Ask the tracking object related to the activity to-check
the page authorization (uses the AF TrackmgManager
component of the ReTA Session framework). If the
user is allowed to access this page, set the current page -

of the actwrty with the page passed as parameter

Return the activity name..

Return the name of the frame where to display the

encountered events.

-Return the starting page of the activity.

Return the next page for the current activity, based on
the current activity page saved in the AFTracking
object of the activity and-on the action passed as

parameter.

Return the current page.

63

WO 01/09792 PCT/US00/20549

Return requested business component from the activity

business context.

Add a business object (held by the activity’s “business

object context” object).

Return the instance of the requested business object
(held by the activity’s “business object context”

object).

Remove the instance of the requested business object
| (held by the activity’s “business object context”

iE object).

If the “label” of the requested business object exists
(held by the activity’s “business object context”

object), return true.

E Return all business object “labels” (held by the

activity’s “business object context” object).

- T

Reference to the listener object. One listener object is

associated with each registered Activity component. -

IAFVBACctivity Interface Methods

The application developer implements the following interface methods in the VB business

activity component:

Description

Create a Sub-Activity.

i Copy the requested objects for the activity from the
Session context to the activity context.

Call getValueForUIField method of AFVBView class

to implement logic. The VB de?eloper copies this

required logic from the VB Activity shell code file.

Call capture method of AFVBView class to implement
logic. The VB developer copies this required logic
from the VB Activity shell code file

64

10

15

20

WO 01/09792 PCT/US00/20549
Call getParameter method of AFVBView class to

implement logic. The VB developer copies this

required logic from the VB Activity shell code file

Pre-conditions required before executing the Activity.

A [Post-conditions required after executing the Activity.

AFView (AFVBView)

The AFView class provides a mapping between a User Interface and a set of Business
Components (the view maps one web page form to one or more business components). When
the user requests the next web page, the previous web page values are passed along with the URL
request. Upon starting the next web page, the Session framework invokes the receiveEvent
method on the appropriate Activity component. The Activity component uses the View class to
record, into the appropriate business component, the data entered by the user at the previous web
page. Also, the View class obtains the current user interface field values for the next web page

as requested by the application developer through ASP scripting logic.

Note:

Multiple views can exist for a single ASP. Since a view contains a collection of mapped field,

one view can be defined for each form of an ASP.

Methods

The following AFView class methods are important for the application developer to understand:

' Description

§ Create a new AFView instance for the ASP page passed

as parameter. The application developer calls this

method from the implemented views method of the

il business activity component.

65

WO 01/09792 PCT/US00/20549

Return the value for the UI field mapped to an instance of
| a business component contained in the activity context.
| If the business component instance is not part of the
| activity, then return the default value for the UI field.
| From the ASP page, the application developer calls this
| method to initialize the UI field values before submitting
. the web page back to the client machine. Note: for VB
activities, this method is called by the VB business

& activity component

Add a “UlI field to business component attribute
g mapping” object to the view. The application developer

= | calls this method from the implemented views method of

| the business activity component.

o t Return a string containing all parameters defined for this

i

| view to send to the next page. This string contains the

J names of all U fields for thls view of the Ppage and the

’avaScnpt code needed to retneve their values Called
| - by the getPageParameter method of the AFAct1v1ty
component Note for VB activities, this method is called

| by the VB business activity component.

Based on the parameters passed to the current Active :

8 Server Page, update the business components containing
he values entered by the user from the previous page.
The Activity framework implements this logic for the

application developer. Note: for VB activities, this

; method is called by the VB business activity component

AFViewBOMapping (AFVBViewBOMapping)

The AFViewBOMapping component defines the mapping between a user interface entry field
and the business component instances containing the value to display. This class gets/sets an Ul
field value by getting/setting the business component instance contained in the activity context.

Each mapped business component instance should implement the IAFEditable interface. This

66

10

WO 01/09792 PCT/US00/20549

interface provides the setValue and getValue methods used to set and get values of the business

component instance.
Methods

The following AFViewBOMapping class methods are important for the application developer to
understand:
Method Description
pincdll Create a new AFViewBOMapping instance defining a
t Ul ficld to business component attribute mapping for an
[ASP page (parameters passed by the application
| developer). The application developer calls this method
B fom the implemented views method of the business

| activity component.

Return a string containing the parameters defined for.

| this “UI field to business component mapping” to send

| to the next page. This string contains the name of the Ul
i field mapped to the business component attribute for-
§88 this view of the page and the JavaScript code needed to

& rctrieve its value. Called by the getParameter method of

he AFView componeht. The Activity framework

| implements this logic for the application developer. - -

Based on the parameter passed to the current Active
| Server Page, update the business cbmponents containing
| the value entered by the user from the prévibus page for -

| the mapped UI field. The‘Activity framework

| implements this logic for the application developer.

AFViewRadioButtonBOMapping (AFVBViewRadioButtonBOMapping)

The AFViewRadioButtonBOMapping component defines the mapping between a user interface
radio button field and the business component instances containing the value to display. This

class gets/sets an Ul field value by getting/setting the business component instance contained in

67

WO 01/09792 PCT/US00/20549
the activity context. Each mapped business component instance should implement the

IAFEditable interface. This interface provides the setValue and getValue methods used to set

and get values of the business component instance.

Methods

The following AFViewRadioButtonBOMapping class methods are important for the application
developer to understand:

Method Description

f Create a new
s

- AR) il AFViewRadioButtonBOMéppihg instance

* @g defining a Ul field to business component
' attribute mapping for an ASP page

& (parameters passed by the application

o b St & i bbb e, e s MRS

developer). The application developer calls
) this method from the implemented views.

method of the bus‘ines's‘ acﬁvity component.

Return a string containing the parameters

g defined for ti1is “UI ﬁeld td business
component mapping” to send to the next
page. This string contains the name of the
UI field mapped to the business component
attribute for this view of the page and the

i| JavaScript code needed to retrieve its value.
Called by the getParameter method of the
AFView component. The Activity

framework implements this logic for the

68

10

15

WO 01/09792 PCT/US00/20549

Based on the parameter passed to the
current Active Server Page, update the

i business components containing the value
: entered by the user from the previous page

| for the mapped Ul field. The Activity

{ framework implements this logic for the

application developer.

AFViewDynamicBOMapping (AFVBViewDynamicBOMapping)

The AFViewDynamicBOMapping component defines the mapping between a dynamically
created user interface field and the business component instances containing the value to display.
This class gets/sets an Ul field value by getting/setting the business component instance
contained in the activity context. Each mapped business component instance should implement
the IAFEditable interface. This interface provides the setValue and getValue methods used to set

and get values of the business component instance.

Methods

The following AFViewDynamicBOMapping class methods are important for the application

developer to understand:

Method - Description

| Create a new AFViewDynamicBOMapping
; : instance defining a Ul field to business -
component attribute mapping for én ASP page

, (parameters passed by the application >. "

; developer). The application developer calls this
| method from the implemented views method of

| the business activity component.

69

WO 01/09792 PCT/US00/20549

Return a string containing the parameters

defined for this “Ul field to business component

mapping” to send to the next page. This string
: contains the name of the UI field mapped to the
business component attribute for this view of

| the page and the JavaScript code needed to

| retrieve its value. Called by the getParameter

{ method of the AFView component. The

| Activity framework implements this logic for

| the application developer.

| Based on the parameter passed to the current

| Active Server Page, update the business

: components containing the value entered by the
user from the previous page for the mapped Ul

® ficld. The Activity framework implements this -

logic for the application developer.

AFViewTextAreaBOMapping (AFVBViewTextAreaBOMapping)

The AFViewTextAreaBOMapping component defines the mapping between a user interface

multi-line entry field and the business component instances containing the value to display. This
5 class gets/sets an UI field value by getting/setting the business component instance contained in

the activity context. Each mapped business component instance should implement the

IAFEditable interface. This interface provides the setValue and getValue methods used to set

and get values of the business component instance.
10 Methods

The following AFViewTextAreaBOMapping class methods are important for the application

developer to understand:

Method Description '

70

10

WO 01/09792 PCT/US00/20549

| Create a new AFViewTextAreaBOMapping
instance defining a Ul field to business
component attribute mapping for an ASP page
(parameters passed by the application
developer). The application developer calls this
method from the implemented views method of

the business activity component.

! Return a string containing the parameters
defined for this “UI field to business component
mapping” to send to the next page. This string
contains the name of the Ul field mapped to thek
business component attribute for this view of
the page and the JavaScript code needed to
retrieve its value. -Called by the getParameter
method of the AFView component. The
| Activity framework implements this logic for

5 the application‘de\./eloper.

Based on the parameter passed to the ciirrent
Active Server Page, update the busineés »
components containing the value entered by the - -
- user from the previous page for the mapped Ul | :

field. The Activity framework implements this

logic for the appﬁcatidn developer.

AFViewDropDownBOMapping (AFVBViewDropDownBOMapping)

The AFViewDropDownBOMapping component defines the mapping between a user interface
drop down field and the business component instances containing the value to display. This class
gets/sets an Ul field value by getting/setting the business component instance contained in the
activity context. Each mapped business component instance should implement the IAFEditable
interface. This interface provides the setValue and getValue methods used to set and get values

of the business component instance.

71

WO 01/09792 PCT/US00/20549
Methods

The following AFViewDropDownBOMapping class methods are important for the application
developer to understand:
Method Description

4\1,_?\‘!] EDro i Create a new AFViewDropDownBOMapping
Al | instance defining a Ul field to business
component attribute mapping for an ASP page
(parameters passed by the application
developer). The application developer calls
| this method from the implemented views

' method of the business activity component.

Return a string containing the parameters

| defined for this “Ul field to business
component mapping” to send to the next page.
| This string contains the naine of the UI field -
| mapped to the business ’édmpohent attribute E
for this view of the'pagé and the JavaScript

§ code needed to \Vretﬁebvé its value. Called by

i the getParametér fnethgd of the AFView
comporylent‘.‘Th:c Aé:ﬁvity ﬁamework
implements this logic for the application

§ developer.

| Based on the parameter passed to the current
| Active Server Page, update the business

§ components containing the value entered by

’ the user from the previous page for the
mapped Ul field. The Activity framework

implements this logic for the application

AFViewUIListBOMapping (AFVBViewUIListBOMapping)

72

WO 01/09792 PCT/US00/20549
The AFViewUIListBOMapping component defines the mapping between a user interface

Selected List field and the AFCollection component instance containing the values to display.
This class gets/sets an Ul field value by getting/setting the AFCollection component instance

contained in the activity context.
Methods

The following AFViewSelectedListBOMapping class methods are important for the application
developer to understand:
Method Description
¥ m@&ﬁ@ﬁm ‘ ;’ Create a new AFViewUIListBOMapping

ﬂ@vJ@]_ULB ‘ instance defining the selected list box field

B name (and optionally, the name of a sub-activity
| to execute on the “capture” method invocation)
| for an ASP page (parameters passed by the
application developer). The application

| developer calls this méitho'cji‘fron‘l the

‘; implemented views:method of the businéss

| activity component.

| Return a string containing the parameters.
defined for this mapping to send to the next

! page. This string contains the name of the

! selected list box field and the JavaScript code
| needed to retrieve its value. Called by the |
| getParameter method of the AFView

| component. The Activity framework

implements this logic for the application

| Based on the parameter passed to the current
| Active Server Page, update the AFCollection
: component containing fhe values entered by the
4 user from the previous page for the selected list

| box field. The Activity framework implements

his logic for the application developer.

73

10

15

WO 01/09792 PCT/US00/20549

AFViewThumbNailBOMapping (AFVBViewThumbNailBOMapping)

The AFViewThumbNailBOMapping component defines the mapping between a user interface
ThumbNail (iconic pushbutton) field and the business component instances containing the value
to display. This class gets/sets an Ul field value by getting/setting the business component
instance contained in the activity context. Each mapped business component instance should
implement the IAFEditable interface. This interface provides the setValue and getValue methods

used to set and get values of the business component instance.
Methods

The following AFViewThumbNailBOMapping class methods are important for the application
developer to understand: '

Method Description

WMII\W&L | Create a new AFVlewThumbNallBOMappmg
er humbNailBONappdl instance defining the selected list box field-:

% | name (and optionally, the name of a sub- - -

activity to execute on the “capture” method. ...

invocation) for an ASP page (parameters -»

passed by the application developer). The
| application developer calls tﬁis method from
| the implemented views méthod of the .

business activity component.

| Return a string containing the parameters
defined for this mapping to send to the next
page. This string cdntaihs the name of the
selected list box field and the JavaScript code
needed to retrieve its value. Called by the
getParameter method of the AFView
component. The Activity framework
implements this logic for the application

developer.

74

10

15

20

25

WO 01/09792 PCT/US00/20549

Based on the parameter passed to the current
i Active Server Page, update the business
components containing the value entered by
the user from the previous page for the
mapped UI field. The Activity framework

| implements this logic for the application

| developer.

SITE SERVER FRAMEWORK DESIGN

Figure 9 illustrates a method 900 for accessing services within a server without a need for
knowledge of an application program interface of the server. A role container is first created in
operation 902. In operation 904, a role class is defined and in operation 906 an attribute for the
role class is generated which includes a default start page attribute. In the role container, a role
object is made in the role class with the default start page attribute associated therewith in
operation 908. A uniform resource locator is selected in operation 910 for the default start page

attribute.

A plurality of attributes may be generated for the role container. Further, these attributes may
include a default start page attribute, a user name attribute, a user identifier attribute, and/or a

role name attribute.

A user may be assigned to the role object. Optionally, a plurality of role objects may be made in
the role class with each role object having a unique default start page associated therewith. As
another option, an operator role object and a customer role object may be made as well. The

following material provides a more detailed description of the above-described method.

This portion of the present description details the ReTA Site Server framework design from the
perspective of the application developer. The role of this framework is to provide components

that alloW one to integrate the ReTA custom frameworks with Site Server. This provides a user
component connecting to Site Server, but does not require knowledge of the Site Server API

itself to integrate with Site Server.

75

10

15

20

25

WO 01/09792 PCT/US00/20549

Site Server Framework Execution Architecture

To connect to Site Server a COM component (UserSS) is used to make calls to Site Server’s APL
The ReTA UserSS component allows the developer to access Site Server’s Personalization and

Membership Services without any knowledge of Site Server’s APL

Figure 9.1 illustrates Site Server Framework Architecture. This figure shows the different layers
in the Site Server framework architecture. The UserSS COM component 930 connects to Site
Server 932. The UserSS component uses Site Server’s Personalization and Membership; UserSS
also performs security as well on a Commerce Site. The ReTA framework 934 uses the UserSS
layer to provide access to Site Server. The UserSS layer provides the following benefits:

e It insulates the application developer from Site Server’s APL

e It provides functionality for using Site Server’s Personalization and Membership

Services.

Site Server Framework Development Architecture

UserSS Interface Methods

The UserSS component interfaces with the SiteServer personalization and membership services.

This component uses SiteServer to handle the user security, role and preferences.

Methods

The IAFUser, IAFUserPreferences, and IAFUserRole interfaces define the access to the

AFUserSS component. These interfaces support the following methods:

" Description

This method initializes the UserSS Component.

This method returns a string value representing the user

id. SiteServer’s API is used to obtain this value.

This method returns a string value representing the user’s

name. SiteServer’s API is used to obtain this value.

76

10

15

20

WO 01/09792 PCT/US00/20549
Method Description
This method returns a string value representing the user’s

real name. SiteServer’s API is used to obtain this value.

This method takes as input a preference label and returns
a string value representing the user’s preference value.

SiteServer’s API is used to obtain this value.

This method accepts two parameters (String
thePrefLabel, String thePrefValue). The preference is set
that matches the “thePrefLabel” passed in.

This method returns the current users Role id.

This method returns the current user’s role name.

This method takes as input a preference label returns the

current user's role preference value.

This method sets the current user's role preference

Site Server Personalization and Membership/ Directory Membership Manager
This portion of the description describes the required settings in Site Server Commerce Edition
used by the ReTA frameworks. This portion of the description also describes the steps involved

in creating the required settings.

ReTA Required Settings

The Membership Directory Manager is used to manage administration and access control for
Membership Directory objects, including users and groups, and schema objects. The

Membership Directory stores objects used by all Site Server features.

The ReTA UserSS framework requires schema objects to be created. The schema objects
required by the ReTA Frameworks are: Roles container 1000, RoleName attribute 1002,
username attribute 1004, webUserld attribute, and a Role class. Figure 10 illustrates schema

attributes and classes, with class “Role” and attribute “RoleName’ shown.

Required Container, Class, and Attribute Setup Instructions

77

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Users may have different roles within the system. In Site Server ReTA takes advantage of this by
creating a Container “Roles” that contains different “Roles” or different objects of the class
“Role”. These “Roles” have attributes such as a default start page. Therefore different “Roles”
(different objects of the class “Role”) such as “Operator” or “Customer’” may both have a default

start page attribute that may point to different URL’s.
The Site Server portion of the present description details how to setup a Container, Class, and
Attributes. The following lists the steps involved to setup the required attributes for the ReTA

Frameworks to integrate with Site Server.

Using the Site Server Console, right click on the Membership Directory Manager folder.

e Select New — Container, then type in Roles for the Container name.

o Figure 11 illustrates the creating of Container “Roles”. Right click on Membership
Directory Manager 1100 and select New 1102 — Container 1104. After creating the
Container “Roles”, create the attribute “DefaultStartPage”, “username”, webUserld”, and
“RoleName” in the Schema. To create these attributes expand the Admin Container under

the Membership Directory Manager.

o Right click on the Schema folder 1200 and select New 1202 — Attribute 1204 (See Figure
12)

o Define the class “Role” the same way by right clicking on Schema and selecting New -
Class.

e Select the “common-name” as a required attribute, also select the “DefaultStartPage” as

an attribute but do not make it required.
¢ Create the Roles for our Application, “Operator” and “Customer”.
e See Figure 13, which illustrates the adding of different Roles. Right click the Roles

Container 1300 under the Membership Directory Manager folder 1302. Select New 1304
78

10

15

20

25

30

WO 01/09792 PCT/US00/20549
— Object 1306, select “Role” for the class of object to create, type the name of the object

i.e. “Operator”, add the attribute “DefaultStartPage” by clicking Add Attribute button and
enter the URL.

e Once these have been created, a member of the system can be assigned to a “Role” and
the ReTA Framework required attributes can be added to the user. Figure 14 illustrates

an example showing the attributes 1400 of member “Joe Bloggs” (Note RoleName).

EVENT HANDLER FRAMEWORK DESIGN

Figure 15 illustrates a method 1500 for handling events in a system. In operation 1502, an event
which includes metadata is recognized. Next, in operation 1504, the metadata of the event is
read and, in operation 1506 a table look-up is performed for information relating to the event
based on the metadata. The information includes a severity of the event and further information
such as a type of the event, and a location where the event occurred. In operation 1508, a
message is displayed either in-line in a currently depicted display or in a separate display based

on the severity of the event.

