wo 20187198002 A1 | 0K 00O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
01 November 2018 (01.11.2018)

(10) International Publication Number

WO 2018/198002 A1l

WIPO I PCT

(51) International Patent Classification:
HO4N 13/144 (2018.01) GO02B 27/01 (2006.01)
A63F 13/52 (2014.01) G09G 5/14 (2006.01)

(21) International Application Number:
PCT/IB2018/052735

(22) International Filing Date:
19 April 2018 (19.04.2018)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

15/496,972 25 April 2017 (25.04.2017) US

(71) Applicant: ATTI TECHNOLOGIES ULC [CA/CA]; One
Commerce Valley Dr. East, Markham, Ontario L3T 7X6
(CA).

(72) Imventor: RIGUER, Guennadi; One Commerce Valley
Dr. East, Markham, L3T 7X6 (CA).

(74) Agent: SMITH, Ryan T. et al; Perry + Currier, 1300
Yonge Street, Suite 500, Toronto, Ontario M4T 1X3 (CA).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO,CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the identity of the inventor (Rule 4.17(i))

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Published:
— with international search report (Art. 21(3))

(54) Title: DISPLAY PACING IN MULTI-HEAD MOUNTED DISPLAY VIRTUAL REALITY CONFIGURATIONS

\
~20
25~
15
{
¥
30
35~)
GPU — cPuU
40
}
STORAGE -
DEVICE i
APP 1 50 o’*
APP2 VibED 311 °° | b
. DRIVER
APP N MEMORY

FIG. 1

(57) Abstract: Various virtual reality computing systems and
methods are disclosed. In one aspect, a method of delivering video
frame data to multiple VR displays (HMD1, HMD?) is provided.
The method includes generating content for multiple VR displays
and sensing for competing needs for resources with real time re-
quirements of the multiple VR displays. If competing needs for re-
sources with real time requirements are sensed, a selected refresh
offset for refreshes of the multiple VR displays is determined to
avoid conflict between the competing needs for resources of the
multiple VR displays. The selected refresh offset is imposed and
the content is delivered to the multiple VR displays.

10

15

WO 2018/198002 PCT/IB2018/052735

DISPLAY PACING IN MULTI-HEAD
MOUNTED DISPLAY VIRTUAL REALITY CONFIGURATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority from U.S. Patent Application No. 15/496,972, filed on April 25,

2017, the entire contents of which are hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION
[0002] Virtual Reality (VR) systems utilize a Head Mounted Display (HMD) with an illuminated
screen that shows the wearer the computer generated virtual world. With each movement of a user’s
head the HMD changes the display to show the user the changed scenery. When running an application,
such as a game, a VR computer must not only render video frames generated by the application but also
account for the movements of a user’s head. With or without head movement, the VR computer must
process frames in near real time in order to avoid judder, which results when images are delayed and the

user will view the images just a second, or even a fraction of a second too late. Judder can be very

jarring and cause nausea.

10

15

WO 2018/198002 PCT/IB2018/052735

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] The foregoing and other advantages of the invention will become apparent upon reading the
following detailed description and upon reference to the drawings in which:
[0004] FIG. 1is a schematic view of an exemplary VR computing system;
[0005] FIG. 2 depicts a conventional exemplary timing diagram for multiple VR display refresh cycles;
[0006] FIG. 3 depicts an exemplary timing diagram for multiple VR display refresh cycles for an
cxemplary variant;
[0007] FIG. 4 depicts an exemplary timing diagram for multiple VR display refresh cycles for another
excmplary variant;
[0008] FIG. 5 is a schematic view like FIG. 1, but depicting an alternate exemplary VR computing
system;
[0009] FIG. 6 is a flow chart depicting an exemplary process flow for delivering frames to one or more
VR displays using selected refresh offset or not; and
[0010] FIG. 7 is a flow chart depicting an exemplary process flow for delivering frames to multiple VR

displays using selected refresh offset and dynamic refresh.

10

15

20

25

30

WO 2018/198002 PCT/IB2018/052735

DETAILED DESCRIPTION
[0011] A VR system relies on an ability to perform 1n near real-time to provide a good user experience.
As noted above, a single HMD driven system represents a straightforward situation. Complexities mount
when multiple HMDs are connected to a computer system. A conventional VR HMD operates on a fixed
time line usually tied to a display refresh rate. Vertical synchronization or Vsync is a method of
controlling buffer flipping to avoid the problem of frame tearing where the display shows portions of two
rendered frames that have different content. When Vsync is enabled, each buffer flip can only occur
after each refresh. This effectively caps the frame rendering rate at the HMD refresh rate.
[0012] Some VR system vendors introduced a technique called asynchronous time warp (ATW) to help
alleviate the impact of missed frames on VR HMDs. A system using ATW shifts the image on the VR
HMD without input from the game engine based on relative head
motion that occurred after the last VR HMD position was sent to the game. Doing so presents a more
accurate image to the user. ATW moves the entire frame as a whole, shifting it only based on relative
changes to the user’s head rotation. A more recent development is the so-called Asynchronous
Spacewarp (ASW). Systems with ASW attempt to shift objects and motion inside of the scene by
generating new frames to insert in between “real” frames from the game engine when the game is
running at a frame rate lower than the refresh rate.
[0013] ATW is executed at a minimal latency to the front portion of the Vsync interval. Similarly, other
parts of the frame generation executed on both the central processing unit (CPU) and the graphics
processing unit (GPU) are paced relative to HMD’s Vsync. This works well for a system with a single
HMD. When multiple HMDs are attached, even if the system (e.g. CPU and GPU) has enough total
horsepower, unreliable operation could occur due to contention for real-time critical resources (¢.g.
computations for ATW) across multiple HMDs. There are conventional solutions to synchronize display
processing and output, such as gen lock and frame lock, but there are no solutions for pacing display
operation in a predictable manner as required for multiple VR headsets.
[0014] In accordance with one aspect of the present invention, a method of delivering video frame data
to multiple VR displays is provided. The method includes generating content for multiple VR displays
and sensing for competing needs for resources with real time requirements of the multiple VR displays.
If competing needs for resources with real time requirements are sensed, a selected refresh offset for
refreshes of the multiple VR displays is determined to avoid conflict between the competing needs for
resources of the multiple VR displays. The selected refresh offset is imposed and the content 1s delivered
to the multiple VR displays.
[0015] The method wherein the resources comprise computation for rendering and asynchronous time

warp requests.

