[Continued on next page]

(54) Title: INTERACTIVE PROGRESS DISPLAY ENABLING MODIFICATION TO COMPUTER OPERATIONS

(57) Abstract: A method, system and computer usable medium are disclosed for using an interactive progress indicator bar to graphically display the completion status of a plurality of computer operations, modify predetermined operations before they are completed, and then restart the modified operations. An interactive progress indicator bar is implemented in a graphical user interface (GUI) and comprises a plurality of progress indicator segments. As computer operations are completed, the details of their completion status are entered into a computer operation log and indexed to their corresponding progress indicator segments. Details of the completion status of predetermined computer operations are viewed by selecting one or more corresponding progress indicator segments through a user gesture. If a predetermined computer operation is to be modified, a second user gesture opens a dialog box allowing the user to perform predetermined modifications. Previously completed computer operations that are subsequent to the modified operation are reversed and computer operations are then restarted, beginning with the modified computer operation.
Published:
— without international search report and to be republished upon receipt of that report
INTERACTIVE PROGRESS DISPLAY ENABLING MODIFICATION
TO COMPUTER OPERATIONS

BACKGROUND OF THE INVENTION

Field of the Invention

Embodiments of the disclosure relate in general to the field of computers and similar technologies, and in particular to computer software. Still more particularly, it relates to an interactive display of completion status information for computer operations which enables modifications to their operation before they are completed.

Description of the Related Art

Conventional computer applications often use a graphical progress indicator to provide users feedback about the completion status of computer operations as they are being performed. Progress indicators are often used during software installations, lengthy calculations, and automated test executions while back-end logs and trace files of the procedures are being written. The typical progress bar provides the user with an estimate of how much time it will take to complete the entire operation and an indication of how much progress has been made thus far.

Prior art approaches have included progress bars, which include a completion progress indicator that comprises a plurality of progress indicator segments. Completed progress indicator segments are generally depicted in a graphical user interface (GUI) as one color and uncompleted progress indicator segments in another. As increments of progress are achieved, the number of completed progress indicator segments increase and the number of uncompleted progress segments decrease. While completion progress indicators may provide some indication of how complete a series of computer operations may be, or an estimate of the time remaining until completion, they typically do not provide completion detail about individual operations. Another approach is to combine a checklist of computer operations with a time remaining progress indicator. The computer operation checklist
generally comprises a list of computer operations, each of which has a corresponding graphical icon to symbolize operations that were completed successfully, with errors, or with failures. While the progress indicator with checklist provides a summary of computer operations and their corresponding status through graphical icons, it does not provide a way for users to slide the progress bar to a completed operation and modify earlier selections made.

Graphical progress indicators are often used to monitor the progress of time consuming processes such as the installation of complex computer applications that require multiple configuration choices to be made during the installation process. In some cases, configuration choices made earlier in the installation process result in unintended or undesirable events occurring later in the process. For example, Figures 1a-d, labeled Prior Art, show examples of known progress bar indicators. Referring now to Figure 1a, a generalized depiction of a completion progress indicator 102 is shown as typically implemented in a graphical user interface (GUI). The completion progress indicator 102 comprises completed progress indicator segments 106 and uncompleted progress indicator segments 108, representing a completion progress 104 of 37%. Completed progress indicator segments 106 are generally depicted in a GUI as one color and uncompleted progress indicator segments 108 in another. As increments of progress are achieved, the number of completed progress indicator segments 106 increase and the number of uncompleted progress segments 108 decrease. It will be appreciated that while completion progress indicators may provide some indication of how complete a series of computer operations may be, they generally do not indicate how long it will take to complete the remaining operations.

Conversely, the indeterminate time progress indicator 110 shown in Figure 1b provides a simplified visual indication of the time remaining to complete predetermined computer operations (e.g., deleting C:\MyTrash) 112. As computer operations are completed, the slider bar 114 progresses from left to right. By observing the slider bar's rate of progression, a user can achieve a general sense of how much time remains before the operations are completed. In a similar fashion, the position of the slider bar 114 indicates the proportion of completed operations 116 to uncompleted operations 118. Regardless,
unlike completion progress indicator 102, indeterminate time progress indicator 110 does not provide a declarative indication of what percentage of the operations have been completed.

