as United States

USOORE43437E

a2 Reissued Patent 10) Patent Number: US RE43,437 E
Han et al. 45) Date of Reissued Patent: May 29, 2012
(54) STORAGE VOLUME HANDLING SYSTEM 5,363,487 A * 11/1994 Willmanetal. 710/8
WHICH UTILIZES DISK IMAGES 5,367,698 A * 11/1994 Webber etal. 709/203
5,374,916 A 12/1994 Chu 340/146
(%) Toveors. Byron B, Han,Horolat, 1 (U s A 2ie0s Kiblowiiuti L osa
James F. Kateley, San Jose, CA (US); 5414,850 A * 5/1995 Whiting .. 719/321
Colm Murphy, Tower Blarney (IE); 5426,645 A 6/1995 Haskin 370/118
Kenneth FitzGerald-Smith, Passage 5452454 A % 9/1995 Basu .o 713/2
West (IE) (Continued)
(73) Assignee: Apple Inc., Cupertino, CA (US) OTHER PUBLICATIONS
(21) Appl. No.: 09/990,887 IEEE “The Authoritative Dictionary of IEEE Standards Terms”,
2000, IEEE, 7th, p. 797.*
(22) Filed: Now. 21, 2001
Primary Examiner — Jason Mitchell
Related U.S. Patent Documents (74) Attorney, Agent, or Firm — Fenwick & West LLP
Reissue of:
(64) Patent No.: 5,991,542 (57) ABSTRACT
Issued: Nov. 23, 1999 L .
Appl. No.: 08/713,500 Disk images, and the like, are used to emulate storage vol-
Filed: Sep. 13, 1996 umes for the distribution of computer software. An image of
a data storage volume, such as a hard disk drive, is stored in a
(51) Int.CL file having a format that enables it to exhibit a behavior which
GOG6F 9/44 (2006.01) is the same as the storage volume itself. The image files are
GO6F 9/445 (2006.01) accessed by means of an associated driver which can support
(52) US.Cl oo 717/176; 717/170 avariety of different file system protocols, thereby permitting
(58) Field of Classification Search None the files themselves to be independent of the format require-
See application file for complete search history. ments of particular file systems. The data in the image file can
be compressed in a manner such that a storage volume being
(56) References Cited emulated appears to be of a specified size, while actually
requiring less space to store its contents. With these proper-
U.S. PATENT DOCUMENTS ties, the image files can be mounted in the manner of a
4864572 A 0/1989 Rechen et al. oo 3712 hardware storage device, and large files can be readily trans-
5,001,628 A 3/1991 Johnson et al. w.ovvovon... 364/200 mitted and downloaded in an electronic format. Since the files
5,111,444 A * 5/1992 Fukushimaetal. ... 369/53.17 are preserved in their original form, end-to-end verification
5,117,350 A * 5/1992 Parrishetal.cccooonv. 711/1 remains possible, to ensure the integrity of the downloaded
g’gg’gzg ﬁ %}ggg gi;in;tglan etal. . 332 /17/(5)(1) files. Multiple images can be combined into a single tome, for
5:298:992 A 3/1994 Pietras et al. 3487415 installation at a remote site using a one-button approach.
5325532 A 6/1994 Crosswyetal. 395/700
5,353,061 A 10/1994 Rodriguez et al. 348/409 19 Claims, 5 Drawing Sheets

521“‘

il

S
74 6

US RE43,437 E

Page 2
U.S. PATENT DOCUMENTS 5,754,853 A % 5/1998 PEAICE wrovororvorivririrerenin, 7132
. 5758165 A * 5/1998 Shuff 717/178
5,493,649 A 2/1996 Slivkaetal. 395/185 5778384 A * 7/1998 Pr(l)1Vin0 et al 707/200
5504.842 A 4/1996 Gentile 395/114 2700705 A * £/1998 Hanhro L
5546557 A * 81996 Allenetal. . 71111 280045 A * 10/1908 Motoyfm; """"""""""" 16
5,555416 A 9/1996 Owensetal. ... 395/700 5.820.053 A * 10/1998 Smith etal. ... 711202
5,604,906 A * 21997 Murphy etal. 717/162 5838910 A 11/1998 Domenikos et al. 395/200
5649212 A * 7/1997 Kawamura ef al. 7137324 2001540 A * 111999 Honerol it
5.652.863 A * 7/1997 Asensioetal. ... 71173 27 B
5,692,190 A * 111997 Williamscccoovveinnn. 713/2 * cited by examiner

U.S. Patent May 29, 2012 Sheet 1 of 5 US RE43,437E

721—.