10

15

20

25

30

WO 2018/198002 PCT/IB2018/052735

[0016] The method wherein the multiple displays support dynamic refresh and comprising if competing
needs for resources with real time requirements are sensed, also determining a selected dynamic refresh
rate for refreshes of the multiple VR displays to aid in avoiding the competing needs for resources made
by the multiple VR, and imposing the selected refresh offset and dynamic refresh rate.

[0017] The method wherein the resources comprise computation for rendering and asynchronous time
warp requests.

[0018] The method wherein the generating the content is performed by a single GPU.

[0019] The method of claim wherein the generating the content for multiple VR displays comprises
generating the content for one of the multiple VR displays using a GPU and generating or delivering the
content for another of the multiple VR displays using another GPU.

[0020] The method wherein the GPU is configured as a master and the another GPU is configured as a
slave such that the master controls the selected refresh offset of frames generated or delivered by the
slave GPU.

[0021] In accordance with another aspect of the present invention, a method of delivering video frame
data to multiple VR displays is provided. The method includes running a first application on a
computing device to generate content for multiple VR displays and sensing for competing needs for
resources with real time requirements of the multiple VR displays using a second application. If
competing needs for resources with real time requirements are sensed, using the second application to
determine a sclected refresh offset for refreshes of the multiple VR displays to avoid conflict between
competing needs for resources of the multiple VR displays. The selected refresh offset is imposed and
the content delivered to the multiple VR displays.

[0022] The method wherein the resources comprise computation for rendering and asynchronous time
warp requests.

[0023] The method wherein the multiple displays support dynamic refresh, the method comprising if
movements are sensed, also determining a selected dynamic refresh rate for refreshes of the multiple VR
displays to aid in avoiding the competing requests for resources made by the multiple VR displays due to
the movements, and imposing the selected refresh offset and dynamic refresh rate.

[0024] The method wherein the resources comprises computation for rendering and asynchronous time
warp requests.

[0025] The method wherein the application is run by a single GPU.

[0026] The method wherein the generating the content for multiple VR displays comprises generating
the content for one of the multiple VR displays using a GPU and generating or delivering the content for

another of the multiple VR displays using another GPU.

10

15

20

25

30

WO 2018/198002 PCT/IB2018/052735

[0027] The method wherein the GPU is configured as a master and the another GPU is configured as a
slave such that the master controls the selected refresh offset of frames generated or delivered by the
slave GPU.

[0028] In accordance with another aspect of the present invention, a virtual reality computing system 1s
provided. The system includes a computing device and a processor. The processor is operable to
perform instructions to generate content for multiple VR displays, to sense for competing needs for
resources with real time requirements of the multiple VR displays, if competing needs for resources with
real time requirements are sensed, to determine a sclected refresh offset for refreshes of the multiple VR
displays to avoid conflict between the competing needs for resources of the multiple VR displays, to
impose the selected refresh offset, and to deliver the content to the multiple VR displays.

[0029] The virtual reality computing system comprising the multiple VR displays.

[0030] The virtual reality computing system wherein the processor comprises a CPU, a GPU or a
combined CPU and GPU.

[0031] The virtual reality computing system wherein the computing device comprises another
processor wherein the processor generates the content for one of the multiple VR displays and the
another processor generates or delivers the content for another of the multiple VR displays.

[0032] The virtual reality computing system wherein the processor i1s configured as a master and the
another processor is configured as a slave such that the master controls the selected refresh offset of
frames generated or delivered by the slave processor.

[0033] The virtual reality computing system wherein the multiple displays support dynamic refresh, the
processor being operable to, if competing needs for resources with real time requirements are sensed, also
determine a selected dynamic refresh rate for refreshes of the multiple VR displays to aid in avoiding
conflict between the competing needs for resources of the multiple VR displays, and to impose the
selected refresh offset and dynamic refresh rate.

[0034] Various virtual reality (VR) computing systems that improve on the management of delivering
video frames to multiple VR head mounted displays are disclosed. Video content can be generated for
delivery to multiple VR head mounted displays. The VR computer monitors, perhaps by way of a VR
compositor or other application for competing tasks requiring real time processing, such as partial or
whole frame rendering or asynchronous time warps, by multiple VR displays. If competing tasks that
require real time or near real time computing requirements are sensed, say by the detection of multiple
VR displays, the application and the system compute a selected refresh offset for refreshes of the multiple
VR displays to avoid competing requests for resources made by the multiple VR displays. The selected
refresh offset is imposed and the content is delivered to the multiple VR displays. One head mounted VR

display can refresh first, and the seccond a fraction of a second or a fraction of a frame later and so on for

-5-

10

15

20

25

30

WO 2018/198002 PCT/IB2018/052735

other VR displays connected to the computing device. The staggering avoids competing requests for
resources, such as those needed for asynchronous time warps and frame rendering parts that have real
time requirements. Additional details will now be described.

[0035] In the drawings described below, reference numerals are generally repeated where identical
clements appear in more than one figure. Tuming now to the drawings, and in particular to FIG. 1,
therein is shown a schematic view of an exemplary VR computing system 10 (hereinafter system 10).
The system 10 includes a computing device 15 and one or more head mounted displays, two of which are
depicted and labeled HMD1 and HMD2, respectively, where HMD stands for head mounted display.

