A DO O

00/75784 Al

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 December 2000 (14.12.2000)

IO 0 OO

(10) International Publication Number

WO 00/75784 Al

(51) International Patent Classification’: GO6F 12/00,
17/30, 17/50

(21) International Application Number: PCT/US00/12049

(22) International Filing Date: 2 May 2000 (02.05.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/137,355
09/557,329

3 June 1999 (03.06.1999)
24 April 2000 (24.04.2000)

Us
US

(71) Applicant: SYCAMORE NETWORKS, INC. [US/US];
10 Elizabeth Drive, Chelmsford, MA 018244111 (US).

(72) Inventor: CHAN, Dickson, K., T.; 2 Jack Rabbit Lane,
Westford, MA 01886 (US).

(74) Agents: SCHURGIN, Stanley, M. et al.; Weingarten,
Schurgin, Gagnebin & Hayes LLP, Ten Post Office Square,
Boston, MA 02109 (US).

(81) Designated States (national): AU, CA, JP.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, F1, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:
— With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SOFTWARE TRANSLATION USING METADATA

10
INSTALL META SCHEMA _/
12
POPULATE METADATA |/
14
INSTALL USER SCHEMA

(57) Abstract: A system for supporting revisions to a software program, such as a network management program. All versions of
software are forward and backward compatible. Version information is captured as part of the metadata used by the system. The meta
schema entities for describing and storing metadata are installed [10], populated [12] with metadata reflecting for example a type of
user application such as a network management system. User-data objects are then generated [14] for storing user data reflecting
specific associated devices within a particular run-time environment. Each of the metadata entities and user-data entities are "version
tagged" such that entries within these entities are indexed inpart based on a version tag identifying a specific software revision.

10

15

20

25

30

WO 00/75784 PCT/US00/12049

TITLE OF THE INVENTION
SOFTWARE TRANSLATION USING METADATA

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 USC §119(e) to
provisional application serial number 60/137,355 filed
June 3, 1999.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
N/A

BACKGROUND OF THE INVENTION

The present invention relates generally to computer
software development and more specifically to a system
and method for supporting software revision changes.

One of the persistent problems facing network
architects i1s managing the introduction of new features
and technology into the network. Traditional software
development processes result in systems that become more
difficult to change as new features are added or
existing features are modified. Due to the complexity
of synchronizing software revisions across the network
and the risks associated with introducing a new software
revision into the network, operators are generally
reluctant to attempt more than one major upgrade every
one to two years. While this ensures maximum stability
for the network, it can be a barrier to the introduction
of new functionality and technology.

Metadata has been used 1in existing systems to

describe the meaning and context of a piece or stream of

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-2-

data. Metadata has also been used to provide a
structure and means for introducing new data. For
example, the number 100 may be considered a piece of
data. Alone, this data has no context. However, a
system may add metadata, such as the following text, to
describe this piece of data: “Payroll data; a monetary
amount 1in United States Dollars, expressed terms of
dollars and cents, paid in bi-weekly increments.” In
combination with such metadata, the number 100 has much
more meaning. Metadata has allowed existing systems to
treat information generically, enabling software to be
developed that focuses on the data processing problem
without concern for the actual meaning of the data.
Additionally, the meaning of a particular piece of data
may be changed through adjustment of the appropriate
metadata. In the preceding example, the meaning of the
data 100 could conveniently be changed to “Payroll data;
a monetary amount in USD, expressed terms of dollars and
cents, paid in weekly increments” by adjusting the
associated metadata. Neither the data element itself,
nor the processes used to manipulate it must be changed.
In this way, metadata provides tremendous flexibility to
manipulate data in a non-disruptive way. Using metadata
allows software to be written in a generic fashion,
enabling the software developer to concentrate on the
overall design goals of the system (such as distributed
processing) without being overly concerned with the
actual data.

As described above, existing systems have used
metadata as a higher form of description. However, a
significant drawback of existing systems arises in

situations where certain objects and/or object

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-3-

attributes may change over time, in both nature and/or
value. Such circumstances may arise, for example, when
a network management system must be modified to reflect
an upgrade of a managed resource within the network
being managed, such as when a network application server
is upgraded to a new revision. In this type of
situation, one or more managed objects associated with
the resource being upgraded may change in terms of, for
example, the range of values which may be accepted for
an attribute, the methods which can be performed on an
attribute or object, and/or the fundamental
relationships between attributes or the managed objects
themselves. The effort required to accomplish system
modifications of this sort may require large numbers of
programmers to spend significant amounts of time
revising network management code to reflect the upgrade.

Accordingly, it would be desirable to have a system
which makes the introduction of new technology and
features to an existing software system more convenient
and less labor intensive. The system should further be

advantageously applicable to a network management

system.

BRIEF SUMMARY OF THE INVENTION

Consistent with principles of the invention, a
method and system for supporting revisions to a software
program are disclosed. In an illustrative embodiment,
the software program in which the present invention is
embodied is a network management program. The disclosed
system provides for an architecture or design affecting

a number of relationship data structures within the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-4 -

software program. Such relationship data structures
describe relationships between types of data objects
within the software program. For example, each element
of each such relationship data structure may describe a
respective relationship between data objects (or
"instances") of a first object type and data objects (or
"instances") of a second object type. The architecture
or design provided by the disclosed system may further
affect a number of attribute data structures describing
attributes for data objects of various data object
types. Each element of each such attribute data
structure, may, for example, describe an attribute of an
associated object type. The disclosed system
establishes an association between a number of software
revision numbers, each associated with a respective
revision of the software program, and each element in
the relationships data structures, and potentially also
with each element in the attributes data structures. 1In
this way, the disclosed system provides a metadata,
which further describes the data, the relationships
between the data, and the actions performed with the
data, 1in terms of a revision of the software program
using the data. In an embodiment for a network
management program, this technique advantageously
permits associated applications to be easily maintained
and modified to meet changing requirements.

The disclosed system 1is described in connection
with an illustrative embodiment, which provides a
version independent network management system that
simplifies and facilitates network upgrades. As
disclosed herein, wusing the disclosed system, all

versions of software are forward and backward

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-5-

compatible. To achieve such version independence,
version information is captured as part of the metadata
used by the disclosed system. Additionally, as the
metadata evolves over time, older elements are not
deleted, but instead are updated by the disclosed system
to indicate their relationship to any newer components.

Further, in a client-server embodiment of the
disclosed system, a server determines a.version of data
that the client understands, as well as a matching
version of metadata. The server then communicates to
the client using an information model defined by the
matching version of the metadata. In this way, the
disclosed system enables “hitless” upgrades and
eliminates the requirement to synchronize software
across a network when introducing a new revision.
Additionally, managed elements can be upgraded
systematically over time. During the upgrade period,
such elements continue to communicate with all devices
at the current revision level until such time as the new
revision level is introduced to the relevant node.

The forward and backward compatibility provided by
the disclosed system make the introduction of new
versions of software relatively risk-free and painless.
Accordingly, network upgrades can be done anytime,
eliminating any requirement for midnight upgrades or
taking the network down for any period of time. 1In the
event that a new version of software does not perform as
desired, the network operator can easily return to the
previous version, for example with a simple “point and

click” operation through a graphical user interface

(GUI) or the equivalent.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 : PCT/US00/12049

-6-

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

The invention will be more fully understood by
reference to the following detailed description of the
invention in conjunction with the drawings, of which:

Fig. 1 is a flow chart illustrating steps performed
in connection with operation of the disclosed system;

Fig. 2 is a block diagram showing a number of meta-
schema entities for storing meta-data;

Fig. 3 shows simultaneous inter-operation between a
number of software entities associated with a first
revision of a software program and a number of software
entities associated with a second revision of the
software program, as provided by the disclosed system;

Fig. 4 shows a table of column definitions for a
meta-schema entity used to store versions of meta-data
associated with a number of software program revisions;

Fig. 5 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data
object types:;

Fig. 6 shows a table of column definitions for a
meta-schema entity used to describe a number of meta-
data attributes;

Fig. 7 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data
enumerated attribute values;

Fig. 8 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data
conditions.