/—\ fzo

Parallel Bus

|

[eXe] —] L
/ S /%
/A
16 /1 [_
Boot Drive 20
]
FIG. 1 I —
mage Drive
Logical 0
Blocks System Startup———
J Information
2 Volume Information
S]
Volurme
/ Bitmap /
I -
n+i

File
/ Contents Z

FiG. 2

US RE43,437 E

Sheet 2 of 5

May 29, 2012

U.S. Patent

bl - 5l
pasnun pasnupn
Z'l
N 0joqg N N 0)jo(N
dow)igq dowiig
awnjop awnjo
UOHDLUIOJUT SLINJOA UCHDWIIOJUT BLUNIOA
uonouwojur vonowopuy
0 . dn)in)s wWo)sAg) dnyip)S wa)sAs 0
R sboulf 831,/ poay R ys1g Addoyy
S s
os 9z H 8z ¥z zz
= ’ ’ Z 2
E OId | Jovm ||| aH 180d || woy ao aH
NS E WIy3S || 1S9 150S
[N G S b oo 78 t e ze
] y P y Jat
_ 190 | | gniya || samrda || yanrya || ¥an1ya)
05 N _ ! ! /
WILSAS ONILYYI0 |

@

Vv Ol4

U.S. Patent May 29, 2012 Sheet 3 of 5

52
Floppy Disk [‘

US RE43,437 E

Uncompressed 56
Read/Only Image f

0 Systern Startup ' System Startup ’
Information Informtion
Volume Information Vofume Information
Volurne Volurme
Bitmap Bitmap
/ Data Z { Doto _/I
1.2 > 1.2
Unused
1.4
FlG. 4B
Compressed [o8
5 Floppy Disk (~52 Read/Only Image
16K Chunk _] — | 9K |
16K Chunk \\ AT
16K Chunk > 8K
16K Chunk 11K
Z Z I i
| }
] F
12 16K Chunk > 11K
14 Unused

Index

[60

Source

Addr| Image| Addr | Comp. Alg.

FIG. 4C

Sheet 4

U.S. Patent May 29, 2012

62

.

i

of 5

US RE43,437 E

FiG. 6

Heoders

Server

|A|PISITINIDIP] Datal
[PISITINIDIP[Daia]
[S|7IvDIP[Data]
[TINIDIP] Datal

|N|D[P| Datal

Application
Presentation

Session

Tronsport
Network
Data Link

Client

Application

Presentation

Session

Tronsport

Network

Data Link

[DIP[Data]
FIG. 6 Do)

Physical

Image Server

DDDDIM
2<EAE
o

N
N
AN
AN
N

‘Cab/e/Fib er/Wireless

Low—Level
R Protocols

4

Mounted e

‘El Remote

FiG. 7

Image

Client
Las

Physical

U.S. Patent May 29, 2012 Sheet 5 of 5 US RE43,437E

Disk 1 Disk 2 Disk 3 Disk 4
S CS S)

55

Y 4 y 4

o) cS cS ")

88 Image 1 Image 2 Image 3 Image 4

\ ! ’

Disk Copy
Image 1]/~ 90
Image 2
Image 3

FIG. 8 Imoge 4

Seript File

Image 1 Image 2 Image 3 Image 4 Image 5

NNy

Image 1
Image 2

9z

Image File
fome

96~ 1 Script
< Fite
FIG. 9 | 98

Instolter

US RE43,437E

1
STORAGE VOLUME HANDLING SYSTEM
WHICH UTILIZES DISK IMAGES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

The present invention is directed to the replication and
distribution of electronic files, such as computer software,
and more particularly to a system for the creation and manipu-
lation of images of electronic storage media.

BACKGROUND OF THE INVENTION

With the expanding use of computers in widely varied
environments, and more significantly the increasing size of
software programs and data files that are employed on those
computers, the dissemination of computer software is becom-
ing significantly more complex. Originally, when software
programs and data files were of relatively small size, distri-
bution of the programs and files by means of floppy disks was
feasible. However, as the processing power of computers
continues to expand, and internal storage media such as hard
disks offer greater capacity, there is a tendency for software
programs to become larger in size. Concomitantly, data files
which are processed by those programs, particularly files
relating to images and other graphics, have also increased in
size. As a result, floppy disks no longer offer a convenient
medium for distributing electronic data, due to their limited
storage capacity. While a user may be quite willing to install
a new software program that is contained on a few floppy
disks, the time and effort required to install a large program
that occupies a significant number of disks to store all of its
contents, e.g., 20 or more disks, becomes intolerable.

For this reason, other media having larger storage capacity,
such as CD ROMs, have been employed more recently for the
distribution of larger amounts of software. While these other
types of media decrease the time and effort required to install
the software, they still have certain limitations associated
with them. For example, the need to separately package and
ship each CD ROM, or the like, requires an appreciable
amount of overhead on the part of the software manufacturer.
In addition, the storage of the media, both at retail outlets and
at the end user’s site, represents a growing burden as the
number of programs and data files continues to expand.

To overcome these limitations associated with the limited
size of transportable storage media and the need to accom-
modate or dispose of the media, it is desirable to distribute
software, including both programs and data files, in an elec-
tronic format. Currently, installer programs are available
which provide a user with an opportunity to install a program
on a computer from a remote site. In one type of installer, a
large number of bundled files are downloaded from the
remote site in a compressed format, and then expanded on the
user’s computer. From this large number of files, the user
picks the few that are desired, and they are installed on the
user’s computer system. From the standpoint of user conve-
nience, this approach is less than ideal, because of the time
spent downloading a number of unnecessary files, as well as
the effort required by the user to select the needed files. In
contrast to this approach, a “one-button” installation system
is preferable. In such an approach, the user is only required to

20

25

30

35

40

45

50

55

60

65

2

perform a single action, e.g., select a single button in a graphi-
cal user interface, to have the appropriate files downloaded
and installed.

