WO 2006/029195 A1 |0 000000 0 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 March 2006 (16.03.2006)

PO 00 0 D A

(10) International Publication Number

WO 2006/029195 Al

(51) International Patent Classification:

HO4N 7726 (2006.01) HO4N 7/24 (2006.01)
(21) International Application Number:
PCT/US2005/031836

(22) International Filing Date:
8 September 2005 (08.09.2005)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
10/935,991 8 September 2004 (08.09.2004) US

(71) Applicant (for US only): INLET TECHNOLOGIES,
INC. [US/US]; 1121 Situs Court, Suite 330, Raleigh, NC
27606 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PAGE, Neal,
S. [US/US]; 208 Asbill Court, Cary, NC 27511 (US).
LABROZZI, Scott, C. [US/US]; 302 Lindemans Drive,
Cary, NC 27519 (US). SHAFFER, Gary, K. [US/US];

(74)

(81)

(84)

2314 Bristers Spring Way, Apex, NC 27523 (US). JA-
COBSEN, Philip, G. [US/US]; 14 Alicia Court, Durham,
NC 27704 (US).

Agents: FRANK, Steven, J. et al.; Goodwin Procter LLP,
Exchange Place, Boston, MA 02109 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T1, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: SLAB-BASED PROCESSING ENGINE FOR MOTION VIDEO

Set Motion Video Partition Z:‘z‘glgess
Sequence | MPE and image(s) 306
Encoding Session assign PEs
Parameters l
304 l %
302 -
Scene Complexity
Analysis; bit
308/ allocation
310-1 ‘L 31 Q-N
[___x__i ______ R 4 3102 e
! Slab 1 encoding : Slab 2 encoding :If’ ! Slab N encoding !
! | ! |
Slab 1 ! Slab 2 ' ! Slab N {
Motion Est f / Motion Est ! I Motion Est !
1316 l i eos X1 |
1 I | :
I [stab 1 Slab 2 1 N siab N 1
Trans/Quant Trans/Quant I { Trans/Quant |
| i
1 1 1
318 \
| Y R ' E 1 E
Slab 1 1| Slab 2 ! || StabN !
Bitstream Bitstream le s | | Bitstream I
coding coding : = coding %
! I
320 | ! | —
N S g s S e atandaste] adaded
>\ Bitstream Assembly
31 1
Quality and bit rate

measurement; adapt
on a per-Slab basis

I

314

(57) Abstract: Systems and methods of
encoding a video signal that includes a
succession of images are disclosed. A system
may include a plurality of independently
programmable processing elements (PEs), an
input interface device adapted to receive, buffer,
and divide the input video signal in a manner
appropriate to the plurality of PEs, and an output
interface device adapted to receive encoded
bitstreams generated by the plurality of PEs and
provide an encoded video signal. Each PE is
configurable to carry out the steps of a selected
encoding algorithm and includes a digital
processor and a memory in communication
with the digital processor. The memories are
independently accessible, and PEs communicate
with each another during the encoding.

WO 2006/029195 A1 [N} A0VOH0 AT 0000 00 AR

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL,, PL, PT, — before the expiration of the time limit for amending the
RO, SE, SI, SK, TR), OAPI (BF, BJ, CFE, CG, CI, CM, GA, claims and to be republished in the event of receipt of
GN, GQ, GW, ML, MR, NE, SN, TD, TG). amendments

For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

5

10

15

20

25

WO 2006/029195 PCT/US2005/031836

SLAB-BASED PROCESSING ENGINE FOR MOTION VIDEO

This application relates to motion video signal processing methods and
apparatus and more particularly to methods and apparatus for motion video encoding

and even more particularly to high definition (HD) motion video processing in real time.

BACKGROUND

Standard definition (SD) television (TV) images may be broadcast as images of
640 pixels x 480 lines, or 4:3 aspect ratio, that vertically refresh at 24, 30, or 60 images,
or frames, per second. HD TV images include much more data than SD TV images.

An HD TV image has a 16:9 aspect ratio and may include, for example, either 1920
pixels x 1080 lines that are interlacedly scanned or 1280 pixels x 720 lines that are
progressively scanned. Each video frame, or image, in an interlaced system consists of
two fields that are transmitted at twice the frame rate.

Encoding algorithms, such as MPEG-2, have been developed for SD video and
audio signals and have been standardized by the Moving Pictures Experts Group
(MPEG), which is officially designated ISO/IEC JTC1/SC29 WG11. MPEG-2, for
example, is published as 1SO standard 13818 and is used for digital SD TV signals and
HD TV signals.

Information to be encoded with the MPEG-2 algorithm may be an analog video
sequence of frames that have a pre-set pixel resolution at a pre-set frame rate, such as
29.97 frames/second with audio. The resulting MPEG-2 bitstream is a series of data
frames that are encoded, e.g., compressed, versions of respective input images and
sounds.

A video image input to the MPEG-2 algorithm is separated into a luminance (Y)
channel that represents brightness information in the image and two chrominance (U, V)
channels that represent color information in the image. An input image is also divided
into "macroblocks", with each macroblock comprising four 8-pixel x 8-pixel luminance
blocks and, depending on the image's chrominance format, a number of
8-pixel x 8-pixel chrominance blocks. For example, a macroblock may include six
blocks: four luminance blocks for the Y channel and one chrominance block for each of

the U and V channels. An 8x8 discrete cosine transform (DCT) is applied to each

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-2~

macroblock. The resulting DCT coefficients are then quantized, re-ordered to increase
the occurrence of long runs of zeroes, and run-length coded. Run-length coding
compresses the image by storing runs of data (i.e., sequences of the same data value)
as single data values and associated counts. The result is then Huffman-coded.

