Title: METHODS FOR GENERATING STEM CELL-DERIVED β CELLS AND USES THEREOF

Abstract: Disclosed herein are methods for generating SC-β cells, and isolated populations of SC-β cells for use in various applications, such as cell therapy.

![Graph showing relative stimulated index](image-url)

Published: 2016/100909

with international search report (Art. 21(3))
METHODS FOR GENERATING STEM CELL-DERIVED β CELLS AND USES THEREOF

BACKGROUND OF THE INVENTION

Diabetes affects more than 300 million people worldwide according to the International Diabetes Federation. Type 1 diabetes and type 2 diabetes involve β cell destruction and/or β cell dysfunction. Diabetic patients, particularly those suffering from type 1 diabetes, could potentially be cured through transplantation of β cells. While cadaveric human islet transplantation can render patients insulin independent for 5 years or longer, such approach is limited due to the scarcity and quality of donor islets (Bellin et al., 2012). Generating an unlimited supply of human β cells from stem cells could provide therapy to millions of patients as only a single cell type, the β cell, likely needs to be produced, and the mode of delivery is well understood: transplantation to a vascularized location within the body with immunoprotection. In addition, screening to identify novel drugs that improve β cell function, survival, or proliferation is also delayed due to limited islet supply and variability resulting from different causes of death, donor genetics, and other aspects in their isolation. As such, a steady, uniform supply of stem-cell-derived β cells would offer a useful drug discovery platform for diabetes. Moreover, genetically diverse stem-cell-derived β cells could be used for disease modeling in vitro or in vivo.
SUMMARY OF THE INVENTION

There is a need for methods of generating stem cell-derived β (SC-β) cells. The present invention is directed toward solutions to address this need, in addition to having other desirable characteristics.

In accordance with an embodiment of the present invention, a method for generating stem cell-derived β (SC-β) cells is provided. The method includes contacting a cell population comprising endocrine progenitor cells or precursors under conditions suitable (e.g., with suitable agents and for a suitable time) to direct said cells to differentiate into SC-β cells with an effective amount of an agent that decreases the level and/or activity of c-Jun N-terminal kinase (JNK), thereby generating SC-β cells. SC-β cells produced by methods described herein may exhibit one or more improved characteristics (e.g., stimulation index) in comparison with cells produced by the same method in the absence of the JNK inhibitor.

In accordance with aspects of the present invention, the endocrine progenitor cells comprise PDX1+/NKX6.1+/NEUROD1+/insulin+/glucagon-/somatostatin- cells.

In accordance with aspects of the present invention, the cell precursors are selected from the group consisting of pluripotent stem cells, SOX17+ definitive endoderm cells, PDX1+ primitive gut tube cells, PDX1+/NKX6.1+ pancreatic progenitor cells, PDX1+/NKX6.1+/NEUROD1+ endocrine progenitor cells, and combinations thereof.

In accordance with aspects of the present invention, the endocrine progenitor cells are directed to differentiate into SC-β cells by contacting the endocrine progenitor cells under conditions that promote cell clustering with i) a transforming growth factor β (TGF-β) signaling pathway inhibitor and ii) a thyroid hormone signaling pathway activator to induce the in vitro maturation of at least some of the endocrine progenitor cells into SC-β cells.

In accordance with aspects of the present invention, the effective amount comprises a concentration between about 0.1 µM and about 110 µM.

In accordance with aspects of the present invention, the agent inhibits phosphorylation of JNK. In accordance with aspects of the present invention, the agent is SP600125. In accordance with aspects of the present invention, the agent decreases the level and/or activity of mitogen-activated protein kinase kinase 4 (MKK4).

In accordance with aspects of the present invention, between at least 5% and 65% of the endocrine cells in the population differentiate into SC-β cells.
In accordance with an embodiment of the present invention, an isolated SC-β cell or population thereof is provided. The SC-β cells exhibit a glucose stimulated insulin secretion (GS1S) response both \textit{in vitro} and \textit{in vivo}. In accordance with aspects of the present invention, an isolated SC-β cell or population thereof exhibits a stimulation index of between about 1.4 and about 2.4. In accordance with aspects of the present invention, an isolated SC-β cell or population thereof produces between approximately 300 uIU to about 4000 uIU per 30 minute incubation at a high glucose concentration.

In accordance with an embodiment of the present invention, a microcapsule comprising the isolated SC-β cell or population thereof encapsulated therein is provided.

In accordance with an embodiment of the present invention, a macroencapsulation device comprising the isolated SC-β cell or population thereof encapsulated therein is provided.

In accordance with an embodiment of the present invention, a cell line comprising an isolated SC-β cell is provided. The cell line stably expresses insulin.

In accordance with an embodiment of the present invention, an assay comprising an isolated SC-β cell or population thereof is provided. In accordance with an embodiment of the present invention, an assay comprising an SC-β cell line that stably expresses insulin is provided. The assays can be used for i) identifying one or more candidate agents which promote or inhibit a β cell fate selected from the group consisting of β cell proliferation, β cell replication, β cell death, β cell function, β cell susceptibility to immune attack, and β cell susceptibility to dedifferentiation or differentiation, and/or ii) identifying one or more candidate agents which promote the differentiation of at least one insulin-positive endocrine cell or a precursor thereof into at least one SC-β cell.