Fig. 9 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data

"identity" relational attributes;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

.

Fig. 10 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data
"contain" relationships;

Fig. 11 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data
"pool" relational attributes;

Fig. 12 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data
"consume" relationships;

Fig. 13 shows a table of column definition for a
meta-schema entity used to store a number of meta-data
"pointer" relational attributes;

Fig. 14 shows a table of column definitions for a
meta-schema entity used to store a number of meta-data
"connection" relationships;

Fig. 15 shows a table of column definitions for a
user data entity used to describe a number of users;

Fig. 16 shows an 1illustrative configuration of
meta-data entries within the meta-schema entity used to
describe a number of meta-data objects;

Fig. 17 shows a table of default column definitions
to be used within user data entities;

Fig. 18 shows an illustrative configuration of
meta-data entries within the meta-schema entity for
storing a number of meta-data attributes:;

Fig. 19 shows tables of column definitions for user
data entities describing user devices of associated
device types;

Fig. 20 shows an 1illustrative configuration of
meta-data entries loaded into the meta-schema entity

used to store "identity" relational attributes;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-8-

Fig. 21 shows tables of column definitions for user
data entities describing user devices of associated
device types:;

Fig. 22 shows an illustrative configuration of
meta-data entries within the meta-schema entity for
describing a number of meta data "pool" relational
attributes;

Fig. 23 shows tables of column definitions for user
entities describing associated user devices;

Fig. 24 shows a table of column definitions for a
user data entity used to describe "contain"
relationships between user devices;

Fig. 25 shows a table of column definitions for a
user data entity used to describe "consume"
relationships between user devices; and

Fig. 26 shows a table of column definitions for a
user data entity used to describe "connect"

relationships between user devices.

DETAILED DESCRIPTION OF THE INVENTION

All disclosures of the Provisional Patent
Application serial number 60/137,355 filed June 3, 1999,
from which this application claims priority under 35 USC
§119(e), are hereby incorporated by reference herein.

In an 1illustrative embodiment of the disclosed
system, a network management database includes both 1)
meta data, and 2) user data. Consistent with the
present invention, a set of meta-schema entities are
used to describe aspects of software objects that may be
defined using the meta data, which is in turn used to

generate the software objects of the user data. As

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-9-

shown in Fig. 1, the illustrative embodiment of the
disclosed system provides for installation of a network
management database in 3 steps. At step 10, the meta-
schema entities for describing and storing the meta-data
are 1installed. At step 12, the meta-schema entities
loaded at step 10 are populated with meta-data entries
reflecting, for example, a type of user application,
such as a network management system. The meta-data
loaded at step 12 describes the various types of objects
that are being operated on by the associated application
program. For example, meta-data for a network
management application may be used to describe
properties of the various kinds of network devices that
may be managed by the system.

Finally, at step 14, user data objects are
generated for storing user data, and which reflect
specific associated devices within a particular run-time
environment. The user data objects loaded at step 14
are, for example, managed objects associated with
devices 1in a specific configuration of networked
resources that are to be managed by a network management
system. To facilitate convenient upgrades to a software
application operating on the user data objects, each of
the meta-data entities, as well as the user-data
entities, are "version tagged", such that entries within
any of the meta-data entities or user-data entities are
indexed in part based on a version tag identifying a
specific software revision.

Fig. 2 illustrates a number of meta-schema entities
used for describing and storing meta-data in the
disclosed system. Specifically, several "entity" meta-

schema entities 20, as well as several "relationship"

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-10-

meta-schema entities 22 are provided, together with a
versions table 24. The "entity" meta-schema entities 20
are shown including an object types entity 26, an
attributes entity 28, an enumerated attribute values
entity 30, and a conditions entity 32. The
"relationship" meta-schema entities 22 are shown
including a contain relationships entity 34, a consume
relationships entity 36, and a connect relationships
entity 38. Illustrative embodiments of the meta-schema
entities shown in Fig. 2 are further described below.

Fig. 3 illustrates simultaneous inter-operation
between a number of software objects 58 associated with
a first revision 50 of a software program, and a number
of software objects 60 associated with a second revision
54 of the software program. The revisions 50 and 54 of
the software program are each shown associated with a
respective version tag. Specifically, revision 50 is
shown associated with a Version N version tag 52, and
revision 56 1is shown associated with a Version N+1
version tag 56. Through the use of the version tags 52
and 56, the disclosed system provides for coexistence
between the first revision 50 and the second revision 54
of the software program.

Fig. 4 shows a table of column definitions for a
meta-schema entity used to store information related to
a number of versions of meta-data, corresponding to the
meta-schema entity 24 of Fig. 2. Accordingly, each row
in the table of column definitions shown in Fig. 4 fully
specifies the attributes of a corresponding column in
the meta-schema entity referred to as "md version". The
versions of meta-data are, for example, associated with

respective software program revisions. As defined based

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-11-

on the column definitions shown in Fig. 4, entries in
the resulting md_version table can be used to store
information describing all versions of metadata ever
introduced into the system. A version column 82 is
defined as the index for selecting entries in the
resulting table, such that the individual entries are
indexed by the wvalue in the version column 82.
Moreover, as used herein, those column definitions
specified with "yes" in the 1Index Component column
attribute are generally the columns whose values are
combined to form an unique index identifying a
respective entry (or "row") within the table formed
based on a given table of column definitions.

In the md_version table, each entry also includes
information stored in the other columns 84, which, for
example, can be used to store information about the
installation state, installation status, time of
installation, software license and associated timestamp
of the corresponding program revision. Since meta-data
and user-data information 1is associated with version
numbers, the information in the md version table can be
used to determine the version-relevance of specific
operations and/or data. In particular, as a given
installation goes through different stages, the
corresponding entry in the md version table may be
updated accordingly, to reflect the current status of
the installation.

A table of column definitions is shown in Fig. 5
for an md_object table, which is the meta-schema entity
describing a number of meta-data object types, and which
corresponds to the meta-schema entity 26 shown in Fig.

2. Each entry (row) in the table of column definitions

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-12~-

shown in Fig. 5 defines a column for the resulting
md object table. Each entry (row) in the resulting
md object table formed based on the column definitions
shown in Fig. 5 is a meta-data entity. For example,
each entry in the md object table, together with entries
in the other illustrative tables making up the meta-
schema entities shown in Fig. 2, may be used to store
information regarding a number of object types defined
as meta-data. Such meta-data object types may then be
used to define user data entities, which may be used to
store user data objects associated with managed devices
in a network.

The index into entries within the md object table
defined by the column definitions shown in Fig. 5
includes the values of the version column 102 and name
column 106. Use of the value of the version column 102
as a portion of the index for entries in the md_object
table permits indexing by version number within object
name. Such indexing permits each meta-data object type
to take on different values for the other columns 104
across different revisions of a software program.
Further, for purposes of example, the characteristics
described in the other columns 104 of the md object
table reflect who may access, for example in terms of
reading, writing, and or executing, specific meta-data
object types. In addition, a usage column 106 indicates
a usage status of an object type associated with an
entry in the md object table. The usage column 106 is
used to "delete" an object type for a particular
software revision by storing the 'NONE' usage value in
that column for the corresponding entry in the md object

table. An usage column is similarly included in the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-13-

tables of column definitions for various other ones of
the meta-schema entities described below. Accordingly,
as meta-data evolves over time, information regarding
older meta-data object types, for example representing
older devices or classes of devices, need not actually
be deleted, but may instead be updated to indicate the
relationship, 1f any, of such older object types to
newer object types.