Typically, in a one-button installer, all required files are
compressed into a single file known as a “tome.” The tome is
provided together with an installer program and a script file
that is downloaded to the user’s site. The installer program,
together with the information contained in the script file,
expands the tome back into the individual files, and installs
the files onto the user’s computer system. To perform the
installation, the user is only required to select the installer
program to run. All other actions are carried out automatically
thereafter.

While the latter approach offers the convenience of a one-
button installation system, to date it has been limited in the
types of programs with which it can be employed. More
specifically, due to restrictions associated with the number of
resources that can be handled in a tome, it is not possible to
use the one-button installer system for programs having large
files, or a large number of files, such as operating system
software.

Furthermore, since installer programs operate on files indi-
vidually, they are not able to ensure the integrity of files
installed on the user’s system. More particularly, since each
individual file is compressed and expanded during the instal-
lation process, it is not possible to provide end-to-end verifi-
cation of each file. For example, the original file may have a
checksum value tagged to it, to provide for verification of the
integrity of the file when it is copied. However, as part of the
process of compressing the file, the checksum value is not
always preserved. For example, the file might be renamed.
Consequently, when the file is expanded and installed, it is not
impossible to employ the checksum value to veritfy the integ-
rity of the file.

SUMMARY OF THE INVENTION

In accordance with the present invention, the foregoing
limitations associated with the distribution of computer soft-
ware are addressed through the use of disk images, and the
like, to emulate storage volumes. An image of a data storage
volume, such as a hard disk drive, is stored in a file having a
format that enables it to exhibit a behavior which is the same
as the storage volume itself. The image files are accessed by
means of an associated driver which can support a variety of
different file system protocols, thereby permitting the files
themselves to be independent of the format requirements of
particular file systems. The data in the image file can be
compressed in a manner such that a storage volume being
emulated appears to be of a specified size, while actually
requiring less space to store its contents. With these proper-
ties, the image files can be mounted in the manner of a
hardware storage device, and large files can be readily trans-
mitted and downloaded in an electronic format. Since the files
are preserved in their original form, end-to-end verification
remains possible, to ensure the integrity of the downloaded
files. Multiple images can be combined into a single image
file tome, for installation at a remote site using a one-button
approach.

The foregoing features of the invention, as well as the
advantages provided thereby, are explained in greater detail
hereinafter with reference to exemplary embodiments illus-
trated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a general block diagram of one arrangement for
downloading software onto a computer;

US RE43,437E

3

FIG. 2 is a block diagram of the organization of data in a
storage volume;

FIG. 3 is a block diagram of a computer system having a
number of physical I/O devices and access to a disk image
file;

FIGS. 4A-4C are block diagrams of different disk image
formats;

FIG. 5 is a block diagram of a software distribution system
which employs a disk image;

FIG. 6 is a block diagram of network communication lay-
ers;

FIG. 7 is a block diagram of an image server system;

FIG. 8 is a block diagram of a script file for mounting
images and taking specified actions; and

FIG. 9 is a block diagram of an installer system in accor-
dance with the present invention.

DETAILED DESCRIPTION

To facilitate an understanding of the present invention, it is
described hereinafter with reference to specific examples
relating to the downloading and installation of software on
computers. For example, the installation may take place at the
time of computer manufacture, or occur in a private context
via an enterprise network or a world-wide network, such as
the internet. It will be appreciated, however, that these
embodiments are merely exemplary, and do not constitute the
only practical applications of the invention. Rather, the inven-
tion can be successfully utilized in a variety of different
situations in which it is desirable to replicate and/or dissemi-
nate software in an electronic format.

Generally speaking, the present invention is based upon the
use of storage media images to facilitate the dissemination
and access to large quantities of data. In the context of the
present invention, a disk image is a file which is located on
any suitable storage medium and which has properties that
cause it to appear to computer system resources as if it were
a physical storage device itself, e.g. a hard disk drive. In one
aspect, the present invention is directed to a multiple-format
disk image, in which the contents of a storage medium can be
stored in any one of a variety of formats that provide the most
efficient use of backing storage commensurate with the needs
of'the user. In another aspect, the present invention is directed
to a disk image device driver which allows disk images of any
of a variety of formats to be mounted and used in the same
manner as any type of physical storage device.

One environment in which the features of the present
invention are particularly desirable is the downloading of
software onto computers. For example, most new computers
are typically sold with bundled software, in which a number
of'programs are installed on the storage media, e.g., hard disk,
of the computer. To this end, the software must be down-
loaded and installed at the manufacturing site. In one
approach, this can be accomplished through the use of a disk
image file. Referring to FIG. 1, a software bundle is to be
downloaded onto a hard disk in a target computer 10. The
downloading operation is carried out by a controller computer
12. In operation, the controller 12 creates a disk image of a
hard disk drive onto which the software bundle is to be down-
loaded. Preferably, the image is created in the controller’s
internal RAM. For explanation purposes, the image drive is
illustrated in FIG. 1 as a separate external drive 14. It will be
appreciated, of course, that the image drive could actually be
created on an external device, such as a RAM disk or a hard
disk drive, as illustrated in FIG. 1, rather than in the control-
ler’s internal memory.

