wo 2011/091323 A1 I T A0EVO 0 OO RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2011/091323 A1l

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
al
(43) International Publication Date \'{_5___,/
28 July 2011 (28.07.2011) PCT
(51) International Patent Classification:
GO6F 15/00 (2006.01) GO6F 15/76 (2006.01)
(21) International Application Number:
PCT/US2011/022152
(22) International Filing Date:
21 January 2011 (21.01.2011)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/297,139 21 January 2010 (21.01.2010) US
(71) Applicant (for all designated States except US): QST
HOLDINGS, LLC [US/US]; 1800 Embarcadero Road,
Palo Alto, CA 94303 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): MASTER, Paul, L.

[US/US]; 796 Dartshire Way, Sunnyvale, CA 94087
(US). FURTEK, Frederick [US/US]; 2470 Sharon Oaks
Drive, Menlo Park, CA 94025 (US).

Agent: TANG, Wayne, L.; Nixon Peabody LLP, 300 S.
Riverside Plaza, 16th Floor, Chicago, IL 60606 (US).

74

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: A METHOD AND APPARATUS FOR A GENERAL-PURPOSE, MULTIPLE-CORE SYSTEM FOR IMPLEMENT -

ING STREAM-BASED COMPUTATIONS

MATRIX
{KARG;

: SN T
HEN]

MEMORY N

WARIX
(e

YATRIX
- WIERCONECTON
7 oR
: 180F £NE
/t’ S \U/ 40 \U/
[MATRIX | ; VATRX I l MATEIX

1805 150N
] cea | ATRK]

(57) Abstract: A method and system of efficient use and programming of a multi-processing core device. The system includes a
programming construct that is based on stream-domain code. A programmable core based computing device is disclosed. The
computing device includes a plurality of processing cores coupled to each other. A memory stores stream-domain code including a
stream defining a stream destination module and a stream source module. The stream source module places data values in the
stream and the stream conveys data values from the stream source module to the stream destination module. A runtime system de-
tects when the data values are available to the stream destination module and schedules the stream destination module for execu-
tion on one of the plurality of processing cores.

WO 2011/091323 PCT/US2011/022152

A METHOD AND APPARATUS FOR A GENERAL-PURPOSE, MULTIPLE-CORE
SYSTEM FOR IMPLEMENTING STREAM-BASED COMPUTATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to Provisional Application Serial No. 61/297,139
filed January 21, 2010. This application is related to U.S. patent application Ser. No.
09/815,122, filed on Mar. 22, 2001, now U.S. Patent No. 6,836,839 entitled “ADAPTIVE
INTEGRATED CIRCUITRY WITH HETEROGENEOUS AND RECONFIGURABLE
MATRICES OF DIVERSE AND ADAPTIVE COMPUTATIONAL UNITS HAVING
FIXED, APPLICATION SPECIFIC COMPUTATIONAL ELEMENTS”; U.S. patent
application Ser. No. 10/384,486, now U.S. Patent No. 7,325,123 entitled HIERARCHICAL
INTERCONNECT FOR CONFIGURING SEPARATE INTERCONNECTS FOR EACH
GROUP OF FIXED AND DIVERSE COMPUTATIONAL ELEMENTS”; and U.S. patent
application Ser. No. 10/443,501, now U.S. Patent No. 7,609,297 entitled “HARDWARE
TASK MANAGER.” All of these applications are hereby incorporated by reference.

TECHNICAL FIELD

[0002] This invention relates in general to programming multiple processor systems and
more specifically to a hardware task manager that efficiently utilizes parallel programming

constructs incorporating both streams and threads.

BACKGROUND

[0003] A common limitation to processing performance in a digital system is the
efficiency and speed of transferring instruction, data and other information among different
components and subsystems within the digital system. For example, the bus speed in a
general-purpose Von Neumann architecture dictates how fast data can be transferred between
the processor and memory and, as a result, places a limit on the computing performance (e.g.,
million instructions per second (MIPS), floating-point operations per second (FLOPS), etc.).

[0004] Other types of computer architecture design, such as multi-processor or parallel
processor designs require complex communication, or interconnection, capabilities so that
cach of the different processors can communicate with other processors, with multiple
memory devices, input/output (I/O) ports, etc. With today's complex processor system

designs, the importance of an efficient and fast interconnection facility rises dramatically.

WO 2011/091323 PCT/US2011/022152

[0005] However, such facilities are difficult to design to optimize goals of speed,
flexibility and simplicity of design.

[0006] Currently, parallel programming is based on threads as the central, organizing
principle of computing. However, threads are seriously flawed as a computation model
because they are wildly nondeterministic and rely on programming style to constrain that
non-determinism to achieve deterministic aims. Test and verification become difficult in the
presence of this wild non-determinism. One solution has been suggested by GPU (Graphics
Processing Unit) vendors is to narrow the forms of parallelism expressible in the
programming model. Their focus on data parallelism, however, ties the hands of
programmers and prevents exploiting the full potential of multi-core processors.

[0007] Further, threads do not just run on a bank of identical cores. A modern computer
(supercomputer, workstation, desktop and laptops) contains a bewildering array of different
heterogenecous cores all requiring separate programming models to program. For example, a
motherboard may have one to four main CPUs (central processing units e¢.g., Pentium
Processor) each having on-die 1 to 6 CPU cores with an on-die or on-package GPU (Graphics
Processing Unit — e.g. NVIDIA GPU) which itself contains 16 to 256 GPU cores along with
several discrete video & audio encode & decode cores (for the encoding and decoding of a
multiplicity of video standards — e.g. MPEG2, MPEG4, VC-1, H.264 ctc.). Also on the
motherboard are from 1 to 4 discrete high end GPUs each containing 16 to 1024 GPU cores
along with several discrete high-end configurable (meaning the core can be selected to
encode/deocode a variety of pre-existing standards) video/audio encode & decode cores (for
the encoding and decoding of a multiplicity of video standards — e.g. MPEG2, MPEG4, VC-
1, H.264 etc., at very high resolutions and with multiple channels of sound). Additional
subsystems composed of processing cores are added to the motherboard in the form of
communications cores (¢.g. TCP/IP offload cores which themselves are typical built from one
or more CPU cores and one or more packet processing cores. WiFi cores, Blue Tooth cores,
WiMax cores, 3G cores, 4G cores which are from one or more CPU cores and one or more
broadband/baseband processing cores).

[0008] Current high end of the spectrum devices such as supercomputers add an
additional processor in the form of one to four FPGAs (field programmable gate array) per
motherboard. Each FPGA is itself composed of hundreds of thousand to tens of millions of
very simplistic CLB processing cores along with multiple hard IP or Soft IP CPU core and

multiple DSP cores). Then these motherboards themselves are then replicated and

WO 2011/091323 PCT/US2011/022152

interconnected in the hundreds to thousands to produce a modern supercomputer. These
systems (cither the desktops/workstations/laptops and/or the supercomputers) and then
interconnected via the Internet to provide national and global computing capabilities.

[0009] The complexity of “managing” and “programming” such a diverse series of cores
is a severe problem. Most programmers do not even attempt this and just settle for
programming just one CPU core ignoring the rest of the cores. There are a certain number of
algorithms know in the industry as “embarrassingly parallel problems” (e.g. the Google
Search algorithm for example is simple to spread across multiple CPUs due to the fact that
there is very little to no interactivity across the parallel threads). Unfortunately the vast
majority of problems do not have these characteristics, they require a high degree of
interactivity and synchronization across the multiple threads.

[0010] It would therefore be desirable to incorporate multithreading, unrestricted
parallelism and deterministic behavior such as in modern programming language streams.
Streams date at least to the introduction of the C programming language in 1978, and have
been incorporated into such languages as C++, Java, Visual Basic and F#. However, in these
languages, streams are relegated to a rather narrow role of providing a framework for I/O and
file access. It is therefore desirable to expand the role of streams in parallel programming to

first-class objects, a status roughly comparable to that of variables.

SUMMARY

[0011] According to one example, a programmable core based computing device is
disclosed. The computing device includes a plurality of processing cores coupled to each
other. A memory stores stream-domain code including a stream defining a stream destination
module and a stream source module. The stream source module places data values in the
stream and the stream conveys data values from the stream source module to the stream
destination module. A runtime system detects when the data values are available to the
stream destination module and schedules the stream destination module for execution on one
of the plurality of processing cores.

[0012] Additional aspects of the invention will be apparent to those of ordinary skill in
the art in view of the detailed description of various embodiments, which is made with

reference to the drawings, a brief description of which is provided below.

WO 2011/091323 PCT/US2011/022152

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 shows an overview of an adaptable computing engine compatible with a
disclosed stream based programming model;

[0014] FIG. 2 illustrates a block diagram of an adaptive computing machine compatible
with the programming model;

[0015] FIG. 3 is a diagram of a network word in the network of the adaptive computing
machine in FIG. 2;

[0016] FIG. 4 illustrates the node wrapper interface between heterogencous nodes and
the homogenous network in the ACE architecture in FIG. 1 or ACM architecture in FIG. 2;
[0017] FIG. 5 shows basic components of a hardware task manager used for the node
wrapper in FIG. 4;

[0018] FIG. 6 shows a point-to-point channel used for streaming data in the ACM
architecture in FIG. 2;

[0019] FIG. 7 shows a point-to-point network word used by the point-to-point channel in
FIG. 6;

[0020] FIGs. 8 A-8D are diagrams of modules in relation to nodes for different stream
flows;

[0021] FIGs. 9A and 9B are graphical representations of the assignments of values to
streams;

[0022] FIG. 10 is a graphical depiction of a five-tap FIR filter that may be modeled
using modules and stream concepts;

[0023] FIGs. 11A-C are modules with various configurations of FIFO,;

[0024] FIG. 12 is a flow diagram of threads used in the example programming language;
and

[0025] FIG. 13A-B are diagrams of forms of the join operation of the example

programming language.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

ADAPTIVE COMPUTING ENGINE AND ADAPTIVE COMPUTING MACHINE

[0026] FIG. 1 is a block diagram illustrating an example of a multi-processor system
using an example computational model. Apparatus 100, referred to herein as an adaptive

computing engine (ACE) 100, is preferably embodied as an integrated circuit, or as a portion

WO 2011/091323 PCT/US2011/022152

of an integrated circuit having other, additional components. In the exemplary embodiment,
and as discussed in greater detail below, the ACE 100 includes one or more reconfigurable
matrices (or nodes) 150, such as matrices 150A through 150N as illustrated, and a matrix
interconnection network 110. Also in the exemplary embodiment, and as discussed in detail
below, one or more of the matrices 150, such as matrices 150A and 150B, are configured for
functionality as a controller 120, while other matrices, such as matrices 150C and 150D, are
configured for functionality as a memory 140. The various matrices 150 and matrix
interconnection network 110 may also be implemented together as fractal subunits, which
may be scaled from a few nodes to thousands of nodes.

[0027] In a preferred embodiment, the ACE 100 does not utilize traditional (and
typically separate) data, DMA, random access, configuration and instruction busses for
signaling and other transmission between and among the reconfigurable matrices 150, the
controller 120, and the memory 140, or for other input/output ("I/O") functionality. Rather,
data, control and configuration information are transmitted between and among these matrix
150 elements, utilizing the matrix interconnection network 110, which may be configured and
reconfigured, in real-time, to provide any given connection between and among the
reconfigurable matrices 150, including those matrices 150 configured as the controller 120
and the memory 140.

[0028] The matrices 150 configured to function as memory 140 may be implemented in
any desired or exemplary way, utilizing computational elements (discussed below) of fixed
memory elements, and may be included within the ACE 100 or incorporated within another
IC or portion of an IC. In the exemplary embodiment, the memory 140 is included within the
ACE 100, and preferably is comprised of computational elements which are low power
consumption random access memory (RAM), but also may be comprised of computational
clements of any other form of memory, such as flash, DRAM, SRAM, MRAM, ROM,
EPROM or E2PROM. In the exemplary embodiment, the memory 140 preferably includes
direct memory access (DMA) engines, not separately illustrated.

[0029] The controller 120 is preferably implemented, using matrices 150A and 150B
configured as adaptive finite state machines (FSMs), as a reduced instruction set ("RISC")
processor, controller or other device or IC capable of performing the two types of
functionality discussed below. Alternatively, these functions may be implemented utilizing a
conventional RISC or other processor. The first control functionality, referred to as "kernel"”

control, is illustrated as kernel controller ("KARC") of matrix 150A, and the second control

WO 2011/091323 PCT/US2011/022152

functionality, referred to as "matrix" control, is illustrated as matrix controller ("MARC") of
matrix 150B. The kernel and matrix control functions of the controller 120 are explained in
greater detail below, with reference to the configurability and reconfigurability of the various
matrices 150, and with reference to the exemplary form of combined data, configuration and
control information referred to herein as a "silverware" module.

[0030] The matrix interconnection network 110 of FIG. 1, includes subset
interconnection networks (not shown). These can include a boolean interconnection network,
data interconnection network, and other networks or interconnection schemes collectively
and generally referred to herein as "interconnect,” "interconnection(s)" or "interconnection
network(s)," or "networks," and may be implemented generally as known in the art, such as
utilizing FPGA interconnection networks or switching fabrics, albeit in a considerably more
varied fashion. In the exemplary embodiment, the various interconnection networks are
implemented as described, for example, in U.S. Pat. No. 5,218,240, U.S. Pat. No. 5,336,950,
U.S. Pat. No. 5,245,227, and U.S. Pat. No. 5,144,166. These various interconnection
networks provide selectable (or switchable) connections between and among the controller
120, the memory 140, the various matrices 150, and the computational units (or "nodes") and
computational elements, providing the physical basis for the configuration and
reconfiguration referred to herein, in response to and under the control of configuration
signaling generally referred to herein as “configuration information.” In addition, the various
interconnection networks (110, 210, 240 and 220) provide selectable or switchable data,
input, output, control and configuration paths, between and among the controller 120, the
memory 140, the various matrices 150, and the computational units, components and
clements, in lieu of any form of traditional or separate input/output busses, data busses,
DMA, RAM, configuration and instruction busses.

[0031] It should be pointed out, however, that while any given switching or selecting
operation of, or within, the various interconnection networks may be implemented as known
in the art, the design and layout of the various interconnection networks, in accordance with
the present invention, are new and novel, as discussed in greater detail below. For example,
varying levels of interconnection are provided to correspond to the varying levels of the
matrices, computational units, and elements. At the matrix 150 level, in comparison with the
prior art FPGA interconnect, the matrix interconnection network 110 is considerably more
limited and less “rich,” with lesser connection capability in a given area, to reduce

capacitance and increase speed of operation. Within a particular matrix or computational unit,

WO 2011/091323 PCT/US2011/022152

however, the interconnection network may be considerably more dense and rich, to provide
greater adaptation and reconfiguration capability within a narrow or close locality of
reference.

