PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/38585
GO6F 17/30 Al

(43) International Publication Date: 3 September 1998 (03.09.98)

(21) International Application Number: PCT/AU98/00116 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 25 February 1998 (25.02.98) GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,

LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,

MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,

(30) Priority Data: TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO

PO 5274 25 February 1997 (25.02.97) AU patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, DE, DK, ES, FL, FR, GB, GR, IE, IT,

(71) Applicant (for all designated States except US): McLAREN LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CL,
SOFTWARE TECHNOLOGY PTY. LTD. [AU/AU]; 36 CM, GA, GN, ML, MR, NE, SN, TD, TG).
Beachway Avenue, Maslin Beach, S.A. 5170 (AU).

(72) Inventor; and Published

(75) Inventor/Applicant (for US only): LINGSTADT, Axel With international search report.

[AU/AU]; 36 Beachway Avenue, Maslin Beach, S.A. 5170

(AU).

(74) Agent: MADDERNS; 1st floor, 64 Hindmarsh Square, Ade-

laide, S.A. 5000 (AU).

(54) Title: APPLICATION MESSAGING SYSTEM

(57) Abstract

An application messaging sytem (AMS)
(Fig.3) is provided as a means to simplify
access to and modification of a server application
located on a server by a client application in a
client/server computer environment. The AMS
comprises a client end application interface (Fig.2)
which operates between the client application
and the client/server environment to generate
predetermined requests. The AMS also comprises
a server end application interface to operate
between the client/server environment and the
server application to receive the requests. A
further element of the AMS is a Business Function
module in the server end application interface
which translates the received request into generic
data identifiers. Those data identifiers operate
the server application and also receive the results
of the request and pass them in a predetermined
format to the client end application interface for
presentation to the user as result data. The AMS
can be arranged as a first Client/Server database
access mechanism which may itself access
(Fig.2), via a further AMS, a second Client/Server
database access mechanism, and so on as required.
The AMS may also be used to control and access
a Programmable Logic Controller in a process
control environment. The AMS is modular and
easily developed, modified and added to without
affecting its functionality or ability to work with
older versions of requests and replies.

<N
AMS Interface
=~z
Application Message
Racelver (AMR)
I 1
Application | | Application | | Application Message Application
Process 1 || Process 2 | | Process n interface
]
Ey.t.l.rz%s.s.f.qest.len!
— [BF1|[BF2| [BF3 En BF|
Database Access Functions
Database Access
Functions
]
Database
Database Management
System

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
Uz
VN
YU
VA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/38585 PCT/AU98/00116 —-

1
APPLICATION MESSAGING SYSTEM

This invention relates to Client/Server computer systems and in particular to a
method and means for simplifying access to and modification of information

contained in an application located on a Server by a Client application or user.

BACKGROUND

In a Client/Server environment most database applications have a resident program
which translates the generally natural language query of the user at the Client
terminal into a query language statement such as for example a SQL statement. The
SQL statement generated by the Client end of the Client/Server program is sent via
the network to the Server for processing by the database. The Client program must
have detailed knowledge of the database and in particular its tables and attributes.
Problems arise if the database administrator changes the database. For example, the
administrator may change the table structure of the database which then necessitates
that every Client program be modified to accommodate the change. Typically also
the SQL statement generated at the Client is changed so that it remains appropriate

to the changed tables at the Server.

Thus it can be seen that Client applications have a dependency on not only their
particular environment but also on the remote database at the Server. This built-in
SQL support function and the Graphical User Interface (GUI) through which the user
interfaces with the SQL code at the Client end, are preferably provided by the
respective database manufacturer because of this interdependency. However, this
increases support costs by requiring program maintenance of the Client program by
database programmers who are skilled both in the Server database as well as the
Client GUI environment. Costs are also affected by the manner in which these
applications are developed since it is typically very difficult to program completely
independently blocks of operative code hence testing is on a large scale and very

dependent on all the code performing at the one time.

WO 98/38585 PCT/AU98/00116 =

2
It is also a characteristic of Client/Server systems that they are developed for only

one type of Client Application which communicates with only one type of Server
Application. Any other Client Application which is required to communicate with an
existing Server Application must typically be extensively revised in order to

effectively interact with the existing Server Application.

It is further a characteristic of Client/Server systems that any maintenance work on

either the Client or Server Application requires the Application to be re-compiled

and re-linked.

Furthermore users are only allowed to run one version of the Client Application,
which means that every time a modification is made to the Client software or the
Server Application every Client must simultaneously receive the updated version of

the software.

Yet further, because of the very great interdependency of the code written for the
application, even simple requests for information by the user can take a long time to

be processed because of the intensive use of administrative code.

These preceding problems contribute to the cost of purchasing and maintaining

modern Client/Server Applications.

BRIEF DESCRIPTION OF THE INVENTION
The following brief description of the invention identifies its major elements which
are depicted in Figures 2 and 3. A more detailed description of an embodiment of

each of the elements follows.

In its broadest form the invention comprises a collection of software modules some
resident on a user’s PC and some resident on the Server arranged so that a well
defined interrelationship between the various modules simplifies access by the user

to the Server Application by providing a flexible and efficient messaging system.

WO 98/38585 PCT/AU98/00116 -
3

For convenience the invention will be referred to as an Application Messaging

System (AMS) and for the purposes of this description will use a database as an

example of the Server Application.

The AMS model has two major software modules, each referred to as an Application

Interface (Al), one located in the Server and one at the Client.

In an embodiment of an AMS Client / Server system an AMS Client Application
Interface sits between the network and the Client Application, where the Client
Application is most likely a PC based program which is developed using PC based
development tools. The AMS Server Application Interface sits between the network
and the Server Application which receives one or more messages from any of the

Clients.