The connections 20 and 25 between the computing device 15 and HMD1 and HMD?2 can be wired or
wireless connections as desired. The computing device 15 can include a processor or CPU 30, a GPU 35,
system memory 38 and a storage device 40. The CPU 30 and the GPU 35 can be general purpose
discrete devices or integrated into a single device, such as by way of an accelerated processing unit.
Optionally, the functions of the CPU 30 and the GPU 35 can be performed by one or more application
specific integrated circuits. System memory can be RAM, ROM, flash combinations of these or other
types of memory. The storage device 40 is a non-volatile computer readable medium and can be any
kind of hard disk, optical storage disk, solid state storage device, ROM, RAM or virtually any other
system for storing computer readable media. The storage device 40 is operable to store non-transient
computer readable instructions for performing various functions disclosed herein.

[0036] The computing device 15 can include plural applications, which are abbreviated APP 1, APP 2
... APP N, and which can be drivers, software applications, or other types of applications. In addition,
the computing device 15 can include an operating system 45 and a video driver 50. The operating system
45 and the video driver 50 and the applications APP 1, APP 2 ... APP n can be stored on the storage
device 40 and selectively loaded into system memory 38. Windows®, Linux, or more application
specific types of operating system software can be used or the like. One of the applications APP 1. ..
APP n, for example APP 1, can be an application that generates content to be displayed on HMDI1 and
HMD?2, such as a game or other program, and another application, say APP 2, can be a VR compositor
that, by way of the video driver 50, controls aspects of how content is displayed on HMD1 and HMD?2.
The video driver 50 can include code to implement Vsync or vertical synchronization. Vsync is designed
to avoid a phenomena known as “tearing” where the display shows portions of two rendered frames that
have different content. When Vsync is enabled, each buffer flip can only occur after each refresh.

[0037] The application APP 1 and/or the application APP 2 can be resident on the storage device 40
and selectively loaded in the system memory 38 during execution. The application APP 2 is operable to
provide timing synchronization for driving the displays of HMD1 and HMD?2 as well as selectively
skewing the refresh intervals of the multiple VR displays for HMD1 and HMD2. A technical goal is to

10

15

20

25

30

WO 2018/198002 PCT/IB2018/052735

provide some selected offset in refresh timing between HMD1 and HMD?2 to avoid overlap of real time
workloads, such as frame rendering and asynchronous time warp (ATW) requests. Aspects of the
operation of the system 10 will be described in conjunction with FIG. 3. However, before turning to
FIG. 3, it will be useful to consider conventional frame rendering in a multi-HMD system. Such
conventional frame rendering is depicted in FIG. 2, which illustrates a refresh timing diagram 55 for
HMDI and a corresponding refresh timing diagram 60 for HMD2. For each of the timing diagrams 55
and 60 a few refresh points, Refresh 1, Refresh 2, Refresh 3 and Refresh 4, are depicted and it is assumed
that both HMD1 and HMD?2 have the same constant refresh rate, 1.¢., the inverse of the time period
between Refresh 1 and Refresh 2 and between Refresh 2 and Refresh 3 and so on. The refresh timing
diagram 55 shows timing activities for a “Hardware Queue” and a “Displayed On HMD1” where the
Hardware Queue is the hardware (e.g., GPU, APU or other) activity associated with frame rendering for
HMD1 and the Displayed On HMD1 shows the activity leading to the actual appearance of rendered
content on HMD1. As shown in diagram 55, at some point after Refresh 1 but prior to Refresh 2, frame
rendering for HMD1, abbreviated “Render 1,” is performed and the content rendered just prior to Refresh
1 is displayed on HMD1, abbreviated “Send to HMD1.” The refresh timing shows the timing activities
for the Hardware Queue associated with frame rendering for HMD?2 and the “Displayed On HMD?2”
shows the activity leading to the actual appearance of rendered content on HMD2. As shown in diagram
60, at some point after Refresh 1 but prior to Refresh 2, frame rendering for HMD?2, abbreviated “Render
2,7 is performed and the content rendered just prior to Refresh 1 is displayed on HMD2, abbreviated
“Send to HMD2.” Here it is assumed that Render 2 commences at time #, very soon after Refresh 1 and
that Render 1 commences at time 7, immediately and sequentially after the completion of Render 2. Now
fast forward to just after Refresh 2. As shown in refresh timing diagram 55, the content from the Render
1 operation commencing at time 7, is ultimately displayed on HMD1 at the completion of Send to HMD1
at time 7,. Note the latency, labeled “Latency HMDI1,” between Render 1 commencing at time ¢, and
Send to HMD1 at time 7,. Now consider timing diagram 60 just after Refresh 2. The content from the
Render 2 operation commencing at time 7, is ultimately displayed on HMD?2 at the completion of Send to
HMD?2 at time 7,. But note the latency, labeled “Latency HMD2,” between Render 2 commencing at
time 7, and Send to HMD?2 at time 7,. Render 2 and Render 1 compete for processing between Refresh 1
and Refresh 2 and thus must be staggered in time. This means that Render 2 must be performed early in
the Refresh 1 to Refresh 2 period and this results in Latency HMD2>Latency HMD1 and perhaps
Latency HMD?2 being long enough to cause judder for the user of HDM2.