[0032] The various matrices or nodes 150 are reconfigurable and heterogeneous, namely,
in general, and depending upon the desired configuration: reconfigurable matrix 150A is
generally different from reconfigurable matrices 150B through 150N; reconfigurable matrix
150B is generally different from reconfigurable matrices 150A and 150C through 150N;
reconfigurable matrix 150C is generally different from reconfigurable matrices 150A, 150B
and 150D through 150N, and so on. The various reconfigurable matrices 150 each generally
contain a different or varied mix of adaptive and reconfigurable nodes, or computational
units; the nodes, in turn, generally contain a different or varied mix of fixed, application
specific computational components and elements that may be adaptively connected,
configured and reconfigured in various ways to perform varied functions, through the various
interconnection networks. In addition to varied internal configurations and reconfigurations,
the various matrices 150 may be connected, configured and reconfigured at a higher level,
with respect to each of the other matrices 150, through the matrix interconnection network
110. Details of the ACE architecture can be found in the related patent applications,
referenced above.

[0033] Another example of an adaptive computing machine 160 that may use the parallel
computational model is shown in FIG. 2. The adaptive computing machine 160 in this
example has thirty-two heterogencous leaf nodes 180 that are coupled together via a network
162. The network 162 has a single root 164 that is coupled to a group of network input ports
166, a group of network output ports 168, an optional system interface port 170, an external
memory interface 172 and an internal memory interface 174. A supervisor node or K-node
178 is also coupled to the root 164.

[0034] The nodes 180 are each grouped in a quadtrees such as the quadtree 182. The
quadtrees such as the quadtree 182 are implemented using 5-ported switch elements 184,
each connected to a single parent and up to four children nodes 180. The switch elements
implement a fair, round-robin arbitration scheme and provide pipelining with multi-level
look-ahead for enhanced performance. In this example, the width of all paths is constant (51
bits), but the option is available to widen pathways as a tree is ascended, in the style of

Leiserson’s fat trees, in order to increase network bandwidth.

WO 2011/091323 PCT/US2011/022152

[0035] In this example all traffic on the network 162 is in the form of 51-bit network
words as shown in the network word 188 shown in FIG. 3. The network word 188 has a
route field 190, a security bit 192, a service field 194, an auxiliary field 196 and a payload
field 198. The route field 190 is the destination address of the network word 188. The two
high-order bits in the route field 190 are the chip ID. The security bit 192 allows peeks
(reads) and pokes (writes) to configuration memory. The security bit 192 is set only for
words sent by the K-Node 178. The service field 194 defines the type of service and the
auxiliary field 196 is dependent on the service type. The service field 194 defines one of
sixteen service types including Point-to-Point (PTP) which relates to streaming data and PTP
acknowledgement which supports flow control for PTP data and causes a Consumer or
Producer Count at the destination node to be incremented or decremented.

NODE WRAPPER

[0036] FIG. 4 illustrates the interface between heterogeneous nodes and the homogenous
network in the ACE architecture in FIG. 1 or the ACM architecture in FIG. 2. This interface
is referred to as a "node wrapper" since it is used to provide a common input and output
mechanism for each node. A node's execution units and memory are interfaced with the
network and with control software via the node wrapper to provide a uniform, consistent
system-level programming model. In this example, the node 180 includes a memory 210 and
an execution unit 212. Details of the node wrapper can be found in the related patent
applications referenced, above.

[0037] In a preferred embodiment, each node wrapper includes a hardware task manager
(HTM) 200. Node wrappers also include data distributor 202, optional direct memory access
(DMA) engine 204 and data aggregator 206. The HTM coordinates execution, or use, of node
processors and resources, respectively. The HTM does this by processing a task list and
producing a ready-to-run queue. The HTM is configured and controlled by a specialized node
referred to as a K-node 178 in FIG. 2 or control node (not shown). However, other HTM
control approaches may be used.

[0038] The node wrapper in FIG. 4 makes the node 180 identical in outward appearance
to all other nodes in the adaptive computing machine 160 in FIG. 2 or the adaptive computing
engine 100 in FIG. 1 regardless of its internal structure or functionality. The node wrapper
also relieves the execution unit 212 from having to deal with myriad activities associated with

task management and network interactions. Among other things, the node wrapper is

WO 2011/091323 PCT/US2011/022152

responsible for disposing of each incoming network word such as the network word 188 in
FIG. 2 in an appropriate fashion in one clock cycle.

[0039] The execution unit 212 in FIG. 4 is responsible for executing tasks (a task is
equivalent to a module instance). The execution unit 212 may include a digital signal
processor (DSP), a reduced-instruction-set (RISC) processor, a domain-specific processor, an
application-specific integrated circuit (ASIC) or a reconfigurable (FPGA) fabric. Regardless
of its form, the execution unit 212 interacts with the node wrapper through a standard
interface.

[0040] The nodal memory 210 is accessible to both the node wrapper and the execution
unit 212. The nodal memory 210 is where the node wrapper deposits incoming streaming
data and where the execution unit 212 accesses that data. A node’s own memory 210,
however, is typically not where the execution unit 212 sends output data. To minimize
memory accesses, output data is usually sent directly to the node(s) requiring that data: the
consumer node(s). Nodal memory 210 is also used to store task parameters and is available
to tasks for temporary (scratchpad) storage.

[0041] In a multi-node system such as the ACM 160 in FIG. 2 where the nodes 180 are
both consumers and producers of streaming data, matching production and consumption rates
is desirable. A producer task on one node may produce data at a rate that is either greater
than or less than the rate at which a consuming task on another node can handle. If the
producer is sending data at a greater rate than the consumer can handle, then data is
eventually lost. If the producer is sending data at a lesser rate than the consumer can handle,
then the consumer may be starved for data, thereby potentially causing the consumer to sit
idle waiting for additional data.

[0042] The ACM 160 provides, via the Point-to-Point protocol, and the node wrapper in
FIG. 4 a single, uniform and consistent mechanism for task management, flow control and
load balancing. Task management ensures that a task is placed in execution only when it has
sufficient input data and when there is sufficient space in the consumer node(s) to
accommodate the data produced by the task. Flow control guarantees that a producer task
will never overwhelm a consumer task with too much data in too short a time. Load
balancing permits a producer task to distribute data among several alternate consumer nodes,
thus allowing the producer task to operate at a potentially higher rate.

[0043] Streaming data is transferred between two nodes 180 (points) via a point-to-point

channel (point-to-point stream) 250 as shown in FIG. 5. Each PTP channel such as the

WO 2011/091323 PCT/US2011/022152

point-to-point channel includes a producer node 252, a producer task 254, an output port 256,
a consumer node 258, an input port 260, an input buffer 262 and a consumer task 264. The
producer task 254 runs on the execution unit of the producer node 252 and produces a finite-
sized block of PTP data per task activation. The block of data is sent over the PTP channel
250 as a sequence of PTP words. The sending of blocks is shown as task 1 in FIG. 5. The
output port 256 on the producer node 252 is associated with the producer task 254.

[0044] The consumer task 264 receives PTP data from the PTP channel 252 via the input
port on the consumer node 258. The circular input buffer 262 in the nodal memory of the
consumer node 258 stores the incoming PTP data. A consumer task such as the consumer
task 264 runs on the execution unit of the consumer node 258 and consumes a finite amount
of the PTP data residing in the circular input buffer 262 per task activation (Task 2 in FIG. 5).
[0045] Data is conveyed over the PTP channel 252 when the producer task 254 transfers
a 50-bit point-to-point word 270 as shown in FIG. 6 to the node wrapper in the producer node
252. The point-to-point word 270 has the same fields as the network word 188 in FIG. 3 and
like elements/fields are labeled with the same element numbers in FIG. 5. The point-to-point
word 270 includes a node word 272 in the route field 190, a port word 274 in the auxiliary
field 196 and a data word 276 in the payload field 198. 1In this example, a 51% bit, the
security bit 192, is added later by the network 162 in FIG. 2. The node wrapper such as the
node wrapper in FIG. 4, in turn, hands the PTP word over to the packet-switched network for
transfer to the consumer node 258 in FIG. 5. The 8-bit route field 190 of the PTP word 270
provides the address in the form of the node word 272 of the consumer node such as the node
258 in FIG. 5. The port word 274 includes the low-order 5 bits of the auxiliary field 196 that
indicate to which of the input ports of the consumer node the data is directed. When the PTP
word arrives at the consumer node, the node wrapper deposits the 32-bit data word 176 in the
payload field 198 into the circular input buffer associated with the indicated input port. The
transfer is then complete.

[0046] The ACM 160 includes mechanisms for task management, flow control and load
balancing. There is an input buffer associated with each input port. There is also a two's-
complement signed count associated with each port, both input and output.

[0047] For an input port, the count is referred to as a consumer count since it reflects the
amount of data in that port’s input buffer that is available to be consumed by the associated
task. A consumer count is enabled when its value is non-negative — that is, when its sign bit

is 0. An enabled consumer count indicates that the associated input buffer has the minimum

-10 -

WO 2011/091323 PCT/US2011/022152

amount of data required by an activation of the associated task. At system initialization, or
upon reconfiguration, a consumer count is typically reset to —C, where C is the minimum
number of 32-bit words required per task activation.

[0048] For an output port, the count is referred to as a producer count since it reflects the
amount of available space in the downstream input buffer to accept the data that is produced
by the associated task. A producer count is enabled when its value is negative — that is, when
its sign bit is 1. An enabled producer count indicates that the downstream input buffer has
space available to accommodate the maximum amount of data produced per activation of the
associated task. At system initialization, or upon reconfiguration, a producer count is
typically reset to P — S — 1, where P is the maximum number of 32-bit words produced per
task activation and S is the size of the downstream input buffer in 32-bit words.

[0049] Both consumer counts and producer counts are typically initialized to negative
values, causing the consumer counts start out disabled while producer counts start out
enabled. This initial state reflects the fact that input buffers are usually empty at system
initialization/reconfiguration.

[0050] Consumer and producer counts are updated by a system of credits and debits in
the form of forward acknowledgements and backward acknowledgements. Both types of
acknowledgements are network words such as the acknowledgment network word 280 shown
in FIG. 7. The acknowledgment network word 280 has the same fields as the network word
188 in FIG. 3 and like elements/ficlds are labeled with the same element numbers. The
acknowledgment network 280 word is sent by a task as the last steps in a task activation. In
both cases, the payload field 198 contains four subfields: a type of acknowledgement subfield
282 (one bit), a port subfield 284, (3) a task subfield 286 and an Ack Value subfield 288.
[0051] The sequence of acknowledgements that a task performs at the end of each
activation is described below. For each output port of the task, a forward acknowledgement
is sent to the consumer node specifying the consumer input port and the consumer task. The
Ack Value is the number of PTP words the task just sent to the consumer input port. A
backward acknowledgement (a self ack) is sent to the node on which the task resides
specifying the output port and the task. The Ack Value is the number of PTP words the task
just sent via the output port.

[0052] For each input port of the task, a backward acknowledgement is sent to the
producer node specifying the producer output port and producer task. The Ack Value is

minus the number of 32-bit words the task just consumed from the input port’s buffer. A

-11 -

WO 2011/091323 PCT/US2011/022152

forward acknowledgement (a self ack) is sent to the node on which the task resides indicating
the input port and the task. The Ack Value is minus the number of 32-bit words the task just

consumed from the input port’s buffer.

HARDWARE TASK MANAGER

[0053] The hardware task manager 200 shown in FIG. 4 is the part of the node wrapper
responsible for updating consumer and producer counts in response to incoming
acknowledgements. It also monitors the sign bits of those counts and launches a task when
an appropriate set of counts is enabled. This last responsibility is met using two signed
counts that are associated not with a port but with a task: a task input count and a task output
count. A task’s input (output) count reflects the number of task consumer (producer) counts
that are enabled. A task count is enabled when its value is non-negative. A task is enabled,
and available for execution, when both its input count and its output count are enabled.
[0054] Incoming acknowledgements update various counts and cause tasks to be
launched as follows. If a forward acknowledgement is received, the specified port is
interpreted as an input port, and Ack Value is added to the corresponding consumer count. If
the consumer count makes a transition from disabled to enabled (enabled to disabled), then
the input count of the specified task is incremented (decremented) by 1. If a backward
acknowledgement is received, the specified port is interpreted as an output port, and the Ack
Value is added to the corresponding producer count. If the producer count makes a transition
from disabled to enabled (enabled to disabled), then the output count of the specified task is
incremented (decremented) by 1. If after a forward or backward acknowledgement is
received, the specified task’s input and output counts are both enabled, then the task is placed
on the ready-to-run queue if it is not already on the queue. The task is launched when it
reaches the head of the queue.

[0055] These actions embody the firing rule for tasks. They cause a task to be placed on
the ready-to-run queue and ultimately executed when a sufficient number of consumer counts
and a sufficient number of producer counts are enabled. What those sufficient numbers are is
determined by the initial values of a task’s input count and output count. If I (O) is the
number of input (output) ports associated with a task and ICpa (OChritiar) 1s the initial value
of the task’s input (output) count, and if it is assumed all consumer counts are initially
disabled and all producer counts are initially enabled as discussed above, then a task fires

when

-12 -

WO 2011/091323 PCT/US2011/022152

—ICritiar out of I consumer counts are enabled
AND
(O — OCitia) out of O producer counts are enabled

For example, for I =4,
If ICwitia1 = —1, then 1 out of 4 consumer counts must be enabled
If IC140 = —2, then 2 out of 4 consumer counts must be enabled
If IC140 = —3, then 3 out of 4 consumer counts must be enabled
If IC1450 = —4, then 4 out of 4 consumer counts must be enabled
For O =4,
If OChitiat = 3, then 1 out of 4 producer counts must be enabled
If OChitial = 2, then 2 out of 4 producer counts must be enabled
If OChitiat = 1, then 3 out of 4 producer counts must be enabled
If OChitiat = 0, then 4 out of 4 producer counts must be enabled

[0056] The programming of the multi-processor system such as the ACE 100 in FIG. 1
and the ACM 200 in FIG. 2 may be accomplished using what may be termed as the Stream C
programming language.

STREAM C MODULES

[0057] In a Stream C program, there is only one mechanism for expressing concurrency:
through the concurrent operation of the program’s modules (and module-like stream
expressions). Syntactically, modules are very similar to C functions, but semantically, they
are different. A C function (subroutine) initiates activity only when it is called. In a call,
control is passed to the C function, usually together with some input arguments. The C
function then performs a task/computation, and when finished, returns control together with
any output result. Unlike C functions, modules are not called nor is control passed to or
returned from modules. Instead, modules carry on ongoing interactions with other modules
and the outside world though their input and output ports. Through these ports, a module
receives streams of input values and emits streams of output values.

[0058] The syntax of a module prototype is identical to that of a C function prototype,
with three exceptions. First, the keyword, st ream, precedes a module prototype. This tells
the compiler/linker that each module input and module output is associated with a stream of
values of the specified type, not an individual value. Second, to permit a module to have

multiple output streams, the module return type may be replaced by a parentheses-delimited

-13 -

WO 2011/091323 PCT/US2011/022152

list that is identical in syntax to the input parameter list. Third, to extend the notion of an
array to modules, a square-bracket-delimited list of array indices may be inserted
immediately after the module name and before the input argument list. The module arrays
are discussed below.