In accordance with an embodiment of the present invention, a method for the treatment of a subject in need thereof (e.g., in need of β cells) is provided. The method includes administering to a subject in need thereof an isolated population of SC-β cells, a microcapsule encapsulating an isolated population of SC-β cells, and/or a macroencapsulation device encapsulating the isolated population of SC-β cells. In accordance with an embodiment of the present invention, an isolated population of SC-β cells, a microcapsule comprising an isolated population of SC-β cells, or macroencapsulation device comprising the isolated population of SC-β cells is used for administering to a subject in need thereof. In accordance with aspects of the present invention, the subject has, or has an increased risk of developing diabetes or has, or has an increased risk of developing a metabolic disorder.
In accordance with an embodiment of the present invention, an artificial islet or pancreas comprising SC-β cells produced according to a method described herein.

These and other characteristics of the present invention will be more fully understood by reference to the following detailed description in conjunction with the attached drawings. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.

FIG. 1 is a graph demonstrating that SC-β cells generated by contacting endocrine progenitor cells directed to differentiate into SC-β cells with an exemplary agent that decreases the level and/or activity of c-Jun terminal kinase (JNK), e.g., JNK inhibitor SP600125, exhibit a greater stimulation index relative to SC-β cells generated by contacting endocrine progenitor cells directed to differentiate into SC-β cells in the absence of treatment with the JNK inhibitor. Stimulation index = [insulin@20mM glucose]/[insulin@2mM glucose]. Relative Stim Index = Stim Index/Stim Index of Control.

FIG. 2A is a schematic illustrating six stages of differentiation of human pluripotent stem cells to SC-β cells. hPSC = human pluripotent stem cell, DE = definitive endoderm cell, GT = gut tube cell, PP1 = pancreatic progenitor cell 1, PP2 = pancreatic progenitor cell 2, EN = endocrine progenitor cell, SC-β = stem cell-derived β cells.

FIG. 2B is a schematic illustrating an exemplary six step differentiation protocol for generating SC-β cells from pluripotent stem cells, as described further in Pagliuca et al. 2014 and PCT International Application No. PCT/US2014/041992.

FIG. 2C is a schematic illustrating an exemplary method for generating SC-β cells by adding a JNK inhibitor to Step 6 of the exemplary protocol shown in FIG. 2B.

The present invention is directed to generating SC-β cells, in particular SC-β cells that exhibit in vitro and in vivo function. More particularly, work described herein demonstrates that contacting endocrine progenitor cells progressing to SC-β cells in a directed differentiation protocol with an agent that decreases the level and/or activity of c-Jun terminal kinase (JNK) produces SC-β cells that exhibit a greater stimulation index relative to SC-β cells generated by the protocol in the absence of contact with the agent.
Some Definitions

"Differentiation" is the process by which an unspecialized ("uncommitted") or less specialized cell acquires the features of a specialized cell such as, for example, a pancreatic cell. A differentiated cell is one that has taken on a more specialized ("committed") position within the lineage of a cell. The term "committed", when applied to the process of differentiation, refers to a cell that has proceeded in the differentiation pathway to a point where, under normal circumstances, it will continue to differentiate into a specific cell type or subset of cell types, and cannot, under normal circumstances, differentiate into a different cell type or revert to a less differentiated cell type. As used herein, the lineage of a cell defines the heredity of the cell, i.e., which cells it came from and to what cells it can give rise. The lineage of a cell places the cell within a hereditary scheme of development and differentiation. A lineage-specific marker refers to a characteristic specifically associated with the phenotype of cells of a lineage of interest and can be used to assess the differentiation of an uncommitted cell to the lineage of interest.

As used herein, "markers", are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest. Differential expression means an increased level for a positive marker and a decreased level for a negative marker as compared to an undifferentiated cell. The detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest compared to other cells, such that the cell of interest can be identified and distinguished from other cells using any of a variety of methods known in the art.

As used herein, a cell is "positive" or "+" for a specific marker when the specific marker is sufficiently detected in the cell. Similarly, the cell is "negative" or "-" for a specific marker when the specific marker is not sufficiently detected in the cell. For example, positive by FACS is usually greater than 2%, whereas the negative threshold by FACS is usually less than 1%.

The process of differentiating pluripotent stem cells into functional pancreatic endocrine cells (i.e., SC-β cells) in vitro may be viewed in some aspects as progressing through six consecutive stages, as is shown in the exemplary protocol depicted in FIG. 2A. In this step-wise progression, "Stage 1" or "SI" refers to the first step in the differentiation process, the differentiation of pluripotent stem cells into cells expressing markers characteristic of definitive endoderm cells ("DE", "Stage 1 cells" or "SI cells"). "Stage 2" refers to the second step, the differentiation of cells expressing markers...
characteristic of definitive endoderm cells into cells expressing markers characteristic of
gut tube cells ("GT", "Stage 2 cells" or "S2 cells"). "Stage 3" refers to the third step, the
differentiation of cells expressing markers characteristic of gut tube cells into cells
expressing markers characteristic of pancreatic progenitor 1 cells ("PP1", "Stage 3 cells"
or "S3 cells"). "Stage 4" refers to the fourth step, the differentiation of cells expressing
markers characteristic of pancreatic progenitor 1 cells into cells expressing markers
characteristic of pancreatic progenitor 2 cells ("PP2", "Stage 4 cells" or "S4 cells").
"Stage 5" refers to the fifth step, the differentiation of cells expressing markers
characteristic of pancreatic progenitor 2 cells into cells expressing markers characteristic
of pancreatic endoderm cells and/or pancreatic endocrine progenitor cells ("EN", "Stage 5
cells" or "S5 cells"). "Stage 6" refers to the differentiation of cells expressing markers
characteristic of pancreatic endocrine progenitor cells into cells expressing markers
characteristic of pancreatic endocrine β cells ("SC-β cells", "Stage 6 cells" or "S6 cells").

