发明名称
基于平行视频拼接技术的矿井安全监控方法

摘要
针对现有基于平行视频拼接技术的矿井安全监控方法的不足，本发明提供一种减少对视点的叶集数量要求以及降低采集设备设备水平运动方向与视点方向的拼接技术要求的一种自由视角视点平行视频拼接的方法，通过采取虚拟变换以及同步帧校正与帧的两阶段策略，实现稀疏视点和自由视点旋转下的图像拼接。本发明采用的技术效果有：解决空中视角和自由角度监控问题，实现无变形、盲区和重叠区的大视域实时监控；本方法布局简单、易实施、更加经济和安全，只需少量摄像机就可以实现整个场景的清晰监控。
1. 基于平行视频拼接技术的矿井安全监控方法，其特征在于，按如下步骤进行：

（1）布置采样点：设需要进行安全监控的监控场景面的深度为 \(L_0 \)，摄像机与监控场景面之间的距离为 \(L_0 \)，相邻两个摄像机之间的间距为 \(L_0 \)，则摄像机与监控场景面之间的距离 \(L_0 \) 是监控场景面的深度 \(L_0 \) 的 1.0 至 10.0 倍，相邻两个摄像机之间的间距 \(L_0 \) 是监控场景面的深度 \(L_0 \) 的 1.0 至 3.0 倍，所有摄像机安装的高度相同，且在旋转时所有摄像机保持相同的旋转角度，相邻两个摄像机各自偏转 \(\pm \frac{45}{3} \) 范围内时所形成的相邻视点图像之间应有重叠，监控同一监控场景面的摄像机的连线应平行于监控场景面；所有摄像机均通过数据线与负责图像处理的计算机相连接，计算机将从各个摄像机获得的同步帧统一处理；

（2）初始化摄像机焦距：每个摄像机均采用相同的帧分辨参数，其焦距 \(f \) 运用帧分辨率模拟计算，即设帧的宽和高分别是 \(w \) 和 \(h \)，摄像机的焦距 \(f \) 取值为：

\[
f = \sqrt{w^2 + h^2}
\]

（3）初始化重叠位置：将所有的摄像机正对于监控场景面取像，获得每个摄像机的初始同步帧 \(\tau_0 \)，其中 \(n \) 为第 \(n \) 个摄像机，利用透明法获得相邻两个摄像机之间的初始同步帧 \(\tau_0 \) 之间重叠区域的水平长度 \(L_{(n,n+1)} \)；

（4）调试图像亮度：将从各个摄像机获取的初始同步帧 \(\tau_0 \) 进行 Gamma 校正，所用公式为

\[
I_{out} = a I_{in}^\gamma, \quad \text{其中} \quad I_{in} \text{是初始同步帧} \tau_0 \text{的原始像素，} I_{out} \text{是初始同步帧} \tau_0 \text{经过校正后的像素，参数} \ a \ \text{取} 1, \ \text{参数} \ \gamma \ \text{的取值范围为} \ 1.5-3.0.
\]

（5）记录摄像机偏转角度：将所有摄像机设定相同的偏转角度 \(\theta_0 \)，所述偏转角度 \(\theta_0 \) 是自开始监控起的第 \(s \) 秒时摄像机实际面对方向与摄像机正视场景时的方向之间的夹角；偏转角度 \(\theta_0 \) 与每台摄像机的实时同步帧 \(\tau_0 \) 相对应，所述实时同步帧 \(\tau_0 \) 为第 \(n \) 台摄像机自开始监控起的第 \(s \) 秒时监控的图像；

（6）进行同步帧虚拟变换：对实时同步帧 \(\tau_0 \) 进行虚拟变换，得到虚拟变换后的虚拟同步帧 \(\tau_0 \)；其中，虚拟变换公式为

\[
\begin{bmatrix}
f \\
-f
\end{bmatrix}
= \begin{bmatrix}
\cos \theta_0 + \sin \theta_0 \tan (\theta_0 - \alpha) & 0 & -w (\cos \theta_0 + \sin \theta_0 \tan (\theta_0 - \alpha)) \\
\frac{h \sin \theta_0}{2} & 1 & \frac{h \sin \theta_0}{2}
\end{bmatrix}
\begin{bmatrix}
\frac{f}{h \sin \theta_0} \\
\frac{h}{2} \cos \theta_0 \\
\end{bmatrix}
+f(\sin \theta_0 - \cos \theta_0 \tan (\theta_0 - \alpha))
\]

在步骤（2）中算出的摄像机焦距： \(\theta_0 \) 是自开始监控起的第 \(s \) 秒时摄像机实际面对方向与摄像机正视场景时的方向之间的夹角； \(\alpha \) 为摄像机相机值的二分之一；点 \(P(i, j) \) 为实时同步帧 \(\tau_0 \) 上的一个点， \(i \) 代表横轴， \(j \) 代表纵轴， \(w \) 和 \(h \) 分别是实时同步帧 \(\tau_0 \) 的宽和高，点 \(P' (i', j') \) 为虚拟同步帧 \(\tau_0 \) 上的点，且 \(P' (i', j') \) 与点 \(P(i, j) \) 相对应的点；