[0059] The following are two examples of module declarations:

stream int moduleA (int, int);

6]

tream (int, int) moduleB (int, int);

Parameter names have been omitted here since they are not required in a module declaration
(in contrast to a module definition or module instantiation), but Parameter names may be
included at the programmer’s discretion, usually as a mnemonic aid, for inputs and, when
there are multiple outputs, for the outputs as well. The two declarations, for example, might

then be expressed as:
stream int moduleA (int a, int b);
stream (int x, int y) moduleB(int a, int b);

[0060] The first declaration indicates that moduleA has two input streams, both of
integer type, and a single output stream, also of integer type. The second declaration
indicates that moduleB has two input streams, both of integer type, and two output streams,
also both of integer type.

[0061] Like the definition of a C function, the definition of a module has a body delimited by
curly braces ({ and }). Also as in the definition of a C function, each module input (and
output in the case of multiple outputs) is assigned an identifier. The following are two
examples of module definitions:

stream int moduleA (int a, int b)

{

—

tream (int x, int y) moduleB(int a, int b)

-14 -

WO 2011/091323 PCT/US2011/022152

[0062] A module instantiation is the module counterpart to a C function call. Like a
function call, a module instantiation is where a module gets used. While the syntax of these
two types of expressions are similar, the semantics are different. A fragment of C code may
be expressed as:

int x, vy;

int F(int, int);

int z = F(4, x + 5*y);

[0063] The first statement declares that x and y are integers, while the second declares
that F is a function with two integer parameters and an integer result. The last statement is an
assignment containing the function call ¥ (4, x + 5*y), which has two arguments, the
expressions 4 and x + 5* vy, corresponding to the two parameters of F.
[0064] The stream version of this code fragment is as follows:

stream int x, Vy;

stream int F(int, int);

stream int z = F(4, x + 5*y);

[0065] In the stream version, each of the statements above is prefaced with the keyword
stream. The change in syntax produces a dramatic change in semantics. Instead of
individual values, streams of values are used. Thus the first statement declares that x and y
are integer streams, while the second declares that F is a module with two integer-stream
inputs and an integer-stream output. The last statement is now an assignment containing the
module instantiation F (4, x + 5*y), which has two arguments, the stream expressions 4
and x + 5*y, corresponding to the two parameters of F.

[0066] In the case of the function call, each execution of the assignment z = F (4, x +
5*y) causes expressions 4 and x + 5*y to be evaluated and the two resulting values to be
supplied as parameters in a call to function F. After some period of time, F returns a value.

In the case of the module instantiation, there is no execution of the assignment z = F (4, x +

-15 -

WO 2011/091323 PCT/US2011/022152

5*y) and no call to module F. Instead, an instance of module F is created (instantiated) at
system initialization, just before the Stream C program begins execution, thereby making the
instance ready to receive streams of integers on its two input ports and produce a stream of
integers on its output port. And once program execution commences, the instance of F
remains operative until program termination i.e., the instance of F is persistent.

[0067] This simple example illustrates the general mechanism used in Stream C to create
a community of interacting modules. Each module instantiation causes a separate module
instance to be created at system initialization. Once created (instantiated), a module instance
is ready to receive streams of values on its input ports and produce streams of values on its
output ports. Furthermore, once program execution commences, the module instance remains
operative until program termination.

[0068] The general form of the instantiation of a module with multiple output ports is:

(<identifier-list>) <module-identifier> (<expression-list>)

While the input arguments are expressions, the output arguments are identifiers. These
identifiers serve to name the otherwise nameless output streams. The stream assignment
statement above plays the same role by assigning the name z to the otherwise nameless

output stream of F' (4, x + 5*y). For example:

gstream int w, X, Vv, z;

.

stream (int, int) F(int, int);

(w, z) = F(4, x + 5*y);

[0069] As before, F has two integer-stream inputs, but in contrast to the earlier example,
F now has two integer-stream outputs. Those two output streams appear in the instantiation
of F as the list of identifiers (w, z), which serves to give the two output streams the names
wand z.

[0070] Statements within a module body fall into two categories (or domains), stream
statements that involve only streams and thread statements that include the entire range of C
statements as well as statements that allow a thread to read from and write to streams.
Because each module instantiation causes a separate module instance to be created at system
initialization, Stream C does not allow a module to have within its body, or within the body

of a submodule, an instantiation of itself. In other words, circularity in module references is

-16 -

WO 2011/091323 PCT/US2011/022152

not allowed. This prohibition helps avoid the difficult task of instantiating an infinite number
of module instances.

[0071] In a Steam C module, there is no notion of returning control, and so the return
statement is inappropriate. In a module, output values are simply inserted into a module
output stream. But in order to do that, the output stream must have a name. For modules
with a parentheses-delimited list of named output streams, that’s not a problem. It is a
problem, however, when the module prototype provides only the type of the module’s sole
output stream. In that case, code in the module’s body, either in the stream domain or thread
domain, can use the keyword out as the name of the default module output stream. This
usage is illustrated in the following code fragment.

stream int moduleA(int a, int b)

[0072] .Modules and the streams they are partnered with provide the framework for the
web of interactions and concurrent activity typical of a Stream C program, while functions
provide the computational building blocks of a program. Although modules deal with
streams of values, that does not prevent modules from accessing individual values within a
stream and supplying those values to a function. Likewise, a module can access the output
value of a function and insert that value into a stream. A function, on the other hand, cannot
reference a module because there is no mechanism within a function for such interaction.
Because of this asymmetry in capabilities, modules are found at the higher levels of a
program hierarchy, while functions are found at the lower levels.

[0073] While the differences between modules and functions are substantial, there is one
area in which they are similar. They both support side effects, that is, they both may
manipulate external data structures independently of their input and output ports. This stems
from the fact that modules may contain threads that may have side effects.

[0074] FIG. 8A shows a generic module which includes a module 300 and a number of
input streams 302 (from zero to N) which provide data/control to the module 300 and a

number of output streams 304 (from zero to N) which provide data/control to the next

-17 -

WO 2011/091323 PCT/US2011/022152

module/function. A module with no output streams is a “sink” and a module with no input
streams is a “source.”

[0075] FIG. 8B is a diagram showing two modules, module A 300 and module B 310
cach having corresponding input streams 302 and 312 and output streams 304 and 314. The
output streams 304 of Module A 300 are attached to the input streams 312 of Module B 310.
The Module A 300 is mapped to run on a CPU core 308 and the Module B 310 is mapped to
run on a second CPU core 318. The cores 308, 318 and 328 are similar to the nodes 180 in
FIG. 2.

[0076] FIG. 8C is a diagram that shows the mapping of both module A 300 and module
B 310 onto the same CPU core such as the CPU core 308. In this instance the modules 300
and 310 act like any other separate thread of control. An operating system which is running
on the second core 318 may schedule the modules 300 and 310 based on preemptive multi-
tasking or run to completion/release. Since both modules 300 and 310 and input/output
streams 302, 312 and 304, 314 are “persistent” (that is they remain ready to perform
processing) additional information must be provided to a conventional operating system
about when to schedule a module based on both the availability of “enough” input stream
data to perform a computation and “enough” space so that the output stream can deliver the
computed data.

[0077] A variety of different algorithms can be used to perform the Module to Core
Mapping. These may include cache proximity where modules which share the greatest
number of streams are placed in cores which share a L1 cache followed by a shared L2 cache
followed by a shared L3 cache followed by a shared DRAM. They may also include a
physical proximity algorithm where modules which share the greatest number of streams are
placed in cores which are physically adjacent to each other. For example the algorithm may
start with the die and then the integrated circuit on the motherboard, then the motherboard in
the rack, then the rack in the floor of the building, then the building geographically adjacent.
Another algorithm may be the next available free where modules are allocated to cores based
on the next “free” core based on either CPU usage (current or average weighted over time) or
the next sequentially available core. Another algorithm may be a predictive load that selects
the modules and cores based on estimated statistical sampling. A running average of core
utilization is used to load modules to the lightest loaded core. Another algorithm may be user

specified where a user specified virtual core ID is used to place all modules onto a physical

- 18 -

WO 2011/091323 PCT/US2011/022152

core ID. When the number of virtual core ID’s exceeds the physically available cores then
multiple modules are evenly loaded across all available physical cores.

[0078] FIG. 8D show various data structures 330, 332 and 334 that may reside in the
module A 300 and are used in the input and output streams 302 and 304. The data structures
330, 332 and 334, which reside either in memory/cache or a TLB, contain the critical
information which is required for either a single core or a multi-core system to schedule and
transport data from input streams such as the input stream 302 to output streams such as the
output stream 304, input streams 302 into modules such as the module A 300, and the module
A 300 out to output streams 304. For each module there is information that uniquely
indentifies the module, uniquely identifies all the input streams into that module, uniquely
identifies all the output streams of that module, uniquely identifies how input and output
streams are “‘connected,” uniquely identifies the core, and maintains state information so that
a module may be relocated from a core to another core, or swapped out via virtual memory.
Streams can be dynamically added or deleted from modules, and modules can be dynamically

added or deleted from cores.

STREAMS

[0079] The term stream in the Stream C programming language refers to a sequence of
data values, all of the same type and typically made available over time. In Stream C,
however, streams provide much more than a framework for input and output. Streams are
elevated to first-class objects, a status roughly comparable to that of variables. This means
that a stream may be bound to an identifier (i.e., it can be named), an input parameter of a
function (i.c., an input parameter of a module), the output of a function (i.e., an input
parameter of a module), a parameter within an expression and the output of an expression

[0080] A stream conveys values of a single type from one or more stream sources to one
or more stream destinations. The precise details of how this transport is accomplished is
implementation dependent, and depends upon, among other things, whether the stream is
confined to a single semiconductor die or whether the stream spans several meters or possibly
even thousands of kilometers. Except when dealing with performance issues, a programmer
need not be concerned with those details, and need only be concerned with those aspects of a
stream that relate to four stream attributes: the stream type, the stream name, the stream

sources and the stream destinations.

-19 -

WO 2011/091323 PCT/US2011/022152

[0081] The stream type indicates the type of values being conveyed. The type which
may be any legitimate C type, including pointers and types defined via typedef, may be
specified implicitly by context for example, by appearing as a module input or output
parameter or explicitly using a stream declaration as described below.
[0082] The stream sources are the points at which values are placed into the stream.
Possible stream sources are include an input parameter of a module definition, an output of a
module instantiation, the output of a stream expression and a thread (discussed below). The
stream destinations are the points to which the stream conveys values. Possible stream
destinations include an output parameter of a module definition, an input argument of a
module instantiation, an input of a stream expression and a thread. An optional stream name
is a name/identifier is assigned to a stream when the stream appears as a module input or
output parameter or when it is introduced in a strecam declaration. An example of an
unnamed stream is the output stream of a stream expression that has not been assigned a
name via a stream assignment.
[0083] The notion of stream attributes is illustrated in the following code fragment
containing a declaration of a function F and a partial definition of a module M.

stream int F(int, int):;

stream (int zStrm) M(int xStrm, int yStrm)

{

zStrm = xStrm*yStrm + F(xStrm, yStrm);

}.

[0084] There are three named streams here: xStrm, yStrm and zStrm, all of type
int. xStrm and yStrm each have a single source: an input parameter of module M. The
destinations of xStrm and yStrm are represented by the two instances of xStrm and
yStrm, respectively, appearing in the assignment expression in the body of M. (Recall that,
in C, an assignment is also an expression.) Those instances represent inputs to the
assignment expression. xStrm and yStrm thus each have a single source and two
destinations.

[0085] A stream expression is identical to a C expression, except that in place of

variables, there are now input streams. A stream expression also has an output stream, which

=20 -

WO 2011/091323 PCT/US2011/022152

carries the results from expression evaluations. By default, this output stream is nameless,
but it can be assigned a name using a stream assignment, which is just what we’ve done in

the above assignment. Thus the output stream of the stream expression

b ey N
S

Either of these two expressions may be considered the source of zStrm. The destination of

zStrm is the output stream of module M, which is denoted by the output parameter zStrm
of module M.

xStrm, int yStrm)

xStrm thus has a single source and a single destination.

[0086] The most crucial properties of a stream relate to the stream’s role as a conveyor
of values. There are four such properties: a) values do not enter a stream except at stream
sources or at system initialization using the initialize () function; b) Values entering a
stream at a single source are totally ordered in time; c¢) once entered into a stream, a value is
eventually delivered to all stream destinations; if there are multiple destinations, then a
separate copy of the value is delivered to each destination; and d) values from a single source
are received at each stream destination in the same order in which they entered the stream
i.e., there is no leapfrogging of values in a stream. These four properties are the only
guarantees that a stream provides regarding the transport of values. Any other property that
does not follow as a logical consequence from these four is not a general stream property.
[0087] Because a stream is obliged to only deliver values eventually, the latency of a
stream, the time it takes a value to travel from a strecam source to a strcam destination, is
indeterminate. In fact, the latency may vary with time and between different source-
destination pairs of the same stream. Fixed or at least, bounded latencies, however, can still
be achieved by relying upon guarantees provided by the system implementation (rather than
the programming model). A source-destination pair confined to a single semiconductor die,
for example, will usually have bounds on its latency.

[0088] The above four properties also have implications for stream determinacy and
indeterminacy (non-determinism). For a stream with a single source, the four properties

ensure deterministic stream behavior. That means that the order in which values are placed

221 -

WO 2011/091323 PCT/US2011/022152

into a single-source stream completely determines the order in which values are delivered to
all stream destinations. For a stream with multiple sources, however, the situation is very
different. To illustrate the issues arising from multiple stream sources, consider the following
adaption of the code fragment from the preceding section. (out is the default output stream
of a single-output module).

int F(int);

stream int M(int xStrm, int xStrm)

{

O

ut = xStrm*xStrm + F (xStrm) ;

[0089] The two input parameters of module M are the same: xStrm. From the four
properties, values entering xStrm through the first input parameter of module M will be
received at each of the three destinations of xStrm in the same order in which they entered
the stream. Values entering xSt rm through the second input parameter of module M will be
received at each of the three destinations of xStrm in the same order in which they entered
the stream. That means that the two streams of values are merged or interleaved before
reaching each destination of xSt rm.

[0090] How interleaving is carried out is influenced, in general, by program structure.
The missing parts of the program above, for example, may be structured in a way that leads
to an interleaving that strictly alternates between parameter-one and parameter-two values.
So, for example, if the integers arriving on the two input parameters (streams) xStrm of

module M begin with the sequences:

xStrm Source One xStrm Source Two
6 3
8 5
1 9

then the sequence arriving at each of the three destinations of xSt rm in the expression

-2 -

WO 2011/091323 PCT/US2011/022152

out = XStrm*xStrm + F(xXStrm)

might begin with

xStrm Destinations

O — W 00 W

Such program-imposed determinism though is not always the case, and there are situations in
which values from multiple steam sources are interleaved non-deterministically. Moreover,
depending on the target system, those nondeterministic interleavings may differ from one
stream destination to another. Thus, for example, if the values arriving on the two input
parameters (streams) of module M are the same as above, then the sequence arriving at the

three destinations of xSt rm might begin with:

xStrm Destination One xStrm Destination Two xStrm Destination Three
6 3 3
8 5 6
1 6 5
3 8 8
5 1 1
9 9 9

This indeterminacy in order of arrival of values at the destinations of a multi-source stream
contrasts with the fixed order of arrival across all destinations of a single-source stream. That
fixed arrival order allows adopting notation that is useful in below. For a single-source

stream ssStrm and a non-negative integer i,

ssStrm (i)

denotes the i™ value appearing at all destinations of ssStrm. By convention, ssStrm(0)

denotes the first value appearing at all destinations.