[0038] Attention is now turned to FIG. 3, which illustrates exemplary improved operations and in
particular a refresh timing diagram 65 for HMD1 and a corresponding refresh timing diagram 70 for

HMD?2. For each of the timing diagrams 65 and 70 a few refresh points, Refresh 1, Refresh 2, Refresh 3

10

15

20

25

30

35

WO 2018/198002 PCT/IB2018/052735

and Refresh 4, are depicted. The refresh rate Ry, of HMD1 1s given by 1/7},,,,, where Ty, 1s the
period between Refresh 1 and Refresh 2 and between Refresh 2 and Refresh 3 and so on in the diagram
65 for HMD1. The refresh rate Ry, of HMD?2 is given by 1/7 'y, where Tyyp,1s the period between
Refresh 1 and Refresh 2 and between Refresh 2 and Refresh 3 and so on in the diagram 60 for HMD2.
The refresh rates R, and Ry, can be the same or different and can be dynamically adjusted if HMD1
and HMD2 and the computing device 15 are capable of dynamic refresh rates. The refresh timing
diagram 65 shows timing activitics for a “Hardware Queue™ and a “Displayed On HMD1” where the
Hardware Queue is the hardware (¢.g., GPU, APU or other) activity associated with frame rendering for
HMD1 and the Displayed On HMD1 shows the activity leading to the actual appearance of rendered
content on HMD1. As shown in diagram 65, at time #, after Refresh 1 but prior to Refresh 2, frame
rendering for HMD1, abbreviated “Render 1,” is commenced and the content rendered just prior to
Refresh 1 1s displayed on HMD1, abbreviated “Send to HMD1.” Note that time 7, is selected so that
Render 1 completes near Refresh 2. Now fast forward to just after Refresh 2 in diagram 65. As shown in
refresh timing diagram 65, the content from the Render 1 operation commencing at time ¢, 1s ultimately
displayed on HMD1 at the completion of Send to HMD1 at time #;. Note the latency, labeled “Latency
HMDI1,” between Render 1 commencing at time 7, and Send to HMD1 at time 7. Now consider timing
the refresh timing diagram 70. The refresh timing diagram 70 shows timing activities for the Hardware
Queue and a “Displayed On HMD2” where the Hardware Queue 1s the hardware (¢.g., GPU, APU or
other) activity associated with frame rendering for HMD?2 and the Displayed On HMD2 shows the
activity leading to the actual appearance of rendered content on HMD2. But note that Refresh 1 for the
Hardware Queue in refresh timing diagram 70, in other words the Refresh 1 for HMD?2, is offset in time
relative to the Refresh 1 for HMD1 shown in refresh timing diagram 65 by some selected Refresh Offset.
As shown in diagram 70, at time /, after Refresh 1 but prior to Refresh 2, frame rendering for HMD?2,
abbreviated “Render 2,” is commenced and the content rendered just prior to Refresh 1 1s displayed on
HMD?2, abbreviated “Send to HMD2.” Note that time 4, is selected so that Render 2 completes near
Refresh 2. Now fast forward to just after Refresh 2 in diagram 70. As shown in refresh timing diagram
70, the content from the Render 2 operation commencing at time #, is ultimately displayed on HMD?2 at
the completion of Send to HMD?2 at time #,. Note the latency, labeled “Latency HMD2,” between
Render 1 commencing at time 7, and Send to HMD?2 at time #,. By using the Refresh Offset, Render |
can be completed near Refresh 2 for HMD1 and Render 2 can be completed near Refresh 2 for HMD2,
which results in Latency HMD1 being equal or close to Latency HMD2 and Latency HMD2 being
shorter than Latency HMD?2 for the conventional technique illustrated in FIG. 2.

[0039] Still referring to FIG. 3, the Refresh Offset can be selected based on some fraction (say up to
one half) of a frame up or some other software controlled interval such as 1 to 2 milliseconds, etc. The

purpose of the selected Refresh Offset is to space out in time HMD 1 and HMD?2 tasks with real time

-8-

10

15

20

25

30

35

WO 2018/198002 PCT/IB2018/052735

requirements, such as ATW requests and/or partial or whole frame rendering. It should be understood
that the refresh rates Ry, and R, can not only be different but also fluctuate rapidly if dynamic
refresh rates are supported by the HMD1 and HMD?2 and the computing device 15.

[0040] Some exemplary selections of Refresh Offset will now be described in conjunction with FIGS. 1
and 3. One exemplary technique involves a brute force selection of the maximum Refresh Offset. For
example, the maximum Refresh Offset in terms of a fraction of a frame will be given by the inverse of
the number of head mounted displays connected to the computing device 15. So, for example, where
HMD1 and HMD?2 are connected to the computing device 15, the maximum Refresh Offset in terms of
frames will be 72 of a frame. If there were three HMDs the maximum Refresh Offset would be 5 of a
frame and for four HMDs the maximum Refresh Offset would be % and so on. The selection and
imposition of the Refresh Offset(s) can be performed by the VR compositor, such as APP 2 in these
examples. The Refresh Offset can be adjusted up or down when the computing device 15, via APP 2 or
otherwise, senses the connection or disconnection of HMDs.

[0041] Another exemplary technique for selecting the Refresh Offset involves dynamic selection.
Here, as the content generating application APP 1 is producing frames for HMD1 and HMD?2, the VR
compositor (APP 2) can determine how long an exclusive operation will take, and then instruct the video
driver 50 what the Refresh Offset should be to permit that exclusive operation to be performed without
any competing real time tasks, such as ATW requests or frame rendering overlaps. Immediately after a
refresh, say Refresh 1 of HMD1, the VR compositor (APP 2) will poll the tracking data of and thereby
sense the movements of HMD1 and HMD?2 and also sense any other incoming tasks with real time
requirements. With that data in hand, APP 2 will next determine how long the ATW request and frame
rendering with the ATW correction for the HMD1 movement will take, and then instruct the video driver
50 what the Refresh Offset should be so that the rendering for the movement of HMD1 is not fettered by
ATW requests associated with the movement of the competing HMD, such as HMD2. The APP 2 could
mnstruct the video driver 50 to include a safety margin, that is, make the Refresh Offset slightly larger
than necessary. In the next instant, other movements of HMD1 and HMD2 can occur which might
prompt APP 2 to readjust the Refresh Offset accordingly. This process of dynamically adjusting the
Refresh Offset can occur repeatedly depending on the movements of HMD1 and HMD?2. Of course, the
technique can be dovetailed with dynamic refresh for all HMDs, such as HMD1 and HMD?2, using, for
example, Freesync, a technology supplied by Advanced Micro Devices, Inc.