It should be appreciated, however, that not all cells in a particular population progress
through these stages at the same rate, i.e., some cells may have progressed less, or more,
down the differentiation pathway than the majority of cells present in the population.

Characteristics of the various cell types associated with the stages shown in FIG.
2A are now described. "Definitive endoderm cells," as used herein, refers to cells which
bear the characteristics of cells arising from the epiblast during gastrulation and which
form the gastrointestinal tract and its derivatives. Definitive endoderm cells express at
least one of the following markers: FOXA2 (also known as hepatocyte nuclear factor 3β
("HNF3p")), GATA4, SOX17, CXCR4, Brachyury, Cerberus, OTX2, goosecoid, C-Kit,
CD99, and M\(\text{X1L1}\). Markers characteristic of the definitive endoderm cells include
CXCR4, FOXA2 and SOX17. Thus, definitive endoderm cells may be characterized by
their expression of CXCR4, FOXA2 and SOX17. In addition, depending on the length of
time cells are allowed to remain in Stage 1, an increase in HNF4\(\alpha\) may be observed.

"Gut tube cells," as used herein, refers to cells derived from definitive endoderm
that can give rise to all endodermal organs, such as lungs, liver, pancreas, stomach, and
intestine. Gut tube cells may be characterized by their substantially increased expression
of FINF4a over that expressed by definitive endoderm cells. For example, a ten to forty
fold increase in mRNA expression of HNF4\(\alpha\) may be observed during Stage 2.

"Pancreatic progenitor 1 cells," as used herein, refers to endoderm cells that give
rise to the esophagus, lungs, stomach, liver, pancreas, gall bladder, and a portion of the
duodenum. Pancreatic progenitor 1 cells express at least one of the following markers:
PDX1, FOXA2, CDX2, SOX2, and HNF4a. Pancreatic progenitor 1 cells may be characterized by an increase in expression of PDX1, compared to gut tube cells. For example, greater than fifty percent of the cells in Stage 3 cultures typically express PDX1.

"Pancreatic progenitor 2 cells," as used herein, refers to cells that express at least one of the following markers: PDX1, NKX6.1, HNF6, NGN3, SOX9, PAX4, PAX6, ISL1, gastrin, FOXA2, PTF1a, PROX1 and HNF4α. Pancreatic progenitor 2 cells may be characterized as positive for the expression of PDX1, NKX6.1, and SOX9.

"Pancreatic endocrine progenitor cells" or "endocrine progenitor cells" are used interchangeably herein to refer to pancreatic endoderm cells capable of becoming a pancreatic hormone expressing cell. Pancreatic endocrine progenitor cells express at least one of the following markers: NGN3; NKX2.2; NeuroD1; ISL1; PAX4; PAX6; or ARX. Pancreatic endocrine progenitor cells may be characterized by their expression of NKX2.2 and NeuroD1.

A "precursor thereof" as the term relates to a pancreatic endocrine progenitor cell refers to any cell that is capable of differentiating into a pancreatic endocrine progenitor cell, including for example, a pluripotent stem cell, a definitive endoderm cell, a gut tube cell, or a pancreatic progenitor cell, when cultured under conditions suitable for differentiating the precursor cell into the pancreatic pro endocrine cell.

"Pancreatic endocrine cells," as used herein, refer to cells capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, ghrelin, and pancreatic polypeptide. In addition to these hormones, markers characteristic of pancreatic endocrine cells include one or more of NGN3, NeuroD1, ISL1, PDX1, NKX6.1, PAX4, ARX, NKX2.2, and PAX6. Pancreatic endocrine cells expressing markers characteristic of β cells can be characterized by their expression of insulin and at least one of the following transcription factors: PDX1, NKX2.2, NKX6.1, NeuroD1, ISL1, HNF3α, MAFA, and PAX6.

The terms "stem cell-derived β cell" and "SC-β cell" are used interchangeably herein to refer to cells differentiated in vitro (e.g., from pluripotent stem cells) that display at least one marker indicative of a pancreatic β cell (e.g., PDX-1 or NKX6-1), expresses insulin, and display a GSIS response characteristic of an endogenous mature β cell both in vitro and in vivo. The GSIS response of the SC-β cells can be observed within two weeks of transplantation of the SC-β cell into a host (e.g., a human or animal). It is to be understood that the SC-β cells need not be derived (e.g., directly) from stem cells, as the methods of the disclosure are capable of deriving SC-β cells from any
endocrine progenitor cell that expresses insulin or precursor thereof using any cell as a
starting point (e.g., one can use embryonic stem cells, induced-pluripotent stem cells,
progenitor cells, partially reprogrammed somatic cells (e.g., a somatic cell which has been
partially reprogrammed to an intermediate state between an induced pluripotent stem cell
and the somatic cell from which it was derived), multipotent cells, totipotent cells, a
transdifferentiated version of any of the foregoing cells, etc, as the invention is not
intended to be limited in this manner). In some aspects, human cells are excluded that are
derived from human embryonic stem cells obtained exclusively by a method necessitating
the destruction of an embryo. The skilled artisan is well aware of such methods and how
to avoid them for the purposes of generating SC-β cells according to the methods of the
present invention.