The bitstream generated by an MPEG-2 encoder is organized into frames that
are intra coded (I-pictures), forward predictive coded (P-pictures), or bidirectional
predictive coded (B-pictures). I-pictures in an MPEG-2 bitstream result from encoding
actual input images. P- and B-pictures result from motion-compensating input images
before encoding. Motion compensation involves correlating an input image with the
previous image, for P- and B-pictures, and with the next image, for B-pictures. Thus,
each macroblock in a P- or B-picture is associated with an area in the next and/or
previous image that is well-correlated with it. A "motion vector" that maps the
macroblock to its correlated area is encoded, and then the difference between the two
areas is encoded. It will be appreciated that adjacent frames in a video stream can be
well correlated, and so P-pictures may have 90% less data than |-pictures and
B-pictures may have 98% less data than I-pictures. On the other hand, an encoder
needs significantly more time to encode B-pictures than it does to encode [-pictures.

The frames in an MPEG-2 bitstream are arranged in a specified order that is '
called a group of pictures (GOP). The ratio of I-, P-, and B-pictures in the GOP
structure is determined by the nature of the input video stream, the bandwidth
constraints on the output stream, and the encoding time, which can limit the use of the
MPEG-2 algorithm in real-time environments having limited computing resources.
Encoding time becomes an even more serious problem when the MPEG-2 and similar
algorithms are used for encoding signals, such as HD signals, that have much higher
resolution and therefore much higher data rates than SD formats.

Despite these problems, MPEG-2 encoding has been applied to HD video
signals. For example, U.S. Patent Application Publication No. 20030174768 states that
it describes a system and method for processing an HD TV image, and these involve six
programmable encoders that are connected in parallel. According to the Publication,
each encoder receives the HD TV at a data rate of 74.25 megahertz (MHz) and
processes a respective vertical portion of each HD TV image. The encoders do not

communicate with one another, so the portion processed by one encoder overlaps the

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-3-

adjacent portion(s) processed by other encoder(s). This facilitates assembly of
complete encoded images but is inefficient at least in that the overlapping portions of
each image are encoded twice.

MPEG-2 encoding was developed in 1994, and newer, more advanced, and
more computationally complex algorithms have been developed that are substantially
more efficient in compressing motion video, i.e., video with relative movement between
camera and scene. These advanced algorithms include MPEG-4 part 10 and the
advanced video codec (AVC) of MPEG-4, Windows Media 9 (WM9) that is promulgated
by Microsoft Corp., and WM as adapted and standardized by the Society of Motion
Picture and Television Engineers (SMPTE), currently identified as VC9 or VC1. The
efficiencies of these advanced algorithms reduce the bandwidth needed for encoded
high-resolution video, thereby making high-resolution video less expensive and easier
to transmit, store, and manipulate.

In general, these advanced compression formats are based on the idea of
encoding SD video using one, two, or four processors. Such processor arrangements
are commonly found in today’s personal computers (PCs) and server computers. A
WMO encoder, for example, can beneficially use two or four multi-threaded processors
that share a memory and that are necessarily synchronized to enable generation of a
single output encoded data stream. Like an MPEG-2 encoder, a WMS9 encoder
generates |-, P-, and B-pictures, but some of WM9's advantages arise from how the
images and motion vectors are encoded.

Nevertheless, if WM, for example, is to be used to encode HD video signals,
today's PCs and servers are unable to do the encoding in real time, i.e., fast enough to
keep up with the input frame rate. A single processor operating at 3.0 GHz can take up
to fifty hours to encode one hour of common HD TV, depending on encoding options
and image size.

Current implementation limitations restrict WM to use with a maximum of four
processors or processing elements (PEs), which may reflect the practical consideration
that PC platforms having more than four processors are currently rare at best.
Modification, or porting, of WM to a multiprocessor array of more than four processors
might be done, but although a port to, say, a hypothetical 32-processor PC would be

straightforward, performance would drop off radically as contention for the one memory

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-4 -

bus would become significant. The increased complexity of advanced encoding
algorithms such as WM9 combined with the substantially greater data sizes of high-
resolution video images such as HD TV makes it impractical or impossible to encode
high-resolution video with an advanced encoding format such as WMO in real time with
commonly available, inexpensive processors.

This inability to process high-resolution video in real time increases the difficulty
of transmitting, storing, and manipulating high-resolution video. A complete video file
must be stored in an uncompressed form in a capacious storage medium, such as a
video tape or one or more hard disk drives, and encoded one frame atatime. This is
time-consuming and expensive, precluding the use of advanced encoding algorithms
like WMO in common broadcast-TV applications like sports events that require real-time
recording and transmission, and reducing the use in non-real-time applications like non-
linear editing (NLE) and authoring of digital video disks (e.g., DVDs).

SUMMARY

These and other deficiencies of previous encoding systems and methods are
resolved by Applicants' invention, which in one aspect is directed to a system for
processing an input video signal that includes a succession of images. The system
includes a plurality of processing elements (PEs) that are each independently
programmable to carry out steps of an encoding algorithm and that each include a
digital processor and a memory associated with the digital processor; and an output
interface device adapted to receive encoded bitstreams generated by the plurality of
PEs and combine the encoded bitstreams into an encoded video signal. The memories
are independently accessible by their respective digital processors. A plurality of non-
overlapping portions of each image are encoded by respective PEs, and a PE encodes
its respective image portion based on input image information and boundary processing
of data communicated from at least one other PE. The PEs communicate with one
another during encoding of the plurality of image portions.

In another aspect of Applicants' invention, there is provided a method of
encoding a video signal that includes a succession of images. The method includes
dividing an image into a plurality of non-overlapping image portions; encoding the image
portions according to an encoding algorithm; and combining encoded image portions

into an encoded video signal. An image portion is encoded by estimating motion in the

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-5-—

image portion, transforming and quantizing the image portion, and encoding the
respective transformed and quantized image portion based on necessary data of at
least one neighbor image portion.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of Applicants' invention will be understood
by reading this description in conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram of a media processing engine;

FIGs. 2A, 2B depict divisions of images into pluralities of non-overlapping "slabs”
or image portions;

FIG. 3 is a flow diagram of an encoding process; and

FIG. 4 is a block diagram of a bit-rate control loop.