[0042] Certain VR set ups can involve HMDs with different refresh rates. In these circumstances, the
APP 2 can still impose Refresh Offsets to space out real time computing tasks. Attention is now turned
to FIG. 4, which depicts a refresh timing diagram 75 for HMDI1 and a corresponding refresh timing
diagram 80 for HMD2. FIG. 4 is like FIG. 3 and thus depicts a few refresh points, Refresh 1, Refresh 2,
Refresh 3 and Refresh 4, a Hardware Queue and Displayed on HMD1 or HMD?2 traces for each of the

O

10

15

20

25

30

35

WO 2018/198002 PCT/IB2018/052735

timing diagrams 75 and 80. However, note that the refresh rates, defined as described above, for HMD1
and HMD?2 differ. In the absence of any compensations, HMD1 and HMD?2 with different refresh rates
will produce an irregular “beat” pattern where intervals between refreshes of the multiple HMDs, HMD1
and HMD2, become bigger and smaller and eventually collide. Here, however, APP 2 (as VR
compositor, see FIG. 1) can impose a Refresh Offset to attempt to space Refresh 1 for HMD1 and
Refresh 1 for HMD2, Refresh 2 for HMD1 and Refresh 2 for HMD?2 and so on, such that they do not
collide. Other methods of refresh offsetting could also be used. In cases when it is not possible to avoid
refresh collisions with multiple HMDs, HMD1 and HMD2, or when there is no collision, but refresh
markers from different HMDs are too close to each other, a feedback can be generated to warn APP 2
that it needs to account for a possible increase in latency as a result of a possible collision of workloads.
[0043] Multi-GPU variants are envisioned for usage with multiple VR HMDs. In this regard, attention
1s now turned to FIG. 5 which is a block diagram depicting an alternate exemplary variant of the
computing system 10’. This computing system variant 10’ shares many of the attributes of the
computing system 10 depicted in FIG. 1 and described elsewhere herein. For instance, there can be
multiple VR displays HMD1 and HMD?2 and these can number more than two as desired. In addition,
the computing device 15’ can include the GPU 35, system memory 38, the storage device 40, the OS 45
with Vsync, plural applications APP 1 to APP N and a video driver 50. In addition, HMD1 and HMD?2
can connect to the computing device 15’ by way of the aforementioned connections 20 and 25. Here
however, in addition to the GPU 35, the computing device 157 can include one or more additional GPUs,
one of which is depicted and labeled 85. It should be understood that more than two GPUs 35 and 85 can
be implemented as desired. Both the GPUs 35 and 85 can have operative connections to the storage
device 40 and system memory 38 as well as to each other. APP 2, if configured as a VR compositor as
described elsewhere herein, can include instructions to perform rendering for HMD1 and HMD?2,
respectively. For instance, the GPU 35 can be tasked with rendering content for HMD1 and the GPU 85
can be tasked with rendering content for the other VR display HMD2. It can be desirable to designate
one of the GPUs, for example GPU 335, as a master and the other GPU or GPUs 85 as slaves for timing
synchronization and skewing of refresh rates and points. This differentiation in tasking, that is, master
and slave can be performed where the GPU 35 and the GPU 85 have the same capabilities or more
commonly where one GPU, say the GPU 35, is a more capable integrated circuit such as a discrete GPU
on a card and the other GPU 85 is a less capable but still functional GPU, say for example in an
integrated graphics chip. The same type of timing synchronization and selective skewing of refresh
intervals as depicted in FIG. 3 and described elsewhere herein can be used with the multiple GPU variant
depicted in FIG. 5. Here, however, the master GPU 35 can be tasked with selectively skewing the refresh
intervals for the slave GPU 85 and any other slave GPUs that can be incorporated mnto the computing

device 15. It can also be possible to use additional levels of granularity. Other differentiation in tasking

-10-

10

15

20

25

30

WO 2018/198002 PCT/IB2018/052735

1s possible. For example, the more capable GPU 35 can be used for tasks that have real time
requirements for both HMD1 and HMD?2 and the lesser capable GPU 85 can be used for less demanding
tasks, such as driving HMD2. In another variant, the lesser GPU 85 could also be used for some
rendering as well. As with the other disclosed variants, dynamic refresh can be implemented using, for
example, Freesync or other technologics where dynamic refresh of the displays HMD1 and HMD?2 are
provided.

