

US 20160207730A1

(19) **United States**

(12) **Patent Application Publication**

Mueller et al.

(10) **Pub. No.: US 2016/0207730 A1**

(43) **Pub. Date: Jul. 21, 2016**

(54) **APPLICATORS FOR ADHESIVE TAPE, SUCH AS DOUBLE-SIDED ADHESIVE TAPE**

(52) **U.S. Cl.**
CPC *B65H 35/0033* (2013.01); *B65H 35/0086* (2013.01)

(71) **Applicant: 3M INNOVATIVE PROPERTIES COMPANY, Saint Paul, MN (US)**

(57) **ABSTRACT**

(72) **Inventors: Gerald E. Mueller, Eagan, MN (US); Joel K. Hagglund, Lonsdale, MN (US)**

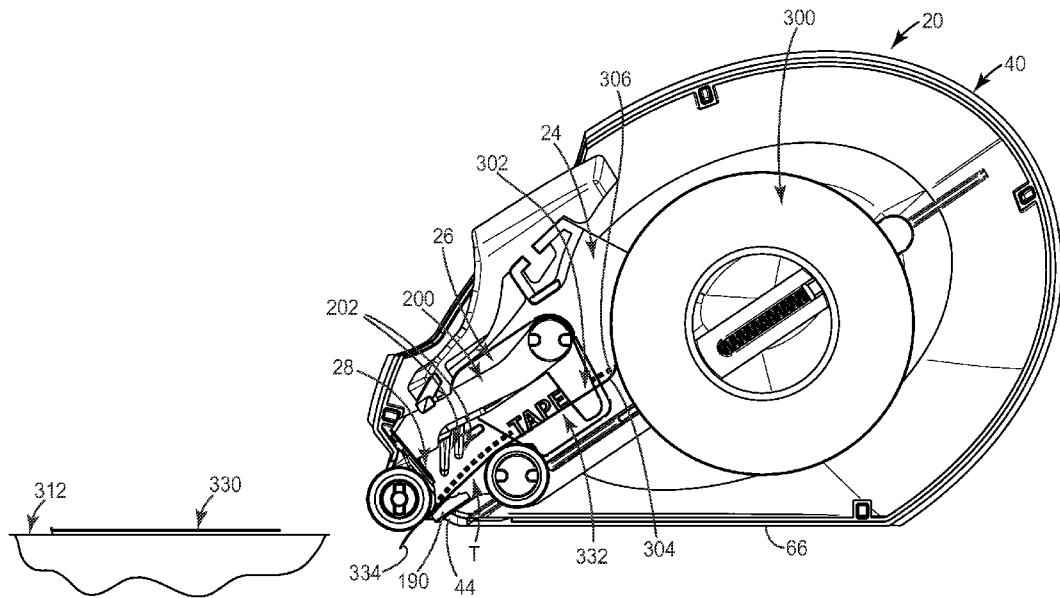
(21) **Appl. No.: 14/912,723**

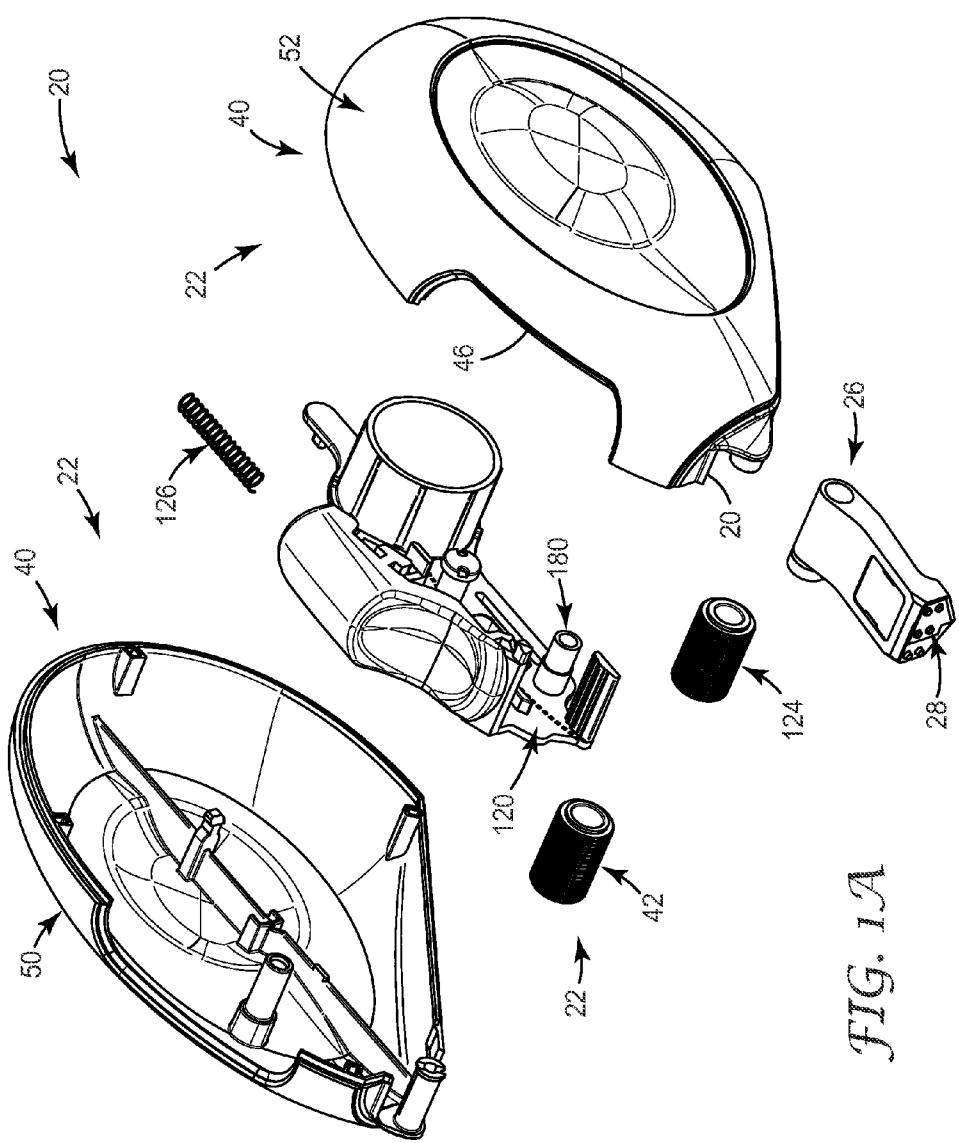
(22) **PCT Filed: Aug. 18, 2014**

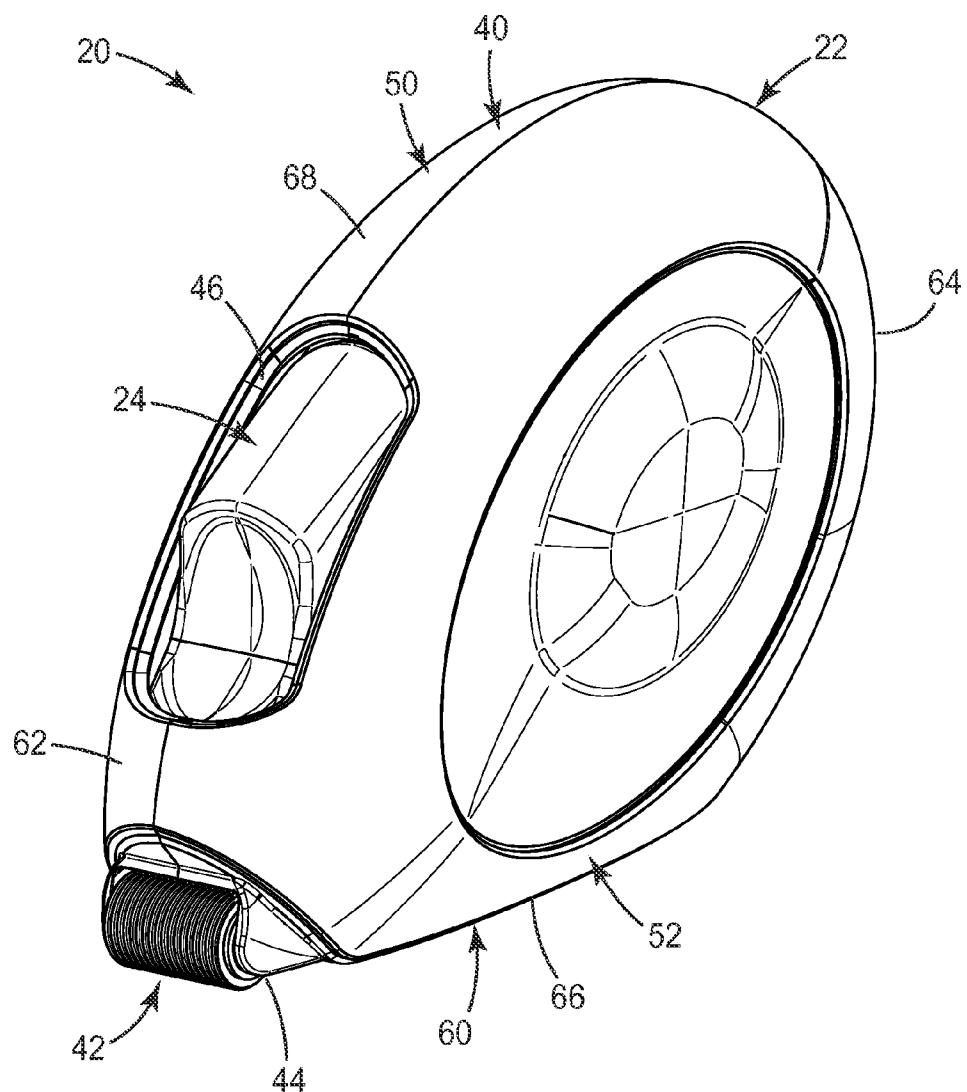
(86) **PCT No.: PCT/US2014/051498**

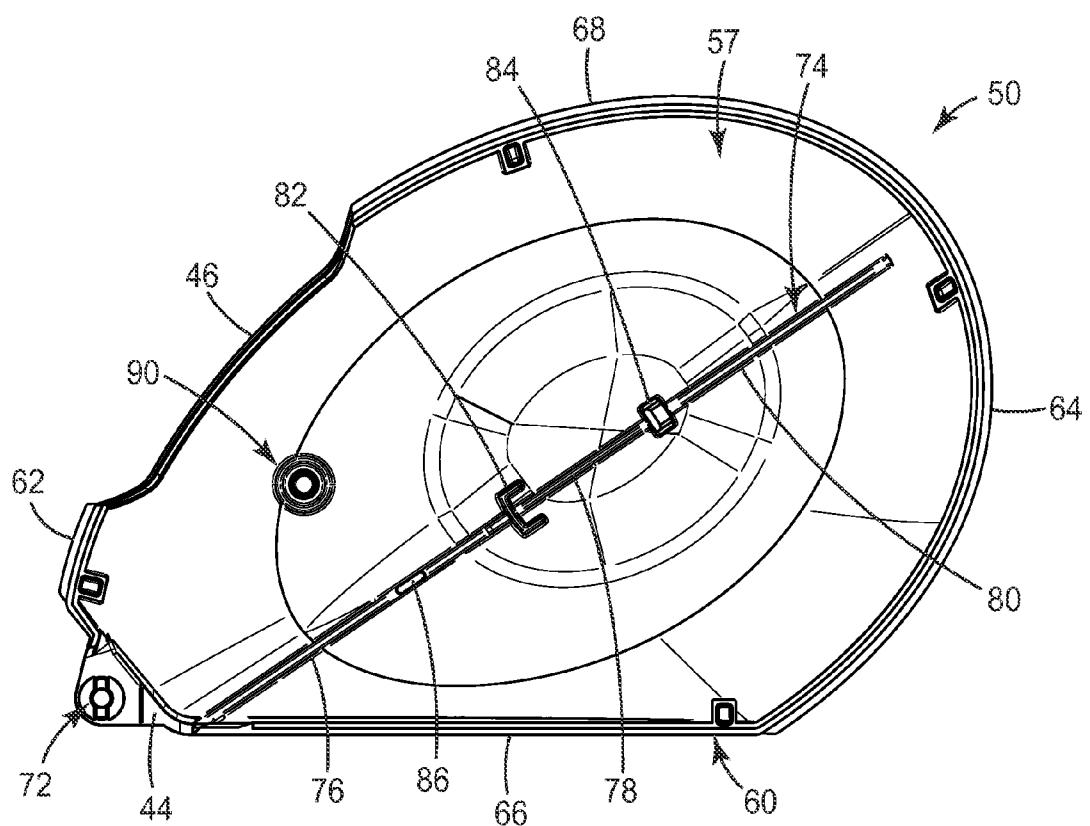
§ 371 (c)(1),

(2) Date: **Feb. 18, 2016**


Related U.S. Application Data


(60) **Provisional application No. 61/867,482, filed on Aug. 19, 2013.**


Publication Classification


(51) **Int. Cl.**
B65H 35/00

(2006.01)

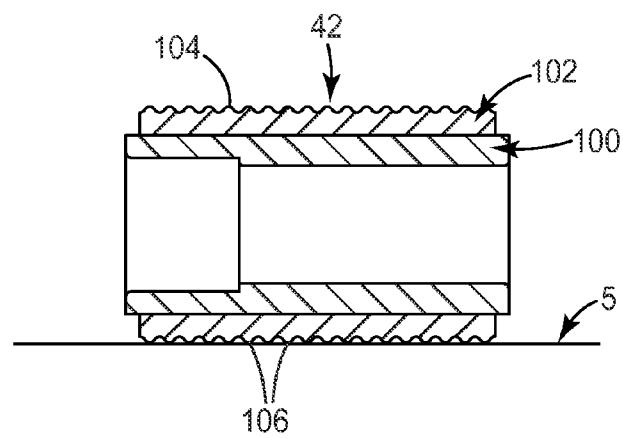
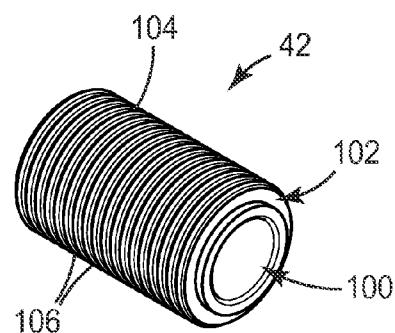
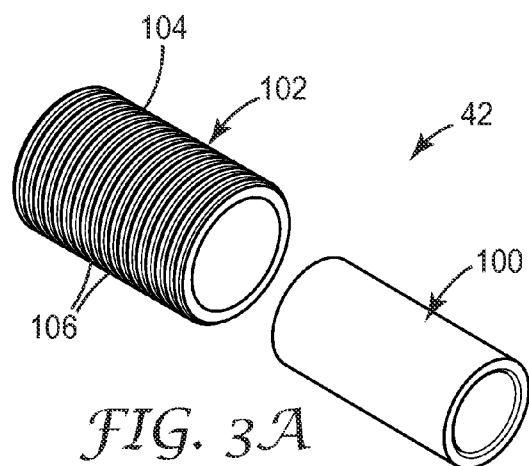