（7）相邻虚拟同步帧间校正和配准：依次对相邻两台摄像机所获取的虚拟同步帧 \(\tau_0 \) 和虚拟同步帧 \(\tau_{n+1} \) 进行校正并计算出虚拟同步帧 \(\tau_0 \) 和虚拟同步帧 \(\tau_{n+1} \) 之间虚拟同步帧重叠区水平长度 \(L_{(n,n+1)} \)，然后用虚拟同步帧重叠区水平长度 \(L_{(n,n+1)} \) 进行虚拟同步帧 \(\tau_0 \) 和虚拟同步帧 \(\tau_{n+1} \) 之间的配准：其中，相邻两幅虚拟同步帧间的校正时用于计算虚拟重叠区水平长度 \(L_{(n,n+1)} \) 的计算公式为

\[
L_{(n,n+1)} = f \cdot \tan (\alpha + \theta_0) + f \cdot \tan (\alpha - \theta_0) - 2f \cdot \tan \alpha + L_{(n,n+1)}
\]

\(f \) 是步骤
骤（2）中计算得到的焦距，\(L_{(m,n)} \)是步骤（3）中初始相邻同步帧间重叠区域的水平长度，
\(\theta_s \)是自开始监控起的第 s 秒时摄像机实际面对方向与摄像机正视场景时的方向之间的夹角；\(\theta \)为摄像机视轴的二分之一；校正之后就得到的新偏移量，即用虚拟重叠区域水平长度
\(L_{(m,n)} \)对所有当前偏转角 \(\theta_s \)下的相邻虚拟同步帧 \(L_{m}^{r} \)和虚拟同步帧 \(L_{m+1}^{r} \) 进行配准；

(8) 生成合成帧：用加权平均融合方法进行平滑过渡以生成第 s 秒时整个监控场景面的合成帧 \(L_{m}^{r} \)，即根据相邻两幅虚拟同步帧重叠区域大小对该重叠区域进行加权融合，并
将融合处理之后的重叠区域覆盖到拼接之后的新图的对应位置，保证最终生成的合成帧具
有视觉一致性和没有明显的接缝，完成第 s 秒点的监控场景面所要监控图像的处理；

(9) 实时视频合成与输出：重复步骤（4）至（8），即对每台摄像机的每一时刻的实时同
步帧进行处理，获得每一个时刻的合成帧 \(L_{m}^{r} \)，将合成帧 \(L_{m}^{r} \) 逐张进行播放并写入视频文
件，即获得实时生成的拼接视频；其中：第（5）步在实时旋转监控时在任意时间点进行同
一调整所有摄像机偏转角度 \(\theta_s \)，在固定角度监控时只在第一次执行时调整偏转角；第（7）步
只对当前偏转角下相邻摄像机的第一帧拼接时实施偏移量的虚拟同步帧校正计算。
基于平行视频拼接技术的矿井安全监控方法

技术领域
[0001] 本发明涉及矿井安全监控技术领域，尤其涉及采用视频为手段的安全监控技术领域，具体涉及采用稀疏视点的、基于平行视频拼接的矿井安全的监控方法。

背景技术
[0002] 矿井安全监控是国家安全生产的重点研发技术。在几十百到几百米的井下，工作环境极为恶劣，如对整个安全生活过程、重点施工工段进行实时精确、可靠高效的安全监控与预警是特别重要的研究课题。目前的井下的监控技术主要有：一，采用传感器获取现场的温度、湿度或有害气体浓度；二，利用摄像机实时捕获工作面的现场信息。前一种技术需要在现场布点大量的传感器，反馈井内气体浓度等参数，存在获取的信息不直观的问题，另外，在井下突发情况时无法反映实时状况；后一种技术虽能克服传感器监控不直观的缺陷，但由于只是若干独立摄像机的简单监控：若要提高监控监控的精度就需要井下狭小的空间大量布局，既不经济也不实际；若减少监控点、稀疏布点又会出现观测点无法扫描到的盲区，相邻观测点重复监控的重叠区，以及监控点摄像机旋转监控时的图像失真变形区，都会造成矿井安全监控中误判断。为此，开发一种低成本、易布置、高精度的井下视频监控技术创新是非常有必要的。将若干独立摄像机通过算法拼接成一个大视域监控视频的视频拼接技术为这种需求提供了一种解决思路。

[0003] 现有的视频拼接方法的主要步骤有视点初始化、输入源同步帧、同步帧配准、同步帧融合、合成帧显示及保存，具体为：首行进行视点初始化，即视点初始化等相关准备工作：然后是对各个同步帧依次进行配准，从而找到相互重叠的位置，这一步中必要时还要进行视点几何变换实现正确配准：接下来就可以对这个配准后的同步帧进行融合，生成拼接合成帧：之后，将得到拼接合成帧进行显示以及保存，并转到到下一个同步帧的配准之中，从而开始新一轮的同步帧拼接工作。上述过程中，同步帧的配准和融合是关键步骤，其核心技术是如何进行图像的拼接。

[0004] 参见图2，传统图像拼接（image mosaic）是围绕中心点拍一圈图像而成。这种方法克服了单幅图像视域小的不足，因此得到了广泛的研究与应用。但这种传统的拼接方法视点固定，对于例如街道和井下巷道等狭长的场景，离摄像机越远图像的变形就越厉害，无法显示整体的形貌来。

[0005] 参见图3，针对传统图像拼接的不足，改进的方案是采用平行拼接（parallel mosaic）的方法对狭长的场景进行处理，其具体方法是在做平行视点拍摄场景的基础上，将每一个视点位置取出的一条切片拼接成一幅大视域图像的一种切片式图像拼接技术。该平行拼接可以获得更广范围，克服了传统图像拼接在单一视点情况下视域受限的缺陷，特别适合移动移动视点才可以完整拍摄下来的纵深较长场景，如井下巷道和街道等，因此具有重要的实用价值。

