发明名称
一种紫外光固化涂料及其制备方法

摘要
本发明涉及紫外光固化涂料，特指一种紫外光固化涂料及其制备方法，具体的讲是将有机表面改性的纳米粘土添加到以环氧丙烯酸酯为预聚物的紫外光固化涂料中，制得一种纳米粘土/紫外光固化涂料。它具体包括预聚物环氧丙烯酸酯、活性稀释剂、光引发剂、流平剂、消泡剂和纳米粘土，涂料各组分的质量组成为：环氧丙烯酸酯40～60重量份；活性稀释剂30～50重量份；光引发剂2～5重量份；纳米粘土1～7重量份；流平剂0.02～0.5重量份；消泡剂0.02～0.5重量份。本发明制得的紫外光固化涂料具有良好的柔韧性、硬度、附着力和耐冲击力。
1. 一种紫外光固化涂料，其特征在于：由预聚物环氧丙烯酸酯、活性稀释剂、光引发剂、流平剂、消泡剂和改性纳米粘土组成，其中环氧丙烯酸酯 40～60 重量份；活性稀释剂 30～50 重量份；光引发剂 2～5 重量份；纳米粘土 1～7 重量份；流平剂 0.02～0.5 重量份；消泡剂 0.02～0.5 重量份。

2. 如权利要求 1 所述的一种紫外光固化涂料，其特征在于：所述改性纳米粘土的制备方法如下：在温度为 55℃ 下，向纳米粘土中加入氯硅烷，其中氯硅烷与纳米粘土的质量比为 0.05～0.25：1，浸渍 1～5 天，加热蒸出未反应的氯硅烷并回收，再将纳米粘土暴露在空气中 2～24 小时，粉碎，得到改性纳米粘土粉体。

3. 如权利要求 2 所述的一种紫外光固化涂料，其特征在于：所述纳米粘土是指纳米凹凸棒石、纳米蒙脱石、纳米高岭土、纳米海泡石和纳米硅灰石中的一种。

4. 如权利要求 2 所述的一种紫外光固化涂料，其特征在于：所述氯硅烷是指甲基三氯硅烷、二甲基氯硅烷、三甲基氯硅烷、苯基二氯硅烷、二苯基二氯硅烷、二苯基氯硅烷、苯基三氯硅烷、苯基二氯硅烷、苯基二氯硅烷和丙烯基三氯硅烷中的一种。

5. 如权利要求 1 所述的一种紫外光固化涂料，其特征在于：所述的活性稀释剂是由 A、B 两部分组成，其中 A 组份为乙二醇丁醚，B 组份为丙烯酸甲酯、丙烯酸、丙烯酸丁酯、苯乙烯和甲基丙烯酸甲酯中的一种，A 组份与 B 组份的质量比为 0.5～1：1。

6. 如权利要求 1 所述的一种紫外光固化涂料，其特征在于：所述光引发剂是指 2-羟基-2-甲基-1-苯基-1-丙酮（D-1173）、1-羟基环己基苯乙烯（I-184）、2, 4, 6-三甲基苯甲酰基-二苯基氧化磷（TPO）、二苯甲酮（BP）、苯基双 (2, 4, 6-三甲基苯甲酰基) 氧化磷（819）和 4-苯基二苯甲酮（BPZ）中的一种。

7. 如权利要求 1 所述的一种紫外光固化涂料，其特征在于：所述流平剂是指有机硅类或丙烯酸酯类流平剂。

8. 如权利要求 1 所述的一种紫外光固化涂料，其特征在于：所述消泡剂是指有机硅类消泡剂。

9. 如权利要求 1 所述的一种紫外光固化涂料的制备方法，包括如下步骤：

(1) 改性纳米粘土的制备：
在温度为 55℃ 下，向纳米粘土中加入氯硅烷，其中氯硅烷与纳米粘土的质量比为 0.05～0.25：1，浸渍 1～5 天，加热蒸出未反应的氯硅烷并回收，再将纳米粘土暴露在空气中 2～24 小时，粉碎，得到改性纳米粘土粉体。