Optionally, the event may additionally be indicated to components of the system other than the
component in which the event occurred. The type of the event may be a database error, an

architecture error, a security error, and/or an application error. Further the location of the event
may be at least one of a method and an object where the event occurred. Also, the information

may further relate to a code associated with the event.

The message may include the information relating to the event. In additionally, the message may
also include a time during which the event occurred. Further, the message may include a string
altered based on a user profile. The following material provides a more detailed description of

the above-described method.

This portion of the present description details the ReTA Event Handler framework design from
the perspective of the application developer. The role of this framework is to provide services to
manage the informational, warning and error events that an application may raise. These services

include:

79

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Presenting the user with an understandable event explanation.

Informing other Components when errors happen (for example to restore transactional
data to a consistent state) using a Publish/Subscribe mechanism.

Logging informational, warning and error event messages.

The Event Handler uses an Event Reference meta-data database table to maintain information

about the types of events in an application and the policy for dealing with them. This gives a

flexible approach and the event messages, the severity and other policies for the events can be

changed during operations.

Phase 2 - Event Handler Enhancements

For phase 2, Event Handler consists of the following enhancements:

The Event Handler framework is componentized. It no longer maintains references to
any of the other framework components. Internally, the Event Handler continues to use
the persistence light framework to log events to the database.

As in phase 1, it can be used as a Session level component. As an enhancement for phase
2, the Event Handler framework can be used as a stateless page level component. This
means that a new instance of the component is created at the beginning of each ASP page
and is released at the end of each page.

The Event Handler framework no longer requires Event Collection components as
parameters to implement event handling, which only allowed handling events at the page
level. In phase 2, the new method “processSingleEvent” takes the parameters of a single
event as its input, which enables handling events at the occurrence of the event.

As in phase 1, The Event Handler can format error descriptions in HTML. As an
enhancement for phase 2, the Event Handler can return the error message as a string and
enables the application to implement client specific formatting (HTML or other).

The process event method no longer calls the ASP redirect method. Instead, it returns the
severity level code. On return, the application logic determines whether to redirect to the
error page or display the error in-line in the current page.

The Translator is no longer a separate component. Instead, it is a Java class inside the

Event Handler component.

80

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Event Handler Framework

Description

With reference to Figure 15.1, the ReTA Event Handler Framework 1530 manages the

informational, warning and error events that an application raises. The following describes the

ReTA event handling sequence:

1) The event(s) occurs

When an event occurs the following event information is recorded:
o event type (defined in database Event Reference table), for example:
= database error
" security error
= architecture error
= application error
o event location:
= method and object name where the event occurred
o event code (sub-type):
= SQL error code,
= application error code - mapped to a unique description in the database
= architecture error code - mapped to a unique description in the database
o event context:
= Any relevant information about when the event occurred stored in a tagged
= name value pair format. Eg. [OrderNumber=1][Description="Repeat
Order”] '
If the event occurs within a Java class inside a COM object, use the Java exception
mechanism by throwing an AFEventException. If the exception occurs elsewhere, call the
add method on the Event Collection passing the event information.
Each method defining a COM component interface captures these event exceptions and
either adds them to an Event Collection component or directly calls a method on the
Event Handler component.
Events are processed from the ASP page by calling the process method of the Event
Handler. Events can also processed from the point where the event occurred by calling

the "processSingleEvent" method of the Event Handler.

81

10

15

20

25

30

WO 01/09792 PCT/US00/20549
2) The Event Handler processes the event(s):

For each event, set the user id and current page

For each event, retrieve the event severity from the event handler’s “translator” class.
This class caches in memory all event descriptions and severity levels retrieved from the
event reference database table.

Add the events to the Event Handler context.

Implement the persistence policy on the events — events are logged in a batch.

Return the severity of the most severe event to the caller. The caller is responsible for

either redirecting to the error page or displaying the event in-line in the Current Page.

3) Display the event:

Use the Event Handler component to generate the error message. This message can
contain context information describing when the event was created.
Create the HTML formatting and display the event message.

The Error Message is either displayed in-line in the current page or in a separate error

page.

4) The Event Handler generates error display message:

Get the event with the highest severity level from its event context.

If the most severe event is “fatal”, display the user description associated with the event.
Broadcast a SESSION _ABORT message using the Publish/Subscribe mechanism. Any
component that is interested in these events must implement the IAFEventListener
interface and register with the Event Broadcaster component as interested. To do this they
call the addListener method of the Event Handler component.

If the most severe event is “logical unit of work”™, display the user description associated
with the event. Broadcast an ACTIVITY ABORT message using the Publish/Subscribe
mechanism.

If the most severe event is “warning”, display the user description associated with the

event.

Note: The user event descriptions are retrieved from the database either on session start
or on demand and are cached by the Translator class. When generating the event
description page, this description is requested from the Translator. Event descriptions can

have embedded context parameters. When generating the event description page, the

82

10

15

20

WO 01/09792 PCT/US00/20549

event handler replaces these parameters with their values specified when creating the

event.

Database Tables

The Event Handler uses two database tables: The T_AF_EventReference 1534 is a static table

that describes the Event meta-data, giving the policies for each event type. The policies include:

The message that is displayed to the user. These messages can contain data from the
Context that is included when the event is generated.
The severity of the event. The severity can be Information, Warning, Error and Fatal.

Whether to persist the event in the database event log.

The T_AF_EventLog 1536 contains the log of the events that occurred. The following

information is logged:

Event type and Code

The location where the event occurred. I.e. ASP, Object name and Method Name.
The user that raised the event.

The datestamp.

The context information giving other information about what caused the event.

Services

The Event Handler Framework provides the following services:

Service " Detail

Log event to database

83

10

15

WO 01/09792 PCT/US00/20549

Components and Classes

The Event Handler Framework implements these services through the following COM and Class

objects:

Component Service

Handle events generated by the system

Contains a collection of events (AFEventException)

Defines the result returned by a method execution.

Contains single event information. -

Contains event reference information from database table

T_AF_EventReference

Returns event reference information based on the event
type and event code. o
Note: multi-language translation functionality not

implemented

This is the persistable class containing the information for.
B asingle event. Itis a sub-claSé of the Persistence |
PersistableObj class. The persistance mechanism can

| insert, delete, select and update objects of this class in the
€ database. This class persists event information the

T_AF_EventLog table.

These components and classes are described in detailed in the following sub-portions of the

description.

AFEventHandler

The AFEventHandler component 1538 handles the events generated by the system. Depending
on the severity level, the event handler may redirect the user to another ASP page and may abort

the activity or session. The event handler also determines whether and when to log an event.

Methods

84

WO 01/09792 PCT/US00/20549
The IAFEventHandler interface defines the access to the AFEventHandler component. This

interface supports the following methods:
- Description
Persist all the events stored by the event

handler to the database.

Gather associated event information. Call the
add method to persist the events in the event
log. Return the event severity to the caller.
This method is called either from the ASP page
or from a Java class where the Event was

trapped.

il Examine the events and gather associated

& cvent information. Call the add method to
persist the events in the event log. Return the
event severity of the most severe event to the
caller. The application developer calls this
method from an ASP;Lpagc to check the events

| generated during the scripting logic execution..

Return generated HTML which describes the
i severity of the error, gives the target URL
(depending on the severity - previous page,
activity start page or home page) and an error
log. The Evént Handler page calls this
method. S

The application develbper can invoke this
method to load all event descriptions in
memory (normally used .to’ speed access during

user session).

Return error message as a string, which
describes the severity of the error. This allows
the application to determine the HTML

formatting used to display an error.

If the event handler contains at least one fatal

10

15

WO 01/09792 PCT/US00/20549

AFEventCollection
The AFEventCollection component contains a collection of events.
Methods

The IAFEventCollection interface defines the access to the AFEventCollection component. This

interface supports the following methods:

Method - Description
' N SUbACH B S Attach the sub-activity to all events contained

in the event collection.

Return the sub-activity attached to all events

| contained in the event collection.

Add an event to the event collection. - -

Return the requested event. -

Return the number of events in the collection. -

1| Clear all the events from the collection:

AFResult

The AFResult component defines the result return by a method execution.

Methods

The IAFResult interface defines the access to the AFResult component. This interface supports
the following methods:

" Description
Return the result.

Add aresult.

Add the result as a string.

Return the result as a string.

86

10

15

20

WO 01/09792 PCT/US00/20549
AFTranslator

The AFTranslator class returns event reference information (based on the event type and event

code.
Methods
The AFTranslator class has the following methods:

Method Description

B Rcturn the description for this event.

Return the severity level for this event.

E Return flag that defines whether to persist this

| event.

Bl Return the user description for this event. This

déscription is displayedwto the user.

Return the description for this event. This

description is user by the technical support

team to analyze error.

Initialize component.

AFEventException

The AFEventException class contains the event exception information and is added to the

AFEventCollection component for processing by the AFEventHandler component.

Methods

The following AFEventException class methods are important for the application developer to

understand:

Method | Description

87

WO 01/09792 PCT/US00/20549

Create the event exception class and populate
it with
event type:
database error
Java error
security error
architecture error
application error
event location:
method and object name where the event
§ occurred
| event code (sub-type):
I SQL error code,
Apj)lication error code - mapped toa uniqué‘
deécription in the database
Architecture error code - mapped to a unique
description in the database ‘3
event context: '

| value of specific object

Add the current event to an event collection.

AFEventReference

The AFEventReference component 1540 contains the event reference information that is defined
by the application through database table T _AF EventReference. The architecture reads the

event reference data into memory on session start.

T_AF_EventReference:

' Column name | Description

Uue id

The event type

The event code

88

WO 01/09792 PCT/US00/20549

The event severity level:
1 : Information

2 : Warning

3 : Abort the activity

4 : Fatal, close the session

1: if the event should be persisted in the event log.

0 : if the event should not be persisted

Event description showed to the operator

Event description shown to the user. This description can
contain contextual information, which is specified by adding tag
like [ParameterName] in the description. These tags are replaced

by the event framework when displaying the event to the user.

Language of the description. This may be used by the multi-
language framework when developed. At this time, set to
“English’. |

Contet Il Event context default value.

AFPersistableEvent

The AFPersistableEvent 1542 contains the event information captured during the application

execution that is persisted to the database table T_AF_EVENTLOG.

T_AF_EVENTLOG:

- Column name ' Description

Unique id -

“ The event type

The event code

The event severity level:
1 : Information

2 : Warning

3 : Abort the activity

4 : Fatal, close the session

89

10

15

20

25

WO 01/09792 PCT/US00/20549

ve:| Name of Sub Activity where event occurred.

P Name of class method where event occurred.

Name of class where event occurred.

Name of ASP page where event occurred.

Event context default value.

ID of user logged in when event occurred.

USER FRAMEWORK DESIGN

Figure 16 depicts a method 1600 for managing user information. A site server is provided in
operation 1602. The side server has information stored on it including preferences, roles, and
details relating to users. A database separate from the site server is provided in operation 1604.
The database has information stored thereon including preferences, roles, and details relating to
the users. In operation 1606, an identity of one of the users is authenticated. A single interface is
displayed in operation 1608, which provides the user access to both the site server and the
database upon authentication of the identity of the user. In operation 1610, the user is allowed to
view and change the information that is stored on the site server and the database and that is
associated with the user. The single interface is tailored in operation 1612 based on the

information associated with the user.

The identity of the user may be authenticated by verifying a user name and a password, a secure
sockets layer (SSL) certificate, and/or a log-in form. Further, the preferences relating to the users
may include a currency in which monetary values are displayed and a language in which text is
displayed. Also, the roles relating to the users may include a customer, a manager, and an
employee. Additionally, the details of the users may include a user name and a legal name. The

following material provides a more detailed description of the above-described method.

This portion of the present description details the ReTA User framework design from the
perspective of the application developer. The primary role of this framework is to provide

services that allow the application developer to maintain user preferences, roles and security.

90

10

15

20

25

30

WO 01/09792 PCT/US00/20549

In regards to security, the User framework provides User Authentication services through any of

the standard Internet Information Server security methods:
e Username/Password sent in clear text.
e SSL Certificates
e Windows NT Challenge/Response (Intranet only)

e HTML Forms login (Site Server version only)

Once the user has been authenticated, the User framework provides services for accessing:
e User information - NT username, Real Name.
e User Preference information - For example Language, Currency (These are configurable)
e User Role information (e.g. Customer, Manager, Employee)

e User Role Preference information

There are two implementations of the User Component: One is database driven and the other

interfaces with Site Server Personalization and Membership directory.

User Framework

Description

With reference to Figure 16.1, the User framework 1630 enables two approaches to maintaining
user information. The framework supports two approaches by exposing a single set of interfaces
that can be used by either of the two user framework components. With the AFUserSS
component 1632, the framework interfaces with the Microsoft Site Server products
Personalization and Membership Directory. For this user component, SiteServer holds and
manages user information. With the AFUserDB component 1634, the framework interfaces with

database tables. For this user component, database tables define the user information.
Services

The User Framework provides the following services:

Service ' Detail

91

10

15

WO 01/09792 PCT/US00/20549
CrElnformation User Role

User RoleName

User Preferences
User Role Preferences
User Id

User Name

4 User RealName.

Components

The User Framework implements these services through the following COM objects:

Component Service

User information maintained through the following
database tables.

T_AF USERNAME,
B8 T_AF USERPREFERENCES

& T AF USERROLES

§ User information maintained through SiteServer.

These components are described in detailed in the following sub-portions of the description.
AFUserDB

The AFUserDB component holds the user role, preferences and details retrieved from the
database. When created the user component retrieves the user NT login name, user details and

constructs the user preference and user role objects.

Methods

The IAFUser, IAFUserPreferences and IAFUserRole interfaces define the access to the
AFUserDB component. These interfaces support the following methods:

Method Description

92

10

WO 01/09792 PCT/US00/20549
Method Description

This method retrieves the user’s NT name, user details

from the database, constructs the preference object and

| constructs user’s role object.

Returns the user id.

Returns the user’s NT account name.

Returns the user’s real name.

Returns user’s preference based on label passed to this

method.

& This method sets the user’s preference to the 2™

B parameter passed in.

E Returns-the user’s role name.

8 Returns role preference.

8 This method sets the current user's role preference

AFUserSS

The UserSS component interfaces with the SiteServer personalization and membership services.

This component uses SiteServer to handle the user security, role and preferences.

Methods

The IAFUser, IAFUserPreferences, and IAFUserRole interfaces define the access to the

AFUserSS component. These interfaces support the following methods:

Method Description

| This method returns a zero integer. It is here for

compatibility with the UserDB component.

This method returns a string value representing the user

id. SiteServer’s API is used to obtain this value.

This method returns a string value representing the user’s

name. SiteServer’s API is used to obtain this value.

93

10

15

20

WO 01/09792 PCT/US00/20549
Method " Description

This method returns a string value representing the user’s

real name. SiteServer’s API is used to obtain this value.

{ This method returns a string value representing the user’s

preference. SiteServer’s API is used to obtain this value.

This method accepts two parameters (String
thePrefLabel, String thePrefValue). The preference is set
that matches the “thePrefLabel” passed in.

This method returns the current user id.

This method returns the current user’s role name.

~ This method returns the current user's role preference.

: This method sets the current user's role preference

PERSISTENCE FRAMEWORK DESIGN

Figure 17 illustrates a method 1700 for managing business objects in a system that includes a
plurality of sub-activities which each include sub-activity logic adapted to generate an output
based on an input received from a user upon execution, and a plurality of activities which each
execute the sub-activities in a unique manner upon being selected for accomplishing a goal
associated with the activity. First, in operation 1702, an identifier and a reference to a business
object are received from one of the sub-activities upon the execution thereof. In operation 1704,
a database is accessed and data from the database is retrieved based on the identifier. The
business object is created and populated with the data retrieved from the database in operation

1706.

The data may be stored on the database in tables. Further, the created business object may
replace an existing business object. Additionally, the identifier may identify a customer and the
business object may be a customer object. Also, a business object referenced by one of the sub-

activities may be removed upon the execution thereof.

The business object may be a Visual Basic business object. In another aspect of the present
invention, the business object may be a Java business object. The following material provides a

more detailed description of the above-described method.

94

10

15

20

WO 01/09792 PCT/US00/20549

This portion of the present description details the ReTA Persistence framework design from the
perspective of the application developer. The role of this framework is to provide services that

interact with application database(s) to create, retrieve, update and delete business objects.

Persistence Framework

Description

The ReTA Persistence framework provides a transparent and flexible mapping of the business
object attributes to relational database tables. To implement this “business object to database
table” mapping, the framework is tightly integrated with all business objects. The framework
exposes abstract methods that the application developer implements in the business objects. In
contrast with the other ReTA frameworks, the Persistence framework is not implemented as a
separate component. The Persistence framework is a set of local language classes available in
Java or Visual Basic. Figure 17.1 shows a SubActivity component 1730 using the Persistence
framework 1732 to retrieve a Customer Object 1734 from the Database.

Services

The Persistence Framework provides the following services:

Service Detail

: Uncouple database connection from application

: Map an object to a database table

i Trigger queries on objects

‘Easily iterate through the results

: Optimistic locking

Encode Database User Name and Password

Note: Encoding implemented only once (as part of
system set up).

Decode Database User Name and Password

Note: Used by persistence framework during all

database accesses.

95

10

15

WO 01/09792 PCT/US00/20549
Classes

The Persistence Framework implements these services through the following Java or Visual

Basic Classes:

Java Class Service

‘ | This is the superclass of all Java Persistable Objects in the

| application. Application developers create a subclass for

| cach Business Object and implement all the abstract

methods that this class defines.

| Provides the mapping between the business object and its
| associated database table and manages the database

§ connection.

Visual Basic Class Service

@B This is the interface class that all Persistable VB must
o implement. Application developers create a subclass for =

| cach Business Object and implement‘ all the methods that

Provides the mapping between the business object and its

| associated database table and manages the database

These classes are described in detailed in the following sub-portions of the description.

AFPL PersistableObj

The AFPLPersistableObj abstract class contains methods called by the application developer
objects to manage attribute values common to all persistable business objects (user id and last
update timestamp). In addition, the AFPLPersistableObj class represents the superclass of a
persisted object. In order to persist a business class; the application developer extends

AFPLPersistableObj and implements the AFPLPersistableObj abstract methods.

The AFPLPersistableObj defines the following methods:
96

WO 01/09792 PCT/US00/20549

Method Description

: Return the column names common to all

| persistable business objects (user id and last

8 update timestamp). The application developer
invokes this method from the constructor

method of a business object.

| Return attributes common to all persistable
business objects (user id and last update
timestamp). The application developer

B invokes this method from the

getPersisted Attributes method of a business

object.

Abstfact method that all Business Objects must

¥ business objects (user id and last update
timestamp), compare the passed in value to the

1 currently held attribute value. The appll’icat"ijon:;

® implement. Populate the Business Object using

|
¥ the result set passed as an attribute. The

application developer should also invoke the -
§ superclass newFrom method to populate the

Userld and lastUpdate attributes.