The time remaining progress indicator 110 shown in Figure 1c provides a completion progress summary 122 of the number of completed computer operations as well as an estimate of how long it will take to complete the remaining operations. As operations are completed, they are enumerated within the completion progress summary 122 and a proportionate area 124 of the progress indicator bar changes color (e.g., from white to green, left-to-right) while the uncompleted operations area 126 is reduced accordingly. However, while the completion progress summary 122 may indicate the number of operations completed, it does not provide meaningful information on what operations completed at a certain time, nor does it provide information on the future operations that will occur.

The progress indicator with checklist 128 shown in Figure 1d combines a checklist 138 of computer operations with a time remaining progress indicator 132. As computer operations are completed, a proportionate area 134 of the progress indicator bar changes color (e.g., from white to green, left-to-right) while the uncompleted operations area 136 is reduced accordingly. The computer operation checklist 138 comprises a plurality of computer operations, each of which has a corresponding graphical icon 140 symbolizing its individual status. For example, a checkmark may signify a successfully completed operation whereas an 'X' may signify a failed or partially successful operation. Similarly, a rotating icon combined with bold text may signify a computer operation that is in progress, while absence of a graphical icon may indicate that the operation has not yet begun. Concurrently, the computer operation indicator 130 provides additional details about the computer operation that is currently in progress and may indicate whether or not the operation was successful. While the progress indicator with checklist 128 provides a summary of computer operations 138 and their corresponding status through graphical icons 140, it does not provide meaningful information on what operations completed at a certain time, nor does it provide information on the future operations that will occur.

The results of intermediate operations may be available for review and analysis, even though remaining operations are still pending.
Accordingly, it would be desirable for users to be able to review the exact operation that took place at any given point in the process without the need to find and read through log files. Additionally, it would be desirable to preview the exact operation that will take place at a future point in the process. Furthermore, it would be desirable to slide the progress bar back to a completed operation and modify the decisions that were made at that point.

The ability to modify a predetermined computer operation before the remaining operations are completed is advantageous, especially when the operations are large in number or time consuming to complete.

BRIEF SUMMARY OF THE INVENTION

A method, system and computer-usable medium are disclosed for using an interactive progress indicator bar to graphically display the completion status of a plurality of computer operations, modify selected operations before they are completed, and then restart the modified operations. In various embodiments of the invention, an interactive progress indicator bar is implemented in a graphical user interface (GUI) and comprises a plurality of progress indicator segments. As computer operations are completed, the details of their completion status are entered into a computer operation log and indexed to their corresponding progress indicator segments. In certain embodiments, when modifying selected operations, dependencies of operations can also be indicated to allow a user to make informed decisions about their modifications. As increments of progress are achieved, a completion progress indicator is updated to textually reflect the percentage of completed computer operations.

Details of the completion status of a plurality of predetermined computer operations are viewed by selecting one or more corresponding progress indicator segments through a user gesture. In one embodiment, a summary list of computer operations is displayed through a first user gesture such as a mouse hover or right-click as the cursor is placed over the last progress indicator segment. In another embodiment, detail information for a predetermined range of computer operations is displayed using a first user gesture such as a mouse click-and-drag to highlight the progress indicator segments corresponding to the selected range of
computer operations. A second user gesture, such as selecting a menu command displayed as the result of a mouse right-click displays the detail information for the range of operations in an operation information window.