20

25

30

35

40

45

50

55

60

65

4

The creation of the image is carried out by downloading the
software bundle to the image drive and verifying its integrity,
for example, by means of a checksum operation. Thereafter, a
target computer 10 is connected to the controller and powered
up. Preferably, the computer 10 is connected to a boot drive
16, from which the computer begins a startup operation. At a
particular point in the boot process, the computer communi-
cates with the controller over a serial cable 18. In response to
a signal from the computer 10, the controller 12 downloads
the software bundle onto the internal disk drive of the com-
puter 10. This procedure is accomplished by means of a
block-to-block transfer from the image drive 14 to the target
drive of the computer 10 over a parallel bus, as illustrated by
the arrow 20 in FIG. 1. For further information regarding this
operation, reference is made to copending, commonly
assigned U.S. application Ser. No. 08/383,864, filed Feb. 6,
1995, the disclosure of which is incorporated herein by ref-
erence thereto.

In the arrangement depicted in FIG. 1, the downloading of
the software onto the internal drive of the target computer 10
is controlled by the controller 12. In such a case, the efficiency
with which the software bundle can be downloaded onto a
plurality of target computers is determined by the resources of
the controller 12. Specifically, the controller interacts with
one target computer 10, or at most a limited number of target
computers, at one time. In accordance with the present inven-
tion, the efficiency with which the downloading operation can
be carried out is enhanced by making the disk image file
mountable in each target computer 10. If the disk image file is
mounted within the computer 10, the downloading operation
can be controlled by the individual target computers, rather
than the controller 12. As such, the same software bundle can
be downloaded onto a potentially unlimited number of target
computers at one time.

The mounting of a storage medium refers to the process by
which information is provided to the file management facility
of' a computer’s operating system, so that the computer can
access information on the storage medium. In the following
discussion, the term “volume” will be used to refer to differ-
ent types of storage devices. In essence, a volume can be any
piece of a storage medium, such as a disk, which is formatted
to contain files. A volume can be an entire disk, or only part of
a disk. For example, a floppy disk might comprise a single
volume. A larger storage device, such as a hard disk or a file
server, can be divided into many different volumes, or parti-
tions, each of which can be formatted in a different manner.

Typically, information in a volume is organized in the form
of logical blocks, each of which contains a predetermined
amount of information, e.g., 512 bytes. One example of the
organization of the logical blocks in a storage volume is
shown in FIG. 2. In this particular arrangement, the first two
blocks in the volume are known as its boot blocks, and contain
information that is read at system startup. This information
might include, for example, configurable system parameters,
such as the capacity of various queues, and the number of
open files that are allowed at any given time. The next logical
block of the volume contains volume information, which is
discussed below. The following group of logical blocks (3-n)
contain the volume bitmap, which records whether each
block on the volume is used or unused. The remaining logical
blocks in the volume contain the contents of the files which
are actually stored in the volume.

The volume information in logical block 2 comprises vari-
ous fields that are used by the operating system’s file man-
agement facility, such as the volume name, it size, and the
number of files on the volume. This information is initially
created when the volume is initialized, or formatted, and

US RE43,437E

5

modified thereafter whenever the file management system
writes information to the volume. Each time a volume is
mounted, the file manager reads the volume information from
the logical block and stores it in a predetermined area of the
computer’s working memory, e.g. its RAM. Once the file
manager has retrieved and stored the volume information, the
volume is considered to be mounted, and the file manager can
access information contained in the remaining blocks of the
volume. A volume becomes unmounted when the file man-
ager releases the memory that was used to store the volume
information.

Typically, each volume that is mounted in a computer
system represents a different physical device, e.g. a floppy
disk, or a portion of a physical device, such as a partition on
a disk drive. In contrast, a disk image is not associated with
any particular physical device. Rather, it comprises a file in
some storage medium, referred to hereinafter as the backing
store, and is capable of behaving in the manner of a physical
device. Thus, the file itself comprises logical blocks contain-
ing the information that is normally associated with a physi-
cal volume, i.e. system startup information, volume informa-
tion, and a volume bitmap, in addition to the actual data of the
file itself.

In operation, application programs running on a computer
communicate with the storage volumes by means of associ-
ated drivers. For example, FIG. 3 illustrates a computer sys-
tem having various physical volumes mounted thereon. These
physical volumes might include local devices, for example a
SCSI hard disk drive 22, a SCSI CD-ROM drive 24, and an
IDE hard disk drive 26. A serial port 28 provides access to
other remotely located physical devices (not shown), for
example by means of a communication network. Each of
these devices has an associated driver 32-38 stored in the
memory of the computer. Whenever an application program
40 running on the computer desires to read or write informa-
tion on one of these devices, it sends a logical address for the
desired information to the computer’s operating system 42. In
response thereto, the operating system determines which stor-
age device that logical address pertains to, and a correspond-
ing physical address on that device. The operating system
provides the physical address, and other associated com-
mands, such as read or write, to the appropriate driver, which
then accesses the device to obtain or provide the data at the
indicated address.