Fig. 6 shows a table of column definitions for an
md attribute table. Each row in the table of column
definitions shown in Fig. 6 specifies a column in the
md_attribute table. The md_attribute table formed based
on the column definitions shown in Fig. 6 is a meta-
schema entity having entries that each describe a non-
relational meta-data attribute. The md _attribute table
corresponds to the meta-schema entity 28 as shown in
Fig. 2. In the table of column definitions shown in
Fig. 6, a version column 122 permits indexing of
attributes based on meta-data versions associated with
respective software revisions. Further as shown in Fig.
6, for a given entry in the md attribute table, the
value of the object name column 124 stores the name of
an associated object type, while the value of the name
column 126 stores the name of the attribute itself. The
version 122, object name 124, and name 126 columns are

used in combination as an index into the md attribute

table. Thus, each entry in the md attribute table,
defining a particular attribute, is indexed by a
combination of the values in those three columns. The

other columns 128 include a type column 130 which may
store a value (ENUM) indicating that an attribute has a

number of possible enumerated values found 1in the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-14-

enumerated attribute values meta-schema entity 30 shown
in Fig. 2. Similarly, the type column 130 may store a
value (ENUM_COND) indicating that certain values for an
attribute are associated with or correspond to an
indicated condition described in the conditions meta-
schema entity 32 shown in Fig. 2. The condition_name
column 132 may be used to store a name of a condition
described in the meta-schema entity 32 that is
associated with an attribute. The value of the version
column 122 is an index into the version column of the
md version table defined by the table of column
definitions shown 1in Fig. 4, the value of the
object _name field 124 is an index into the name column
of the md_object table defined by the table of column
definitions shown in Fig. 5, and the wvalue of the
condition_name column 132 is an index into the name
column of the md condition table defined by the table of
column definitions shown in Fig. 8 below.

Fig. 7 shows a table of column definitions for an
md enum table. Accordingly, each row in the table of
column definitions shown in Fig. 7 specifies a column in
the md_enum table. The md_enum table stores a number of
entries corresponding to a number of respective meta-
data enumerated attribute values, and is an example of
the meta-schema entity 30 of Fig. 2. The table of
column definitions in Fig. 7 includes a number of
entries. The entries in the md enum table are each
indexed by a combination of the wvalues in the version
152, object name 154, attribute name 156 and name 157
columns. The entries in the md enum table each describe
potential values for associated attributes. Thus

potential values for attributes can be defined for

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-15-

specific attributes within specific objects within
specific versions. The other columns 158 of the md_enum
table include a condition name column 160, whose value
is the name of an associated condition further described
in the meta-schema entity 32, as shown in Fig. 2, and
which may affect, or be affected by, the associated
enumerated value. The value of the version column 152
is an index into the version column of the md version
table defined by the table of column definitions shown
in Fig. 4, the value of the object name column 154 is an
index into the name column of the md object table
defined by the table of column definitions shown in Fig.
5. The value of the attribute name column 156 is an
index into the name column of the md_attribute table
defined by the table of column definitions in Fig. &6,
and the value of the condition name column 160 is an
index into the name column of the md condition table
defined by the table of column definitions in Fig. 8
below.

Fig. 8 shows a table of column definitions for an
md _condition table. Accordingly, each row in the table
of column definitions shown in Fig. 8 specifies a column
in the md _condition table. The md_condition table
includes entries describing a number of meta-data
conditions, and corresponds to the meta-schema entity 32
of Fig 2. Each condition described by an entry in the
md_condition table is associated with a current state
representing the fact that an enumerated attribute value
of a particular object, at a certain level of the object
hierarchy, has taken on a particular enumerated value.
As shown in Fig. 8, the name column 184 stores the name

of the condition, and the object hname

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-16-

column 186 stores a hierarchical name describing the
associated object. As used herein, a "hierarchical
name" of an object fully specifies that object within an
object hierarchy, wherein the object hierarchy reflects
parent-child relationships between objects. For
example, 1if OBJECT_1 is a child of OBJECT 2, and
OBJECT_3 is a parent of OBJECT_ 2, then the hierarchical
name of OBJECT_1 would combine the object names
OBJECT_3, OBJECT_2, and OBJECT_1 in a way that reflects
that hierarchy. For example, a hierarchical name may be
represented as a series of object names separated by
"."s - "OBJECT_3.0BJECT 2.0BJECT 1" for the preceding
example. Such a hierarchical name is applicable in any
of the disclosed column definitions herein having names
including the string "hname".

The enum attr_name column 188 in Fig. 8 stores the
name of the associated enumerated attribute for which
the condition is applicable, and the enum value column
190 indicates the value of the enumerated attribute that
defines the condition. Accordingly, the version column
182 wvalue is an index into the version column of the
md version table. The wversion column 182 and name
column 184 values are combined to form an index
indicating specific entries within the md condition
table.

The data structures defined in Figs. 9-14 are
illustrative components within the "relational™ meta-
schema entities 22 shown in Fig. 2. With regard to Fig.
9, a table of column definitions for an md_id attr table
is shown. Accordingly, each row within the table of
column definitions shown in Fig. 9 specifies a column in

the md_id_attr table. The md id attr table includes a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-17-

number of entries, each of which describe a meta-data
"identity" relational attribute. In a first
illustrative embodiment, the md id attr table may be
considered a portion of the attributes meta-schema
entity 28 as shown in Fig. 2. However, since the
attributes defined by the md_id attr table are used
within "contain" types of object relationships, the
md_id_ attr table may alternatively be considered to be
part of the contain relationships meta-schema entity 34
of Fig. 2. ,

In an illustrative embodiment, a contain
relationship requires both an entry in the md_id attr
able, and an entry in the md_contéin table described in
connection with Fig. 10 below. For a given identity
attribute entry in the md_id attr table, the value of
the type column 202 indicates whether the relationship
between a containing object and a contained object is
"PRIMARY", indicating a direct hierarchical link between
a parent and an immediate child object in the object
hierarchy, or "SECONDARY", indicating that the 1link
between the containing object and the contained object
not direct, and accordingly may span several layers
within the object hierarchy. The value of the
auto_create column 204 describes the number of
corresponding child objects to be auto-created for a
parent object in response to the contain relationship.
The value of the condition name column 206 indicates the
name of an associated condition, if applicable. The
value of the version column 208 is an index into the
version column of the md_version table, the value of the
object name column 210 is an index into the name column

of the md object table, the value of the id name column

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-18-

212 is an 1index into the 1id name column of the
md_contain table, and the value of the condition name
column 206 is an index into the name column of the
md_condition table. The index for selecting entries in
the md_id_attr table is a combination of the values in
the version column 208, the object name column 210, the
name column 214, and the id name column 212.

Each entry in the md _id attr table stores
information regarding a specific identity attribute.
Each identity attribute describes a contained object
that may be within one or more contain relationships.
For a given entry in the md id attr table, the value of
the object_name column 210 indicates the name of a
contained object type within a contain relationship, and
is an index into the md_object table. Such a contained
object is considered a child object of the containing
object. The value of the id name column 212 for an
entry in the md _id_attr table 1links the identity
attribute for that entry to an entry in the md contain
table, and is an index into the id name column of that
table. The entry in the md_contain table identified by
the value of the id _name column 212 identifies a parent
resource object type (through the parent hname column
234 value of that entry), such as an identifier
resource, from which objects of the type indicated by
the object name column 210 may allocate unique
identifiers. By defining the id name column 212 as a
component of the index used to select entries in the
md_id_attr table, groups of contained child objects may
conveniently be linked to a common containing parent

object identifier resource.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-1 9_

Fig. 10 shows table of column definitions for an
md_contain table. Accordingly, each row in the table of
column definitions shown in Fig. 10 specifies a column
in the md contain table. The md contain table is an

example of a meta-schema entity for storing meta-data

regarding corresponding "contain" relationships. The
md_contain table corresponds to the contain
relationships meta-schema entity 34 of Fig. 2. Each

entry in the md_contain table describes an associated
contain relationship. For a given entry, the md_contain
table includes an id name column 232 having a value
linking the -entry to one or more entries in the
md_id_attr table. The value of the parent hname column
234 for stores the hierarchical object name of a parent
object for one or more associated contain relationships,
which is an identifier resource for the child objects of
the contain relationships. The value of a min column
236 stores a minimum value of the unique identifier
which is the resource allocated from the parent object
to the child object(s) within the contain relationship,
and a max column 238 stores a value that is the maximum
value for that wunique identifier. The wvalue of the
version column 240 is an index into the version column
of the md_version table defined in Fig. 4, and each
object name component in the parent hname column 234
value is a key into the name column of the md object
table defined in Fig. 5. The combination of the version
240 and id_name 232 columns forms an index identifying
the individual entries within the md contain table.