Abstract method that all Business Objects must
implement. Return the value of the attribute

passed as parameter

Abstract method that all Business Objects must
implement. Set the value of the attribute passed

as parameter

: Set the user id value

97

WO 01/09792 PCT/US00/20549
Method . Description

" getUserdd -5 “# Return the user id value

AT

Set the last update timestamp value

Return the last update timestamp value.

Adds the last update timestamp value and user
id to the passed in persistable business object.
The application developer invokes this method
from the setUserldTimeStamptoObj method of

a business object.

Return the database table column names.

Return all the attributes to persist. The
application developer invokes the
addPersisted Attribute method of the super
class to add user id and last update timestamp

| attributes.

Return the primary key field name.

Return all the priniary key values.

Return vector of all key attributes.

Return the array of all key attributes. -

! Return the name of the database table

associated with this business object.

Returns a commé-separated list of all columns

corresponding with this class.

| Returns a comma separated list of attribute

| values for SQL insert command. .

Returns a comma separated list of attribute
name = attribute value pairs for SQL update

command.

Returns the 'where' clause for SQL update or

remove command (both are equal).

AFPLEXxtent

98

WO 01/09792 PCT/US00/20549

The AFPLExtent class provides the mapping between the business object and its associated
database table. In addition, the AFPLExtent class represents the domain defined by the visible
part of the database table for the specified user. This class holds the passed in database URL,
username and password used during the access to the database. Lastly, the AFPLExtent class

manages the database connection.

Methods

The AFPLExtent class implements the following methods used by the application developer

from business factory objects:

Description

Return all business objects matching the search

criteria.

Update all busine‘ss objects matching the

search criteria

Remove all business objects matching the

specified criteria

Insert new business object(s)

VBPersistObj

The VBPersistObj interface class contains methods that need to be implemented on every VB

Business Object.

The application developer implements the following methods from their business object:
Method - Description

Create a new instance of that class using the

resultset passed as parameter

Returns the value for the attribute passed as

parameter.

= Sets the value for the attribute passed as

parameter.

Return the database table column names.

-

99

10

15

WO 01/09792 PCT/US00/20549
Method | Description

Return the Table Name where this class is

stored in the database.

Returns a comma separated list of attribute

values for SQL insert command.

Returns a comma separated list of attribute
name = attribute value pairs for SQL update

command.

Returns the 'where' clause for SQL update or

remove command (both are equal).

VBExtent

The VBExtent class provides the mapping between the business object and its associated
database table. In addition, the VBExtent class represents the domain defined by the visible part
of the database table for the specified user. This class holds the passed in database URL,
username and password used during the access to the database. Lastly, the VBExtent class

manages the database connection.

Methods

The VBExtent class implements the following methods used by the application developer from

business factory objects:

Method Description

' Return all business objects matching the search

criteria.

Update all business objects matching the

search criteria

Remove all business objects matching the

specified criteria

Insert new business object(s)

SESSION FRAMEWORK DESIGN
100

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Figure 18 illustrates a method 1800 for persisting information during a user session. First, in
operation 1802, a session is initiated upon a user accessing a predetermined starting page. A
current page accessed by the user is then tracked in operation 1804 while browsing a plurality of
pages during the session. In operation 1806, a record is maintained of a page previously accessed
by the user during the session. Information is persisted in operation 1808. This information is
selected from a group of items such as user identifier, a time of a most recent user action during
the session, activity components accessed during the session, and business components accessed
during the session. During the session, the current page, previous page record, and information
are provided to at least one activity component in operation 1810. Also in operation 1810, the

activity component generates output based on input provided by the user via the plurality of

pages.

In one embodiment of the present invention, the activity components to which the current page,
previous page record, and information are provided may be selectively determined. In addition,
the activity component may be provided an indication as to whether the user is permitted to
access each of the pages. In such a case, the activity component may also be provided the
indication as to whether the user is permitted to access each of the pages based on the previous

page record.

In another embodiment of the present invention, the information may also include the user
identifier. In such an embodiment, user preferences may be looked up based on the user
identifier with the information including the user preferences. Also, in order to identify the
persisted information, references to activity components, business components, a user
component, a tracking manager component, a system preference component, and an event
handler component may be employed. The following material provides a more detailed

description of the above-described method.

This portion of the present description details the ReTA Session framework design from the
perspective of the application developer. The primary role of this framework is to provide
services to handle the stateless nature of Internet. By default, the Internet does not provide
services for maintaining information between pages. Without these services, it would not be
possible to implement most eCommerce functionality. For example, session level state is

necessary to implement eCommerce functionality where a customer can select products on

101

10

15

20

25

30

WO 01/09792 PCT/US00/20549

multiple product description pages and then submit a complete product order request from a
confirm order page. The ReTA Session framework leverages the Internet Information Server /
Active Server Page (IIS/ASP) session object, which is automatically created when a user who has

no open IIS sessions requests a Web page.

Session Framework

Description

Figure 18.1 illustrates a Session Flow Diagram — On Session Start. As shown, a Session
framework 1830 operates in the MTS Runtime Environment 1832. Figure 19 illustrates a
Session Flow Diagram — On Start ASP Page. Again, the Session framework 1900 operates in the
MTS Runtime Environment 1902. The ReTA Session framework provides services required
throughout a user session. The user creates the Session framework at log on and removes the
Session framework at log off. During the lifetime of the user session, application and
architecture components require certain data to persist. This framework provides services to
store and retrieve all information needed for a particular user session. This information may
persist throughout the user session. The Session framework also provides services to uniquely

identify the user and enforce access rights.

The user information that the Session framework persists, in memory, between Active Server
Page requests includes:
o Userid
o Identifies session user
e Last page
o Last page accessed by the session user.
o Current page
o Current page accessed by the session user.
e Last connection time:
o Session user’s last connection time.
o Current activity:

o Activity currently being executed by the session user (refer to activity framework

design)
o Activity Components

102

10

WO 01/09792 PCT/US00/20549

o All activity components accessed during user session
e Business Components
o All business components accessed during user session required by multiple

activity components.

Note:
This framework uses the Active Server Page’s Session Object. Thus, the framework only works
with browsers that accept cookies. For other browsers (or if cookies are disabled), a new ASP

Session Object may start for each web page.

Services

The Session Framework provides the following services:

Service ; Detail

ll Customized user interface

| Customized application access

| Inform user on session status

§ Abort session]

Page to open on action

Pages of activity

| Activity Component context

Business Component context — shared among activities

Register listener

Broadcast Message to registered listeners

Encode Database User Name and Password

Note: Encoding implemented only once (as part of
system set up).

Decode Database User Name and Password

Note: Used by session framework during all database

accesses.

103

10

15

20

WO 01/09792 PCT/US00/20549

Components

The Session Framework implements these services through the following COM objects:

Component Service

] Manages current user session

Contains System Preferences from database table

| T AF SYSTEMPREFERENCES

’ [Contains security and flow control info from database
tables T_AF _PAGESOFACTIVITY,

| T AF_AUTHDESTINATIONPAGE

_AF_AUTHSOURCEPAGE

~ AF_DESTINATIONFORACTION

Contains current user’s web browser information

These components are described in detailed in the following sub-portions of the description.

AFSession

The AFSession component maintains the user’s session state information. To maintain the state
information, this component holds references to activity components (logical units of work -
application flow logic), business components (business logic required across activity
components), user component (user information), tracking manager component (web page access
security and web page flow control information), system preference component (system
preference information) and event handler component (event handler) created during the user’s

session.
From the application developer’s perspective, the state maintenance work performed by the
AFSession component is transparent. The application developer leverages the session services

through populating the database tables with the client specific information.

Methods

104

WO 01/09792 PCT/US00/20549
The IAFSession, IAFEventBroadcaster and IAFContext interfaces define the access to the

AFSession component. These interfaces support the following methods:

Method Description

| Start session — Called by ASP (global.asa
| Session_OnStart). '

i Stop session — Called by ASP (global.asa

Session_OnStop).

This method is called by ASP script logic at the start of

’ each page. It is used to broadcast a pageStart event to all
‘E the listeners (activity components) that have registered as
W interested in pageStart events. It also stores this page as

| the current page and moves the existing current page into
the last page (information held by the session’s .

i “tracking” object).

@ This method is called by ASP script logic atthe endof

 each page. It is used to broadcast a pageEnd event to all .
the listeners (activity components) that have registered as

interested in pageEnd events.

| This method is called when the session is to.be aborted..

| This method calls the abort method on all activity
components known to session (held by the session’s

“activity context” object).

| Sets the current Active Server Page (held by the session’s

H <
il

tracking” object).

| Returns the current Active Server Page (held in the

bl (13

| session’s “tracking” object).

i Returns the last Active Server Page accessed in the

 session (held in the session’s “tracking” object).

| Update the sessionld attribute.

" Returns the current session Id.

“tracking” object).

105

WO 01/09792 PCT/US00/20549

Method " Description

Returns the instance of the current activity (held in the

B session’s “tracking” object).

Returns the instance of the requested activity (held by the

session’s “activity context” object).

Ask session if it has a reference to the requested activity
(held by the session’s “activity context” object). If

found, returns true, else returns false.

Add the requested activity (references held by the
session’s “activity context” object). Set the requested
activity to the current activity (held in the session’s

“tracking” object).

Remove the current activity (held by the session’s

“activity context” obj éct).

Returns the next web page to access for the current
“activity (information held by the “tracking manager” -

‘component).

| Returns the “user” component (information associated

with the current logged in user).

Sets the user for the current session. Returns an integer:

indicating success or failure. -

Returns the “tracking manager” component.

Returns the “event handler” component.

Returns the “system preference” component.

I Add a business object (held by the session’s “business

object context” object).

Returns the instance of the requested business object

(held by the session’s “business object context” object).

Remove the instance of the requested business object

(held by the session’s “business object context” obj ect).

106

10

WO 01/09792 PCT/US00/20549
Method " Description

| Returns true if the “label” of the requested business

object exists (held by the session’s “business object

context” object).

| Returns all business object “labels” (held by the session’s

“business object context” object).

Add the requested listener ct1v1ty con to list of

| interested listeners. If an activity is interested in a
StartPage event (i.e., needs to capture user modified data
from the previous web page), this method is called by
ASP script logic at the start of the page. |

| Remove the requested listener (activity component) from

& list of interested listeners.

j Invoke the receiveEvent method on all regi"steréd

B listeners (activity components). Refer to activity

framework design for the automated user data capture

| functionality.

AFSystemPreferences

The AFSystemPreferences component contains system preferences (held during the session).
This component uses the ReTA persistence framework to read the system preferences from the
database (“system preferences” table).

Methods

The [AFSystemPreferences interface defines the access to the AFSystemPreferences component.

This interface supports the following methods:

Method . Description

| Reads and stores “‘system preference” data from “system

preferences” table.

107

10

15

20

WO 01/09792 PCT/US00/20549

Description

Returns the application’s ASP root location (as defined in

from “system preferences” table).

AFTrackingManager

The AFTrackingManager component provides page sequence security, dialogue flow and activity

flow functionality for the session framework.

Page sequence security

The page sequence security is defined in the following tables:

Table “Authorized Destination Page” 1834:
Define for each page, the pages that are allowed to be accessed. If no authorized
destination pages are defined, the page is authorized to access any page.

Column name Description

Jl| Unique id

Name of the current page .-

accll Page which is authorized to-be access

Table “Authorized Source Page” 1836:
Define for each page, the pages that are allowed to access it. If no authorized source

pages are defined, the page is authorized to be accessed by any page.

Column name * Description

Unique id

Name of the current page

Page authorized to access the current page

Dialogue flow
The dialogue flow is defined in the following table:

Table “Destination For Action” 1838:

108

WO 01/09792 PCT/US00/20549

Define the action flow between the web pages (i.e., which ASP is open when a specified

push button is clicked during a specified activity).

Column name Description

| Unique id

Name of the current page

Name of the UI widget, which triggers the

action.

Name of the activity where the event is

triggered

Name of the page to open

Activity flow
5 The activity flow is defined in the following table:

Table “Page Of Activity” 1840:

Define the automated activity switching when the user jumps from one web page to

another.
Columnname Description
Unique id
Name of the activity
Name of the page belonging to the activity
10
Methods

The JAFTrackingManager interface 1904 defines the access to the AFTrackingManager

component. This interface supports the following methods:

Description

Determines if the previous page is in the list of
allowable sources for this page (as defined in
“Authorized Source Page” table). If access is

allowed, returns true. Else, returns false.

109

WO 01/09792 PCT/US00/20549

Determines if this page is in the list of
allowable destinations for the previous page (as
defined in “Authorized Destination Page”
table). If access is allowed, returns true. Else,

returns false.

Returns destination page for requested action,
activity, and source page (as defined

Destination For Action” table).

Determines if this page is part of requested
activity (as defined in “Page Of Activity” table).
If page is part of activity, returns true. Else,
returns false.

Reads and stores the Authorized Destination
Page, Authorized Source Page, Destination For

Action and Palge.Of Activity tables.

AFBrowserlInfo
The AFBrowserInfo component contains the user’s browser information.
Methods

The IAFBrowserInfo and IAFEditable interfaces define the access to the AFBrowserInfo
component. These interfaces support the following methods:
Method * Description

Returns the name of the browser that the user is

currently running. .

Returns thé version of the browser that the user is

currently running.

Note: not implemented

Note: not implemented

| Note: not implemented -

Sets the requested attribute’s value.

110

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Method Description

Returns the requested attribute’s value.

USER INTERFACE FRAMEWORK DESIGN

Figure 20 illustrates a method 2000 for generating a graphical user interface. A form is initially
created in operation 2002. The form includes a plurality of attribute rules dictating a manner in
which user interface objects are situated thereon. In operation 2004, a plurality of user interface
objects are selected. A page is generated in operation 2006 with the selected user interface
objects situated on the page in accordance with the attribute rules of the form. JavaScript actions
are attached to the selected user interface objects in operation 2008. The JavaScript actions are
capable of being executed upon detection of a user action involving one of the user interface

objects.

The user interface objects may include one or more of the following: a push button, a text box, a
text area, a radio button, a check box, a drop down, a blank item, a user interface list, and a static
table. The user action may include at least one of clicking on one of the user interface objects,
changing text in one of the interface objects, exiting a text box of one of the interface objects.
Further, the user action involving one of the user interface objects may cause a predetermined
event. Optionally, the page may be an HTML page. The following material provides a more

detailed description of the above-described method.

This portion of the present description details the ReTA User Interface (UI) framework design
from the perspective of the application developer. The role of this framework is to provide
services that generate the HTML code for Ul widgets and attach Javascript actions to Ul widgets.
The UI framework exposes these services through a set of Component Object Model (COM)
objects. The application developer uses these Ul COM objects and their services through
scripting logic added to the application’s Active Server Pages (ASP).

User Interface Framework

The User Interface framework provides components for generating HTML. An HTML page is

generated from a combination of the various Ul Components. Figure 20.1 shows the steps for

111

WO 01/09792 PCT/US00/20549
generating a HTML page consisting of a form 2030 with a TextBox 2032, a DropDown list 2034

and a PushButton 2036.

The User Interface Framework provides the following services:
Service Detail
. { Form
Push Button
Text Box (single-line entry field)
Text Area (multi-line entry field)
Radio Button group
| Check Box
Drop Down List Box
f Blank Item
| Static Table
g Single-Select List Box

JavaScript - action shell
JavaScript - data type validation
e JavaScript - data range validation

§ J aVaScript — automatic navigation action

Cascading Style Sheet

8 Form (grid layout for form elements)

Generates

B Form containing the widgets

i Single-line entry text box widget

| Multi-line entry text box widget

Radio button widget

Check box widget

Combo box widget

Blank item widget (used for spécing.)
Single-Select List Box widget — IE4 Only

112

10

15

WO 01/09792 PCT/US00/20549
St Static Table widget

! Javascript function — Move to next page

B! HTML - attach Javascript function to a form

element

| Javascript tag and functions

. Cascading style sheet (CSS)

These components are described in detail in the following sub-portions of the description.

AFForm

The AFForm component is used in conjunction with form element widgets to build complex user
interfaces. Initially, the application creates an instance of the form component and sets its
attributes. Following this activity, the application creates instances of the associated form
element widgets and adds them to the form using the form’s add method. As another service, the
form component provides methods to help align all associated form element widgets properly on

the page.

Methods

The IAFForm interface defines the access to the AFForm component. This interface supports the
following methods, which the developer uses to create a form.

- Description

8 Align the form left

@ Align the form right

|

Align the form centrally

Sets the caption that may appear at the top of

the form.

Set the HTML name of the form. This optidn is
required by some of the items which can be

added to the form and should always be set

Set the HTML value of the form.

Sets the width of the border around the form

113

10

WO 01/09792 PCT/US00/20549

Returns the number of form element widgets

added to form.

Value of the Location object attached to the

members of this form.

Sets the width of the form in Ul elements. For
| example if set to 2 a form 2 elements wide
: would be created. A third element added to the

‘ form would be placed on a new line.

B Scts the HTML Cell padding value for the
b form. A larger number may increase the

spacing between the form elements.

b Locks the width of the form to the input value
 in percentage valid ranges (0-100%). Use this
B option to set the amount of screen width the

i form may occupy.

- Add a widget object to this form. Widgets are

| created separately.

Generates the HTML code for the Form. The
return value is the output HTML and should be

printed to the screen.

AFPushButton

The AFPushbutton component can only be used in conjunction with a AFForm component (the
form’s generate method iterates through the generate method for all form element widgets to
build the necessary HTML code). An action object can be attached to a AFPushButton
component. (Refer to AFHardCodedASPAction and AFJScriptAction for details).

Methods

The IAFPushbutton and IAFUIActionltem interfaces define the access to the AFPushbutton
component. These interfaces support the following methods, which the developer uses to create
a push button form element.

Method - Description

114

10

WO 01/09792 PCT/US00/20549
5 Align the button left

| Align the button right

i Align the button centrally

| Set the text that may appear on the button. The button may

stretch its size to fit this text

Set the name of the button.
| Set the button to be the default HTML reset button. When

this method is called, clicking on the button causes the
1 values of all HTML form elements in the form to which

i this button belongs to be reset to their values when the

| Resets the above method. The button returns to being a

i normal Widget item.

B Adds an action to the button.

AFTextBox

The AFTextBox component can only be used in conjunction with a AFForm component (the
form’s generate method iterates through the generate method for all form element widgets to
build the necessary HTML code). An action object canvbe attached to a AFTextBox component.
(Refer to AFHardCoded ASPAction and AFJScriptAction for details).

Methods
The IAFTextBox and IAFUIActionltem interfaces define the access to the AFTextBox

component. These interfaces support the following methods, which the developer uses to create

a Text Box form element.

. Description

Align the textbox to the left

Align the textbox to the right

Align the textbox to the center

Set the caption to appear next to the text box.

Set the HTML name of the text box

115

WO 01/09792 PCT/US00/20549
Method | Description

Set the maximum length of text in the box

Set the visible size of the text box

Set the default text in the text box

Adds data validation to the onBlur event of the text
box.