FIG. 1B

FIG. 2

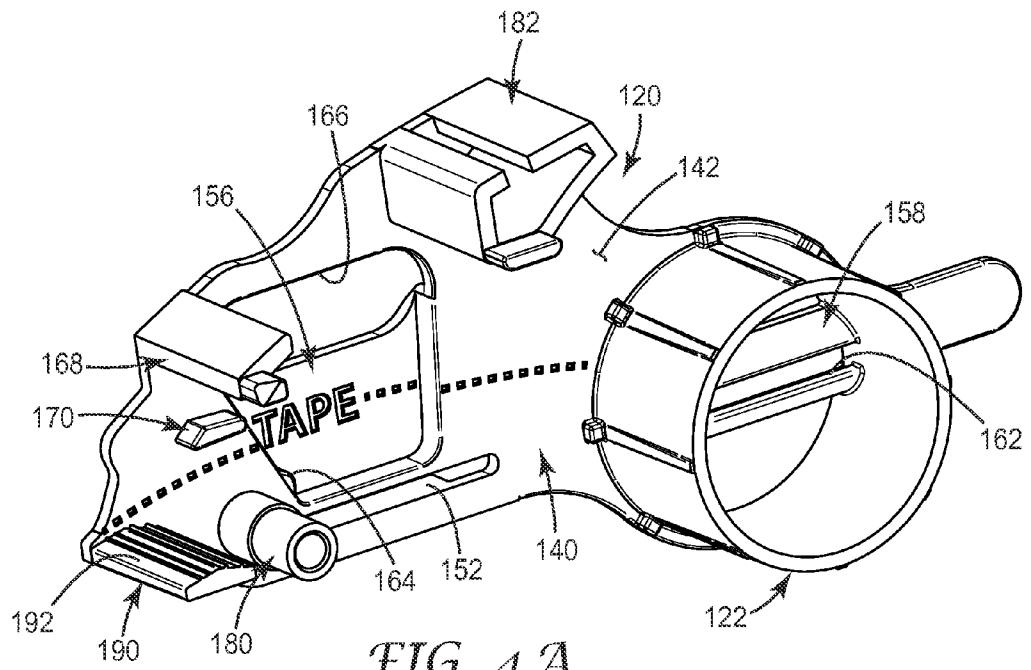


FIG. 4A

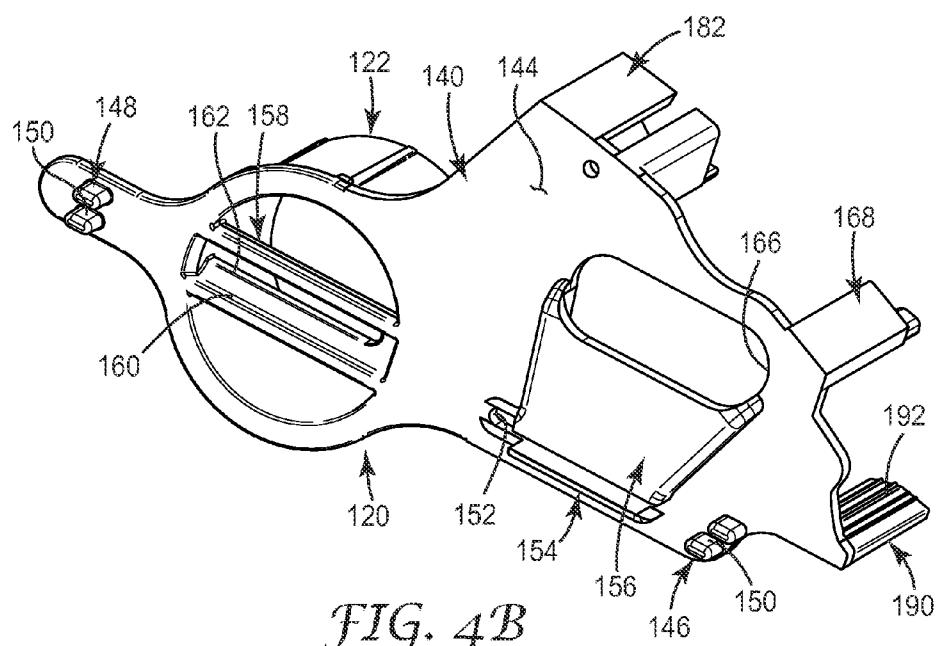


FIG. 4B

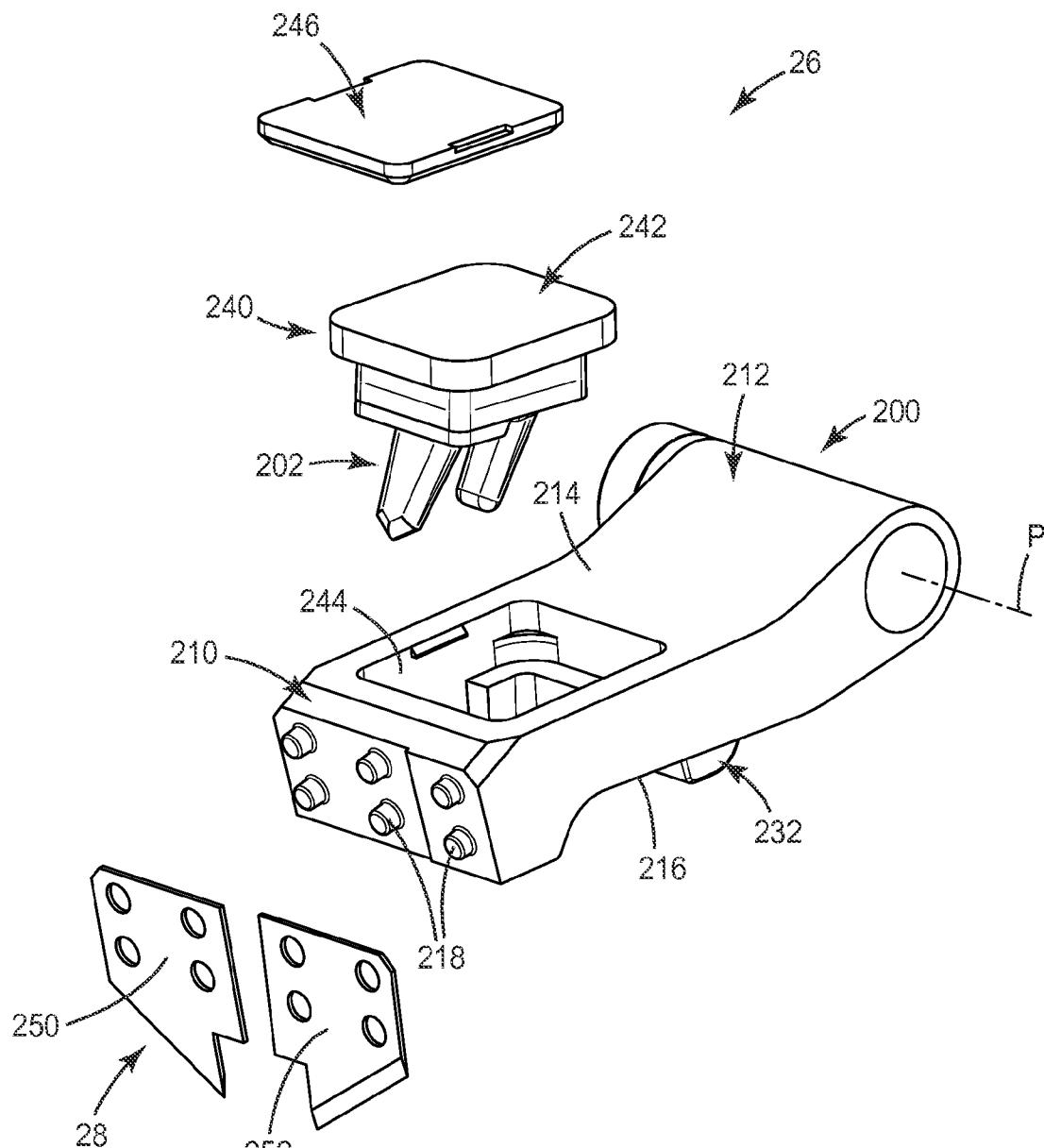
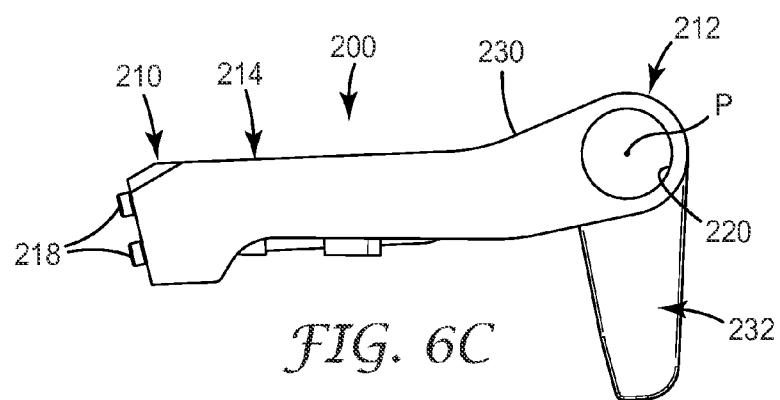
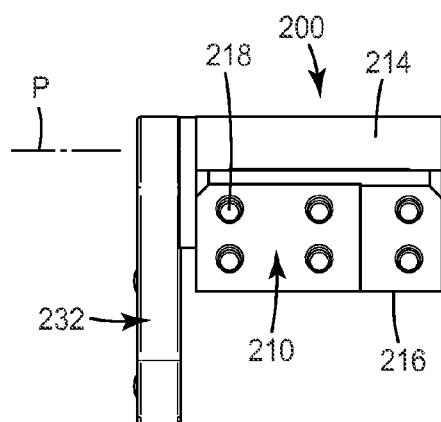
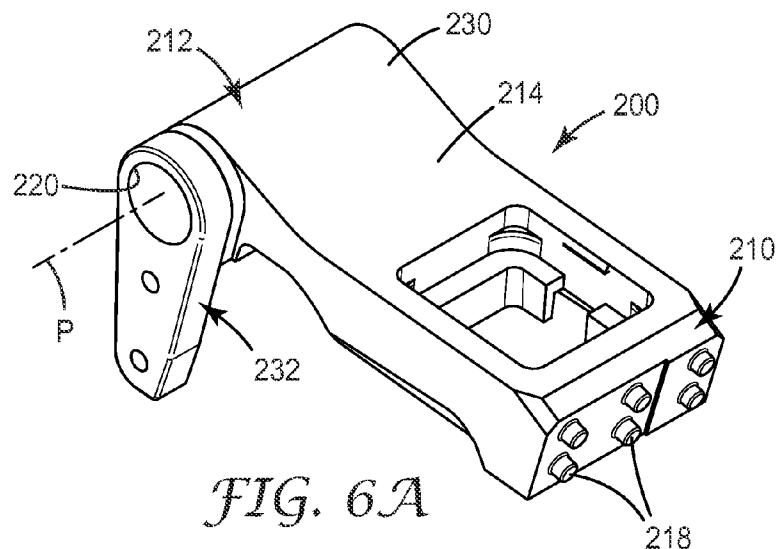