[0044] A couple of exemplary process flows are illustrated graphically in FIGS. 6 and 7. FIG. 6
depicts an exemplary process flow without dynamic refresh enabled and FIG. 7 to be discussed below
depicts an exemplary process flow with dynamic refresh enabled. FIG. 6 depicts two parallel process
loops 100 and 102 that can be asynchronous. Process loop 100 handles the sensing for competing
resource requests, and selection and imposition of selected refresh offsets. Thus at step 105, an HMD is
added or removed from the computing device 15 shown in FIG. 1. At step 110, an application, for
cxample APP 2 implemented as a VR compositor or similar functionality, senses for competing needs for
real time resources of multiple VR displays. This entails sensing the number of VR displays, such as
HMDI1, HMD2, etc., connected to the computing device 15. A single detected VR display will not
generate competing needs for real time resources, but two or more will. If] at step 115, competing needs
for real time resources of one or more VR displays arc sensed then the process flow proceeds to step 120
and the APP 2 determines an appropriate refresh offset (or offsets) in order to avoid conflict in the needs
for real time resources. This determination will take into account how many competing VR displays,
such as HMD1, HMD2, etc. are detected--added VR displays will require more refresh offsets and
removed VR displays will require fewer refresh offsets. Next at step 125 the APP 2 imposes the refresh
offset (or offsets) to avoid conflict in needs for real time resources and then the process proceeds to loop
exit at step 130. If, however, at step 115, competing needs for real time resources of one or more VR
displays are not sensed then the process flow skips to exit at step 130. The loop is triggered on whenever
VR displays are connected or disconnected. The content generation loop 102 proceeds in parallel. Thus
following start at step 135, at step 140 the APP 1 generates content for multiple VR displays, such as
HMD1, HMD?2, etc. Step 145 is a conditional that uses the outcomes of steps 120 and 125 of process
loop 100. If at step 145, a Refresh Offset(s) is not imposed, such as would be the case if only one VR
display is detected, the loop 102 proceeds to step 150 to render frames without refresh offset, then to step
155 to deliver the rendered frames to the single VR display and then back to step 140. If, however, at
step 145 a Refresh Offset(s) 1s imposed, such as would be the case if multiple VR displays are detected,
then the loop skips to step 160 and the frames are rendered with refresh offset (or offsets) followed by
step 150 where the rendered frames are delivered to the multiple VR displays, such as HMD1, HMD2,
etc. The loop 102 then loops back to step 140.

-11-

10

15

20

WO 2018/198002 PCT/IB2018/052735

[0045] In an alternate exemplary variant, a process flow can use dynamic refresh by way of Freesync or
some other type of dynamic refresh program. Referring now to FIG. 5, after a start at step 200, at step
205 dynamic refresh is enabled. At step 210, an application such as APP 1, gencrates content for
multiple VR displays such as the display HMD1 and HMD2. Next, at step 215, the application APP 2
senses for competing needs for real time resources of multiple VR displays. For example, and as
described above, APP 2 will sense for competing needs of ATW requests and partial or whole frame
rendering of for example, HMD1 and HMD?2. If at step 220, no competing needs are detected, then the
process flow proceeds to step 225 and the frames are rendered, and then at step 230 the rendered frames
are delivered to multiple VR displays. Step 230 is followed by a return to step 210. If, however, at step
220, application APP 2 senses competing needs for real time resources of multiple VR displays of one or
more of VR displays, then the process proceeds to step 235 where the APP 2 determines a refresh offset
and a dynamic refresh rate to avoid conflict in the competing needs for real time resources. Next at step
230 APP 2 imposes the selected refresh offset and dynamic refresh rate to avoid conflict in needs for real
time resources, and thereafter at step 245 the frames are rendered with the selected refresh offset and
dynamic refresh rate. Next, the process flow branches over to step 230 and the rendered frames are
delivered to the multiple VR displays. Of course the process flows in FIGS. 6 and 7 can be accomplished
with one or multiple applications and operating systems, ctc. In other words, various levels of software
integration, and hardware, can be used to implement the described steps.

[0046] While the invention can be susceptible to various modifications and alternative forms, specific
variants have been shown by way of example in the drawings and have been described in detail herein.
However, it should be understood that the invention is not intended to be limited to the particular forms
disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within

the spirit and scope of the invention as defined by the following appended claims.

-12-

10

15

20

25

30

35

WO 2018/198002 PCT/IB2018/052735

CLAIMS

What is claimed is:

1.

A method of delivering video frame data to multiple VR displays (HMD1, HMD?2), comprising:

generating content for multiple VR displays;

sensing for competing needs for resources with real time requirements of the multiple VR
displays;

if competing needs for resources with real time requirements are sensed, determining a selected
refresh offset for refreshes of the multiple VR displays to avoid conflict between the
competing needs for resources of the multiple VR displays;

imposing the sclected refresh offset; and

delivering the content to the multiple VR displays.

The method of claim 1, wherein the resources comprise computation for rendering and

asynchronous time warp requests.

The method of claim 1, wherein the multiple displays support dynamic refresh, the method
comprising if competing needs for resources with real time requirements are sensed, also
determining a selected dynamic refresh rate for refreshes of the multiple VR displays to aid in
avoiding the competing needs for resources made by the multiple VR, and imposing the selected

refresh offset and dynamic refresh rate.

The method of claim 3, wherein the resources comprise computation for rendering and

asynchronous time warp requests.

The method of claim 1, wherein the generating the content is performed by a single GPU.

The method of claim 1, wherein the generating the content for multiple VR displays comprises
generating the content for one of the multiple VR displays using a GPU and generating or
delivering the content for another of the multiple VR displays using another GPU.

The method of claim 6, wherein the GPU is configured as a master and the another GPU is
configured as a slave such that the master controls the selected refresh offset of frames generated

or delivered by the slave GPU.

A method of delivering video frame data to multiple VR displays (HMD1, HMD?2), comprising;:

-13-

10

15

20

25

30

35

WO 2018/198002 PCT/IB2018/052735

10.

11.

12.

13.

14.

15.

running a first application (APP 1) on a computing device (15) to generate content for multiple
VR displays;

sensing for competing needs for resources with real time requirements using a second application
(APP 2);

if competing needs for resources with real time requirements are sensed, using the second
application to determine a selected refresh offset for refreshes of the multiple VR
displays to avoid conflict between the competing needs for resources of the multiple VR
displays;

imposing the sclected refresh offset; and

delivering the content to the multiple VR displays.

The method of claim 8, wherein the resources comprise computation for rendering and

asynchronous time warp requests.