In an 1illustrative embodiment, for two entries
having column values {vl, il, phl} and {v2, i2, ph2} of

columns version 240, id name 232, and parent hname 234,

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-20-

respectively, then if il equals i2, this fact implies
that phl equals ph2. Accordingly, because identifier
resources must be uniquely defined, no two different
parent hname values in simultaneously existing
md_contain entries can be associated with the same
id name value. However, entries in the md contain table
having the same parent_hname value can be associated
with multiple id name values. Further in an
illustrative embodiment, the parent _hname association of
an id name cannot be changed across different versions.
Additionally, the same child object ('object name' in an
md_id_attr table entry) cannot be contained under the
same parent object ('parent hname' in the associated
md_contain entry) via more than one id name value or
multiple md_id attr entries. However, there can be
multiple possible values for parent hname for a
particular child 'object name' through different
'id_name' values and different 'md_id_attr' entries.
These properties hold true across different versions.
Identifier allocations and deallocations made in
response to contain relationships may, for example, be
performed via constructor functions associated with the
relevant object types for each such contain
relationship.

Fig. 11 shows a table of column definitions for an
md_pool _attr table. Accordingly, each row in the table
of column definitions shown in Fig. 11 specifies a
column within the md _pool attr table. The md_pool attr
table includes entries which describe pool attributes
for use in consume relationships, together with entries
in the md_consume table (see Fig. 12). Accordingly, in

an illustrative embodiment, the md consume table

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-21-

corresponds to the meta-schema entity 36 of Fig. 2, and
the md pool_ attr table may be considered a portion of
either the meta-schema entity 36 or the meta-schema
entity 28 of Fig. 2. As shown in Fig. 11, for a given
entry in the md_pool attr table describing an associated
pool resource, the wvalue of the type column 252
indicates whether the type of the resource is either
'"ACTUAL', meaning that the sum of all child object
allocations for that resource should not exceed the
parent pool size, or 'PSEUDO', meaning that the
individual allocation for each child object associated
with the resource should not exceed a predetermined
maximum. The value of the min column 254 for an entry
in the md pool_attr table defines a minimum value that a
child object must allocate from the resource pool, and
the wvalue of the max column 256 defines the maximum
amount of the resource that a single child object can
allocate. The value of the default column 258 indicates
a default value that a child object allocates, and the
value of the condition name column 260 specifies a name
of any applicable condition associated with or affected
by an entry. The value of the version column 262 is an
index into the version column of the md version table,
the value of the object name column 264 is an index into
the name column of the md object table defined, the
value of the pool name column 266 is an index into the
pool name column of the md consume table, and the value
of the condition name column 260 is an index into the
name column of the md condition table. In the
illustrative embodiment of Fig. 11, the combination of
the values in the version 262, object name 264, name

270, and pool name 266 columns form the index into the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-22-

md pool attr table. Including the value of the
pool name column 266 within the index allows grouping of
multiple child objects sharing the same parent pool.

Fig. 12 shows a table of column definitions for an
md_consume table. Accordingly, each row in the table of
column definitions shown in Fig. 12 specifies a column
within the md_consume table. The md_consume table is
used to store a number of entries, each describing a
respective meta-data "consume" relationship. The
md_consume table corresponds to the neta—schema entity
36 of Fig. 2. In each consume relationship, a child
object consumes resources from a pool of resources
associated with parent objects in the hierarchy of the
parent object indicated by the value of the parent_ hname
column 302. Each entry in the md consume table 1is
linked to one or more entries in the md pool attr table
through the value of the pool name column. When such a
parent object 1is instantiated, 1its resource pool 1is
created with a size equal to the value stored in the
'md_size' column. When the child object or objects are
instantiated, they consume portions of the resource pool
by allccations of a size between the 'min' and 'max'
column values in the associated 'md pool attr' entry,
after they are created. Such child objects return the
portions of the pool resource that they allocate before
they are deleted. Such allocations and deallocations
may be performed, for purposes of example, through use
of associated constructor and destructor functions
associated with the object type of such child objects.

In the case of a 'PSEUDO' consume relationship,
each child object 1is permitted to allocate no more of

the pool resource than the value of the 'md size' column

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 _ PCT/US00/12049

-23-

associated with the parent object through the entry for
the relationship in the md_consume table. Specifically,
the value of the pool name column 306 for a given
relationship is the name of the pool resource, and
accordingly may, for example, be an index into a table
defining a number of resource pools. The value of the
parent_hname column for a given relationship entry in
the md_consume table is a '.' delimited, hierarchical
object name, having constituent object names separated
by '.'s. As mentioned above, hierarchical object names
fully specify an object within the object hierarchy, by
including a string of parent object names for respective
object hierarchy levels, and leading to the root object
of the object hierarchy. 1In an illustrative embodiment,
a child object of a given consume relationship is
permitted to consume a pool resource associated with any
object identified in the value of the parent_ hname
column 302 for that relationship. Accordingly, if the
value of the parent_hname column 302 includes the
hierarchical name of an object as a substring, then the
child object of that consume relationship may allocate
from a pool resource associated with that object.

Further as shown in Fig. 12, the value of the
parent_attr name column 308 indicates the name of the
pool resource attribute associated with the parent
object that is fully specified by the value of the
parent hname column 302. Accordingly, for a given
consume relationship entry in the md_cohsume table, the
value of the version column 310 is an index into the
version column of the md version table, the value of the
pool _name column 306 is an index into a pool name column

of an md_pool attr table describing various pool

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-24-

resources, the hierarchical object name stored in the
parent_hname column 302 is an index into the name column
of one or more entries in the md _object table defined,
and the value of the parent_attr name column 308 is an
index into the name column of the md_attribute table.
The index for entries in the md _consume table is, for
example, the combination of the values in the version
column 310 and the pool name column 306. In an
illustrative embodiment, a resource pool is uniquely
identified by the wvalues in the parent hname and
parent_attr_name columns 302 and 308, and such a pool
identity cannot be changed across different versions.
Fig. 13 shows a table of column definitions for an
md _ptr_attr table. Accordingly, each row in the table
of column definitions shown in Fig. 13 specifies a
column in the md ptr_attr table. The disclosed connect
relationships each require an entry in the md ptr_ attr
table, which describes a pointer attribute, together
with an associated entry in the md connect table (see
Fig. 14). Each entry in the md ptr attr table describes
a pointer relational attribute. Each entry in the
md_ptr_attr table includes an object name column 352,
for storing the name of a source object of an associated
connect relationship. The value of the type column 354
indicates whether the associated connect relationship is
permanent or transient. If the connect relationship is
permanent, then the endpoint object of the connect
relationship cannot be changed during life time of the
source object. If the connect relationship is
transient, then the endpoint object can be dynamically
redefined. The value of the min column 356 indicates

the minimum pointer value an endpoint object of the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-25-

associated connect relationship must allocate. The
value of the max column 358 indicates the maximum
pointer value that an endpoint object can allocate
within a given connect relationship. The value of the
condition_name column 360 indicates the name of any
associated condition, if applicable. Additionally, for
a given connect relationship, the value of the version
column 362 1is a key into the version column of the
md_version table defined in Fig. 4, and the value of the
object_name column 352 defines the endpoint object of
the relationships and is an index into the name column
of the md_object table defined in Fig. 5. The value of
the ptr name column 362 is an index into the ptr_name
column of the md connect table defined in Fig. 14, and
therefore links an entry within the md_ptr attr table
and an entry within the md_connect table, thus
associating the two tables to form respective connect
relationships from associated entries within the tables.
The value of the condition name column 360 is an index
into the name column of the md condition table defined
in Fig. 8. In the illustrative embodiment of Fig 13,
the index for selecting entries within the md ptr attr
table is the combination of the version 362, object name
352, and name 364 columns. Because the value of the
ptr_name column 362 is not included in the primary key,
different pointer relational attributes cannot share the
same group c¢f destinations.