In yet another embodiment, detail information for a predetermined computer operation is displayed through a first user gesture such as a mouse right-click as the cursor is placed over its corresponding progress indicator segment. If the predetermined computer operation is to be modified, a second user gesture opens a dialog box allowing the user to perform predetermined modifications. Once modifications to the predetermined computer operation are completed, the user is prompted to restart computer operations. If the user decides to restart computer operations, previously completed computer operations that are subsequent to the modified operation are reversed if required. Once the previously completed operations are reversed, computer operations are then restarted, beginning with the modified computer operation. The above, as well as additional purposes, features, and advantages of the present invention will become apparent in the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

Selected embodiments of the present invention may be understood, and its numerous objects, features and advantages obtained, when the following detailed description is considered in conjunction with the following drawings, in which:

Figures 1a-d, labeled Prior Art, show prior art progress bar indicators;

Figure 2 depicts an exemplary client computer in which the present invention may be implemented;

Figures 3a-c show an interactive progress indicator bar as implemented to display computer operation completion information;

Figures 4a-d show an interactive progress bar as implemented to interactively modify computer operations prior to their completion; and
Figure 5 is a generalized flow chart showing an implementation of an interactive progress bar to interactively modify computer operations.

DETAILED DESCRIPTION

A method, system and computer-usable medium are disclosed using an interactive progress indicator to graphically display the completion status of a plurality of computer operations, modify selected operations before they are completed, and then restart the modified operations. In various embodiments of the invention, an interactive progress indicator bar is implemented in a graphical user interface (GUI) and comprises a plurality of progress indicator segments. As computer operations are completed, the details of their completion status are entered into a computer operation log and indexed to their corresponding progress indicator segments. Concurrently, color attributes are applied to progress indicator segments as they are completed to graphically indicate the completion status of their associated computer operations. As increments of progress are achieved, a completion progress indicator is updated to textually reflect the percentage of completed computer operations.

Details of the completion status of a plurality of computer operations are viewed by selecting one or more corresponding progress indicator segments through a user gesture. In one embodiment, detail information for a selected computer operation is displayed through a first user gesture as the cursor is placed over its corresponding progress indicator segment. If the predetermined computer operation is to be modified, a second user gesture opens a dialog box allowing the user to perform predetermined modifications. Once modifications to the selected computer operation are completed, the user is prompted to restart computer operations. If the user decides to restart computer operations, previously completed computer operations that are subsequent to the modified operation are reversed. Once the previously completed operations are reversed, computer operations are then restarted, beginning with the modified computer operation.

As will be appreciated by one skilled in the art, the present invention may be embodied as a method, system, or computer program product. Accordingly, embodiments of the invention may be implemented entirely in hardware, entirely in software (including firmware, resident
software, micro-code, etc.) or in an embodiment combining software and hardware. These various embodiments may all generally be referred to herein as a "circuit", "module" or "system". Furthermore, the present invention may take the form of a computer program product on a computer usable storage medium having computer usable program code embodied in the medium.

Any suitable computer usable or computer readable medium may be utilized. The computer usable or computer readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a transmission media such as those supporting the Internet or an intranet, or a magnetic storage device. Note that the computer usable or computer readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory. In the context of this document, a computer usable or computer readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer usable medium may include a propagated data signal with the computer usable program code embodied therewith, either in baseband or as part of a carrier wave. The computer usable program code may be transmitted using any appropriate medium, including but not limited to the Internet, wireline, optical fiber cable, radio frequency (RF), etc.

Computer program code for carrying out operations of the present invention may be written in an object oriented programming language such as Java®, Smalltalk, C++ or the like. (Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries or both. However, the computer program code for
carrying out operations of the present invention may also be written in conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the remote computer or server. In
the latter scenario, the remote computer may be connected to the user's computer through a
local area network (LAN) or a wide area network (WAN), or the connection may be made to
an external computer (for example, through the Internet using an Internet Service Provider).

Embodiments of the invention are described below with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.

These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means for implementing
the functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer-readable memory
that can direct a computer or other programmable data processing apparatus to function in a
particular manner, such that the instructions stored in the computer-readable memory
produce an article of manufacture including instruction means which implement the
function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer or other
programmable data processing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus to produce a computer
implemented process such that the instructions which execute on the computer or other
programmable apparatus provide steps for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
Figure 2 is a block diagram of an exemplary client computer 202 in which the present invention may be utilized. Client computer 202 includes a processor unit 204 that is coupled to a system bus 206. A video adapter 208, which controls a display 210, is also coupled to system bus 206. System bus 206 is coupled via a bus bridge 212 to an Input/Output (I/O) bus 214. An I/O interface 216 is coupled to I/O bus 214. The I/O interface 216 affords communication with various I/O devices, including a keyboard 218, a mouse 220, a Compact Disk - Read Only Memory (CD-ROM) drive 222, a floppy disk drive 224, and a flash drive memory 226. The format of the ports connected to I/O interface 216 may be any known to those skilled in the art of computer architecture, including but not limited to Universal Serial Bus (USB) ports.

