A 000 OO0 X O O

0O 03/019358 Al

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
6 March 2003 (06.03.2003)

PCT

(10) International Publication Number

WO 03/019358 Al

(51
@y
22
(25
(26)

30

(Y

(72)

International Patent Classification”s GOG6F 9/38, 9/46
International Application Number: PCT/US02/27273
International Filing Date: 27 August 2002 (27.08.2002)
Filing Language: English

Publication Language: English

74

(81)

Priority Data:

60/315,144 27 August 2001 (27.08.2001) US
10/212,945 5 August 2002 (05.08.2002) US (84)
Applicant: INTEL CORPORATION [US/US]; 2200

Mission College Boulevard, Santa Clara, CA 95052 (US).

Inventors: ROSENBLUTH, Mark; 4 Crestview Drive,
Uxbridge, MA 01569 (US). WOLRICH, Gilbert; 4 Cider
Mill Road, Framingham, MA 01701 (US). BERNSTEIN,
Debra; 321 Old Lancaster Road, Sudbury, MA 01776
(US).

Agents: HARRIS, Scott, C.; Fish & Richardson, P.C.,
Suite 500, 4350 La Jolla Village Drive, San Diego, CA
92122 et al. (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, 7ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
EBurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Titlee MULTITHREADED MICROPROCESSOR WITH REGISTER ALLOCATION BASED ON NUMBER OF ACTIVE

THREADS
/m/
nrnl .
p]4 =% "m. (fom tnit 50
XI U J } Iﬂ’fm‘h.i
[4 '\7:_— Wy for ‘4 M.
Tn_Use A 184
Conterls z, / 704 1 ety 104
Bit Sedlin = 4rlod
(from 54 Za
field 92)))
r 6 rPAs
(2’ bf:lﬂ (8 bonk) /
lalz /a0 /o2 190
1)
56a 5¢6

(57) Abstract: A mechanism in a multithreaded processor to allocate resources based on configuration information indicating how
many threads are in use.

w0 03/019358 A1 NN 000 0 OO0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

16

20

WO 03/019358 PCT/US02/27273

MULTITHREADED MICROPROCESSOR WITH REGISTER
ALLOCATION BASED ON NUMBER OF ACTIVE THREADS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional
Patent Application Ser. No. 60/315,144 (Attorney Docket No.

10559-579P01), filed August 27, 2001.

BACKGROUND

Typically, hardware implementations of multithreaded
microprocessors provide for use by each thread a fixed
number of resources, such as regilsters, program counters,
and so forth. Depending on the amount of parallelism in an
application program executing on the microprocessor, some of
the threads may not be used. Consequently, the resources of
the unused threads and, more specifically, the power and

silicon area consumed by those resources, are wasted.

DESCRIPTION OF DRAWINGS
FIG. 1 shows a block diagram of a communication system
employing a processor having multithreaded microengines to
support multiple threads of execution.
FIG. 2 shows a block diagram of the microengine (of
FIG. 1).
FIG. 3 shows a microengine Control and Status Register

(CSR) used to select a number of “in use” threads.

10

15

20

WO 03/019358 PCT/US02/27273

FIG. 4 shows a schematic diagram of a dual-bank
implementation of a General Purpose Registers (GPR) file (of
the microengine of FIG. 2) that uses a selected number of
“ipn use” threads to allocate registers to threads.

FIG. 5 shows a table of thread GPR allocations for
eight “in use” threads and four “in use” threads.

FIGS. 6A and 6B show the partition of registers in the
GPR file in accordance with the thread GPR allocations for
eight “in use” threads and four “in use” threads,

respectively.

DETAILED DESCRIPTION

Referring to FIG. 1, a communication system 10 includes
a processor 12 coupled to one or more I/0 devices, for
example, network devices 14 and 16, as well as a memory
system 18. The processor 12 is multi-threaded processor
and, as such, is especially useful for tasks that can be
broken into parallel subtasks or functions. In one
embodiment, as shown in the figure, the processor 12
includes multiple microengines 20, each with multiple
hardware controlled program threads 22 that can be
simultaneously active and independently work on a task. In
the example shown, there are “n” microengines 20, and each
of the microengines 20 is capable of processing multiple
program threads 22, as will be described more fully below.