Used interchangeably herein are "dl", "1d", and "day 1"; "d2", "2d", and "day
2", etc.. These number letter combinations refer to a specific day of incubation in the
different stages during the stepwise differentiation protocol of the instant application.

Methods for generating SC-β cells

In accordance with an example embodiment of the present invention, a method
for generating stem cell-derived β (SC-β) cells comprises contacting a cell population
comprising endocrine progenitor cells directed to differentiate into SC-β cells, or cell
precursors thereof, with an effective amount of an agent that decreases the level and/or
activity of c-Jun N-terminal kinase (JNK), thereby generating SC-β cells.

"Contacting", "contacting the cell" and any derivations thereof as used herein,
refers to any means of introducing an agent (e.g., nucleic acids, peptides, ribozymes,
antibodies, small molecules, etc.) into a target cell or an environment in which the cell is
present (e.g., cell culture), including chemical and physical means, whether directly or
indirectly. Contacting also is intended to encompass methods of exposing a cell,
delivering to a cell, or "loading" a cell with an agent by viral or non-viral vectors, and
wherein such agent is bioactive upon delivery. The method of delivery will be chosen for
the particular agent and use. Parameters that affect delivery, as is known in the medical
art, can include, inter alia, the cell type affected, and cellular location. In some aspects,
contacting includes administering the agent to a subject. In some aspects, contacting
refers to exposing a cell or an environment in which the cell is located (e.g., cell culture
medium) to at least one agent that decreases the level and/or activity of JNK.

In some aspects, the endocrine progenitor cells comprise
PDX1+/NKX6.1+/NEUROD 1+/insulin+/glucagon-/somatostatin- cells.
It is believed that SC-β cells generated by contacting endocrine progenitor cells (or their precursors) directed to differentiate into SC-β cells according to any protocol will exhibit improved in vitro and in vivo function when contacted with an agent that decreases the level and/or activity of c-Jun N-terminal kinase (JNK). As used herein, “directed to differentiate” refers to the process of causing a cell of a first cell type to differentiate into a cell of a second cell type.

Recently, two protocols for directing the differentiation of pluripotent stem cells into insulin-producing endocrine cells that express key markers of mature pancreatic β cells (e.g., SC-β cells) have been reported, each of which includes differentiating cells into endocrine progenitor cells that can be directed to differentiate into SC-β cells, as well as protocols for directing the pancreatic endocrine progenitor cells into SC-β cells, which can be used in the method disclosed herein for generating SC-β cells. First, a six-stage protocol for the large-scale production of functional human β cells using human pluripotent stem cells (hPSC) by sequential modulation of multiple signaling pathways in a three-dimensional cell culture system, without using any transgenes or genetic modification, was used to generate glucose-responsive, monohormonal insulin-producing cells that exhibited key β cell markers and β cell ultrastructure (see Pagliuca et al., 2014 and PCT International Application No. PCT/US2014/041992, both of which are incorporated herein by reference in their entirety). Pagliuca and colleagues reported that such cells mimicked the function of human islets in vitro and in vivo, and demonstrated the potential utility of such cells for in vivo transplantation to treat diabetes. Secondly, a seven-stage protocol that converts human embryonic stem cells (hESCs) into insulin-producing cells that expressed key markers of mature pancreatic β cells, such as MAFA, and displayed glucose-stimulated insulin secretion like that of human islets using static incubations in vitro was described (Rezania et al., 2014). Cells produced by such protocol, referred to as S7 cells, were found to rapidly reverse diabetics in mice within a little over a month.

In some aspects, the endocrine progenitor cells are directed to differentiate into SC-β cells by contacting the endocrine progenitor cells under conditions that promote cell clustering with i) a transforming growth factor β (TGF-β) signaling pathway inhibitor and ii) a thyroid hormone signaling pathway activator to induce the in vitro maturation of at least some of the endocrine progenitor cells into SC-β cells. In some aspects, the endocrine progenitor cells are optionally contacted with a protein kinase inhibitor (e.g., staurosporine).
In some aspects, the cell precursors are selected from the group consisting of pluripotent stem cells, SOX17+ definitive endoderm cells, PDX1+ primitive gut tube cells, PDX1+/NKX6.1+ pancreatic progenitor cells, PDX1+/NKX6.1+/NEUROD 1+ endocrine progenitor cells, and combinations thereof.

The methods of the present invention contemplate contacting cells (e.g., endocrine progenitor cells or precursors thereof) with effective amounts of one or more agents that decrease the level and/or activity of JNK. An "effective amount" of an agent (or composition containing such agent) refers to the amount sufficient to achieve a desired effect, e.g., when delivered to a cell or subject according to a selected administration form, route, and/or schedule. As will be appreciated by those of ordinary skill in this art, the absolute amount of a particular agent or composition that is effective may vary depending on such factors as the desired biological or pharmacological endpoint, the agent to be delivered, the target tissue, etc. Those of ordinary skill in the art will further understand that an "effective amount" may be contacted with cells or administered in a single dose, or the desired effect may be achieved by use of multiple doses. An effective amount of a composition may be an amount sufficient to reduce the severity of or prevent one or more symptoms or signs of a disorder (e.g., diabetes). In some aspects, the effective amount of the agent that decreases the level and/or activity of JNK comprises a concentration of between about 0.1 µM and about 110 µM. In some aspects, the effective amount of the agent comprises 1 µM. In some aspects, the endocrine progenitor cells (S5 cells) are contacted with 1 µM of SP600125 to generate SC-β cells exhibiting an improved in vitro or in vivo function.