[0006] 现有的平面拼接方法主要有路途全景拼接（route panorama）和平行投影拼接（parallel perspective stereo mosaics）。但对上述两种方法存在两点不足：1）上述两
发明内容

[0007] 针对现有基于平行视频拼接技术的矿井安全监控方法的不足，本发明提供一种减少对视点的密接数量要求以及降低采样设备水平运动方向与视点方向拍摄技术要求的一种自由稀疏视点平行视频拼接的方法。其具体的方法为。

[0008] 基于平行视频拼接技术的矿井安全监控方法，按如下步骤进行。

[0009] (1) 布置采样点；设需要进行安全监控的监控场景面的深度为 L_{0}，摄像于与监控场景面之间的距离为 L_{0}，相邻两个摄像机之间的距离为 L_{e}，则摄像机与监控场景面之间的距离 L_{0} 是监控场景面的深度 L_{0} 的 1.0 至 10.0 倍，相邻两个摄像机之间的距离 L_{e} 是监控场景面的深度 L_{0} 的 1.0 至 3.0 倍，所有摄像机安置的高度相同，且在旋转时所有摄像机保持相同的旋转角度，相邻两个摄像机各偏转±45° 范围内时形成的相邻视点图像之间应有重叠，监控同一监控场景面的摄像机的连线应平行于监控场景面，所有摄像机均通过数据线与负责图形处理的计算机相连接，计算机将从每个摄像机获得的同步帧统一处理；

[0010] (2) 初始化摄像机焦距；每个摄像机均采用相同的帧分辨率，其焦距 f 运用附表分辨率比数据计算，即设帧的宽和高分别 w 和 h，则摄像机的焦距 f 取值为：f = \sqrt{w^2 + h^2}；

(3) 初始化重叠位置；将拍摄的摄像机正对于监控场景面取像，获得每个摄像机的初始同步帧，其中 n 为第 n 个摄像机，用半透透明法获得相邻两个摄像机之间的初始同步帧之间重叠区域的水平长度 L_{(n,n+1)}；

(4) 调整图像亮度；将从各个摄像机获取的初始同步帧 f 进行 Gamma 校正；所用公式为 I_{out} = aI_{in}；其中，I_{in} 是初始同步帧的原始像素，I_{out} 是初始同步帧经过校正后的像素，参数 \alpha 取 1，参数 \gamma 的取值范围为 1.5-3.0；

(5) 记录摄像机偏转角度：将所有摄像机设定相同的偏转角度 \theta_{0}，所偏转角度 \theta_{0} 是自开始监控起的第 s 秒时摄像机实际偏转方向与摄像机正视场景时的方向之间的夹角；偏转角度 \theta_{0} 与每台摄像机的实时同步帧 f 相对应，所述实时同步帧 f 为第 n 台摄像机自开始监控起的第 s 秒时监控的图像；

(6) 进行同步帧虚拟变换；对实时同步帧 f 进行虚拟变换，得到虚拟变换后的虚拟同步帧 f_{v}，其中，虚拟变换公式为

\[f_{v} = \begin{bmatrix} \cos \theta_{0} + \sin \theta_{0} \tan(\theta_{0} - \alpha) & -w/2 \cos \theta_{0} \tan(\theta_{0} - \alpha) \\ w/2 \cos \theta_{0} \tan(\theta_{0} - \alpha) & \sin \theta_{0} + \cos \theta_{0} \tan(\theta_{0} - \alpha) \\ 1 & -w/2 \sin \theta_{0} \tan(\theta_{0} - \alpha) + 4/2 \tan \theta_{0} - w/2 \sin \theta_{0} \tan(\theta_{0} - \alpha) \\ h/2 & 4/2 \tan \theta_{0} - w/2 \sin \theta_{0} \tan(\theta_{0} - \alpha) \\ 1 & -w/2 \sin \theta_{0} \tan(\theta_{0} - \alpha) + 4/2 \tan \theta_{0} - w/2 \sin \theta_{0} \tan(\theta_{0} - \alpha) \\ h/2 & 4/2 \tan \theta_{0} - w/2 \sin \theta_{0} \tan(\theta_{0} - \alpha) \end{bmatrix} \]
说明书

[0014] 为在步骤(2)中算出的摄像机焦距，\(\vartheta \) 是自开始监控起的第 s 秒时摄像机实际面方向与摄像机正视场景时的方向之间的夹角；a 为摄像机视角值的二分之一；点 P(i, j) 为实时同步帧图像上的一个点，i 代表横轴，j 代表纵轴，w 和 h 分别是实时同步帧的宽度和高度；点 P'(i', j') 为虚拟同步帧图像上的点，且 P'(i', j') 与点 P(i, j) 对应的点。

[0015] (7) 相邻虚拟同步帧间校正和配准：依次对相邻两台摄像机所获取的虚拟同步帧图像进行校正并计算出虚拟同步帧与虚拟同步帧之间虚拟同步帧重叠区水平长度。然后用虚拟同步帧重叠区水平长度计算虚拟同步帧重叠区水平长度的计算公式为：\(L_{n,n+1}^R = f * tan(a + \vartheta_n) + f * tan(a - \vartheta_n) - 2 * f * tan(a + L_{n,n+1}) \)。f 是步骤(2)中计算得到的焦距，L_{n,n+1} 是步骤(3)中初始相邻同步帧间重叠区域的水平长度，\(\vartheta_n \) 是自开始监控起的第 s 秒时摄像机实际面方向与摄像机正视场景时的方向之间的夹角；a 为摄像机视角值的二分之一；校正之后就得到的新偏移量，即用虚拟重叠区水平长度对所有当前偏转角 \(\vartheta_n \) 下的相邻虚拟同步帧图像和虚拟同步帧重叠区进行配准。