(2) 涂料的制备：
按比例依次加入预聚物、活性稀释剂、光引发剂、流平剂、消泡剂和步骤 1 所得的改性纳米粘土，分散 0.5～3 小时，制得纳米粘土 / 光固化涂料，将制得的涂料均匀的涂覆在基材上，然后进行紫外光固化。
一种紫外光固化涂料及其制备方法

技术领域

【0001】本发明涉及紫外光固化涂料，具体是指将有机表面改性的纳米粘土添加到以环氧丙烯酸酯为预聚物的紫外光固化涂料中，制得一种纳米粘土/紫外光固化涂料。

背景技术

【0002】紫外光固化涂料作为一种环保节能型涂料，它具有固化速度快、固化时无溶剂挥发、涂层性能优异等优点，因而近年来受到人们的广泛关注。工业上，紫外光固化涂料应用广泛的低聚物主要是环氧丙烯酸酯和聚氨酯丙烯酸酯两大类，其中环氧丙烯酸酯是目前国内光固化行业中消耗量最大的一类低聚物，环氧丙烯酸酯具有优异的综合性能，既具有环氧树脂的高模量、高强度、耐化学性和优良防腐蚀性，又兼具丙烯酸树脂光泽、丰满度和耐候性好等特点，但是环氧丙烯酸酯类涂料经光固化后收缩率大，产生收缩应力，导致涂膜性脆，附着力差，耐冲击力差，以及涂膜的柔韧性差和硬度低等缺点，使其应用领域受到极大限制。中国专利CN101851466A提出以多官能聚氨酯丙烯酸酯、环氧丙烯酸酯、活性稀释剂、光引发剂、其他助剂、纳米导电凹凸棒粉、硅烷偶联剂为原料制备一种抗静电耐磨的紫外光固化涂料，但是，在制备过程中加入的纳米导电凹凸棒是亲水性，在有机介质中难以均匀分散。只通过简单的搅拌混合，无法保证无机纳米导电凹凸棒能均匀地分散在涂料中，导致涂料的稳定性得不到保障。中国专利CN101255219B公开了一种紫外光固化丙烯酸酯/改性蒙脱土纳米复合材料的制备方法，其技术方案是首先在冰水浴和惰性氛围下合成丙烯酸酯改性剂，然后用长链烷基季铵盐对蒙脱土进行改性，再用带有丙烯酸酸的改性剂对蒙脱土表面进行修饰，最后把表面修饰的蒙脱土与丙烯酸酯单体、丙烯酸酯低聚物和光引发剂混合，制备出紫外光固化丙烯酸酯/改性蒙脱土纳米复合材料，但是该方法对于蒙脱石改性的步骤繁琐，反应条件较苛刻，配料组分较多，成本增加，并且在工业上无法进行大规模的生产。

发明内容

【0003】本发明为了解决背景技术中所存在的涂膜硬度、柔韧性不足以及附着力和耐冲击力差的问题而提供了一种以改性纳米粘土作为填料，纳米粘土/紫外光固化涂料及其制备方法。

【0004】本发明的技术方案是首先对纳米粘土进行改性，得到改性纳米粘土，然后将其添加到涂料中，制得一种性能优良、硬度、附着力和耐冲击力强的紫外光固化涂料，它具体包括预聚物环氧丙烯酸酯、活性稀释剂、光引发剂、流平剂、消泡剂和纳米粘土，涂料各组分的质量组成为：环氧丙烯酸酯40～60重量份，活性稀释剂30～50重量份，光引发剂2～5重量份，纳米粘土1～7重量份，流平剂0.02～0.5重量份，消泡剂0.02～0.5重量份。

【0005】本发明的特征步骤如下：

1、改性纳米粘土的制备：

在温度为50℃下，向纳米粘土中加入氯硅烷，其中氯硅烷与纳米粘土的质量比为
0.05~0.25:1，浸渍1~5天，加热蒸出未反应的氯硅烷并回收，再将纳米粘土暴露在空气中2~24小时，粉碎，得到改性纳米粘土粉体。