In a similar manner, when a disk image is mounted, a driver
is employed to carry out the task of providing data to the
image file and retrieving data therefrom. As shown in FIG. 3,
a disk image 30 of a volume is located on a suitable backing
store 31, and is mounted as a local volume in the computer
system. Communications with the disk image are carried out
through an associated driver 50. This driver is loaded at sys-
tem boot time, or upon mounting of the disk image, in the
same manner as the conventional drivers 32-38. Once loaded,
the driver carries out the actual mounting operation, e.g. store
the volume information in an allocated portion of memory,
and the like. The backing store 31 could be one of the other
local physical devices 22, 24 or 26, or it could be some other
local or remote device. By means of this arrangement, the
disk image 30 appears as another physical storage device to
the operating system.

In accordance with one aspect of the present invention, a
disk image can have any one of a number of different formats.
Three such formats, namely uncompressed read/write,
uncompressed read/only, and compressed read/only, are illus-
trated in FIGS. 4A-4C, respectively, for an illustrative
example in which a 1.4 MByte floppy disk 52 is imaged. In
this particular example, only 1.2 MByte of the total storage

20

25

30

35

40

45

50

55

60

65

6

capacity of the disk is used to store data and volume-related
information. The last 200 kilobytes are unused. The image file
54 of FIG. 4A is in the uncompressed read/write file format.
Animage file in this format contains every logical block of the
source volume. Therefore, the image file 54 has a size of 1.4
MBytes, including 200 kilobytes which relate to the unused
portion of the floppy disk. When this disk image is mounted,
it will appear as a 1.4 MByte volume, from which the stored
data can be read. In addition, new data can be written into the
unused storage blocks.

Ifthere is no need to write information to the disk image, it
is preferable to store it in a read/only format which saves
storage space. In this format, the size of the disk file is com-
mensurate with only the used portion of the source volume.
Referring to FIG. 4B, an uncompressed read/only disk image
56 is a file which contains only the actual data of the disk 52,
and hence has a size of 1.2 MByte. However, when mounted,
this image still appears as a 1.4 MByte volume, since the
volume information stored in logical block 2 is the same as
that for the original floppy disk 52. The data stored in the first
1.2 MBytes of the address range for the volume is read in the
normal manner by the disk driver. If an attempt is made to read
data from an address corresponding to the unused portion of
the floppy disk, the disk driver returns a value of zero, based
on information contained in an index resource, described
below.

To obtain the greatest savings in storage space, the com-
pressed read/only format is employed. In the creation of a
compressed read/only image file, the original data is divided
into “chunks” of any suitable size. In the example of FIG. 4C,
the data stored on the floppy disk 52 is divided into chunks of
16 kilobytes each. Each chunk is separately compressed and
stored in the image file 58. Depending upon the nature of the
data, different compression algorithms can be employed for
the various chunks of data, to obtain the most efficient com-
pression for the file as a whole. As a result, different chunks
can be compressed by different amounts, and some chunks
may not be compressed at all. Thus, information which is
frequently accessed, such as directories and catalogs, might
not be compressed, to increase the speed with which they are
read. Although all of the source data chunks in the example of
FIG. 4C have the same size, there is no requirement that they
do so. Rather, the different chunks could be of various sizes,
to accommodate different compression algorithms, for
example.

Associated with the compressed image file is an index
resource 60. This index comprises a mapping of the logical
blocks of the source volume 52 to byte ranges in the com-
pressed image file 58. The index also contains information
which identifies a particular compression algorithm that was
used on the associated chunk of data, and perhaps also the
sizes of the chunks, to thereby provide information on the
manner in which to decompress the data from the file 58.

The index 60 can also be employed in connection with the
other disk image file formats. For example, in the case of the
uncompressed read/only format of FIG. 4B, the index con-
tains information that the last 200 kilobytes of the source
volume are not mapped into the disk image 56, and therefore
have a value of zero. In the case of the uncompressed read/
write formats of FIG. 4A, there is no need for an index since
the image file stores every block of the source volume.

Another format for a disk image is a compressed read/write
format. In this format, the user can specify a container of a
particular size, e.g, a 1-Gigabyte volume. A disk image file is
then created with the appropriate volume information per-
taining to such a volume. When initially created, the disk
image could be empty, i.e. contain no file data. When a com-

US RE43,437E

7

mand is generated to write data to the disk image, the data is
segmented into suitably sized chunks, if necessary, and each
chunk is compressed as appropriate. Each compressed chunk
of'data is then added to the disk image file, and the appropriate
mapping and compression data is entered into the index 60.
Thus, the disk image file grows as data is written to it, up to the
limit of its specified capacity.

Referring again to FIG. 3, in operation the driver 50 for the
disk image 30 contains data which identifies the physical
device 31 on which the image is actually stored, and the
address for the first byte of data in the image file 30 on that
device, which constitutes an offset address. When the driver is
provided with a data address from the operating system, it
employs this data address, together with the offset address for
the image file, to locate and read the requested data. If the
image file is in a read/only or compressed format, the driver
refers to its associated index resource 60. Upon receipt of a
data address from the operating system, the driver determines
where the compressed data corresponding to that address is
stored, and the appropriate algorithm necessary to decom-
press the data. The compressed data is then retrieved, decom-
pressed, and provided to the operating system. If the driver
receives a data address corresponding to part of the source
volume which is unmapped in the index resource 60, e.g. the
last 200 kilobytes in the example of FIG. 4B, the driver
returns a value of zero to the operating system for all data at
such addresses.