[0016] (8) 生成合成帧：用加权平均重合方法进行平均过渡以生成第 s 秒时整个监控场景面的合成帧。根据相邻两幅虚拟同步帧重叠区域大小对该重叠区域进行加权融合，并将融合后那些未重叠区域恢复到拼接之后的新图的对应位置，保证最终生成的合成帧具有视觉一致性和没有明显的接缝。包括周期性步骤中的监控场景面各要监控图像的处理。(9) 实时视频合成与输出：重复步骤(4) 至(8)，即对每台摄像机的每一个时刻的实时同步帧重叠区进行处理，获得每一个时刻的合成帧。将合成帧逐张进行播放并写入视频文件，即获得实时合成的拼接视频；其中：第(5) 步在实时旋转监控时可以在任意时间点同时统一调整所有摄像机的偏转角度，\(\vartheta_n \) 在固定角度监控时只在第一次执行时调整偏转角；第(7) 步只对当前偏转角下相邻摄像机的第一帧拼接时实施偏移量的虚拟同步帧校正计算。

[0017] 本发明有益的技术效果是

[0018] 本发明针对矿井安全生产的需要，结合平移拼接的优点，提出一种新的针对矿井安全的平行视频拼接方法。该方法只需对需监控的现场布局少量的摄像机就可实现自由视角旋转的平行视频拼接。以拍摄深度变化小于 0.5 米和横向跨度为 1.5 米的煤矿采掘面为例，采用本方法只需安装三个摄像机即可完成 45° 和 -45° 间任意角度的场景无盲区大视域监控，操控方便；但若采用传统的独立摄像机的监控方法，无法解决摄像机扫描监控时的盲区问题，重复监控问题以及图像变形失真问题；而若采用已有的平行拼接方法监控，则需要移动摄像机 1.5 米且以每秒 24 帧左右，即每秒移动视角 24 倍的速度扫描才能完成一个点固定且平行于场景面方向的场景。这种解决方案在井下狭长且复杂的巷道里实现实时监控是不实际的；若不移动摄像机，为克服由于一个摄像机中只能提取正中一个窄条且固定于平视拍摄的场景的问题，则需要在 1.5 米的间距上密集至少十几个摄像机才可能达到与本发明相同的技术效果，无疑是不现实的技术解决方案。

[0019] 进一步可以总结出本发明的创新点在于：

[0020] 1) 针对井下工作空间狭长的特点，首次提出一种生成一个长视域的监控视频的平行视频拼接方法，解决纵伸较大场景的自由角度监控问题，实现无变形、盲区和重叠区的大视域实时监控。
[0021] 2) 本方法首次提出稀疏摄像机布局和自由角度拼接思路，较前人的固定视点和密集拼接思路平行拼接方法节约成本、灵活控制以及更易于布局；
[0022] 3) 相对于目前的大量摄像机布局的井下监控技术，本发明由于只需少量摄像机就可以实现整个场景的清晰监控，因此布局简单、易实施、更加经济和安全；
[0023] 4) 相对于目前的基于传感器技术的井下监控技术，本发明则是对其进行实时可视监控的有效拓展，使用户可以及时获取一个完整和清晰的巷道现场信息；
[0024] 5) 该方法独特之处在于采取虚拟变换以及同步帧校正与帧配准的两阶段策略，实现稀疏视点和自由视点旋转下的图像拼接；本发明还可以进一步应用于其它各类纵深较长场景的监控。旅游和展示中，因此具有较广泛的应用前景。

附图说明
[0025] 图 1 是本发明方法的流程框图。
[0026] 图 2 是传统图像拼接原理图。
[0027] 图 3 是传统平行拼接原理图。
[0028] 图 4 是本发明中摄像机布置位置的俯视示意图。
[0029] 图 5 是虚拟变换原理示意图。
[0030] 图 6 是图 5 虚拟变换原理的俯视示意图。
[0031] 图 7 是相邻虚拟同步帧的校正示意图。
[0032] 图 8 是加权平均融合原理的示意图。
[0033] 图 9 是第一个实施例中两台摄像机向右偏转 15° 分别获取的原始同步帧示例。
[0034] 图 10 是将第一个实施例中原始同步帧虚拟变换后的虚拟同步帧。
[0035] 图 11 是第一个实施例最终拼接后的合成帧。
[0036] 图 12 是将实施例 1 中的摄像机的光轴水平向右旋转 30° 时获得的实施例 2 的原始视同步帧示例。
[0037] 图 13 是图 12 完成最终拼接后的合成帧。
[0038] 图 14 是依本发明方法，采用六个摄像机的第二个实施例的最终视频拼接结果。

具体实施方式
[0039] 现结合附图详细说明本发明的具体方法。
[0040] 实施例 1
[0041] 基于平行视频拼接技术的矿井安全监控方法，具体按如下步骤进行：
[0042] (1) 布置采样点：参见图 1 和图 4，本实施例中设需要进行安全监控的监控场景面的深度为 L1 为 1 米，摄像机与监控场景面之间的距离 L2 为 6 米，相邻两个摄像机之间的间距 L3 为 1.5 米，即摄像机与监控场景面之间的距离 L3 是监控场景面的深度 L1 的 2 倍，相邻两个摄像机之间的间距 L3 是监控场景面的深度 L1 的 4 倍，采用两台型号为罗技 C170 的摄像机进行取景，该型号摄像机的分辨率为 640*480，所有摄像机安装在高度相同，且在旋转时所有摄像机保持相同的旋转角度，相邻两个摄像机各自偏转 ±45° 范围内时所形成的相邻视点图像之间应有重叠，即摄像机监控视角的范围不小于 90°。监控同一监控场景面的摄像机的连线应平行于监控场景面。所有摄像机均通过数据线与负责图形处理的计算机相
连接，计算机将从每个摄像机获得的同步帧统一处理；