-23-

WO 2011/091323 PCT/US2011/022152

[0091] When a value arrives at a stream destination, if the destination is an output
parameter of a module definition or an input argument of a module instantiation, then the
value is handed over to a stream on the other side of a module boundary. The value thus
remains in transit. If the destination is an input of a stream expression or a thread then the
value comes to rest in a FIFO queue.

[0092] To illustrate remaining in transit, the following code fragment is shown.

stream 1int modulel (int);

cut = modulel (xStrm) ;

The code fragment includes two modules, modulel and module?2, each with a single input
stream and single output stream and two named streams, xSt rm and y St rm, both within the
definition (body) of module2. The sole destination of xStrm: modulel (x3+t) isan
input argument of an instantiation of modulel. A value arriving at this destination is simply
passed across modulel’s boundary to an internal stream of modulel. The situation is
similar for values arriving at the sole destination of yStrm:

stream (int v35trm) module2 (int xStrm)
Since this destination is an output parameter of a module?2, arriving values are simply
passed across module?2’s boundary to a stream external to module?2.
[0093] Another example is the case where a stream destination is an input of a stream

expression such as the following code fragment.

stream int F(int, int):;

1

stream int M(int xStrm, int yStrm)

cul = xStrm*yStrm + F(xStrm, yStrm);

-4 -

WO 2011/091323 PCT/US2011/022152

Within the body of module M is the stream expression
xStrm*yStrm+ F(xStrm, yStrm)

which contains two destinations of xStrm and two destinations of yStrm. It also contains
the two operators * and + and the function F, which are ordinary C constructs. That means
that in order to evaluate this expression, the two operators and the function F must be
supplied with individual values.
[0094] The queues are automatically inserted by the Stream C linker/loader and are
managed by the Stream C runtime. Among the responsibilities of the runtime is signaling
when a queue is empty and ensuring that no queue ever overflows. Each queue is guaranteed
to have a capacity of at least two values of the associated data type, although a programmer
may request a specific amount via a pragma as described below. In the stream of this
example, there are four queues, one for each of the four stream destinations (stream
expression inputs). These queues are largely invisible to the programmer.
[0095] Once a Stream C program begins executing (operating), the only way for a value
to enter a stream is through a stream source. One of more streams may form a directed cycle
which requires a value already in the stream. The simplest such cycle occurs when a stream
appears on both sides of a stream assignment as in:

xStrm += yStrm
which is equivalent to

xStrm = xXStrm + yStrm

[0096] FIG. 9A is a first graphical representation 400 of this assignment where the
directed cycle consists of the feedback path from the output of the + operator to one of the
two inputs of the same operator. It is the lack of a value on this path that prevents the +
operator from consuming a value from each input stream and producing a value on the output
stream. So unless a value 404 is placed in the feedback path as shown in the second
graphical representation 402 before execution begins, the + operator will never fire.

[0097] Another issue relates to changing the offset of one single-source stream relative
to another single-source stream. For example, if aStrm and bStrm are both inputs to the
same module or stream expression, as in

aStrm + bStrm

-25 -

WO 2011/091323 PCT/US2011/022152

which is represented graphically in FIG. 9B, and the module or expression consumes values
from the streams in pairs, one from aStrm and one from bStrm. If it is desired that
aStrm(n) (i.e., the n™ value arriving on aStrm) to match up with bStrm(n+2) (i.c., the
n+2" value arriving on bStrm). Thus aStrm(0) would match up with bStrm(2),
aStrm (1) would match up with bStrm(3), and so on.

[0098] The solution to both issues is provided by the stream initialization statement,
which has the form

<stream-identifier>. initialize (<value-list>) ;

[0099] When the Stream C compiler/linker/loader encounters this statement, it takes the
statement as a directive to insert a FIFO queue at each destination of <stream-identifier>
whether the destination is an output parameter of a module definition, an input argument of a
module instantiation, an input of a stream expression or a thread; size the queue at each
stream destination so that it is sufficient to hold at least n+1 values of type T, where n is the
number of values in <value-list> and T is the type of <stream-identifier>; and place the
values in <value-list> into the queue in order, with the first value in <value-list> placed at the
front (head) of the queue.

[00100] For example, in FIG. 9A, to prevent deadlock, a value 404 is inserted in the
feedback path and also in the expression output in the graphic representation 402 by
initializing xSt rm with the value 0 via the statement

xStrm.initialize (0);

This statement causes two FIFO queues to be created, one for each destination of xSt rm.
(the queue at the destination of the feedback path will already have been inserted as described
in the preceding section). Assuming that xSt rm is of type int, then the size of each queue
is at least 2*sizeof (int), and at the head of each queue at system initialization is the
int value 0. This is illustrated graphically in the flow diagram 402 in FIG. 9A. With
xStrm thus initialized, the values appearing on the output of the assignment xStrm +=

yStrm are:

yStrm(0)

yStrm(0) + yStrm(1l)

-26 -

WO 2011/091323 PCT/US2011/022152

yStrm(0) + yStrm(l) + yStrm(2)

Changing the offset of aStrm relative to bStrm in a second graphic representation 412 in
FIG. 9B is handled in a similar manner. Here, however, two values are inserted into the
aStrm FIFO queue since it may be desirable to offset a St rm by two values relative to
bStrm. That is accomplished using the following stream initialization statement in which 1
and 2 have been chosen as two values 414 to be inserted into aStrm’s queue at system
initialization.

aStrm.initialize (1, 2);
The effects of this initialization are illustrated graphically in the representation 412 in FIG.

9B. With xSt rm thus initialized, the values appearing on the output of the assignment

xStrm += yStrm are then:

1 + bStrm(0)
2 + bStrm (1)
aStrm(0) + bStrm(2)

asStrm(l) + bStrm(3)

[00101] As is the case for C variables, all streams must be declared before being used,
although certain stream declarations are made implicitly by context, for example, by
appearing as module input or output parameters. For explicit stream declarations, the syntax
follows that for C variable declarations, but with the declaration now beginning with the
keyword stream:

stream <storage-class-specifier>qionat <type> <identifier-list>;
Some examples of stream declarations without a storage class specifier are:
stream int xStrm, yStrm;

stream char cStrm;

-27 -

WO 2011/091323 PCT/US2011/022152

stream double dStrm;

Of the five storage class specifiers in C — auto, register, static, extern and

typedef —only static is permitted in a stream declaration, as in
stream static int xStrm, yStrm;

[00102] The semantics of a static, as well as a non-static, stream declaration is determined
by the context in which the declaration appears. There are three such contexts, each with its
own scope rule. In each case, the stream-declaration scope rule is identical to that of the
variable-declaration counterpart. For a stream declaration, with no storage class specifier and
appearing inside a module, the declaration scope extends from the declaration to the end of
the module. For a stream declaration, with no storage class specifier and appearing outside
all modules (and functions), the declaration scope is global — that is, it is visible to the entire
program. For a stream declaration, with the static storage class specifier and appearing
outside all modules (and functions), the declaration scope extends from the declaration to the
end of the source file in which the declaration appears.

[00103] Absent from this list are several declaration forms involving storage class
specifiers that pertain to variables but not streams. In C, automatic variables, those variables
declared with the auto storage class specifier or with no specifier at all, lose their values
between function invocations. But since streams do their work only within modules and
since modules are not invoked (they are always active), automatic streams are an incongruous
concept. The auto storage class specifier is therefore not applied to stream declarations.
[00104] A variable declaration with the static specifier and appearing inside a function
indicates that the declared variable retains its value between function calls (function
invocations). In the case of modules, however, there is no notion of a call, and so the
static specifier has no meaning inside a module. The static specifier is therefore not
used within module scope.

[00105] For variable declarations, the extern storage class specifier helps to distinguish
those declarations of global variables that act as declarations and definitions from those that
act as merely declarations. In the case of streams, however, a declaration is never a definition
because a stream declaration never causes storage to be set aside. Storage is allocated only at
stream destinations as described below in the section on Stream FIFOs. The register and
typedef storage class specifiers have no relevance to streams and do not appear in stream

declarations.

-28 -

WO 2011/091323 PCT/US2011/022152

[00106] Stream expressions are the stream counterpart to ordinary C expressions. Apart
from substituting input streams for all variables and an output stream for the result, the two
types of expressions are very similar. Expressions combine variables and constants to
produce new values while stream expressions combine streams and constants to produce new
streams. The structure of C expressions and stream expressions are nearly identical. All C
operators are valid operators in stream expressions. The same operator precedence applies in
both C expressions and stream expressions. C function calls are permitted in stream
expressions, just as they are in C expressions. Instantiations of modules with a single output
stream are permitted in stream expressions, and are treated similarly to function calls.

[00107] The differences between C expressions and stream expressions lie primarily in
when and how they are evaluated. A C expression is evaluated when the thread of control
reaches the statement containing the expression. The evaluation is carried out by first
replacing each variable by its current value and then performing the requisite operations
according to the rules of operator precedence. The value returned by the final operation is
then supplied as the evaluation result.

[00108] Unlike evaluation of C expressions, evaluation of stream expressions in the C
Stream programming language is not tied to a thread of control. Instead, stream expressions
are cvaluated opportunistically. As before, evaluation is carried out by performing the
requisite operations according to the rules of operator precedence. Instead of substituting
values for variables, a value is consumed (popped) from each FIFO queue belonging to an
expression input. A FIFO queue is inserted at all stream destinations that are inputs of stream
expressions. The evaluation is opportunistic because it is performed whenever there is at
least one value in each input FIFO queue of the expression. The result produced by the
evaluation, as before, is the value returned by the final operation of the evaluation. That
result, however, is handled differently from the C expression case. For a C expression, the
use to which the result is put is determined by the context of the expression. For a stream
expression, the result is simply placed into the expression’s output stream (which may or may
not have a name, depending upon whether the expression is an assignment).

[00109] An example of the stream expression may be shown in the following expression
in which xStrm, yStrm and zStrm are all streams of type int.

XxStrm*yStrm + 5*zStrm

The values arriving on the three streams begin as follows:

-29 -

WO 2011/091323 PCT/US2011/022152

XStrm ysStrm zStrm
1 2 3
4 5 6
7 8 9

The first three values placed into the (unnamed) output stream of xStrm*yStrm +

5*zStrm are then:

Output Stream of xStrm*yStrm+ 5*zStrm

17 = 1*2 + 5*3
50 = 4*5 + 5*6
101 = 78 + 5*9

[00110] Among stream expressions, stream assignments are of special interest. There are
two types of such stream assignments, the first type has the form

<stream-identifier> = <stream-expression>

[00111] Like their C counterparts, assignments to variables, stream assignments of this
type have a side effect. In addition to supplying values to its output stream, a stream
assignment makes the output of the right-hand-side (RHS) expression a source of the left-
hand-side (LHS) stream, and in the process makes the output stream of the RHS expression
the output stream of the assignment. The stream assignment also gives a name to the
otherwise nameless output stream of the RHS expression. Although a name is not needed for
the output stream of a subexpression of a larger expression, a name is essential when the
output stream must be directed to a destination outside any enclosing superexpression.
[00112] The stream assignment statement in the following code fragment is an example.
A stream expression, assignment or otherwise, becomes a stream statement when it is
followed by a semicolon.

int F(int, int);

int G(int);

gstream int M(int xStrm, int yStrm)

{

=30 -

WO 2011/091323 PCT/US2011/022152

cut = F(xStrm, G(yStrm)):;

The expression, F (xStrm, G(yStrm)) and the subexpression, G (yStrm) each have an
output stream as stream expressions. In the case of G (yStrm), the output stream is
unnamed since the destination of the stream is clear from the context of the expression: the
destination is the second input argument of the function F in the superexpression F (xStrm,
G (yStrm)). Inthe case of the output stream of F (xStrm, G (yStrm)), however, a
name is required since the destination is outside the expression. That name is assigned in the

assignment expression
out = F(xStrm, G(yStrm))

With this assignment, the output of F (xStrm, G (yStrm)) becomes a source of zStrm,
which has a single destination, the output parameter of Module M.
[00113] The second type of stream assignment is of the form

(<comma-separated-list-of-stream-identifiers>) = <module-instantiation>

It arises when it is desirable to make the outputs of a multi-output module the sources of

multiple named streams. To illustrate, the following multi-output module:
stream (int, int) tap(int, int, int);

If the first output of tap is the source of int stream x, and the second output of tap is the

source of int stream y. That is accomplished with the stream assignment

(int x, int y) = tap(argl, arg2, arg3);

The assignment makes the i™ output of the module a source of the i™ stream and gives names
to the otherwise nameless output streams of the module.

[00114] Statements within the body of a module fall into two categories (domains), thread
and stream. Stream statements deal with streams but not variables. Thread statements deal
with variables, and, in a few cases, with streams as well. Statements in the thread domain are
mostly C statements, and like C statements, they are imperative (procedural) in nature

defining a step-by-step procedure. Associated with such a procedure is a sequential flow of

231 -

WO 2011/091323 PCT/US2011/022152

control, often called a thread, which governs the order in which statements are executed.
Stream statements, in contrast, are declarative. Each such statement makes a declaration
about the streams appearing in the statement. There is no notion of a step-by-step procedure,
as there is in the thread domain, and the order of stream statements within a module body is
therefore immaterial with one exception. Just as variables must be declared before being
used, so too streams must be declared before being used.

[00115] Because of the nature of the stream domain, there are no counterparts to those C
statements that deal with control flow, specifically, if-else, else-if, switch,
for, while, do-while, break, continue, goto and return. In fact, the
only statement type in the stream domain is the stream counterpart to the C expression
statement, and, as in C, the most common expression statement is the assignment statement.
A stream expression statement has one of the two forms

<stream-expression>;
stream <stream-expression>;

while a stream assignment statement has one of the two forms
<stream-identifier> = <stream-expression>;
stream <stream-identifier> = <stream-expression>;

(<comma-separated-list-of-stream-identifiers>) = <module-instantiation>

[00116] An example application using modules, stream initialization, stream declarations,
stream expressions and stream statements is a finite-impulse-response (FIR) filter, a
commonly used construct in digital signal processing. A FIR filter transforms a discrete-time
input signal into a discrete-time output signal. FIG. 10 is a graphical depiction of a 5-tap FIR
filter 500 in which X(z) represents a discrete-time input 502 and Y(z) represents a discrete-
time output 504. A series of unit delays 506 labeled z™' each cause the incoming discrete-
time signal to be delayed by one clock cycle. A series of multipliers 508 each of which
multiply the incoming discrete-time signal by a constant coefficient h(i). Finally, a series of
adders 510 labeled £ each of which sums the two incoming signals. The filter 500 is termed
a S-tap filter because 5 delayed versions of the incoming discrete-time signal are each
multiplied by a separate coefficient with the 5 resulting products being summed together.
[00117] A discrete-time signal is represented as a stream of samples. The multipliers 508

and adders 510 are each represented as a stream expression. The unit delay is represented by

-32-

WO 2011/091323 PCT/US2011/022152

stream initialization. By initializing one stream with one or more values, the values are offset
(delay) in that stream relative to the values in a second stream. This is the principle
underlying operation of the UnitDelay module.

stream int UnitDelay (int X)

{

In the body of UnitDelay, the stream assignment statement
out = Xy

makes X, the input stream of UnitDelay, the source of cut, the default output stream of

UnitDelay, while the stream initialization statement:
out.initialize (0);

inserts the value 0 into out at system initialization. This initial value in out has the effect
of offsetting (delaying) all subsequent values in cut by one value.