FIG. 5

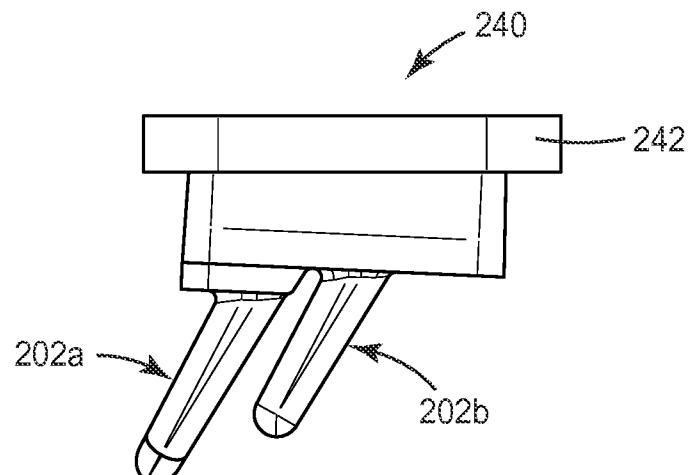


FIG. 7A

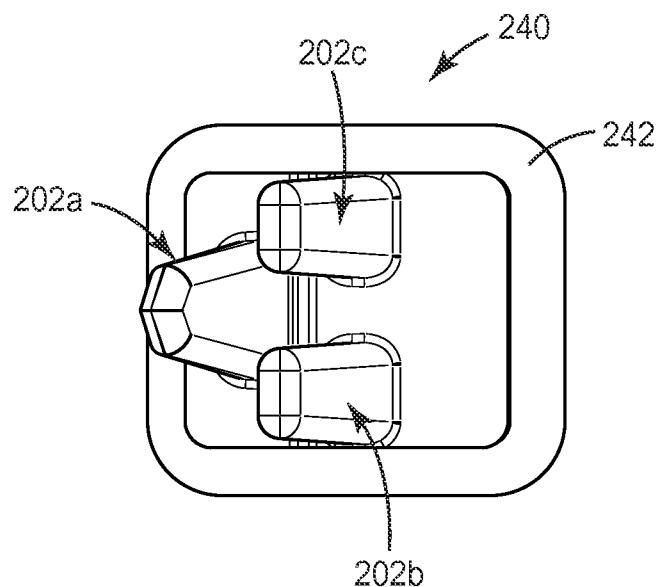


FIG. 7B

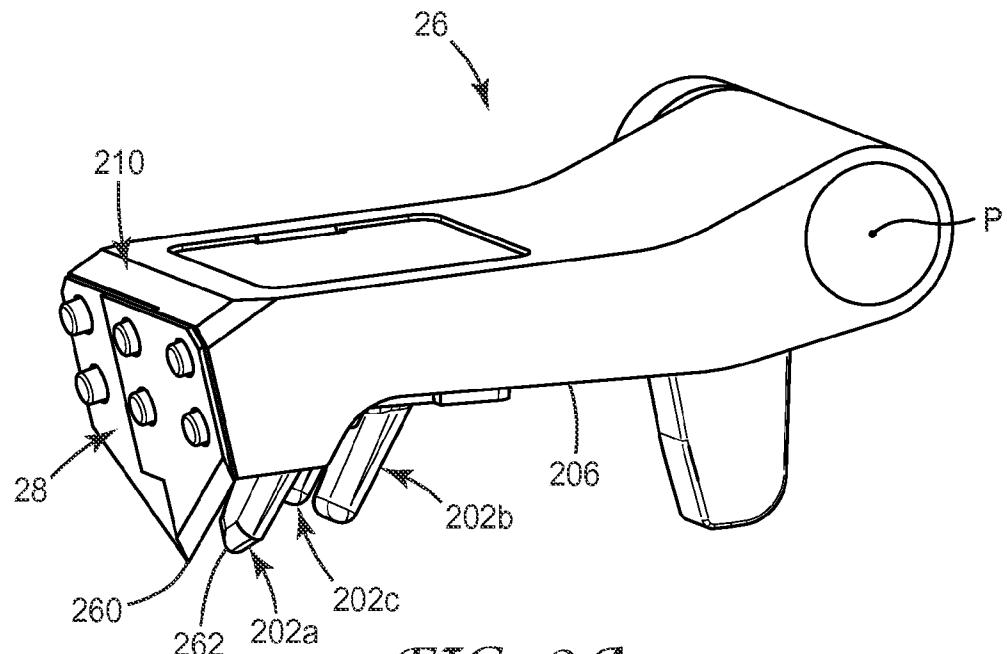


FIG. 8A

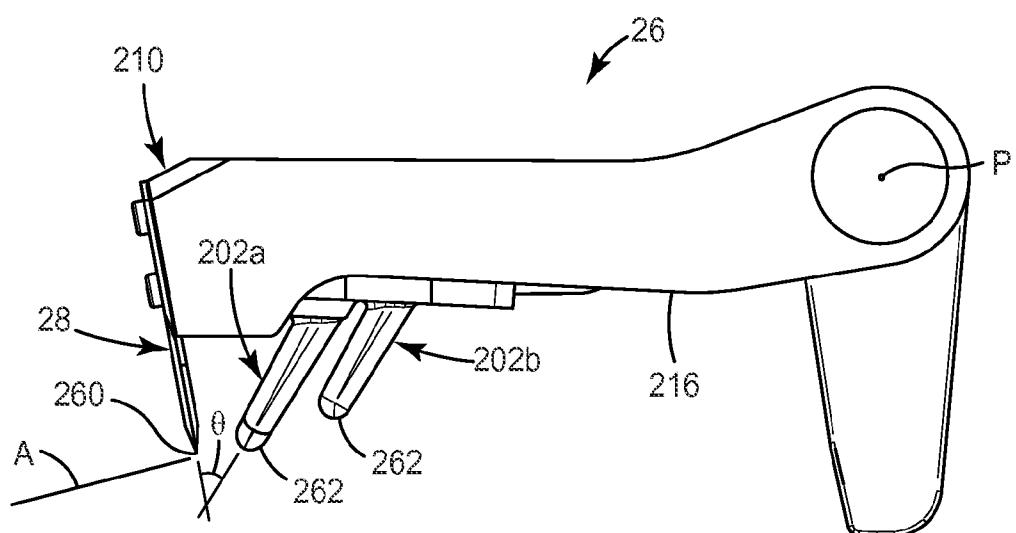


FIG. 8B

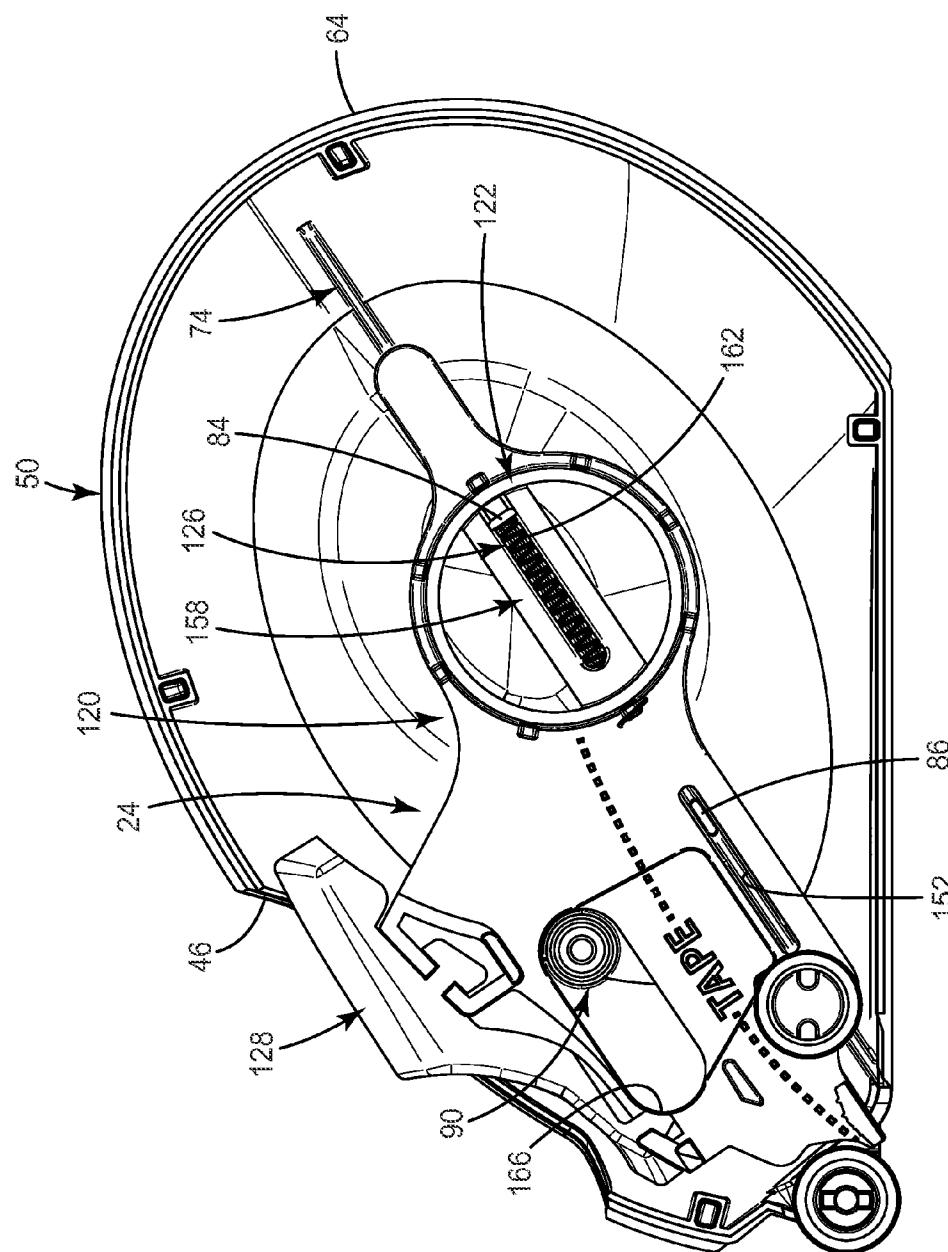


FIG. 9A

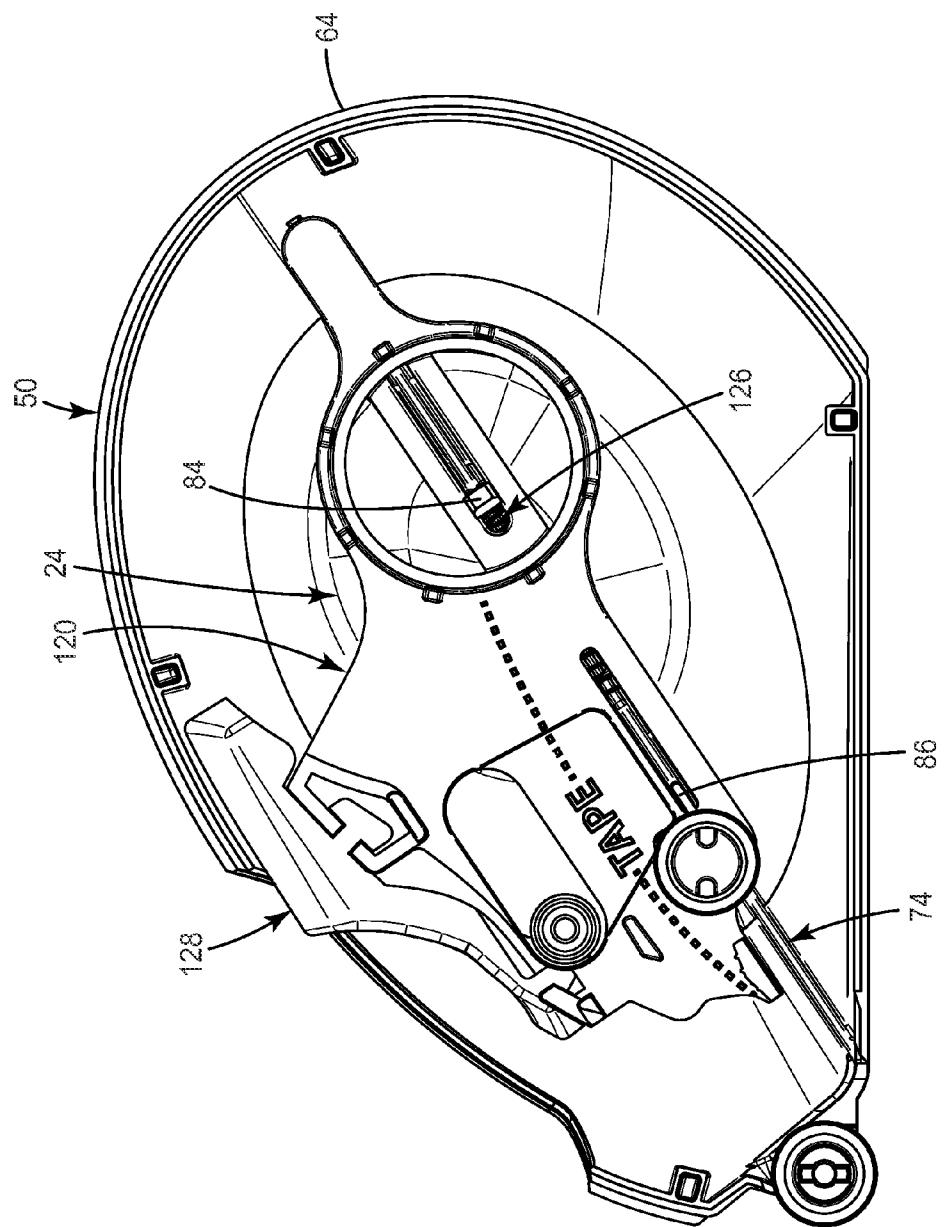
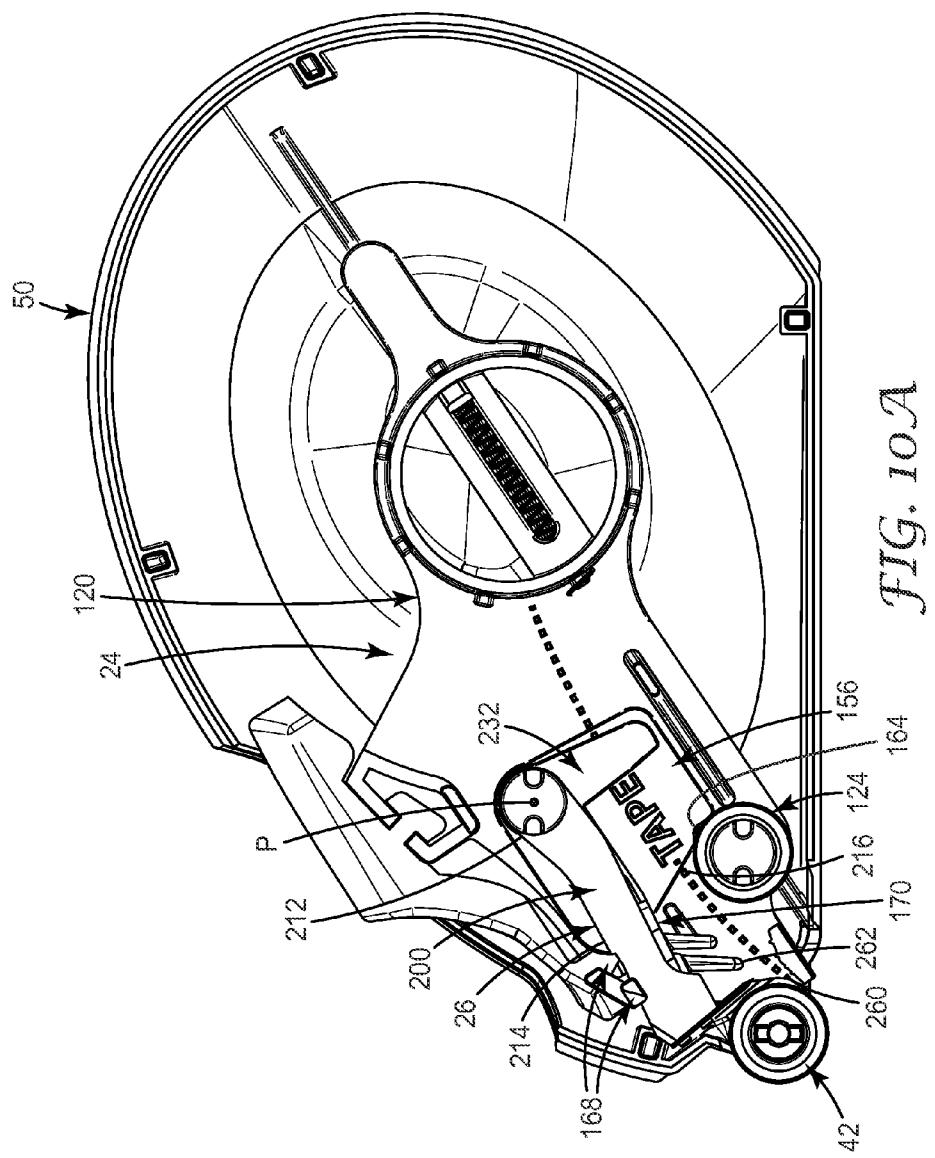
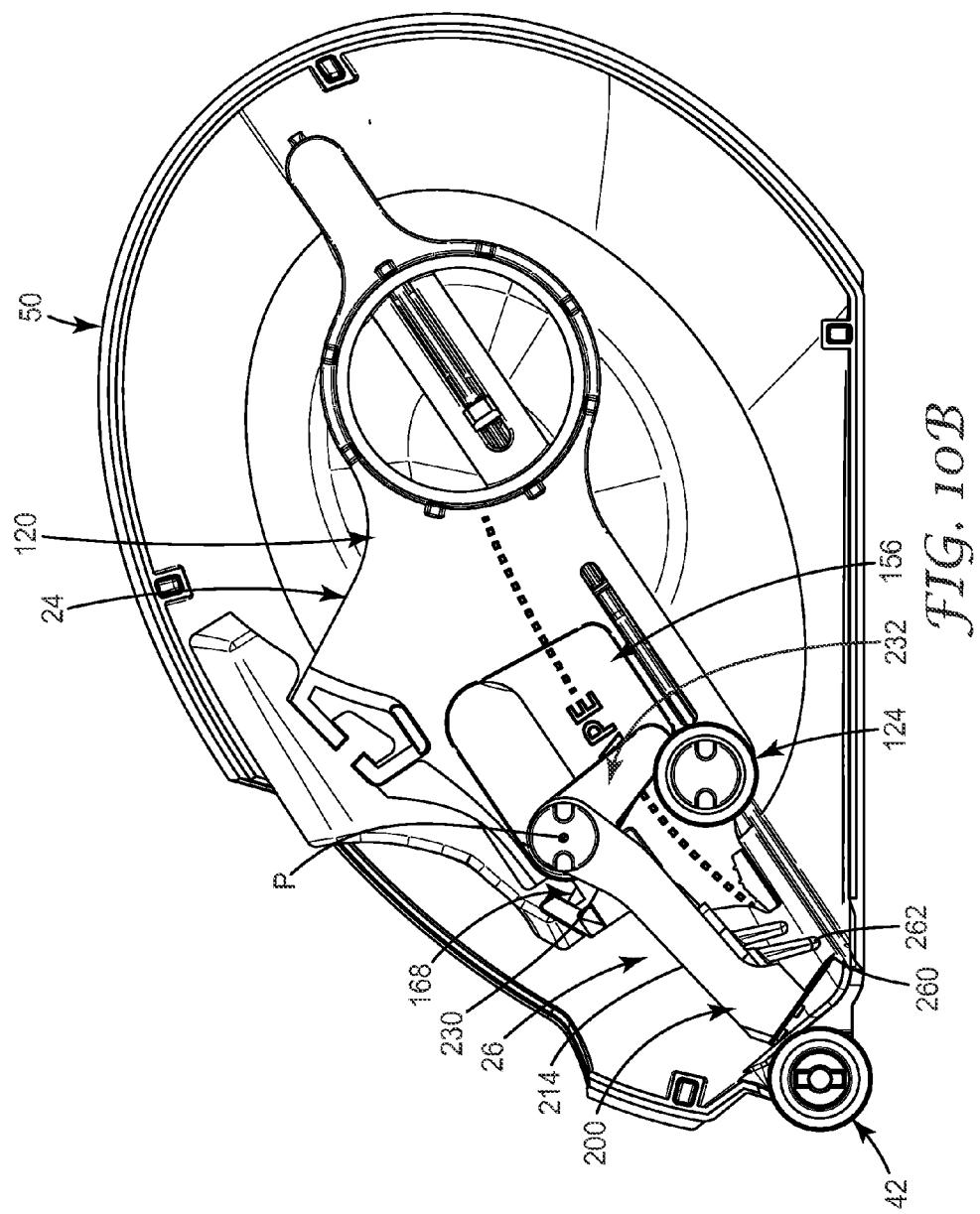