\textit{c-Jun N-terminal Kinase (JNK) inhibitors}

The present invention contemplates using any agent that decreases the level and/or activity of JNK (also referred to herein as a "JNK inhibitor") in the method for generating SC-β cells. JNK inhibitors can be small organic or inorganic molecules; saccharides; oligosaccharides; polysaccharides; biological macromolecules, e.g., peptides, proteins, and peptide analogs and derivatives; peptidomimetics; nucleic acids and nucleic acid analogs and derivatives (including but not limited to microRNAs, siRNAs, shRNAs, antisense RNAs, a ribozymes, and aptamers); an extract made from biological materials such as bacteria, plants, fungi, or animal cells; animal tissues; naturally occurring or synthetic compositions; and any combinations thereof.

Exemplary JNK inhibitors include, but are not limited to, the JNK inhibitors of formula I as described in U.S. Patent No. 8,183,254; the benzothiazole derivatives
according to formula I and tautomers, geometrical isomers, enantiomers, diastereomers, racemates and pharmaceutically acceptable salts thereof described in U.S. Patent Application Publication No. 2009/0176762; a JNK inhibitor sequence, chimeric peptide, or nucleic acid described in U.S. Patent No. 6,610,820 and U.S. Patent Application Publication No. 2009/0305968, for example cell-permeable peptides that bind to JNK and inhibit JNK activity or c-Jun activation, including peptides having amino acid sequences of DTYRPKRPTT LNLFPQVPRSI QDT (SEQ ID NO:1); EEPHKHRPTTLRLTTLSAQD S (SEQ ID NO:2); TDQSREVQPF LNLTPPRKPR YTD (SEQ ID NO:3); or SDQAGLTTLR LTTPRHKHPE E (SEQ ID NO:4); c-Jun N-terminal kinase inhibiting compounds of formula I described in U.S. Patent No. 7,612,086; a JNK inhibitor of formula I described in PCX International Application Publication No. WO/201 1/01 8417; an agent that inhibits MKK4 as described herein (e.g., MKK4 inhibitors); an agent that inhibits JNK interacting protein (JIP) (see for example, Chen T, et al. Biochem J. 2009 May 13; 420(2):283-94, which is incorporated by reference, discloses small-molecules that disrupt the JIP-JNK interaction to provide an alternative approach for JNK inhibition); SP600125 (Anthra[1,9-cd]pyrazol-6(2H)-on 1,9-Pyrazoloanthrone) (Calbiochem., La Jolla, Calif.); a compound based on the 6,7-dihydro-5H-pyrrolo[1,2-alimidazole scaffold (e.g., ER-181304); SB203580; a selective inhibitor of JNK3 described in PCT International Application Publication WO 2010/039647; 7-(5-7V-Phenylaminopentyl)-2H-anthra[1,9-cd]pyrazol-6-one; 7-(7-7V-Benzoylaminohexyl)amino-2H-anthra[1,9-cd]pyrazol-6-one; and 7-(5-(p-Tolyloxy)pentyl)amino-2H-anthra[1,9-cd]pyrazol-6-one; a dominant negative form of JNK, e.g., a catalytically inactive JNK-1 molecule constructed by replacing the sites of activating Thrl 83 and Tyr1 85 phosphorylation with Ala and Phe respectively, which acts as a dominant inhibitor of the wild-type JNK-1 molecule as described in PCT International Application Publication No. WO 1996/036642; a JIP-1 polypeptide that binds JNK as described in U.S. Patent Publications 2007/0003517 and 2002/01 19135, including a peptide having the amino acid sequence SGDTYRPKRPTTLNLFPQVPRSQDTLN (SEQ ID NO:5). In some embodiments, the agent is SP600125.

In some aspects, a JNK inhibitor decreases the level and/or activity of JNK in cells contacted by at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% relative to the level or activity of JNK in the cells in the absence of contact with the JNK inhibitor. While not required, a JNK inhibitor can completely inhibit the level
and/or activity of JNK in the cells. It should be appreciated that the JNK inhibitors may
decrease the level and/or activity of JNK in any cell in the population in which endocrine
progenitor cells are differentiating into SC-β cells, including in the SC-β cells generated
in the population, endocrine progenitor cells or any precursors thereof.

In some aspects, an agent that decreases the level and/or activity of JNK by
inhibiting phosphorylation of JNK. It should be appreciated, however, that the agent may
act via any mechanism which results in decreased level and/or activity of JNK. For
example, the level and/or activity of JNK may be decreased by decreasing the level
and/or activity of mitogen-activated protein kinase kinase 4 (MKK4). MKK4, a member
of the MAP kinase family, directly phosphorylates and activates the c-Jun NH2-
terminal kinases (JNK), in response to cellular stresses and proinflammatory cytokines.

JNK is a member of the MAP kinase family and a key component of a stress activated
protein kinase signaling pathway. Accordingly, in some aspects the agent decreases the
level and/or activity of MKK4. Such agents may be referred to herein as MKK4
inhibitors. In some aspects, a MKK4 inhibitor decreases the level and/or activity of JNK
in cells contacted by at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or
95% relative to the level or activity of JNK in the cells in the absence of contact with the
JNK inhibitor.