The method of claim 8, wherein the multiple displays support dynamic refresh, the method
comprising if movements arc sensed, also determining a selected dynamic refresh rate for
refreshes of the multiple VR displays to aid in avoiding the competing requests for resources
made by the multiple VR displays due to the movements, and imposing the selected refresh

offset and dynamic refresh rate.

The method of claim 10, wherein the resources comprises computation for rendering and

asynchronous time warp requests.

The method of claim 1, wherein the application is run by a single GPU (35).

The method of claim 8, wherein the generating the content for multiple VR displays comprises
generating the content for one of the multiple VR displays using a GPU (35) and generating or
delivering the content for another of the multiple VR displays using another GPU (85).

The method of claim 13, wherein the GPU is configured as a master and the another GPU is
configured as a slave such that the master controls the selected refresh offset of frames generated

or delivered by the slave GPU.

A virtual reality computing system (10), comprising:

a computing device (15);

-14-

10

15

20

25

WO 2018/198002 PCT/IB2018/052735

16.

17.

18.

19.

20.

a processor (30, 35) operable to perform instructions to generate content for multiple VR
displays (HMD1, HMD?2), to sense for competing needs for resources with real time
requirements of the multiple VR displays, if competing needs for resources with real
time requirements are sensed, to determing a sclected refresh offset for refreshes of the
multiple VR displays to avoid conflict between the competing requests for resources of
the multiple VR displays, to impose the selected refresh offset, and to deliver the content
to the multiple VR displays.

The virtual reality computing system of claim 15, comprising the multiple VR displays.

The virtual reality computing system of claim 15, wherein the processor comprises a CPU, a

GPU or a combined CPU and GPU.

The virtual reality computing system of claim 15, wherein the computing device comprises
another processor (85) wherein the processor generates the content for one of the multiple VR
displays and the another processor generates or delivers the content for another of the multiple

VR displays.

The virtual reality computing system of claim 18, wherein the processor is configured as a master
and the another processor is configured as a slave such that the master controls the selected

refresh offset of frames generated or delivered by the slave processor.

The virtual reality computing system of claim 15, wherein the multiple displays support dynamic
refresh, the processor being operable to, if competing needs for resources with real time
requirements are sensed, also determine a selected dynamic refresh rate for refreshes of the
multiple VR displays to aid in avoiding conflict between the competing needs for resources of

the multiple VR displays, and to impose the selected refresh offset and dynamic refresh rate.

-15-

WO 2018/198002

17

PCT/IB2018/052735

20
25—
15
{
¢
30
{
35—+ 7
GPU CPU
40
3
STORAGE 4z
DEVICE (
APP 1 50 as
APP2 VIDED ™)
. DRIVER —
APE N Vsync MEMORY | 38

PCT/IB2018/052735

WO 2018/198002

217

(LMY HOMd)

¥ Usayey

¢ Ol

(A Y W U W U S

2QINH 0 puss

,,,,,,

¥

ZCNH Aousie

for
S
AN
W,, [R
Loy

H 01 puss

o Usallsy

L U N U T

LONH 01 puss,

,,,,,

T Usaljoy

Z Ussusy

ZQIH o) puas

(A Y W U W U S

,,,,,,

e

4 .M

2
'}

L QM Acueie

LOWH 0} puss

VoL

LG 01 pUS

Voo

,,,,,,

,/,,

&

L usauey \

i

SONH VO
padeidsic

anenp

SIRMPIEH

09

LOWH U0
pafeidsiq

anenyy
BIRMPIEH

€ USaQaM

¢ Ysaljey \\..

4

| ysauey

\

G5

PCT/IB2018/052735

WO 2018/198002

3/7

[Y A R A A
N A R A A Y
i D E \
! AR \
e
TS VR R L T S S

m.AEE NQ.\,..I...M. —

.

e
| ZANH Adusien

i

B

2QINH 0 pUss

(A Y W U W U S

[Y A R A A
N S A R A A Y
n m...m O U u \
) AL |

D L O O
RS VR R L S S S

,,,,,,,

,,,,,

y Ussljoy ¢ USSLOY

FOINH 0} puss,

(A Y W U W U S

,,,,,,

¥ UsSaliay

Z Usslisy

WA\

{ USSRl

| LQNH AdueieT

LQWH 01 puss

Voo
(A Y W U U U S B

,/,,

© USRH

LG 01 uo8

Loy

Loy
VoL

,,,,,,

Z usauey

ﬁm 3¢

&

s

']

».EIH. ; E

€ Old

3

N

———

o

L ysauey

SONH UG
padedsicy

anenp
alempIEH

,ﬁdm

19840
Usajon

LOWH U0
pafeidsia

ahanpy
BIBMPIEH

4/@@

PCT/IB2018/052735

WO 2018/198002

417

v old

2QINH 0 puss

(A Y W U W U S

2QINH 01 puss

(A Y W U W U S

[Y A Y Y
N T S A R A A R S
i = O WU u \
i) AL |
e e e O O
R S

b Useuey

,,,,,,

LONH 0} puss

(A Y W U W U S

¢ USalioy

,,,/

P USaliay

A A Y Y Y

(o fed o L
L ONH 01 puss,
W,, L O T |
o

,,,/

,,,,,,

Z ussysy

(A Y W U W U S

LG 0 puss

¢ Usadlay

,,,,,,

& USaljand

o

CANH YO
paiejdsi(

o

ananp
BIEMPIBH

3

L Uselen f/om

H 188iO

LS8y

LONH U0
pafejdsic

3

ananp)
SIEMPIRH

AN

L Usajay g/

WO 2018/198002 PCT/IB2018/052735

5/7
20
15"
{
)
MEMORY | 38
l—l 85
{
35— Y
GPU GPU
40
|
STORAGE 4
DEVICE (
APP 1 50T
APP 2 ViDES T §11 ©S
. DRIVER
APPN VS‘y’ﬂC