FIG. 9B

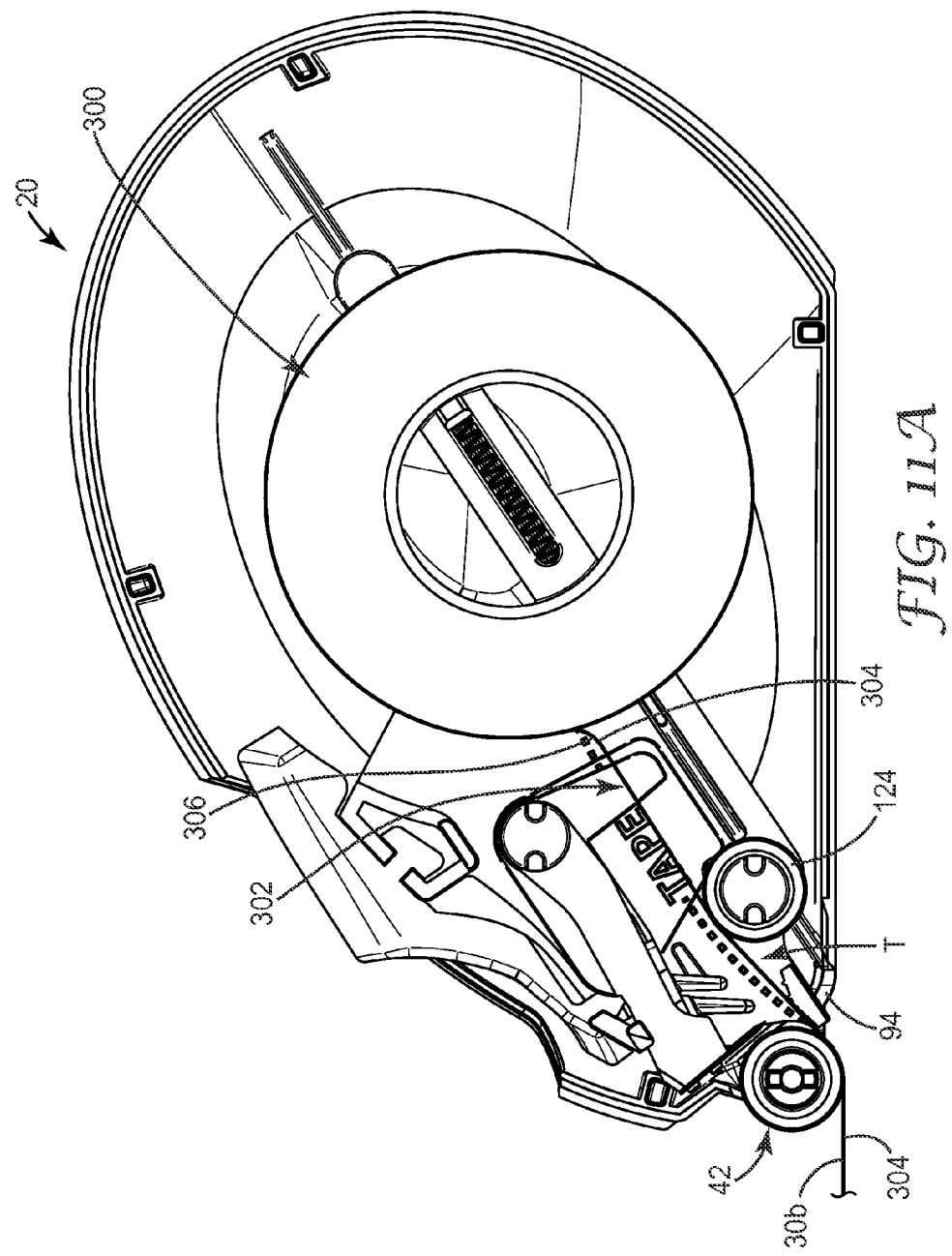


FIG. 11A

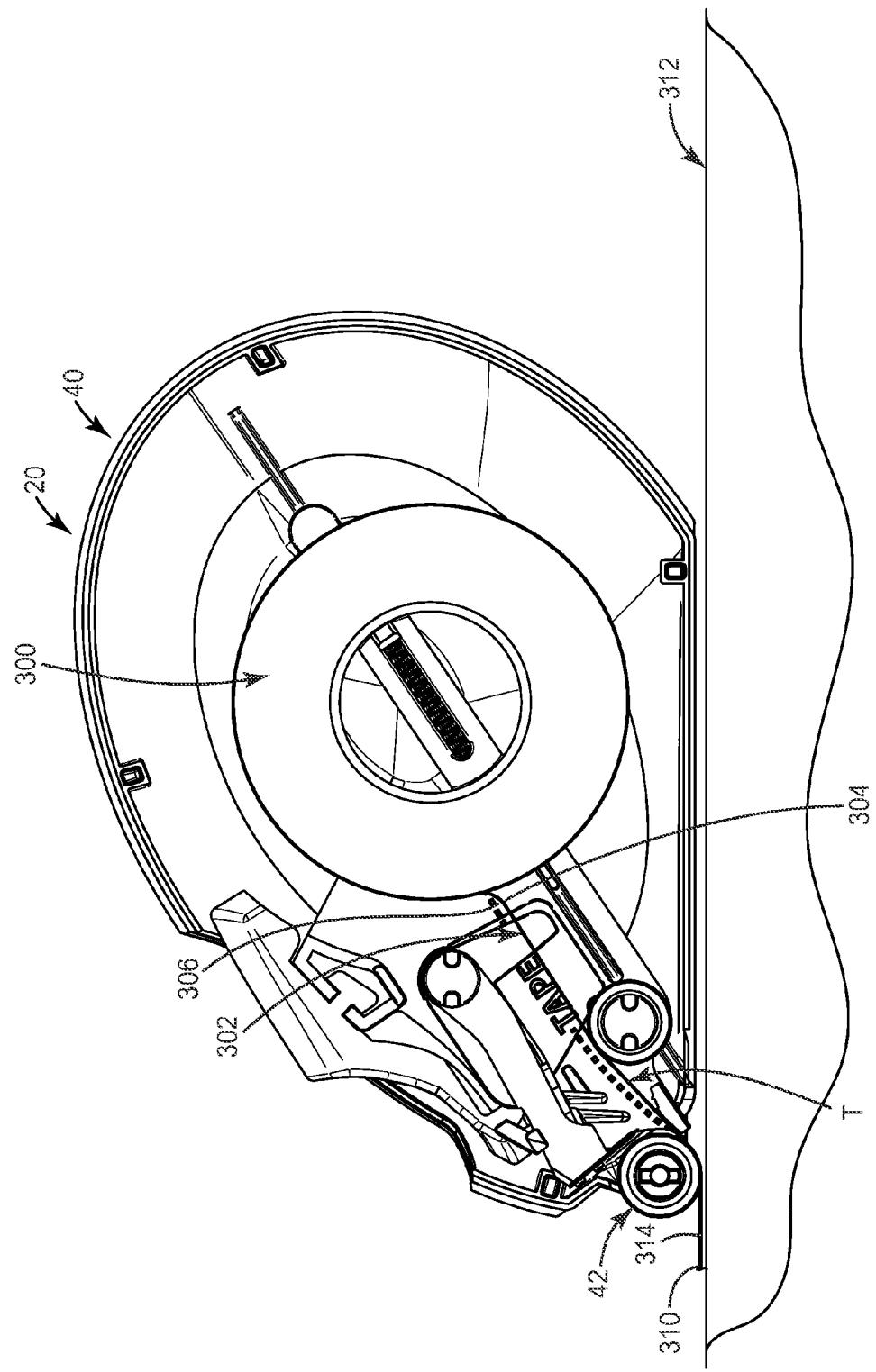


FIG. 11B

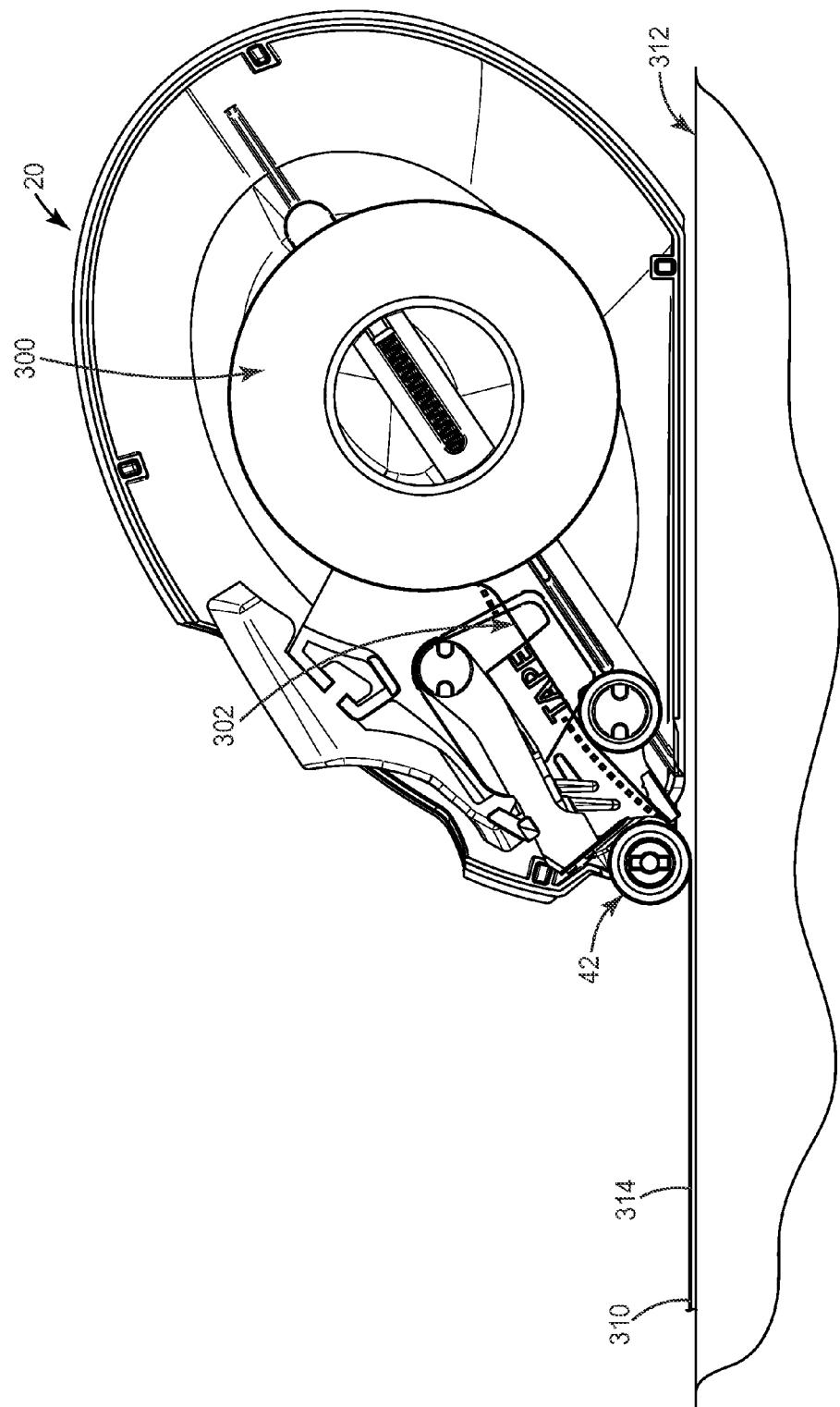


FIG. 11C

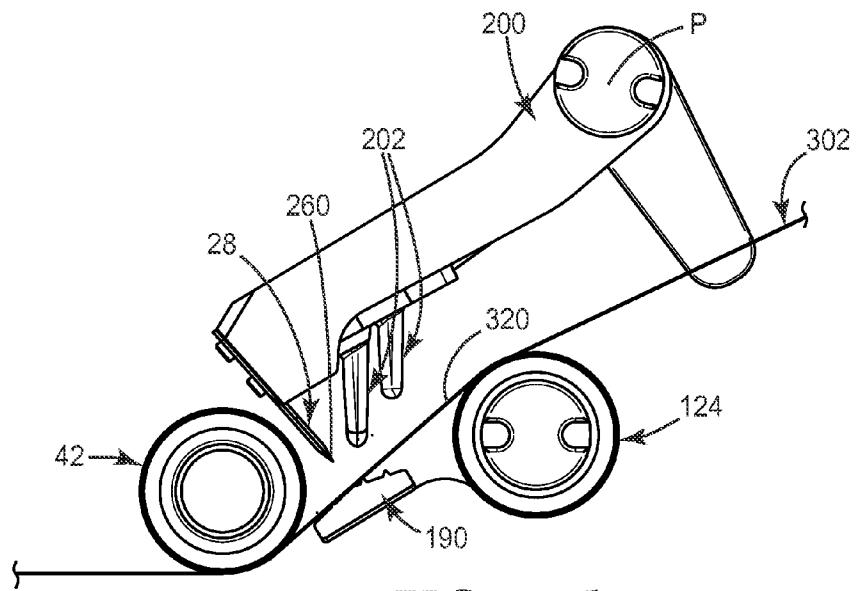


FIG. 12A

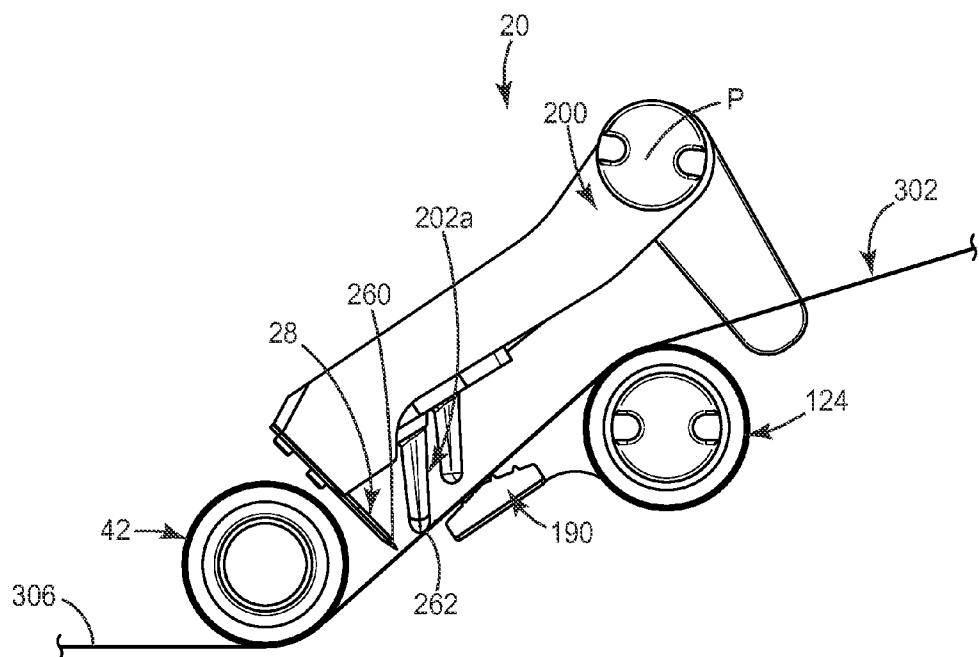


FIG. 12B

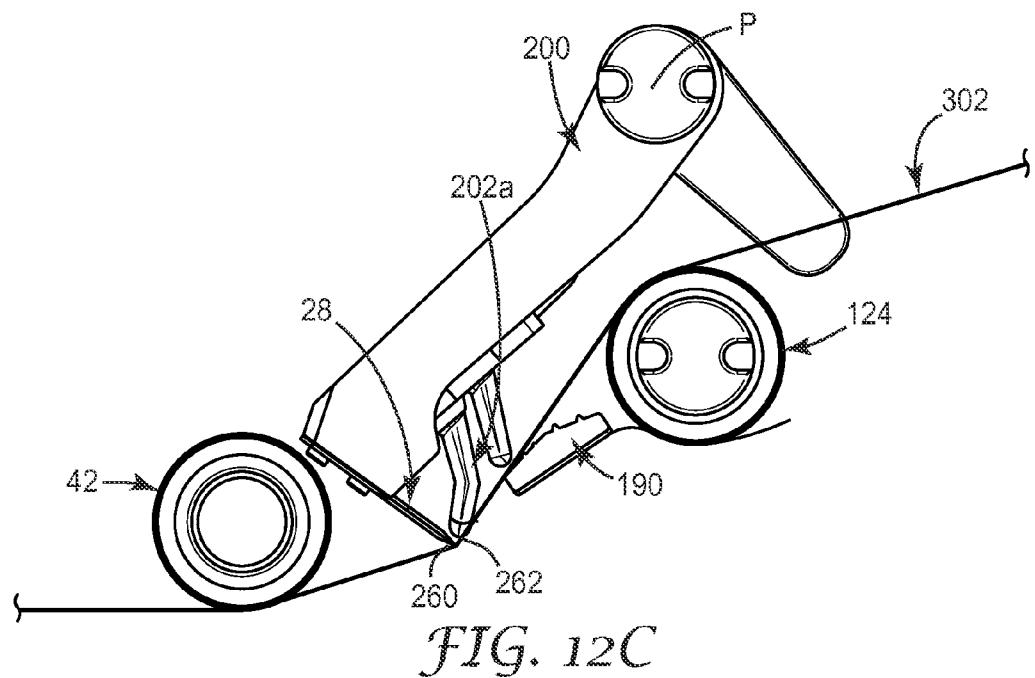


FIG. 12C

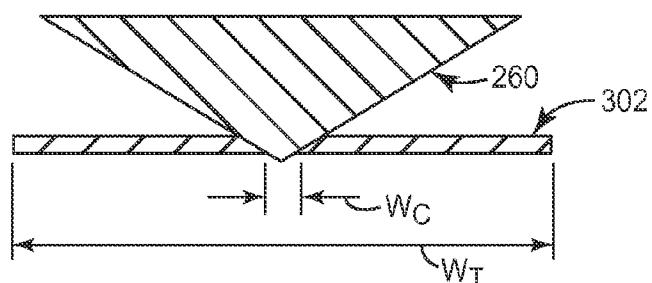
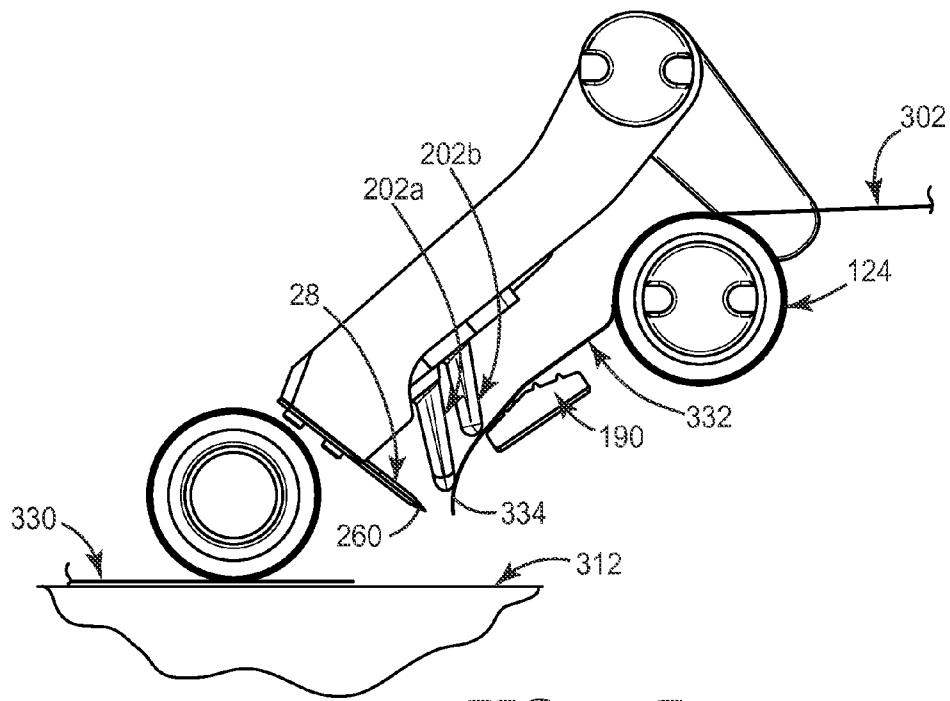
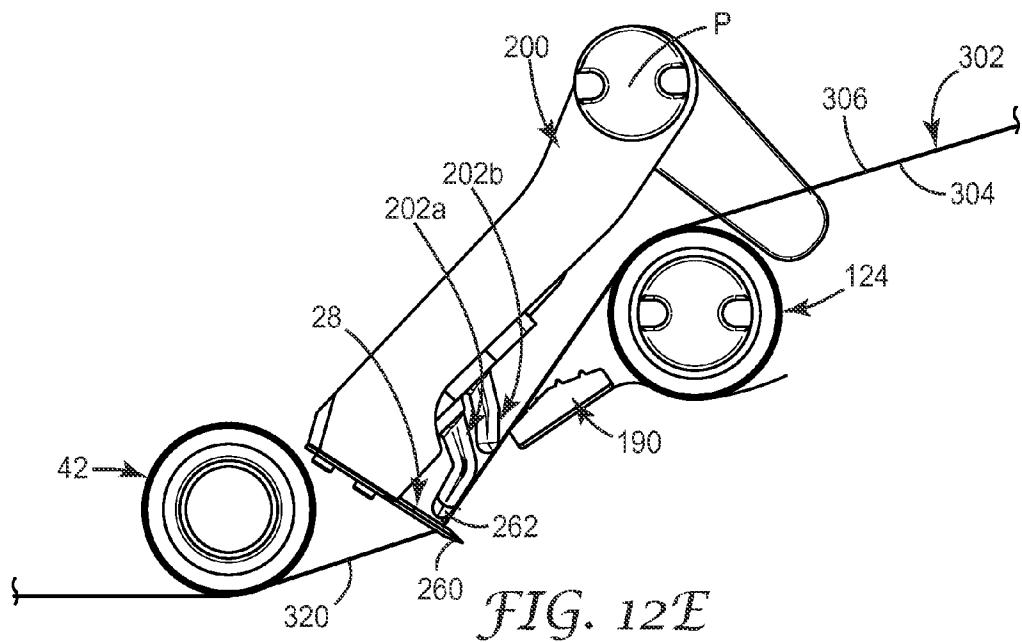




FIG. 12D

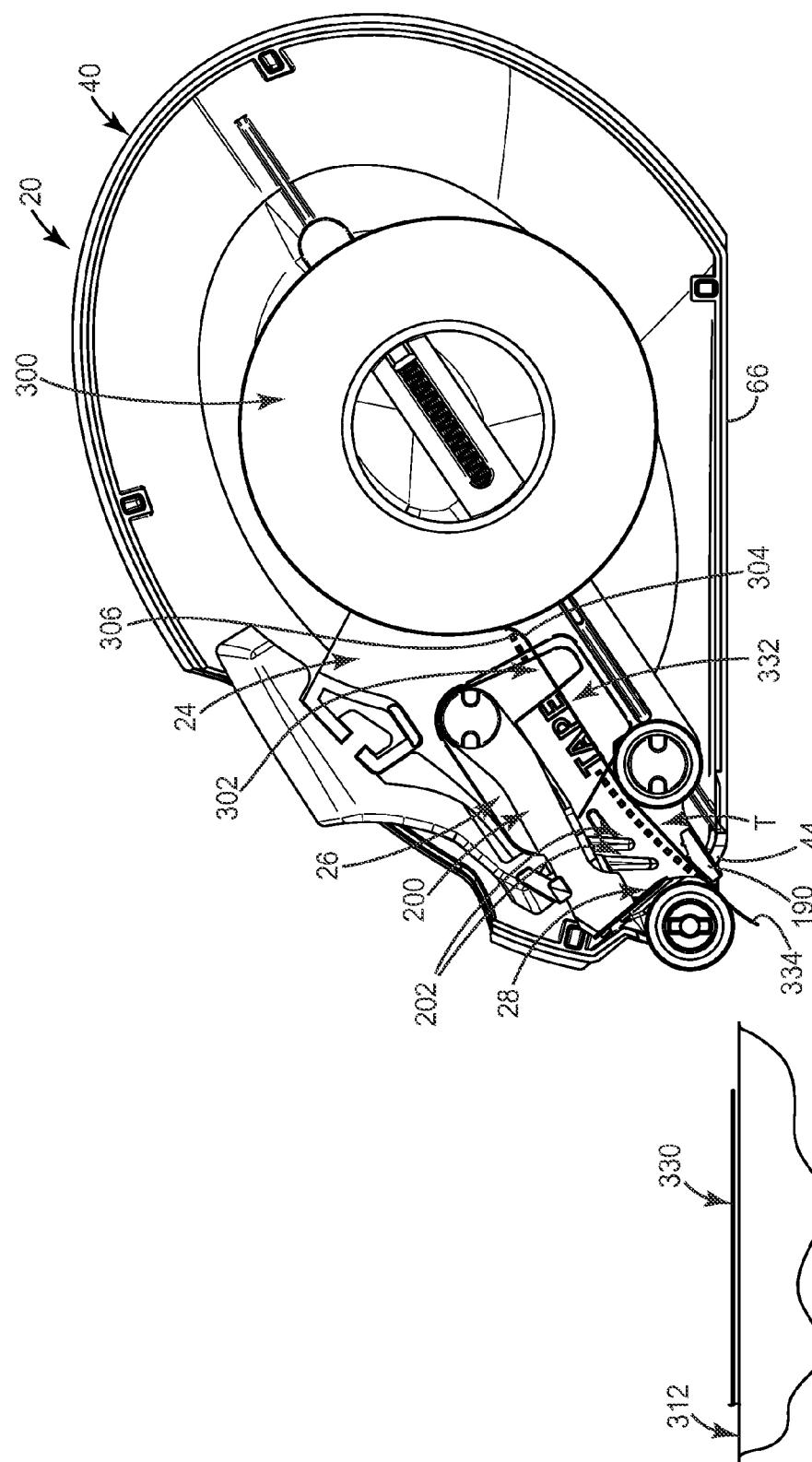


FIG. 12G

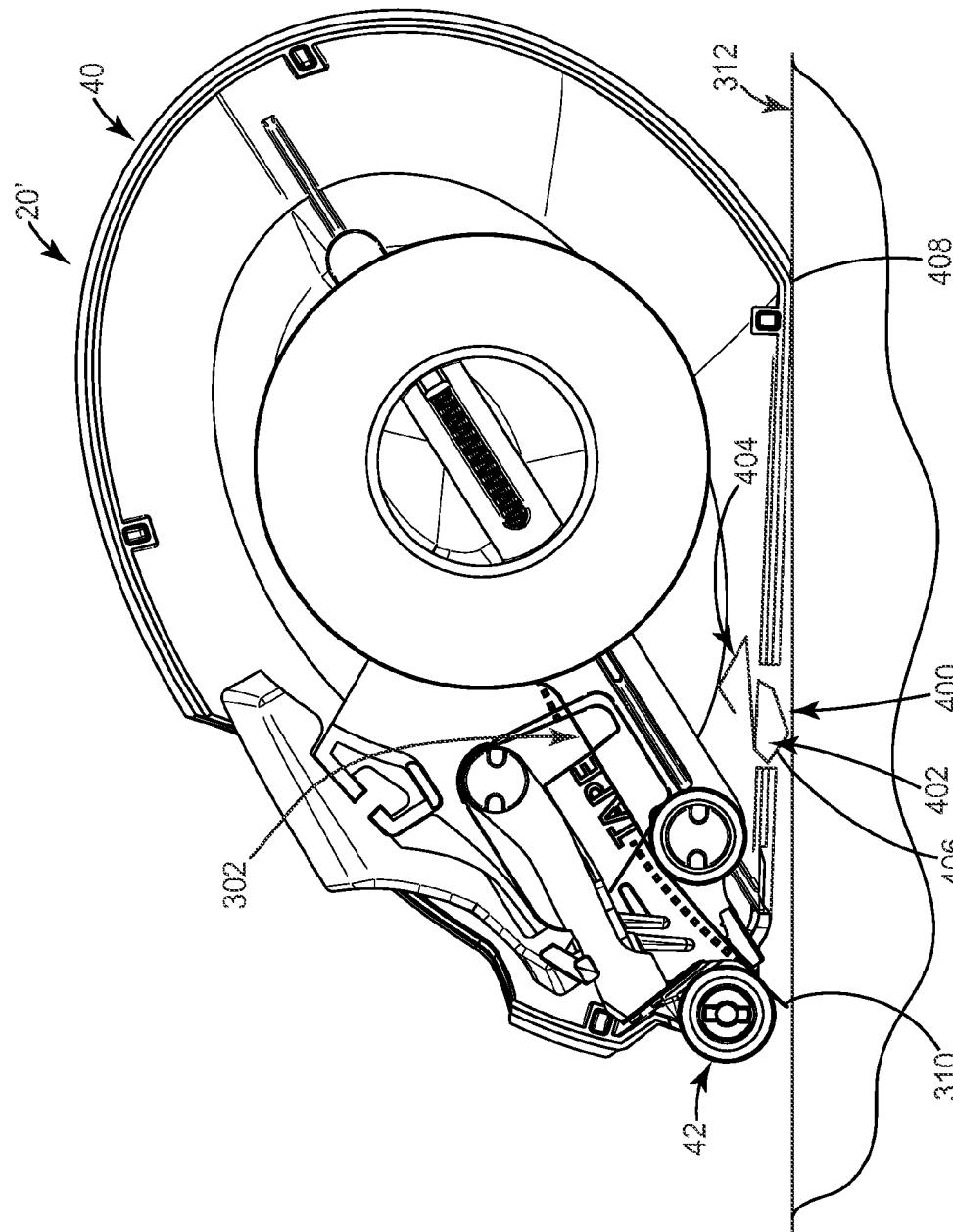


FIG. 13

APPLICATORS FOR ADHESIVE TAPE, SUCH AS DOUBLE-SIDED ADHESIVE TAPE

BACKGROUND

[0001] The present disclosure relates to adhesive tape applicators. More particularly, it relates to adhesive tape applicators capable of dispensing and cutting double-sided adhesive tape with one hand operation.

[0002] Manually operated adhesive tape dispensers are available in a variety of forms. For example, desktop-type adhesive tape dispensers typically include a weighted base maintaining a tape roll on a revolving spindle. A user pulls a leading end of the tape away from the roll, and then cuts a desired length of tape at a stationary blade provided with the dispenser. Common handheld adhesive tape dispensers employ a similar format. In either case, use of the dispenser requires two hands to handle the cut length of tape and apply it to the substrate surface(s) in question. Moreover, handheld tape dispensers require both of the user's hands to grasp the dispenser and pull/cut the desired length of tape.

[0003] As an alternative to tape dispensers, manually operated adhesive tape applicators are designed to directly apply and cut a length of tape (from a roll of tape) and often times require only a single hand of the user. In general terms, with single-handed adhesive tape applicators, a user can quickly and precisely apply a desired length of the adhesive tape to the substrate surface(s) in question without ever having to touch the tape. Conventionally, the applicator rotatably maintains a roll of tape, and provides a tape path ending at a roller or other curved application surface; the