Client computer 202 is able to communicate with a service provider server 252 via a network 228 using a network interface 230, which is coupled to system bus 206. Network 228 may be an external network such as the Internet, or an internal network such as an Ethernet Network or a Virtual Private Network (VPN). Using network 228, client computer 202 is able to use the present invention to access service provider server 252.

A hard drive interface 232 is also coupled to system bus 206. Hard drive interface 232 interfaces with a hard drive 234. In a preferred embodiment, hard drive 234 populates a system memory 236, which is also coupled to system bus 206. Data that populates system memory 236 includes the client computer’s 202 operating system (OS) 238 and application programs 244.

OS 238 includes a shell 240 for providing transparent user access to resources such as application programs 244. Generally, shell 240 is a program that provides an interpreter and an interface between the user and the operating system. More specifically, shell 240 executes commands that are entered into a command line user interface or from a file. Thus, shell 240 (as it is called in UNIX®), also called a command processor in Windows®, is generally the highest level of the operating system software hierarchy and serves as a command interpreter (UNIX is a registered trademark of The Open Group, in the United States and other countries, Windows trademarks and logos are a registered trademark of Microsoft Corporation in the United States, other countries, or both. The shell provides a
system prompt, interprets commands entered by keyboard, mouse, or other user input media, and sends the interpreted command(s) to the appropriate lower levels of the operating system (e.g., a kernel 242) for processing. While shell 240 generally is a text-based, line-oriented user interface, the present invention can also support other user interface modes, such as graphical, voice, gestural, etc.

As depicted, OS 238 also includes kernel 242, which includes lower levels of functionality for OS 238, including essential services required by other parts of OS 238 and application programs 244, including memory management, process and task management, disk management, and mouse and keyboard management.

Application programs 244 may include a browser 246 and email client 248. Browser 246 includes program modules and instructions enabling a World Wide Web (WWW) client (i.e., client computer 202) to send and receive network messages to the Internet using HyperText Transfer Protocol (HTTP) messaging, thus enabling communication with service provider server 252. Application programs 244 also include an interactive progress bar 250. The interactive progress bar 250 includes code for implementing the processes described in Figures 3-5 described hereinbelow. In one embodiment, client computer 202 is able to download the interactive progress bar 250 from a service provider server 252.

The hardware elements depicted in client computer 202 are not intended to be exhaustive, but rather are representative to highlight components used by the present invention. For instance, client computer 202 may include alternate memory storage devices such as magnetic cassettes, Digital Versatile Disks (DVDs), Bernoulli cartridges, and the like. These and other variations are intended to be within the spirit and scope of the present invention.

Figures 3a-c show an interactive progress bar 302 as implemented in an embodiment of the invention to display computer operation completion information. In various embodiments, the interactive progress bar 302 is implemented in a graphical user interface (GUI) and comprises a plurality of progress indicator segments 304. As computer operations are completed, the details of their completion status are entered into a computer operation log
and indexed to their corresponding progress indicator segments. As increments of progress
are achieved, completion progress indicator 324 is updated to textually reflect the percentage
of completed computer operations. Concurrently, the slider bar 322 progresses from left to
right, a proportionate amount of the completed operations area of the progress indicator bar
changes its appearance (e.g., from white to green), and the uncompleted operations area 320
is reduced accordingly.