DETAILED DESCRIPTION

Applicants have developed methods and apparatus that enable readily available,
relatively inexpensive processors to use current and advanced encoding algorithms,
such as H.264, MPEG-2, MPEG-4 part 10, AVC, WM9, and VC39, for compressing high-
resolution video, such as HD TV.

Rather than simply overlapping image portions and accepting the inefficiency of
redundant processing, Applicants combine overall scene complexity and regional
motion analysis information with boundary processing of motion vectors to produce a
better result. Applicants' processors communicate with one another during the
encoding of each frame, which enables reconstructed image data to be shared between
adjacent image portions, or "slabs", and motion vectors to cross slab boundaries.

Applicants' inter-processor communication also enables each processor to
generate its respective part of the final bitstream and the parts to be easily combined
without a separate processor for that purpose. Another advantage of such
communication is that the number of processors is far more scalable than prior
approaches. The "cost" of such communication is additional data movement and
synchronization between processors, but the amount of data transferred between
processors after encoding is small.

FIG. 1 is a block diagram of a media processing engine (MPE) 100 in
accordance with Applicants' invention that includes a plurality of processing elements
(PEs) 102-1, 102-2, . . ., 102-n-1, 102-n, 102-n+1, . . ., 102-N. Each of the PEs 102

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-6

includes computational circuits, logic, and memory suitable for carrying out the steps of
an encoding algorithm as described in more detail below. One PE is advantageously
substantially the same as another PE, and a suitable PE 102 includes a programmable
processor 104, such as a digital signal processor (DSP) circuit, and a logic circuit, such
as a whole or portion of a field programmable gate array (FPGA), an application-specific
integrated circuit (ASIC), or other logic circuit 106. The processor 104 and FPGA 106 in
a PE 102 store and retrieve information from respective memories 108, 110. It will be
appreciated that the processors 104 and FPGAs 106 themselves typically include some
internal memory. As indicated in FIG. 1, currently available FPGA and memory circuits
can be shared between PEs 102, although it will be appreciated that the operations of
any shared portions should be independent. Moreover, it will be understood that the
operations of the DSPs 104 may be executed with the operations of their respective
FPGA portions 108 by unitary processors that are indicated by the dotted lines and that
the memories 108 may be similarly combined with their respective memory portions
110.

Suitable DSP circuits are commercially available from several suppliers, including
for example Texas Instruments Inc., Dallas, Texas, and Analog Devices, Inc., Norwood
Massachusetts, and it will be understood that particular devices are selected based on
their clock speed, number of processing cores, external memory bandwidth, number of
multiply-and-accumulate (MAC) instructions per clock cycle, internal memory size, and
connectivity to other devices (e.g., industry-standard parallel bus interfaces, serial ports,
etc.), among other factors. Similarly, suitable FPGA circuits are commercially available
from several suppliers, including for example Altera Corp. and Xilinx, Inc., both of San
Jose, California, and particular devices are selected based on their maximum clock
speed, number of input/output (I/O) pins, number of logic elements, and amount of
internal memory, among other factors. Suitable memory circuits are commercially
available from many suppliers, and particular devices are selected based on their type
(e.g., synchronous dynamic random access memory (SDRAM), dual-ported RAM,
double data rate (DDR) SDRAM, etc.), maximum clock speed, number of bits, and
arrangement of bits, among other factors.

In Applicants' MPE 100, each PE 102 preferably has its own memory, e.g.,

memories 108, 110 or a unitary memory, and has access to an entire input image

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-7 =

through communication, indicated by the double-headed arrows and bi-directional bus,
with at least neighboring PEs, e.g., the DSPs and FPGAs or unitary processors in other
PEs, as needed for execution of a selected encoding algorithm.

An input video bitstream, such as HD TV, or even higher-resolution video, is
provided to the MPE 100 through a suitable interface 112, such as an interface that is in
accordance with SMPTE 274. It will be understood that the input may be video, like HD
TV, direct from an analog source (e.g., a component), digital source (e.g., a serial digital
interface (SDI)), compressed digital source (e.g., transcoded from MPEG-2), or from a
digital file. The interface 112 includes "glue" logic that receives the input video
bitstream and provides the input video in a suitable form to at least one of the FPGAs
106 and memories 110. It is advantageously not necessary for the interface 112 to
divide an input image among the number of PEs 102. As explained further below, the
FPGAs 106 operate to divide the input images. It may be noted that, as depicted in
FIG. 1, the interface 112 may connect to a single FPGA and that all FPGAs are
connected together.

Encoded bitstreams generated by the MPE 100 are collected from the DSPs 104
and provided to subsequent devices by an output interface 114, which further provides
digital data in a desired form, such as a data file on a storage medium, or a group of
packets for an Ethernet interface, or any other digital form suitable for transferring data
out of an encoder, such as the MPE 100. As depicted in FIG. 1, all of the PEs 102, and
more particularly the DSPs 104, are connected to the output interface 114.

The independent memory devoted to each portion of an image by each PE 102
reduces processor contention for memory access, yielding better performance and/or
lower cost, as cheaper memory can be used to obtain sufficient memory bandwidth. It
will be appreciated that high-resolution video processing entails huge numbers of
memory accesses, and so Applicants' independent memories contribute significantly to
the improved performance of the MPE 100. The memories 108 typically contain
program code and data, such as image slabs, and the memories 110 typically contain
only data. The memories 110 are used by only the FPGAs 106 for processing, which
enables the FPGAs to operate as extensions, or co-processors, of the DSPs 104. As
noted above, the DSPs and FPGAs can thus be combined in unitary processors.