Fig. 14 shows a table of column definitions for an
md_connect table. The md connect table is an example of
a meta-schema entity for describing a number of meta-
data "connection" relationships. Entries in the

md_connect table define a number of corresponding

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-26-

'connect' relationships between objects. The connect
relationships may be used to connect a source object to
ocne or more endpoint objects. For a given connect
relationship entry in the md _connect table, a value of
the ptr_name column 402 connects the entry to a
corresponding entry in the md ptr attr table, which
defines the source object for the connect relationship
in its object name column value. The value of the
des_hname column 404 defines the hierarchical object
name for the destination object or objects of the
connect relationship. The value of the des scope hname
column 406 defines a starting point within the object
hierarchy for <choosing a possible destination or
destinations within the associated connect relationship.
The value of the des_share_hname column 408 indicates a
common parent object within the object hierarchy for all
destination objects of a relationship, and the value of
the des_max_ref cnt column defines the maximum number of
times a particular destination object instance can be
referenced by a particular pointer indicated by the
value in the ptr_name column 402. 1In this way, a single
source object can point to multiple destination objects.
For a given entry in the md connect table, the value of
the version column 412 is an index into the version
column of the md version table, the value of the
ptr_name column is an index into the name column of an
md_ptr_attr table describing a number of system wide
resources. In the illustrative embodiment, the
combination of the values in the version, 412, ptr name
402 and des_hname 404 columns defines the index for
identifying individual entries, corresponding to

connection relationships, in the md connect table.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-27-

Figs. 15-26 show user data objects corresponding to
the wuser schema loaded at step 14 of Fig. 1. The
illustrative user data objects in Figs. 15-26 describe
various actual devices that are managed by a network
management system, and are formed in response to the
meta-data entered into the meta-schema entities shown in
Fig. 2. In the illustrative embodiment, user data

consists of the following tables:

a) ud_user

b) a ud_{md_object.name} table for every row in
'md_object'

c) ud_contain

d) ud_consume

e) ud_connect

After the successful generation of the user data
tables for a given revision of the software program
operating on them, the status of the entry for that
revision in the 'md version' table is modified to
reflect the successful installation of the user data.

Fig. 15 shows a table of column definitions for a
ud_user table. The ud user table includes entries that
describe various users of the system. For a given entry
in the ud_user table, associated with a respective user,
the value of the version column 452 defines a software
revision with which the user is associated, the wvalue
of the name column 454 defines the name of the user, the
value of the md group column 456 defines a group of
users with which the user is associated, the value of
the mask column 458 defines a default Unix access mask

(e.g. "rwxr-xr-x") associated with the user, the value

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-28-

of the password column 460 is a password associated with
the user, and the value of the expire timestamp column
462 defines an .optional expiration date for the user.
The value of the version column 452 is an index into the
version column of the md version table shown in Fig. 4.
Each entry in the ud user table is indexed by a value
contained in the combined version 452 and name 454
columns. A number of default entries 464 for the
ud_user table are also shown in Fig. 15.

Fig. 16 shows an example of an md object table
formed based on the table of column definitions in Fig.
5, and loaded with a number of meta-data entries 502.
As noted above, there is one ud_{md object.name} created
for every row in the md object table. Accordingly, for
every one of the entries 502 in the illustrative
md object table 500, a corresponding user data table
will be <created, resulting, for example, in the

following device tables:

ud_Root

ud_SN6000
ud_SN8000
ud_SN8001
ud_SN8600
ud_SN8400
ud_SN2000

The ud Root table functions as a placeholder in the
ocbject hierarchy of the device tables, while each of the
entries in the ud_SN6000, ud_SN8000, ud SN8001,
ud_SN8600, ud_SN8400, and ud SN2000 device tables are

associated with corresponding physical devices of the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-29-

device type associated with the respective device table.
Each entry in one of the device tables may also be
referred to as a "device instance" or "device entry".
For example, each entry in the ud_SN600 table describes
a device of the SN _6000 device type, each entry in the
ud_SN8000 table describes a device of the SN _8000 type,
and so forth. In the illustrative embodiment, each of
these user tables are generated with the default columns
550 specified in the table of column definitions shown
in Fig. 17. The default columns 550 include a version
column 552 indicating a software revision with which a
device entry ("instance") is associated, an owner column
554 indicating a user who created the device entry, an
md_group column 556, and a unique identifier column 558
containing a unique identifier value associated with the
device entry. A number of access related columns 560
are further provided to describe access privileges
associated with each device entry.

For every meta-data row within the md attribute
table, a corresponding column will be included in each
of the device tables. For example, if the md attribute
table has the two entries 582 and 584 shown in the
illustrative md_attribute table 580 of Fig. 18, then,
for example, tables ud SN6000 and ud_SN8000 602 will be
formed having columns specified by the tables of column
definitions 600 and 602 shown in Fig. 19. As specified
by the table of column definitions 600 in Fig. 19, the
ud_SN6000 device table includes default columns 604, as
well as additional columns 606 reflecting the
md attribute table 580 in Fig. 18. Similarly, the
ud_SNB8000 device table 602 includes default columns 608,

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-30-

as well as additional «columns 610 reflecting the
md attribute table 580 in Fig. 18.

An 1illustrative configuration of the md id attr
table defined in Fig. 9 is shown as md_pool attr table
650 in Fig. 20. For every row in the md_id_attr table
650, a corresponding column of the name [name] $[id name]
will be added to device table 'ud_[object name]'. For
example, if the md_id attr table has the meta-data
entries 652 of the illustrative md_id attr table 650
shown in Fig. 20, then the device tables ud SN8001 and
ud PowerSupply will be generated with the extra columns
704 specified for ud SN8001 and extra columns 706
specified for ud_PowerSupply 702 in Fig. 21.

An illustrative configuration of the md_pool attr
table specified in Fig. 11 is illustrated in Fig. 22 by
the table md pool attr 750. For every row in the
md pool attr table 750, a corresponding column of the
name [name]#[pool name], using the # character vs. the
'$'" character to distinguish over the above described
[name] $[id_name] format, will be added to the
ud_[object name] table. For example, if the
md_pool_attr table has the entries 752 shown in the
illustrative md_pool attr table 750 of Fig. 22, then the
device tables ud_PowerSupply and ud OCl2Port would have
the extra columns 804 and 806 respectively, in addition
to the default columns 812 and 810, as shown by the
tables of column definitions shown in Fig. 23.