A message will typically consist of a request to retrieve or modify data on the
typically very large and complex database resident on the Server. The Application
Messaging System removes complexity from the Client software by forcing the
application designer to create a variety of predefined unique requests. This approach
is the first of a number of design decisions which greatly reduces the complexity of a
Client Server System using the AMS. The effect of this arrangement is to mask the

complexity of the Server Application from the Client Application and a user.

The request is bundled into a message which has a format suitable for
communication across the Network without the need for the Client or the Server

Applications to know anything of Network protocols.

Each request is one of a number of predetermined requests designed by the Server
Application developer and the code associated with it is loaded at the Server end.
During the lifetime of the Application different requests and their associated

Application code can be added as well as modified. In particular, any modified

WO 98/38585 PCT/AU98/00116 =
4
request becomes a further version of the original request and each of the old and new

version/s of the request are useable independent of each other.

The Server AMS Application Interface (Fig 3) receives each request and initially
performs various administrative and traffic control operations on the message.
Firstly the Server AMS Application Interface applies the request to a validity check
and then to one of a plurality of Application Process modules. The Application
Process module checks the type of message which is contained within the request
and then passes the request onto a predetermined function module according to the
type of message it is. This is the point at which the Server end of the AMS hands
over the relevant data. The module the message is passed on to is referred to as a

Business Function.

The chosen and thus appropriate Business Function reads the request and performs a
query of the database via the Database Access Function module which is a part of the
Server Application. An example of such a request might be to retrieve all accounts
statements for a given account number. The Business Function uses generic data
identifiers not database specific data identifiers thereby maintaining a programming
buffer between the database and the AMS. The use of generic data identifiers isolates
the Business function from inevitable changes in the database and vice versa
requiring only the Database Access Function to be re-compiled and re-linked when

necessary.

The Business Function also collates the requested data, and because of the
predetermined nature of the request and the likely form of the reply, the outgoing
format of the data is also predetermined, but of course, the various values of the

requested data are specific to the fields being queried.

The Business Function uses the AMS Application Interface to translate the data into a

message reply to assist the Client Application or user requesting the data. This reply

WO 98/38585 PCT/AU98/00116 =
5
is then communicated via the Network back to the AMS Client Application and then

presented to the Client Application or user.

In a broad aspect of the invention an application messaging system for operating
between a client application and a server application in a client/server environment,
comprising,

a) a client end application interface which operates between said client
application and said client/server environment to generate one of a plurality of
predetermined requests having variable data based on a selection of said request and
data by the client application, and

b) a server end application interface which operates between said client/server
environment and said server application to receive said request and said variable
data for translation into generic data identifiers suitable for operating said server
application and for receiving from the server application the results of said request as
result data and passing said result data as a reply to said client end application

interface for presentation to said client application as a reply to said request.

In a further aspect of the invention the server end application interface further
comprises a business function module for each of said predetermined requests each
said module having a version identifier which only responds to like versions of said
predetermined requests having a respective version identifier; wherein said business
function module comprises the use of generic data identifiers to control the operation

of said server application and provide said variable data to said server application.

A specific embodiment of the invention will now be described in some further detail
with reference to and as illustrated in the accompanying figures. This embodiment is

illustrative, and not meant to be restrictive of the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig 1 depicts a typical Client/Server environment;

Fig 2 depicts a simplified block diagram of an Application Messaging System;

WO 98/38585 PCT/AU98/00116 =
6

Fig 3 depicts a detailed message flow diagram of the AMS Server Application

interacting with a database management system on a Server;

Fig 4 depicts steps 1 to 3 of the AMS Server Application;

Fig 5 depicts steps 4 to 6 of the AMS Server Application;

Fig 6 depicts steps 7 to 8 of the AMS Server Application;

Fig 7 depicts step 9 of the AMS Server Application;

Fig 7.1 depicts a variation of step 9 of the AMS Server Application dealing with a

PLC access function;

Fig 8 depicts steps 10 to 14 of the AMS Server Application; and

Fig 9 depicts step 15 of the AMS Server Application;

DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION
Fig 1 depicts the major components of a typical Client/Server environment,
comprising a communications Network for interconnecting computers, a Client
Application Al and its associated Client End Application Interface (Client API)
running on Computer 1, and a Server Application B and its associated Server End

Application Interface (Server API) running on Computer 4.

The functional and technical requirements of Client/Server environments are well
known and will not be discussed here in any great detail. However, it will be
understood that both the terminology and the typical hardware upon which the
environment described herein is based on current knowledge and this should not

restrict the manner in which the invention may be applied in the future.

Typically Client/Server environments use Personal Computers (PC’s) as the Client
computer. A Client Application program controls the way in which the user of the
PC interacts with the Server and the program resident on it. Most commonly a
Graphical User Interface (GUI) is used to present the Application to the user of the
PC. The Server Application is often a database which is preferably centrally located,
adapted to allow multiple seemingly simultaneous access from many users, access

control and provide adequate back up procedures for the protection of the valuable

WO 98/38585 PCT/AU98/00116 -
7
data stored in the Server associated with the Server Application which for the
purposes of this description is a database but which could be any other type of
application..

Fig 1 also depicts the simplest configuration of an AMS Client and Server
arrangement where the Client API is the AMS Application Interface and the Server
API is the AMS Application Interface; while Fig 2 depicts one possible configuration
of AMS Client and Server Applications with added complexity. As depicted, the
AMS can be used to allow multiple different AMS Clients to interact using multiple
different AMS Server Applications distributed over a network with multiple PC’s
and Servers. Not shown is the configuration wherein multiple AMS Client
Applications are installed on a PC working with multiple AMS Server Applications
installed on one or more Servers. The topology disclosed in Fig 2 and discussed
above allows a request to be passed to more than one Server Application to obtain
the necessary ingredients to populate a reply. Thus a retail database may need to
access a wholesaler’s database which may need to access a manufacturer’s database

to provide the required data to fulfil a predetermined user request.