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-8-

The architecture depicted in FIG. 1 is flexible in that the PEs 102 are readily re-
partitionable to adapt to encoder input parameters, and encoding can be pipelined in
that one or more PEs can start processing independent of other PEs. It will be
understood that an image need not be partitioned equally across all of the PEs, and so
depending on the input encoding session parameters, it can be decided to allocate
more or less of the encoding burden to one or more chosen PEs. Moreover, since
video data is usually delivered to the input interface and the PEs in a raster-scan order
in real time, at least one of the PEs receives its slab before the other PEs do, and that
PE can begin its processing before the other PEs do.

FIGs. 2A, 2B depict the division of high-resolution images 200, 210 into pluralities
of non-overlapping "slabs" or image portions 202-1, 202-2, . . ., 202-n, . . ., 202-N and
212-1,212-2, .. ., 212-n, .. ., 212-N. Slabs can generally have any shapes that tile the
plane of the image, and each slab or image portion is encoded by a respective one of
the PEs 102. FIGs. 2A, 2B show the slabs as non-overlapping, horizontally oriented,
rectangular blocks, which are currently believed to be efficient for a rectangular-block-
oriented encoding algorithm, such as MPEG-2 that performs mathematical operations
on 8x8 blocks of pixels. Different slab geometries, i.e., vertical heights and horizontal
widths, vertically oriented (i.e., taller than their width), horizontally oriented, and
combinations, may yield different performances. For example, it may be more efficient
when using horizontally oriented slabs for the heights of the slabs to be greater than the
motion vector search range, which is described in more detail below. While it is
possible to use any number of slabs/processors, e.g., even as many as one or more per
macroblock, it is currently believed that the number may have a practical limit
determined by the physical size of the PEs, the bandwidth needed for the
communication among them, the cost of the PEs, etc.

FIG. 3 is a flow diagram of an encoding process in accordance with Applicants’
invention. The process is initialized by setting session parameters for the video
bitstream to be encoded (step 302) and then by assigning particular PEs to respective
slabs (step 304) based on the parameters. The assignment of PEs to slabs can be
considered a partition of the MPE 100 and preferably results from program code
executed by a suitable processor, such as one of the PEs, a separate microcontroller,

or even a host PC. Session parameters suitable for multi-slab encoding include the

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-9—

number of slabs, their sizes, and their locations, and possibly others, e.g., whether to
enable slab-independent quantization, depending on the features desired.

It is often advantageous to condition the input video bitstream by pre-processing
and filtering each video frame (step 306). Typical conditioning operations are inverse
telecine and color-type conversion, and such conditioning operations may be performed
by the FPGAs 106 and memories 110, which thereby operate as co-processors. It will
be appreciated, of course, that conditioning (step 306) is not required.

In step 308, the complexity of each frame is analyzed and bits in the bitstream
that correspond to each frame are allocated to respective PEs 102. Bit allocation per
frame involves the number of bits in an input frame, which can be determined from a
target bit rate divided by the frame rate, and the bits/frame are allocated among the
plurality of slabs based on the relative complexities of the slabs, e.g., in linear
proportion. It is currently preferred, but not required, to perform complexity analysis
(and bit allocation) on a frame-by-frame basis, which is to say that quantization changes
(and bit allocations) per slab are tracked but are not modified from frame to frame. The
complexity of a frame (or slab) is based on the frame size and quantization levels of that
frame. Finally, desired quantization levels per slab that meet the constraints for bit-rate
control while maximizing visual quality are calculated and passed on to slab encoding
sequences 310-1, .. .,310-n, ..., 310-N.

Quantization levels of frames and slabs may advantageously be determined by a
bit-rate control feedback loop, such as that depicted in FIG. 4, which implements a
complexity analysis that assumes an exemplary linear relationship among complexity,
size, and quantization level. Other relationships may be used. For the linear
relationship of FIG. 4, complexity (C) is the product of the size (Size) and the
quantization level (Quant_level) (see block 402). In block 404, the quantization level for
the next frame or slab (New_Quant_level) is the complexity divided by the target size
(target_size), where the target size is given by the bit rate divided by the frame rate
(block 406). The new quantization level is used for encoding a frame or slab (block
408), the size and quantization level of which are fed back to block 402.

It will be appreciated that instead of frame-by-frame operation, complexity and bit
allocation can be performed in other ways, for example, by dynamically allocating bits

among different frame types or by re-allocating bits among slabs based on complexity.

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-10 -

In the loop depicted in FIG. 4, such operations are readily implemented as slab-
respective variations of the target size. Other ways to perform frame complexity
analysis and bit allocation may include dynamic adjustment of the quantization level per
macroblock.

The bits allocated to the slabs of an image are then subjected to parallel slab
encoding sequences 310-1, 310-2, . . ., 310-N, which are depicted by dashed lines, and
the results of each sequence, i.e., a slab bitstream representing each encoded slab, are
combined in step 312. As depicted in FIG. 3, the N encoding sequences 310 carry out
a chosen encoding algorithm on N image slabs. Assembly of the slab bitstreams
generated by the sequences 310 (and thus the slab PEs) is advantageously achieved
with negligible overhead. Although depicted in FIG. 3 as a unitary step, the bitstream
assembly step 312 may be considered as involving three points in the encoding
process.

At the beginning of the coding step 320 for a slab n, a bit offset value from the
adjacent slab n-1 is made available to the slab n by, for example, communication from
one FPGA to another. If the MPE 100 manipulates data in 8-bit bytes, the bit offset
value is a stored integer that ranges from 0 to 7, but it will be appreciated that data may
be manipulated in bytes having other sizes and the bit offset value may thus be different
accordingly. Since slab bitstreams are not guaranteed to end on byte boundaries, and
since not all encoding algorithms allow padding to a byte boundary, the slab-n PE
needs to know where the slab-n-1 PE left off. Given the bit offset value, the slab-n PE
skips and zeroes out that many bits in its memory (i.e., the slab-n PE pads the first byte)
before starting to store bitstream data. At the end of the coding step 320, the slab-n PE
makes its bit offset value available to the slab-n+1 PE and zero-pads its final byte to the
next byte boundary. To assemble the N slab bitstreams into one bitstream, boundary
processing is carried out. Suitable boundary processing may include logical OR
operations to combine the (padded) last byte of slab n with the (padded) first byte of
slab n+1. It will be appreciated that a bit offset value must be known to be valid before
it is used, and so synchronization between slabs may be provided.