【0006】涂料的制备：
按比例依次加入预聚物、活性稀释剂、光引发剂、流平剂、消泡剂和步骤1所得的改性纳米粘土，分散0.5~3小时，制得纳米粘土/光固化涂料，将制得的涂料均匀的涂覆在基材上，然后进行紫外光固化。

【0007】步骤1所述的纳米粘土是指纳米凹凸棒石、纳米蒙脱石、纳米高岭土、纳米海泡石、纳米硅灰石中的一种。

【0008】步骤1所述的氯硅烷是指甲基三氯硅烷、二甲基氯硅烷、三甲基氯硅烷、苯基三氯硅烷、二苯基氯硅烷、三苯基氯硅烷、乙基三氯硅烷、十二烷基三氯硅烷、二甲基乙烯基氯硅烷和丙烯基三氯硅烷中的一种。

【0009】步骤2中所描述的预聚物是指环氧丙烯酸酯；所述的活性稀释剂是由A、B两部分组成，其中A组份为乙二醇丁醚，B组份为丙烯酸甲酯、丙烯酸、丙烯酸丁酯、苯乙烯、甲基丙烯酸甲酯中的一种，A/B的质量比为0.5~1:1。

【0010】步骤2中所描述的光引发剂是指2-羟基-2-甲基-1-苯基-1-丙酮(D-1173)、1-羟基环已基苯乙酮(I-184)、2,4,6-三甲基苯甲酰基-二苯基氧化磷(TPO)、二苯甲酰甲基双(2,4,6-三甲基苯甲酰基)氧化磷(819)和4-苯基二苯甲酰甲基(PhBZ)中的一种。

【0011】步骤2中所描述的流平剂是指有机硅类或丙烯酸酯类流平剂。

【0012】步骤2中所描述的消泡剂是指有机硅类消泡剂。

【0013】本发明的优点在于：
1. 本发明将氯硅烷作为纳米粘土的改性剂，氯硅烷与纳米粘土所含的结构水、以及纳米粘土表面吸附空气中的水发生水解生成盐酸和硅烷，盐酸能使孔道内碳酸盐类胶结物溶出，除去分布于纳米粘土孔道中的杂物，使孔道疏松；其次，由于粘土所含的阳离子可交换性，能够选择性地置换出纳米粘土孔间部分K⁺、Na⁺、Ca²⁺和Mg²⁺等离子，增大孔容积；硅烷能够改性纳米粘土，使纳米粘土由亲水性转为亲油性，在活化纳米粘土的同时，对纳米粘土进行改性，提高了粘结性能，节省时间。

【0014】2. 本发明将改性纳米粘土作为填料，添加到以环氧丙烯酸酯为预聚物的紫外光固化涂料中，能够显著地改善涂料的耐冲击性，提高其柔韧性和硬度。

【0015】3. 由于纳米凹凸棒石特殊的棒状结构，在一定条件下它可以起到应力集中点的作用，使得纳米凹凸棒石相互的基体发生局部屈服，吸收较多的能量，从而使膜的断裂韧性得到提高。

具体实施方式

【0016】下面结合实施例和比较例，对本发明作进一步的描述，但不局限本发明的范围：

实施例1
1. 改性纳米凹凸棒石的制备：
在温度为5℃下，向100克纳米凹凸棒石中加入5克的二甲基氯硅烷，浸渍1天，加热蒸出未反应的二甲基氯硅烷并回收，再将纳米凹凸棒石暴露在空气中2小时，粉碎，得到改性
纳米凹凸棒石。

[0017] 2. 涂料的制备与紫外光固化：

有效成分的原料质量组成为：

预聚物：40 克；
活性稀释剂（A:B=0.5:1）：30 克；
光引发剂：5 克；
改性纳米凹凸棒石：1 克；
流平剂 ETA-710：0.02 克；
消泡剂 BYK088：0.02 克。