AMS REQUEST/REPLY MESSAGE

AMS Client and Server Applications communicate via the Network using specific
request and reply messages designed by the Application developer. Each message
sent contains attributes only relevant to the developer’s needs to satisfy a particular
user request. The technical detail of communicating messages over the Network is

not important to the Application developer and Application user.

The type and content of a reply message will vary based on the parameters within
the request message. For example, a Client Application may receive different reply
messages based on the nature of the request. Furthermore, request and reply
messages are version controlled. Version control provides a way for messages to be

flexible and more importantly allows more sophisticated messages based on the

WO 98/38585 PCT/AU98/00116 -
8
latest arrangements to be processed as well as older messages. Version control will be

described in greater detail later in the specification.

Over time, as business requirements change new requirements generally require the
user to acquire greater quantities of detailed information. The request and reply
messages of this embodiment of the invention support new requests without losing

the ability to use old requests.

To obtain a high throughput of customer information between Client and Server
Application, the AMS has been designed to request and reply with arrays of records

in one message.

A message will be created using the message name, method, version number and the
number of attributes the message record will contain. The Client Application will
then populate the message using the attributes row number and rank number as
two-dimensional array indicators. The Client Application (also called a source
application) will then send the message to the Server Application (also called a
destination application). The Server destination application will read the message
and is able to extract the number of records contained in the message and
subsequently able to read all its records and attributes. If the Client source
application has not populated an attribute within a message record then the Server
destination application will receive an indicator, for example “Value is Null”, when

trying to read the attribute from the message.

This behaviour compresses non-related request data records into one request
message, which can then be processed in one sequence by the Server application and

sent back as one array of result records.

AMS REQUIRED MESSAGE ATTRIBUTES
Every request and reply message is preferably identified by a unique identifier

element comprising preferably its name, method and version. The following are by

WO 98/38585 PCT/AU98/00116 -
9

way of example only, and are merely preferable for the embodiment described.
Other like parameters may be required or others may be created for different
situations. Preferably a message in this embodiment comprises the following
attributes:
e Message Name

The message name is a character string
¢ Method (Type)

The method is an integer number
o Version Number of the message

The version number is an integer number.
o Number of Attributes in the message record.

The number of attributes is an number.

AMS DATA TYPES

The following attributes including data types and data sizes are preferably available

in the AMS Request/Reply Message:

e Character String (attribute type)
A message variable of type Character String is limited to 32,000 bytes.

¢ Integer (attribute type)
Integers of 8 bit, 16 bit, 32 bit and 64 bit size can be supported (attribute size). The
support of certain integer sizes is largely dependant on the capabilities of the
Client/Server computers.

¢ Float (attribute type)
Floating Point variables can be supported up to 128 bits in size, but is not
restricted if larger sizes should become available. Here again, the data type is
dependent on the computer (CPU) performance and architecture.

e Binary (attribute type)
A binary variable is only limited by the attribute “size”. Based on the host CPU
instruction “size” the binary value could have an integer size of 64 bits, but is not

restricted if larger sizes should become available.

WO 98/38585 PCT/AU98/00116 -
10

AMS CLIENT APPLICATION

In a typical exchange of messages any request message issued by the Client

Application is sent to the Server Application after which the Client Application

performs other tasks as required. The Client Application does not need to wait until

the reply message is received. In fact after a request message has been sent, the Client

Application may immediately issue another request message, independent of the

first request. Noting that the AMS Client API merely interfaces between the Client

Application and the Network.

The Client Application periodically or on a random basis enquires with the AMS
Client API as to whether a reply message has been received. These enquiries are

conducted independently of the user, the Client Application GUI and the Server.

AMS SERVER APPLICATION

Referring to Fig 3, the various AMS modules within a Server are depicted, namely
the AMS Interface module and a Business Function module. The Database Access
Function module is more properly associated directly with the Server Application.
The Server also contains a specific Server Application but could also contain more
than one Server Application, for the purposes of describing this embodiment, a
database type Server Application is used which could be Oracle, Ingres etc. It will
also be noted that the database used in the embodiment is a relational database but

other types of database could be used (eg Object Oriented, Hierarchal etc).

During the initialisation phase of the Server Application the Application Message
Receiver module in the AMS interface loads a volatile distribution table of
predetermined and allowable message names, methods and the Application

Processes allowed to process message name and method combinations.

The AMS Server API receives request messages from AMS Client API’s. The request
message is first security checked by the Application Message Receiver before any

further processing of the request is commenced. After the security checks have been

WO 98/38585 PCT/AU98/00116 =
11

successfully completed, the AMS Server Application Interface invokes the
appropriate one of a plurality of Business Functions related to the request message
attributes through an appropriate Application Process which is determined by the
type of request as identifiable by the message name of the request. The appropriate
Business Function accepts the request parameters and performs a predetermined set
of instructions since it is written specifically for the name, method and version of the
request message it receives. Each required Business Function has been designed by

the Server Application Developer.

In one example the instructions will slavishly map the request message into generic
database access commands based on the content of the message and its attributes. In
a simple request, the user may want to retrieve all the account statements for a given
account number, whereas a more complex request may involve calculating the
annual maintenance cost of a production line. Each Business Function only contains
a very specific set of instructions thus simplifying the creation of a Business Function,

one for each desired request and later versions thereof.

Consequently the Business Function module returns to the user a reply message
containing the requested data but preparation and transmission of the reply message
is performed by the Application Messaging System located within the AMS Server
Interface while access to the database, via Structured Query Language (SQL)
statements for example, is performed by a Database Access Function module. There
is only one Database Access Function module to service all of the different Business
Functions. Since the Business Function contains no network code and no database
specific code, Business Function code can advantageously be compiled and linked,
independent of all network, database and other code. SQL is but one of many first
level query languages which sit above a database and provide a first level of
abstraction above the in depth structure of the specific database used as a Server

Application.