The combined bitstream produced by the assembly step 312 is the output of the
encoding process. In order to adapt the process to changes in the input video stream,

however, the quality and bit rate of the combined bitstream is determined in step 314,

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-11 =

and this information is fed back to the complexity analysis and bit allocation step 308.
The quality is the same as or at least related to the quantization level, such that the
lower the quantization level, the better the perceived quality. Suitable quality
parameters are the number of bits and the quantization level used to encode each slab.
it will be understood that the quantization level in step 314 may be the same as the
quantization level generated in step 308, but this is not necessary;, the quantization level
within a slab may instead change dynamically, which would yield improved quality. For
example, a slab or image area that is "easy to encode”, such as a flat field, can be given
a higher quantization level (i.e., fewer bits) and yet the same perceived quality can be
achieved. The bits saved by using the higher quantization level can be used to encode
a more difficult area and improve the quality of the difficult area.

Each encoding sequence 310 includes estimating motion in the respective image
slab (step 316), transforming and quantizing the respective image slab (step 318), and
encoding the respective transformed and quantized image slab (step 320). It will be
understood that these three steps carry out the particular encoding algorithm, such as
MPEG-2, WM9, etc., implemented by the method, and thus the PEs are programmed
accordingly. Moreover, information is shared between sequences of adjacent slabs as
indicated by the arrows in FIG. 3 and as described in more detail below. It will also be
appreciated that the encoding sequences 310 may even be executed serially by a
suitably fast single processor.

Motion estimation (step 3186) is typically done by comparing the image slab of the
current frame with the reconstructed image slab of the preceding frame and using
shared data from the neighboring slab or slabs. This motion estimation is that specified
by the chosen encoding algorithm, and thus for example is substantially the same as
MPEG-2 motion estimation when the sequence 310 is doing MPEG-2 encoding and
substantially the same as WM9 motion estimation when the sequence 310 is doing
WM9 encoding.

Image transformation and quantization (step 318) is done using the image
portion in the DSP’s memory. The steps performed in image transformation and
quantization include the corresponding steps of the particular encoding algorithm, e.g.,
WM9 or MPEG-2, being implemented by the sequence 310. The shared information

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-12 —

needed by this step and the motion estimation step includes the quantization, which is
determined from the information provided by the scene complexity analysis (step 308).

Bitstream coding (step 320) is different from the basic coding of the particular
algorithm, e.g., MPEG-2 or WM9, being implemented by the sequence 310. WMS and
possibly other algorithms implicitly assume that various coded values are similar at the
borders between adjacent macroblocks. Such coded values include motion vectors,
quantization coefficients, etc., and a coded value is the difference between the actual
value and a "predicted value". WM, for example, has a predicted value for each
macroblock, and each predicted value is based on values from neighboring
macroblocks.

Applicants' bitstream coding step 320 advantageously includes boundary
processing. For the top slab or top horizontal row of slabs of a frame, the predicted
value(s) is/are based on values from the bottom slab or bottom row of slabs of the
previous frame. Therefore, the results of step 320 for a slab are sent to the PE handling
the neighbor slab before the encoding step 320 starts for the neighbor slab.

It will be appreciated that boundary processing is part of the encoding process
310 carried out by each PE and includes two categories: sharing reconstructed image
data between slabs, and sharing coding results between slabs. Thus, boundaries are
handled without redundant processing and yet visible artifacts due to image division
among parallel processors are avoided. Sharing reconstructed image data, bits
consumed per slab, and quantization value used by a previous slab may also be done
after the coding step 320. Each slab shares its reconstructed image data with its
neighbor slabs.

Those of skill in this art will understand that motion video encoders that use
motion estimation (e.g., that generate P- and B-pictures) generate and use
reconstructed images (which are also sometimes called reference frames, reference
images, and other names) that are necessary for computing motion vectors. An image
that is currently being encoded is compared to the reconstructed version of one or more
temporally nearby images to compute motion vectors. Reconstructed images are
computed by reversing the encoding steps that were used to encode the original image,
resulting in duplicates of the images that will be produced when the resulting encoded

bitstream is decoded.

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-13—

It is currently believed that reconstructed image data need be shared only with
the immediate neighbors on each side of a slab. It will be seen from FIG. 2A that each
slab 202 has only two "sides", i.e., edges where a slab abuts other slabs, and from FIG.
2B that each slab 212 has three sides. It will thus be understood that, depending on the
partitioning of an image, a slab or slabs may even have four or more sides, i.e., four or
even more edges that are shared with adjacent slabs. Communication is necessary in
one direction across all edges to enable assembly of a single bitstream.
Communication in both directions across ail edges may be provided to support passing
of reconstructed image data.

Applicants' encoding methods and apparatus divide an image to be encoded into
portions or slabs that are preferably assigned to respective parallel processors having
respective independent memories. This facilitates generation of independent encoding
parameters for each image portion, yielding substantial improvements in encoding
efficiency with granular sub-image control. The images to be encoded can be high-
resolution images, such as HD TV, and even higher-resolution images, including image
formats such as 30-frame/second interlaced, 720-line progressive at 24, 30, and 60
frames/second, 1080-line interlaced, and 1080-line progressive at 60 frames/second.
The parallel processors are programmable and adaptable for processing a portion of an
entire image or the entire image. A processor may even handle only a portion of the
processing of an entire image, and thus produce intermediate data for utilization by
another processor or processors that complete encoding the image.