Fig. 24 shows a table of column definitions for a
ud_contain table. Accordingly, each row in the table of
column definitions shown in Fig. 24 specifies a column
in the ud_contain table. The ud contain table specified

by the table of column definitions defined in Fig. 24

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-31-

stores a number of entries, each one or which represents
a contain relationship instance between instances of
managed objects. Thus, each entry in the md contain
table represents an instantiation of a contain
relationship. Each contain relationship instantiation
is associated with an entry in the md_id attr table and
an entry in the md contain table. For a given entry in
the ud_contain table, the values of various columns are
now described. The value of the version column 902 1is
an 1index 1into the version column of the md_version
table, and contains the same value as in the version
columns of the associated entries in the md_contain and
md id attr tables. The value of the child name column
904 is a key 1into the object name column of the
md_contain table, and is equal to the name of the
contained object type, as also indicated by the value in
the object_name column value of the associated entry in
the md_id_attr table. The value of the attribute name
column 906 is the name of the identifier attribute for
the associated contain relationship, and is equal to the
value of the name column in the associated entry in the
md_id attr table. The value of the id name column 908
is an index into the id name column of the md_contain
table, as well as the id_name column of the md_id attr
table, and therefore associates entries in the
ud_contain, md_contain, and md_id attr tables that
together define an instance of a connect relationship.
The wvalue of the id type field for an entry in the
ud_contain table 1is equal to the type field of the
associated entry in the md id attr table. The value of
the parent_hname field 912 for an entry in the

ud contain table 1is equal to the value in the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-32-

parent_hname field of the associated entry in the
md_contain table. The value of the child pkey column
913 for an entry in the ud contain table is a unique
identifier for the instance of the contained object of
the associated contain relationship instance. The value
of the child_id column 915 is a an identifier for the
contained object instance in the associated contain
relationship instance, and is specifically the
identifier allocated for the contained object instance
from the identifier resource associated with the contain
relationship instance. The value of the parent hpid
column 916 for a given entry in the ud _contain table is
an identifier which fully specifies the parent object
instance for the associated contain relationship
instance within the object instance hierarchy,
reflecting the hierarchical structure of parent object
instances at higher 1levels of the object instance
hierarchy from the contained object instance, thus
permitting traversal of the object instance hierarchy
from the child object instance of the associated contain
relationship instance. The value of the parent hpkey
column 912 for an entry within the ud contain table is a
unique identifier for the parent object instance of the
associated contain relationship instance. The value of
the expire_timestamp column for a given entry in the
ud_contain table stores an expiration time for the
associated contain relationship instance. In this way,
identifier relationships associated with contain
relationships can be made for fixed time periods, after
which the identifier for the relationship is returned
unless further action is taken to reset the expiration

time for the relationship.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-33-

The table of column definitions shown in Fig. 25
defines the columns for the ud_consume table.
Accordingly, each row in the table of column definitions
shown in Fig. 25 specifies a column in the ud_consume
table. The entries in the ud_consume table are each
associated with a respective entry in the md pool attr
table and a respective entry in the md_consume table.
Together, these associated entries specify a consume
relationship instance between instances of managed
objects. Values for a given entry in the ud_consume
table are now described. The value of the version
column 952 is equal to the value of the version columns
in the associated entries in the md consume and
md_pool_attr tables. The value of the child name column
954 is equal to the value of the object name column in
the associated entry in the md_pool_attr table. The
value of the attribute name column 956 is the same as
the name column in the associated entry in the
md_pool_attr table. The value of the pool name column
958 is equal to the value of the pool name column of the
associated entry in the md_pool attr table and the
associated entry in the md consume table, thus
connecting the relevant entries in these three tables
related to the consume relationship instance. The value
of the pool type 952 column is equal to the value of the
type column in the associated entry in the md pool attr
table. The value of the parent hname 960 column is
equal to the value of the parent hname column in the
associated entry in the md _consume table. The value of
the parent_attr name 962 is the value of the name column
for the associated entry in the md pool attr table. The

value of the <child pkey column 963 is a unique

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-34-

identifier for the instance of the child object within
the consume relationship instance. The wvalue of the
child pool column 965 is the amount of the consumed
resource currently allocated by the child object
instance of the consume relationship instance. The
value of the parent_hpkey column 964 is a unique
identifier of the instance of the parent object for the
assoclated consume relationship instance. The value of
the expire timestamp column 966 is an expiration time
associated with the consume relationship instance for
the entry.

Fig. 26 shows a table of column definitions for a
ud_connect table. Accordingly, each row in the table of
column definitions shown in Fig. 26 specifies a column
within the wud_connect table. The wud_connect table
stores a number of user data entries that, together with
associated entries in the md _connect and md ptr_attr
tables, define instances of connect relationships
between user data instances of managed objects. For a
given entry in the ud_connect table associated with a
particular connect relationship instance, a number of
column values are now described. The value of the
version column is 1002 is the same as the version column
values 1in the associated md_connect and md_ptr attr
table entries. The value of the src name column 1004 is
equal to the object name column value in the associated
entry within the md ptr attr table. The value of the
attribute_name column 1006 is the same as the value of
the name column of the associated entry in the
md ptr attr table. The value of the ptr name column
1008 is the same as value of the ptr name column of the

associated entry in the md ptr attr table. The value of

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-35-

the ptr type column 1009 is the same as the value of the
type column in the associated entry in the md_ptr attr
table. The value of the des_hname column 1009 is the
same as the value in the des _hname column of the
associated entry in the md_connect table. The value of
the src pkey column 1011 is a unique identifier for the
instance of the source object of the associated connect
relationship instance. The value of the des pkey column
1013 is a wunique identifier for the instance of the
destination object of the associated connect
relationship instance. The wvalue of the des_hpkey
column 1012 is a hierarchical pkey (primary key) of the
instance of the destination object fof the associated
connect relationship, and the value of the des_order
column 1014 reflects an ordering between common
destinations of a single source. The value of the
expire timestamp column 1015 indicates a time at which
the associated relationship instance expires.

Those skilled in the art should readily appreciate
that the programs defining the functions of the present
invention can be delivered to a computer in many forms;
including, but not limited to: (a) information
permanently stored on non-writable storage media (e.g.
read only memory devices within a computer such as ROM
or CD-ROM disks readable by a computer I/O attachment);
(b) information alterably stored on writable storage
media (e.g. floppy disks and hard drives); or (c)
information conveyed to a computer through communication
media for example using baseband signaling or broadband
signaling techniques, including carrier wave signaling
techniques, such as over computer or telephone networks

via a modem. In addition, while the invention may be

SUBSTITUTE SHEET (RULE 26)

10

15

WO 00/75784 PCT/US00/12049

-36-

embodied in computer software, the functions necessary
to implement the invention may alternatively be embodied
in part or in whole using hardware components such as
Application Specific Integrated Circuits or other
hardware, or some combination of hardware components and
software.

While the invention is described through the above
exemplary embodiments, it will be understood by those of
ordinary skill in the art that modification to and
variation of the illustrated embodiments may be made
without departing from the inventive 'concepts herein
disclosed. Moreover, while the preferred embodiments
are described in connection with various illustrative
data structures, one skilled in the art will recognize
that the system may be embodied using a variety of
specific data structures. Accordingly, the invention
should not be viewed as limited except by the scope and

spirit of the appended claims.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-37-
CLAIMS
What is claimed is:
1. A system for supporting revisions to a software

program, comprising;

at least one data structure of a first type, having
at least one element, said at least one element of said
data structure of said first type describing at least
one relationship between a first object type and a
second object type;

at least one data structure of a second type,
having at least one element, said at least one element
in said data structure of said second type describing at
least one entity of said first object type; and

wherein each said element in said data structure of
said first type is associated with a respective revision

of said software program.

2. The system of claim 1, wherein each said element in
said data structure of said second type is associated

with a respective revision of said software program.

3. The system of claim 1, wherein each said respective
revision of said software program is one of a plurality

of revisions of said software program.

4. The system of claim 1, wherein said at least one
relationship has a relationship type, wherein said
relationship type is one of a plurality of relationship

types, wherein said plurality of relationship types

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-38-

comprise a contain relationship type, a consume

relationship type, and a connect relationship type.

5. The system of claim 4, wherein said relationship type
of said at least one relationship is said contain
relationship type, wherein said contain relationship
type indicates that a plurality of object instances of
sald second object type are instantiated responsive to a
resource of an identified object instance of said first
type, and wherein said resource comprises a plurality of
unique identifiers, each one of said plurality of unigque
identifiers associable with a respective one said object

instances of said second object type.