Data Type validation includes:

Numeric - DV_TYPE_ISNUMERIC,
Alpha—DV_TYPE ISAPLHA, or

Date - DV_TYPE _ISDATE.

None - DV_NONE

Range validation* includes all 8 permutations — <less
than> through <(less than equal) and (greater than
equal)>.

DV_RANGE_LESSTHAN,
DV_RANGE_LESSTHANEQUAL,
DV_RANGE_GREATERTHAN,

§ DV_RANGE_GREATERTHANEQUAL,

: DV_RANGE_LESSTHAN GREATERTHAN,
DV_RANGE LESSTHANEQUAL GREATERTH -
AN, |
DV_RANGE_LESSTHAN_GREATERTHANEQU
AL, , ,
DV_RANGE_LESSTHANEQUAL GREATERTH
ANEQUAL S

* Note: Range validation only occurs for “Numeric”

data type.

This method sets a private member variable to an
integer value, this value indicates if the textbox may
be the only textbox on the form that is to be

={ generated.

| Adds an action to the onChange event of the text

box.

116

10

WO 01/09792 PCT/US00/20549

AFTextArea

The AFTextArea component can only be used in conjunction with a AFForm component (the
form’s generate method iterates through the generate method for all form element widgets to
build the necessary HTML code). An action object can be attached to a AFTextArea component.
(Refer to AFHardCoded ASPAction and AFJScriptAction for details).

Methods

The JAFTextArea and IAFUIActionItem interfaces define the access to the AFTextArea
component. These interfaces support the following methods, which the developer uses to create
a Text Area form element.

Description

B Align the text area left

Align the text area right

| Align the text area to the center

| Set the caption to appear next to the text area .

g Sét the HTML name of the textArea..

B The name of the HTML form on which the textarea isto -

2 be placed. This is a required method and *the‘!texta’reéif i

| 'may not function correctly without this value being set.

"Set the number of rows which the text Area may display

¢ to the user

a Set the number of columns, which the text Area may

’display, to the user.

117

WO 01/09792
Method

 ramgs, lower bowach
- bound) ‘ v

AFRadioButton

PCT/US00/20549

¢ Description

Adds data validation to the onBlur event of the text box.
Data Type validation includes:

Numeric — DV_TYPE ISNUMERIC,

Alpha —-DV_TYPE_ISAPLHA, or

Date — DV_TYPE_ISDATE.

i None - DV_NONE

‘Range validation* includes all 8 permutations — <less
than> through <(less than equal) and (greater than
equal)>.

; DV_RANGE_LESSTHAN,

& DV_RANGE_LESSTHANEQUAL,
DV_RANGE_GREATERTHAN,

B DV_RANGE_GREATERTHANEQUAL,

DV._RANGE_LESSTHAN_GREATERTHANEQUAL,

DV RANGE_LESSTHANEQUAL_GREATERTHAN

i EQUAL ‘ .
' | * Noie; Range validation only occurs for “Numeric” .

R Jata type.

‘Set the name of the form onto which the textArea object
is being added. This method is mandatory for the . -

correct functioning of the method.

Set the maximum size of text, which can be entered into
the text area. When this value is exéeedéd, a pop up
window may warn the user that they have exceeded the
maximum size and that their entry may be truncated to -
the maximum value (which is set here). The default

value is 500.

Add an action to the textarea.

118

10

15

20

WO 01/09792 PCT/US00/20549

The AFRadioButton component can only be used in conjunction with a AFForm component (the
form’s generate method iterates through the generate method for all form element widgets to
build the necessary HTML code). An action object can be attached to a AFRadioButton
component. (Refer to AFHardCodedASPAction and AFJScriptAction for details).

Radio buttons are used in groups. Because of the complexity of the client side script required in
conjunction with the radio button component, the application developer must call the
generateRadioButtonScript () method on the AFScriptgenerator object on the page wherever
radio buttons are used. This method takes as inputs:

e The name of the form object to which the radio button has been added.

e The name of the radio button group within the form

e The default value the radio button group may pass to the page view if nothing is selected

by the user.
e The return value from this method is the generated HTML and Javascript which is written

to the client browser within the <HEAD> </HEAD> tag of the page.
Methods
The IAFRadioButton and IAFUIActionltem interfaces define the access to the AFRadioButton

component. These interfaces support the following methods, which the developer uses to create

a Radio Button form element.

Method . Description
Align the radio button left

Align the radio button right

Align the radio button to the center

Set the caption to appear next to the radio button

Set the HTML name of the radio button

Deselect the radio button.

Select the radio button. (highlights button)

Sets the name of the form onto which the radio button is
being added. This is a mandatory method in order for the

component to function correctly.

119

10

15

WO 01/09792 PCT/US00/20549

et the number within the group which this radio button is

assigned

{ Returns the group number of the Radio Button

Add an action to the radio button.

AFCheckBox

The AFCheckBox component can only be used in conjunction with a AFForm component (the
form’s generate method iterates through the generate method for all form element widgets to
build the necessary HTML code). An action object can be attached to a AFCheckBox
component. (Refer to AFHardCodedASPAction and AFJScriptAction for details).

Methods

The IAFCheckBox and IAFUIActionltem interfaces define the access to the AFCheckBox
component. These interfaces support the following methods, which the developer uses to create
a Check Box form element.

' Description

Align the checkbox to the left
Align the checkbox to the right

| Align the checkbox to the center

Sets the HTML caption value of the object. The text may be
| displayed next to the checkbox object.
Sets the HTML name of the checkbox

Mark as checked the checkbox when generating it

Mark as not checked the checkbox when gene"rat‘ing it.
Sets the HTML value of the checkbox
i Add an action to the checkbox.

AFDropDown
The AFDropDown component can only be used in conjunction with a AFForm component (the

form’s generate method iterates through the generate method for all form element widgets to

120

10

15

WO 01/09792 PCT/US00/20549
build the necessary HTML code). An action object can be attached to a AFDropDown

component. (Refer to AFHardCodedASPAction and AFJScriptAction for details).

Methods

The IAFDropDown and IAFUIActionltem interfaces define the access to the AFDropDown
component. These interfaces support the following methods, which the developer uses to create

a Combo Box form element.

Description
lign the Combo Box to the left

Align the Combo Box to the right

Il Align the Combo Box to the center

(Str Set the HTML caption of the object.
(i) | Set the HTML attribute of the object.

’@ i Add a row of data to the Combo Box.

3 Set the name of the form onto which the Combo Box 4

| component has been added.

Set the index of the data item on the Combo Box‘, which may

I be selected.

Add an action to th¢ Combo Box.

v; Populate dropdown box with a Codes Table value

AFBlankItem
The AFBlankItem component can only be used in conjunction with a AFForm component (the
form’s generate method iterates through the generate method for all form element widgets to

build the necessary HTML code).

Methods

121

10

15

WO 01/09792 PCT/US00/20549
The IAFBlankItem interface defines the access to the AFBlankltem component. This interface

supports the following methods, which the developer uses to create a blank item form element.
Method " Description

iR Align the blank item to the left

Align the blank item to the right

Align the blank item to the center

Set the widths of the blank item in percentage (%)

Set the values of the blank item. The first String sets the
text to appear in the first cell and the second String sets

the text to appear in the second.

Sets the color of the elements of the blank item. The
two integer values represent the color of the first and
second cells. Valid Values are 0 and 1. The default
| color is white. Passing a value of 1 into either parémeter
‘causes the blank item cell to be displayed in the default

| highlighted color. | ‘ :

AFUIList

The AFUIList component creates a sophisticated DHTML based single-select list box form
widget. The list box widget consists of a fixed headings row and a scrollable set of data rows.
The list box widget supports data entry through data row level associated check boxes and text
boxes. In addition, action objects can be attached to the list box and are generated in the same
way as described for other form components. (Refer to AFHardCodedASPAction and
AFJScriptAction for details).

The list box widget refreshes itself by passing (as parameters) the selected item and the state of
all check boxes and all text boxes. The AFUIList view captures the values and updates the state

of the list box to reflect the user choice.

Note:

122

WO 01/09792 PCT/US00/20549
The sophisticated functionality provided by this widget requires DHTML support. As of this

portion of the present descriptions release date (Phase 2), only Internet Explorer 4.0 provides the

necessary DHTML services. Therefore, this component is not cross-browser compatible.
Methods

The IAFUIList interface defines the access to the AFUIList component. This interface supports
the following methods, which the developer uses to create a single select list box.

Method Description

A Align the list box to the center

Set indicated Selected List row as “checked”

Set indicated Selected List row as “unchecked”

Set indicated Selected List row as “highlighted”

B Return the currently selected list box row

number.

Return the object id of the currently selected list

box row.

| Capture the Object id for a given list box row

| (used by the view mechanism).

Retrieve the list box row number, which

corresponds to an image reference.

Get Check Box status of requested list box row.

Set text box value for requested list box row

with passed in String value.

Get text box value for requested list box row.

Set list box name.

Get list box name.

Get the total number of list box rows.

Add a row to the list box.

Add a row to the list box. -
Set border width.

123

WO 01/09792 PCT/US00/20549

Description

» Set the default values of the list box:
BorderWidth, cellPadding, Click Trigger Flag
and Double Click Trigger Flag.

Set the default values of the list box:
BorderWidth, cellPadding, Click Trigger Flag
! and Double Click Trigger Flag.

Clear all list box data rows.

| Generate the DHTML for the list box data rows
I (bottom frame).

Return the results of the single click action,
£ which was attached to the list box. If no action is

&8 attached, return a blank string.

eturn the results of the double click action,
§ which was attached to the list box. If no action is

¢t attached, return a blank string.

| Generate the scripfs required to handle the
elected list. This method is executed on the

arent frame that the list box is embedded.

b Add a click action to the list box.

Add a double click action to the list box.

AFThumbNailContainer

The AFThumbNailContainer component generates a set of thumbnail iméges. The thumbnails
are used as iconic pushbuttons. The application developer defines the single click and double
click action destinations in the ASP page by coding the JavaScript functions referenced by the
AFThumbNailContainer “generate” method.

Methods

The IAFThumbNailContainer interface defines the access to the AFThumbNailContainer
component. This interface supports the following methods, which the developer uses to create a

Thumbnail container.

124

WO 01/09792 PCT/US00/20549

Description

Method

e ittty

f Set indicated Thumbnail item as “highlighted”

[Return the selected item object id. If no item is

B sclected, return an empty string.

Generate the HTML code for the thumbnails.

| Add thumbnail image to container.

Define the border width, the input path to the

| thumbnail images and identify the selected item.

AFStaticTable

The static table component creates a standard HTML table with the parameters set by the
developer through scripting logic added to application’s ASP.

Methods

The IAFStaticTable interface defines the access to the AFStaticTable component. This interface
supports the following methods, which the developer uses to create a static HTML table.

Method Description

Adds a data element to the static table. The integer
| value passed as the second pérameter specifies the
§ color to be épplied to this cell of the table.

0 indicates that it should be white,

! 1 indicates the default highlighted color,

2 indicates the default AF Blue color,

3 indicates a gray color.

Set the number of data elements before an end of
row is generated.

Returns the number of data elements in the table.
Set the width of the border, which may appear
around the table. Valid values are 0 through 10.
Default is 0.

125

10

15

WO 01/09792 PCT/US00/20549
Method " Description

table.
| Sets the HTML cell padding value that may be

 *' Sets the HTML name attribute on the table object.
Refums the HTML name attribute on the table
object.

| Returns the generated HTML for the static table.-

able. Valid values are -5 through +5. Default is 0.
AFHardCodedASPAction

The AFHardCoded ASPAction component adds a user defined automatic navigation action to a
Ul component. The Ul components that support this service include AFPushButton,

AFTextBox, AFTextArea, AFRadioButton, AFCheckBox, AFDropDown and AFSelectedList.
Attaching the navigation action to a Ul item may automatically direct the user to the next page.
The next page is identified by the flow control service of the session framework. This means that
the developer does not have to specify the page to open. This service also ensures that all
changes made to the open pages are capture before opening a new one. The navigation action is
triggered when the user causes a defined event on the object. Defined events include clicking on
a link or button and changing the text or exiting a text box. The Javascript events are onClick

and OnChange.

The page that represents the target of the action must be entered into the database. The action
logic may look to see which activity it belongs to and then look in the database to determine what
page to show to the user. An example database entry in the T _AF FWDestinationforaction table

1S:

126

WO 01/09792 PCT/US00/20549
T_AF_FWDestinationforaction

CurrentPage Action Activit DestinationPage

//ASP/SampApp/Samp.as [§N

8 P

o The id field must be a unique number,
o The current page is the page on which the action is being triggered.
o The Action is the name of the Ul item which is triggering the action,
5 o The Activity is the activity in which the action is taking place.
e The Destination Page is the page to which the user should be redirected as the outcome of

the action.

Methods

10
The IAFAction and IAFHardCodedASPAction interface defines the access to the
AFHardCoded ASPAction component. These interfaces support the following methods, which

the developer uses to create a navigational action.

Description

B The target of the action may be on the same frame

| as that from which the action is triggered.

| The target of the action may be on a new instance

of the web browser. -

B The target of the action may be on the parent frame

of the frame; which triggered the action.

Create HTML to call J avascript function (“String

value”) when the action is triggered.

Used to track frame location during action.

15 AFJScriptAction

The AFJscriptAction component adds a user defined action to a Ul Component. The Ul
components that support this service include AFPushButton, AFTextBox, AFTextArea,

127

10

15

20

WO 01/09792 PCT/US00/20549
AFRadioButton, AFCheckBox, AFDropDown and AFSelectedList. Attaching a Javascript

action to a Ul item may call a Javascript function when the action is triggered. Note: The
application developer creates the called Javascript function on the correct application’s ASP.
The Javascript action is triggered when the user causes a defined event on the object. Defined
events include clicking on a link or button and changing the text or exiting a text box. The

Javascript events are onClick and onChange.
Methods

The IAFAction interface defines the access to the AFJscriptAction component. This interface

supports the following methods, which the developer uses to create an action.

Description

B Create HTML to call Javascript function (“String

value”) when the action is triggered.

Create HTML to call Javascript function (“String -

value”) when the action is triggered.

AFScriptGenerator

The AFScriptGenerator component creates the Javascript functions needed by the actions.

Methods

The IAFScriptGenerator interface defines the access to the AFScriptGenerator component. This

interface supports the following methods, which the developer uses to generate the appropriate

Javascript functions.

Method Description

Generate the Javascript function block.

Generate the Javascript function block for a

selected list box.

128

10

15

20

WO 01/09792 PCT/US00/20549

i| Generate the Javascript function block for

autosave.

Generate the Javascript function block for radio

button group.

Generate the Javascript function block for auto

capture.

AFStyleSheet

The AFStyleSheet Component creates the Cascading Style Sheet text for the application.

Methods

The I AFStyleSheet interface defines the access to the AFStyleSheet component. This interface
supports the following method, which the developer uses to generate the appropriate Cascading
Style Sheet text.

Description

Generate the Cascading Style Sheet text.

DEVELOPMENT ARCHITECTURE DESIGN

Figure 21 illustrates a method 2100 for software configuration management. First, in operation
2102, software configuration management units are identified. In operation 2104, software
configuration management repositories and practices are established for storing work product
related to the software configuration management units. A change control process is determined
in operation 2106 for implementing change requests relating to the work product. Access to the
work product is monitored in operation 2108 by a plurality of users and audits are performed to
indicate whether the access to the work product by the users is authorized. Further, training
requirements are calculated in operation 2110 by identifying a skill set required for the

implementation of the change requests and determining a current skill set.

129

10

15

20

25

30

WO 01/09792 PCT/US00/20549

As an option, the software configuration management units may be identified based on
configuration types, project baselines, and/or naming standards. The software configuration
management units may also have characteristics including a name, a modification log, and a
release affiliation. Further, the software configuration management practices may include

backing up the repositories.

The change control process may include identifying users authorized to implement the change
requests, defining criteria for implementing the change requests, allowing evaluation of the
change requests by the users based on the criteria, and monitoring the implementation of the
change request. The present invention may also optionally include the creation of a training
schedule to fulfill the training requirements. The following material provides a more detailed

description of the above-described method.

The ReTA Development Architecture Design includes a set of sub-components that represent all
design aspects of the development architecture. The Development Architecture Design
Deliverable is used to validate design of the development architecture against the requirements.

After it is validated, it may be used as a basis for build and test of the architecture.

Development Architecture Component Design

Purpose

The ReTA Development Architecture Component Design is based on the IDEA framework 2130.
See Figure 21.1. IDEA provides a development environment framework and associated
guidelines that reduce the effort and costs involved with designing, implementing, and
maintaining an integrated development environment. IDEA takes a holistic approach to the
development environment by addressing all three Business Integration components: organization,
processes, and tools. In order to accomplish this, several subcomponents 2132 are provided

around a central system building 2134.

The purpose of the development environment is to support the tasks involved in the analysis,

design, construction, and maintenance of business systems, as well as the associated management

130

10

15

20

25

30

WO 01/09792 PCT/US00/20549
processes. It is important to note that the environment should adequately support all the

development tasks, not just the code/compile/test/debug cycle.

Configuration Management

The purpose of Software Configuration Management (SCM) 2106 is to establish and maintain
the integrity of the components of an application throughout the project’s life cycle.

This includes:
e Comprehensively assessing and evaluating changes to a system after requirements have
been agreed upon and commitments established.
e Ensuring that approved changes are communicated, updated, verified and implemented
properly.
o Coordinate the project’s day-to-day activities and avoid conflicting actions by controlling

access to code and repositories.

The project manager is responsible for the completion of the Project Configuration Management
Plan during Design -- with the help of the project team. This may:
e Clarify roles/responsibilities for migrations so that they are understood early in the project
lifecycle. See Figure 22, which illustrates the Configuration Management Life Cycle.
First, a project study 2200 is created. Development and testing stages 2202,2204 follow
the study. Finally, the implementation stage is reached 2206.
e Increase visibility of non-application components (e.g. database, architecture) in
Configuration Management to improve quality of delivered products. Many times these

are the components that are missed during implementations.

The ReTA SCM Policy portion of the description can assist engagement executives in creating a

project configuration management plan.

The following table provides a list of the active participants within the change control process. A
person may have more than one role or responsibility depending on the size of the technical
effort. Also note that the responsibilities are described here at a high level and are not intended
to be all-inclusive. Most of the roles are would already exist on an engagement. However, there

is one new role that is critical to the CM process, the Source Code Librarian.

131

WO 01/09792

PCT/US00/20549

Description & Responsibilities

Technical Manager

Typically an IS department head with responsibility for the purchase
and/or support of hardware and software. In configuration
management, this role is more software oriented. Other
responsibilities include:

Assign development and support staff to projects.

Review (accept/reject) technical approach proposed for projects.
Monitor development and support budgets and personnel — stafus of

projects.

Network System

Administrator

This individual is responsible for the installation, maintenance and
support of the Unix and Windows NT servers including operating
system, file systems, and applications. Other responsibilities include:
Operating system installation, patch updates, migrations and
compatibility with other applications.