WO 98/38585 PCT/AU98/00116 -
12
The AMS interface includes a control module (not shown) which monitors the
performance of the AMR and the Application Processes. The control module also
replies to any outstanding request message where the standard means of responding
to a request has failed. If, for any reason, the AMR or any of the Application
Processors should fail, the control module is tasked to recover these processes to
their original state. Details of all the other administrative tasks of the control module

are not discussed since they will be appreciated by those skilled in the art.

SECURITY FUNCTIONS OF THE SERVER AMS

Referring now to Fig 4, the Application Messaging Receiver provides security based
on information provided with the request. This information can be coordinated with
the information provided when the user logs on to the Client PC which is
communicated to the Server. Thus the Server not only contains the software to
perform network related security checks but also the software to perform checks
using the resident Application messaging System modules and in particular the
Application Messaging Receiver (Step 1). After the “user” has successfully logged on
to their PC and the AMS has been updated with information in relation to the User,
the Application Messaging System controls by way of its predefined program (Step
2) what type of attributes the request messages has and that the user is permitted to

issue request messages (Step 3).

It should be noted that the “user” could also be an autonomous Client Application
(for example a PC acting as an agent for a user, it could also be another Server
Application acting on the command of a request received by it). The ability of the
AMS to be configured in this way provides flexibility and strength to its application

in the real world.

Thus, the AMS is arranged to check every request message sent to the Server
Application for validity, by checking the user and the type of request they are
permitted to send. A user issuing an unauthorised request message will not receive a

reply containing relevant information since their request will be unable pass the

WO 98/38585 PCT/AU98/00116 =
13
required security checks and therefore will not be able to access the Server

Application.

The AMS modules in particular the Application Message Receiver verifies the
authentication key of the request message against a volatile authentication key table
as described briefly in Step 2 of Fig.4, so as to provide security functionality which
goes beyond the usual user name/ password model. In certain applications digital

certificates could be received in lieu of other types of authentication data.

In a preferred arrangement the AMS modules provide the Server Application with
security tables which contain

all user names and passwords

all user groups

all request messages and their methods

all user group related request messages and methods

all user related request messages and methods.

At run-time, the Application administrator will be able to insert/ modify/delete
the names of request messages and their methods
the user names and passwords
the user groups
the request messages and methods per user group

the request messages and methods per user

Thus the required AMS modules are able to check the veracity of a logon request
message against the contents of the security database. If the check is successful then
all request messages and methods the user is permitted to use are inserted into a run-
time authorisation table. The Server API issues an authentication key for this newly
created session and inserts this authentication key into the logon reply message and

into the volatile authentication table.

WO 98/38585 PCT/AU98/00116 -
14

Subsequent request messages are evaluated against the authentication key and

against the messages and methods recorded for this user in the volatile authorisation

table (Step 3 of Fig 4). If any of these evaluations fail, the request will be rejected and

the user may or may not be advised and an audit log may or may not be kept.

These functions are part of the Server API and are completely transparent to the

Application developer and user.

LOGON BY THE CLIENT APPLICATION USER

When the user of a GUI based Client Application on a PC, wishes to retrieve
particular data from a Server Application, typically the Client Application requiring
access to the Server Application will issue a message to the Server Application. The
message preferably contains the Client’s user name and password. Note that if
required the Network may invoke encryption and decryption as required but this is
done transparently by the Network and does not require the AMS Client or Server
APIS’s to know what is being done.

The Server API receives the message, evaluates the user name and password and
sends a reply message to the Client APIL. The reply message may preferably contain
an authentication key to be used for subsequent request messages by that user and
Client Application. The authentication key is transparent to the Application
developer and Client Application/user. Once the Client Application receives the
reply it is able to send various request messages to the Server (Steps 1, 2.and 3 of Fig

1).

THE CLIENT REQUESTS INFORMATION

The Client Application issues a request message RQ 1. This request message RQ 1
has been designed by the Application developer. In broad terms the Client
Application fills or populates the attributes requested in the message RQ 1 and then
sends the message, via the AMS Client API, to the AMS Server API. The information

provided may be the account number of a customer or the contact details of a new

WO 98/38585 PCT/AU98/00116 =
15

customer. The AMS specific attributes of the request message such as Authentication

Key and User identity are filled in by the AMS Client API without interaction with

the Client Application or the Client Application/user.

CLIENT APPLICATION DEVELOPMENT

The Developer of the Client Application can select the development tool of their
choice to present data and request query data collection fields in the most
appropriate way to the Client Application or user of the Client Application. During
the development of the Client Application, the layout of the request and reply
messages will be established . The Client Application is not concerned with how the
data is extracted by the Server Application, or, whether the data is extracted from a
different kind of resource such as a Web Site, word processing document field,
digital record, digital multimedia field, CD Rom, or other Server Application
resident locally or remotely etc. The implementation of data exchange between the
AMS Client API and Server API modules is completely hidden from the Client
Application. The Client Application initiates a request message and expects a reply

message containing the requested information.

Any Application development tool can be used to develop a Client Application. The
developer of the Client Application adapts to the predetermined request and reply
messages of the AMS Server API and its Business Function Module. The developer
merely requests information from the Server by issuing a request message to the

Server using the appropriate AMS message.

CLIENT APPLICATION MAINTENANCE

Most likely the Client Application will be implemented using a PC specific
Application development tool to take advantage of the rich resources of PC
Graphical User Interface (GUI) development tools. The AMS Client API will also
contain the User designed messages and code to request and receive messages.
Changes to the Client Application (and GUI) only affect the PC on which the change
is taking place. Changes to the “user” designed message affect only the Client

WO 98/38585 PCT/AU98/00116 =
16

Applications which require these changes, and since requests and reply messages are

version controlled, other Client Applications which are not affected do not have to

change since they are still able to operate using messages having older version

numbers. However, each new request will require a new Business Function.