(2) 初始化摄像机焦距：每个摄像机均采用相同的帧分辨率，其焦距运用帧分辨率模拟计算，即设帧的宽和高分别是 w 和 h，则摄像机的焦距 f 的计算为公式

\[f = \sqrt{w^2 + h^2} \]

(1) 在本实施例中，根据公式 (1) 计算可得：f = 800；(3) 初始化重叠位置：将所有的摄像机正对于监控场景面取像，获得每个摄像机的同步帧为初始同步帧 L，其中 n 为第 n 个摄像机；用半透明法获得相邻两个摄像机之间的初始同步帧重叠区域的水平宽度 L(n, n+1)；首先从相邻两个摄像机分别获取初始同步帧 L(n) 与 L(n+1)，将 L(n) 与 L(n+1) 分别做半透明处理再将相同位置重叠放在一起，此时重叠的图像区域为初始同步帧重叠区域；由于所有摄像机都处于同一个水平面上，则初始同步帧重叠区域的垂直偏移量为 0，只需记下此时的水平偏移量，即初始同步帧重叠区域的水平宽度 L(n, n+1) 为 507；

(4) 测试图像亮度：将从各个摄像机获取的初始同步帧进行 Gamma 校正，其公式为：

\[L_{out} = a L_{in} \gamma \] \((i) \)

其中，L_{out} 是初始同步帧的原始像素强度，L_{in} 是初始同步帧校正后像素强度在本实施例中参数 a 取 1；参数 γ 取 2.1，即用在图像处理中常用的“亮度直方图统计”的方法确保上述相邻两个摄像机所显示的图像均为同一个亮度水平；

(5) 记录摄像机偏转角度：令所有摄像机开始对监控场景面，且将所有摄像机设定相同的偏转角度 θ，所述偏转角度 θ 为自开始监控起的第 s 秒时摄像机实际面对方向与摄像机正视场景时的方向之间的夹角；偏转角度 θ 与每台摄像机的实时同步帧 L_s 相对应，所述实时同步帧 L_s 为第 n 台摄像机自开始监控起的第 s 秒时监控的图像；在步骤 B 中摄像机监控状态可分为两种模式：第一种模式下，将所有摄像机旋转一个统一的偏转角度 θ 后不再改变视角，即固定角度下的摄像机图像的获取，此时只需要记录一个偏转角度 θ，即可对应摄像机传回的每一幅图像；第二种模式下，所有摄像机在监控时始终保持一个角速度周期旋转并实时获取监控图像，即每一个获取监控图像的时刻，所有的摄像机的旋转角度都在统一发生着变化，此时需要实时记录自摄像机传回的每一幅图像所对应的偏转角度 θ_s；本实施例中两台摄像机自开机起按固定角速度旋转，两台摄像机第 5 秒时的偏转角度 θ_s 为 15°，两台摄像机获取的图像分别为实时同步成像 L_s 和实时同步成像 L_s，详见图 9，图中分别为两个摄像机向右偏转 15° 分别获取的原始图像，可以明显看出因偏转角造成的梯状变形现象，由于图像尺寸的变形导致实时同步成像 L_s 和实时同步成像 L_s 没有相同比例的场景成像，因此无法拼接；(6) 进行同步帧虚拟变换：将自步骤 (5) 中的两台摄像机获取的实时同步成像 L_s 和实时同步成像 L_s 分别按虚拟变换公式进行处理，将因偏转角度 θ_s 而产生变形的图像恢复至偏转角度 θ_s 为 0 时的实时同步成像 L_s 和实时同步成像 L_s，虚拟变换公式为：

\[
\begin{bmatrix}
\cos \theta + \sin \theta \tan(\theta - a) & 0 & -w(\cos \theta + \sin \theta \tan(\theta - a)) + f^2(\sin \theta - \cos \theta \tan(\theta - a)) \\
\frac{w}{f} \sin \theta & 1 & -w f \sin \theta \\
\frac{w}{f} \cos \theta & \frac{w}{f} & -f^2 \cos \theta
\end{bmatrix}
\]

(iii)

其中，f 为在步骤 (2) 中算出的摄像机焦距 θ 为自开始监控起的第 s 秒时摄像机
实际面对方向与摄像机正视场景时的方向之间的夹角；为摄像机视角值的二分之一；点 \(P(i,j) \) 为实时同步帧 \(\tau \) 上的一个点，i 代表横轴 j 代表纵轴，w 和 h 分别是实时同步帧 \(\tau \) 的宽和高；点 \(P'(i', j') \) 为虚拟同步帧 \(\tau' \) 上的点，且 \(P'(i', j') \) 与点 \(P(i,j) \) 相对应的点。本例中是将实时同步帧 \(\tau \) 和实时同步帧 \(\tau' \) 分别虚拟变换为虚拟同步帧 \(\tau' \) 和虚拟同步帧 \(\tau' \)，参见附图 10 即是图 9 经虚拟变换后的结果，其中图 10 中的区是偏转后的无信息区域。此时，原图 9 中的栅状变形问题被克服，即虚拟同步帧 \(\tau' \) 和虚拟同步帧 \(\tau' \) 可以拼接。