6. The system of claim 5, further comprising a
constructor function associated with said second object
type, wherein said constructor function requests one of
said plurality of unique identifiers from said
identified object instance of said first object type,
and wherein said constructor function fails to create an
object instance of said second object type in the event

that none of said plurality of unique identifiers are

available.

7. The system of claim 6, wherein said resource
comprises a counter, wherein said counter is incremented
for each of said plurality of object instances of said
second object type, and wherein said plurality of unique

identifiers comprise respective values of said counter.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-390-

8. The system of claim 7, wherein none of said plurality
of unique identifiers are available when said counter

reaches a predetermined maximum value.

9. The system of claim 8, wherein said identified object
instance of said first object type uses said plurality
of unique identifiers to uniquely identify each of said
plurality of object instances of said second object

type.

10. The system of claim 9, further comprising a
destructor function associated with said indicated
object instance of said first object type, wherein said
destructor function deletes each of said plurality of
object instances of said second object type responsive
to a request for deletion of said object instance of

said first object type.

11. The system of claim 4, wherein said relationship
type of said at least one relationship is said consume
relationship type, wherein said consume relationship
type indicates that a plurality of object instances of
said second object type are instantiated responsive to
at least one resource of an indicated object instance of
said first object type, and wherein said resource
comprises a variably allocatable pool, and wherein a
first one of said plurality of object instances of said
second object type consumes a different amount of said
variably allocatable pool than a second one of said
plurality of object instances of said second object

type.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/75784 PCT/US00/12049

-40-

12. The system of claim 11, wherein said variably

allocatable resource represents communication bandwidth.

13. The system of claim 11, further comprising a
constructor function associated with said second object
type, wherein said constructor function requests a
portion of said variably allocatable pool from said
identified object instance of said first object type,
and wherein said constructor function fails to create an
object instance of said second object type in the event
that a requested amount said variably allocatable pool
exceeds an available amount of said variébly allocatable

resource.

14. The system of claim 13, wherein said variably
allocatable pool is represented by a sum of current

allocations from said variably allocatable pool.

15. The system of claim 14, further comprising a
destructor function associated with said indicated
object instance of said first object type, wherein said
destructor function deletes each of said plurality of
object instances of said second object type responsive
to deletion of said object instance of said first object

type.

16. The system of claim 4, wherein said relationship
type of said at least one relationship is said connect
relationship type, wherein said connect relationship
type indicates that each of a plurality of data objects

of said second object type is instantiated in

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

-4]-

association with a respective data object of said first

type.

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

1/25
10
_INSTALL META SCHEMA
12
POPULATE METADATA |
14
INSTALL USER SCHEMA |
FIG. 1
f_24 I_— ———————— __]
FIG. 2 | 96 0 I
VERSIONS | N T?/JPEE%T l
| |
Fr———— - |
| 28 30 |
| 5% X | ENUMERATED
1 ATTRIBUTES ATTRIBUTE VALUES :
20 | 39 T T T T T —
N Yy = jl
| || CONTAIN
|| CONDITIONS (|| ReLATIONSHIPS |l
| |
————————- %
I 36 |
2| CONSUME |7 connecT | P |
| RELATIONSHIPS RELATIONSHIPS ‘
N - - T _ N

SUBSTITUTE SHEET (RULE 26)

WO 00/75784

PCT/US00/12049

2/25

/52 /56

VERSION
N VERSION, _,

50— |

/58\

N

N

N,

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

3/25

v OIA

UOISIBApPW YO

SNOILLINIZ3d NWN109
- ou ou - sjeq dwejsawn—asuadl|
paijal
paxndxa
pawn
Jusuew.sd ou ou g9l Buiag asuaal
- ou ou - aeQg dwejsawnjjejsul
[lelsuiun~pajie} 14
pa|jejsutun
l[ejsul” pajie}
pajjejsul
pauasul ou ou 91 buigs snjejsT|jejsul
Ejepejaw
BWSYISE}BW ou ou 9} Buins 9lE}S|IEISUl
8
- sak ou 9l bulgg UOISIBA -
9SyEZ) 68296ET) | Jueuoduwiod
$391049 xaput ((nu yibus adfy aweu

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

4/25

§ OIA

J08[q0™pw YOS

SNOILLINIF3a NWN10D
- ou sak 4} Buing sBey
dANON
13IN8a
AINO 13N 901
ATNO 9d ou ou 9l Buias ~— abesn
- ou ou £ buys $S800BJ8LJ0
- ou ou ¢ bugs ssa0oe~dnoib
- ou ou £ Bulng $582087J8UMO
- ou ou gl buyg dnos6™pw r0l
- ou ou 9l Buigs Jaumo
- ou saA 8zl Buing uonduosap
- ou ou 0S Buias Selje
90}
- sah ou VAN Bulng ~~— sweu Z01
- s ou 9l buigs uoision ="
95v£Z| 68/95¥Eg) | IuBuOdwod
$321042 xapul inu ybus adh aweu
'Suwnjod

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

5/25
columns: .
name type length nullt | index choices
' component| 123456789 123456
version String 16 no yes -
122 object_name~ String 32 no yes -
name~ 124 String 32 no yes -
126
(alias String 50 no no -
description String 128 yes | no -
owner String 16 no no -
md_group String 16 no no -
owner_access String 3 no no -
group_access String 3 no no -
other_access String 3 no no -
usage String 16 no no DB_ONLY
NET_ONLY
DB_ONLY
NONE
flags String 128 yes | no -
type\ String 16 no no STRING
130 NUMBER
DATE
128 ENUM
ENUM_COND
NUMBER_POOL
instance_label String 16 yes | no -
md_size Number | 4 - no -
unit String 16 yes | no -
null_val String 8 no no YES
NO
range String 256 yes | no -
default_val String 64 yes | no null, " *, or other
non-null string
132
k condition_name/ String 32 yes no
COLUMN DEFINITIONS
FOR md_attributes
FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

6/25

wnua pw YO4 .
SNOILINIFIA NWNTOD N wNHN
. ou sahk rAS bulng SWEeUUoRIpU0d
om:\
- ou - gl JaquinN anjea
3INON
13N8a
AINO 13N
ATINO €@ ou ou 9l Buias sbesn [~ 85t
- ou ou € buigs SS920B™I8Y}0
- ou ou £ Buiss ssa0oe~dnolb
. ou ou £ buigg $S3208™ JOUMO
- ou ou 9l buigs dnos6™pw
- ou ou gl buigg Joumo
- ou sak 8zl Buing uondiosap
- ou ou 05 Buias selle
Gl
- sak ou A% bulgs aweu 9G1
: sk ou z€ BuIaS aweuanque — pg)
- sk ou Z¢ 6uins aweu}a8(qo \Nf
- sak ou 91 bung UOISJBA —
9GvEZ) 6895pEC) | Yuduoduiod
$921040 xapul inu pbus| adA auleu
'Suwnjod

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

7/25

& OIA

UoHIPUOY puw YO

SNOILINIZ3a NANTOD

— 061
- ou ou 7€ Buigg anjen”wnus — gg|
- ou ou ze buins olweu™me"wnus — ggy

- ou ou 7€ buunsg sweuyaalqgo —
121
- sok ou e buns aweu — zg|

- sof ou 9l Buins uoision —

9SpEC) 6829GEC) | Iusuoduiod
$821042 xapul inu ybusy adA sweu
:SULLN|0D

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

8/25
columns:
name type length null index - choices
component | 123456789 123456
version ——_ 208 String 16 no yes -
object_name —~ 210 String 32 no yes -
name —__ String 32 no yes -
id_name —__ g:g String Y no yes -
alias String 50 no no -
description String 128 yes no -
owner String 16 no no -
md_group String 16 no no
OWNEr_access String 3 no no -
g{ﬁup_access gttgng g no no -
other_access ng no no -
usage String 16 no no DB_ONLY
NET_ONLY
DB_NET
NONE
flags String 128 yes no .
type String 16 no no PRIMARY
N SECONDARY
instance_label String 16 yes no -
auto_create 904 Number 16 - no
condition_name—9q5 | String 32 yes no
COLUMN DEFINITIONS