SERVER RECEIVES A REQUEST MESSAGE

Referring again to Fig 4, the AMS Server API receives the request message RQ 1
which firstly decodes the message (Step 1) and then checks the authentication key of
message RQ 1 (Step 2). If the authentication key is valid the AMS Server API will
check whether this particular user is authorised to issue request message RQ 1 (Step
3). Referring now to Fig 5, if the check is successful, the AMS Application Message
Receiver allocates the message to an Application Process (Step 4) which in turn
choses a particular Business Function RQ 1 (Step 5) by extracting the message name

from the request message.

SERVER ACTIVATES A BUSINESS FUNCTION

Referring to Fig 5, the Business Function associated with RQ 1 will service the
request made by message RQ 1 (Step 6). The Business Function has been designed,
coded and implemented by the Server Application developer. The Business Function
is stand alone code, compiled and linked independent of the Server Application, in
this embodiment a database, and the AMS software modules. The Business Function
(Step 7 of Fig 6) reads the attributes of request message RQ 1 (Step 8) and processes
the data contained in the message (Steps 9 to 9.2 of Fig 7). The Business Function
communicates to the Server Application database using Database Access Functions.
The Business Function processes its own logic reading and modifying data (Step 9)
which will invoke the Database Access Functions (Step 9.1) to translate generic
request parameters into DBMS specific statements. In one example and typically so,
those statements are written in Structured Query Language (SQL) statements which
is a specific example of a first level query language (Step 9.2) used by databases to

read, write and modify data within the database.

WO 98/38585 PCT/AU98/00116 -

17

The Business Function also receives the output from the Database Access Function
and thus is able to reply to the request message RQ 1 by issuing a reply message, say
RP 1 to the Message Application Interface within the Server AMS APL.

THE BUSINESS FUNCTION REPLIES TO A REQUEST

The reply message RP 1 has also been designed by the Application developer. The
Business Function instructs the Messagé Application Interface (MAI) a part of the
Server AMS API to create (Step 10 of Fig 8) a reply message to the given request
message which is created by the Server AMS Interface by inserting all transport
related parameters in the reply message (Step 11 of Fig 8). The reply message RP 1 is
populated by the Business Function (Step 12). After the reply message has been
populated, the Business Function instructs the Server AMS API to send the reply
message to the Client (Step 13) and the Business Function will have then completed
its intended task (Step 14). The Server AMS API then sends a reply message to the
Client (Step 15 of Fig 9) via the Network.

In a preferred arrangement, the functions of each Business Function module is
restricted to the particular requirement of a corresponding request message, which
includes:

reading the request message,

processing the request by manipulating data (reading and writing) using
database access functions;

instructing the Server AMS API to construct a reply message;

populating the reply message; and

instructing the Server AMS API to send the reply message.

Simple requests will result in simple Business Functions. More complex requests will

require more functions to be performed by the Business Function.

WO 98/38585 PCT/AU98/00116 -
18

However, a Business Function will perform what it has been designed to do and

advantageously each Business Function is developed and compiled upon demand

and independent of other Business Functions.

The Business Function does not perform:
security tasks;
SQL statements;
Client evaluation tasks;

or any other task which is not directly related to the request.

AMS CLIENT RECEIVES A REPLY MESSAGE

The AMS Client Application Message Receiver (Step 1 of Fig 4) receives the reply
message related to the original request message RQ 1. The AMS Client API reads the
attributes from the reply message RP 1 after which the reply message is deleted.

DATABASE ACCESS FUNCTION DEVELOPMENT

Database Access Functions are the interface between the generic Business Function
and the database specific system calls: for example the performance of a specific SQL
statement to extract specified data from the database. If any Business Function
module requests or modifies data on the database it will call the generic function
name in the database access function library acting not unlike a shared library to the
Server AMS API and the Database Access Functions. The Database Access Function
issues the SQL statements and passes back the information, to the Business Function.
The Database Access Functions are designed by the Application developer

specifically to operate with the chosen database management system.

The Database Access Functions are compiled and linked independent of any other
AMS modules.

WO 98/38585 PCT/AU98/00116 =
19

Any changes to the database table structure will result in code changes in the

database access functions only. The AMS Business Functions are not affected by

these changes.

PLC ACCESS FUNCTION DEVELOPMENT

Referring to Fig 7.1 the Programmable Logic Controller (PLC) Access Functions
Module is the interface between a particular generic Business Function and the
highly specific syntax requirements of a given Programmable Logic Controller. The
Business Function will call a generic function name within the PLC access function
library and will pass the relevant parameters to the PLC access function. The PLC
access function will translate the given parameters into syntax understood by a PLC
which will perform the requested task suitably controlled by the PLC. PLCs are used
extensively in industrial process control. PLCs can also be the source of information,
so that with an appropriate request a reply containing the requested information can
be provided via the PLC Access Function. For example, PLCs can easily count the
number of operations performed thus the number of products handled by various

machinery can be kept track of.

Step 9.3 depicted in Fig 7.1 shows the Business Function processes which involve the
request and the manipulation of data associated with the request being translated in
a manner suitable to supply appropriate data to the PLC Access Function Module.
The PLC Access Function Module at step 9.4 translates the generic parameters and
data supplied by the Business Function into the specific format required by the
specific PLC being used.

At step 9.5 the PLC responds to the specific instructions or provides the requested
data for transfer back to the Business Function module. In some instances the data
being returned is of the form of a confirmation that a PLC operation has been

performed.