现以单个摄像机解释发明中虚拟变换的原理：

图 5 为单个摄像机布置的虚拟变换原理图，图 6 为图 5 的俯视示意图；图 5 所示，点 0 为摄像机光心，其变换前的摄像机坐标为 \(0xyz \)，光轴为 \(z \) 轴，\(xoz \) 面是水平面，\(y \) 轴竖直向上；变换前该摄像机的监控方向与摄像机正对监控场景方向之间的偏转角为 0，即偏转角为 0，水平的视角的一半为 \(a \)，其成像面为 \(I \)；\(C \) 为摄像机光轴与成像面 \(I \) 的交点，并取之为 \(I \) 的中心点，相应的，线段 \(OC \) 为摄像机的焦距 \(f \)；由图 5 可知，在偏转角为 0 不为零的情况下，成像面 \(I \) 上过交点 \(C \) 点平行 \(xoz \) 面的上由线段 \(AB \) 所示的区域中，线段 \(AC \) 所示的区域所对应的监控场景画面比线段 \(CB \) 所示的区域所对应的监控场景画面要窄；进一步可以看出场景在成像面 \(I \) 上的成像存在栅状变形的现象，即：1) 靠近成像面 \(I \) 的场景所成的像越来越小，远离成像面 \(I \) 的场景所成的像越来越大，2) 偏转角越大，栅状变形越明显；可以观察，相邻摄像机间的这种差动状的成像中没有一样的区域，因此也就不可能拼接到一起；产生这种现象的原因是由于摄像机正对场景，这样得到的成像面 \(I \) 与场景面的不平行，从而造成在同一场景在不同摄像机中具有不同程度的透视变换，所以，摄像机的偏转角增大应大于增可视范围，但是必须解决栅状变形问题。

解决的思路是对偏转后得到的图像进行补偿和恢复，得到一个虚拟的正对场景投影时的成像结果；由于正对场景的成像不存在不一致的透视变换，也即没有栅状变形现象，拼接也就可以实现；具体解决方法是根据当前摄像机的焦距值虚拟构造一个相同焦距但正对场景的虚拟摄像机，其视域范围包含原摄像机的视域，成像面 \(I \) 中自然包含了原摄像机的成像面，但此时的成像即为正对场景的，也即没有栅状变形现象存在，当然可以实现相邻摄像机间的拼接！如图 5 和 6 所示，该虚拟摄像机的坐标 \(0x'yz' \) 相对于原摄像机的坐标水平反旋转 0 角，其视轴的一半变化为 \((a+\theta)\)；相应的虚拟成像面为 \(I' \)；对于成像面 \(I \) 的交点 \(C \)，虚拟成像面 \(I' \) 与光轴的交点为 \(C' \)；线段 \(OC' \) 的长度等于焦距 \(f \)；相应于成像面 \(I \) 上过交点 \(C \) 点线段 \(AB \)，虚拟成像面 \(I' \) 同样可以得到一条过点 \(C' \) 的线段 \(A'B' \)；根据讨论的解决思路，目标是计算成像面 \(I \) 在摄像机的虚拟成像面 \(I' \) 上的相应图像，从而得到虚拟变换后的虚拟摄像机。但是对于成像面 \(I \) 中线段 \(AB \) 上的点成像点，目标是求解虚拟成像面 \(I' \) 中线段 \(A'B' \) 上的点成像点；下面具体解释如何计算虚拟成像面 \(I' \) 上的虚拟同步帧图像。

假定坐标原点在成像面的左下角，设场景上的点 \(P \) 在成像面 \(I \) 和虚拟成像面 \(I' \) 分别对应于点 \(P(i,j) \) 和点 \(P'(i', j') \)；点 \(P \) 在原摄像机坐标系 \(0xyz \) 下的坐标 \((x_p, y_p, z_p)\) 表示为：

\[
\begin{bmatrix}
x_p \\
y_p \\
z_p
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & -w/2 \\
0 & 1 & -h/2 \\
0 & 0 & f
\end{bmatrix}
\begin{bmatrix}
i \\
j \\
k
\end{bmatrix}
\]

(4)
点P在虚拟摄像机坐标系下的坐标(x_p, y_p, z_p)可根据原坐标系xyz和xyz'的旋转关系的计算为:

\[
\begin{bmatrix}
x_p \\
y_p \\
z_p
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\begin{bmatrix}
x_p' \\
y_p' \\
z_p'
\end{bmatrix}
\] (v)

由于点P'为直线OP与虚拟成像面I的交点，因此可以推导出点P'在坐标系xyz'下的坐标(x', y', z')为:

\[
\begin{bmatrix}
x_p' \\
y_p' \\
z_p'
\end{bmatrix} =
\begin{bmatrix}
\frac{x_p}{z_p} & \frac{f}{z_p} & \frac{x_p}{z_p} \\
\frac{y_p}{z_p} & \frac{f}{z_p} & \frac{y_p}{z_p}
\end{bmatrix}
\begin{bmatrix}
x_p \\
y_p \\
z_p
\end{bmatrix}
\] (vi)

进一步，点P'在虚拟成像面I上的坐标(i', j')表示为:

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} =
\begin{bmatrix}
x_p' - f \tan(\theta - \alpha) \\
y_p' - \frac{1}{2} + h
\end{bmatrix} =
\begin{bmatrix}
1 & -f \tan(\theta - \alpha) \\
0 & 1 - \frac{h}{2}
\end{bmatrix}
\begin{bmatrix}
x_p' \\
y_p'
\end{bmatrix}
\] (vii)