user applies pressure to this component as the tape is dispensed, ensuring immediate and complete wetting or adhesive engagement with the substrate surface. Further, most single-handed adhesive tape applicators provide a blade or other cutting surface for severing the tape. Consistent with the single-handed operation goal, a user-actuated mechanism is associated with the blade, allowing the user to cut a dispensed length of tape at a desired length by simple manipulation of the cutting mechanism using the same hand that is otherwise handling the applicator. In some instances, the mechanism maneuvers the tape relative to a stationary blade. More commonly, however, the mechanism translates the blade into and out of the tape path.

[0004] While single-handed adhesive tape applicators (incorporating a cutting mechanism) have been well received, certain concerns exist. For example, many users desire the ability to replace an expended roll of tape with a new roll of tape. To meet this demand, the applicator must allow for the partial disassembly thereof (e.g., temporary removal of one or more outer housing sections to access the roll of tape) in a manner that leaves the various internal components (e.g., the cutting mechanism) intact. This requirement, in turn, places distinct design constraints on the cutting mechanism construction, dictating a minimal number of components and complexity. Consistently cutting an adhesive tape via a relatively simple hand-actuated cutting mechanism can be exceedingly difficult under circumstances due to direct contact with the adhesive-bearing surface of the tape. The adhesive has a tendency to partially adhere to the blade. If this tendency is not accounted for, the cut end of the tape may undesirably stick to the blade following a cutting operation, causing the tape to accumulate (or "jam") behind the blade (and/or other applicator malfunctions). Dispensing and cutting double-sided adhesive tape (i.e., adhesive coatings on both sides or major surfaces of the base film) is even more

problematic. In fact, most available adhesive tape applicators simply cannot function with double-sided adhesive tape.