2

10

18

20

25

WO 03/019358 PCT/US02/27273

In the described embodiment, the maximum number “N” of
context threads supported is eight, but other maximum amount
could be provided. Preferably, each of the microengines 20
is connected to and can communicate with adjacent
microengines.

The processor 12 also includes a processor 24 that
assists in loading microcode control for other resources of
the processor 12 and performs other general-purpose computer
type functions such as handling protocols and exceptions.

In network processing applications, the processor 24 can
also provide support for higher layer network processing
tasks that cannot be handled by the microengines 20. In one
embodiment, the processor 24 is a StrongARM (ARM is a
trademark of ARM Limited, United Kingdom) core based
architecture. The processor (or core) 24 has an operating
system through which the processor 24 can call functions to
operate on the microengines 20. The processor 24 can use
any supported operating system, preferably a real-time
operating system. Other processor architectures may be
used.

The microengines 20 each operate with shared resources
including the memory system 18, a PCI bus interface 26, an
I/0 interface 28, a hash unit 30 and a scratchpad memory 32.
The PCI bus interface 26 provides an interface to a PCI bus

(not shown). The I/0 interface 28 is responsible for

3

10

15

20

25

WO 03/019358 PCT/US02/27273

controlling and interfacing the processor 12 to the network
devices 14, 16. The memory system 18 includes a Dynamic
Random Access Memory (DRAM) 34, which is accessed using a
DRAM controller 36 and a Static Random Access Memory (SRAM)
38, which is accessed using an SRAM controller 40. Although
not shown, the processor 12 also would include a nonvolatile
memory to support boot operations. The DRAM 34 and DRAM
controller 36 are typically used for processing large
volumes of data, e.g., processing of payloads from network
packets. In a networking implementation, the SRAM 38 and
SRAM controller 40 are used for low latency, fast access
tasks, e.g., accessing look-up tables, memory for the
processor 24, and so forth. The microengines 20 can execute
memory reference instructions to either the DRAM controller
36 or the SRAM controller 40.

The devices 14 and 16 can be any network devices
capable of transmitting and/or receiving network traffic
data, such as framing/MAC devices, e.g., for connecting to
10/100BaseT Ethernet, Gigabit Ethernet, ATM or other types
of networks, or devices for connecting to a switch fabric.
For example, in one arrangement, the network device 14 could
be an Ethernet MAC device (connected to an Ethernet network,
not shown) that transmits packet data to the processor 12
and device 16 could be a switch fabric device that receives

processed packet data from processor 12 for transmission

4

10

156

20

25

WO 03/019358 PCT/US02/27273

onto a switch fabric. In such an implementation, that is,
when handling traffic to be sent to a switch fabric, the
processor 12 would be acting as an ingress network
processor. Alternatively, the processor 12 could operate
as an egress network processor, handling traffic that is
received from a switch fabric (via device 16) and destined
for another network device such as network device 14, or
network coupled to such device. Although the processor 12
can operate in a standalone mode, supporfing both traffic
directions, it will be understood that, to achieve higher
performance, it may be desirable to use two dedicated
processors, one as an ingress processor and the other as an
egress processor. The two dedicated processors would each
be coupled to the devices 14 and 16. In addition, each
network device 14, 16 can include a plurality of ports to be
serviced by the processor 12. The I/0 interface 28
therefore supports one or more types of interfaces, such as
an interface for packet and cell transfer between a PHY
device and a higher protocol layer (e.g., link layer), or an
interface between a traffic manager and a switch fabric for
Asynchronous Transfer Mode (ATM), Internet Protocol (iP),
Ethernet, and similar data communications applications.

The I/0 interface 28 includes separate receive and transmit
blocks, each being separately configurable for a particular

interface supported by the processor 12.

5

10

15

20

25

WO 03/019358 PCT/US02/27273

Other devices, such as a host computer and/or PCI
peripherals (not shown), which may bg coupled to a PCI bus
controlled by the PC interface 26 are also serviced by the
processor 12.

In general, as a network processor, the processor 12
can interface to any type of communication device or
interface that receives/sendé large amounts of data. The
processor 12 functioning as a network processor could
receive units of packet data from a network device like
network device 14 and process those units of packet data in
a parallel manner, as will be described. The unit of packet
data could include an entire network packet (e.g., Ethernet
packet) or a portion of such a packet, e.g., a cell or
packet segment.