[0018] 其制备方法是：

将 40 克的预聚物环氧丙烯酸酯，30 克的活性稀释剂（由 10 乙二醇丁醚和 20 克丙烯酸丁酯组成），5 克的光引发剂 I-184，0.02 克的流平剂 ETA-710 和 0.02 克的消泡剂 BYK088，搅拌混合均匀，加入 1 克改性纳米凹凸棒石搅拌 0.5 小时，得到紫外光固化涂料。

[0019] 将基材打磨光亮，用水冲洗干净，烘干后取出，然后将上述配制好的涂料均匀的涂覆在基材上，接着放在紫外光固化机的传送带上进行光固化，制得涂层厚度为 25 微米的漆膜。

[0020] 3. 实施例 2

1. 改性蒙脱石的制备：

在温度为 50℃下，向 200 克蒙脱石中加入 50 克的二苯基氯硅烷，浸渍 5 天，加热蒸出未反应的二苯基氯硅烷并回收，再将蒙脱石暴露在空气中 24 小时，粉碎，得到改性蒙脱石。

[0021] 2. 涂料的制备与紫外光固化：

有效成分的原料质量组成为：

预聚物：60 克；
活性稀释剂（A:B=1:1）：50 克；
光引发剂：5 克；
改性纳米蒙脱石：3 克；
流平剂 ETA-723：0.5 克；
消泡剂 H-215：0.5 克。

[0022] 将 60 克的预聚物环氧丙烯酸酯，50 克的活性稀释剂（由 25 克的活乙二醇丁醚和 25 克丙烯酸丁酯组成），5 克的光引发剂 I-1173，0.5 克的流平剂 ETA-723 和 0.5 克的消泡剂 H-215，搅拌混合均匀，加入 3 克改性纳米蒙脱石搅拌 3 小时，得到紫外光固化涂料。

[0023] 将基材打磨光亮，用水冲洗干净，烘干后取出，然后将配制好的涂料均匀的涂覆在基材上，接着放在紫外光固化机的传送带上进行光固化，制得涂层厚度为 25 微米的漆膜。

[0024] 实施例 3

1. 改性纳米高岭土的制备：

在温度为 25℃下，向 200 克纳米高岭土中加入 20 克的三苯基氯硅烷，浸渍 2 天，加热蒸出未反应的三苯基氯硅烷并回收，再将纳米高岭土暴露在空气中 8 小时，粉碎，得到改性纳米高岭土。
2. 涂料的制备与紫外光固化：

有效成分的原料质量组成为：

预聚物：50克
活性稀释剂(A:B=0.8:1)：40克
光引发剂：2克
改性纳米高岭土：5克
流平剂CFC-46：0.08克
消泡剂BYK-A530：0.16克。

将50克的预聚物环氧丙烯酸酯，40克的活性稀释剂由(17.78克的乙二醇丁醚和22.22克苯乙烯组成)，2克的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化磷(TPO)，0.08克的流平剂CFC-46和0.16克的消泡剂BYK-A530，搅拌混合均匀，加入5克改性纳米高岭土搅拌1小时，得到紫外光固化涂料。

将基材打磨光亮，用水冲洗干净，烘干后取出。然后将配制好的涂料均匀地涂覆在基材上，接着放在紫外光固化机的传送带上进行光固化，制得涂层厚度为25微米的漆膜。

实施例4

1. 改性纳米海泡石的制备：

在温度为30℃下，向200克纳米海泡石中加入30克的环己基三氯硅烷，浸渍3天，加热蒸出未反应的环己基三氯硅烷并回收，再将纳米海泡石暴露在空气中12小时，粉碎，得到改性纳米海泡石。

2. 涂料的制备与紫外光固化：

有效成分的原料质量组成为：

预聚物：40克
活性稀释剂(A:B=0.6:1)：35克
光引发剂：5克
改性纳米海泡石：7克
流平剂CFC-60LP：0.12克
消泡剂BYK141：0.24克。