Disk image files of the type described above, which emu-
late the entire contents of the storage volume, can be
employed in the electronic dissemination and replication of
software. F1G. 5 illustrates an example of a computer network
in which a software program is to be installed on a plurality of
individual computer systems. A network server 62 has an
associated disk drive 64 or other type of storage device. A disk
image 66 is stored on the device 64, and contains all of the
files for a software program that is to be installed on remote
client computers 68. In this particular case, the disk image 66
can be in one of the two read/only formats. To perform the
installation, the disk image 66 is mounted at each of the client
computers 68, as indicated by an associated icon 70 on each
computer’s display. In this particular case, the disk image is
mounted as a remote volume, which is accessed through a
communication network 72. This network could be a local
area network, for example, or a much larger wide-area net-
work, such as the internet. Once the disk image is mounted at
the individual computers 68, they can copy its contents to
their local disk drives 74, to thereby install the software. The
particular advantage of this approach is the fact that the instal-
lation at each remote computer 68 is controlled by the indi-
vidual client computers themselves, and therefore does not
require the resources of the network server 62. Consequently,
installation can take place on a number of client computers 68
simultaneously.

Several advantages are associated with the creation of disk
images to emulate mountable storage volumes and dissemi-
nate software. For example, by creating an image of an entire
volume, the individual files themselves remain intact. As
such, it is possible to employ a checksum technique, or simi-
lar such type of data integrity check, to provide end-to-end
verification that files have been successfully transferred.
More particularly, the disk image 66 contains all of the con-
tents of a source volume (not shown). When the disk image 66
is to be created, the network server 62 can calculate a check-
sum for the source volume, and store this value in the volume
information, which is then included in the disk image file 66.
Subsequently, when a remote client computer copies the con-

20

25

30

35

40

45

50

55

60

65

8

tents of the disk image file to its own disk drive 74, it can run
a checksum on the copied data to determine whether the same
value is obtained.

Another advantage stemmning from the use of images of
entire storage volumes is the fact that the dissemination of
files can be independent of the file systems themselves. For
example, with reference to FIG. 5, the source volume from
which the disk image 66 is created can be formatted for a
given type of file system, e.g. DOS. However, the disk drives
74 for the remote client computers 68 might be formatted in
accordance with a different type of file system, e.g. HFS. To
permit the disk image 66 to be mounted and read at the client
computers, the disk driver 50 for reading disk images is
provided with information relating to difterent disk formats.
For this purpose, when the driver is first opened it loads atable
which contains a list of file types that it is capable of recog-
nizing. For each type, the table contains entries which provide
the information needed to access data in files of that type, e.g.
how to identify the beginning and end of a block of data. The
table might also indicate the type of operations that are
allowed for each file type, e.g. read/write or read-only. In the
particular example described above, therefore, the disk driver
includes information regarding the DOS format, so that it can
tell where data begins and ends in the image file 66. Using this
information, the disk driver is able to read the data in the
image file 66, and provide it to the operating system for the
remote client computer 68, so that it can be stored on the local
disk drive 74 in the format required by the file system for the
computer 68. Thus, a disk image stored on server which
employs any given file system can be mounted on and
accessed by a computer which uses a different type of file
system, without affecting the integrity of the files themselves.

Another advantage associated with the distribution of soft-
ware via disk images lies in the reduced bandwidth require-
ments for disseminating the images over networks. Typically,
most network communications are carried out through vari-
ous layers that comprise distinct levels of capabilities, or
services, that build upon one another. One well-known layer
architecture is the OSI reference model, which employs seven
layers to describe network activities. These seven layers are
depicted in the block diagram of FIG. 6. A given layer on a
computer uses a predefined protocol to communicate with
that layer’s counterpart on another computer. Except for the
lowest, physical layer, however, the communications
between the respective layers are indirect. In other words,
direct communications take place between the physical lay-
ers, at which details of cable connections and electrical sig-
naling are specified. Each layer above the physical layer
communicates with the layers below it to send information.
As part of the process for sending a data packet, each layer
adds it own header to the actual data being communicated.
Thus, for communications between the two highest layers,
i.e. the application layers, a significant amount of overhead is
associated with the network communications, as indicated in
FIG. 6. This overhead requires additional bandwidth to trans-
mit the data, as well as additional processing time at the
receiving computer to strip each layer’s associated header,
and communicate the remaining information to the layer
above it.

Typically, when a file is transferred from one computer to
another via their respective file managers, such communica-
tions take place through all seven layers of the network archi-
tecture. However, since a disk image functions as a physical
device on the computer system, only the lowest level proto-
cols need to be employed to communicate over the network.
The services of the higher level layers are not needed. For
example, transfer of volume information, to permit a disk

US RE43,437E

9

image to be mounted, only requires the two lowest protocol
layers. Consequently, the overhead associated with the higher
layers can be avoided, thereby enabling the transfer to take
place at extremely high speeds.