In addition to dividing images into slabs and allocating slab processing tasks
among parallel processors, Applicants' methods and apparatus advantageously include
sharing data among the processors and tasks. Data that is communicated between
adjacent slab processes falls into two major categories. Some data are necessary for
correct computations that result in a valid bitstream; the particular nature of such data is
dictated by the chosen encoding algorithm. Other data are optional but enable a lower
bit rate and/or better image quality in the resulting bitstream. For example, motion
estimation near the edge of a slab can benefit from passing reconstructed image data
between adjacent slabs, resulting in a lower bit rate and a reduction or elimination of
visible image artifacts near slab boundaries that could occur if reconstructed image data

were not shared between adjacent slabs. Another example of optional data are

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-14 —

measurements of bits consumed by previously encoded slabs, which can be used to
allocate bits in subsequently encoded slabs or images.

Necessary and/or optional data may be communicated in one direction only (e.g.,
from the slab-n PE to the slab-n+1 PE) or in both directions (from the slab-n PE to the
slab-n+1 PE and from the slab-n+1 PE to the slab-n PE). The particular data
communicated and the direction of data communication depend on the encoding
algorithm implemented, the encoding format parameters, and possible other image
processing algorithms in use. The manner by which necessary and/or optional data is
communicated between and among PEs is largely determined by the performance
(speed) requirements imposed on the encoder and may vary depending on the
implementation.

As an example of necessary data for the WM9 encoding algorithm and an image
partition as depicted in FIG. 2A, the d.c. coefficients, coded block pattern, and escape
code flag for each macroblock in the bottom row of slab n is passed to slab n+1 for I-,
P-, and B-pictures. In addition, for P- and B-pictures, the forward motion vectors from
the last row of slab n are passed to slab n+1, and for B-pictures, the backward motion
vectors from the last row of slab n are passed to slab n+1. Similar information is
passed for the MPEG-2 algorithm due to the similarities of MPEG-2 and WM9 noted
above. Exemplary optional data includes reconstructed image data, which may be
communicated by copying M rows of pixels from the top of slab n to slab n-1 and
copying M rows from the bottom of slab n to slab n+1. Suitable values of M may be in
the range of 16 < M < 64, although it will be appreciated that M can range from 1 to the
slab height; the selection of M depends on the encoding algorithm, the motion
estimation search range and limits, and encoding performance vs. perceived quality
tradeoff.

Applicants MPE is capable of windowed two-pass encoding of high-resolution
video in real time. Two-pass encoding uses the current frame's size and the
quantization level obtained from a first pass as a predictor of the current frame; single-
pass encoding uses the past history of frame sizes and quantization levels as a
predictor of the current frame. The PEs 102 perform pre-processing/analysis of HD TV
images and provide analysis results to other PEs, which interactively adapt encoding

decisions based upon such "look ahead" analysis to improve the resulting encoded

10

15

20

25

30

WO 2006/029195 PCT/US2005/031836

-15—

(compressed) quality by better "bit allocation" based on the image content and the input
encoding parameters. Two-pass encoding affects scene complexity analysis (step
308), and single-pass encoding assumes the compliexity of the next frame is similar to
the complexity of the current frame. In two-pass encoding, the complexity of each
frame is determined in the first pass and the complexity value is then used to calculate
the quantization level. A similar arrangement is used to determine the complexity levels
of each slab.

Indeed, Applicants' methods and apparatus can be readily implemented for real-
time encoding of video images of any resolution. Input video may be live input (e.g.,
SMPTE 274 or other live input) or stored images provided via any suitable data bus
protocol (e.g., Peripheral Component Interconnect (PCl)), and the input can be encoded
slower than real time, exactly real time, or even faster than real time.

It will be appreciated that procedures described above may be carried out
repetitively as necessary, for example, to respond to time-varying characteristics of a
video signal. To facilitate understanding, many aspects of Applicants’ invention are
described in terms of sequences of actions that can be performed by, for example,
elements of a programmable computer system. It will be recognized that various
actions could be performed by specialized circuits (e.g., discrete logic gates
interconnected to perform a specialized function or application-specific integrated
circuits), by program instructions executed by one or more processors, or by a
combination of both.

Moreover, Applicants' invention can additionally be considered to be embodied
entirely within any form of computer-readable storage medium having stored therein an
appropriate set of instructions for use by or in connection with an instruction-execution
system, apparatus, or device, such as a computer-based system, processor-containing
system, or other system that can fetch instructions from a medium and execute the
instructions. As used here, a "computer-readable medium" can be any means that can
contain, store, communicate, propagate, or transport the program for use by or in
connection with the instruction-execution system, apparatus, or device. The computer-
readable medium can be, for example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation

medium. More specific examples (a non-exhaustive list) of the computer-readable

10

.15

WO 2006/029195 PCT/US2005/031836

-16 —

medium include an electrical connection having one or more wires, a portable computer
diskette, a random-access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), and an optical fiber.

Thus, the invention may be embodied in many different forms, not all of which
are described above, and all such forms are contemplated to be within the scope of the
invention. For each of the various aspects of the invention, any such form may be
referred to as “logic configured to” perform a described action, or alternatively as "logic
that” performs a described action. '

It is emphasized that the terms "comprises" and "comprising”, when used in this
application, specify the presence of stated features, steps, or components and do not
preclude the presence or addition of one or more other features, steps, components, or
groups thereof.

The particular embodiments described above are merely illustrative and should
not be considered restrictive in any way. The scope of the invention is determined by
the following claims, and all variations and equivalents that fall within the range of the

claims are intended to be embraced therein.