[00118] The following is a Stream C implementation of a 5-tap FIR filter such as the filter
500 in FIG. 10 including 10, 20, 30, 40 and 50 as arbitrarily chosen five filter coefficients.

stream int UnitDelay (int X)

{
cut = X;
out.initialize (0);
}

stream (int xOut, int yOut) tap(int xIn, int yIn, int h)

xOut = UnitDelay (xIn);
yoOut = yIn + h*xOut;

stream int FIRS (int X)

{
(int x2, int v2) = tap(X, 10*X, 20);
(int x3, int yv3) = tap(x2, yv2, 30);
(int x4, int v4) = tap(x3, yv3, 40);
(int , out) = tap (x4, v4, 50);

-33-

WO 2011/091323 PCT/US2011/022152

[00119] This implementation exhibits concurrency but does so without any explicit
concurrency constructs. The concurrency simply falls out from code that, except for the
multiple, named outputs of tap, resembles ordinary sequential code. In place of variables,
there are now streams.
[00120] Each of the four instantiations of tap within the body of FIR5 is computing its
own copy of the formula

yIn + h*xOut
concurrently with the three other instantiations of tap. That is made possible by the
opportunistic nature of stream expressions and by the continuing arrival of new input values
to each of the instantiations of tap. Those new values are supplied by seven internal streams

of FIRS.

X conveys values from the input of FIR5 to inputs of the first tap

x2 and y2 convey values from outputs of the first tap to inputs of the second tap

x3 and y3 convey values from outputs of the second tap to inputs of the third tap
x4 and y4 convey values from outputs of the third tap to inputs of the fourth tap

The h input of each instantiation of tap is replaced by a constant. That causes the Stream C
compiler to replace all instances of h within a tap instantiation with the constant. All of the
computations performed by the instantiations of tap are in service to the transformation of
FIR5 input values into FIR5 output values. Those final output values are supplied by the

default output stream of FIR5.
out conveys values from an output of the fourth tap to the output of FIR5

This implementation is an example of how many digital-signal-processing functions are dealt
with in Stream C.

[00121] In the FIR-filter example above, the five coefficients, 10, 20, 30, 40, 50, are
known at compile time. However, if the FIRS coefficients aren’t known at compile time or if
the coefficients, although constant for extended periods, do change from time to time, another

technique needs to be employed. In such a case, these quasi-constants are not true constants

-34 -

WO 2011/091323 PCT/US2011/022152

because they do change, and they are not true streams because their values are not consumed
(popped from a FIFO queue) by a stream expression or by a thread.

[00122] A quasi-constant stream is similar to an ordinary stream in several respects. It
has a type, one or more sources, one or more destinations and a name. It conveys values of
the specified type from the specified sources to the specified destinations. However, a quasi-
constant stream differs from an ordinary stream in several ways. Where an ordinary stream
would have a FIFO queue, a quasi-constant stream has storage for one value of the specified
type (much like the storage associated with a variable). The value residing in that storage is
neither popped nor consumed when accessed by a stream expression or thread, but instead
remains resident in storage. The stored value is updated when a new value enters the stream
through one of the stream sources. When that happens, the new value simply overwrites the
old value. Because this updating is typically done asynchronously with system operation, the
point at which the update is recognized at the stream destination is, in general, indeterminate.
The declaration of a quasi-constant stream must specify an initial value to be stored at each
stream storage location at system initialization.

[00123] A quasi-constant stream is declared, either in a standalone declaration or in the
input or output parameter list of a module, using the following syntax.

const <stream-type> <stream-identifier> = <initial-value>

The existing C keyword const, which ordinarily applies only to variables, indicates that the
stream being declared is a quasi-constant stream. (The use of const saves having to
introduce a new keyword).

[00124] These ideas are illustrated in the following modification of the FIR5 module.
Here, the five coefficients 10, 20, 30, 40 and 50 of the original example have been replaced
by the five quasi-constant streams h0, h1, h2, h3 and h4. Since the initial values inserted
into these streams at system initialization are the same as the original coefficients, the new
FIRS starts operation with the same coefficients as the original. With the new FIRS,
however, those coefficients may be updated if conditions warrant.

stream int FIRS5(int X, const int h0 = 10,
const int hl = 20,
const int h2 = 30,
const int h3 = 40,
const int h4d = 50)

(int x2, int y2) = tap(X, h0*X, hl);

-35-

WO 2011/091323 PCT/US2011/022152

(int x3, int y3) = tap(x2, v2, h2);
(int x4, int v4) = tap(x3, yv3, h3);
tap (x4, v4, hi);

(int , out)

[00125] FIG. 11A shows a module 600 highlighting a series of FIFO buffers 602 on an
input stream 604. FIGs. 11B and C show two additional alternative implementations of the
use of the FIFO buffers 602 and the module 600. FIG. 11B shows the use of a FIFO buffer
602 on a series of output streams 606 only. FIG. 11C shows the use of the FIFO buffers 602
on both the input and output streams 604 and 606. From a programmer’s perspective the
three diagrams in FIGs. 11A-C are identical. From a performance viewpoint having both
buffering on input and output as in FIG. 11C allows the module 600 to be scheduled for
execution without regard to space being available on the module 600 that is receiving the
stream. This does come at a cost of additional memory and an extra scheduling step. The
FIFO buffers 602 may reside in virtual memory space, physical memory space, and register
file space depending on the implementation.

[00126] An example of a high level scheduling algorithm for the input stream FIFO as in
FIG. 11A is as follows.

a. Schedule a Module for Execution when {

There is data available in the input FIFO of the
input stream(s)

AND

There is space available in input stream FIFO of
the module connected to the current modules
output stream

}

[00127] An example of a high level scheduling algorithm for the output stream FIFO as in
FIG. 10B is as follows

b. Schedule a Module for Execution when {

There is data available in the output stream
FIFO of the module connected to the current
modules input stream(s)

=36 -

WO 2011/091323 PCT/US2011/022152

AND

There is space available in FIFO of the output
stream(s)

[00128] An example of a high level scheduling algorithm for input and output stream
FIFO as in FIG. 10C is as follows:

c. Schedule a Module for Execution when {

There is data available in the input FIFO of the
input stream(s)

AND

(There is space available in input stream FIFO
of the module connected to the current modules

output stream
OR

There is space available in FIFO of the output
stream(s))

THREADS

[00129] Threads provide capabilities crucial to making Stream C a complete and well-
rounded language. Threads may appear cither within the body of a C function (i.c., a
function whose inputs are individual values and whose output is a single value) or within the
body of a module (i.e., a function whose inputs and outputs are streams of values). The two
types of threads are identical except that threads in the body of a module may, and usually do,
access Stream C streams, and for that reason they usually do not terminate. Also, threads in
the body of a C function do not access Stream C streams, and like all (well-behaved) C
threads they do terminate.

[00130] The distinguishing characteristic of a Stream C thread is its complete decoupling
from concurrency issues. There are no concurrency constructs, no direct interactions with

other threads and no spawning of new threads. A Stream C thread is thus oblivious to the

-37-

WO 2011/091323 PCT/US2011/022152

fact that, in general, it is operating in a multi-threaded environment. A programmer working
in the thread domain can therefore focus on a strictly sequential problem.

[00131] Function declarations and function definitions in Stream C have the same syntax
and semantics as their counterparts in C. For a function call in Stream C, the syntax and
semantics depend upon whether the call appears in: (a) the body of a function or (b) a stream
expression. A Stream C function call in the body of the same (recursive) function or the
body of another function has the same syntax and semantics as a regular C function call. A
Stream C function call in a stream expression has the same syntax as a C function call but
with streams replacing variables in the function-call arguments. The semantics of such a call
are similar, but not identical, to those of a regular function call. The differences relate to how
cach evaluation (call) of the function is performed. More specifically, they concern: (1) how
values are obtained for the parameters (streams) appearing in the function-call arguments, (2)
the destination of the function-call output, and (3) how control is handled.

[00132] In C, the parameters appearing in the arguments of a function call are all
variables, and the value substituted for each such function input variable is the current value
of that variable. In Stream C, the parameters appearing in the arguments of a stream-
expression function call are all streams, and the value substituted for each such function input
stream is either: (a) the value popped (consumed) from the FIFO queue at that stream
destination, in the case of a regular stream, or (b) the current value at that stream destination,
in the case of a quasi-constant stream.

[00133] In C, the value returned by a function call is passed to the caller. In Stream C, the
value returned by a stream-expression function call is placed into the function-call output
stream, which may be either named or unnamed. As a stream expression itself, a stream-
expression function call always has an output stream. The destinations of the output value
are determined by the destinations of the stream.

[00134] In C, a function is called when the thread of control encounters a call to that
function. In Stream C, a stream-expression function call is evaluated (i.e., the function is
called), without regard to a thread of control. Instead the function is called opportunistically
whenever there is at least one value in the FIFO queue of each regular input stream of the
function call. Quasi-constant input streams are always prepared to supply a value, and so

they never block a function call or evaluation of a stream expression.

-38 -

WO 2011/091323 PCT/US2011/022152

[00135] Apart from these three differences, the semantics of regular C function calls and
stream-expression function calls are identical. That means that in both cases, the usual
thread-based semantics applies to function execution.

[00136] An example of threads in C Stream may be shown with the following definitions

of the function GCD and the module GCD4.

int GCD(int a, int b) J/OA recursive
{

if ((a >= b)) && ((a % b) == 0)) o

{

return (b);

}

if (a < b)

{

return GCD (b, a); A/0A function call

}

return GCD(b, (a % b)); /A function call
}
stream int GCD4 (int w, int x, int vy, int z) // A module
{

cut = GCD(GCD(w, x), GCD(y, z)); /A st e g
} TG \ <

[00137] GCD, a classic example of a recursive function, returns the greatest common
divisor of two integers. It has two integer inputs, a and b, and returns an integer result.
GCD4, is a module with four integer-stream inputs, w, x, v and z, and an integer-stream
output. Within the body of GCD4, is the stream-expression statement

out = GCD(GCD(w, x), GCD(y, z)):
and within this statement is the stream expression

GCD(GCD (w, x), GCD(y, z))

-39

WO 2011/091323 PCT/US2011/022152

[00138] Since this expression contains the destinations of streams w, x, y and z, there is a
FIFO queue at ecach of those four destinations. Those queues permit the function calls
GCD(w, x) and GCD(y, z) to be evaluated (executed) opportunistically and concurrently
as described above. Like these two calls, the third call to GCD is performed opportunistically
with input values being obtained from the FIFO queues of its two input streams. Those input
streams originate as the output streams of the two other calls to GCD, the FIFO queues on
those two streams allowing the third call to GCD to be performed concurrently with the first
two. The output stream of this third function call is directed by means of the stream
assignment to cut, the output stream of GCD4. This arrangement of function calls to GCD,
which is represented as a data-flow graph in FIG. 12, allows data from the four input
streams, w, x, v and z, to be streamed through the three concurrently operating function
calls to produce a stream of output values, each of which is the greatest common divisor of
w(i),x(1),y (1) and z (i), for some integer 1 > 0.

[00139] From the stream point of view, it’s immaterial how a module transforms input
stream values into output stream values. All that matters are the transformation(s) from
inputs to outputs (and any side effects). In the examples presented so far, these
transformations have been represented in terms of stream expressions, expressions which
may be implemented using application-specific hardware, reconfigurable hardware (such as
that in FIGs. 1 and 2), a processor executing sequential code or some other mechanism.
[00140] These transformations may be represented explicitly as sequential code residing
in the body of a module. Such code executes on a stored-program sequential processor, and
exists in what may be referred to as the thread domain. Although the body of a module will
typically contain statements exclusively in either the stream domain or the thread domain,
that does not preclude the presence of both types of statements in the same module body. In
that case, the two domains operate side by side (i.e., concurrently).

[00141] The syntax and semantics of the thread domain are a superset of C as defined
informally by Brian W. Kernighan and Dennis M. Ritchie, “C Programming Language,”
(1978) and formally by the ISO C standard ISO/IEC 9899. The additions to standard C
involve operations that allow a thread to access those streams that are visible to the thread,
either module input streams, module output streams, streams internal to the module body or
global streams. Those stream-access operations are divided into two categories: blocking and

non-blocking. To understand those operations, the mechanisms used to regulate the flow of

- 40 -

WO 2011/091323 PCT/US2011/022152

values in streams and the mechanisms for managing tasks (a task is equivalent to a module
instance) are significant as described above with reference to the node wrapper in FIG. 4.
[00142] Flow control and task management are key services provided by the Stream C
run-time-support system. Flow control prevents FIFO queue overflow (i.e., the writing of
data to a queue that is already full) and FIFO queue underflow (i.c., the reading of data from
a queue that is empty). Task management controls when tasks are placed into execution and,
in some cases, when task execution is terminated. There are three key elements of the Stream
C flow control and task management systems: consumer counts, producer counts, and task
managers.

[00143] An integer consumer count is associated with each FIFO queue of a regular (non
quasi-constant) stream. All reads by a particular thread of a particular stream access the same
FIFO queue and, therefore, the same consumer count. The consumer count sign bit indicates
whether the FIFO queue is empty. A sign bit of 1 (the consumer count is negative) indicates
that the queue is empty. A sign bit of 0 (the consumer count is non-negative) indicates that
the queue is nonempty.

[00144] An integer producer count is associated with each source of each regular (non
quasi-constant) stream. The producer count sign bit indicates whether there is space available
in all downstream FIFO queues to receive a value inserted at this stream source. A sign bit of
0 (the producer count is non-negative) indicates that not all downstream queues have space to
receive a value this output stream. A sign bit of 1 (the producer count is negative) indicates
that all downstream queues have space to receive a value this output stream.