Each of the functional units of the processor 12 is
coupled to an internal bus structure 42. Memory busses 44a,
44b couple the memory controllers 36 and 40, respectively,
to respective memory units DRAM 34 and SRAM 38 of the memory
system 18. The I/0 Interface 28 is coupled to the devices
14 and 16 via separate I/0 bus lines 46a and 46D,
respectively.

Referring to FIG. 2, an exemplary one of the
microengines 20 is shown. The microengine (ME) 20 includes
a control unit 50 that includes a control store 51, control

logic (or microcontroller) 52 and a context arbiter/event
6

10

15

20

25

WO 03/019358 PCT/US02/27273

logic 53. The control store 51 is used to store a
microprogram. The microprogram is loadable by the processor
24.

The microcontroller 52 includes an instruction
decoder and program counter units for each of supported
threads. The The context arbiter/event logic 53 receives
messages (e.g., SRAM event response) from each one of the
share resources, e.g., SRAM 38, DRAM 34, Or processor core
24, and so forth. These messages provides information on
whether a requested function has completed.

The context arbiter/event logic 53 has arbitration
for the eight threads. In one embodiment, the arbitration
is a round robin mechanism. However, other arbitration
techniques, such as priority queuing or weighted fair
queuing, could be used.

The microengine 20 also includes an execution datapath
54 and a general purpose register (GPR) file unit 56 that is
coupled to the control unit 50. The datapath 54 includes
several datapath elements, e.g., and as shown, a first
datapath element 58, a second datapath element 59 and a
third datapath element 60. The datapath elements can
include, for example, an ALU and a multiplier. The GPR
file unit 56 provides operands to the various dafapath
elements. The registers of the GPR file unit 56 are read

and written exclusively under program control. GPRs, when

7

10

15

20

25

WO 03/019358 PCT/US02/27273

used as a source in an instruction, supply operands to the
datapath 54. When use as a destination in an instruction,
they are written with the result of the datapath 54. The
instruction specifies the register number of the specific
GPRs that are selected for a source or destination. Opcode
bits in the instruction provided by the control unit 50
select which datapath element is to perform the operation
defined by the instruction.

The microengine 20 further includes a write transfer
register file 62 and a read transfer register file 64. The
write transfer register file 62 stores data to be written to
a resource external to the microengine (for example, the
DRAM memory or SRAM memory). The read transfer register
file 64 is used for storing return data from a resource
external to the microengine 20. Subsequent to or concurrent
with the data arrival, event signals 65 from the respective
shared resource, e.g., memory controllers 36, 40, or core
24, can be provided to alert the thread that requested the
data that the data is available or has been sent. Both of
the transfer register files 62, 04 are connected to the
datapath 54, the GPR file unit 56, as well as the control
unit 50.

Also included in the microengine 20 is a local memory
66. The local memory 66, which is addressed by reglsters

68a, 68b, also supplies operands to the datapath 54. The
8

10

15

20

WO 03/019358 PCT/US02/27273

local memory 66 receives results from the datapath 54 as a
destination. The microengine 20 also includes local control
and status registers (CSRs) 70 for storing local interx-
thread and global event signaling information, as well as
other information, and a CRC unit 72, coupled to the
transfer registers, which operates in parallel with the
execution datapath 54 and performs CRC computations for ATM
cells. The local CSRs 70 and the CRC unit 72 are coupled to
the transfer registers, the datapath 54 and the GPR file
unit 56.

In addition to providing an output to the write
transfer unit 62, the datapath 54 can also provide an output
to the GPR file 56 over line 80. Thus, each of the
datapath elements can return a result value from an
executed.

The functionality of the microengine threads 22 is
determined by microcode loaded (via the core processor 24)
for a particular user’s application into each microengine’s
control store 51. For example, in one exemplary thread task
assignment, one thread is assigned to serve as a receive
scheduler thread and another as a transmit scheduler thread,
a plurality of threads are configured as receive processing
threads and transmit processing threads, and other thread

task assignments include a transmit arbiter and one or more

10

15

20

WO 03/019358 PCT/US02/27273

core communication threads. Once launched, a thread

performs its function independently.