WO 98/38585 PCT/AU98/00116 -~

20

AMS CLIENT/SERVER APPLICATION DEVELOPMENT

The Application Messaging System allows Application developers to design and
implement Client and Server Applications independent of each other. Thus,
Application developers are able to design messages to be sent between Client and
Server which suit their own and the user’s requirements. The messages designed by
the developer are the only connection between the Client and the Server Application
thus there exists a flexibility not normally associated with Client Server systems.
When there are changes driven by business restructuring, user needs and customer
requirements, the software supporting the Application must change accordingly.
One way of accomplishing this goal is to break up the functional requirements of the

business into individual components such as those described herein and as used by

the AMS model.

The Application Messaging System provides a messaging service where software
Applications can be developed as individual components in a time frame which will
reduce the development, and maintenance cost of Client/Server Applications
compared to current costs. Modified and newly created AMS based Applications

will maintain the security attributes of an existing AMS arrangement.

AMS MESSAGE MAINTENANCE

The AMS approach requires the Application Developer to use version numbers for
each modification to a message. Based on ever changing business requirements, each
modified message changes the version number which allows the original “old”
message to continue and operate as and when required at both the Client and Server.
Thus Applications will still function using the “old” messages, whereas newer

Applications will take advantage of enhanced messages.

DATABASE ACCESS FUNCTIONS MAINTENANCE
Modifications to the database do not affect the Business Functions. The database

specific SQL commands are embedded in the Database Access Function module

WO 98/38585 PCT/AU98/00116 =
21

which is specific to the requirements of the database supplier. The chosen databases

management systems operate separately from Business Functions because it is the

Database Access Function module which acts as an interface between the Business

Function and the database specific coding techniques required to manipulate data in

the database as required by the various request messages.

PLC ACCESS FUNCTION MAINTENANCE

If, at a later date, a PLC is to be replaced by a newer model, the required changes to
the AMS will occur only in the specific PLC access functions for that machine. The
Business Function, being generic, is not affected. Although if newer functions are

introduced a newer version of the Business Function could be developed.

Thus, the Application Messaging System described has the following features:

¢ the Client and Server Applications are independent of each other and therefore
can be compiled and linked independently.

o Client Applications are able to continue processing after a request message has
been sent even though a reply message has not yet been received.

» Client Applications are able to send request messages independent of previously
sent request messages.

¢ each request message has an independent Business Function which services that
request.

¢ request and reply messages only contain attributes which are determined by the
Application developer.

e all request messages carry an internal authentication key which is used by the
Server Application to recognise valid request messages.

¢ request messages and the modules they use are version controlled, which means
older messages from older Client/Server applications will still function using a
message with an older version while newer Applications are able to use newer
messages, with the additional attributes of a newer version request.

¢ development of the system is much shorter in time in comparison to typical

Client/Server applications because business functions can be developed and used

WO 98/38585 PCT/AU98/00116 -
22

independent of others thus a debtor listing function can be created and used while
a debtors overdue business function is still being created.

¢ changes in the types of requests are easily accommodated by creating newer
versions of business functions or creating new ones.

¢ client applications can expect a reply from a simple request very quickly since the
dedicated business function has only one task to complete, the majority of the
delay may be caused by the physical delay to pass the request and its reply over
the Client/Server environment. More complex requests may take more time.

e aclient application may be a server application or a part of a server application of
a further Application Messaging System.

e Client and Server Applications are not restricted to serving databases, they may be
industrial programmable logic controllers (PLC’s); counters; turnstiles; automatic

teller machines (ATM’s); etc.

It will be appreciated by those skilled in the art, that the invention is not restricted in
its use to the particular application described, nor is it restricted to the features of the
preferred embodiment described herein. It will be appreciated that various
modifications can be made without departing from the principles of the invention,
therefore, the invention should be understood to include all such modifications

within its scope.

WO 98/38585 PCT/AU98/00116 -

23
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An application messaging system for operating between a client application
and a server application in a client/server environment, comprising,

a) a client end application interface which operates between said client
application and said client/server environment to generate one of a plurality of
predetermined requests having variable data based on a selection of said request and
data by the client application, and

b) a server end application interface which operates between said client/server
environment and said server application to receive said request and said variable
data for translation into generic data identifiers suitable for operating said server
application and for receiving from the server application the results of said request as
result data and passing said result data as a reply to said client end application

interface for presentation to said client application as a reply to said request.

2. An application messaging system according to claim 1 wherein said server
end application interface further comprises a business function module for each of
said predetermined requests each said module having a version identifier which only
responds to like versions of said predetermined requésts having a respective version
identifier; wherein said business function module comprises the use of generic data
identifiers to control the operation of said server application and provide said

variable data to said server application.

3. An application messaging system according to claim 2 wherein each request
and reply further comprises a unique identifier element indicative of the message

name and method.

4. An application messaging system according to claim 3 wherein said server
end application interface further comprises an application message receiver for
checking the validity of each received request by checking that said message name

and method part of said unique identifier element is a predetermined message name

WO 98/38585 PCT/AU98/00116 -~
24

and message method part; and passes valid requests to an application process

module which determines the name of each request by checking said name part and

passing data associated with said request to a respective said business function for

processing requests of that name and the data associated therewith.

5. An application messaging system according to claim 4 wherein said server
end application interface further comprises a volatile authorisation table containing
predetermined message name and message method identifiers against which

received request message name and message methods are checked.

6. An application messaging system according to claim 2 wherein said business
function module receives a response from said client application to said query
comprising data associated with predetermined unique identifiers and a reply for
transmission to the client application using a predetermined format based on said

request method and said version identifier.

7. An application messaging system according to claim 3 wherein said request
further comprises an attribute identifier representative of the quantity of attributes in

said request.