由公式(vi)知z' = f，所以公式(vii)可以改写成:

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} =
\begin{bmatrix}
1 & -f \tan(\theta - \alpha) \\
0 & 1 - \frac{h}{2}
\end{bmatrix}
\begin{bmatrix}
x_p' \\
y_p'
\end{bmatrix}
\] (viii)

考虑到P'与I上的P点对应，根据公式(iv)、(v)和(vi)，可以将公式(viii)写成如下以P点坐标(i, j)表示的形式:

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} =
\begin{bmatrix}
1 & -\tan(\theta - \alpha) \\
0 & 1 - \frac{h}{2}
\end{bmatrix}
\begin{bmatrix}
x_p' \\
y_p'
\end{bmatrix}
\] (vii)

根据公式(iv)和(v)，上式可以改写成:

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} =
\begin{bmatrix}
\frac{f}{x_p} & 1 - \tan(\theta - \alpha) \\
0 & 1 - \frac{h}{2}
\end{bmatrix}
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\] (vii)

这样，利用上式就可以对原成像面I上的象点找到其在虚拟成像面I'中的位置，从而计算出物理变换后的图像。

在本实施例中，将\(\theta = 15^\circ\)，\(\alpha = 21.801^\circ\)，\(f = 800\)，\(w = 640\)，\(h = 480\)分别带入物理变换公式可得到旋转角度为\(15^\circ\)时的简化公式:

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} =
\begin{bmatrix}
800 \\
-0.25861 + 855.5628 \\
4969.2567 \\
-0.00000 - 164268289.0491
\end{bmatrix}
\] (vii)

（7）相邻虚拟同步帧间校正和配准：依次对相邻两台摄像机所获取的虚拟同步帧F_n'和虚拟同步帧F_{n+1}'进行校正并计算出虚拟同步帧F_n'和虚拟同步帧F_{n+1}'之间虚拟同步帧重
叠区水平长度$L_{(n, n+1)}^s$，然后用虚拟同步帧重叠区水平长度$L_{(n, n+1)}^s$进行虚拟同步帧L_n^s和虚拟同步帧L_{n+1}^s之间的配准；其中，相邻两幅虚拟同步帧间的校正时用于计算虚拟重叠区水平长度$L_{(n, n+1)}^s$的计算公式为

$$L_{(n, n+1)}^s = f \cdot \tan(\alpha + \theta_s) + f \cdot \tan(\alpha - \theta_s) - 2 \cdot f \cdot \tan \alpha + L_{(n, n+1)}$$ (xi)

其中，f 是步骤 (2) 中计算得到的焦距，$L_{(n, n+1)}$ 是步骤 (3) 中初始相邻同步帧间重叠区域的水平长度，θ_s 是从开始监控起的第 s 秒时摄像机实际面对方向与摄像机正视场景时的方向之间的夹角；α 为摄像机视角值的二分之一；校正之后就得到的新偏移量，即用虚拟重叠区水平长度$L_{(n, n+1)}^s$对所有当前偏转角 θ_s 下的相邻虚拟同步帧L_n^s和虚拟同步帧L_{n+1}^s进行配准。

由虚拟变换的原理可知，虚拟成像面平行于视点连线，且与视点光心的距离为焦距 f。视点未发生旋转（即视点光轴垂直于场景面）时，成像面距光心 f，因此视点光轴未旋转时的成像面 1 与虚拟变换后的虚拟成像面 1’ 在同一平面上。第 (3) 步初始化中已经获得了视点光轴与场景面垂直时相邻视点成像的重叠区域的偏移量 $L_{(n, n+1)}$，这一偏移量可用来计算在摄像机发生偏转情况下的相邻摄像机间经过虚拟处理后的偏移量虚拟重叠区水平长度$L_{(n, n+1)}^s$从而当前偏转角下的相邻虚拟同步帧间偏移量的校正计算。

现结合图 7，以偏转角 θ 的两个相邻摄像机进行取景的俯视图为例说明同步帧校正原理；其中，点 O_1 为第一摄像机的光心，点 O_2 为第二摄像机的光心，第一摄像机和第二摄像机的焦距均为 f 且均旋转 θ 度角，C_1 和 C_2 分别表示这两个成像面的中心，射线 O_1C_1 和射线 O_2C_2 分别表示第一摄像机的光轴和第二摄像机的光轴；A_1B_1 和 A_2B_2 分别表示这两个偏转角为 θ 的摄像机经第 (5) 步虚拟变换后得到的虚拟同步帧成像面，$A_1’B_1’$ 是这两个虚拟成像面的重叠区长度。也是相邻虚拟同步帧校正的计算目标；M_1N_1 和 M_2N_2 分别表示这两个视点在正对场景（即没有偏转时）时的成像面，他们的重叠区 M_2N_1 即是第 (3) 步计算的初始同步帧重叠区；

由图 7 可以看出，根据第 (3) 步初始同步帧计算到重叠区 M_2N_1 的初始长度为 $L_{M_2N_1}$，偏转 θ 角后两个虚拟成像面的重叠区域 $A_1’B_1’$ 的长度 $L_{A_1’B_1’}$ 为：

$$L_{A_1’B_1’} = L_{N_1B_1} - L_{N_1A_1} = L_{N_1B_1} - (L_{M_2A_1} - L_{M_2N_1})$$ (xii)