将40克的预聚物环氧丙烯酸酯，35克的活性稀释剂(由13.13克的乙二醇丁醚和21.87克的丙烯酸甲酯组成)，5克的光引发剂二苯甲酰基过氧化物，0.12克的流平剂CFC-60LP和0.24克的消泡剂BYK141，搅拌混合均匀，加入7克改性纳米海泡石搅拌1.5小时，得到紫外光固化涂料。

将基材打磨光亮，用水冲洗干净，烘干后取出。然后将配制好的涂料均匀地涂覆在基材上，接着放在紫外光固化机的传送带上进行光固化，制得涂层厚度为25微米的漆膜。

实施例5

1. 改性纳米硅灰石的制备：

在温度为35℃下，向200克纳米硅灰石中加40克的十二烷基三氯硅烷，浸渍3天，加热蒸出未反应的十二烷基三氯硅烷并回收，再将纳米硅灰石暴露在空气中16小时，粉碎，得到改性纳米硅灰石。

2. 涂料的制备与紫外光固化：
说明 书

有效成分的原料质量组成为：

预聚物： 40 克；

活性稀释剂（A :B=0.5:1）： 40 克；

改性纳米硅石： 2 克；

光引发剂： 5 克；

流平剂 KEPER-153： 0.18 克；

消泡剂 SM803： 0.36 克。

[0034] 将 40 克的预聚物环氧丙烯酸酯、40 克的活性稀释剂（由 13.33 克乙二醇丁醚和 26.67 克甲基丙烯酸甲酯组成）、2 克的光引发剂苯基双 (2,4,6-三甲基苯甲酰基) 氧化磷 (819)、0.18 克的流平剂 KEPER-153 和 0.36 克的消泡剂 SM803，搅拌混合均匀，加入 5 克改性纳米硅石搅拌 2 小时，得到紫外光固化涂料。

[0035] 将基材打磨光亮，用水冲洗干净，烘干后取出。然后将配制好的涂料均匀的涂覆在基材上，接着放在紫外光固化机的传送带上进行光固化，制得涂层厚度为 25 微米的漆膜。

[0036] 实施例 6

1. 改性纳米凹凸棒石的制备：

在温度为 40℃下，向 200 克纳米凹凸棒石中加 50 克的丙烯基三氯硅烷，浸渍 4 天，加热蒸出未反应的丙烯基三氯硅烷并回收，再将纳米凹凸棒石暴露在空气中 20 小时，粉碎，得到改性纳米凹凸棒石。

[0037] 2. 涂料的制备与紫外光固化：

有效成分的原料质量组成为：

预聚物： 40 克；

活性稀释剂（A :B=0.9:1）： 30 克；

光引发剂： 4 克；

改性纳米凹凸棒石： 5 克；

流平剂 BYK358N： 0.15 克；

消泡剂 BYK023： 0.35 克。

[0038] 将 40 克的预聚物树脂环氧丙烯酸酯，30 克活性稀释剂（由 14.21 克乙二醇丁醚和 15.79 克丙烯酸组成），4 克的光引发剂 4-苯基二苯甲酰基 (PBZ)，0.15 克的流平剂 BYK358N 和 0.35 克的消泡剂 BYK023，搅拌混合均匀，加入 5 克改性纳米凹凸棒石搅拌 2.5 小时，得到紫外光固化涂料。

[0039] 将基材打磨光亮，用水冲洗干净，烘干后取出，然后将配制好的涂料均匀的涂覆在基材上，接着放在紫外光固化机的传送带上进行光固化，制得涂层厚度为 25 微米的漆膜。

[0040] 比较例 1

在比较例 1 中，去掉实施例 1 中的改性纳米凹凸棒石，其他操作与实施例 1 相同，具体步骤如下：

有效成分的原料质量组成为：

预聚物： 40 克；

活性稀释剂： 30 克；

光引发剂： 5 克；
流平剂 ETA-710: 0.02 克；
消泡剂 BYK088: 0.02 克。

[0041] 将 40 克的预聚物环氧丙烯酸酯, 30 克的活性稀释剂由 (由 10 克乙二醇丁醚和 20 克丙烯酸丁酯组成), 5 克的光引发剂 I-184, 0.02 克的流平剂 ETA-710 和 0.02 克的消泡剂 BYK088 搅拌 0.5 小时, 得到紫外光固化涂料。