Installation and support of proper backup/restore systems.
Installation and support of other peripherals required for installed (or
to be installed) applications.

Proper portion of the present description of hardware configuration
and setup.

Maintenance of Windows Domain users and Groups as well as other

security issues.

132

WO 01/09792 PCT/US00/20549
Database The DBA is responsible for proper creation and maintenance of
Administrator production and system test databases. The integrity of the database,
as well as recovery using backup/restore and logging, are priorities
for the DBA. Other responsibilities include:

Assist developers in maintaining development databases by
automating backup/recovery, applying changes to database schema,
etc.

Provide support for tuning, sizing and locating database objects
within allocated database space.

Applying change requests to databases.

Ideally maintain entity relationship diagrams for databases.

Maintenance of database users and other database-related security

1ssues
Source Code Individual responsible for development and maintenance of source
Librarian code control tools, training materials, and storage areas. The Source

Code Librarian is also responsible for the integrity of the source code
environment. Additionally:

Establishes source code directories for new projects.

Provides reports on source code environment status and usage per
project.

Provides assistance/information as needed regarding objects to check
out for system test.

Assists production operations in building/moving all applications into

production.

Business Analyst Individual or individuals responsible for managing the detailed
design, programming, and unit testing of application software. Other
responsibilities include:

Developing/reviewing detailed designs.

Developing/reviewing unit test plans, data, scripts, and output.

Managing application developers.

133

WO 01/09792

PCT/US00/20549

Description & Responsibilities

Application

Developer

Individual or individuals responsible for making changes to source
code defined by management. This person typically:

Checks source code out of the source code environment.

Modifies code per user requirements or other development portion of
the present description.

Unit tests modifications in the development environment.

Checks modified code back into source code environment in

preparation for system test.

System Tester

Integration Tester

This person or team is directly responsible for system testing or
integration testing of an application prior to implementing in
production. This may also take the form of performance testing.
Typically, a system or integration test person or team may be
responsible for:

Following production operation procedures for installing a new
application in the appropriate test environment.

Develop and execute a test plan to properly exercise new application
including new, modified, and unmodified functionality.

Reporting results of test.

Vendor

For the purposes of this portion of the present description, a vendor is
defined as an organization from which software has been purchased
for use by the clients systems. Alternatively, a vendor may distribute
final installable media in the form of tape or CD with upgrades or
new release of application. A vendor may:

Make modifications to application code at vendor offices or within
the engagement development environment.

Provide necessary information to Source Code Librarian to store new
code.

Assist Source Code Librarian in transferring modifications to the
engagement system test environment.

Participate in system test (or performance test).

134

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Change Control

Description

Change requests as a consequence of changing requirements and changes requested due to
nonconformity (or defects), either in the application software, or in the system software must be
analyzed, authorized, scheduled, staffed, and tracked in a defined way. What, why, when, and
who made a change must be tracked from the point of analysis to the reintroduction of the
defective or changed component at the appropriate stage. Change control therefore governs what
software component is changed, version controlled, and when it is re-migrated to a given

development stage.

Configuration Management becomes more complex in a component-based development
environment as the system is broken down to a greater level of granularity. For this reason,
change control processes need to be clearly defined and communicated across the entire -

engagement team.

Tool Recommendation

ReTA Change Tracking Database

The Change Tracking Database is a Microsoft Access tool. It provides basic functionality of
entering, modifying and reporting of system change requests encountered throughout the entire

project life cycle.

Issues Tracking Database
The Issues Tracking Database is a Microsoft Access tool that is ideal for small to medium sized
projects. It provides basic functionality of entering, modifying and reporting of project issues

encountered throughout the entire project life cycle.

Procedures/Standards
Figure 23 illustrates the change control ‘pipeline’ 2300 and each phase within the pipeline. The

Change Control process can be divided into many different phases. They include:

Log Change Request

135

10

15

20

25

30

WO 01/09792 PCT/US00/20549
The first phase 2302 of the change control process is to log a change request. Regardless of who

initiates a change request and how the change request enters into the engagement work-in-
progress pipeline each change request should be logged Change Tracking tool. IT personnel who

log change requests should record as much information as possible.

Change Control Committee Review

During the second phase 2304, the Change Control Committee (CCC) meets regularly to review
the change requests that have been logged to the Change Tracking tool in the past week. The
committee also discusses the status of the changes scheduled for migration during the weekly
migration windows, reviews the changes already moved to production, and sets the Staging Date

for change requests.

Before each weekly meeting, the Change Control Committee facilitator may generate the
following reports:
e Report of the change requests that have been logged to the Change Tracking tool in the
past week

e Implementation Report that list all changes scheduled to be implemented

During the meeting the CCC may:
e Review the new change requests
e Discuss the cross-functional impacts
e Verify that the target implementation date is realistic
o Set the Staging Date
e Update the status of the change requests scheduled to be implemented that week during
one of the change windows
¢ Evaluate the quality metrics of the changes that have been migrated to production and

discuss any lessons learned

Statement of Work / Scope Definition Portion of the present description

During the third phase 2306, depending on the Change Category (Project, Enhancement, or
Emergency), a Statement of Work or simple Scope Definition portion of the present description
may or may not be required. These portions of the present descriptions both serve to define what

the change request entails, and record what is agreed to by the change requester and IT.

136

10

15

20

25

WO 01/09792 PCT/US00/20549

The Statement of Work, which is currently in use sometimes in FIP, is a detailed portion of the
present description that describes the work that may be done for the change request. The Scope
Definition portion of the present description is a simple portion of the present description of the
scope of the change. It can be an email message, a faxed letter, or a brief Microsoft Word
portion of the present description.

The following table shows what is required:

Change Category Statement of Work Scope Definition Portion of the

present description

Project Required Not Required
Enhancement Not Required Required
Emergency Not Required Not Required

Once the developer starts working on the Statement of Work or Scope Definition portion of the
present description, the developer should set the status of the change request in the Change

Tracking tool to “Assigned”.

The Statement of Work / Scope Definition portion of the present description is sent to the change
requester for sign-off. The sign-off needs to be checked-off on the Migration Checklist in the
Change Tracking Tool in order to migrate the change to production. This sign-off serves as a
quality checkpoint that the work on the change request may meet the business needs of the

change requester.

Analysis & Design
This phase 2308 is required only for project change requests. For example, the developer may
create technical analysis and design specifications portion of the present descriptions. Other

impacted groups may create a technical impact statement.

Code & Unit Test

In this phase 2310, the developer codes the change request and unit tests the code changes to
ensure that it works as designed and that it meets the business needs.

The developer should set the status of the change request in the Change Tracking tool to

“Development”.

137

10

15

20

25

30

WO 01/09792 PCT/US00/20549

After the change has been coded and unit tested, the developer should fill in the Resolution field
for the change request within the Change Tracking Database. The developer should also fill in
the approximate number of hours it took to complete the change request in the Actual Hours

field.

System Test

This phase 2312 is required for all project change requests and some enhancements. In this
phase, the developer tests the change to ensure that the system’s functionality works as designed.
Furthermore, this test also ensﬁres that the code change did not adversely affect other areas of the
current system. This may entail running some pre-defined System Test scripts. For certain
change requests, it is important to test the code change against a large volume of data. This may
check if the change may handle all the data in the production environment. For any change
requests which may impact interfaces both in and out of the target application, it is necessary to
test that all the interfaces still work correctly. This may prevent a change request from adversely

impacting other systems.

The developer should set the status of the change request in the Change Tracking tool to

“Testing”.

User Acceptance Test

In this phase 2314, the most appropriate person, whether it is the requester or a user who may be
directly affected by the change, may assume the role of the test administrator. The administrator
tests the change request to ensure that it meets the original business need. In some cases, the
developer may actually run the test plans that the test administrator creates, and the test
administrator may validate the test results. Once the test administrator agrees that the change
satisfies all the test criteria, the developer needs to check the user acceptance test sign-off box in

the Change Tracking Tool.

The sign-off is needed to migrate the change to production. This sign-off serves as a final quality

checkpoint that the work on the change request meets the business needs of the change requester.

Fill out Migration Form

138

10

15

WO 01/09792 PCT/US00/20549
In this phase, the developer goes through a final process before submitting the change request to

be moved to production. The developer should move all objects associated with the change

request from the testing environment to the staging area.

In order to move the change to production, the developer needs to complete the Migration
Checklist form on the Change Tracking Tool and inform Production Control 2316 by the Staging
Date. This form contains all the information about the objects that need to be moved from the
staging area into the production environment. This form is a streamlined checklist of all the
things that the developers must do in order for Production Services personnel to move the objects
to production. Whenever a sign-off checkbox is checked or unchecked, the current user’s ID and

the current date may be captured by the Change Tracking tool.

The following Migration Checklist items are required for the different change categories:

Checklist Item Project Enhancement Emergency
Statement of Work - Required Not Required Not Required
Scope Definition Not Required | Required Not Required
User Acceptance Test Required Required Not Required
Tech / Code Review Required Required Not Required
Complete Portion of the Required Required Not Required
present description

Complete Components Required Required Required
Submit Production Move | Required Required Required
Distribution Lists Required Required Not Required
Requirements

(TCPIP, Special Forms,

Microfiche, Electronic

Files)

Identify Impacted Systems | Required Required Not Required
Capacity Planning Required Required Not Required
Ready to Migrate Required Required Required

139

10

15

20

25

30

WO 01/09792 PCT/US00/20549
The Ready to Migrate checkbox is used to summarize that all the required sign-offs have been

obtained and that the code is ready to be migrated to production. Finally, the developer should
set the status of the change request in the Change Tracking tool to “Migrate”.

Move to Production

Once Production Services personnel examines a completed Migration Checklist form, they may
verify that all objects to be moved into production are in order, and that the change can be moved
on the migration night in phase 2318. They may also ensure that all relevant items on the
Migration Checklist have been completed. This check serves as the final quality checkpoint

before the change goes into production.

Production Services personnel may move all project and enhancement change requests to the
Production environment during prescheduled outages or immediately in the case of an emergency
fix. Production Services may then informing all system users what changes have been moved

into production.

Production Services personnel should set the status of each migrated change request in the
Change Tracking tool to “Production”. They should also set the Actual Implementation Date to

the date the change was moved to production.

Measure / Monitor Change in Production

Business users and developers should continue to actively monitor the change requests after it is
migrated to production during phase 2320. If no problems develop in production due to the
change request, the Change Control Committee may confirm that the team leader of the change
request should set the status of the change request in the Change Tracking tool to “Closed”. If
problems do develop in production, the status should be set to “Re-Open”. The developer is then

re-assigned to fix the change request.

If the change request in production caused other problems to jobs in production, and a new fix is
needed, the change request is reopened once again. If the change request caused problems in
other jobs that requires modification to the other jobs, then a new change request is created, and

the source of the new request is tracked back to the old request.

140

10

15

20

25

30

WO 01/09792 PCT/US00/20549
The Change Tracking tool contains metrics to track the quality of the change request. The

Change Control Committee may assign the Migration Metric and Production Metric values for
each change request approximately 35 days after it was migrated into production. If problems
occur during the migration of the change request, the Change Control Committee may assign a
“Fail” for the Migration Metric. The Problem Description should then be completed to explain
why this problem occurred. The Lessons Learned should be filled with what lessons can be
learned from the experience. If no problems occur, the Migration Metric may be assigned a

‘“Pass”.

If problems occur in production due to the change request, the Change Control Committee may
assign a “Fail” for the Production Metric. The Problem Description and Lessons Learned fields

should also be filled with the relevant information.

Below are the critenia for the Change Control Committee to use in deciding if a change request
passed or failed the migration metric or the production metric. A change request may pass if it

meets the following criteria.

Migration Metric Criteria
Flawless movement of all resources (Active Server Pages, MTS Components, Java Classes,
Graphics, Data Model, etc.), from the staging environment to the production environment) is

required. (L.e., resource movement must have no negative effects.)

During implementation activities there must be no unplanned, adverse effect on regularly

scheduled batch or online processing, online availability feeds to other systems and reports.

Production Metric Criteria
Production online processing and production batch processing must not experience any release-

related abends.
The production implementation may not cause problems, interruptions in service or failures in

other areas within 35 days of the initial implementation date. Any release with is backed out due

to quality or problems may fail this criterion.

141

10

WO 01/09792 PCT/US00/20549

The change must be delivered when planned. A postponement due to external reasons may not
cause the change to fail this criterion. Postponements due to quality or readiness of code must be
communicated to the Change Control Committee, project team, and customers at least 3 days

prior to the scheduled implementation date.

Migration Control

Description

Migration Control tools control multiple versions of source code, data, and other items as they
are changed, tested, and moved from one development environment into another, for example,
from development to test and from test to production. The list below provides a list of the

various environments and their specific purpose within the project lifecycle.

Environment Description

Build / This ‘virtual’ environment is configured to reside nearly entirely on
Component an individual developer workstation. Web and application services
Test are running locally for presentation and business logic.

Architecture components are accessed via a mapped network drive.
A shared RDBMS Server or a local, more lightweight version of the
database can be used for database services.

Different workstation configurations may exist for component or
user interface developers. Both types of developers use a source
code repository for check in/out of code during development.

In the event that the required modifications affect both a user
interface and server-side components, then both developers may
share components and interfaces using drive mappings.

As code changes are made a ‘Unit’ or Component test is performed
to ensure that changes made in one area of the code do not have
adverse affects on the rest of the component.

When the build code is deemed fit for promotion, the source code is
checked into the source code repository and the source code

administrator is notified of the status.

142

WO 01/09792

Environment

PCT/US00/20549

Description

Staging Test

This environment is used to verify and test packaged systems and
components. This allows developers to verify the functionality and
use of third party vendor applications during the Build/Unit Testing
phase.

Assembly Test

- When a point when the code is deemed stable and the system test

This environment is a smaller testing environment used to ensure
that end-to-end functionality of the system and to verify that
changes made during any build efforts do not impact other areas of
the system. A single developer lead (typically the Source Code
Administrator) gets the latest version of the source code from the
source code repository, performs a complete build, and executes a

complete regression test of the system.

environment is ready, the code residing on the integration server is
checked back into the source code repository using a version label.
Additionally, the binaries from the integration server are copied to

the system test server for continued testing.

System Test

This environment, sometimes referred to as Product Test, is used
for complete system technical and functional testing. Typically
there are assigned project team members tasked with writing and
executing system test scripts, logging errors as they are encountered
and ensuring that the delivered application satisfies the functional
requirements set by the client.

From this point, system application and architecture binaries are

promoted to the production environment.

Performance

Test

This environment is used for conducting performance evaluations
of the application and supporting architecture components. This
environment should be configured to simulate the production
system as closely as possible. Additionally, data and transactional
volume should be configured to simulate the system under worst-
case scenarios.

Performance testing tools should be utilized to simulate multiple

users as well as monitor and report performance results.

143

10

15

20

25

WO 01/09792 PCT/US00/20549

Environment Description

Production This environment consists of key hardware and software
components to support the business operational systems. Typically,
only applications and components that have been thoroughly tested
for functional and technical accuracy are moved into this

environment.

With a ReTA/Microsoft-centric environment, a few key issues arise with respect to environment
migration. These issues relate to the fact that the application is based on the use of Active Server

Pages, Microsoft Transaction Server components and Java Classes.

Sequence of Events

To perform the code migration, certain steps should be followed to ensure that users that are
currently in the application are not adversely affected. This can be accomplished by performing
the migration in the following order:

Using the Internet Information Server administration utility, monitor the site’s number of active
users. A count of zero indicates that no clients are currently hitting the site. Shut down the web

listener to prevent additional users from connecting to the site.

Within the MTS Administration tool, shut down all server processes. This cleans up an

components that may still be awaiting garbage collection from the Java Virtual Machine.

If the component interfaces have not been modified, it is possible to copy the new version of the
Java Classes directly to the new environment. If the interfaces have been changed, the MTS

administrator may need to delete and recreate the individual components within MTS.

Copy any new web server files (ASP, HTML, graphics, etc..) to the target directories on the web

server.
Restart the web listener to allow users access to the application.

Module Location
There are basically three types of modules that get migrated during a ReTA engagement. Web

Server files, Application files and database objects.

144

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Web Server modules include Active Server Pages (ASP), static HTML portion of the present
descriptions, graphics or images and JavaScript files. The ASP and HTML portion of the present
descriptions may have security restrictions placed on them from within Microsoft Internet
Information Server (IIS) and from the Windows NT Server. Security can be set to include

individual user accounts, groups/roles, or no security.

Application Server — Two file types are migrated within application servers, COM Dynamic Link
Library’s and Java Classes. Both files are created during the application and architecture build
processes. The COM DLL’s require registration within MTS by inserting them into a MTS
Package. In the event that the Web and Application servers are two physically different
machines, an export process is required between them to instruct the Web server where the
business components physically reside. For more information on the registration and exporting

processes refer to the MTS online help.

In the case of the Java Classes, they need to reside in a directory that is defined within the
server’s ‘CLASSPATH’ environment variable. For ReTA Phase 1 & 2 development and testing
all runtime files were located with C:\ReTA. Therefore the following classpath environment
variable was defined on each developer’s workstation:
CLASSPATH=C:\WinNT\ava\Classes;C:\WinNT\Java\TrustLib;C:\ReTA\Architecture;C:\ReT
A\Application

Database Server — These items include tables, views, sequences, triggers, stored procedures and
functions, and user/schema information. These items are not necessarily particular to multi-
tiered development. However, care should be taken to ensure that architecture tables and other

objects are located separately from the application objects.

Security

Within the ReTA application model, security is enforced at the Web and Application Servers. In
the case of Web server security, access to ASP and HTML files can be restricted using the
Access Control List security provided by Windows NT. Security on these objects can be set at

the group (role) or individual user levels.

145

10

15

20

25

30

WO 01/09792 PCT/US00/20549
A component within MTS utilizes role-based security to determine who may or may not have

access to a specific COM component. A role is a symbolic name that defines a group of users for
a package of components. Roles extend Windows NT security to allow a developer to build

secured components in a distributed application.

For example, Figure 24 depicts the application of Roles 2400 within the Microsoft Transaction
Server Management console 2402. The package labeled ‘ReTA Applications’ 2404 has a single
role defined as being able to access it, ‘ReTA User’ 2406. Users that are members of the local
‘ReTA Administrators’ and ‘ReTA User’ Windows NT groups 2408,2410 are allowed to
function in the ReTA User capacity defined for this package.

Due to the security options available at both the Web and Application server levels, care should
be taken during code migration to ensure that security settings are consistent and applied

correctly to ensure accurate execution.

MTS Transactions

Within MTS, every component has a transaction attribute that can be set by the MTS
administrator to indicate what level of participation a component has within a transaction. Care
must be taken during MTS component migrations to ensure that the correct transactional
attributes are set within MTS.

The transaction attribute can have one of the following values:

¢ Requires a transaction. This value indicates that the component's objects must execute
within the scope of a transaction. When a new object is created, its object context inherits
the transaction from the context of the client. If the client does not have a transaction,
MTS automatically creates a new transaction for the object.