[00145] Each processing core such as the nodes 180 in FIG. 2 has a first-in-first-out
ready-to-run queue of tasks that have all the resources, including input data, required to begin
execution. Each processing core has a task manager responsible for managing the execution
of tasks and providing the necessary coordination signals between tasks. A task manager
automatically increments the consumer count when data is pushed onto (written to) a FIFO
queue, decrements the consumer count when data is popped (consumed) from a FIFO queue,
sends backwards acknowledgements to stream sources to indicate that space has become
available at destination FIFO queues (the default is to send a backwards acknowledgement
after each value is consumed from each FIFO queue). The task manager also increments the
producer count of a module output stream when data is written to that steam, decrements the
producer count of a module output stream when a backwards acknowledgement is received

for that stream, and places a task in the processing core’s ready-to-run task queue when the

-41 -

WO 2011/091323 PCT/US2011/022152

task has the input data, and any other required resources, it needs to proceed. The task
manager places a task into execution when the task is at the head of the ready-to-run task
queue and there is an execution unit available and suspends execution of a task when the task
does not have the input data it needs to proceed or when the task times out.

[00146] Blocking stream-access operations allow a thread appearing in a module body to
access streams visible to the thread such as module input streams, module output streams,
streams internal to the module body and global streams. These are the preferred methods for
accessing streams because, unlike their non-blocking brethren, they introduce no non-
determinism. The blocking and unblocking of such operations is handled automatically by a
processing core’s task manager.

[00147] There are three such operations, each patterned after a similar operation in C++.
The >> operator is used to pop (consume) a single value from a stream FIFO queue and
assign that value to a variable. It is used in statements of the form

<stream-identifier> >> <variable-identifier>;

The statement causes a single value to be popped from the stream on the left and assigned to
the variable on the right. If, however, the FIFO queue for the stream is empty as indicated by
the sign bit of the stream’s consumer count, the statement blocks (stalls) and remains blocked
until queue becomes nonempty again, as indicated by the sign bit of the stream’s consumer
count.

[00148] The << operator is used to place the current value of a variable into a stream. It
is used in statements of the form

<stream-identifier> << <variable-identifier>;

The statement causes the current value of the variable on the right to be placed into the
stream on the left. If, however, one or more downstream queues do not have space to receive
such a value, as indicated by the sign bit of producer count at the stream source, the statement
blocks (stalls) and remains blocked until all downstream queues have space to receive the
value again, as indicated by the sign bit of the stream’s producer count.

[00149] The peck operator is used to obtain the value at the head of a stream FIFO queue
without popping (consuming). It is used in expressions of the form

<strecam-identifier>.peek ()

This expression returns the current value at the head of the FIFO queue of <stream-

identifier>, but does not pop (consume) that value from the queue. If, however, the FIFO

-42 -

WO 2011/091323 PCT/US2011/022152

queue for the stream is empty as indicated by the sign bit of the stream’s consumer count, the
statement blocks (stalls) and remains blocked until queue becomes nonempty, again, as
indicated by the sign bit of the stream’s consumer count.

[00150] Like their blocking cousins, non-blocking stream-access operations allow a
thread appearing in a module body to access streams visible to the thread such as module
input streams, module output streams, streams internal to the module body and global
streams. However, unlike blocking operations, non-blocking operations typically involve
race conditions that affect the outcome of the operations and therefore introduce non-
determinism. There are two such operations:

[00151] An expression of the form

<stream-identifier>. consumerCount ()

returns the consumer count of <strecam-identifier>, where <strecam-identifier> is a stream that
is read by the thread via the >> or peek operations. This expression is used primarily to test
the consumer-count sign bit of <stream-identifier> in order to bypass a >> or peek
operation when the FIFO queue of <stream-identifier> is empty.

[00152] An expression of the form

<stream-identifier>. producerCount ()

returns the producer count of <stream-identifier>, where <stream-identifier> is a stream that
is written to by the thread via the << operation. This expression is used primarily to test the
producer-count sign bit of <stream-identifier> in order to bypass a << operation when one or
more downstream queues do not have space to receive such a new value.

[00153] While threads within module bodies may take many different forms, many will
be variations of the following typical form.

stream int moduleA (int strml, ..., 1int strmN)

—

int varl, ..., varN, result;

while true

strml >> wvarl;

R -
ST TS A
PSR el e B S N

strmN >> wvarN;

-43 -

WO 2011/091323 PCT/US2011/022152

out << result; A4 FPlace yesult into output

Here, moduleA is a module with one or more input streams and a single output stream. The
input and output stream types are arbitrary chosen to be integers. The first thing the thread
within the body of moduleA does is declare a variable for each input stream and a variable
for the single output stream. The thread then enters an infinite loop in which each iteration
involves: (a) reading in (consuming) a value from each input stream, (b) computing
(producing) a result and (c) placing that result into the output stream.

ARRAYS
[00154] As in other languages, arrays play an important role in Stream C, but not just
arrays of data clements, but also stream arrays and module arrays. Arrays of actual data
values (not pointers to arrays of data values) are conveyed concurrently over multiple
streams. Stream arrays are especially valuable when used in conjunction with arrays of
modules.
[00155] Stream C inherits its syntax and semantics for data arrays from C. That means
that when the name of an array is used as (a function) argument, the value passed to the
function is the location or address of the beginning of the array, there is no copying of array
clements. The same is true for the stream inputs (arguments) and outputs of a module. To
illustrate, the GCD4 module from above may be used.

stream int GCD4 (int w, int x, int vy, int z) J4A module

,,,,,,

out = GCD(GCD(w, x), GCD(y, z)):

Instead of supplying GCD4 with four separate integer-stream arguments, it is supplied with a
single stream argument in which each value is an array of four integers. GCD4 would then be

transformed into:

stream int GCD4 (int* wxyz) J4A module

-44 -

WO 2011/091323 PCT/US2011/022152

out = GCD(GCD(wxyz[0], wxyz[1l]), GCD(wxyz[2], wxyz[3])):

[00156] In accordance with C conventions, the single argument of GCD4 is of type int*,
that is, a pointer to an integer, and in this case, the first integer in an array of four integers.
Those four integers are accessed within the body of GCD4 using the standard C operator [].
Supplying C-type data arrays to a module is one way to deal with arrays in the context of
streams.

[00157] For some applications, supplying a module with a stream of array pointers is
insufficient to fully exploit the concurrency inherent in the application. An array of streams,
rather than a stream of arrays therefore permits arrays of actual data values, not pointers to
arrays of data values, to be conveyed concurrently over multiple streams. Declaring a stream
array is identical to declaring a regular C array, with two differences, the keyword stream
precedes declaration and the size of the array must be known at compile time. This
restriction 18 necessary since, like modules, all streams within an application are instantiated
at compile time.

[00158] Examples of stream-array declarations are:

stream int arraylDI[4];
stream int array2D[4][16];
stream int array3D[4][16][9];

The first declaration declares array1D to be a one-dimensional array of 4 integer streams.
Similarly, array2D is declared to be two-dimensional array of 64 integer streams, and
array3D athree-dimensional array of 576 integer streams. Individual streams of a stream

array are accessed in the same way as individual elements of a data array. For example,
array3D[3]1[15]1([7]

denotes one of the 576 streams in array3D.

[00159] Once a stream array is declared, the entire array, subarrays of the array or
individual streams within the array may be referenced. These three cases are illustrated in the

following code fragment.

- 45 -

WO 2011/091323 PCT/US2011/022152

stream int moduleA (int);

stream int moduleB (int[4]1);

stream int moduleC (int[31141);

stream int moduleD(int W[3][4]) S40A module definition
{

stream int X = moduleA (W[2][01): S A stryeam g

stream int Y = moduleB(W[2]); " £

gstream int Z2 = moduleC (W) ;

Here, declarations for moduleA, moduleB and moduleC, and a partial definition of

moduleD are shown. The input types of the four modules are:

Module Input Type
moduleA (int) A single integer stream
moduleB (int[4]) A 1-dimensional array of 4 integer streams
moduleC (int[3][4]) A 3X4 array of integer streams
moduleD (int [3][4]) A 3X4 array of integer streams

[00160] The input arguments supplied to the instantiations of moduleA, moduleB and

moduleC within the body of moduleD are as follows.

Module Instantiation Argument Argument Type
moduleA (W[2][01) W[2]1[0] A single integer stream
moduleB(W[2]) W[2] A 1-dimensional array of 4 integer streams
moduleC (W) W A 3X4 array of integer streams

In each case, the module-instantiation argument type matches the module input type, and
cach module instantiation therefore satisfies the strong-typing requirement of Stream C.
[00161] Accessing individual streams of a stream array within a stream expression is also
straightforward, as illustrated in this example of a complex-multiply module.

stream int[2] complexMult (int X[2], int Y[2])

- 46 -

WO 2011/091323 PCT/US2011/022152

Because operators within stream expressions are concurrently active, the four multiplies, one
addition and one subtraction in the stream expressions X[0]*Y[0] - X[1]*Y[1] and
X[0]*Y[1] +X[1]1*Y[0] are evaluated concurrently.

[00162] Data parallelism, one of the more popular approaches to parallel processing, is a
form of parallelism in which the same task is performed concurrently (in parallel) on different
pieces of the same data structure, which is typically an array. In Stream C, data parallelism is
supported by module arrays.

[00163] A module array is, as its name implies, an array of modules. It is declared by
inserting the array dimensions, in square brackets, between the module name and the list of
inputs parameters. The following are two examples of module-array declarations:

stream int moduleA[3][4] (int, int);
stream (int, int) moduleB[3][4] (int, int);

In both cases, the array dimensions are 3X4.

[00164] Like the definition of an ordinary (standalone) module, the definition of a module
array has a body delimited by curly braces ({ and }). The following are two examples of
module-array definitions. The first has a single (default) output stream, while the second has
two named output streams.

stream int moduleA[3] [4] (int a, int b)

stream (int x, int y) moduleBI[3][4] (int a, int b)

{

- 47 -

WO 2011/091323 PCT/US2011/022152

[00165] Once a module array is declared (either in a declaration or a definition), the entire
array, subarrays of the array or individual modules within the array may be instantiated
within a stream statement in the same manner as data arrays and stream arrays. These three

cases are illustrated here for moduleA[3] [4].

Instance Instantiations
moduleA[2] [0] An individual module instantiation
moduleA[2] (style 1) A 1-dimensional array of 4 module instantiations
moduleA[2][] (style2) A 1-dimensional array of 4 module instantiations
moduleA (style 1) The entire 3X4 array of module instantiations
moduleA[] [] (style 2) The entire 3X4 array of module instantiations

[00166] The key attribute of a module array comes to the fore when the array is
instantiated at system initialization. Each element of a module array is instantiated as a
separate module instantiation, thereby permitting all array clements to operate concurrently.
ModuleA[3][4] isan example of this concept. When the module is instantiated, 12 (=3
X 4) separate instantiations of moduleA are created, each operating concurrently with the 11
other instantiations. Furthermore, this multiplication of instantiations applies to each instance
of moduleA[3] [4]. Thus if there are three instances of moduleA[3] [4], then 36
(=3X12) separate instantiations of moduleA are created.

[00167] The personalization of a module-array instantiation determines what data the
instantiation operates upon. The instantiation may be personalized by supplying each module
instantiation with its own unique data through the instantiation’s input streams. The
instantiation may also be personalized by allowing each module instantiation to identify its
array indices using the index operator, thereby enabling the instantiation to access its own
unique part of a global array.

[00168] The first type of personalization is illustrated below, where the stream arrays may
be used to supply unique data to each element of a module array. The second type of
personalization exploits the fact that the array indices of each array-module instantiation are
known at compile time. To access those indices, the programmer uses an operator with the
following syntax:

int index (int 1)

- 48 -

WO 2011/091323 PCT/US2011/022152

where 1 is an integer expression that evaluates to a constant at compile time. At compile
time, index (1) is replaced the i™ index of the instantiation. A compile-time or run-time
error occurs if 1 is outside array bounds.
[00169] Stream arrays and module arrays find their greatest utility when they are coupled
using a special array-coupling feature of Stream C. There are three requirements for a
coupling: a) the stream array and module array must have the same dimensions; b) the stream
array must be connected (coupled) to a module-array input or output; and c) the stream-array
type must match the module input/output type.
[00170] When such a coupling occurs, each individual stream in the stream array is
connected (coupled) to the input/output stream of the individual module in the module array
with the same indices. Thus, if the stream array S[D;] [D2] ... [Da] is coupled to an
input/output of the module array M[D;] [Dy] ... [Ds], then each individual stream
S[i1] [12] ... [1a] 1s connected to an input/output of the individual module M[i;] [i,]

. [1a] for 0<1; <Dy, 0<1p<Dp ... 0<1, <Dy
[00171] The following is an example of a stream array coupled to the output of one
module array and the input of another module array:

stream int moduleA[3]1[2] (); S/ Firet coupled module

stream void moduleB[3][2] (int); // Ssecond coupled module

stream voild parentModule ()

{
stream int cStrm[3][2];
cStrm[][] = moduleA[][](); NEN
moduleB[] [] (cStrm[][]) /7 eltrm coupled to noduleR
}

Here, the output stream of moduleA[3] [2] is coupledto cStrm[3] [2], and
cStrm[3][2] is coupled to the input stream of moduleB[3] [2]. The two couplings are

legal because:

o cStrm[3][2],moduleA[3][2] and moduleR[3] [2] all have the same
dimensions.

e cStrm[3][2] is connected to an output of moduleA[3] [2] and an input of
moduleBI[3]1[2].

=49 -

WO 2011/091323 PCT/US2011/022152

e ThetypeofcStrm[3] [2],the outputtype of moduleA[3] [2] and the input
type of moduleB[3] [2] areall int.

[00172] The following table lists for each individual stream in cStrm([3][2]: (a) the
module whose output is the stream source, (b) the individual stream in cStrm[3] [2] and

(¢) the module whose input is the stream destination.

Stream Source Stream Stream Destination
moduleA[0] [0] cStrm[0] [0] moduleB[0] [0]
moduleA[0] [1] cStrm[0] [1] moduleB[0] [1]
moduleA[1][0] cStrm[1][0] moduleB[1] [0]
moduleA[1][1] cStrm[1][1] moduleB[1][1]
moduleA[2] [0] cStrm[2] [0] moduleB[2] [0]
moduleA[2] [1] cStrm[2] [1] moduleB[2] [1]

PINGS

[00173] There are situations when a module needs to notify another module that a
particular operation, a side effect, performed by the module has been completed. For
example, when a module performs an operation on a data structure in global memory,
perhaps as one of many modules performing similar operations on the same data structure,
that module typically needs to notify a downstream module that the operation has been
completed so that a downstream operation or task may be initiated. In these situations, there
is no need to return a value, just a signal that a particular task has been completed. For these
situations where a signal, but no value, is needed, Stream C provides the ping data type.
Pings (values of type ping) are featureless and completely indistinguishable from one
another.
[00174] Pings are used in conjunction with three operators: (1) the join operator to
provide synchronization of tasks, (2) the >> stream-access operator and (3) the << stream-
access operator. The first use involves just streams, while the last two uses involve a stream
and a thread.
[00175] The ping keyword is used to declare one or more streams of type ving. For
example, the following statement declares that pStrm0, pStrml and pStrm2 are streams
of type cing:

stream ping pStrm0, pStrml, pStrm2;

-50 -

WO 2011/091323 PCT/US2011/022152

The ping keyword is also used in a module prototype/definition to declare that a module

input or output stream is of type ping, as in:

stream ping moduleName (int, ping); .
[00176] The first use of pings involves the joirn operator, which serves to join a ¢ing
stream with one or more other streams to produce a single output stream. This operator is
similar to the rendezvous operation found in some other computing models. Expressions
containing the join operator take one of two forms:

<pingStreamArray>. join ()
<pingStream>. jcin (<streamExpression>)

As with all stream expressions, each evaluation of an expression in one of these forms
consumes a single value/ping from each input stream and produces a single value/ping on
the expression’s (unnamed) output stream. If an input stream is empty (devoid of values),
evaluation stalls (blocks) until all input streams have at least one value/ping. There is no
need for an explicit join operation for non-ping expressions since the effect of a join
operation is already subsumed by the semantics of expression evaluation.