This capability is particularly advantageous in the case of
graphic files, which typically contain large amounts of data.
In one implementation of the invention, an image server can
be employed to provide large graphic files to remote sites.
Referring to FIG. 7, the image server has an associated stor-
age medium 80 containing disk images 82 which relate to
different respective graphic files. Using low level network
protocols, individual images can be mounted at remote client
computers 84. Thus, the client computers can access the
information in the image files over the network at extremely
high speeds. Alternatively, the image files can be copied from
the network server to the client computer by means of low-
level network protocols, and then mounted at the client com-
puter. With this approach, large image files can be accessed
without having to use higher level network protocols, and be
encumbered by the overhead associated with them. Another
advantage, discussed previously, is the fact that the image
server need not use the same file formatting as the client
computers. As long as the disk image drivers at the client
computers 84 are capable of reading the file format at the
server, the disk images can be mounted as local volumes,
independent of the file format employed at the server.

In accordance with another aspect of the invention, disk
images can be associated with pre-defined actions to be car-
ried out. For example, it might be desirable to make back-up
copies of files stored on a series of floppy disks. Referring to
FIG. 8, files to be replicated are stored on a series of four
floppy disks 86. Each disk may have a checksum (CS) com-
puted for it. A disk image 88 is created for each of the four
floppy disks. The checksum is included in the imaged infor-
mation. Thereafter a script file 90 is created, which lists disk
images to be automatically mounted and an action to be taken
after the images have been mounted. For the example
described above, the script file 90 could identify a disk copy
utility application, followed by an identification of each
image which is to be mounted and copied. The identification
of the application and image files can specify the address at
which they are to be found. This address could be a local
address or a network address.

When the user actuates the script file, all of the identified
images are mounted at the user’s computer. If desired, a
checksum operation can be carried out with respect to each
mounted image, to verify its integrity. The specified applica-
tion is then launched. In this case, the application creates a
backup of each imaged disk on a floppy disk at the user’s
computer. Once the operation has been completed, the image
files can be unmounted, if desired, or remain mounted on the
user’s computer, depending upon the user’s preferences.

In this regard, the disk image driver can mark a mounted
image as being “owned” by an application or process, such as
the disk copy utility. If an imaged volume is owned, the driver
checks at regular intervals whether the owning process is still
executing. If'the process is no longer executing, the volume is
marked as unowned and the driver then unmounts it. If no
application program is specified in the script file, the identi-
fied disk images are simply mounted in response to launching
of'the script file and marked as unowned. In this case the user
must manually unmount the volumes.

The foregoing aspect of the invention can be employed to
create a “onebutton” installer that is not limited in the number
and/or size of files that can be installed. Referring to FIG. 9,
disk images 92 are created for one or more volumes contain-
ing the files to be installed. These images are then concat-

20

25

30

35

40

45

50

55

60

65

10

enated into a single file 94, which constitutes an image file
tome. Each image in the tome might have an associated index
resource. Since all of the files remain intact and separately
defined within the respective images 92, and the images are
unmodified in the image-file tome 94, the original integrity of
the files is unaltered. As such, there is no need to requalify any
of the files within the tome 94 to ensure their integrity for
subsequent installation.

An installation package 96 comprises three clements,
namely a conventional installer program 98, the image file
tome 94, and a script file 100. The script file identifies the
images to be mounted for the installation process, and
launches the installer program once the images have been
mounted. The program then operates in the normal manner to
install the appropriate files from the mounted images onto a
computer system. By means of this approach, prior limita-
tions that were placed on installation processes, regarding the
number and size of files that can be handled, are overcome,
since each image only constitutes a single image file even
though it may contain a large number of individual data files.
Furthermore, since the user is only required to perform a
single action, namely launch the script file, the installation
takes place in a true “one-button” manner.

From the foregoing, therefore, it can be seen that the
present invention provides an efficient procedure for the dis-
semination and replication of files in an electronic format
which is not limited by the sizes of the files themselves.
Through the creation of disk images and mounting of the
images at remote computers, ready access is provided to the
files in a speedy manner, through the use of low level network
communication protocols. Through the availability of difter-
ent types of formats, backing storage can be used in a manner
which is most efficient, taking into account the needs of the
user. Furthermore, the mounting and transfer of files is carried
out independently of file systems themselves, thereby allow-
ing files to be shared among users of different types of com-
puter system.

It will be appreciated by those of ordinary skill in the art
that the present invention can be embodied in other specific
forms without departing from the spirit or essential charac-
teristics thereof. The presently disclosed embodiments are
therefore considered in all respects to be illustrative and not
restrictive. The scope of the invention is indicated by the
appended claims rather than the foregoing description, and all
changes that come within the meaning and range of equiva-
lence thereof are intended to be embraced therein.

What is claimed:

1. A system for accessing computer-readable files stored on
a source device, by a plurality of target computers compris-
ing:

[means] a controller for creating a disk image of the source
device, wherein said source device is a physical storage
volume on which said computer-readable files to be
accessed by said plurality of target computers are
located, and for storing said disk image on a storage
device that is accessible to said plurality of target com-
puters, wherein said disk image is a virtual representa-
tion of said physical storage volume such that it includes
volume format information that reflects the format of
said physical storage volume, and which enables said
disk image to be mounted at each of said plurality of
target computers; and

a disk image driver at each of said plurality of target com-
puters, having access to file format information which
enables said target computers to read files, which exhibit
different file formats, contained on said disk image, and
wherein the image driver includes an index that identi-

US RE43,437E

11

fies correspondence between address locations in the
storage volume and address locations in the disk image.