[0005] In light of the above, a need exists for adhesive tape applicators that can be operated with one hand, and incorporate a cutting mechanism that consistently cuts, without jamming, any format of adhesive tape, including double-sided adhesive tape.

SUMMARY

[0006] Some aspects of the present disclosure relate to an adhesive tape applicator including a housing assembly, a carriage assembly, and a blade assembly. The housing assembly includes a housing and an application roller. The housing defines a tape dispensing opening. The application roller is rotatably mounted to the housing adjacent the tape dispensing opening. The carriage assembly includes a carriage body, a hub, and an idler roller. The carriage body is slidably mounted within the housing. The hub is carried by the carriage body and is configured to rotatably support a roll of tape. The idler roller is rotatably mounted to the carriage body. The blade assembly includes a blade arm, a blade, and a pressing finger. The blade arm defines a pivot end that is pivotably mounted to the housing such that the blade arm is pivotable relative to the housing about a pivot axis. The blade projects from the blade arm opposite the pivot end and terminates in a blade tip. In this regard, an articulation plane of the blade assembly is defined by the blade tip and the pivot axis. The pressing finger projects from the blade arm at a location between the blade and the pivot end, and extends through the articulation plane. Upon final assembly, the adhesive tape applicator defines a tape path from the hub to the tape dispensing opening, the tape path being defined, at least in part, by the application and idler rollers. With this construction, the adhesive tape applicator is configured to be transitional between an application state and a cut state. In the application state, the blade tip is at a first side of the tape path. In the cut state, the blade tip is located at a second side of the tape path opposite the first side.

[0007] In some embodiments, the pressing finger interfaces with a length of tape along the tape path during a cutting operation, serving to push or position the cut end of the tape below the blade tip and prevent jamming. In related embodiments, the pressing finger is flexible (e.g., formed of silicone or similar material), and deflects when brought into contact with a tape otherwise tensioned across the tape path. In other embodiments, one or both of the application and idler rollers are configured to exhibit a low surface energy or affinity to "sticking" to a pressure sensitive adhesive (or other adhesive format commonly employed with adhesive tapes). For example, the outer surface of one or both of the application roller and the idler roller can be silicone and/or include a series of spaced apart, circumferential ribs. With these constructions, the adhesive tape applicator consistently applies and cuts a desired length of adhesive tape from a tape roll, including double-sided adhesive tape.

[0008] Other aspects of the present disclosure relate to a system for applying adhesive tape. The system includes a roll of adhesive tape and an applicator. The applicator includes a housing assembly, a carriage assembly, and a blade assembly. The housing assembly includes a housing and an application roller. The housing defines a tape dispensing opening. The application roller is rotatably mounted to the housing adjacent the tape dispensing opening. The carriage assembly includes a carriage body, a hub, and an idler roller. The carriage body is slidably mounted within the housing. The hub

carried by the carriage body and rotatably maintains the roll of adhesive tape. The idler roller is rotatably mounted to the carriage body. The blade assembly includes a blade arm, a blade, and a pressing finger. The blade arm defines a pivot end that is pivotably mounted to the housing such that the blade arm is pivotable relative to the housing about a pivot axis. The blade projects from the blade arm opposite the pivot end and terminates in a blade tip. The pressing finger projects from the blade arm at a location between the blade and the pivot end, and terminates at a contact end opposite the blade arm. Upon final assembly, the system is configured to provide an application state in which a length of tape extends from the roll of tape to the idler roller and then to the application roller for dispensement through the tape dispensing opening. In the application state, the blade and the pressing finger are displaced from the length of tape. Further, the system is transitioning from the application state to a cut state in which the blade tip has progressed through the length of tape to sever the length of tape. In this regard, transitioning of the system from the application state to the cut state includes the contact end contacting the length of tape and then deflecting toward the blade. In some embodiments, the adhesive tape of the roll of adhesive tape is a double-sided adhesive tape.

[0009] Yet other aspects of the present disclosure relate to a method of dispensing an adhesive tape. The method includes receiving a system including an applicator maintaining a roll of adhesive tape. The applicator includes a housing assembly, a carriage assembly, and a blade assembly. The housing assembly includes a housing and an application roller. The housing defines a tape dispensing opening. The application roller is rotatably mounted to the housing adjacent the tape dispensing opening. The carriage assembly includes a carriage body, a hub, and an idler roller. The carriage body is slidably mounted within the housing. The hub is carried by the carriage body and rotatably maintains the roll of adhesive tape. The idler roller is rotatably mounted to the carriage body. The blade assembly includes a blade arm, a blade, and a pressing finger. The blade arm defines a pivot end that is pivotably mounted to the housing such that the blade arm is pivotable relative to the housing about a pivot axis. The blade projects from the blade arm opposite the pivot end and terminates in a blade tip. The pressing finger projects from the blade arm at a location between the blade and the pivot end, and terminates at a contact end opposite the blade arm. In an application state of the system, a leading segment of a length of tape from the roll of tape extends through the dispensing opening and is supported by the application roller. With the system in the application state, the leading segment is pressed into adhesive contact with a substrate surface to define a tacked region. The applicator is manipulated to draw the applicator away from the tacked region while simultaneously maintaining a pressing force on the application roller to successively dispense and apply an additional segment of the length of tape from the applicator and into adhesive contact with the substrate surface. The carriage assembly is actuated to pivot the blade arm, including the pressing finger and the blade contacting the length of tape between the application and idler rollers to completely sever the length of tape. In this regard, due to a tensioned rigidity of the length of tape, prior to the blade completely severing the length of tape, the pressing finger contacts the length of tape and deforms with further pivoting movement of the blade arm. In some embodiments, the adhesive tape of the roll of adhesive tape is a double-sided adhesive tape.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0010] FIG. 1A is an exploded, perspective view of an adhesive tape applicator in accordance with principles of the present disclosure;
- [0011] FIG. 1B is a perspective view of the adhesive tape applicator of FIG. 1A upon final assembly;
- [0012] FIG. 2 is an interior plan view of a housing section component of the adhesive tape applicator of FIG. 1A;
- [0013] FIG. 3A is an exploded, perspective view of an application roller component of the adhesive tape applicator of FIG. 1A;
- [0014] FIG. 3B is a perspective view of the application roller of FIG. 2A upon final assembly;
- [0015] FIG. 3C is a cross-sectional view of the application roller of FIG. 3A relative to a flat surface;
- [0016] FIG. 4A is an interior perspective view of a portion of a carriage assembly of the adhesive tape applicator of FIG. 1A;
- [0017] FIG. 4B is an exterior perspective view of the carriage assembly portion of FIG. 4A;
- [0018] FIG. 5 is an exploded, perspective view of a blade assembly portion of the adhesive tape applicator of FIG. 1A;
- [0019] FIG. 6A is an interior perspective view of a blade arm component of the blade assembly of FIG. 5;
- [0020] FIG. 6B is a front view of the blade arm of FIG. 6A;
- [0021] FIG. 6C is side plan view of the blade arm of FIG. 6A;
- [0022] FIG. 7A is a side plan view of a finger structure component of the blade assembly of FIG. 5;
- [0023] FIG. 7B is a bottom view of the finger structure of FIG. 7A;
- [0024] FIG. 8A is a perspective view of the blade assembly of FIG. 5 upon final construction;
- [0025] FIG. 8B is a side view of the blade assembly of FIG. 8A;
- [0026] FIG. 9A is a side view illustrating mounting of the carriage assembly of the tape applicator of FIG. 1A to the housing section of FIG. 2 and in an application state;
- [0027] FIG. 9B is a side view of the construction of FIG. 9A in a cut state;
- [0028] FIG. 10A is a side view illustrating mounting of the blade assembly of FIG. 5 to the construction of FIG. 9A and in the application state;
- [0029] FIG. 10B is a side view illustrating the construction of FIG. 10A in the cut state;
- [0030] FIG. 11A is a side view illustrating a portion of the adhesive tape applicator of FIG. 1A maintaining a roll of adhesive tape and in the application state;
- [0031] FIGS. 11B and 11C illustrate use of the adhesive tape applicator of FIG. 1A in applying adhesive tape to a substrate surface;
- [0032] FIGS. 12A-12F schematically illustrate use of the adhesive tape applicator of FIG. 1A in performing a cutting operation;
- [0033] FIG. 12G is a side view illustrating an arrangement of the adhesive tape applicator of FIG. 1A loaded with a roll of adhesive tape following completion of a cutting operation; and
- [0034] FIG. 13 is a side view illustrating portions of another embodiment adhesive tape applicator in accordance with principles of the present disclosure and loaded with a roll of adhesive tape.

DETAILED DESCRIPTION

[0035] One embodiment of an adhesive tape applicator 20 in accordance with principles of the present disclosure is shown in FIGS. 1A and 1B. When loaded with a roll of adhesive tape (not shown), the applicator 20 facilitates single-handed application and cutting of a length of tape from the roll. The applicator 20 includes a housing assembly 22, a carriage assembly 24 (referenced generally in FIG. 1B) and a blade assembly 26 (hidden in FIG. 1B). Details on the various components are provided below. In general terms, however, the housing assembly 22 maintains the carriage assembly 24 and the blade assembly 26. More particularly, the carriage assembly 24 is slidable relative to the housing assembly 22, with articulation of the carriage assembly 24 effectuating movement of the blade assembly 26. For example, during a cutting operation, a blade 28 provided with the blade assembly 26 is caused to sever a length of tape extending along a tape path defined by the applicator 20. In this regard, the applicator 20 incorporates one or more features described below that interface with the tape (apart from the blade 28) during application and cutting operations so as to prevent the tape from sticking to the blade or other components. These tape handling features account for possible contact with opposing, adhesive-bearing major surfaces of the tape such that the applicator 20 is highly useful with virtually any adhesive tape format, including double-sided adhesive tape.

Housing Assembly 22

[0036] The housing assembly 22 includes a housing 40 and an application roller 42. The housing 40 has an open interior for maintaining various other components and, as best shown in FIG. 1B, defines a tape dispensing opening 44 and an optional auxiliary opening 46. As described in greater detail below, the application roller 42 is rotatably mounted to the housing 40 adjacent the tape dispensing opening 44. Where provided, the auxiliary opening 46 facilitates user interface with the carriage assembly 24.

[0037] In some embodiments, the housing 40 is formed or defined by first and second housing sections 50, 52. The housing sections 50, 52 are configured to be releasably mated to one another (e.g., snap fit) in collectively defining the housing 40, with removal of the second housing section 52 from the first housing section 50 (or vice-versa) permitting user access to an interior of the housing 40 (e.g., for removing or loading a roll of tape (not shown)). In the mated state, the housing sections 50, 52 collectively define an exterior shape or perimeter 60 of the housing 40. With reference to an intended orientation of the applicator 20 during use, the shape or perimeter 60 can include a front side 62, a rear side 64, a bottom side 66, and a top side 68. Due to the mated construction, the following descriptions of these exterior features 60-68 relative to the first housing section 50 apply equally to the second housing section 52.

[0038] An interior of one embodiment of the first housing section 50 is shown in greater detail in FIG. 2. The first housing section 50 defines portions of the front side 62, the rear side 64, the bottom side 66, and the top side 68. As generally indicated, the tape dispensing opening 44 is formed or defined at an intersection of the front side 62 and the bottom side 66, whereas the auxiliary opening 46 is defined along the top side 68. In some embodiments, the bottom side 66 can be substantially flat (i.e., within 10 percent of a truly

flat surface), promoting sliding movement of the housing section 50 (and thus of the housing 40 (FIG. 1B) as a whole) along a substrate surface.

[0039] The first housing section 50 can provide various features that facilitate engagement with other components of the applicator 20 (FIG. 1A). In this regard, the engagement features can be defined as projecting inwardly (i.e., out of the page of FIG. 2) from a side wall 70. For example, the first housing section 50 can include a spindle 72 (or other structure such as a collet) for rotatably receiving the application roller 42 (FIG. 1B). In addition, the first housing section 50 can form or define a rail 74 configured to slidably maintain the carriage assembly 24 (FIG. 1A). The rail 74 can assume a variety of forms and in some embodiments can be viewed at defining first-third sections 76-80. The second section 78 is located intermediate the first and third sections 76, 80, and is bounded by opposing shoulders 82, 84. The shoulders 82, 84 are configured to capture a biasing device of the carriage assembly 24 as described below, and can assume a variety of forms. In some embodiments, the shoulders 82, 84 are defined as inward projections (e.g., out of the page of FIG. 2) from the rail 74. A stop tab 86 is optionally formed along the first section 76 and can be defined as an inward projection from a face of the rail 74 in a direction opposite the side wall 70. As made clear below, the stop tab 86 serves as a forward stop to sliding movement of the carriage assembly 24 along the rail 74.

[0040] One or more blade assembly engagement features 90 can also be provided with, or assembled to, the first housing section 50. In general terms, the blade assembly engagement feature 90 is configured in accordance with complimentary features of the blade assembly 26 (FIG. 1A) to establish a pivotable mounting of the blade assembly 26 relative to the first housing section 50 (and thus relative to the housing 40 (FIG. 1A) upon final assembly). In some embodiments, the blade assembly engagement feature 90 is a post projecting from the side wall 70, although a variety of other pivotable connection constructions are also acceptable.

[0041] Returning to FIG. 1A, the second housing section 52 can include or incorporate one or more features that facilitate mounting of the carriage assembly 24 and/or the blade assembly 26. In some embodiments, however, the mounting features are provided with only one of the housing sections 50, 52 such that the housing sections 50, 52 can be disassembled from one another while maintaining the mounted arrangement of the carriage assembly 24 and the blade assembly 26 relative to the first housing section 50.

[0042] The application roller 42 is generally configured to press adhesive tape exiting the applicator 20 onto a substrate surface. The application roller 42 is configured in accordance with mounting features of the housing sections 50, 52 (e.g., the spindle 72 (FIG. 2)) so as to be rotatably mounted to the housing 40. While the application roller 42 can assume a variety of forms, in some embodiments the application roller 42 is configured to readily release from adhesives conventionally employed with adhesive tapes, such as pressure sensitive adhesives. This optional easy release attribute can be provided in various manners, such as via material(s) and/or physical features of an outer surface of the application roller 42. For example, one exemplary embodiment of the application roller 42 in accordance with principles of the present disclosure is shown in FIGS. 3A and 3B, and includes a mandrel 100 and a sleeve 102. The mandrel 100 can be a tube or hub-type body configured to be rotatably mounted over the

spindle 72 or other mounting component provided with the housing 40 (FIG. 1A). The sleeve 102 is coaxially received over the mandrel 100, and establishes an outer surface 104 of the application roller 42 upon final assembly. In some embodiments, the sleeve 102 is formed of a material that readily releases from, or does not otherwise adhere to, adhesives (e.g., pressure sensitive adhesives) commonly used with adhesive tapes. For example, the sleeve 102 can be formed of a silicone material. Other adhesion-resistant or non-stick materials or coatings are also acceptable, such as fluoropolymers, coated elastomeric materials, etc. In addition, the sleeve 102 can form the outer surface 104 to have reduced surface contact with a flat surface otherwise in contact with the outer surface 104. For example, the sleeve 102 can form or comprise a plurality of spaced apart, circumferential ribs 106. As shown in FIG. 3C, when the application roller 42 is directed into contact with a relatively flat surface S (e.g., a major surface of an adhesive tape otherwise being applied to a flat substrate surface), the surface S contacts the outer surface 104 of the application roller 42 only at the ribs 106. In other words, the application roller 42 is not in contact with the surface S at the spacings between the ribs 106, thus reducing the overall surface area of contact (and surface energy). Other outer surface texturing formats are also envisioned. Regardless, by minimizing the surface contact, optionally in combination with use of a release material (e.g., silicone), an adhesive-bearing surface placed into contact with the application roller 42 is unlikely to "stick" to the outer surface 104.