* Requires a new transaction. This value indicates that the component's objects must
execute within their own transactions. When a new object is created, MTS automatically
creates a new transaction for the object, regardless of whether its client has a transaction.

e Supports transactions. This value indicates that the component's objects can execute
within the scope of their client's transactions. When a new object is created, its object
context inherits the transaction from the context of the client. If the client does not have a

transaction, the new context is also created without one.

146

10

15

20

25

30

WO 01/09792 PCT/US00/20549
e Does not support transactions. This value indicates that the component's objects do not
run within the scope of transactions. When a new object is created, its object context is

created without a transaction, regardless of whether the client has a transaction.
Tool Recommendation
Many configuration management tools are available on the market today, some of which provide

many features useful for code promotion and management.

During the ReTA Phase 1 engagement, Microsoft Visual SourceSafe was utilized for it’s labeling

and source code management capabilities. Additionally, the ReTA Change Tracker database

could be utilized for source code migrations that required change management knowledge and
approval. In the event that client requires the use of paper or email based migration control, the

ReTA Migration Request template can be used.

Procedures/Standards

Processes

The processes that guide development within ReTA engagement environments are represented in
Figure 25, which illustrates an environment migration process 2500. These processes include
creating a new application 2502, modifying an existing application, and applying emergency bug
fixes 2504. The solid lines represent stages required for new/modified application process.
Dashed lines show the path for emergency bug fixes. Note: The term application used here is

broadly applied to any managed module or component.

Processes are defined by stages shown as individual boxes. Through these stages, applications
are eventually (or quickly in the case of emergency bug fixes) promoted to production. Stages

provide for initiating, managing, securing and coordinating changes to applications.

The stages for the projects were developed in conjunction with representatives from each
development team. It is important to note that the development stages represent the lifecycle of
an application, not data. Within each development stage, there can be multiple data sets. For
example, within the system test stage, an application team might wish to run several test cycles in

parallel. In order to do that and keep the data consistent, a database for each cycle is required.

147

10

15

20

25

30

WO 01/09792 PCT/US00/20549
The CM process may ensure application modules are promoted through the development stages

in a consistent manner. It is up to each application team to decide how to use each stage. For
example, the application testing team may want four databases within the system test stage for

different types of tests, whereas the assembly testing team may only want two.

* - Stage is used to consolidate and verify vendor changes. Depending on the change, it may be
migrated to Development or System Test 2506,2508 directly. The order may be dictated by

project requirements.

A very important tenet of the CM process is that an application modification can only be in one
stage at any point in time. Consider the example of modulel. Modulel starts out in
development. When the development team indicates, the Source Code Librarian moves modulel
into system test. As soon as that happens, no changes can be made to modulel. Only after
modulel is promoted to production 2510 can modifications be made to the module (further
enhancements, bug fixes, etc.). The purpose for this rule is to prevent the situation where one
developer is modifying a module when that module needs to have a bug fix to continue testing.

There is one exception to this rule, emergency fixes.

When the situation dictates an emergency fix, the module affected needs to be modified
immediately. When this happens, the module in question should be fixed within the
development stage. When the fix is made, the module may immediately be put back into
production. However, the same change also needs to be applied/promoted to the module in
system test stage. This may allow modules in system test to always be current with what is in

production.

The CM process depends on change control records (CCR) for tracking changes to the system. A
change control record is created for every new module or modification. The CCR is used to
coordinate migrations and communicate status for each module in the system. One may see the
use of the CCR throughout every process description. The CCR processing system may be
automated through Notes.

Major tasks and responsibilities define each stage of a process and are covered in the pages that
follow. These tasks and responsibilities are not intended to be a development methodology. Any

references to deliverables and/or portion of the present descriptions is informational only and

148

10

15

20

25

30

WO 01/09792 PCT/US00/20549

provided to help anchor an already existing development methodology. However, specific
deliverables and portion of the present descriptions required for the change management process

are required and may be highlighted.

Development/Unit Test

Development team checks required application source code out of source code control. See
Figure 26, which illustrates a Development/Unit test 2600 for existing applications. Note: In the
event that this is a new application, the developer may use the appropriate template from source

code control.

As needed, DBA 2602 checks required database source code out of source code control. Also as
needed, DBA works with development team to approve and prepare modifications to
development database. All work occurs on developer’s workstation using local web and

application server processes. Note: A shared web/application may be used for vendor staging.

Unit testing is ongoing during development. The development team checks modified application
source code into source code control. The development team also fills in a change control record
indicating which modules have changed. As needed, the DBA checks modified database source
code into source code control. A source Code Librarian 2604 verifies/prepares necessary objects
for building new applications. Unit test and development is completed. In some cases, a string

test may be required. The system test team is notified, such as by e-mail.

Deliverables from this stage might include:
e Modified or new application
e Modified or new database objects

o Unit test data and output

CM Deliverables from this stage include:

e A change control record with developer information filled in.

Assembly Test
With reference to Figure 27, an assembly test team 2700 reviews user requirements and prepares
validation or test plan. Database modifications are fetched from source code control and applied

to an assembly test environment 2702. The Source Code Librarian fetches new application,

149

10

15

20

25

30

WO 01/09792 PCT/US00/20549
builds it and copies it into assembly test environment 2704. Validation or test plan is executed

pass/fail/deviation. The assembly test team signs change control portion of the present

description. Deliverables from this stage might include:

e Completed validation or test plan with pass/fail/deviation information.

CM Deliverables from this stage include:

e A change control record with assembly test information.

System Test

System test team reviews user requirements and prepares validation or test plan. See Figure 28,
which illustrates a system test 2800 for existing systems. Database modifications are fetched
from source code control 2802 and applied to the system test environment 2804. The Source
Code Librarian fetches the new application, builds it and copies it into the system test
environment. A validation or test plan is executed pass/fail/deviation. The system test team

2806 signs the change control portion of the present description.

Deliverables from this stage might include:

e Completed validation or test plan with pass/fail/deviation information.

CM Deliverables from this stage include:

e A change control record with system test information.

Production

Figure 29 is a flowchart for production of existing applications. The change control record is
forwarded to the production operations team 2900 responsible for scheduling changes to
production. A promotion to production is scheduled on the production plan 2902. Database
modifications are fetched from source code control 2904 and applied to the production

environment 2906.

The Source Code Librarian fetches the new application, builds it and copies it into the production
environment. The controlled change-tracking portion of the present description is signed and
filed. Electronic copies of all portion of the present descriptions and portion of the present
description can optionally be stored in source code control or other portion of the present

description storage system.

150

10

15

20

WO 01/09792 PCT/US00/20549

Deliverables from this stage might include:

e Application promoted to production.

CM Deliverables from this stage include:

e A complete change control record with production information.

Version Control

Description
Version Control tools control access to source code as it is developed and tested and allow
multiple versions to be created, maintained, or retrieved. For maintenance management

purposes, it 1s desirable to designate one individual team member to function as the source

control administrator. Duties for the source control manager would include the administration of

source control users and projects, scheduling and performing periodic backups and applying

labels to specific versions of the code (for migration purposes).

Examples of architecture and application source code maintained within the version control

process include:

Location Types

Web Server Static HTML, Images, JavaScript
Active Server Pages (ASP)
Cascading Style Sheets (DHTML)
Architecture ASP Header Files

Application Activities
Server Sub-Activities
Business Components (factories, supporting Business Objects)

Architecture Frameworks

151

10

15

20

25

WO 01/09792 PCT/US00/20549
Location Types

Database Server | Database specifics (table, rollback segment and temporary space
information)

Users, Roles

Tables, Indexes, Triggers

Procedures, Packages, Sequences

Tool Recommendation
Many configuration management tools are available on the market today, some of which provide

test data management functionality.

During the ReTA Phase 1 engagement, two different tools where utilized and evaluated:
MicroSoft’s Visual SourceSafe™ and Intersolve’s PVCS Version Manager™. Both applications
are relatively simple use and administer. Visual SourceSafe is preferred for small to medium
sized engagements and PVCS Version Manager is preferred for large, enterprise-scale
development efforts. For a complete description of the configuration and usage of the Microsoft
Visual SourceSafe application as it was utilized on the ReTA Phase 1 engagement, refer to

Source Control.

Visual SourceSafe

Visual SourceSafe from Microsoft ships with the Visual Studio suite and as such is tightly
integrated with the Visual Integrated Development Environments. See Figure 30, which
illustrates a frame 3000 of Vis{lal Source Safe. Check in and check out functions 3002,3004 can
be performed from with Visual Basic or Visual J++. Additionally, Rational Rose is also tightly

integrated with SourceSafe.

Additionally, this product provides:
e Easy to use drag-and-drop for file check in and check out
e Historical reporting and impact analysis
e User and project level security
e Archive and restore functionality
e Version ‘Labeling’ for source code migration

e Support for web based applications

152

10

15

20

25

30

WO 01/09792 PCT/US00/20549

PVCS Version Manager

PVCS Version Manager from INTERSOLYV is the industry standard for organizing, managing
and protecting your enterprise software assets. Version Manager enables teams of any size, in any
location, to coordinate concurrent development, with secure access and a complete audit trail.

See Figure 31, which illustrates a frame 3100 of PVCS Version Manager [-Net Client.

PVCS VM Server extends the power of Version Manager to teams enterprise-wide via the
Internet and Intranets. An intuitive Web client lets users connect to a secure archive and work

interactively, anywhere in the world, while sharing protected, centrally managed software.

Additional features include:

e I-NET client is simple and easy to use. It supports developers in many locations, working
on many platforms

e Organizes and references all project components graphically with a flexible, project-
oriented approach

o Use easy drag-and-drop to check files in and out of the system with the check in and
check out buttons 3102,3104

e Graphically view project history and see file differences in side-by-side comparisons

¢ Branch and merge as needed, with automatic alerts of any conflicts

e Automate development processes with event triggers

e Set up projects quickly with online assistants for project configuration, security and

customization

Procedures/Standards

Build & Integration

Figure 32 is an illustration of a Build Source Control Model. During the Build phase of a ReTA
engagement, the workstation 3200 of each individual developer should be configured to function
independently of other workstations and servers 3202 (except for the development database
3204). This process may require developers to first get an updated version of the application

source files in addition to those files be checked out for modifications.

153

10

15

20

25

30

WO 01/09792 PCT/US00/20549

The benefits of this configuration are:
¢ Individual development changes do not effect other developers
e Easier debugging and testing
e Different project team members may check out different versions and/or components of

the application concurrently. Changes can then be merged later.

Assembly Test

Figure 33 illustrates an Assembly Test phase control model. During the Assembly Test phase of
a ReTA engagement, the Source Control Administrator may be responsible for the mass

checkout and build of the entire application or architecture. Test workstations 3300 may access a
web the app server 3302, which is connected to the source code repository 3304 and the database

server 3306.

To aid in this process, the use of ‘Labels’ within the source code repository is employed to
identify specific versions of files and projects. (See Figure 34, which illustrates Microsoft Visual
SourceSafe 'Labels' 3400). Labels allow for marking a specific set of files within the repository
with a logical name and version. At a later point, it is possible to display the different labels and

retrieve the desired version.

Environment Management

This portion of the description identifies the miscellaneous application and system-level services
that do not deal with the human-computer interface, communication with other programs, or
access to information. Environment Management Services identify each component used to
perform the operating system sérvices, system level services, application services, and run-time

services.

Systems Management

In order to maintain an effective and secure infrastructure, System Management procedures are
essential in the success of obtaining a stable environment. These systems require tools, utilities
and processes that allow administrators to monitor running components and change their

configuration. Systems Management involves all functions required for the day to day operation

154

10

15

20

25

30

WO 01/09792 PCT/US00/20549
of the ReTA environment (e.g. event monitoring, failure control, monitoring, tape loading, etc.).

Regardless of the changes taking place within the Net-Centric environment, Systems

Management activities must take place in an on-going manner.

System Startup & Shutdown

A comprehensive development environment rapidly becomes sufficiently complex that the
startup and shutdown of the environment must be managed carefully, and preferably automated.
This is key to ensuring the integrity of the environment. Startup may involve the carefully
sequenced initialization of networking software, databases, web servers and more. Similarly,
shutdown involves saving configuration changes as needed and gracefully taking down running

software in the correct sequence.

An Uninterrupted Power Supply (UPS) provides a server with power when the AC power fails or
is marginal. The UPS may also shut the server down, in an orderly fashion, in the event of a

power failure. The UPS may not shut down the server if the power failure is brief.

The Smart UPS 1400 should be configured with an interface to the server. The recommended
interface is the serial port B (COM2) on most servers. PowerChute Plus 5.0 software from

American Power Conversion is the recommended choice.

The basic purpose of PowerChute Plus is to safely shut down an operating system and server in
the event of a power failure. To do this properly, PowerChute Plus needs the UPS to provide
battery power to the system while PowerChute shuts down the system. This is where the correct
sequencing of Events becomes important.

Clear and accessible portion of the present description of startup / shutdown procedures
Automated startup / shutdown process that rarely requires manual intervention

A product that has remote power on reset capabilities

Backup and Restore

The incremental value of the daily work performed on the development project is high. This
investment must be protected from problems arising from hardware and software failure, and
from erroneous user actions and catastrophes such as fires or floods. The repositories and other

development information must therefore be backed up regularly. Backup and restore procedures

155

10

15

20

25

30

WO 01/09792 PCT/US00/20549

and tools must be tested to ensure that system components can be recovered as anticipated. The

large volumes of complex data generally require automation of backups and restores.

The advent of Netcentric technologies has introduced an increase in media content that requires
storage. The environment may support a high volume of media files, which must be considered
in the backup/restore plans. Storage capacity planning should allow for the typically increased

size of these file types.

As the amount of storage may grow significantly over time on a large project, the hardware
requirements may increase. Sufficient room for growth should be planned when selecting the
tools and hardware. Switching tools and hardware can be problematic due to lack of upward

compatibility (DDS - DLT, various tools etc.).

The time required for backups must also be considered. Usually the number of hours without
development per day decreases over time and if backups can only be performed when no user is
logged in, this might become a problem. It is generally the case that the project may benefit from
buying the fastest and largest backup hardware/software it can afford.

Storage Management
ReTA may implement an automated tape management system that provides location / retention

special handling, file integrity and data protection.

Archiving

Archiving can be particularly useful to safeguard information from previous versions or releases.
More generally, it is used to create a copy of information that is less time-critical than the current
environment at a given time. Archiving may be performed to a medium, which is different from
the backup medium, and may involve other tools, which, for example, provide a higher

compression ratio.

Performance Monitoring
Performance Management ensures that the required resources are available at all times
throughout the distributed system to meet the agreed upon SLAs. This includes monitoring and

management of end-to-end performance based on utilization, capacity, and overall performance

156

10

15

20

25

30

WO 01/09792 PCT/US00/20549

statistics. If necessary, Performance Management can adjust the production environment to

either enhance performance or rectify degraded performance.

Operating System

Windows NT may function as the ReTA Phase 1 Development Environment operating system,

handling Environment System Services such as multi-tasking, paging, memory allocation, etc.

System Level Services

The Windows NT Domain Controller allows users and applications to perform system-level
environment services such as a login/ logoff process for authentication to the operating system;
enforced access control to system resources and executables; and access to the local or remote

system’s user or application profiles.

Application Services

The ReTA Phase 1 Frameworks may perform application Security Services, Error
Handling/Logging Services, State Management Services and Help Services within the

application.

State Management

State Management Services enable information to be passed or shared among windows and/or
Web pages and/or across programs. In Netcentric environments, the HTTP protocol creates a
potential need for implementing some form of Context Management Services (storing state
information on the server). The HTTP protocol is a stateless protocol. Every connection is
negotiated from scratch, not just at the page level but for every element on the page. The server
does not maintain a session connection with the client nor save any information between client
exchanges (i.e., web page submits or requests). Each HTTP exchange is a completely
independent event. Therefore, information entered into one HTML form must be saved by the
associated server application somewhere where it can be accessed by subsequent programs in a

conversation

157

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Security Services

ReTA implements Application Security through the ReTA Session and Activity frameworks.
The Session framework provides “Session level Page access authorization”, “User identification”
and “session timeout” services. The Activity framework provides “Activity level Page access

authorization”.

Error Handling/Logging Services

Error Handling Services support the handling of fatal and non-fatal hardware and software errors
for an application. An error handling architecture takes care of presenting the user with an
understandable explanation of what has happened and coordinating with other services to ensure

that transactions and data are restored to a consistent state.

Logging Services support the logging of informational, error, and warning messages. Logging
Services record application and user activities in enough detail to satisfy any audit trail
requirements or to assist the systems support team in recreating the sequence of events that led to

an error.

Runtime Services

The ReTA Phase 1 Development Environment may use the Microsoft Transaction Server and the
Microsoft Java Virtual Machine as a Run-Time Environment System Service. This affords a
layer of abstraction between the applications and the underlying operating system.

Problem Management

Problem Management tools help track each system investigation request - from detection and
portion of the present description to resolution (for example, Problem Tracking, Impact Analysis,
Statistical Analysis). Several problem management software packages are available from a

variety of vendors.

Tool Recommendation

SIR Workbench

158

10

15

20

25

30

WO 01/09792 PCT/US00/20549

The SIR Workbench is another Microsoft Access tool that was developed for small to medium
sized projects. It provides basic functionality of entering, modifying and reporting of architecture
and application problems encountered during the testing and release phases of the project life
cycle.

Visual SourceSafe

Visual SourceSafe (VSS) from Microsoft ships with the Visual Studio suite and as such is tightly
integrated with the Visual Integrated Development Environments. One of the features provided
by VSS is the ability to search through the source code for given text strings. This is useful for

performing impact analysis.

Security Management

Security Management tools provide the components that make up the security layer of the final
system, and may provide required security controls to the development environment. While
some of these tools may be considered as nothing more than security-specific Packaged

Components, many are an integral part of the development environment toolset.

Database

Development Database security may be minimal. Database User IDs may be setup to grant user-
level security. The engagement Database Administrator (DBA) may have a logon to allow for
full permissions. Otherwise, a Developer ID may allow read/write access and a Core User ID

may allow for read access only.

Network

A Windows NT Group created specifically for the engagement may protect the Development
shared file folder and subsequent sub-folders (ex ‘ReTAArch’). Project members individual
network accounts may be added to the Domain Group ensuring access. Local network
administrators may be responsible for the creation and maintenance of individual and group

account information.
Application Server

The application server has two forms of security: Static security and dynamic (context

dependent) security.

159

10

15

20

25

30

WO 01/09792 PCT/US00/20549
A Windows NT group may be created for each Role in the completed application (e.g. Customer,

Manager). Microsoft Transaction Server’s integrated Windows NT security allows the developer
to determine the security rights for each component.
The dynamic, context dependent security is implemented by the developer using the Event

Handler framework for the logging and display of errors to the user.

Web Server

The web server has static security for each page and security to maintain control of the flow
between pages. The static security uses the Windows NT group for each user role to restrict
access to each page. For the flow control, the developer uses the Session framework to restrict
the ordering of page requests. The allowed ordering of pages are entered into the Session

database tables.