8. An application messaging system according to claim 7 wherein each said

attribute is represented by identities comprising the attribute type and attribute size.

9. An application messaging system according to claim 1 wherein said client end
application interface need not receive a reply to a prior request before generating a

further request.

10. An application messaging system according to claim 1 wherein said server
application is a data base comprising data records which said client application at a
client end in a client server environment accesses using a first level query language

associated with said server application.

WO 98/38585 PCT/AU98/00116 -

25

11. Anapplication messaging system according to claim 10 wherein said server
end application interface further comprises a database access function module with

which said first level query language operates.

12. Anapplication messaging system according to any preceding claim wherein
said client end application interface further comprises an authentication key
associated with each said request and said server end application interface further
comprises a key authenticator to check the validity of said authentication key so as to

allow only valid requests to be processed by said server application.

13. Anapplication messaging system according to claim 4 wherein said server
end application interface further comprises a plurality of application process
modules for receiving valid requests from said application message receiver, which
application process module receives said request based on a volatile distribution
table in said application message receive which contains a message name and

message method in accordance with a predetermined application process module.

WO 98/38585 PCT/AU98/00116 -~

1/10
Computer1 Computerd)
Application A1 Application B
(Client) (Server)
AMS Appilication Interface AMS Appilication Interface
(Client API) Lo (Server API)
- “ “ Network ==

Figure 1

SUBSTITUTE SHEET (rule 26)

WO 98/38585 PCT/AU98/00116 -

2/10

Computers Computer6
Application C Application D :
(Server) : : (Server) :
(Server API) D (Server API) :
S S TT

(Client API) :

; Application B
' | (Client to Application C,D)
: [(Server to Appl. A1,A2,A3)

(Server API)

[(ClientAPl) |: [(ClientAPl) |: :[(ClientAP) |:
:| Application A1 | :| Application A2 |: :| Application A3 |:
: (Client) P (Client) (Client) :

Figure 2

SUBSTITUTE SHEET (ruie 26)

WO 98/38585 PCT/AU98/00116 ~

: Appllcatlon B

AMS Interface ____ [__ 1

Application Message

é Receiver (AMR) é

| ' 3 |

1| Application | | Application | | Application Message Application |!

1| Process 1 Process 2 | | Process n Interface E

39§'ﬂ%§§ﬁ!0§t19ﬂ§ __ ——
| v A4 JV

Database Access
Functions

Database Management
System

Physical Database

SUBSTITUTE SHEET (ruie 26)

WO 98/38585 PCT/AU98/00116 -

4/10

A request message‘ has arrived at
the Server application.

- Application B

AMSInterface | | _[Step1:The Application Message
% Receiver decodes the message.

Application Message The Application M
Receiver (AMR) \Step 2: The Application Message

Receiver verifies the
authentication key of the request

" v . ; \. |message against the volatile
' Application Application Apph\gatic authentication key table.

Process1 | Process2 = Procass i5i53: The Application Message 1

'“”"“7“'“”“"_ """"""""""""""""" _‘ Receiver verifies the message
Business Functions ____|name and method against the
: : volatile authorisation table.

=13 Drl- LT ¢ LT = LI AR -

Database

: Y L
= Database Management |
' System o

A

Physical Database

Figure 4

SUBSTITUTE SHEET (rule 26)

WO 98/38585

5/10

PCT/AU98/00116 ~

: Appllcatnon B
: AMS Interface _

Appllcatlon’ Message
Receiver (AMR)

!

“Application Application | Application
. Process1 @ Process 2 Process n

Step 4: The AMR dlstrlbutes
the request message to the
most appropriate Application
Process.

-Step 5: The Application

_ Process extracts the message

Iname from the request

-- message.
Business Functions T T T
L ' - BF1 BF2 |BF3|[BF4 BFn
Step 6: The Application
Process activates the
business function based on . R _ i, .
the message name of the e e R bttt S A
request message. } [S N I S
1 Database Access
Functions
‘ .
_D_atab_a_§_e __
v
Database Management
System L
Physical Database
Figure 5

SUBSTITUTE SHEET (rule 26)

WO 98/38585 , PCT/AU98/00116 ~—

6/10

Computerd]
Appllcatlon B
' AM_S_!nterfagg__-_,_: __
Apphcat:on Message
. Receiver (AMR)
Apphcat:on Apphcatlon Application Message Application
Process1 ' Process 2 = Processn Interface
Ey_s_-nqgs.ﬁqn_c.t_l?n@-___________~___ ________________________ / ________________
| | " [BF1 %BH BF4 BFn .
Step 7: The Business / : :
|Function activates. 5 _ —
Diomtabkemee e A meoesi | oY —-:——.‘—‘_--—‘-_g___——ﬂ.—“———‘T-‘-“—-——_—-—‘——_—_—___-—'-;_-‘_
|Step 8: The Business cuans Sl A S o
|Function reads the Database Access '
|attributes from the Functions
|request message. A
Database Management
System :
A
Physical Database @~

SUBSTITUTE SHEET (rule 26)

WO 98/38585

7/10

Appllcatlon B

PCT/AU98/00116 ~

AMS Interface

Apphcatlon Message
Receiver (AMR)

5 §§Appiication3 Application Application
. Process1 . Processz ~ Process n

Messagé Application

Interface
-~

[JENE P SRR S ke

' Business Functions

Step 9: The Business
Function processes its

own logic reading and
modifying data.

patabase Access Functlons)
. |Step 9.1: The Database Access

- |request parameter into DBMS
- - - ispecific SQL statements.
Database

Function translates generic -

Database Access
Functions

Database Management

System
Step 9.2: The DBMS
processes the SQL.
Physical Database
Figure 7

SUBSTITUTE SHEET (ruie 26)