It should be appreciated, as noted above, that the population of cells comprising
the endocrine progenitor cells contacted in accordance with the method may comprise
different cells types as the cells are differentiating into SC-β cells. Preferably, a
maximum amount of endocrine cells in the population contacted with a JNK inhibitor or
MKK4 inhibitor differentiate into SC-β cells. In some aspects, between at least 5% and
65% of the endocrine cells in the population differentiate into SC-β cells.

SC-β cells obtained by the method of generating SC-β cells

In accordance with an embodiment of the present invention, an isolated SC-β cell
or population thereof generated according to a method described herein is provided. The
isolated SC-β cell or population exhibits a GSIS response both in vitro and in vivo. The
isolated SC-β cell or population also exhibits at least one characteristic feature of a
mature endogenous β cell (e.g., monohormonality). In some aspects, an isolated SC-β
cell or population thereof exhibits a stimulation index of between about 1.4 and about 2.4.
In some aspects, an isolated SC-β cell or population thereof produces between
approximately 300 uIU to about 4000 uIU per 30 minute per 10⁶ total cells incubation at a
high glucose concentration.
The SC-β cells disclosed herein share many distinguishing features of native β cells, but are different in certain aspects (e.g., gene expression profiles). In some embodiments, the SC-β cell is non-native. As used herein, "non-native" means that the SC-β cells are markedly different in certain aspects from β cells which exist in nature, i.e., native β cells. It should be appreciated, however, that these marked differences typically pertain to structural features which may result in the SC-β cells exhibiting certain functional differences, e.g., although the gene expression patterns of SC-β cells differs from native β cells, the SC-β cells behave in a similar manner to native β cells but certain functions may be altered (e.g., improved) compared to native β cells. For example, a higher frequency of SC-β cells respond to 20 mM glucose compared to the frequency of native β cells. Other differences between SC-β cells and native β cells would be apparent to the skilled artisan based on the data disclosed herein.

The SC-β cells (e.g., human) generated according to the methods described herein may exhibit at least one of the following characteristics of an endogenous mature pancreatic β cell: i) a response to multiple glucose challenges that resembles the response of endogenous islets (e.g., at least one, at least two, or at least three or more sequential glucose challenges); ii) a morphology that resembles the morphology of an endogenous β cell; iii) packaging of insulin into secretory granules or encapsulated crystalline insulin granules; iv) a stimulation index of greater than at least 1.4; v) cytokine-induced apoptosis in response to cytokines; vi) enhanced insulin secretion in response to known antidiabetic drugs (e.g., secretagogues); vii) monohormonal, i.e., they do not abnormally co-express other hormones, such as glucagon, somatostatin or pancreatic polypeptide; viii) a low rate of replication; and ix) increased intracellular Ca²⁺ in response to glucose.

In accordance with an embodiment of the present invention, a microcapsule comprising the isolated SC-β cell or population thereof encapsulated therein is provided.

In accordance with an embodiment of the present invention, a macroencapsulation device comprising the isolated SC-β cell or population thereof is provided.

In accordance with an embodiment of the present invention, a cell line comprising an isolated SC-β cell that stably expresses insulin is provided.

Assays

In accordance with an embodiment of the present invention, an isolated SC-β cell or population thereof generated according to the methods herein, or an SC-β cell that
stably expresses insulin, can be used in various assays. In some aspects, an isolated SC-β cell, population thereof, or an SC-β cell that stably expresses insulin, can be used in an assay to identify one or more candidate agents which promote or inhibit a β cell fate selected from the group consisting of β cell proliferation, β cell replication, β cell death, β cell function, β cell susceptibility to immune attack, and β cell susceptibility to dedifferentiation or differentiation. In some aspects, an isolated SC-β cell, population thereof, or an SC-β cell that stably expresses insulin, can be used in an assay to identify one or more candidate agents which promote the differentiation of at least one insulin-positive endocrine cell or a precursor thereof into at least one SC-β cell. The assays typically involve contacting the isolated SC-β cell, population thereof, or an SC-β cell that stably expresses insulin, with one or more candidate agents to be assessed for its ability to i) promote or inhibit a β cell fate selected from the group consisting of β cell proliferation, β cell replication, β cell death, β cell function, β cell susceptibility to immune attack, and β cell susceptibility to dedifferentiation or differentiation, or ii) promoting the differentiation of at least one insulin-positive endocrine cell or a precursor thereof into at least one SC-β cell and assessing whether the candidate agent possesses the ability to i) promote or inhibit a β cell fate selected from the group consisting of β cell proliferation, β cell replication, β cell death, β cell function, β cell susceptibility to immune attack, and β cell susceptibility to dedifferentiation or differentiation, or ii) promoting the differentiation of at least one insulin-positive endocrine cell or a precursor thereof into at least one SC-β cell.

Methods for treatment

In accordance with an embodiment of the present invention, methods for the treatment of a subject in need thereof are provided. The methods entail administering to a subject in need thereof an isolated population of SC-β cells or a microcapsule comprising SC-β cells encapsulated therein. In some aspects, the subject is in need of additional β cells. In some aspects, the subject has, or has an increased risk of developing diabetes. A SC-β cell or population (e.g., isolated) of SC-β cells generated by a method of the present invention can be administered to a subject for treatment of type 1 or type 2 diabetes. In some aspects, the subject has, or has an increased risk of developing, a metabolic disorder. In some aspects, administering to the subject comprises implanting SC-β cells, a microcapsule comprising SC-β cells, or a microencapsulation device comprising SC-β cells into the subject. The subject may be a human subject or an animal subject. In some aspects, the cells may be implanted as dispersed cells or formed into clusters that may be
infused into the hepatic portal vein. In some aspects, cells may be provided in biocompatible degradable polymeric supports, porous non-degradable devices or encapsulated to protect from host immune response. Cells may be implanted into an appropriate site in a recipient. The implantation sites include, for example, the liver, natural pancreas, renal subcapsular space, omentum, peritoneum, suberosal space, intestine, stomach, or a subcutaneous pocket.