[00177] When an expression of the first type is evaluated, a single ping is consumed
from each stream in the array of ping streams, and a single ping is emitted on the
expression’s output stream.

[00178] An evaluation of an expression in the second form entails the consumption of a
single ping from <pingStream> and the evaluation of <streamExpression>. The stream
expression <streamExpression> may be of arbitrary type, including ping. The value that
results from the evaluation of <streamExpression> is emitted on the output stream of the
join operation. If the expression is of type ping, the expression evaluates to a single
ping. The ping stream thus acts as a gatekeeper — much like the >> operation described
above, allowing an evaluation to proceed only when a ping is present in <pingStream>.
[00179] The two forms of the join operation are represented graphically as shown in
FIG. 13A and 13B. 1In FIG. 13A, the individual streams of pingStrm[], a one-
dimensional ping-stream array of size n, are joined to produce a single (unnamed) output
ping stream. In FIG. 13B, a single ping stream, pingStrm, is joined with the expression

expr to produce a single (unnamed) output stream of the same type as expr.

-51 -

WO 2011/091323 PCT/US2011/022152

[00180] One example of the join operation may include a Data Structure X on which two
operations, Operation A and Operation B, are performed. These operations meet the
following requirements: a) neither Operation A nor Operation B is performed except in
response to a go signal; b) when a go signal is received, Operation A and Operation B are
performed concurrently; and c¢) before either Operation A or Operation B can be initiated,
both operations performed in response to a preceding go signal must be completed.

[00181] A simple solution to this problem employs two instances of the 5 oin operator:

stream ping moduleA (ping pStrm)

{
while (true)
{
pStrm >> ping;
S Perform O) > 31z X
out << ping;
}
}
stream ping moduleB (ping pStrm)
{
while (true)
{
pStrm >> ping;
'/ Perf on B oon Data 84 X
out << ping;
}
}

stream ping moduleC (ping goStrm)

stream ping startStrm = goStrm.join (doneStrm);
stream ping StrmA = moduleA(startStrm);

stream ping StrmB = moduleB(startStrm);

stream ping doneStrm = StrmA.join(StrmB);
doneStrm.initialize (ping):

out = doneStrm;

moduleA and moduleB encapsulate Operation A and Operation B, respectively. Each has

an input ping stream, which initiates one operation per ping, and an output ping stream,

-52 -

WO 2011/091323 PCT/US2011/022152

which confirms completion of one operation per ping. moduleC contains one instance of
both moduleA and moduleB, and receives go signals via the goStrm input ping stream.

[00182] The six statements in moduleC play the following roles:

stream ping startStrm = goStrm.join (doneStrm);

joins goStrm and doneStrmto produce startStrm. A ping isthus placed into
startStrm when there is a ping on goStrm (i.e., a go signal) and a ping on
doneStrm, which, indicates completion of A and B operations performed in response to the

preceding go signal.
stream ping StrmA = moduleA(startStrm);

connects startStrm to the input ping stream of moduleA, and connects the output
oing stream of moduleA to StrmA. That means that Operation A is performed in response
to a go signal, but only after both operations associated with the preceding go signal have
been completed.

stream ping StrmB = moduleB(startStrm);

is similar to the preceding statement. It ensures that Operation B is performed in response to a
go signal, but only after both operations associated with the preceding go signal have been
completed. There are, however, no restrictions on the order in which Operations A and B are
performed. In other words, they are performed concurrently.

stream ping doneStrm = StrmA.jcin(StrmB);

joins StrmA, the output ping stream of moduleAd, and StrmB, the output ping stream of
moduleB. A ping isthus placed onto doneStrm when both operations performed in

response to the preceding go signal have been completed.
doneStrm.initialize (ping);

places a single ping into doneStrm at system initialization. This indicates that all
previous operations, of which there are none, have been completed. Without this statement,

moduleC would deadlock and no operations would ever be performed.
out = doneStrm;

connects doneStrm to out, the default output steam of moduleC. Each ping on this

stream confirms that the Operation A and Operation B performed in response to a go signal

-53-

WO 2011/091323 PCT/US2011/022152

have been completed. The behavior of moduleC may be summed up as a go signal (ping)
on the input port of moduleC causing Operation A and Operation B to be performed
concurrently on Data Structure X, but only after previous operations have been completed.
When both Operation A and Operation B are completed, moduleC sends a ping on its output
port as confirmation.

[00183] A statement of the form

pingStrm >> ping;

where pingStrm is a stream of type ping, serves to synchronize execution of a thread with
the pings in pingStrm. When the statement is encountered in a thread, a single ping is
read (consumed) from pingStrm. If pingStrm is empty (i.e., there are no pings in
pingStrm), then the statement blocks (stalls) until a ping becomes available. The statement
thus acts as a gatekeeper, allowing a thread to proceed only when a ping is present in
pingStrm. There is no variable involved in this operation, on the right of the >> operator,
where a variable would ordinarily be expected, is just the keyword oing.

[00184] A statement of the form

pingStrm << ping;

where pingStrmis a stream of type ping, allows a thread to signal interested parties that a
certain operation, or operations, have been completed. When the statement is encountered in
a thread, a single ping is written to (placed in) pingStrm. Unlike the first statement
above, this statement never blocks.

[00185] These two forms of stream/thread interaction involving pings are illustrated in the

following code fragment:

6]

tream ping moduleA (ping pStrm)

—

Ty 1t raltiratrian hatara antarinog oo
O Ll lal L i dat LAl Re e il LoD AT L0008
w1) friie
wWwnlie crue

{

out << ping;

-54 -

WO 2011/091323 PCT/US2011/022152

moduleA has a single input port and a single output port, both of type ping. Within
moduleA is a thread containing an infinite loop, each iteration of which begins with the

statement
pStrm >> ping;

This statement serves to synchronize the iterations of the loop with the pings in the module
input stream pStrm. It blocks when pStrm is empty and consumes a single ping from
pStrm when pStrm is non-empty. Following that statement are statements associated with
an activity that invariably involves side effects. If there were no side effects, modulea
would be equivalent to a no-op. At the end of each iteration is the statement

out << ping;

which signals through moduleA’s standard output port that another loop iteration has been
completed.

[00186] The join operator is useful when working entirely within the stream domain.
There may be situations, however, in which it is more convenient to do the join within a
thread. Consider, for example, joining the individual streams of

stream ping pingStrm[32];
within a thread. That can be accomplished by embedding a £or loop within a thread:

for (Int 1 = 0; 1 < 32; ++1)

pingStrm([i] >> ping;

This loop blocks a thread until one pirng has been consumed from each of the 32 streams in
pingStrm. An output stream corresponding to the output stream of

pingStrm[].join () is produced by following the £or loop with the statement

joinStrm << ping;
[00187] To create a module that mimics the behavior of pingStrm[].Jcin (), these
two code fragments are embedded in a while (true) loop, and the loop is placed in a

module:
stream ping JjoinArray (ping pingStrm[32])
{
while (true)

{

-55 -

WO 2011/091323 PCT/US2011/022152

for (int i = 0; 1 < 32; ++1)

pingStrm([i] >> ping;

}

out << ping;

[00188] A module with embedded thread may be used to mimic the behavior of
pingStrm.join (expr), where expr is an expression. In this case, however, the
module needs an input stream not only for pingStrm, but also for each input stream of
expr. So, for example, if expr is the expression X*Y + 7, where X, Y and Z are integers,

then the module that implements pingStrm. join (expr) looks like:

stream ping joinExpr (ping pingStrm, int X, int Y, int 2)
{
while (true)
{
pingStrm >> ping;
out << X*Y + Z;
}
}

{B0189] A pixel-processing example illustrates the use of pings, stream arrays and module
arrays in implementing data parallelism, a form of parallelism in which the same task is
performed concurrently (in parallel) on different pieces of the same data structure such as an
array. The example consists of a module array and a module.

extern int xScaleFactor, yScaleFactor;

tream ping doPixel[64] [256] (int* baStrm)

—

const int x = xScaleFactor * index (0);
yScaleFactor * index(1);

const int vy
int* baseAddress;

while true

{

baStrm >> baseAddress;

-56 -

WO 2011/091323 PCT/US2011/022152

out << ping;

stream vold parentModule (int* baStrm)

{

stream ping xStrm[64][256];

gstream ping JjStrm;

JStrm.initialize (ping);

xStrml[] [] doPixel[][] (jStrm.join (baStrm));
JStrm = xStrm[][].Jo0in();

}
[00190] The two-dimensional module array, doPixel [64] [256], is sized to match

the size of a two-dimensional array of pixels. The base addresses of the pixel arrays on
which doPixel[64] [256] operates are supplied by the input stream baStrm. The x
coordinate of the pixels upon an individual doPixel module operates is obtained by
multiplying index (0), the x index of the individual doPixel module (see Section 5.3),
by the global constant xScaleFactor. The y coordinate of the pixels upon an individual
doPixel module operates is obtained by multiplying index (1), the v index of the
individual doPixel module, by the global constant yScaleFactor. The processing of
cach pixel begins by setting the variable baStrm to the current value in baStrm. What
follows are computations performed on baStrm[x] [y] and its neighbors. When
processing is done, the individual doPixel module signals completion by emitting a ping.
[00191] The parentModule is responsible for broadcasting pixel-array base addresses
to the individual modules in doPixel [64] [256]. This is done via the statement:

xStrm[] [] = doPixell[][] (jStrm.join (baStrm)):;

Here, the expression jStrm. join (baStrm) in the input argument list of doPixel acts
as a gate, allowing a value in baStrm to pass only when there isa ping in jStrm. An

initial ping inserted into j Strm by the statement
JStrm.initialize (ping);

allows the very first base address to pass unimpeded. After that, pings are inserted into

j Strm by the statement

JStrm = xStrm[][].join();

-57 -

WO 2011/091323 PCT/US2011/022152

where xStrm[64] [256] is the array of ping streams produced by the individual modules
indoPixel [64] [256]. A new ping is therefore inserted into j Strm only when all
modules in doPixel [64] [256] have signaled completion of their previous computation
by emitting a ping. This ensures that all computations on a pixel array are completed before

computations on the next array are begun.

[00192] There is a significant advantage to using pings rather than a standard C data type.
With a C data type, a first-in-first-out queue (FIFO) is needed for data values at every
destination of a C-data-type stream, that is, everywhere that the stream is an input to an
expression. But because pings are indistinguishable from one another, all that is needed at
cach destination of a ping stream is a counter to tell the number of pings queued up. This
results in a significant cost savings over a first-in-first-out queue for data values.

[00193] Pragmas are directives to the Stream C compiler/linker/loader. The directive
fpragma InitializeCount(m, p, n) initializes the consumer/producer count of
input/output port p of module m to n. The Pragma must immediately follow the module
definition #pragma FwrdsAckValue (m, s, n). This definition specifies n as the
forwards acknowledgement value for the point-to-point connection starting at output stream s
of module m. The Pragma must immediately follow the module definition

fpragma BwrdsAckValue (m, s, n)specifiesn asthe backwards acknowledgement
value for the point-to-point connection starting at output stream s of module m. The Pragma

must immediately follow the module definition.

[00194] Some example benefits of the above described concepts are support of threads
and multi-threading i.e., the concurrent execution of multiple threads. Also, all forms of
parallelism are expressible such as SIMD, MIMD, Instruction-Level, Task-Level, Data-
Parallel, Data-Flow, and Systolic. Deterministic behavior is the default. Non-determinism is
explicitly added to programs, and only where needed, as it is in sequential programming
which makes software testability and reliability more efficient. The concepts described
above have no explicit parallelism constructs. Parallelism falls out from code in the stream
domain that — syntactically, at least — resembles ordinary sequential code. A programmer
working in the thread domain can therefore focus on a strictly sequential problem. The
programming model lends itself to model-based design and model-based testing and scales to
an arbitrary number of processing cores. The programming model is equally applicable

whether the distances separating processing cores are measured in nanometers or thousands

-58 -

WO 2011/091323 PCT/US2011/022152

of kilometers. There are no foreground or background tasks, just tasks, and there are no
interrupts or message passing, just streams.

[00195] Although the invention has been described with respect to specific embodiments,
thereof, these embodiments are merely illustrative, and not restrictive of the invention. For
example, any type of processing units, functional circuitry or collection of one or more units
and/or resources such as memories, I/O elements, etc., can be included in a node. A node can
be a simple register, or more complex, such as a digital signal processing system. Other types
of networks or interconnection schemes than those described herein can be employed. It is
possible that features or aspects of the present invention can be achieved in systems other

than an adaptable system, such as described herein with respect to a preferred embodiment.

-59 -

WO 2011/091323 PCT/US2011/022152

I/'We claim:
1. A programmable core based computing device comprising:

a plurality of processing cores coupled to each other;

a memory storing stream-domain code including a stream defining a stream
destination module and a stream source module, the stream source module placing data
values in the stream, the stream conveying data values from the stream source module to the
stream destination module; and

a runtime system detecting when the data values are available to the stream
destination module and scheduling the stream destination module for execution on one of the
plurality of processing cores.

2. The device of claim 1, wherein the stream-domain code includes a stream expression
including an input stream and an output stream, the stream expression causing a data value to
be consumed from the input stream and a data value to be produced in the output stream of
the stream expression.

3. The device of claim 2, wherein the stream expression includes a function call
corresponding with a function, the stream expression causing the function to be called with
the data value retrieved from the input stream and the result returned by the function call to
be placed into the output stream, the output stream being associated with the function call.

4. The device of claim 2, wherein the stream-domain code includes an assignment
statement causing the output stream of the stream expression to become a source of a second
previously declared stream.

5. The device of claim 2, wherein the stream expression is one of a plurality of stream
expressions and wherein each of the plurality of stream expressions is executed on a
corresponding separate processing core.

6. The device of claim 1, wherein the stream-domain code includes a module having an
input stream and an output stream, the module consuming data values from the input stream
and producing data values in the output stream.

7. The device of claim 6, wherein the module is one of a plurality of modules, each
module being executed on a separate one of the plurality of processing cores.

8. The device of claim 6 wherein the module contains within its body a secondary
module.

9. The device of claim 6, wherein the module includes thread-domain code executed

sequentially.

- 60 -

WO 2011/091323 PCT/US2011/022152

10. The device of claim 6, wherein the output stream is one of a plurality of output
streams included in the module.

11. The device of claim 6, wherein the module is one module in a plurality of modules
organized in a module array contained in the stream-domain code, the module array having a
plurality of indices allowing access to each module.