In one embodiment, summary information describing the current computer operation
corresponding to progress indicator segment 306 is textually displayed in the operation
information window 326 shown in Figure 3a. As shown in Figure 3b, summary information
describing a pending computer operation is similarly displayed through a user gesture such
as a mouse hover or right-click as the cursor is placed over the progress indicator segment
308 corresponding to the pending computer operation. In this embodiment, summary
information describing the pending operation (68% - Install Feature 'T') is appended to the
current operation summary and displayed in operation information window 328. As shown
in Figure 3c, information describing a completed computer operation is similarly displayed
through a user gesture as the cursor is placed over the progress indicator segment 312
corresponding to the completed computer operation. Completion detail information (Feature
'C installation complete) is appended to summary information describing the completed
operation (20% - Install Feature 'C), which in turn is appended to the current operation
summary and displayed in operation information window 330.

Figures 4a-d show an interactive progress bar as implemented to interactively modify
computer operations prior to their completion. In various embodiments, the interactive
progress bar 402 is implemented in a graphical user interface (GUI) and comprises a
plurality of progress indicator segments 404. As computer operations are completed, the
details of their completion status are entered into a computer operation log and indexed to
their corresponding progress indicator segments. As increments of progress are achieved,
completion progress indicator 424 is updated to textually reflect the percentage of completed
computer operations. Concurrently, the slider bar 422 progresses from left to right, a
proportionate amount of the completed operations area of the progress indicator bar changes
its appearance (e.g., from white to green), and the uncompleted operations area 420 is reduced accordingly.

In one embodiment, a summary list of computer operations is displayable through a user gesture as the cursor is placed over the progress indicator segment 436 corresponding to the last computer operation to be completed. As shown in Figure 4a, the operations summary list is appended to the current operation displayed in the operation information window 432. In this embodiment, the position of slider bar 422 relative to progress indicator segment 406 indicates that computer operations are 44% complete. Cross-referencing the current completion status 424 of 44% to the operations summary list displayed in operation information window 432 indicates that the current computer operation is to refresh the browser. Further examination of the operations summary list displayed in operation information window 432 indicates that an operation is pending to close applications at 88% completion, followed by a pending system reboot operation at 96% completion.

If it is decided that a system reboot is undesirable, determining which preceding computer operations require the reboot can be accomplished by displaying detail information for the range of affected computer operations as shown in Figure 4b. In this embodiment, a user gesture such as a mouse click-and-drag is used to highlight the progress indicator segments 438 corresponding to the selected range of computer operations. Detail information for the range of operations is then appended to operation summary information describing the range of operations, which in turn is appended to the current operation summary and displayed in operation information window 434. Examination of the operation detail information indicates that the system reboot is required if it is decided to add Feature T during installation of Feature 'C' at 20% of completion. Therefore, a decision to not add Feature T during installation of Feature 'C' at 20% of completion would remove the need for the pending operation to close applications at 88% completion and the pending system reboot operation at 96% completion.

As shown in Figure 4c, if it is decided to remove Feature T from the current list of computer operations before all pending computer operations are completed, the slider bar 422 is moved through user gesture, right-to-left, while viewing operation information
window 436. Movement of the slider bar 422 right-to-left ceases once "20% - Install Feature C" is displayed as the current operation in the operation information window 436. Once the slider bar 422 is positioned underneath the progress indicator segment 416, user dialog box 402 opens and asks the user whether Feature "I" should be installed, noting that choosing "Yes" will require a system reboot at 96% completion. If the user chooses "No" 404, then the user is prompted to press the restart button 406.

As a result of pressing the restart button 406, operations that were previously completed subsequent to the current operation (20% - Install Feature 'C') are reversed and the operations are restarted beginning with the current computer operation. Once the operations are restarted, supplemental operation detail information 438 is appended to the current operation summary information operation information window 436 informing the user that the close applications and system reboot operations have been removed from the operation list. Concurrently, the current completion status 424 is reduced to 20% and the area of the progress indicator bar previously indicating completed operations is now denoted as "reversed".

A revised summary list of computer operations is now displayable through a user gesture as the cursor is placed over the progress indicator segment 436 corresponding to the last computer operation to be completed. As shown in Figure 4d, the revised operations summary list appended to the current operation (Installing Feature 'C') displayed in the operation information window 440 no longer contains the close applications or system reboot operations. It will be appreciated by those of skill in the art that the ability to modify a predetermined computer operation before the remaining operations are completed is advantageous, especially when the operations are large in number or time consuming to complete.