[0042] 将基材打磨光亮, 用水冲洗干净, 烘干后取出。然后将上述配制好的涂料均匀的涂覆在基材上, 接着放在紫外光固化机的传送带上进行光固化, 制得涂层厚度为 25 微米的涂膜。

[0043] 比较例 2

在比较例 2 中, 将未改性的纳米凹凸棒石添加到涂料中, 其他操作与实施例 1 相同, 具体步骤如下:
有效成分的原料质量组成为:
预聚物: 40 克；
活性稀释剂: 30 克；
光引发剂: 5 克；
未改性纳米凹凸棒石: 1 克；
流平剂 ETA-710: 0.02 克；
消泡剂 BYK088: 0.02 克。

[0044] 将 40 克的预聚物环氧丙烯酸酯, 30 克的活性稀释剂由 (由 10 克乙二醇丁醚和 20 克丙烯酸丁酯组成), 5 克的光引发剂 I-184, 0.02 克的流平剂 ETA-710 和 0.02 克的消泡剂 BYK088 搅拌混合均匀, 加入 1 克未改性纳米凹凸棒石搅拌 0.5 小时, 得到紫外光固化涂料。

[0045] 将基材打磨光亮, 用水冲洗干净, 烘干后取出。然后将上述配制好的涂料均匀的涂覆在基材上, 接着放在紫外光固化机的传送带上进行光固化, 制得涂层厚度为 25 微米的涂膜。

[0046] 性能评价

下面通过性能试验对实验所得的紫外光固化涂膜进行性能评价, 试验结果如表 1 所示。

[0047] 采用 GB/T1732-1993 《漆膜耐冲击测定方法》测定标准, 重锤质量为 1 kg, 以不引起漆膜破坏的最大高度来表示, 单位为 kg·cm, 测定不同漆膜的耐冲击力。

[0048] 采用 GB/T6739-1996 《漆膜硬度铅笔测定方法》测定标准, 选用中华牌铅笔 (硬度范围 2B~6H), 测定不同漆膜的硬度。

[0049] 采用 GB/T9286-1998 《漆膜附着力测定方法》为测定标准, 测定不同涂膜的附着力。

[0050] 采用 GB/T1731-1993 《漆膜附着性测定法》为测定标准, 测定不同漆膜的柔韧性。

[0051] 由表 1 可以看出本发明所制备的纳米粘土 / 环氧丙烯酸酯紫外光固化涂料, 经光固化后形成漆膜的耐冲击力性能得到明显提高, 而且漆膜的稳定性性能较好。
<table>
<thead>
<tr>
<th></th>
<th>耐冲撃力(kg・cm)</th>
<th>硬度</th>
<th>附着力（划圈法）</th>
<th>柔韧性</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>30</td>
<td>3H</td>
<td>1</td>
<td>不脆裂</td>
</tr>
<tr>
<td>实施例 2</td>
<td>35</td>
<td>4H</td>
<td>1</td>
<td>不脆裂</td>
</tr>
<tr>
<td>实施例 3</td>
<td>40</td>
<td>3H</td>
<td>2</td>
<td>不脆裂</td>
</tr>
<tr>
<td>实施例 4</td>
<td>40</td>
<td>4H</td>
<td>1</td>
<td>不脆裂</td>
</tr>
<tr>
<td>实施例 5</td>
<td>45</td>
<td>3H</td>
<td>2</td>
<td>不脆裂</td>
</tr>
<tr>
<td>实施例 6</td>
<td>45</td>
<td>4H</td>
<td>1</td>
<td>不脆裂</td>
</tr>
<tr>
<td>比较例 1</td>
<td>15</td>
<td>2H</td>
<td>4</td>
<td>脆裂</td>
</tr>
<tr>
<td>比较例 2</td>
<td>20</td>
<td>2H</td>
<td>5</td>
<td>脆裂</td>
</tr>
</tbody>
</table>