12. The device of claim 11, wherein the stream-domain code includes an array of streams
associated with a plurality of array indices, each stream in the array of streams conveying
data values from an array of stream sources to an array of stream destinations and each
stream accessible via an array index.

13. The device of claim 12, wherein each of the streams of the stream array are coupled to
the input streams of the module array or the output streams of the module array.

14. The device of claim 1, further comprising a multi-core runtime system, the runtime
system conveying data values from a stream source to a stream destination.

15. The device of claim 14, wherein the runtime system is implemented in one or more
of instructions stored on a non-transitory medium that may be executed by a processing core,
hardware, or reconfigurable hardware.

16. The device of clam 14, wherein the multi-core runtime system has a first-in-first-out
queue at the stream destination.

17. The device of claim 16, wherein the multi-core runtime system prevents the overflow
of the first-in-first-out queue.

18. The device of claim 16, further comprising:

a run-time system assigning each processing core zero or more tasks to be performed,
cach task implementing either a stream expression or an instance of thread-domain code
appearing in the computer program; and

a task manager managing the execution of the tasks assigned to the processing core.
19. The device of claim 18, wherein the task manager maintains a consumer count for
cach input stream of each task, a producer count for each output stream of each task, a ready-
to-run queue of tasks ready to executed, an input count for each task that determines the
number of task input streams that are required to be enabled in order for a task to be ready to
run, and an output count for each task that determines the number of task output streams that
are required to be enabled in order for a task to be ready to run,

wherein the task manager further:

-61 -

WO 2011/091323 PCT/US2011/022152

increments the consumer count of an input stream in response to a forward
acknowledgement sent from the task at a stream source, said acknowledgement
indicating that additional data values have been deposited in the first-in-first-out
queue associated with the input stream;
decrements the producer count of an output stream in response to a backward
acknowledgement sent from the task at a stream destination, said acknowledgement
indicating that data values have been removed from the first-in-first-out queue
associated with the input stream at the stream destination;
monitors the enabling of a producer count and a consumer count;
places a task in the ready-to-run task queue when the number of enabled consumer counts
reaches the task input count and the number of enabled producer counts reaches the
task output count;
places a task into execution when the task is at the head of the ready-to-run task queue
and the processor core is available; and
suspends execution of the task if the task completes execution, the task is blocked by
stream-access instruction or the task times out
20. The device of claim 18, wherein the task manager is implemented in one or more of
instructions stored on a non-transitory medium that may be executed by a processing core,
hardware, or reconfigurable hardware.
21. A method of programming a computer system including a plurality of processing
cores, the method comprising:
providing a computer program for execution on the plurality of processing cores, the
computer programming including stream-domain code, the stream-domain code including a
stream conveying data values from at least one stream source corresponding to one of the
processing cores to at least one stream destination corresponding to another one of the
processing cores.
22. The method of claim 21, wherein the stream-domain code includes a stream
expression including an input stream and an output stream, the stream expression causing a
data value to be consumed from the input stream and a data value to be produced in the
output stream of the stream expression.
23. The method of claim 22, wherein the stream expression includes a function call

corresponding with a function, the stream expression causing the function to be called with

-62 -

WO 2011/091323 PCT/US2011/022152

the data value retrieved from the input stream and the result returned by the function call to
be placed into the output stream, the output stream being associated with the function call.
24. The method of claim 22, wherein the stream-domain code includes an assignment
statement causing the output stream of the stream expression to become a source of a second
previously declared stream.

25. The method of claim 22, wherein the stream expression is one of a plurality of stream
expressions and wherein each of the plurality of stream expressions is executed on a
corresponding separate processing core.

26. The method of claim 21, wherein the stream-domain code includes a module having
an input stream and an output stream, the module consuming data values from the input
stream and producing data values in the output stream.

27. The method of claim 26, wherein the module is one of a plurality of modules, each
module being executed on a separate one of the plurality of processing cores.

28. The method of claim 26 wherein the module contains within its body a secondary
module.

29. The method of claim 26, wherein the module includes thread-domain code executed
sequentially.

30. The method of claim 26, wherein the output stream is one of a plurality of output
streams included in the module.

31. The method of claim 26, wherein the module is one module in a plurality of modules
organized in a module array contained in the stream-domain code, the module array having a
plurality of indices allowing access to each module.

32. The method of claim 31, wherein the stream-domain code includes an array of
streams associated with a plurality of array indices, each stream in the array of streams
conveying data values from an array of stream sources to an array of stream destinations and
cach stream accessible via an array index.

33. The method of claim 32, wherein each of the streams of the stream array are coupled
to the input streams of the module array or the output streams of the module array.

34. The method of claim 21, further comprising managing execution of a computer
program via a multi-core runtime system, the runtime system conveying data values from a

stream source to a stream destination.

-63 -

WO 2011/091323 PCT/US2011/022152

35. The method of claim 34, wherein the runtime system is implemented in one or more
of instructions stored on a non-transitory medium that may be executed by a processing core,
hardware, or reconfigurable hardware.
36. The method of clam 34, wherein the multi-core runtime system has a first-in-first-out
queue at the stream destination.
37. The method of claim 36, wherein the multi-core runtime system prevents the
overflow of the first-in-first-out queue.
38. The method of claim 36, further comprising:
assigning each processing core zero or more tasks to be performed, each task
implementing either a stream expression or an instance of thread-domain code appearing in
the computer program; and
managing the execution of the tasks assigned to the processing core via a task
manager.
39. The method of claim 38, wherein the task manager maintains a consumer count for
cach input stream of each task, a producer count for each output stream of each task, a ready-
to-run queue of tasks ready to executed, an input count for each task that determines the
number of task input streams that are required to be enabled in order for a task to be ready to
run, and an output count for each task that determines the number of task output streams that
are required to be enabled in order for a task to be ready to run,
wherein the task manager further:
increments the consumer count of an input stream in response to a forward
acknowledgement sent from the task at a stream source, said acknowledgement
indicating that additional data values have been deposited in the first-in-first-out
queue associated with the input stream;
decrements the producer count of an output stream in response to a backward
acknowledgement sent from the task at a stream destination, said acknowledgement
indicating that data values have been removed from the first-in-first-out queue
associated with the input stream at the stream destination;
monitors the enabling of a producer count and a consumer count;
places a task in the ready-to-run task queue when the number of enabled consumer counts
reaches the task input count and the number of enabled producer counts reaches the

task output count;

- 64 -

WO 2011/091323 PCT/US2011/022152

places a task into execution when the task is at the head of the ready-to-run task queue
and the processor core is available; and
suspends execution of the task if the task completes execution, the task is blocked by
stream-access instruction or the task times out

40. The method of claim 38, wherein the task manager is implemented in one or more of
instructions stored on a non-transitory medium that may be executed by a processing core,
hardware, or reconfigurable hardware.
41. The method of claim 36 wherein the first-in-first-out queue is initialized with by an
initial value specified in the computer program.
42. The method of claim 21, wherein the stream-domain code includes a keyword
indicating that an identifier denoting a stream.
43, The method of claim 21, wherein the stream-domain code includes streams that are
elevated to first-class status permitting the stream to be bound to be an identifier, an input
parameter of a function, an output of a function, a parameter within an expression or an
output of an expression.
44, The method of claim 43, wherein the function and expression are executed on
different processing cores.
45. The method of claim 21, wherein the stream conveys data values from a plurality of
stream sources to at least one stream destination, and wherein the data values placed into the
stream by the plurality of stream sources are interleaved before reaching each destination.
46. The method of claim 21, wherein the stream-domain code references a quasi-constant
stream, the quasi-constant stream conveying data values from a stream source to a stream
destination storing at least one data value of a type associated with the quasi-constant stream,
and wherein a task at the stream destination uses and reuses the same storing the at least one
data value until a new data value inserted at a stream source is conveyed to the stream

destination.

- 65 -

PCT/US2011/022152

WO 2011/091323

111

4 Old

XMLV

10

(30Y) INIONT ONIINGWOD FATLYOY

i I XML XIS
5 5 S
o) \ﬁ;#/ 1031 g D
YHOMLIN SN
VOGN
KLY

04

(o)

WO 2011/091323

2/11

FIG. 2

LOxD3)/

NODE
\ OxOC

166
1
162

/NODE

NETWORK INPUT \ DXOB) SYSTEM INTERFACE

}
S

o S
| Vo Blook |

AJODE
\ OXOA /

=
0
,.Ei.“.~
R

9]

-

PCT/US2011/022152

160

180 /

70

174

178 | | i' “On-Chip
. N | _Bulk SRAM
[NK-) SRAM
\NODE/) B | __Controlier
s 1
| r\\\—164
N e Z f\]bDé\ Nbé i
| vor (o (oaie) (oxie) | soraM controter|
| o |
NETWORK OUTPUT ¢ [(NODE, ODé\MEMORYl TERFACE
J_ \OX“ D/ \ OX1 E
r? “‘? """" -
L -]
NODE NODE" NODE. /NODE\
ox14 oxi7)| | Lox1s) \.0x18
(QODE\{NODE
\\0)(1 5,’; \OX !6/
168 o 180
172
182
FIG. 3
198
196 K/////188
s . 4; 41 38 37 A M ~ e o
i RQUTE ! BERVICE f AUXDUARY PAYLOAD !

J

|
J

WO 2011/091323 PCT/US2011/022152

3/11

NETWORK
INPUT

PIPELINE 120
U / NODE
NODE DAA._ |~ 2
WRAPPER DISTRIBUTOR 710

HARDWARE 4 OPTIONAL
200 W P MEMORY “JE=Y pilnERGINE

MANAGER i !

EXECUTION 4
UNIT

" —" o—

DATA
AGGREGATOR

U

PIPELINE

NETWORK
OUTPUT

ELEMENTS OF THE ACM NODAL ARCHITECTURE

FIG. 4

WO 2011/091323

260

4/11

FIG. 5

PCT/US2011/022152

AV S
(v Producer

sogs

i o

sk 7

oo o

—

252

Froducer
Fos

— 254

Ot @—3\ 256
: 5

250

Pors
K "y?"
bragaat | o

Ry

-

{orsumey

22
//

- Corumey
Naole

258

T— o84

-

¥

270 198

Dy(a

276

PCT/US2011/022152

WO 2011/091323

5/11

FIG. 7
190 194

192 196 -
/ i e “/
- / e AT /f L e

/
272 288

FIG. 8A 304

. — i <

% o ® ® 2 s
e 3 ® Modul 4 @ g
P § ® odule @ ;:3" g
§ 2 oSy, | S L § 2

FIG. 8B
Input 304 Input 312
30 300 Ou?pu? 310 Output 314

\(eam(g} . \sfrew 9 Streamls / Sfrwy/
P t\;: (L L/{ N 'h_’;a 7 T

4
® #1 #1‘ ‘

. ®
O tosuen| @ ® |odues| ®
® o 4 o

328

CORE#n

CORE#

WO 2011/091323 PCT/US2011/022152

6/11

FIG. 8C

302 300 310
A Output
t
\‘\:eam{s) Sfream{S}
#1 T T | /

#1

9o ® ®
® | oduen| @ ‘ Module B
@ . ®

CORE#1 CORE#n

1
308 318 398

WO 2011/091323 PCT/US2011/022152

7M1
FIG. 8D
300
Unique Module #A
Unigue Moeoule 1D
bistof Unigue Module 1D Input Stream 1D(s) 330
List of Unique Module 10. Quipyt Stream IDjs)
Unique Mocule ID: CORE ID
Unicue Mocule ID: State
Note. Stale is & memary siructure which stores a1
the wiorking variables. addresses. register fdes for
the moduie along with addresses for swapping
1his modute 1o virtual memory.
302
input Stream #n]
i I
¥ Input Stream ¥§3 |
£ Input Stream #1 332
K1) I Listof Urigue Moddle 1D Oulpat Stream 10 which 1 feeding this input stream //
QU1 Input Stream #1: State
g ! Input Stream #1. Memory or DIMA address
"‘1 4 Note there may be nene, one of more Nan one previeds GUlpul stream feeding
7! data imo this input stream
— 304
Output Stream #n
] 2]
i1 Qutput Stream #2 |
oy Output Stream #1 334
N1 i Listof Unigue Module 0 Tnput Stream 1D whith i recemving tis output streamwv/
q R 1 Output Stream #1: State
q 1 Output Stream #1: Mamory or DMA acdress
'1 4 Kote. there may be none. one or more than 008 'mexl” input stream recewing Cala
"1 trom this output stream

PCT/US2011/022152

WO 2011/091323

8/11

FIG. 9A

402

WIFSA ——p

404

400

WIFSA ————p]

\
404

WIYSX

WIYSX

FIG. 9B

412

\

U135 ——

N~

Eﬁmvl?v
<

410

<
WIS —p

WIS —p

WO 2011/091323 PCT/US2011/022152

504

FIG. 11A

WO 2011/091323 PCT/US2011/022152

10/11

FIG. 11B

604

606

Module

FIG. 11C

Module

PCT/US2011/022152

WO 2011/091323
11/11
FIG. 12
1\7 x v z
GCD GCD
GCD
.
fa
5)
FIG. 13A FIG. 13B
£
:
°, 5 E
; ; ; =
& & 5 5
o o % &
5 . v 0 g I [0}
j o A, P
pingStrm[].join() pingStrm. join(expr)

e

£
2!
v
ey
—
%]
50
&
2
dt
&
5
&)

expr Output Stream

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/22152

A. CLASSIFICATION OF SUBJECT MATTER

USPC - 712/36

IPC(8) - GO6F 15/00 (2011.01); GO6F 15/76 (2011.01)

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

IPC(8) - GO6F 15/00 (2011.01); GOGF 15/76 (2011.01)
USPC - 712/36

Minimum documentation searched (classification system followed by classification symbols

USPC - 712/36-37, 717/136

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PubWEST (PGPB, USPT, EPAB, JPAB)
Google Scholar

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search terms used: parallel, concurrent, processor, core, stream, task, variable, parameter, producer, consumer, count, shedule

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/0166033 A1 (Jacob) 28 July 2005 (28.07.2005), para. [0038]-[0046], {0107}-[0117] 1, 21,45, 46
Y 2-20, 2244
Y US 2009/0300615 A1 (Andrade et al.) 03 December 2009 (03.12.2009), para. [0017]-[0018], 2-20, 22-41
{0035]-[0056], [0070]-[0075)
Y US 2007/0157166 A1 (Stevens) 05 July 2007 (05.07.2007), para. [0094]-[0098], [0164]-[0168], 19, 39
and [0218]
Y US 2003/0200538 A1 (Ebeling et al.) 23 October 2003 (23.10.2003), paraj[0027]-[0028], 42-44
{0050], [0068]) :
A US 2007/0294512 A1 (Crutchfield et al.) 20 December 2007 (20.12.2007) 1,21 °

D Further documents are listed in the continuation of Box C.

O

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the intemational
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

03 March 2011 (03.03.2011)

Date of mailing of the international search report

18 MAR 201

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - wo-search-report