其中，$L_{N_1B_1}$、$L_{N_1A_1}$、$L_{M_2A_1}$ 和 $L_{M_2N_1}$ 分别表示线段 N_1B_1、N_1A_1、M_2A_1 和 M_2N_1 的长度，$L_{N_1B_1}$ 和 $L_{M_2N_1}$ 分别可以按下式计算：

$$L_{N_1B_1} = L_{C_1B_1} - L_{C_1N_1} = f \cdot \tan(\alpha + \theta) - f \cdot \tan \alpha$$ (xiii)

$$L_{M_2N_1} = L_{C_2N_1} - L_{C_2C_1} = f \cdot \tan \alpha - f \cdot \tan(\alpha - \theta)$$ (xiv)

其中，$L_{C_1B_1}$、$L_{C_1N_1}$、$L_{C_2N_1}$ 和 $L_{C_2C_1}$ 分别表示线段 C_1B_1、C_1N_1、M_2C_1 和 $A_1’C_1$ 的长度，所以，

$$L_{A_1’B_1’} = f \cdot \tan(\alpha + \theta) + f \cdot \tan(\alpha - \theta) - 2 \cdot f \cdot \tan \alpha + L_{M_2N_1}$$ (xv)

如果用 $L_{(n, n+1)}$ 表示第 n 个摄像机与第 n+1 个摄像机之间在第 (3) 步初始化中得到的初始同步帧重叠区长度，本例中为 $L_{(1, 2)}$，那么由公式 (xv) 推算得任意多个摄像机时的虚拟变换后相邻摄像机相应的相邻虚拟同步帧间重叠区水平长度 $L_{(n, n+1)}$ 的计算公式为：

$$L_{(n, n+1)}^s = f \cdot \tan(\alpha + \theta) + f \cdot \tan(\alpha - \theta) - 2 \cdot f \cdot \tan \alpha + L_{(n, n+1)}$$ (xvi)
[0085] 由于视点的旋转不影向纵向位置，因此纵向与偏移保持不变。

[0086] （8）合成帧生成：用加权平均融合方法进行平滑过渡以生成第 s 秒时整个监控场景的合成帧。即：根据相邻两幅虚拟同步帧重叠区域大小对该重叠区域进行加权融合，并将融合处理之后的重叠区域覆盖到拼接之后的新图的对应位置，保证最终生成的合成帧具有视觉一致性和没有明显的接缝，完成第秒点的监控场场景所要监控图像的处理；

[0087] 如图 8 所示，点 P 为重叠区的中心点，其在左右两帧中的强度分别为 I_{A1} 和 I_{A2}，I_{1} 和 I_{2} 分别为 A 到左右两侧相邻同步帧的边界的距离，则其在合成帧中的强度 I_{A} 按如下公式实现：

\[I_{A} = \frac{l_{1}}{l_{1} + l_{2}} I_{A1} + \frac{l_{2}}{l_{1} + l_{2}} I_{A2} \] (xvii)

[0088] 最后，将融合处理后好的第 s 秒时的合成帧I_{mn}进行播放，并将该合成帧写入视频文件，至此就完成当前同步帧的处理；

[0089] 参见图 12，图 12 是上述的两个摄像机在第 15 秒时捕获的视屏图像，实时同步帧I_{1}^{5} 和实时同步帧I_{2}^{5}，此时两台摄像机的旋转角度 θ_{1} 均为 30°，依照步骤（5）至（8）方法处理，

首先获得虚拟同步帧I_{1}^{5*} 和虚推同步帧I_{2}^{5*}，再融合处理得到合成帧I_{mn}。如图 13 所示，比较图 12 与图 13 可知，原先在图 12 中所存在的明显梯状形变的问题在虚拟处理且校正后图 13 中的被很好的抑制。此外，我们也可以确认：本发明方法在处理摄像机大角度旋转检测时，能够很好解决图像拼接时明显的失真与变形问题。

[0090] （9）实时视频合成与输出：重复步骤（4）至步骤（8），对每台摄像机的每一时刻的同步帧I_{mn} 进行处理，所得得到的每一个时间段的监控场景的监控图像的处理结果（即合成帧）进行播放并写入视频文件，即获得实时生成拼接的视频，其中：第（5）步在实时旋转监控时可以在任意时间点调整摄像机偏转角，在固定角度监控时只在第一次执行时调整偏转角，第（7）步只对当前偏转角的第一帧视频拼接时实施偏移量的虚拟同步帧校正计算。

[0091] 本实施例中，将第 5 秒至第 15 秒之间处理得到合成帧I_{mn} 进行连续的播放并写入视频文件，即获得一段持续 10 秒钟的连续监视视频。

[0092] 实施例 2

[0093] 参见图 14，是由六个摄像机按本发明所述方法进行视频拼接的结果。在本实施例中，场景的深度为 0.5 米，场景的长度为 7 米，每台摄像机相邻需要拍摄的场景的长度为 2 米，摄像机之间的间距为 1 米，固定的旋转角度为 30°；若采用单个摄像机拍摄如图 14 所示效果的图像，则需要沿场景以每秒 24 次移动的式来来完整场景拍摄。这样是无法实时监控整个场景，因此单个摄像机是不可能达到本方法的全景监控目标；若采用传统平行拼接的方式拍摄，则要布置 20 台左右的摄像机，每台摄像机截取竖直一小条的图像后再进行拼接组合。可见相比较传统的方法，本方法提供了一种使用少量的摄像机（监控点）、近距离捕捉监控场景（场景）且图像失真少的技术方法，更适合在矿井狭长巷道等需要重点监控段的视频监控方法。
图 1

图 2

图 3