Carriage Assembly 24

[0043] Returning to FIGS. 1A and 1B, the carriage assembly 24 includes a carriage body 120, a hub 122, an idler roller 124, and an optional biasing device 126. In general terms, the carriage body 120 maintains the hub 122 and the idler roller 124, and is slidably coupled to the housing 40. The biasing device 126, where provided, biases the carriage body 120 to a first position relative to the housing 40, and can be a coil spring. Further, the biasing device 126 permits sliding movement of the carriage body 120 in response to a user-applied force, such as during a cutting operation. In this regard, the carriage assembly 24 can further optionally include an actuator 128 coupled to the carriage body 120 and configured to facilitate actuation of the carriage assembly 24 by the user as described in greater detail below.

[0044] The carriage body 120 and the hub 122 are shown in greater detail in FIGS. 4A and 4B. As implicated by the views, in some embodiments the carriage body 120 and the hub 122 can be integrally formed. Regardless, the carriage body 120 includes a panel 140 that is generally sized and shaped to be received within the housing 40 (FIG. 1A). The panel 140 defines a front face 142 (FIG. 4A) and a rear face 144 (FIG. 4B), and forms or includes various features that facilitate mounting with the housing 40. For example, first and second pairs of guide tabs 146, 148 can be formed as projections from the rear face 144, each defining a channel 150 sized to slidably receive the rail 74 (FIG. 2). A slot 152 is formed through a thickness of the panel 140, and is sized to slidably receive the stop tab 86 (FIG. 2). In some embodiments, a shelf 154 projects from the rear face 144 in alignment with the slot 152. The shelf 154 in combination with a structure of a pocket 156 (described in greater detail below) further serves to slidably engage the rail 74. Alternatively, the carriage assembly 24 can incorporate other features for effectuating sliding engagement with the housing 40.

[0045] With embodiments incorporating the spring biasing device 126 (FIG. 1A), the carriage body 120 includes or forms a frame 158 sized and shaped to capture the spring 126. The frame 158 projects from the front face 142, for example in a region of the hub 122, with the panel 140 forming an aperture 160 that is aligned with the frame 158 for reasons made clear below. Further, the frame 158 can form or define a groove 162 that facilitates assembly with the housing 40 (FIG. 1A).

[0046] In addition to providing features that promote mounting with the housing 40 (FIG. 1A), the carriage body 120 can form or include additional features that facilitate articulating connection with the blade assembly 26 (FIG. 1A). For example, the pocket 156 is formed as a depression in the front face 142 of the panel 140, and defines a bearing surface 164. The pocket 156 is sized and shaped to slidably receive a corresponding component of the blade assembly 26 as described below, and can include a notch 166 through a thickness of the panel 140 for slidably receiving other components. Finally, the carriage body 120 can include or define a camming member 168 and a support block 170 as inward projections from the front face 142. The camming member 168 can assume a variety of forms, and is generally constructed to slidably interface with a corresponding component of the blade assembly 26 as described below. The support block 170 is aligned with, but spaced from, the camming member 168, and is also configured to interface with the blade assembly 26 in a prescribed manner.

[0047] Other mounting features optionally provided with the carriage body 120 can include a spindle 180 or similar structure projecting from the front face 142 and configured to rotatably maintain the idler roller 124 (FIG. 1A). A bracket 182 can be formed or provided along the front face 142 and is generally constructed for assembly with the actuator 128 (FIG. 1A).

[0048] The carriage body 120 can optionally form or provide additional features for interfacing with a length of adhesive tape (not shown) otherwise extending from a region of the hub 122. For example, in some embodiments, a platform 190 projects from the front face 142 of the panel 140 and provides a surface for selectively interfacing with an adhesive tape, for example during a cutting operation. In this regard, the platform 190 optionally forms or defines a textured surface 192, for example the spaced apart ribbed format shown.

[0049] The hub 122 projects from the front face 142 of the panel 140, and is generally sized and shaped to rotatably maintain a roll of adhesive tape (not shown). While the hub 122 is shown as being affixed to the panel 140, other configurations appropriate for rotatably maintaining a roll of adhesive tape are equally acceptable.

[0050] Returning to FIG. 1A, the idler roller 124 is configured for rotatable mounting to the spindle 180 of the carriage body 120 (or other optional mounting component), and is generally constructed to selectively interface with a length of adhesive tape. In some embodiments, an outer surface of the idler roller 124 readily releases from adhesives commonly employed with adhesive tapes (e.g., pressure sensitive adhesives), and thus can have any of the formats described above with respect to the application roller 42 (e.g., the attributes described above with respect to the sleeve 102 in FIGS. 3A-3C).

[0051] The actuator 128 can assume any form conducive to receiving a user-applied force, and transferring the force into a sliding motion of the carriage body 120 relative to the

housing 40. While the actuator 128 is shown as being a component formed apart from the carriage body 120, in other embodiments the actuator 128 is integrally formed by or with the carriage body 120.

Blade Assembly 26

[0052] The blade assembly 26 is shown in greater detail in FIG. 5, and includes the blade 28, a blade arm 200, and at least one pressing finger 202. In general terms, the blade arm 200 maintains the blade 28 and the pressing finger(s) 202, and is configured for pivoting connection with the housing 40 (FIG. 1A).

[0053] With additional reference to FIG. 6A-6C, the blade arm 200 defines a leading end 210, a trailing or pivot end 212, an upper face 214, and a lower face 216. The leading end 210 is configured to facilitate mounting of the blade 28, and can form or provide one or more rivet bodies 218. The pivot end 212 is defined opposite the leading end 210, and is configured to establish pivotable mounting with a corresponding component of the housing assembly 22 (FIG. 1A). For example, the trailing end 212 can include a bore 220 sized to receive the post 90 (FIG. 2). Regardless, a pivot axis P about which the blade arm 200 rotates or pivots upon final assembly is defined. The upper face 214 is shaped to effectuate a desired cammed interface of the blade arm 200 with the carriage assembly camming member 168 (FIG. 4A). For example, and as best shown in FIG. 6C, the upper face 214 can be relatively flat or planar adjacent the leading end 210, and forms or defines an inclined region 230 adjacent the pivot end 212. For reasons made clear below, a crank arm 232 projects from the pivot end 212 (i.e., away from the lower face 216), and complements (in combination with other features) the camming-induced articulation motion effectuated along the upper face 214.

[0054] Returning to FIG. 5, the blade arm 200 is further configured to facilitate mounting of the pressing finger(s) 202. In some embodiments, the pressing finger(s) 202 is provided as part of a pressing finger structure 240 that includes a plurality of the pressing fingers 202 projecting from a base 242. With this in mind, the blade arm 200 can form a cavity 244 sized and shaped to frictionally maintain the base 242 in a manner that arranges the pressing fingers 202 as outward projections from the lower face 216. In some embodiments, a cap 246 can further be provided that is assembled to the cavity 244 adjacent the base 242 so as to be contiguous with the upper face 214 upon final assembly.

[0055] Features of the pressing finger structure 240 are described in greater detail below with reference to the blade arm 200 upon final assembly. In general terms, however, and with additional reference to FIGS. 7A and 7B, the finger structure 240 includes the base 242 and the at least one pressing finger 202. With the exemplary embodiment of FIGS. 7A and 7B, three of the pressing fingers 202 are provided, including a first pressing finger 202a longitudinally offset from second and third pressing fingers 202b, 202c. In other embodiments, a greater or lesser number of the pressing fingers 202 can be included, including only a single one of the pressing fingers (e.g., the first pressing finger 202a). The pressing finger(s) 202 extends in an angular fashion from the base 242, with the angular arrangement of the pressing finger(s) 202 relative to the base 242 generating a desired spatial arrangement of the pressing finger(s) 202 relative to the blade arm 200 upon final assembly. As described below, the pressing finger(s) 202 is configured to interface with a tensioned, adhesive-bearing surface, for example an adhesive surface of

an adhesive tape, and in some embodiments is flexible (e.g., elastically deformable) and exhibits an easy or low release characteristic. For example, the pressing finger(s) 202 can be formed of silicone, a fluoropolymer, or coated elastomeric materials (e.g., a plasma coating creating the low release coating or non-stick surface), etc.; in other embodiments, an entirety of the finger structure 240 is formed of the flexible, low release material (or low release coating). Elastic flexibility of the pressing finger(s) 202 can alternatively be described relative to a rigidity of the blade arm 200. The blade arm 200 is more rigid or less flexible than the pressing finger(s) 202 (e.g., the blade arm 200 is a molded, rigid plastic material whereas the pressing finger(s) 202 is a deformable silicone body). Thus, the pressing finger(s) 202 will elastically deform or deflect while the blade arm 200 remains rigid when subjected to an identical force. A similar comparison can be made between a flexibility of the pressing finger(s) 202 and a flexibility of the blade 28. The pressing finger(s) 202 is significantly more flexible than the rigid blade 28.

[0056] Returning to FIG. 5, the blade 28 can assume a variety of forms, and in some embodiments includes two (or more) blade segments 250, 252 that combine to define the blade 28 upon final assembly. In other embodiments, the blade 28 can be a homogeneous, integral structure.

[0057] Final construction of the blade assembly 26 is shown in FIGS. 8A and 8B. The blade 28 is affixed to the leading end 210 of the blade arm 200, and extends downwardly relative to the lower face 216. In this regard, the blade 28 terminates at a blade tip 260 opposite the blade arm 200. The pressing fingers 202a-202c also project from the lower face 216 of the blade arm 200, and each terminate at a contact end 262 opposite the blade arm 200. The pressing fingers 202a-202c are generally arranged to interface with a length of tape otherwise being cut by the blade 28 as the blade arm 200 is rotated about the pivot axis P. These attributes are facilitated, for example, by an angular orientation of the pressing fingers 202a-202c, as well as a length of the pressing fingers 202a-202c. For example, at least with respect to the first pressing finger 202a, an included angle θ is established by a plane of the blade 28 and a plane of the first pressing finger 202a. In some embodiments, the included angle θ is at least 5 degrees, and in some embodiments is at least 10 degrees. The second and third pressing fingers 202b, 202c can be arranged to establish a similar included angle relative to the blade 28. Regardless, to better ensure that the contact end 262 of at least the first pressing finger 202a contacts adhesive tape in conjunction with the blade 28 with rotation of the blade arm 200 about the pivot axis P, the first pressing finger 202a extends an appreciable distance from the lower face 216, generally commensurate with a longitudinal location of the blade tip 260. In other embodiments, a length of the first pressing finger 202a can be identified relative to an articulation plane A defined by the blade tip 260 and the pivot axis P. The first pressing finger 202a passes through or intersects the articulation plane A. This geometry better ensures that the contact end 262 of the first pressing finger 202a will contact a structure “behind” the blade tip 260 (to the right relative to the orientation of FIG. 8B) as the blade arm 200 is rotated above the pivot axis P (counterclockwise relative to the orientation of FIG. 8B).

Applicator Assembly

[0058] FIG. 9A illustrates the carriage assembly 24 mounted to the first housing section 50. The carriage body 120 is slidably connected to the rail 74, for example via the

pairs of guide tabs 146, 148 (FIG. 4B). The spring (or other biasing device) 126 is disposed within the frame 158, and is captured at opposing ends thereof by the first and second shoulders 82, 84 (it being understood that the first shoulder 82 is hidden in the view of FIG. 9A, but is illustrated in FIG. 2). The second shoulder 84 projects beyond the spring 126 into abutment with the hub 122 and is slidably disposed within the groove 162. The stop tab 86 is slidably disposed within the slot 152. The post 90 is located within the notch 166. The actuator 128, where provided, is assembled to the carriage body 120 and is arranged within the auxiliary opening 46. With this construction, the spring 126 biases the carriage body 120 to the first or application state of FIG. 9A. The carriage body 120 can be transitioned to a second or cut state of FIG. 9B in response to a force placed upon the actuator 128 that in turn causes the carriage body 120 to slide along the rail 74 (i.e., relative to the orientation of FIGS. 9A and 9B, the carriage body 120 is caused to move generally to the right (toward the rear side 64) in transitioning from the application state (FIG. 9A) to the cut state (FIG. 9B)). The stop tab 86 serves as a forward stop to further sliding movement of the carriage body 120. Upon removal of the actuation force, the carriage assembly 24 self-returns to the first or application state of FIG. 9A via the spring 126.

[0059] FIG. 10A illustrates mounting of the blade assembly 26 to the carriage assembly 24 and the first housing section 50 (and reflects the application state of the applicator 20). The pivot end 212 of the blade arm 200 is rotatably coupled to the post 90 (hidden in FIG. 10A but shown, for example, in FIG. 9A) of the first housing section 50. The crank arm 232 is located within the pocket 156. The carriage assembly 24 retains the blade arm 200 in the spatial arrangement shown via the camming member 168 and the support block 170. More particularly, the camming member 168 engages or is slightly spaced from the upper face 214 of the blade arm 200, whereas the support block 170 engages or is slightly spaced from the lower face 216. Thus, the blade arm 200 is prevented from freely rotating about the pivot axis P relative to the carriage body 120. In the first or application state of FIG. 10A, the blade tip 260 and the pressing finger contact ends 262 are spatially located away from a tape path defined by and between the application and idler rollers 42, 124 as described below.

[0060] Transitioning of the carriage body 120 from the application state to the cut state effectuates articulation of the blade assembly 26 as reflected by FIG. 10B. In particular, because the blade arm 200 is spatially connected to the first housing section 50 via the post 90 (FIG. 9A), the blade arm 200 does not slide rearwardly with the carriage body 120. However, as the bearing surface 164 (hidden in FIG. 10B, but shown in FIG. 10A) of the pocket 156 contacts the crank arm 232, and as the camming member 168 slides along the inclined region 230 of the blade arm upper face 214, the blade arm 200 is caused to pivot or rotate about the pivot axis P (counterclockwise relative to the orientation of FIGS. 10A and 10B), in turn causing the blade tip 260 and the pressing finger contact ends 262 to pass through a tape path defined by and between the application and idler rollers 42, 124 as described below.

[0061] As a point of reference, the various components and mechanisms described above for effectuating articulation of the blade tip 260 and the pressing finger contact ends 262 relative to the application and idler rollers 42, 124 (and thus relative to the tape path defined by the rollers 42, 124) are but

one acceptable embodiment. A variety of other components, mechanisms and/or assembly techniques can be employed. Features of the present disclosure relate to the manners in which the pressing finger(s) 202 interface with the adhesive tape during the cutting operation formed by the blade 28, as well as an optional low or easy release adhesive surface interface established along the application and idler rollers 42, 124.

Methods of Use

[0062] FIG. 11A illustrates, in simplified form, an adhesive tape roll 300 rotatably mounted to the hub 122, with the applicator 20 in the initial or application state. As a point of reference, systems of the present disclosure constitute the applicator 20 loaded with the tape roll 300. A length of adhesive tape 302 extends from the roll 300 along a tape path T defined, at least in part, by the application and idler rollers 42, 124. The adhesive tape 302 otherwise comprising the roll 300 can assume a variety of forms, and generally include a base film or film structure defining opposing, first and second major surfaces 304, 306. One or both of the major surfaces 304, 306 can carry an exposed adhesive (e.g., pressure sensitive adhesive coating). That is to say, the adhesive tape 302 can be a single-sided or double-sided adhesive tape. In the application state of FIG. 11A, the tape path T includes the first major surface 304 in contact with the idler roller 124, and the second major surface 306 in contact with the application roller 42. With this arrangement, the length of tape 302 extends from the roll 300, along the tape path T, and is available for application to a substrate surface via the tape dispensing opening 44.