0o ~N oo oA O N =

-
N =~ O ©

O -

N =

w

AW DN -

WO 2006/029195 PCT/US2005/031836

17 -

WHAT IS CLAIMED IS:
1A digital processing engine for encoding a video signal that includes a
succession of images, comprising:

a plurality of processing elements (PEs), wherein each PE is independently
programmable to carry out steps of an encoding algorithm and includes a digital
processor and a memory associated with the digital processor; and

an output interface device adapted to receive encoded bitstreams generated by
the plurality of PEs and combine the encoded bitstreams into an encoded video signal,

wherein (i) the memories are independently accessible by their respective digital
processors; (ii) each PE encodes a plurality of portions of each image; (iii) a PE
encodes an image portion based at least in part on input image information and data
communicated from at least one other PE; and (iv) the PEs intercommunicate during
encoding of the plurality of image portions.

2. The engine of claim 1, wherein each PE performs boundary processing of
data communicated by at least one other PE, boundary processing including
communicating reconstructed image data between PEs that encode neighboring image

portions such that image motion vectors cross boundaries therebetween.

3. The engine of claim 1, wherein the video signal is a high-resolution television
signal and the encoding algorithm is one of MPEG-2, MPEG-4, Windows Media 9, VC9,
and VC1.

4. The engine of claim 1, wherein the output interface device is connected to the
digital processors of the PEs, and further comprising an input interface device adapted

to provide the video signal to at least one of the PEs.

5. The engine of claim 1, wherein each digital processor includes a logic circuit;
each memory includes a second memory associated with the logic circuit; the second
memories are independently accessible by their respective logic circuits; and the logic
circuits are configured for communication with one another.

6. The engine of claim 5, wherein the logic circuit is programmable.

7. The engine of claim 5, wherein the input interface device provides the video

signal to at least one logic circuit of at least one PE.

N -

N =

N OO O bW N -

BAWN -

AW DN -

W N =

N =

orT AW N -

WO 2006/029195 PCT/US2005/031836

-18 -

8. The engine of claim 1, wherein at least one PE is configured to start

processing before other PEs.

9. The engine of claim 1, wherein at least some of the image portions have

unequal sizes.

10. A method of encoding a video signal that includes a succession of images,
comprising the steps of:

separately encoding portions of an image according to an encoding algorithm;
and

combining the encoded image portions into an encoded video signal representing
the entire image, wherein encoding of each image portion is based at least in part on

data from at least one other image portion.

11. The method of claim 10, wherein an image portion is encoded by estimating
motion in the image portion, transforming and quantizing the image portion, and
encoding the respective transformed and quantized image portion based on necessary

data of at least one neighbor image portion.

12. The method of claim 11, wherein estimating motion in an image portion
includes comparing the image portion of a current image with a reconstructed image
portion of at least one temporally nearby image and using shared reconstructed image

data from at least one neighboring image portion.

13. The method of claim 12, further comprising the step of analyzing a
complexity of an image; wherein transforming and quantizing an image portion includes

using the respective image and information generated by the complexity analyzing step.

14. The method of claim 10, further comprising the step of conditioning each

image by at least one of inverse telecine and color-type conversion.

15. The method of claim 10, further comprising the step of analyzing a
complexity of an image, wherein (i) analyzing results in at least one quantization level;
(i) the image is divided based on the complexity; and (iii) at least one image portion is
transformed and quantized based on a quantization level of at least one neighbor image
portion.

—

N =

B OO DN -~ DN

N =

WO 2006/029195 PCT/US2005/031836

-19 -

16. The method of claim 15, wherein the complexity of the image is analyzed
image by image.

17. The method of claim 15, wherein the complexity of an image portion is based

on a size and a quantization level of the image portion.

18. The method of claim 17, wherein the complexity, size, and quantization level

are linearly related.

19. The method of claim 17, wherein the quantization level of the image portion
is based on a quantization of a preceding corresponding image portion.

20. The method of claim 15, wherein analyzing the complexity of the image

includes dynamically allocating bits among image portions based on the complexity.

21. The method of claim 20, wherein bits are dynamically allocated either by
varying the sizes of image portions or by varying the quantization level per macroblock

of image portions.

22. The method of claim 15, further comprising the step of determining a quality
and a bit rate of the encoded video signal, wherein images are analyzed based on the

quality and the bit rate.

23. The method of claim 22, wherein the quality includes a number of bits and a

quantization level used in encoding the irhage portions.

24. The method of claim 10, wherein encoding an image portion includes
receiving a first offset value determined from the encoding of a first neighbor image
portion and providing a second offset value determined from encoding the image portion

to the encoding of a second neighbor image portion.

25. The method of claim 10, wherein the encoding algorithm is one of MPEG-2,
MPEG-4, Windows Media 9, VC9, and VC1.

26. The method of claim 10, wherein encoding a transformed and quantized
image portion includes boundary processing based on the encoding of a neighbor

image portion.

27. The method of claim 26, wherein boundary processing includes receiving

reconstructed image data of the neighbor image portion.

W N = W N -

N

WO 2006/029195 PCT/US2005/031836

-20 -

28. The method of claim 27, wherein boundary processing includes receiving a
number of bits consumed per image portion and a quantization value used by a
preceding corresponding image portion.

29. The method of claim 10, wherein the video signal is a high-resolution
television signal and the encoding algorithm is one of MPEG-2, MPEG-4, Windows
Media 9, VC9, and VC1.

30. The method of claim 10, wherein the step of encoding begins for at least one
image portion before beginning for other image portions.