WO 98/38585

8/10

PCT/AU98/00116

Appllcatlon B

AMS Interface

Apphca’uon Message

Receiver (AMR) :
| %?Application5 Application : Application Message Application |
Process1 i Process 2 Processn Interface

Busmess Functlons

and from a PLC

Siep 9.3: The Business Function processes its own
logic: requesting, supplying and modifying data to

PLC Access Functlons

% I : h 4 v :

Database = _

PLC Access . Database Access
Functions P Functions
A : A
o L Step 9.4: The PLC Access Functions translate

generic parameter into the specific format
required by the speclfic PLC

Ty UTOTYY

A

Step 9.5: The PLC responds to specific

/ instructions

Figure 7.1

SUBSTITUTE SHEET (rule 26)

WO 98/38585 PCT/AU98/00116 -

9/10

COMPULEr 4 |
Appllcatlon B
 AMSlnterface . L.
Apphcatlon Message :
Receiver (AMR)
- Application . | Application - Application Message Application |:
Procgss‘! Process 2 Processn Interface

,__._..__.._.__..--_....._._._..___..__._..__._____.___..___.____._.._.--_.

Step 10: Business Function
instructs AMS to create reply
message.

Step 11: AMS createsreply | . _____ __7____‘ ik
message, inserts all transport :
related parameters in the reply

message afabase Access
§ Functions
A

Step 12: Bussiness Function

pop“lates reply message B D VA w—— b e e e ot o e o e e e ot v
T AT AR

Step 13: Business Function T A 2
instructs AMS to send reply {{)ata se Management‘
message to Client. System o
Step 14: Business Function exits. / ;

Figure 8

SUBSTITUTE SHEET (rule 26)

WO 98/38585 PCT/AU98/00116 ~

10/10

Computerd ... T
_ Application B
| AMS Interface _____ e b
‘Apphcatlon Message
~ Receiver (AMR)
%_Applicationg Application | Application Message Application
: Process1 ' Process 2 Processn Interface
.Step 15: AMS sends reply ‘ |
message to Client. : T . e e
" IBF1| BF2 BF3 BF4 'BFn |
P.é!@?_a_s_?_&e?_eﬁs__Eynet_le@?______-____________________,___-__L _____
Database Access
Functions SRl
A 2
Database _______________
A J i I
Database Management DL
System N
i it

Figure 9

SUBSTITUTE SHEET (rule 26)

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/AU 98/00116

A

CLASSIFICATION OF SUBJECT MATTER

Int CI°:

GO6F 17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F 17/30, 15/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPAT, INTERNET
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5257366 A (ADAIR et al.) 26 October 1993 1,9-13
Whole Document
X US 5210824 A (PUTZ et al.) 11 May 1993 1,9-13
Whole Document
X US 5187787 A (SKEEN et al.) 16 February 1993 1. 9-13
Whole Document

Further documents are listed in the continuation of Box C

See patent family annex

" An

uEn

"LN

lvo"

"P"

Special categories of cited documents: wp

document defining the general state of the art which is
not considered to be of particular relevance

earlier document but published on or after the
international filing date

document which may throw doubts on priority claim(s)
or which is cited to establish the publication date of
another citation or other special reason (as specified)
document referring to an oral disclosure, use,
exhibition or other means

document published prior to the international filing
date but later than the priority date claimed

||X||

"Y"

I'&"

later document published after the international {iling date or
priority date and not in conflict with the application but cited to
understand the principle or theory underlying the invention
document of particular relevance; the claimed invention cannot
be considered novel or cannot be considered to invoive an
inventive step when the document is taken alone

document of particular relevance: the claimed invention cannot
be considered to invoive an mventive step when the document 15
combined with one or more other such documents. such
combination being obvious to a person skilled in the art
document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

20 March 1998 30 MAR 1998
Name and mailing address of the ISA/JAU Authorized officer

AUSTRALIAN PATENT OFFICE

IP AUSTRALIA

PO BOX 200 R STOPFORD

WODEN ACT 2606 ,

AUSTRALIA Facsimile No.: (02) 6285 3929 Telephone No.: (02) 6283 2177

Form PCT/ISA/210 (second sheet) (July 1992) copdmi

INTERNATIONAL SEARCH REPORT International Application No.

7 PCT/AU 98/00116
C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
X US 5124909 A (BLAKELY et al.) 23 June 1992 1.9-13
Whole Document
X W0 96/21190 Al (INTERNATIONAL BUSINESS MACHINES CORPORATION) 1, 9-13
11 July 1996
Whole Document
X WO 93/23817 Al (RELEASE MANAGEMENT SYSTEMS) 25 November 1993 1.9-13

Whole Document

Form PCT/ISA/210 (continuation of second sheet) (July 1992) copdmi

INTERNATIONAL SEARCH REPORT
Information on patent family members

International Apptlication No.
PCT/AU 98/00116

This Annex lists the known "A" publication level patent family members relating to the patent documents cited
in the above-mentioned international search report. The Australian Patent Office is in no way liable for these

particulars which are merely given for the purpose of information.

Patent Document Cited in Search Patent Family Member
Report

Us 5257366 BR 9101195 EP 449449 Jp 05-204988

US 5210824 EP 388050 JP 02-297229

US 5187787 AU 58671/90 AU 42133/93 AU 52493/96
CA 2001621 EP 412232 JP 03-148739
US 5339392 Us 5557798 AU 89530/91
AU 86024/91 CA 2052803 EP 485252
JP 04-299758 MX 9101699 wO 92/07324
us 5257369 AU 91490/91 CA 2099020
EP 564548 WO 92/12488

Us 5124909 CA 1328024 EP 371229 JP 02-171951
Us 5375207

WO 96/21190 GB 2296799

WO 93/23817 AU 42372/93 Us 5627972

END OF ANNEX

Form PCT/ISA/210 (extra sheet) (July 1992) copdmi

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