Systems Building

System Building tools comprise the core of the development architecture and are used to design,

build, and test the system.

Analysis & Design

The BI Methodology has several application development routes that apply to different
development scenarios. Routes currently exist in the methodology for custom and packaged
application development. Component development is among several routes to be developed.
Until the component development route is completed, component-based projects should be
planned using a combination of BI Methodology and ODM task packages.

In general, BI Methodology should be used for all tasks that are independent of a specific
technology. For example, tasks related to business modeling, user interface design, training
development, package selection, and product testing should all be taken from BI Methodology
rather than ODM. These technology-independent tasks typically occur early (business modeling,
solution strategy, and requirements gathering) and late (product testing through deployment) in
the project.

ODM content should be used for all tasks that are related to component and object development.
In addition, ODM is the primary source for those tasks related to obtaining characteristics

associated with component- and object-based development (such as flexibility and reuse). When

160

10

15

20

25

30

WO 01/09792 PCT/US00/20549
using ODM task packages, take care to ensure that one consider how they link with the other

elements of business integration (such as human performance).

Data Modeling

Description

Data Modeling tools provide a graphical depiction of the logical data requirements for the
system. These tools usually support diagramming entities, relationships, and attributes of the
business being modeled on an Entity-Relationship Diagram (ERD). Several techniques have
evolved to support different methodologies (e.g., Chen, Gane & Sarson, and IDEF).

As systems are often built on top of legacy databases, some data modeling tools allow generation
of an object model from the legacy database data model (DDL). By understanding the E-R
diagram represented by the database, it is easier to create an efficient persistence framework,
which isolates business components from a direct access to relational databases. Caution is
required, however, as the resulting model is at best only partial, as an object model has dynamic
aspects to it as well as static relationships, and may not correctly reflect the analysis performed in

the problem domain.

When a component or object-based approach is used, data modeling is not performed. Rather,
the object model represents both the data and the behavior associated with an object. In most
systems, relational databases are used and the object model must be mapped to the data model.

Standard mechanisms for mapping objects exist.
Tool recommendation

Visual Studio
Microsoft’s Visual Studio 6.0 includes a database diagram tool that helps developers visualize
structures of tables and relationships within a relational database. See Figure 35, which
illustrates a Database Diagram 3500 within Visual Studio 3502.
Using this project within Visual Studio it is possible to, for example:

e Connect to existing Oracle 7.33+ or SQL Server 6.5+ databases.

e View, print and modify existing database objects including table attributes and properties,

views 3504, columns, indexes, relationships, procedures 3506 and functions 3508.

e C(Create new database objects.

161

10

15

20

25

30

WO 01/09792 PCT/US00/20549

o Generate SQL scripts for schema creation and update.

e Version control schema information using Visual SourceSafe.

Visual Studio
Additionally, Rational Software’s Rational Rose 98 provides Oracle8 data modeling functionality
including schema analysis, SQL/DDL generation, reporting and editing. For a complete

description of the product and its features visit the Rational Rose Website at www.rational.com.

Performance Modeling / Management

Description

The performance of a system must be analyzed as early as possible in the development process.
Performance modeling tools support the analysis of performance over the network. A simple
spreadsheet may be suitable in some well-known and understood environments, but dedicated
performance modeling tools should be considered on any project with high transaction volumes

or complex distributed architectures involving several platforms.

In the case of Internet-based applications, as the Internet is not a controlled environment,
performance modeling is limited to those components within the domain of the controlled
environment (i.e. up to the Internet Service Provider). However, in the case of intranet-based
systems, where the environment is controlled from end-to-end, performance modeling may be

performed across the entire system.

Performance modeling for components involves the analysis of the projected level of interaction
between components and the level of network traffic generated by this interaction. It is important
for performance reasons that communication between components is minimized, especially if

these components are distributed.

Tool recommendation

Visual Quantify

Tivoli

Sniffer Basic

162

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Application Expert

Object Modeling

Description

An object model usually contains the following deliverables:

Class Diagram (1 per functional area or 1 per component)

Class Definition (1 per class)

Class Interaction or Sequence Diagram (1 or more per scenario / workflow)

Class State Transition Diagram (1 per Class with complex state)

Tools such as MS Word, MS PowerPoint, ABC Flowchart (MicroGrafix), may be used to
produce these deliverables. See Figure 36 illustrating Object Modeling 3600 within Rational
Rose 3602. Specific modeling tools do exist, however, and provide advantages such as cross
referencing (for example, are all the methods used in the Interaction diagrams described in the
class definitions?), automatic propagation of changes to other diagrams, generation of reports,
and generation of skeleton code. However, some tools have problems with:

e Usability and stability

e Single users or small numbers of concurrent users

e Proprietary repositories (usually file-based, rather than DB-based)

¢ Support of extensions / customizations

As well as providing the usual editing and graphical functionality, a good modeling tool should:
o Interface with a repository (to support versioning)
e Support multiple users

¢ Generate code from the design

The industry standard to represent the object model is UML notation (adopted by OMG).

Tool recommendation

Rational Rose 98

Visio 5.0

Visual Modeler 2.0 (Only valid for VB and VC++)
163

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Component Modeling

Description

Component modeling can mean either designing components from scratch, or customizing and
integrating packaged software. No specific component modeling tools exist, and current object
modeling tools only provide limited support for components (e.g. for packaging related classes
together). Class packages can be used to separate the object models for different components,
with a separate class package(s) for the component model. This approach, however, is not

enforced by current modeling tools, and requires project naming and structuring standards.

When component modeling is being performed using existing packaged software, some form of
reverse engineering or importing is required from the modeling tool to capture the existing

design.

During component design, the partitioned component model is designed, which defines physical
interfaces and locations for components. It is important for performance reasons that

communication between components is minimized, especially if they are distributed.

Tool recommendation

Rational Rose 98

Visio 5.0

Visual Modeler 2.0 (Only valid for VB and VC++)

Application Logic Design

Description
Application Logic Design tools graphically depicts an application. These tools include
application structure, module descriptions, and distribution of functions across client/server

nodes.

164

10

15

20

25

30

WO 01/09792 PCT/US00/20549
A variety of tools and techniques can be used for Application Logic Design. Examples are

structure charts, procedure diagrams (module action diagrams), and graphics packages to

illustrate distribution of functions across client and server.

Application Logic Design functionality is also provided by a number of Integrated Development

Environments (IDE).

With component-based development, Application Logic Design is performed through object and
component modeling. The functionality is captured in use cases, scenarios, work flows and/or
operations diagrams along with interaction diagrams/sequence diagrams. These are usually
produced using MS Word, MS PowerPoint, ABC Flowcharter (Micrografix), or an object

modeling tool.

Tool recommendation
Rational Rose 98
Visio 5.0

Database Design

Description

Database design tools provide a graphical depiction of the database design for the system. They
enable the developer to illustrate the tables, file structures, etc. that may be physically
implemented from the logical data requirements. The tools also represent data elements,

indexing, and foreign keys.

Many data design tools integrate data modeling, database design, and database construction. An
integrated tool may typically generate the first-cut database design from the data model, and may

generate the database definition from the database design.

With an object-based or component-based solution, the data-modeling task changes. In most
cases, relational databases are still used, even where there are no dependencies on legacy
systems. As there is an 'impedance mis-match' between an object model and a data model, a

mapping activity must be undertaken. There are standard mechanisms for doing this. There are

165

10

15

20

25

30

WO 01/09792 PCT/US00/20549
also tools on the market which allow the mapping of classes to relational tables, and which

generate any necessary code to perform the database operations.

There is a tendency (especially when dealing with legacy systems) to treat data models and object
models the same. It is important to recognize that at best, the data model represents only the
static part of the object model and does not contain any of the transient or dynamic aspects. The
physical data model may also change significantly (for DB optimization), further confusing the

issue.

There can be performance problems with objects mapped to a relational database. In a worst
case scenario, an object can be spread across many tables, with a single select/insert for each
table, and as each object is loaded one by one, the performance becomes very poor. Some tools
provide lazy initialization (only loading the parts as they are needed) and caching (minimizing

DB hits).

The current trend seems to be for object-relational databases, with vendors such as Oracle adding
object features to their core products. Although the support provided at the moment is limited, it

is likely that in future versions Java or C++ classes may be able to interface directly.

Tool recommendation

Rational Rose 98 (Only valid for Oracle 8)

ERwin

Presentation Design

Description

Presentation design tools provide a graphical depiction of the presentation layer of the
application. Tools in this category include window editors, report editors, and dialog flow
(navigation) editors. Window editors enable the developer to design the windows for the
application using standard GUI components. Report editors enable the developer to design the
report layout interactively. Placing literals and application data on the layout without specifying
implementation details such as page breaks. The majority of these tools generate the associated

application code required to display these components in the target system.

166

10

15

WO 01/09792 PCT/US00/20549

Using the dialog flow (navigation) editors, the developer graphically depicts the flow of the
windows or screens. The Control-Action-Response (CAR) diagram is a commonly used

technique for specifying the design of GUI windows.

The majority of Netcentric systems use Web browsers to provide a common cross-platform user
interface. Presentation design for this type of environment therefore entails the generation of
HTML pages, often with additional components (JavaScript, 3rd party ActiveX controls, Plug-
ins) providing enhanced functionality or media content. Many tools are currently available for
designing and creating web content, although HTML remains the common denominator, at the

very least as a placeholder for the content.

In the case of systems published on the Internet, defining the target audience is less
straightforward than in traditional systems, but equally important. Having a good understanding
of the intended audience may be a big advantage when thinking about user interaction with the

system, and therefore, the presentation layer of the system.

Within a ReTA based application, three types of web pages that are available include:

167

WO 01/09792

Page Type
Static HTML

PCT/US00/20549

Description

This page consists of a single HTML file containing
static text, formatting, scripts, anchor tags, and
imbedded images. This type of portion of the
present description is the most common as it can be
created using an ASCII text editor such as
Windows Notepad.

For designing web pages in a WYSIWYG format,
Many popular editing tools are available including
Microsoft FrontPage, Microsoft Visual InterDev,
and HomeSite.

Design elements include:

Static HTML v3.2/v4.0 portion of the present
descriptions

Graphics/Images

JavaScript (client and server) v1.2

Active Server Page

(Non UI Framework)

This type of web page is created dynamically at the
web server and written to the requesting client.
These pages are useful when dynamic data is
required within the web page itself.

Microsoft FrontPage and Visual InterDev are
popular ASP editors with Visual InterDev
providing ASP debugging functionality as well.

Active Server Page

(Using UI Framework)

This type of web page is also created dynamically at
the web server and written to the requesting client,
however, they make use of the ReTA User Interface

Framework.

Tool recommendation
Microsoft Visual Studio 6.0
Rational Rose 98

Visio 5.0

Visual Modeler 2.0 (Only valid for VB and VC++)

168

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Packaged Component Integration

Description

Packaged components are generally thought of as third party applications or services that provide
ready-made business logic that is customizable and reusable. Additionally, legacy applications
can be included in these discussions when there is a desire to reuse portions of or an entire pre-
existing application.

One of the benefits of component-based systems is the ability to separate the component
interfaces from their implementation. This simple feature can help enormously with access to
both third party components and legacy applications. The concept of putting an object or

component interface on a non-object piece of software is called ‘wrapping.’

There are several arguments for putting a wrapper around an third party application or legacy
system instead of custom building or replacing the functionality that they provide:

e The wrapped component may provide functionality that requires deep technical expertise
or knowledge to develop. (e.g. hardware drivers, EDI applications)

e The provided functionality may only be temporary. With a wrapper in place, the
underlying implementation may change without affecting the consuming application.

e The wrapped component can now be reused within additional applications without |
additional effort.

e Wrapping can take considerably less time and effort than building the third party
component or legacy application over again. The more complex the application being
wrapped, the greater the cost savings in time and effort.

e Within wrapped components, it is possible to consolidate several existing applications
into a single new service. (e.g. customer details from a ERP package as well as from the

new system)

Procedures/Standards

Pure Component Integration

169

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Component standards are maturing, particularly in eCommerce Applications. Although plug and

play is not yet a reality, more application and ISV vendors are developing component based
solutions for the eCommerce market place. Generally, this is the simplest form of integration if

leading-edge eCommerce architectures are being deployed.

Care should be taken to allow for the migration from one vendor to another. To allow for this,
the application developer should investigate encapsulating the component within an application

wrapper.

Wrapped Component Integration

Many of today’s vendors provide ActiveX or Java classes that provide a direct component
interface into their application or services. Some vendors such as SAP expose component
interfaces which can be accessed by ORBs e.g. Microsoft’s DCOM connector. The underlying
architecture however is not component-based. This is not a problem providing the package

provides scalable and robust application execution.

Another example is the use of Microsoft’s COM Transaction Integrator 3700 and the Microsoft
SNA Server for NT 3702. These products allow for the wrapping of CICS transactions in COM
component stubs 3704 that can be invoked from MTS components. See Figure 37, which
illustrates directly calling a wrapped CICS component 3706.

Batch and Indirect Integration

This process of integration relies on the use of Message Oriented Middleware (MOM) to provide
asynchronous messaging to and from the packaged application. This can be accomplished using
Microsoft’s Message Queue (MSMQ) 3800, IBM’s MQ/Series 3802 and Level 8’s Falcon Bridge
3804 (to provide MSMQ to MQ/Series communication). See Figure 38, which illustrates
indirectly calling a wrapped CICS component 3806.

Data Integration
This is the most common form of integration but restrictive because it involves development of

duplicated business logic, risks breaking application integrity and causes maintenance overheads.

170

10

15

20

25

30

WO 01/09792 PCT/US00/20549

Construction

Construction tools and processes are used to program or build the application: client and server
source code, windows, reports, and database. ReTA based development should use a base set

of naming and coding standards.

Tool recommendation
Visual Studio 6.0
Rational Rose 98

Test

Testing applications (client/server or NetCentric) remains a complex task because of the large
number of integrated components involved (i.e., multi-platform clients, multi-platform servers,
multi-tiered applications, communications, distributed processing, and data). The large number

of components result in a large number and variety of testing tools.

Test Data Management

Description

Members of the technology infrastructure and data architecture teams are often the ones who
create and maintain the common test data. This requires full-time personnel, especially when a
large number of test databases must be kept in synchronization. Many of the automated testing

tools available on the market today provide test data management functionality.

At a minimum, vendor or custom applications and processes should be in place to perform the
following:

e Database Schema Export & Import

¢ Individual or Bulk Table Deletion and Population

¢ Data Refresh/Restore

171

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Additional functionality may include data generation or conversion, versioning and validation.

Tool Recommendation

Many testing tools are available on the market today, some of which provide test data

management functionality.

Procedures / Standards
The ReTA Component Test Workbook Plan-Prep provides the mechanism for maintaining
component test data required during test execution. When creating the test data, all attempts

should be made to make the test data reusable.
Test Data Manipulation

Description
There are a few avenues for the manipulation of test data. When considering this function during
the component and assembly testing phases consider the following: '

e Create test data if the physical data model is stable.

e Use the existing application if it can create valid data.

e Convert production data if the Data Conversion Application and the production data are

reliable.

Tool Recommendation

If possible, leverage any existing data manipulations that were included with the database suite.
Many database vendors provide data management and manipulation applications with their
database systems. Additionally, many development packages, including Microsoft Visual

Studio™, provide database access and manipulation functionality.

For data generation, PLATINUM TESTBytes™ is a test data generation tool that connects to
your database to create test data for your relational databases. With point-and-click action, one
can specify the type of data needed. TESTBytes automatically generates up to millions of rows

of meaningful test data, eliminating days or weeks of time-consuming effort and reducing costs.

Procedures / Standards

For data conversion, the best approach is to:

172

10

15

20

25

30

WO 01/09792 PCT/US00/20549
o Ifdata is going to be shared with an existing application, attempts should be made to
reuse test data from the legacy system.
o Use the existing data store capabilities to extract or massage the data into a format that is
| easily integrated into the new application.
e C(Create one-time extract and formatting applications to extract the legacy data, perform
formatting and business operations, and import the newly modified data into the new data

store.

The ReTA Component Test Workbook Plan-Prep provides the mechanism for maintaining
component test data required during test execution. When creating the test data, all attempts

should be made to make the test data reusable.
Test Planning

Description

The test planning function during a ReTA engagement provides an opportunity to define the
approaches, tools, environments and process to test the application and its individual components
for functional and technical validation. This process is typically assigned to someone with
experience in application development using similar technologies as those to be used on the new

system.

Tool Recommendation

The ReTA Component Test Workbook Plan-Prep provides the mechanism for maintaining and
communicating component test information. Component test planning information such as
component test cycles and component test conditions are included. Both worksheets are to be

completed during the design phase by the designer.
Test Execution

Description

If testing environments have been created, application testing scenarios and scripts should be
created to evaluate the application functions as designed. Actual results are compared against
expected results portion of the present description with the test conditions. The use of automated

testing tools is essential for fast, accurate regression and performance testing. Ensure the tool

173

10

15

20

25

30

WO 01/09792 PCT/US00/20549
used for automated testing is easily configured. Also, ensure the scripts can be quickly updated

to allow for user interface changes.
Tool Recommendation

Component Test Workbook

The ReTA Component Test Workbook Plan-Prep provides the mechanism for maintaining and
communicating component test information. Component test planning information such as
component test cycles and component test conditions are included. Both worksheets are to be

completed during the design phase by the designer.

Automated Testing Tool
There are many automated, web-based testing tools on the market today. Many tools provide
record and playback scripting functionality. See Figure 39 which illustrates RSW eTest
Automated Testing Tool 3900. Recommended features include:

e Auto record and playback of test scripts

e Data driven testing

e Easy test modification (many tools have proprietary scripting languages)

e Cross-browser support |

e Multi-user simulation for load & performance testing

e Test summaries and reporting

Procedures / Standards

In addition to the test planning elements of the CT workbook, component test execution
worksheets are also included: component test script, test data, and expected & actual results
worksheets. These worksheets are to be completed by the developer during the build phase.
These scripts may be used by the developer/tester to execute the individual component tests. In
theory, since the steps of the component test are portion of the present description, any developer
or tester should be able to execute the test by simply following the steps outlined in the test

script.
Performance Management

Description

174

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Performance Management tools support application performance testing. These tools monitor the

real-time execution and performance of software. They help to maximize transactions and
response time to the end user. They are also useful in identifying potential bottlenecks or

processing anomalies.

Procedures / Standards

During the automated test execution process, the testing tool may automatically verify the current
state of the system (i.e. actual results) against the expected state of the system (i.e. expected
results) for each test case defined in the test script. Execution status may be reported through the
reporting function of the toolset. In the case of performance or lead testing, the testing tool may
provide a summary report including graphic illustrations describing the overall performance of

the system.
Test Results Comparison

Description

Whether using automated or manual testing processes, after the completion of each testing cycle
it should be clear as to what defects still exist within the system. By comparing actual results
with expected results, the application tester and developer can quickly detect design and

development errors within the system.