To enhance further differentiation, survival or activity of the implanted cells in vivo, additional factors, such as growth factors, antioxidants or anti-inflammatory agents, can be administered before, simultaneously with, or after the administration of the cells. These factors can be secreted by endogenous cells and exposed to the administered cells in situ. Implied cells can be induced to differentiate by any combination of endogenous and exogenously administered growth factors known in the art.

The amount of cells used in implantation depends on a number of various factors including the patient's condition and response to the therapy, and can be determined by one skilled in the art.

In some aspects, the method of treatment further comprises incorporating the cells into a three-dimensional support prior to implantation. The cells can be maintained in vitro on this support prior to implantation into the patient. Alternatively, the support containing the cells can be directly implanted in the patient without additional in vitro culturing. The support can optionally be incorporated with at least one pharmaceutical agent that facilitates the survival and function of the transplanted cells.

Artificial islet or pancreas

In accordance with an embodiment of the present invention, an artificial islet or pancreas is provided. The artificial islet or pancreas can be constructed using the SC-β cells generated according to the methods described herein.

An artificial pancreas is a device that encapsulates and nurtures islets of Langerhans to replace the islets and β cells destroyed by type 1 diabetes. An artificial pancreas may contain a million islets or more, and may be implanted in the peritoneal cavity or under the skin where it can respond to changing blood glucose levels by releasing hormones, such as insulin. An artificial pancreas may be made using living (e.g., glucose-sensing and insulin secreting islets) and nonliving components (e.g., to shield the islets from the diabetic's body and its destructive immune mechanism while permitting the islets to thrive).
The present invention contemplates using \(\beta \) cells in any artificial pancreas. In some aspects, the artificial pancreas comprises microencapsulated or coated islets comprising SC-\(\beta \) cells generated according to the methods herein. In some aspects, the artificial pancreas comprises a macroencapsulation device into which islet cells comprising SC-\(\beta \) cells generated according to the methods herein are grouped together and encapsulated. In some aspects, the macroencapsulation device comprises a PVA hydrogel sheet for an artificial pancreas of the present invention (Qi et al., 2004). In some aspects, the artificial islet comprises SC-\(\beta \) cells generated according to the methods herein, along with other islet cells (\(\alpha \), \(\delta \), etc.) in the form of an islet sheet. The islet sheet comprises a layer of artificial human islets comprising the SC-\(\beta \) cells macroencapsulated within a membrane (e.g., of ultra-pure alginate). The sheet membrane is reinforced with mesh and may be coated on the surface to prevent or minimize contact between the cells encapsulated inside and the transplantation recipient's host immune response. Oxygen, glucose, and other nutrients readily diffuse into the sheet through the membrane nurturing the islets, and hormones, such as insulin readily diffuse out. Additional examples of membranes designed for macroencapsulation/implantation of an artificial islet or pancreas can be found in the literature (Isayeva et al. 2003). Another example of a macroencapsulated implant suitable for an artificial islet or pancreas can be found in the literature (Aurelien, et al. 2014).

Terminology

The articles "a", "an" and "the" as used herein, unless clearly indicated to the contrary, should be understood to include the plural referents. Claims or descriptions that include "or" between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. It should also be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, etc. For purposes of simplicity those embodiments have not in every case been specifically set forth in *haec verba* herein. It should also be understood that any embodiment of the invention, e.g., any embodiment found within the prior art, can be explicitly excluded from the claims, regardless of whether the specific exclusion is recited in the specification. For example, any agent may be excluded from the genus of \(\mathrm{INK} \) inhibitors.
Where ranges are given herein, the invention includes embodiments in which the endpoints are included, embodiments in which both endpoints are excluded, and embodiments in which one endpoint is included and the other is excluded. It should be assumed that both endpoints are included unless indicated otherwise. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. It is also understood that where a series of numerical values is stated herein, the invention includes embodiments that relate analogously to any intervening value or range defined by any two values in the series, and that the lowest value may be taken as a minimum and the greatest value may be taken as a maximum. Numerical values, as used herein, include values expressed as percentages. For any embodiment of the invention in which a numerical value is prefaced by "about" or "approximately", the invention includes an embodiment in which the exact value is recited. For any embodiment of the invention in which a numerical value is not prefaced by "about" or "approximately", the invention includes an embodiment in which the value is prefaced by "about" or "approximately". "Approximately" or "about" generally includes numbers that fall within a range of 1% or in some embodiments 5% of a number in either direction (greater than or less than the number) unless otherwise stated or otherwise evident from the context (except where such number would impermissibly exceed 100% of a possible value).

Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim dependent on the same base claim (or, as relevant, any other claim) unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise. Where elements are presented as lists, e.g., in Markush group or similar format, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group.

Certain claims are presented in dependent form for the sake of convenience, but any dependent claim may be rewritten in independent format to include the limitations of the independent claim and any other claim(s) on which such claim depends, and such rewritten claim is to be considered equivalent in all respects to the dependent claim.
(either amended or unamended) prior to being rewritten in independent format. It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one act, the order of the acts of the method is not necessarily limited to the order in which the acts of the method are recited, but the invention includes embodiments in which the order is so limited. It is contemplated that all aspects described above are applicable to all different embodiments of the invention. It is also contemplated that any of the above embodiments can be freely combined with one or more other such embodiments whenever appropriate.