Referring to FIG. 3, the CSRs 70 include a context
enable register (“CTX Enable”) 90, which includes an “in
use” contexts field 92 to indicate a pre-selected number of
threads or contexts in use. The “in use” contexts field 92
stores a single bit, which when cleared (X=0) indicates all
of the 8 available threads are in use, and which when set
(X=1) indicates that only a predefined number, e.g., 4, more
specifically, threads 0, 2, 4 and 6, are in use.

As shown in FIG. 4, the GPRs of the GPR file unit 56
may be physically and logically contained in two banks, an A
bank 56a and a B bank 56b. The GPRs in both banks include a
data portion 100 and an address portion 102. Coupled to
each register address path 102 is a multiplexor 104, which
receives as inputs a thread number 104 and register number
106 (from the instruction) from the control unit 50. The
output of the multiplexor 104, that is, the form of the
“address” provided to the address path 102 to select one of
the registers 109, is controlled by an enable signal 110.
The state of the enable signal 110 is determined by the
setting of the “In Use” Contexts bit in the field 92 of the

CTX Enable register 90.

10

10

15

20

WO 03/019358 PCT/US02/27273

Conventionally, each thread has a fixed percentage of
the registers allocated to it, for example, one-eighth for
the case of eight threads supported. If some threads are
not used, the registers dedicated for use by those unused
threads go unused as well.

In contrast, the use of the multiplexor 104 controlled
by “in use” contexts configuration information in the
CTX _Enable CSR 90 enables a re-partitioning of the number of
bits of active thread number/instruction (register number)
bits in the register address and therefore a re-allocation
of registers to threads. More specifically, when the bit in
field 92 is equal to a “0”, the number of “in use” threads
is 8, and the enable 110 controls the multiplexor 104 to
select all of the bits of the active thread number 106 and
all but the most significant bit from the register number
108 specified by the current instruction. Conversely, when
the bit in field 92 is set to a “1”, the number of “in use”
threads is reduced by half, and the number of registers
available for allocation is redistributed so that the number
of registers allocated per thread is doubled.

FIG. 5 shows the thread allocation for a register file

of 32 registers. For 8 threads, thread numbers 0 through 7,

11

10

15

20

WO 03/019358 PCT/US02/27273
each thread is allocated a total of four registers. For 4
threads, thread numbers 0, 2, 4 and 6, each thread is
allocated a total of eight registers.

FIGS. 6A and 6B show a register file (single bank, for
example, register file 56a) having 32 registers available
for thread allocation and re-allocation among a maximum of
eight supported threads. In an 8-thread configuration 120,
that is, the case of eight threads in use, shown in FIG. 6A,
each of the threads is allocated four registers. The
multiplexor 104 selects all three bits of the binary
representation of the thread number and all bits except the
most significant bit (that is, selects two bits (bits 0 and
1)) of the binary representation of the register number from
the instruction because the enable 110 is low. For a 4-
thread configuration 122, that is, when enable 110 is high
and thus four threads, as illustrated in FIG. 6B, each of
the four threads is allocated eight registers. The
multiplexor 104 selects all but the least significant bit
(in this case, selects two bits, bits 1 and 2) of the binary
representation of the thread number and selects all three
bits (bits 0-2) of the binary representation of the register

number from the instruction. Thus, the address into the

12

10

15

20

WO 03/019358 PCT/US02/27273

register file is a concatenation of bits of the currently
active thread number with bits of the register number from
the instruction, and the contributing number of bits from
cach is determined by the setting of the In Use contexts bit
92 in the CTX Enable register 90 (from FIG. 3).

Thus, the GPRs are logically subdivided in equal
regions such that each context has relative access to one of
the regions. The number of regions is configured in the
In Use contexts field 92, and can be either 4 or 8. Thus, a
context-relative register number is actually associated with
multiple different physical registers. The actual register
to be accessed is determined by the context making the
access request, that is, the context number concatenated
with the register number, in the manner described above.
Context-relative addressing is a powerful feature that
enables eight or four different threads to share the same
code image, yet maintain separate data. Thus, instructions
specify the context-relative address (register number). For
eight active contexts, the instruction always specifies
registers in the range of 0-3. For four active contexts,
the instruction always specifies registers in the range of

0-7.