Tool Recommendation
The ReTA Component Test Plan-Prep Workbook provides the mechanism for maintaining
expected and actual results. The Expected and Actual Results worksheet outlines the expected

result for each condition and lists the actual result encountered during the test execution.

Procedures / Standards

During the automated test execution prdcess,- the testing tool may automatically verify the current
state of the system (i.e. actual results) against the expected state of the system (i.e. expected
results) for each test case defined in the test script. Execution status may be reported through the

reporting function of the toolset.

175

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Test Coverage Measurement

Description

Test Coverage Measurement tools are used to analyze which parts of each module are used
during the test. Coverage analyzing tools are active during program operation and provide
comprehensive information about how many times each logic path within the program is run.
This Test Management and Quality Management tool ensures that all components of an

application are tested, and its use is a vital and often overlooked component of the test process.

Tool Recommendation

Rational’s Visual PureCoverage™ is an easy-to-use code-coverage analysis tool that
automatically pinpoints areas of code that code that have and have not been exercised during
testing. This greatly reduces the amount of time and effort required to test an entire application
and its components, increases the effectiveness of testing efforts by providing insight into overall

program execution, and helps ensure greater reliability for the entire program, not just part of it.

Procedures / Standards

Test coverage measurement ensures is used to ensure that the entire application or system is
completely tested. A manual approach can be applied to ensure that every path of logic within
the application is completely tested. To reduce the test preparation time, an automated testing

tool that provides this functionality should be leveraged.

SIR Management

Description
SIR Management Tools help track each system investigation request from problem detection

through portion of the present description resolution.

Tool Recommendation

SIR Management Tools help track each system investigation request from problem detection
through portion of the present description resolution. During the testing phases of the
engagement, it may be desirable to reuse the SIR tools and processes developed for and used for

overall problem tracking

176

10

15

20

25

RETASRV1 | P-300 | 128 Windows NT Server 4.0 | Microsoft Internet Information
(4000) MB (SP4) Server 4.0

WO 01/09792 PCT/US00/20549
SIR Workbench

The SIR Workbench is a Microsoft Access based tool that has been used on various component
and client/server engagements. It provides basic functionality of entering, modifying and
reporting of architecture and application problems encountered during the testing phases of the

project life cycle.

Procedures / Standards

For a full description of the tool and its use, refer to the SIR Workbench.

Development Architecture Physical Model

Purpose

The ReTA Development Architecture Physical Model portion of the description shows the actual
components comprising the Development Architecture and their relative location and interfaces.
Additionally, the model depicts the platforms on which the components may reside as well as the
distribution across the environment. The components in the Physical Model may support a

portion of a function or more than one function from the functional model.

Physical Configuration
Figure 40 is an illustration that describes the physical configuration necessary for ReTA
development. The development environment was composed of the following hardware and

software configurations:

Name CPU RAM Operating System Software

Microsoft Transaction Server 2.0
Microsoft Visual SourceSafe
Client 6.0

HP OmniBack II Client

177

WO 01/09792 PCT/US00/20549

Name CPU RAM Operating System Software

RETASRV2 Windows NT Microsoft Visual SourceSafe
(4002) MB Workstation 4.0 (SP4) Server 6.0
HP OmniBack II Client
RETADBI1 P-300 | 128 Windows NT Server 4.0 | Oracle Enterprise Edition 8.04
(4004) MB (SP4) HP OmniBack II Client
RETADEV1 | P-300 | 96 Windows NT Microsoft Transaction Server 2.0
(4006) MB Workstation 4.0 (SP4) Microsoft Personal Web Server
4.0
Microsoft Visual SourceSafe
Client 6.0
Microsoft Visual J++ 6.0
Microsoft Visual C++ 6.0 -Tools
Only
Microsoft Internet Explorer 4.01
Oracle 8 Client
Build Model
5 Figure 41 illustrates the application & architecture configuration for a typical ReTA Build

environment 4100. Each development workstation 4102 should be configured to provide
systems management, configuration management and systems building support. In this model,
all architecture and application components & services reside on the developer workstation. This
allows the developer to design, build, debug and test independently of other developers.

10

Assembly Test Model

Figure 42 illustrates the application & architecture configuration for a typical ReTA Build
environment 4200. In this model, the testing workstation 4202 is configured to provide

15 presentation services by way of an HTML 3.2 & JavaScript 1.2 compatible web browser. The
web/application server 4204 1s configured with the current assembly test versions of ReTA

application and architecture components.

178

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Security Management Architecture

Overview

The ReTA Security Management Architecture includes security issues, concerns and
recommendations associated with Net-Centric Computing. The Security Management
Architecture deliverable is used to illustrate the potential security implications. The ReTA
Security Management Architecture portion of the present description is divided into three main
portions in order to encompass security requirements for Development, Execution and Operation

Architecture.

Development Architecture Security Management

Preserving security of information as it travels across the Internet, or even your own intranet, has
become increasingly complex. The Internet is a public resource accessible worldwide, and is
built on a foundation of inherently insecure technologies. Information which is available across
the Internet is becoming more and more sensitive as business continue to deploy to the Internet.
Implementing effective security in our new Net Centric computing environments presents some
challenges without a doubt, but not insurmountable ones. By designing security into your Net
Centric solution, and implementing the appropriate application, infrastructure, and procedural
controls, security can be appropriately aligned with business risk. See Figure 43, which

illustrates an IDEA Framework 4300 with components in scope ReTA Phase 1.

Everyone today is talking about Net Centric security. Keeping up with all of the security issues
surrounding Net Centric technologies is more than a full time job, it has become a full time
obsession. When designing a Net Centric solution, security is always at the forefront of
everyone’s mind, but what are the important things to consider? How do I know that I’ve
addressed all the appropriate questions? How may my solution affect the security of my
computing environment? How may that security impact my business? This paper may answer
these questions, providing an overview of “things to consider” when designing a Net Centric
solution. It may not attempt to provide detailed technical solutions, but it may navigate one to

the right path to find that information.

179

10

15

20

25

30

WO 01/09792 PCT/US00/20549
Impacts

Security Impacts

There is no question that the trend toward Net Centric computing may impact the traditional
computing environment. Systems are much more distributed, and applications are being used by
a larger number of people to reach new objectives every day. Along with all of these changes
come significant security impacts. So what is it about Net Centric computing that can lead to

security problems?

First of all, the Internet is a public resource. Traditionally our computer systems were only used
or accessible by a small audience which we knew and could control. Now our computer
environment is linked to the Internet, which is accessible to virtually anyone who has the time
and the money to invest. While most of these people have good intentions when it comes to
using your resources, some have an evil purpose. Threats can come from many sources: teenage
hackers, spies from other companies, even curious people who inadvertently cause damage. The
public nature of the Internet also increases the ability of these malicious individuals to
collaborate and recruit others, thus strengthening their cause. The Internet contains a wide
variety of information that people are interested in, from public information resources to

sensitive customer databases.

In addition to the very lure of interesting information on the Internet, there are vulnerabilities
inherent to Internet technologies which can make that information more easily compromised. In
fact, the original intent of the Internet was to share information, not to be used as a business tool.
Security weaknesses are widespread and present in nearly all Internet related technologies. The
very communication protocol used, TCP/IP, was designed with few provisions to protect the

security of the data packet.

Of course, security problems weren’t created with the Internet; many of our standalone computer
systems have the same types of security exposures. However, the global nature of the Internet
now transfers these insecure services rapidly around the world. Weaknesses that before could
only have been exploited by a small number of users with access to the system, can now be
exploited by virtually anyone. These breaches are also now publicized to the entire Internet

community. For example, many high profile web pages have recently been attacked, including

180

10

15

20

25

30

WO 01/09792 PCT/US00/20549
NASA, the Department of Justice, and the CIA. Although these attacks were limited to

vandalizing their web pages, (as far as we know), the publicity generated from the attacks has
raised questions about the security of their systems in general. Internet access not only made

these attacks possible, it also publicized the attack around the world.

This rapid transfer of information raises an issue regarding the dynamic nature of today’s
environment. The Net Centric environment includes traditional long term users of systems, as
well as one time users who require instant logons and immediate connections. Security may
stand in the way of business objectives if it is not flexible and dynamic enough to adapt to ever-
changing business and technology requirements. In addition, new threats and risks evolve
quickly in the Net Centric environment, and security programs may become ineffective and

obsolete if not reviewed and updated regularly.

The Internet also brings with it a whole new set of legal issues, and topping the list are potential
privacy implications. Businesses can now track your every movement on the Internet, from your
email and IP addresses, to each site you surfed to and which ad one clicked. Does this constitute
an invasion of your privacy? One may have freely given other businesses sensitive information
aboutonerself, such as one’s credit card number or one’s social security number. To what lengths
must that business go to in order to protect that information? If and when that information is
compromised, who is liable? What is the penalty for breaking into a computer to which one is
not granted access? What if one just looks around and does not cause any damage? These
questions are just beginning to be addressed as cases are introduced in court and legislation is

passed in Congress. But we are a long way from finding all the answers.

All of these security concerns have been widely publicized in the media, to the extent that the
public now perceives security as a major issue on the Internet. These concerns may have the
effect of impeding the success of an Internet solution, or even delaying a business decision to
deploy to the Internet. Even as new technology emerges to solve many Internet related security

problems, public opinion, legitimate or not, may still impact the success of any Internet solution.

Application Impacts

There are obviously a myriad of security implications from the move towards Net Centric

computing. The Internet, and the growth of local intranets, has made our computing environment

181

10

15

20

25

30

WO 01/09792 PCT/US00/20549
look much different today than it did five years ago. So what does this mean? When designing a

business solution in this new environment, security implications have to be considered at every

step of the process. Application design presents a specific set of security related challenges.

Application Design

The underlying theme in application design, from a security perspective, is to design in security
from the beginning. Talk to Information Security representatives, and even internal auditors
early on, and get their approval for your design. This can save retrofitting costs in order to
achieve an adequate level of security, and may also end up giving one a more secure solution by

integrating security right into the design of the application.

Once one is considering security, what is the best way to design it into your application? Even
the most pompous security expert should recognize that your primary goal is not to build an
application with really good security, it is to build an application that achieves a specific business
goal. The challenge is to integrate security into that business goal so that it may not impede
efficiency. Often security is tacked on a the last minute and impedes performance in the

application, such that users may bypass security if possible, and curse it if not possible.

The next step is to consider the basic parameters of your application and how security applies to

each of them.

Who needs access to the application, i.e. what is your user group? Is it all Internet users or some
authorized subset? Does one only have one type of user or are multiple levels of authorization

required?

Where may your application may be accessed from, the Internet or your intranet? How much

control do one has over the security of that location and PC?

What is the confidentiality of the information your application may be transmitting or accessing?
What implications would there be if that information fell into the wrong hands?
Once these questions have been answered one can begin to choose the appropriate tools or

mechanisms to provide an adequate level of protection.

182

10

15

20

25

30

WO 01/09792 PCT/US00/20549

When designing your application, consider implementing the minimum level of functionality and
authority required to meet your business goal. This is often contradictory to basic instinct when
designing a new solution, but consider the potential implications. If your application does not
need to allow users to execute arbitrary operating system commands, don’t let it. If your
application does not need to run as root or supervisor, don’t let it. Designing for minimum
functionality may obviously be a tradeoff between business and security benefits, but in general,

it is better meet the level of authority required, not exceed it.

Security Integration

When designing security into your application, remember that one may not have to re-invent the
proverbial wheel. Most information security groups may have corporate security strategies with
which one can integrate. For example, an enterprise wide authentication scheme may be in use,
with which one can integrate for remote access. Or there may be a single sign-on product with
which your application may need to be compatible. Even if there is not a corporate security
strategy in place today, consider the direction that the company is moving toward, and provide

for future integration if possible.

Auditing and Logging

Application auditing and logging is often overlooked because it is less than glamorous, but it
does provide security administrators with a crucial tool for monitoring use of an application.
Good logs should be searchable for known or suspected patterns of abuse, and should be
protected from alteration. Logs can monitor a virtual myriad of data, including access times, user
IDs, locations from where the application was accessed, actions the user performed, and whether

or not those actions were successfully completed.

Web Browser Security

While web browsers may not be exactly part of your application design, they are intimately
related to many of the design decisions one may make, such as the programming tools one uses
and the format your user interfaces take. The application programming tools portion of the
description, above, discussed some possible ways a Web browser can exploit application security

flaws. There are also design anomalies within the Web browsers themselves which can be

183

10

15

20

25

30

WO 01/09792 PCT/US00/20549

exploited. Microsoft has fixed many of these flaws in their newest release of Internet Explorer,
but their older versions are still vulnerable. This type of problem demonstrates that when
considering integration with the major commercial web browsers, it is important to monitor news
releases for recent security flaws. One may want to consider requiring your users to use the

latest, most secure version of their Web browser if possible.

Infrastructure Impacts

Today’s Net Centric computing infrastructure requires a complex mix of operating systems, web
servers, database servers, firewalls, management tools, routers, and underlying network
components. Each different component of this infrastructure has specific security considerations
which need to be addressed. These requirements are always growing and changing, as are the
solutions which can be implemented. When designing this complex infrastructure, similar to

designing an application, security should be considered early on in the process.

Operating System Security

It is crucial to choose an operating system (OS) which can provide adequate security; and once
chosen it is just as important to configure that OS in a secure manner. Any OS must address the
same basic security questions, such as restricting permissions for what each user can access,
limiting what actions each user can perform, providing monitoring and logging of user access,

and restricting what services are available. Windows NT is without exception.

NT has been publicly available for over three years now, and while security issues may have
appeared, fresh out of the box NT is a very secure OS. But there are still steps to take to improve
this security. Configure your OS securely from the start, implement tools where appropriate, and

continue to monitor the bulletin boards and vendor announcements for problems as they come

up.

Web Server Security

Many of the OS security guidelines apply to web servers as well. Regardless of your choice of
web server, it is important to configure that server securely. The server should be set to run

under an ID which is used only by that web server, and never as root. Directory permissions

184

10

15

20

25

30

WO 01/09792 PCT/US00/20549

- should be assigned according to a need to know philosophy, and your portion of the present

description root (where published information is stored) should be different from your server root

(where server binaries and configuration files are stored.)

In addition to these somewhat generic operating system security tips, there are several features
which are specific to a web server which could create security exposures. In general, if one
doesn’t need a feature, don’t turn it on; and if one does need a feature, make sure the potential
security risks are understood. Server side includes allow HTML authors to place commands
inside their portion of the present descriptions that cause output to be modified whenever that
portion of the present description is accessed by a user. Hackers can take advantage of server
side includes if they are able to place arbitrary HTML statements on your server and then execute

them.

Legacy System Integration

In order to truly take advantage of the power of Net Centric computing, new technologies need to
be mixed and integrated with existing systems. More sophisticated intranets and extranets often
require on line transactions or database inquiries of legacy environments which may not have the
level of granular control required for secure access. In some cases, it may be possible to mirror
the information from an existing platform to a more securable web server or database. This may
protect the integrity of your sensitive systems while still providing the access for your on-line
transactions. If a mirror system is not possible, a thorough audit should be performed of the
security of your legacy system, to ensure that one is providing access to only those resources

which are allowed.

Network Security

Now one has chosen your access control mechanisms, configured your OS, and it’s time to
connect to your network. This action may strike fear into the heart of many network and system
administrators, because this may create one more way network security can be compromised.
Contrary to popular belief, it is possible to establish and maintain effective network security.
The first step is to understand what all of your network components are, and how they are
connected. By examining your network topology, one can determine where all of your access

points are, and (hopefully) the way that access to them is controlled. If remote access directly

185

10

15

20

25

30

WO 01/09792 PCT/US00/20549
into your network is required, the use of your modems must be appropriately restricted. Don’t

rely on knowledge of the phone number or a single static password as effective security controls.

In addition to identifying one’s access points, one should examine the path that one’s traffic
follows, and determine if that path is vulnerable to snooping and attack. One of the more
infamous hacker gangs, the Masters of Deception, once infiltrated a major telecommunication
provider’s data network, and had access to the corporate secrets of hundreds of companies as
information was sent across the lines. Even if your data is just traveling over internal links, a
network management station could still be monitoring traffic, or a sniffer could illicitly be
installed anywhere along the line. There are two major security controls that mitigate these risks:
firewalls to restrict who can access your secure network, and encryption to protect your data as

it’s sent over an insecure network.
Firewalls
Firewalls are often thought of as THE answer to network security. There is a common

misconception that purchasing and installing the “best” firewall available may automatically

protect your network from the Internet. This is not necessarily true. In fact there are many

factors to consider when choosing a firewall, and when placing and configuring that firewall in

your environment. First of all, consider the type of network connection your are trying to protect.
Firewalls are not only used to separate your intranet from the Internet, they can also be used to
segregate a particularly sensitive or particularly insecure area of your intranet from the rest of
your network. Depending on the services one wants to provide your users and what risk one is

willing to accept, your choice of the “best” firewall implementation may change.

There are many different components of the firewall architecture to consider.

Packet Filtering Systems selectively route packets between internal and external hosts by either

the type of packet, the originating host address, or the target host address. Packet filtering is

typically implemented on a specific type of router called a screening router.
Proxy Services are specialized applications or server programs that run on a firewall host, which

take users’ requests for Internet services (such as ftp and telnet) and forward them, as appropriate

according to the site’s security policy, to the actual services. The proxies provide replacement

186

10

15

20

25

30

WO 01/09792) PCT/US00/20549

connections and act as gateways to the services. For this reason, proxies are sometimes known

as Application Level Gateways.

A Bastion Host is typically a dual-homed gateway with one interface on the internal network and
one on the external network. It can be used to run proxy services or perform stateful packet
inspection. The bastion host typically acts as the main point of contact for incoming connections |

from the outside world, including email, ftp and telnet requests, and DNS queries about the site.

A Perimeter Network or DMZ refers to a small network between your internal network and the

Internet which provides an extra layer of security. Any publicly available resources one
provides, such as a Web server or an fip server, may typically be located in the DMZ, and

restricted from one’s internal network by a firewall machine or bastion host.

There are many commercially available firewall products that provide some or all of these
features. Which product or firewall configuration is right for one may depend on what one’s

network looks like, what one is trying to protect, and what your users require.
Event Monitoring

Before an incident can be responded to, it must first be detected. In the Net Centric environment,
your firewall, routers, web servers, database servers, applications, and network management tools.
must be monitored to ensure they are working correctly and no violations have occurred.
Monitoring packages can be configured to take different actions on a series of specified events,
such as sending an email message if a log fills ﬁp, flashing an icon on a system administrator’s
screen if someone’s user ID is disabled, or paging a network administrator if a link to the ISP
goes down. Once this initial notification takes place, there should be escalation procedures to
decide whom to notify next. For example, if the link to the ISP goes down, how long does one
wait before notifying one’s manager? one's users? In addition, not all monitoring needs to be
reactive. There are proactive monitoring tools available which can detect patterns of abuse or
failure which may lead to larger problems, and can help one detect those problems before they

affect your users.

Backup and Recovery

187

	Abstract
	Bibliographic
	Description