References

What is claimed is:

1. A method for generating stem cell-derived β (SC-β) cells, the method comprising contacting a cell population comprising endocrine progenitor cells or precursors thereof under conditions suitable to direct differentiation of said cells into SC-β cells with an effective amount of an agent that decreases the level and/or activity of c-Jun N-terminal kinase (JNK), thereby generating SC-β cells.

2. The method of claim 1, wherein the endocrine progenitor cells comprise PDX1+/NKX6.1+/NEUROD1+/insulin+/glucagon-/somatostatin- cells.

3. The method of claims 1 or 2, wherein the cell precursors are selected from the group consisting of pluripotent stem cells, SOX17+ definitive endoderm cells, PDX1+ primitive gut tube cells, PDX1+/NKX6.1+ pancreatic progenitor cells, PDX1+/NKX6.1+/NEUROD1+ endocrine progenitor cells, and combinations thereof.

4. The method of any one of claims 1 to 3, wherein the endocrine progenitor cells are directed to differentiate into SC-β cells by contacting the endocrine progenitor cells under conditions that promote cell clustering with i) a transforming growth factor β (TGF-β) signaling pathway inhibitor and ii) a thyroid hormone signaling pathway activator to induce the in vitro maturation of at least some of the endocrine progenitor cells into SC-β cells.

5. The method of any one of claims 1 to 4, wherein the effective amount comprises a concentration between about 0.1 µM and about 10 µM.

6. The method of any one of claims 1 to 5, wherein the agent inhibits phosphorylation of JNK.

7. The method of any one of claims 1 to 6, wherein the agent is SP600125.
8. The method of any one of claims 1 to 7, wherein the agent decreases the level and/or activity of mitogen-activated protein kinase kinase 4 (MKK4).

9. The method of any one of claims 1 to 8, wherein between at least 5% and 65% of the endocrine cells in the population differentiate into SC-β cells.

10. An isolated non-native SC-β cell or population thereof generated according to the method of any one of claims 1 to 9 that exhibits a glucose stimulated insulin secretion (GSIS) response both in vitro and in vivo.

11. An isolated SC-β cell or population thereof according to claim 10 that exhibits a stimulation index of between about 1.4 and about 2.4.

12. An isolated SC-β cell or population thereof according to claims 10 or 11 that produces between approximately 300 uIU to about 4000 uIU per 30 minute incubation at a high glucose concentration.

13. A microcapsule comprising the isolated SC-β cell or population thereof according to any one of claims 10 to 12 encapsulated therein.

14. A macroencapsulation device comprising the isolated SC-β cell or population thereof according to any one of claims 10 to 12 encapsulated therein.

15. A cell line comprising the isolated SC-β cell of any one of claims 10 to 12, wherein the cell line stably expresses insulin.

16. An assay comprising the isolated SC-β cell or population thereof according to any one of claims 10 to 12 or the cell line according to claim 14, for use in: i) identifying one or more candidate agents which promote or inhibit a β cell fate selected from the group consisting of β cell proliferation, β cell replication, β cell death, β cell function, β cell susceptibility to immune attack, and β cell susceptibility to dedifferentiation or differentiation; or ii) identifying one or more candidate agents which promote the differentiation of at least one insulin-positive endocrine cell or a precursor thereof into at least one SC-β cell.
17. A method for the treatment of a subject in need thereof, the method comprising administering to a subject in need thereof i) an isolated population of SC-β cells produced according to the methods of any one of claims 1 to 9; ii) an isolated population of SC-β cells according to any one of claims 10 to 12; iii) a microcapsule according to claim 13; iv) a macroencapsulation device according to claim 14; and combinations thereof.

18. Use of an isolated population of SC-β cells produced according to the method of any one of claims 1 to 9; an isolated population of SC-β cells according to any one of claims 10 to 12; a microcapsule according to claim 13; or a macroencapsulation device according to claim 14, for administering to a subject in need thereof.

19. The method of claim 17 or use of claim 18, respectively, wherein the subject has, or has an increased risk of developing diabetes or has, or has an increased risk of developing a metabolic disorder.

20. An artificial islet or pancreas comprising: i) SC-β cells produced according to the method of any one of claims 1 to 9; and/or SC-β cells according to any one of claims 10 to 12.

21. An isolated SC-β cell or population thereof that exhibits an improved stimulation index relative to a control β cell.
ES or IPS cells

hPSC → Steps 1-5 → EN → Step 6 + JNK Inhibitor → SC-β → Sequential In Vitro 2-step GSIS 2mM->20mM Glucose

FIG. 2C
C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2014/033322 A1 (NOVO NORDISK A/S) 06 March 2014 (06.03.2014) pg 1 ln 9-11, in 16-18 pg 2, In 22-27, pg 3 In 31-32, pg 4, In 8-11, pg 5, In 29-30, pg 8 in 34-35</td>
<td>1, 3/1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
25 February 2016

Date of mailing of the international search report
11 MAR 2016

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young
PCT Helpdesk: 571-272-4300
PCT USP: 571-272-7774

Form PCT/ISA/2 10 (second sheet) (January 2015)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ◐ Claims Nos.: 4-20
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
☐ No protest accompanied the payment of additional search fees.