13

10

16

WO 03/019358 PCT/US02/27273

Referring back to the table shown in FIG. 4, the
absolute GPR register number is the register number that is
actually used by the register address path (decode logic) to
access the specific context-relative register. For example,
with 8 active contexts, context-relative thread 0 for
context (or thread) 2 is 8.

The above thread GPR allocation scheme can be extended
to different numbers of threads (based on multiples of 2)
and registers, for example, re-allocating a total of 128
registers from among a maximum number of 8 “in use” threads
(16 registers each) to 4 “in use” threads (32 registers
each), or re-—allocating a total of 128 registers from among
a maximum number of 16 “in use” threads (8 registers each)
to 8 “in use” threads (16 registers each).

Other embodiments are within the scope of the following

claims.

14

10

15

20

25

WO 03/019358 PCT/US02/27273

What is claimed is:

1. A method of allocating resources in a multithreaded
processor comprising:

providing resources for use by execution threads
supported by the multithreaded processor; and

applying configuration information to a selection of
the resources to allocate the resources among active ones of

the execution threads.

2. The method of claim 1 wherein the resources comprise:

registers in a general purpose register file.

3. The method of claim 1 wherein the configuration
information comprises:

a configuration bit which when cleared indicates all of
the supported execution threads as the active ones and when
set indicates a portion of the supported execution threads

as the active ones.

4. The method of claim 1 wherein the configuration
information comprises:
a configuration bit which when cleared indicates all of

the supported execution threads as the active ones and when

15

10

15

20

WO 03/019358 PCT/US02/27273

set indicates half of the supported execution threads as the

active ones.

5. The method of claim 3, wherein the configuration bit

resides in a control and status register.

6. The method of claim 2 wherein the general purpose
register file includes an address decode portion and a
multiplexor coupled to the address decode portion, the
multiplexor to receive a thread number and a register number
as inputs and to select bits of the thread number and the
register number based on the configuration information to

form an address corresponding to one of the registers.

7. The method of claim 6 wherein the configuration
information indicates selection of all but the least
signification bit of the thread number and all bits of the

register number.

8. The method of claim 6 wherein the configuration
information indicates selection of all but the most
significant bit of the register number and all bits of the

thread number.

16

10

15

20

WO 03/019358 PCT/US02/27273

9. The method of claim 6 wherein the selected bits of the

register number form a thread-relative register number.

10. A processor comprising:

resources for use by execution threads supported by the
processor; and

a resource selector to receive configuration
information and to allocate the resources among active ones
of the execution threads based on the configuration

information.

11. The processor of claim 10 wherein the resources
comprise:

registers in a general purpose register file.

12. The processor of claim 10 wherein the configuration
information comprises:

a configuration bit which when cleared indicates all of
the supported execution threads as the active ones and when
set indicates a portion of the supported execution threads

as the active ones.

13. The processor of claim 10 wherein the configuration

information comprises:

17

10

15

20

WO 03/019358

a configuration bit which when cleared indicates all of
the supported execution threads as the active ones and when
set indicates half of the supported execution threads as the

active ones.

14. The processor of claim 12, wherein the configuration

bit resides in a control and status register.

15. The processor of claim 11 wherein the general purpose
register file includes an address decode portion and the
resource selector is a multiplexor coupled to the address
decode portion, the multiplexor to receive a thread number
and a register number as inputs and to select bits of the
thread number and the register number based on the
configuration information to form an address corresponding

to one of the registers.

16. The processor of claim 15 wherein the configuration
information indicates selection of all but the least
signification bit of the thread number and all bits of the

register number.

17. The processor of claim 15 wherein the configuration

information indicates selection of all but the most

18

PCT/US02/27273

10

WO 03/019358 PCT/US02/27273

significant bit of the register number and all bits of the

thread number.

18. The processor of claim 15 wherein the selected bits of

the register number form a thread-relative register number.