WO 2018/198002

100 (HMD add/remove j 4nc

¥

APP 2 Senses for -1 110
Competing Needs
for Real Time
Resources of Multiple
VR Displays

% Competing Needs for ™
“~.. Real Time Resources
. VR Displays

APP 2 Determines
Refresh Offset to
120~ Avoid Conflict in
Needs for Real Time
Resources

¥

125+~ APP 2 Imposes
Refresh Offset io
Avoid Conflict in
Neeads for Real Time
Resouces

130t

PCT/IB2018/052735

102

140~
APP 1 Generates

Content for Multiple =
l VR Displays

< efres; h Offset Im :jﬁii':::~

150

MemporefPn

Render
Frames without
Refresh Offset

155
¢ ¥
Deliver Rendered
Frames to
VR Display
160
i
)

Render Frames
with Refresh Offset ™

165
{ ¥

Deliver Rendered

Frames to Multiple
VR Displays

WO 2018/198002

77

Dynamic 205
Refresh
Enabled

¥

APP1 Generates 210

Content for Multiple
VR Displays

¥

APP2Z Senses for
Competing Needs for
Real Time Resources

of Multiple VR
Displays {

!
215

~ Competing Needs for) ™,
~. Real Time Resources _~»
~~._ of VR Displays "
. Sens ed?

Yes

—~4e 225
Render
Frames

¥

Deliver Rendered |

PCT/IB2018/052735

¥

APP2 Determines
Refresh Offset and
Dynamic Refresh Rate
to Avoid Conflict in
Needs for Real Time

Resources 235

¥

APPZ Imposes
Refresh Offset and
Dynamic Refresh Rate
to Avoid Conflict in
Needs for Real Time

Resources -

240

Render Frames
with Refresh Offset and
Dynamic Refresh Rate

245

Frames {o Multiple =
VR Displays

International application No.

PCT/IB2018/052735

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC: HO4N 13/144 (2018.01), A63F 13/52(2014.01), GO2B 27/01 (2006.01), G09G 5/14 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC: HO4N 13/144 (2018.01), AG63F 13/52(2014.01), GO2B 27/01 (2006.01), GO09G 5/14(2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

DATABASES : QUESTEL ORBIT, USPTO WEST, GOOGLE PATENT

KEY WORD SEARCH: Synchronizing multiple head-mounted displays, refresh rate, computing resources, asynchronous time warp, virtual
reality displays, headsets, goggles, dynamic refresh displays, GPU, delivering video frame, delivering video game, game console, playing games,)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US2016/0093108 Al Mao et al. 31 March 2016 (31.03.2016) 1-20
Whole document

Y US2014/0152676 Al Rohn et al. 5 June 2014 (05.06.2014) 1-20
Whole document

A US2017/0011681 Al Bathiche et al. 12 January 2017 (12.01.2017) 1-20
Whole document

A US2016/0189429 Al Mallinson 30 June 2016 (30.06.2016) 1-20
Whole document

A US2017/0076503 Al Tamaoki et al 16 March 2017 (16.03.2017) 1-20
Whole document

I'"] Further documents are listed in the continuation of Box C. W See patent family annex.
* |Special categories of cited documents: “T” |later document published after the international filing date or priority

“A” |document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

“E” |earlier application or patent but published on or after the international “X” |document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

“L” |document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other “Y” |document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

“0” |document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination

being obvious to a person skilled in the art

“P” |document published prior to the international filing date but later than “&” |document member of the same patent family

the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

12 July 2018 (12-07-2018) 19 July 2018 (19-07-2018)

Name and mailing address of the ISA/CA Authorized officer

Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT Adel El Hamad (819) 639-3028
50 Victoria Street

Gatineau, Quebec K1A 0C9
Facsimile No.: 819-953-2476

Form PCT/ISA/210 (second sheet) (January 2015) Page 2 of 3

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT /IB201 8 /052 735

Patent Document Publication Patent Family Publication

Cited in Search Report Date Member(s) Date

US2016093108A1 31 March 2016 (31-03-2016) US2016093108A1 31 March 2016 (31-03-2016)
US9818225B2 14 November 2017 (14-11-2017)
CN106716306A 24 May 2017 (24-05-2017)
EP3201731A1 09 August 2017 (09-08-2017)
W02016053906A1 07 April 2016 (07-04-2016)

US2014152676A1 05 June 2014 (05-06-2014) US2014152676A1 05 June 2014 (05-06-2014)
CN105027563A 04 November 2015 (04-11-2015)
EP2926555A1 07 October 2015 (07-10-2015)
TP2016509245A 24 March 2016 (24-03-2016)
KR20150091474A 11 August 2015 (11-08-2015)
WO02014085788A1 05 June 2014 (05-06-2014)

US2017011681A1 12 January 2017 (12-01-2017) US2017011681A1 12 January 2017 (12-01-2017)
US2016180762A1 23 June 2016 (23-06-2016)

US2016189429A1 30 June 2016 (30-06-2016) US2016189429A1 30 June 2016 (30-06-2016)
US9824498B2 21 November 2017 (21-11-2017)
CN107003512A 01 August 2017 (01-08-2017)
EP3241207A2 08 November 2017 (08-11-2017)
TP2018503114A 01 February 2018 (01-02-2018)
US2018082484A1 22 March 2018 (22-03-2018)
WO02016109139A2 07 July 2016 (07-07-2016)
WO02016109139A3 25 August 2016 (25-08-2016)

US2017076503A1 16 March 2017 (16-03-2017) US2017076503A1 16 March 2017 (16-03-2017)
TP2017058971A 23 March 2017 (23-03-2017)

Form PCT/ISA/210 (patent family annex) (January 2015)

Page 3 of 3

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report