[2. The system of claim 1 wherein said disk image driver
includes an index which identifies correspondence between
address location in said storage volume and address locations
in said disk image.]

3. The system of claim [2] / wherein said disk image
contains a compressed version of data in said files, and
wherein said index further includes information pertaining to
the manner in which the data was compressed.

4. The system of claim 3 wherein the data in said disk
image is divided into individual chunks which are separately
compressed and said index contains, for each chunk, the
address of the chunk of data in the file, the address for the
corresponding compressed data in the disk image, and an
identification of a compression algorithm via which the data
of that chunk was compressed.

5. The system of claim 4 wherein different chunks of data
are compressed via different respective algorithms.

6. The system of claim 4 wherein different chunks of data
have different respective sizes.

7. The system of claim 1 wherein said disk image driver
includes data pertaining to different types of file systems, to
thereby enable said disk image driver to access disk images
stored in different disk image file formats respectively related
to said different types of file systems.

8. [The system of claim 1,] A system for accessing com-
puter-readable files stored on a source device, by a plurality
of target computers comprising:

a controller for creating a disk image of the source device,
wherein said source device is a physical storage volume
onwhich said computer-readable files to be accessed by
said plurality of target computers are located, and for
storing said diskimage on a storage device that is acces-
sible to said plurality of target computers, wherein said
disk image is a virtual vepresentation of said physical
storage volume such that it includes volume format
information that reflects the format of said physical stor-
age volume, and which enables said disk image to be
mounted at each of said plurality of target computers;
and

a disk image driver at each of said plurality of target
computers having access to file format information
which enables said target computers to read files, which
exhibit different file formats, contained on said disk
image, wherein said disk image is stored on the storage
device in a compressed read/only format comprising a
file which contains compressed versions of chunks of
data stored in said physical storage volume, and an index
which provides a mapping between logical address
blocks in said physical storage volume and addresses of
corresponding compressed data in said file.

9. The system of claim 8, wherein said index contains
information pertaining to the manner in which the chunks of
data were compressed.

10. The system of claim 9, wherein the data in said volume
is divided into individual chunks which are separately com-
pressed and said index contains, for each chunk, the address
of the chunk of data in said physical storage volume, the
address for the corresponding compressed data in said disk
image, and an identification of a compression algorithm via
which the data of that chunk was compressed.

11. The system of claim 10, wherein different chunks of
data are compressed via different respective algorithms.

12. The system of claim 10, wherein different chunks of
data have different respective sizes.

20

25

30

35

40

45

50

55

60

65

12

13. The system of claim 10, wherein said uncompressed
read/only format also has an associated index which provides
a mapping between logical address blocks in said physical
storage volume and addresses of corresponding data in the
file.

14. The system of claim 1, wherein said disk image is
stored on the storage device in a read/write format comprising
a file which contains a copy of every logical address block in
said physical storage volume, regardless of whether the
blocks contain data.

15. The system of claim 1, wherein said disk image is
stored on the storage device in an uncompressed read/only
format comprising a file which contains volume information
and a copy of only those logical address blocks of the physical
storage volume which contain data.

16. A method for providing a remote computer access to
files stored on a source device, comprising the steps of:

creating a disk image of said source device, wherein said

source device is a physical storage volume which con-
tains said files to be accessed by said remote computer,
and wherein said disk image is a virtual representation of
said physical storage volume in that said disk image
includes volume format information that reflects the
format of said physical storage volume;

generating a script file which includes an identification of

said disk image;

launching said script file at said remote computer; and

mounting, at said remote computer, the disk image identi-

fied in said script file using a disk image driver that has
access to volume format information which is needed to
mount files, exhibiting different file formats, on the disk
image, and wherein the image driver includes an index
that identifies correspondence between address loca-
tions in the storage volume and address locations in the
disk image.

17. The method of claim 16 wherein said script file also
includes an identification of an executable program, and fur-
ther including the step of running said program at the remote
computer after mounting said disk image.

18. The method of claim 17 wherein said program is an
installer program which installs files from the mounted disk
image onto the remote computer.

19. The method of claim 16 wherein a plurality of disk
images are created and identified in said script file, and
wherein all of the disk images identified in said script file are
mounted at said remote computer.

20. The method of claim 16 further comprising the step of:

selectively storing said disk image in a storage medium

device in any one of the following disk image file for-
mats:

a read/write format comprising a file which contains a
copy of every logical address block in said physic al
storage volume, regardless of whether the blocks con-
tain data;

an uncompressed read/only format comprising a file
which contains volume information and a copy of
only those logical address blocks of said physical
storage volume which contain data; and

a compressed read/only format comprising a file which
contains compressed versions of chunks of data
stored in said physical storage volume, and an index
which provides a mapping between logical address
blocks in said physical storage volume and addresses
of corresponding compressed data in said file.

#* #* #* #* #*