19

PCT/US02/27273

1/6

WO 03/019358

mm. oz T
or {4)
%N o7 . -‘.ﬂ S v 13 12
, sple-ees] \

0 saburern mppr| | g
Jeodmg | . | 13 yony
[712029) L e

7 ! _J . 7

-V osloudld |

7 = , —
43
2¢ .
" . »
W) L oy ?.ﬁ\, - PP
wrya || s g z:

T . = e LB W
14} \u« A¢ U U 1Y) I

w2y bmn \«\Nn\\t

PCT/US02/27273

WO 03/019358

(24 2)
Hyyd ¥

|

ryc a1
N

fon)

%71 9 fPY Wl

P71

\Seé\

Tmc.u N\ ~

[
79 ~ §rg 2pX
ﬁl'llll . . \.1.!.. R b
: i o
> % S~
| w |
S 9L _]
R by D
.,] N\M \&Ma mﬁ“ﬂw_ —“:M_“,MM r\w\ﬁ %m-
Cpritg 321 — LG , ; > ; ;.
R a2 ! e’ 1 44 A
R 1 T -
Tli
¢ . 4
. .N.RS L\&Q&.V 234 1915139y ssodmg [eisuaD)
g
0L
1 15
b ul &kL
o)
HYYP WyyC Wik

789

BEiLEY

PCT/US02/27273

WO 03/019358

3/6

19w "XL)

({¥ev) Jnd]

PCT/US02/27273

WO 03/019358

4/6

| IIE

V94

09/ N/

(Jvo1)
nﬁw\.w

[
»

ho!

(z6 po2¢
sy woy)

[{ AAYN)

v

Nc..:uv +9
w 2p~VL

al

2%

WO 03/019358 PCT/US02/27273

5/6

Wo. of Theed GPA |
Thresds Aeq. Nos. | Absluk)
0-3
y§-17
g-il
12-15

1e-19

20-23

+*®

C LN QldT N~
»
N
t
[
~J

Fl6. §

PCT/US02/27273

WO 03/019358

6/6

99 94

G
gieg «sul pylL

] :atv)f I

il

j3g03: 031101
77 oo

~)l

e e - ——— e~

¥7? 914

SHY cop
RIR(Y “suf pul

H :\.f} 0
a1l

St

U

INZRRNATIONAL SEARCH REPORT — inal Appcation o

PCT/US 02/27273

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F9/38 GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (hame of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category © | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 01 41530 A (BOGGS DARRELL ;KOTA RAJESH 1-4
(US); MERCHANT AMIT (US); HSU RACHEL (W) 10-13
14 June 2001 (2001-06-14)
A page 2, line 31 -page 3, line 10 5-9,
14-18

page 33, line 27 -page 34, line 2
page 35, 1ine 27 -page 36, line 4
page 38, last line -page 40, line 4

X WO 01 48599 A (WEISS SHLOMIT ;BOGGS 1,2,10,
DARRELL D (US); INTEL CORP (US)) 11
5 July 2001 (2001-07-05)

A page 2, line 28 -page 3, line 2; claims 3-9,
1,3 12-18

By

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

“*L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

*P' document published prior to the international filing date but
later than the priority date ¢laimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

'X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
.rn?;‘lts, ftuch combination being obvious to a person skilled
in the art.

'&" document member of the same patent family

Date of the actual completion of the international search

3 December 2002

Date of mailing of the international search report

12/12/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1982)

Authotized officer

Thibaudeau, J

page 1 of 2

INEERNATIONAL SEARCH REPORT y
Intel.nal Application No
PCT/US 02/27273

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Gitation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.

A MENDELSON A ET AL: "DESIGN ALTERNATIVES 1-18
OF MULTITHREADED ARCHITECTURE"
INTERNATIONAL JOURNAL OF PARALLEL
PROGRAMMING, PLENUM PRESS, NEW YORK, US,
vol. 27, no. 3, June 1999 (1999-06), pages
161-193, XP000849200

ISSN: 0885-7458

the whole document

Form PCT/ISA/210 {continuation of second sheet) (July 1992)

page 2 of 2

INEZRNATIONAL SEARCH REPORT

information on patent family members

Intel.mal Application No
PCT/US 02/27273

Patent document Publication Patent family Publication

cited In search report date member(s) date

WO 0141530 A 14-06-2001 AU 8021200 A 18-06-2001
EP 1238341 A2 11-09-2002
WO 0141530 A2 14-06-2001

WO 0148599 A 05-07-2001 AU 1797201 A 09-07-2001
GB 2375202 A 06-11-2002
Wo 0148599 Al 05-07-2001

Form PCT/ISA/210 (patent family annex) (July 1892)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