[0063] For example, as shown in FIG. 11B, with the applicator 20 in the application state, a leading end 310 of the adhesive tape 302 is adhesively secured or tacked to a substrate surface 312, establishing a tacked region 314. A user grasping the applicator housing 40 manually applies pressure onto the application roller 42 while simultaneously pulling the housing 40 away from the leading end 310. With this technique, the adhesive tape 302 is caused to unwind from the roll 300 and successively progress along the tape path T with a now longer tacked region 314 being secured onto the substrate surface 312 as shown in FIG. 11C. Notably, the application roller 42 readily rolls along the second major surface 306 during application of the tape 302 to the substrate surface 312. With embodiments in which the second major surface 306 carries an exposed adhesive, the release attributes of the application roller 42 as described above (e.g., forming an outer surface of the application roller 42 from silicone or other low release material and/or inclusion of the circumferential ribs or other texturing), the adhesive-bearing second major surface 306 will not stick to the application roller 42.

[0064] Once a desired length of the tape 302 has been applied to the substrate surface 312, the applicator 20 is operated to cut the tape 302. Prior to initiation of the cutting operation, the adhesive tape 302 is generally held in tension between the application and idler rollers 42, 124 and is identified as an intermediate tape segment 320 in FIG. 12A. The blade 28 and the pressing finger(s) 202 are spaced from the intermediate tape segment 320 (and the tape path T). The carriage assembly 24 (FIG. 1A) is then transitioned toward the cut state by a user-applied force on the actuator 128 (FIG. 1A) as described above. As the blade arm 200 is pivoted to bring the blade tip 260 into contact with the tape 302, the pressing finger(s) 202 also interfaces with the adhesive tape

302. For example, in the arrangement of FIG. 12B (otherwise schematically illustrating an intermediate stage of operation as the applicator 20 is transitioned toward the cut state), the blade arm 200 has been rotated or maneuvered to bring the blade 28 and the pressing finger(s) 202 nearly into contact with the second major surface 306 of the adhesive tape 302. Recalling that the blade arm 200 is rotating about the pivot axis P, the contact end 262 of the first pressing finger 202a contacts the adhesive tape 302 just prior to the blade tip 260 as shown. In other embodiments, the blade 28 and the first pressing finger 202a contact the adhesive tape 302 simultaneously, or the blade 28 may contact the adhesive tape 302 immediately before the first pressing finger 202a.

[0065] With further rotation of the blade arm 200 (i.e., transitioning from the arrangement of FIG. 12B to the successively next intermediate stage of operation arrangement of FIG. 12C), the first pressing finger 202a more robustly contacts the intermediate tape segment 320. Because the intermediate tape segment 320 is under tension between the application and idler rollers 42, 124, the adhesive tape 302 exerts a resistance force onto the first pressing finger 202a. The angled orientation of the first pressing finger 202a in combination with the flexible material employed for the first pressing finger 202a results in the first pressing finger 202a deforming or deflecting in response to this resistance. That is to say, the first pressing finger 202a does not rigidly retain its linear shape, but instead slightly deforms, with the contact end 262 deflecting toward the blade 28. In the state of FIG. 12C, the blade tip 260 has pierced through a portion of the adhesive tape 302, but the adhesive tape 302 has not yet been completely severed. As a point of reference, the blade tip 260 can have the tapered shape shown in FIG. 8A, increasing in width from a central point; while a complete width of the blade tip 260 is commensurate with a width of the adhesive tape 302, in the initial stages of cutting (e.g., the arrangement of FIG. 12C), only a portion (e.g., the central point) of the complete width of the blade tip 260 has passed through the adhesive tape 302, such that the entire width of the adhesive tape 302 has not been entirely cut. This relationship is reflected in FIG. 12D, that otherwise provides a simplified, enlarged cross-section of the blade tip 260 and the adhesive tape 302 corresponding with the state of FIG. 12C. As shown, a portion of the blade tip 260 has initially pierced through the adhesive tape 302. A width W_C of the cut formed by the blade tip 260 is less than a width W_T of the adhesive tape 302. Thus, the adhesive tape 302 is still intact and is not yet completely severed. As a result, and returning to FIG. 12C, a tension in the adhesive tape 302 remains, causing deformation of the first pressing finger 202a as described above.

[0066] Elastic deflection or deformation of the first pressing finger 202a continues with further rotation of the blade arm 200, with the blade arm rotation simultaneously directing the blade tip 260 to progressively pierce through an increasing portion of the width W_T (FIG. 12D) of the tape 302. This arrangement is shown in FIG. 12E. Notably, where the first pressing finger 202a is formed of a low release material or coating (e.g., silicone), the contact end 262 (and other exterior surfaces of the first pressing finger 202a) readily slides along the second major surface 306 of the adhesive tape 302 in connection with the above-described deflection, even when the adhesive tape 302 is a double-sided adhesive tape (i.e., the second major surface 306 carries an exposed adhesive). FIG. 12E further reflects that the second pressing fingers 202b can also contact the tensioned adhesive tape 302 and, due to a

flexible construction, elastically flex or deflect. Notably, as the blade tip 260 is driven toward (and through) the adhesive tape 302, the adhesive tape 302 can be forced to deflect downwardly (relative to the orientation of FIG. 12E) at the blade tip 260 interface, and, due to various component geometries, come into contact with the platform 190.

[0067] At the end of the cutting motion, the blade tip 260 has progressed through an entire thickness and width of the tape 302 as shown in FIG. 12F, severing the intermediate tape segment 320. Once severed, the adhesive tape 302 can effectively be defined as having an applied portion 330 downstream of the cut line that is now applied to the substrate surface 312. A remaining portion 332 (upstream of the cut line) is still connected to, or is part of, the tape roll 300 (FIG. 11A), and terminates at a leading end 334. The first pressing finger 202a serves to prevent the leading end 334 from extending along, or “riding up” on the blade 28, it being noted that once the adhesive tape 302 has been severed, the tensioned resistance force imparted upon the first pressing finger 202a is removed, and the first pressing finger 202a resiliently self-reverts back to its natural shape as shown. The second and third pressing fingers 202b, 202c can force the adhesive tape 302 onto the platform 190. Thus, an entirety of the remaining portion 332, including the “new” leading end 334, is held away from the blade 28. As the carriage assembly 24 is allowed to revert back to the first or application state, the blade arm 200 is caused to again pivot, bringing the blade 28 and the pressing fingers 202a-202c out of the tape path T as shown in FIG. 12G. In this regard, even if the second major face 306 carries an exposed adhesive, the remaining portion 332 of the adhesive tape 302 will not unexpectedly “move” with the blade assembly 26. As described above, the remaining portion 332 is spaced from, and does not contact, the blade 28. Further, while one or more of the pressing fingers 202 are in direct contact with the second major surface 306, the low adhesion/release material (e.g., silicone) construction of the pressing fingers 202 has minimal or no adhesion with the exposed adhesive. Along these same lines, the first major surface 304 may lightly adhere to the platform 190, allowing the pressing fingers 202 to readily release from the second major surface 306 as the blade arm 200 articulates the pressing fingers 202 away from the tape 302. The platform 190 simultaneously directs the leading end 334 to the tape dispensing opening 44 such that the leading end 334 is now readily available for subsequent adhesive tape application operation.

[0068] Use of the adhesive tape applicator 20 in applying the adhesive tape 302 to the substrate surface 312 can optionally entail the bottom side 66 readily sliding along, or in close proximity to, the substrate surface 312 (under circumstances where the substrate surface 312 is relatively flat). In some embodiments, the substantially flat bottom side 66 also facilitates temporary storage of the applicator 20 in the upright orientation on the substrate surface 312 (e.g., during periods of non-use, the applicator 20 is upright, with the bottom side 66 resting on the substrate surface 312).

[0069] With the alternative adhesive tape applicator 20' of FIG. 13, a stand-off device 400 is included that lifts the application roller 42 away from the substrate surface 312 during periods of non-use. The stand-off device 400 can assume a variety of forms, and in some constructions includes a head 402 and a leaf spring or other biasing device 404. The leaf spring 404 connects the head 402 to the housing 40. In a normal state of the leaf spring 404, the head 402 is located

such that a leading face **406** is located outside of the housing **40**. In the upright storage orientation of FIG. 13, then, the applicator **20** is maintained upright relative to the substrate surface **312**, resting on the leading face **406** of the head **402** and rear corner **408** of the housing **40**. As shown, the application roller **42** as well as the leading end **310** of the adhesive tape **302** is held above or away from the substrate surface **312**. [0070] When a user desires to apply the adhesive tape leading end **310** to the substrate surface **312**, a downward force is applied to the housing **40** with the user's hand. Once sufficient force is applied to overcome a bias of the leaf spring **404** (i.e., via a resistance force experienced by the head **402** at the substrate surface **312**), the head **402** retracts into the housing **40**. As a result, the leading end **310** is brought to contact with the substrate surface **312**, including the application roller **42** pressing on to the adhesive tape **302**. Application and cutting operations can then be performed as described above.

[0071] The adhesive tape applicators, system and methods of the present disclosure provide a marked improvement over previous designs. Adhesive tapes, including double-sided adhesive tapes, are readily applied to a substrate surface and subsequently cut with single-handed operation. In this regard, the flexible pressing finger(s) provided with the tape applicators ensure consistent, jam-free operation, preventing the adhesive tape from adhesively "catching" on the cutting blade. Other optional features, such as low surface energy contact rollers, further enhance handling of adhesive-bearing tape surfaces.

[0072] Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the present invention.

1. An adhesive tape applicator comprising:
 - a housing assembly including:
 - a housing defining a tape dispensing opening,
 - an application roller rotatably mounted to the housing adjacent the tape dispensing openings;
 - a carriage assembly including:
 - a carriage body slidably mounted within the housing,
 - a hub carried by the carriage body and configured to rotatably support a roll of tape,
 - an idler roller rotatably mounted to the carriage body; and
 - a blade assembly including:
 - a blade arm defining a pivot end pivotably mounted to the housing such that the blade arm is pivotable relative to the housing about a pivot axis,
 - a blade projecting from the blade arm opposite the pivot end and terminating in a blade tip,
 - wherein an articulation plane is defined by the blade tip and the pivot axis,
 - a first pressing finger projecting from the blade arm at a location between the blade and the pivot end, the first pressing finger extending through the articulation plane;
 - wherein the applicator defines a tape path from the hub to the tape dispensing opening, the tape path being defined, at least in part, by the application and idler rollers;
- and further wherein the tape applicator is configured to be transitional between an application state in which the

blade tip is at a first side of the tape path and a cut state in which the blade tip is located at an opposite, second side of the tape path.

2. The tape applicator of claim 1, wherein the first pressing finger is flexible.
3. The tape applicator of claim 2, wherein the flexibility of the first pressing finger is greater than the flexibility of the blade arm.
4. The tape applicator of claim 1, wherein the first pressing finger is silicone.
5. The tape applicator of claim 1, wherein the first pressing finger is configured to deflect upon forced contact with a tape extending along the tape path and tensioned between the application and idler rollers as the applicator is transitioned from the application state toward the cut state.
6. The tape applicator of claim 5, wherein the first pressing finger terminates at a contact end opposite the blade arm, and further wherein the first pressing finger is configured such that deflection of the first pressing finger in response to contacting a tape extending along the tape path includes the contact end moving more proximate the blade.
7. The tape applicator of claim 1, wherein the first pressing finger terminates at a contact end opposite the blade arm, and further within the contact end and the blade tip are spatially arranged such that as the applicator is transitioned from the application state toward the cut state, the contact end intersects the tape path prior to the blade tip.
8. The tape applicator of claim 1, wherein the blade assembly further comprises a second pressing finger extending from the blade arm at a location between the first pressing finger and the pivot end.
9. The tape applicator of claim 8, wherein the first and second pressing fingers are flexible.
10. The tape applicator of claim 9, wherein a length of the first pressing finger in extension from the blade arm is greater than a length of the second pressing finger in extension from the blade arm.
11. The tape applicator of claim 1, wherein an outer surface of the application roller is a silicone material.
12. The tape applicator of claim 1, wherein an outer surface of the idler roller is a silicone material.
13. The tape applicator of claim 1, wherein an outer surface of the application roller includes a plurality of spaced apart, circumferential ribs.
14. The tape applicator of claim 1, wherein an outer surface of the idler roller includes a plurality of spaced apart, circumferential ribs.
15. A system for applying adhesive tape, the system comprising:
 - a roll of adhesive tape; and
 - an applicator comprising:
 - a housing assembly including:
 - a housing defining a tape dispensing opening,
 - an application roller rotatably mounted to the housing adjacent the tape dispensing opening,
 - a carriage assembly including:
 - a carriage body slidably mounted within the housing,
 - a hub carried by the carriage body and rotatably maintaining the roll of adhesive tape,
 - an idler roller rotatably mounted to the carriage body,
 - a blade assembly including:
 - a blade arm defining a pivot end pivotably mounted to the housing such that the blade arm is pivotable relative to the housing about a pivot axis,

a blade projecting from the blade arm opposite the pivot end and terminating in a blade tip,
a first pressing finger projecting from the blade arm at a location between the blade and a pivot end, the first pressing finger terminating at a contact end opposite the blade arm;

wherein upon final assembly, the system is configured to provide an application state in which a length of tape extends from the roll to the idler roller and then to the application roller for dispensement through the dispensing opening, the application state including the blade and the pressing finger being displaced from the length of tape;

and further wherein the system is transitional from the application state to a cut state in which the blade tip is progressed through the length of tape to sever the length of tape;

and even further wherein transitioning of the system from the application state to the cut state includes the contact end initially contacting the length of tape and then deflecting toward the blade.

16. The system of claim 15, wherein the adhesive tape of the roll of adhesive tape is a double-sided adhesive tape.

17. The system of claim 15, wherein the pressing finger is silicone.

18. The system of claim 15, wherein an outer surface of the application roller is a silicone material.

19. The system of claim 15, wherein an outer surface of the application roller includes a plurality of spaced apart, circumferential ribs.

20. A method of dispensing an adhesive tape, the method comprising:

receiving a system including an applicator maintaining a roll of adhesive tape, the applicator including:
a housing assembly including:

a housing defining a tape dispensing opening,
an application roller rotatably mounted to the housing adjacent the tape dispensing opening,

a carriage assembly including:
a carriage body slidably mounted within the housing,
a hub carried by the carriage body and rotatably maintaining the roll of adhesive tape,

an idler roller rotatably mounted to the carriage body,
a blade assembly including:

a blade arm defining a pivot end pivotably mounted to the housing such that the blade arm is pivotable relative to the housing about a pivot axis,

a blade projecting from the blade arm opposite the pivot end and terminating in a blade tip,
a first pressing finger projecting from the blade arm at a location between the blade and the pivot end, the first pressing finger terminating at a contact end opposite the blade arm;

wherein in an application state of the system, a leading segment of a length of tape from the roll extends into the dispensing opening and is supported by the application roller;

pressing the leading segment into adhesive contact with a substrate surface to define a tacked region;

manipulating the housing to draw the applicator away from the tacked region while simultaneously maintaining a pressing force on the application roller to successively dispense an additional segment of the length of tape from the applicator and into adhesive contact with the substrate surface; and

actuating the carriage assembly to pivot the blade arm, including the pressing finger and the blade contacting the length of tape between the application and idler rollers, to completely sever the length of tape;

wherein prior to the blade tip completely severing the length of tape, a contact end of the pressing finger contacts the length of tape and, with further pivoting movement of the blade arm, deflects toward the blade due to a tensioned rigidity of the length of tape.

21. The method of claim 20, wherein the adhesive tape of the roll of adhesive tape is a double-sided adhesive tape.

22. The method of claim 20, wherein the step of actuating the carriage assembly includes the contact end of the pressing finger contacting an adhesive side of the adhesive tape, the method further including the adhesive side not adhering to the contact end.

23. The method of claim 20, wherein the pressing finger is silicone.

24. The method of claim 20, wherein an adhesive side of the adhesive tape contacts the application roller during the step of manipulating the housing, the method further included the adhesive side not adhering to the application roller.

25. The method of claim 20, wherein an outer surface of the application roller is a silicone material.

26. The method of claim 20, wherein an outer surface of the application roller includes a plurality of spaced apart, circumferential ribs.

* * * * *