31. The method of claim 10, wherein at least some of the image portions have
unequal sizes.

WO 2006/029195 PCT/US2005/031836
1/4
Input Video input 112
Interface
100
1 0\2-1 102-2_ 1 02-3\\ 102-4 e oo

Y

114 —__| Output

FIG. 1

Interface

Output

— Encoded

Video

WO 2006/029195

PCT/US2005/031836
2/4

Slab 202-1 Slab 212-1 Slab 212-2
Slab 202-2 Slab 212-3 Slab 212-4
Slab 202-3 Slab 212-5 Slab 212-6
Slab 202-4 Slab 212-7 Slab 212-8
Slab 202-5 Slab 212-9 Slab 212-10
Slab 202-6 Slab 212-11 Slab 212-12
Slab 202-N Slab 212-N-1 Slab 212-N

Horizontally Vertical Columns of

Oriented Horizontally Oriented
Slabs Slabs
FIG. 2A FIG. 2B

WO 2006/029195 PCT/US2005/031836

3/4
Set Motion Video Partition preprocess L
Sequence » MPE and gnd filter 306
Encoding Session assign PEs image(s)
Parameters '
7 304 [
302 .
Scene Complexity
308/ Analysis; bit
allocation
310-1 v 310-N
___x__l______” _______ i..____l 3102 . boo
{ Slab 1 encoding H Slab 2 encoding I’ : Slab N encoding :
[1 { b |
{ Slab 1 H Slab 2 ; ; Slab N :
: Motion Est |= Motion Est { 1 Motion Est |
| [
1316 | oo o Xi !
ot | = |
| | Slab 1 11\ Slab 2 | N Slab N }
{ Trans/Quant } { Trans/Quant { { Trans/Quant }
I il | ‘ i
318 ! L 4 ?
{ H \ 4 47 : : Y_VY }
| | Slab 1 1| Slab 2 ! | | SlabN !
! Bitstream H Bitstream | e oo | | Bitstream !
{ coding : { coding { : coding {
1320 b ! i !
Y S Y L.__....._.T ________ I U SR

>\ Bitstream Assembly
31 V

Quality and bit rate
/ measurement; adapt
31% on a per-Slab basis

!

FIG. 3

WO 2006/029195

402

AN

414

target_size = bit_rate / frame_rate

406

target_size
404

Y

C = Size x Quant_level

C

New_Quant_level

L

= C / target_size

New_Q

A

A

Size and Quant_level

PCT/US2005/031836
408 N
Frame _
Encode or Slab™

FIG. 4

INTERNATIONAL SEARCH REPORT

International Application No

/US2005/031836

A. CLASSIFICATION OF SUBJECT MATTER
HO4N7/26 HO4N7/24

According to international Patent Classification (IPC) or 1o both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

23 December 1997 (1997-12-23)

figure 44

column 36, line 37 — column 36, line 48
column 6, line 48 - column 9, Tine 21

—f—

Category ° | Gitation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 356 589 Bl (GEBLER CHARLENE ANN ET 1,10
AL) 12 March 2002 (2002-03-12)
Y column 7, line 1 = column 1, line 58 1-31
figures 5,6
Y WO 99/38316 A (TIERNAN COMMUNICATIONS, 1-31
INC) 29 July 1999 (1999-07-29)
page 8, line 18 - page 31, Tine 12
Y US 5 701 160 A (KIMURA ET AL) 1-31

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :
“A* document defining the general state of the art which is not
considered to be of particular relevance
“E" earlier document but published on or after the international
filing date
L document which may throw doubts on priority claim(s) or
which is cited to establish the publication dale of another
citation or other special reason (as specified)
document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

0"

G

e

e

g

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetlying the
invention

document of parlicular relevance; the claimed invention
cannot be considered novel or cannot be considered to
Involve an inventive step when the document is 1aken alone

document of parlicular relevance; the claimed invention
cannot be considered to involve an invenlive step when the
document is combined with one or more other such docu—
{n?rr]ﬂs. ;uch combination being obvious to a person skilled
n the art.

document member of the same patent family

Date of the actual completion of the international search

24 January 2006

Date of mailing of the international search report

01/02/2006

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, TX. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Luckett, P

Form PCT/ISA/210 (second sheet) {January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intarnational Application No

/Us2005/031836

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Gitation of document, with indication, where appropriate, of the relevant passages

Relevant 1o ¢claim No.

US 6 754 270 Bl (GOLIN STUART J ET AL)
22 June 2004 (2004-06-22)

column 2, 1ine 33 - column 6, line 33
figure 2c

US 5 640 210 A (KNEE ET AL)

17 June 1997 (1997-06-17)

column 1, T1ine 31 - column 3, line 60
figure b

US 2003/085902 Al (VOGELAAR ROB E ET AL)
8 May 2003 (2003-05-08)

paragraph ‘0009! - paragraph ‘0018!

US 2003/174768 Al (HALL BARBARA A ET AL)
18 September 2003 (2003-09-18)

paragraph ‘0026! - paragraph ‘0028!
figure 3

AHMAD I ET AL: "Video compression with
paralliel processing"

PARALLEL COMPUTING, ELSEVIER PUBLISHERS,
AMSTERDAM, NL,

vol. 28, no. 7-8, August 2002 (2002-08),
pages 1039-1078, XP004375033

ISSN: 0167-8191

paragraph ‘4.3.1!

figure 8

1-31

1-31

1-31

1-31

1-31

Form PGT/ISA/210 (continuation of second sheet) {(January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

‘ormation on patent family members

I-+~-=~tional Application No

.../US2005/031836
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6356589 B1 12-03-2002 NONE

WO 9938316 A 29-07-1999 AU 2337099 A 09-08-1999
CA 2318272 Al 29-07-1999
EP 1051839 A2 15-11-2000
JP 2002502159 T 22-01-2002

usS 5701160 A 23-12-1997 CN 1520188 A 11-08-2004
CN 1119386 A 27-03-1996
JP 8037662 A 06-02-1996

US 6754270 B1 22-06-2004 NONE

US 5640210 A 17-06-1997 NONE

US 2003085902 Al 08-05-2003 CN 1582581 A 16-02-2005
EP 1444834 Al 11-08-2004
WO 03039160 Al 08-05-2003
JdP 2005507622 T 17-03-2005

US 2003174768 Al 18-09-2003 JP 2003324736 A 14-11-2003

Fomn PCT/ISA/210 (patent tamily annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