Figure 5 is a generalized flow chart showing an implementation of an interactive progress bar 500 to interactively modify computer operations. In various embodiments, an interactive progress indicator bar is implemented in a graphical user interface (GUI) and comprises a plurality of progress indicator segments. As computer operations are completed, the details of their completion status are entered into a computer operation log and indexed to their
corresponding progress indicator segments. As increments of progress are achieved, a
completion progress indicator is updated to textually reflect the percentage of completed
computer operations.

In this embodiment, computer operations are begun in step 502 and the completion status of
the computer operations is monitored by observing the interactive progress bar in step 504.
If it is determined in step 506 to cease computer operations, then computer operations are
ended in step 534. Otherwise, it is then determined in step 508 if information relating to a
predetermined computer operation is to be viewed. If it is determined to not view
information relating to a predetermined computer operation, then observation of the
interactive progress bar continues beginning with step 504.

However, if it is determined in step 508 to view information relating to a predetermined
computer operation, then a corresponding progress indicator segment is selected in step 510
and a level of computer operation detail is chosen in step 512. If a summary level of
information is chosen in step 512, then a summary list of computer operations is displayed in
step 514 through a first user gesture such as a mouse hover or right-click as the cursor is
placed over the last progress indicator segment. Once review of the computer operation
summary list is completed, observation of the interactive progress bar continues, beginning
with step 504. If detail information for a predetermined range of computer operations is
chosen in step 512, then a first user gesture such as a mouse click-and-drag is used to
highlight the progress indicator segments corresponding to the selected range of computer
operations. Detail information for the range of operations is then displayed in step 616 using
a second user gesture, such as selecting a menu command displayed as the result of a mouse
right-click. Once review of the detail information for the range of computer operations is
complete, observation of the interactive progress bar continues, beginning with step 504.

If detail information for a predetermined computer operation is chosen in step 612, then the
detail information is displayed in step 518 through a user gesture such as a mouse right-click
as the cursor is placed over its corresponding progress indicator segment. Once review of
the detail information is complete, it is then determined in step 520 whether the
predetermined computer operation is to be modified. If a decision is made to not modify the
predetermined computer operation, then observation of the interactive progress bar continues, beginning with step 504.

Otherwise, modifications are made to the predetermined computer operation in step 522 as described in greater detail herein. Once modifications are made to the predetermined computer operation in step 522, it is determined in step 528 whether computer operations are to be restarted. If it is decided to not restart computer operations, then observation of the interactive progress bar continues, beginning with step 504. Otherwise, previously completed computer operations that are subsequent to the modified operation are reversed in step 530. Once the previously completed operations are reversed, computer operations are restarted in step 532, beginning with the modified computer operation. Observation of the interactive progress bar then continues, beginning with step 504.

The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated. Having thus described the invention of the present application in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.

For the avoidance of doubt, the term "comprising", as used herein throughout the description and claims is not to be construed as meaning "consisting only of."
CLAIMS

1. A computer-implementable method for controlling a plurality of computer operations within a graphical user interface, comprising:
 - representing the status of a plurality of computer operations using at least one graphical progress display;
 - displaying the graphical progress display as a plurality of graphical status elements, the plurality of graphical status elements being related to the plurality of computer operations;
 - enabling selection of at least one of the plurality of graphical status elements; and
 - enabling interaction with the selected graphical status element to allow modification of computer operations related to the graphical status elements.

2. The method of claim 1, wherein the at least one graphical progress display comprises a progress bar.

3. The method of claim 2, wherein the graphical progress bar comprises graphical controls operable to select a graphical status element for:
 - reversing indexed computer operations that have been completed;
 - modifying indexed computer operations; and
 - restarting the indexed computer operations.

4. The method of any preceding claim, wherein the plurality of graphical status elements are configurable to display a completion status corresponding to associated computer operations.

5. The method of any preceding claim, wherein the interaction with the information associated with the plurality of indexed computer operations is performed before the plurality of computer operations are completed.
6. The method of claim 5, wherein the interaction with the information associated with an indexed computer operation comprises a dependent interaction with at least one other indexed computer operation.

7. A system for controlling a plurality of computer operations comprising:
 a processor;
 a data bus coupled to the processor; and
 a computer-readable medium embodying computer program code, the computer-readable medium being coupled to the data bus, the computer program code interacting with a plurality of computer operations and comprising instructions executable by the processor and configured for:
 representing the status of a plurality of computer operations using at least one graphical progress display;
 displaying the graphical progress display as a plurality of graphical status elements, the plurality of graphical status elements being related to the plurality of computer operations;
 enabling selection of at least one of the plurality of graphical status elements; and
 enabling interaction with the selected graphical status element to allow modification of computer operations related to the graphical status elements.

8. The system of claim 7, wherein the at least one graphical progress display comprises a progress bar.

9. The system of claim 8, wherein the graphical progress bar comprises graphical controls operable to select a graphical status element for:
 reversing indexed computer operations that have been completed;
 modifying indexed computer operations; and
 restarting the indexed computer operations.

10. The system of any of claims 7 to 9, wherein the plurality of graphical status elements are configurable to display a completion status corresponding to associated computer operations.
11. The system of any of claims 7 to 10, wherein the interaction with the information associated with the plurality of indexed computer operations is performed before the plurality of computer operations are completed.

12. The system of claim 11, wherein the interaction with the information associated with an indexed computer operation comprises a dependant interaction with at least one other indexed computer operation.

13. A computer-usable medium embodying computer program code, the computer program code comprising computer executable instructions configured for:
 representing the status of a plurality of computer operations using at least one graphical progress display;
 displaying the graphical progress display as a plurality of graphical status elements, the plurality of graphical status elements being related to the plurality of computer operations;
 enabling selection of at least one of the plurality of graphical status elements; and
 enabling interaction with the selected graphical status element to allow modification of computer operations related to the graphical status elements.

14. The computer usable medium of claim 13, wherein the at least one graphical progress display comprises a progress bar.

15. The computer usable medium of claim 14, wherein the graphical progress bar comprises graphical controls operable to select a graphical status element for:
 reversing indexed computer operations that have been completed;
 modifying indexed computer operations; and
 restarting the indexed computer operations.

16. The computer usable medium of claim 13, 14 or 15, wherein the plurality of graphical status elements are configurable to display a completion status corresponding to associated computer operations.
17. The computer usable medium of any of claims 13 to 16, wherein the interaction with the information associated with the plurality of indexed computer operations is performed before the plurality of computer operations are completed.

18. The computer usable medium of claim 17, wherein the interaction with the information associated with an indexed computer operation comprises a dependant interaction with at least one other indexed computer operation.

19. The computer usable medium of any of claims 13 to 18, wherein the computer executable instructions are deployable to a client computer from a server at a remote location.

20. The computer usable medium of any of claims 13 to 19, wherein the computer executable instructions are provided by a service provider to a customer on an on-demand basis.
FIGURE 1a
(Prior Art)

FIGURE 1b
(Prior Art)

FIGURE 1c
(Prior Art)

FIGURE 1d
(Prior Art)
FIGURE 4a

Interactive Progress Bar 402

Current Operation:
- Refreshing Browser

Operation Summary:
- 20% - Install Feature 'C'
- 23% - Install Feature 'D'
- 40% - Install Feature 'G'
- 44% - Refresh Browser
- 52% - Install Feature 'H'
- 60% - Install Feature 'I'
- 68% - Register Services
- 76% - Delete Temp Files
- 88% - Close Applications
- 96% - System Reboot
- 100% - Completed

FIGURE 4b

Interactive Progress Bar 402

Current Operation:
- Refreshing Browser

Pending Operation Detail:
- 88% - Close Applications
- Action required for System Reboot
- 96% - System Reboot
- Action required for Feature 'I'
- Feature 'I' was added to the process at 20%
FIGURE 4c

FIGURE 4d