FOR md_id_attr

FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

9/25

01 OIAd

UIEJUCO™pW YOS

SNOILINI43a NWN10D
8t
i ou - 9l jaquinN Xeu \mmw
i ou - 9l squin uw —" ez
- ou ou 125 Buiys sweuy jussed —
TAYA
. sok ou € Buing sweu™pt — opz
- sok ou al bulyg uoision —
9SvEZ) 68295k€L | usuodwio
$821040 Xapul jinu uibus adA) aweu
:SULLN|0D

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

10/25
columns:
name type length nul index choices
component | 123456789 123456
version ———_ 9 String 16 no yes
object_name ~ String 32 no yes
264)
name ——_ o String 32 no yes
pool_name —_ - String 32 no yes
alias String 50 no no -
description String 128 yes no
owner String 16 no no
md_group String 16 no no -
OWNEr_access String 3 no no -
group_access String 3 no no
other_access String 3 no no -
usage String 16 no no DB_ONLY
NET_ONLY
DB_NET
NONE
flags String 128 yes no -
type String 16 no no ACTUAL
N5 PSEUDO
instance_label String 16 yes no -
min —_ 954 Number 16 . no
maX—_ oce Number 16 .
default — " Number 16 - no
258 %0
condition_name —~ | String kY] yes | no
COLUMN DEFINITIONS

FOR md_pool_attr

FIG. 11

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

11/25

cl 'OIA

aWNSUOY™pW Y04

SNOILINI3A NWNTOD

v0e
- ou - 9l Jaquiny 9zis7pw — gqe
. ou ou z€ buigs sweu"ge jusred — zge
) ou ou /25 Buigs sweuy juased —~

90€
; sk ou z€ Buigs sweu~jood — g ¢
; sok ou 9l Buigg uoissen —

9GYET) 6829GvEZL | Jusuoduiod
$891042 xapul finu ybus adA aweu
SUWIN|0D

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

12/25
columns: .
name type length null index choices
component | 123456789 123456
version ——_ String 16 no yes
object_name —~. String 32 no yes
352)

name ——_ +c String 32 no yes

ptr_name —_ 360 String 32 no no

dlias String 50 no no -

description String 128 yes | Mo .

owner String 16 no no -

md_group String 16 no no

OWner_access String 3 no no

group_access String 3 no no

other_access String 3 no no -

usage String 16 no no DB_ONLY
NET_ONLY
DB_NET
NONE

flags String 128 yes no -

type String 16 no no PERMANENT

RN TRANSIENT
min — 355 Number 16 - no
Max— qcp Number 16 - no
360
condition_name — String 32 yes no
COLUMN DEFINITIONS

FOR md_ptr_attr

FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

13/25

vl "OIA

}08UU0SpW Y04

SNOLLINI43A NWN10D

- ou - gl JaquinN U3 Jas XeWwsap \mﬁww
- ou ou L25§ Buing aweuyaJeys ssp — g
- ou ou 125 Buigs aweuy adoas~sap —

14014
- sak ou 128 bulgs aweuy~sep — 20
- sk ou z€ Buins sweu™3d — 71y
- sok ou 9l Buing uoision —~

95vEZ) 68.95EZL | Juduodwod
$8910Y2 xapul finu pbus adfy sweu
'SUWN|0D

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

14/25

§I OIAd

Jasn pn ¥0O4
SNOLLINI43A NWNT02
B 0 ==l Jsenb Jsenb 10°00°00
: 6¥.80.2991 X-IXMIxml Jels lojesado 1000700
9965€2221- X-JXMIXMJ wayshs ujwpe 10°00°00
B 115869801 X-JX-IXMJ Jool Jool 1000700
ajep pJomssed ysew dnos6™pw sweu UOISIaA
» :3IE $8|qE) 8Y} Ul Saujus }|nejap
1214
- 9%
. ou sak - aleg dwejsawi audxa \owv
- ou ou 9l JaquinN piomssed \wmw
. ou ou 0l Buigs ASew — ggp
- ou ou 9l Bulsg dnosb pw—"
417
- sak ou gl Buigg oweu — zgp
- sok ou ol Buing uoisson —
95vEZ} 68L95vEg) | Iusuodwod
$321042 Xapul Inu pbus adfy aweu

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

15725

9I ‘OId

005

0002NS | 1000700

00¥8NS | 1000700

0098NS | 10°00°00

LO08NS | 1070000

0008NS | 100000

000SNS | 1070000

Jooy | 100000

aJsep seje awieu UOISJoA

Jos(gopw

¢0S

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

16/25

LI DA

. ou ou 69 buigg aweu pid
- sak - 9l JaquinN 855 pI—anbiun
- ou sak 8zl buas sbey
- ou ou £ bulas §S9008™J8Y)0
. ou ou £ Buing 095 < sseooe~dnolb
- ou ou £ bugs $$8008 ™ JaUMO
- ou ou 9} Bulys 959 ~—dnos6puw
- ou ou 9] Buag ¥55— Joumo
- ou ou g buls ¢S UOISIBA
96¥EC) 68195VECL
$321042 [inu yibug adfy sweu

0SS

suwn|o9
linejaq

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

17725

&1 OIA

ou 9l H38WNN Pl }sys 0008NS | 10°00°00
ou Gl ONIYLS Jppe~d 0008NS 10°00°00 p8%
ou ¥9 ONIHLS uoneoo| 0008NS | 1000700
ou ¥9 ONIMLS alweu 0008NS | 10°00°00
ou Gl ONIYLS ippedi 0009NS | 1000700
ou ¥9 ONIYLS uoneoo| 0009NS 100000 }¢8S
ou ¥9 ONIMLS sWweu 0009NS 10°00°00
[EAT|jnU azis adA) sweu ‘ sweujoslqo UOISISA
synqiye puw

085

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

18/25

COLUMN DEFINITIONS
FOR 600

ud_SN6000: \'
name type) length

null l default_val

version
owner
md_group
OWner_access
604< group_access
other_access
flags
unique_id
pid_name

name String 64 no
606< location String 64 no
ip_addr String 15 no

COLUMN DEFINITIONS
FOR 602

ud_SN8000:

name type [length ' null l default_val

version
owner
md_group
OWner_access
608< group_access
other_access
flags
unique_id
pid_name

name String 64 no
location String 64 no

ip_addr String 15 no
shelf_id Number 16 no

FIG. 19

SUBSTITUTE SHEET (RULE 26)

610

PCT/US00/12049

WO 00/75784

19/25

0C OIA

AYYIWIYd S}0|Ssddx3pay pIsd Aiddngsemod | 100000
AYYWINd S10195dpay pIsd Addngiamod | 100000
AYVYWIYd $10[SSd] pIsd Aiddngismod | 100000 269
AYYANOD3S SON}ooY p-apou LOOSNS | 100000
AYVININd sanjaysdxg pIjjays L008NS | 1070000
adfy aweu™p aweu aweuTjoslqo UOISJaA
Je"prpw

059

SUBSTITUTE SHEET (RULE 26)

WO 00/75784 PCT/US00/12049

COLUMN DEFINITIONS 20/25
FOR 700

ud_SN8001:

name | type l length I nufl ' default_val

version

owner
md_group
OWNEr_access
group_access
other_access
flags
unique_id
pid_name

- shelf_id$ExpShelves Number l 16 ’ yes l null
node_id$RootNes Number 16 yes null

COLUMN DEFINITIONS 70
FOR '/2
ud_PowerSupply:

name type I length l null ‘ default_val

version

owner
md_group
OWNer_access
group_access
other_access
flags
unique_id
pid_name

ps_id$RedPsSlots Number 16 yes null
ps_idfRedexpPsSlots Number 16 yes null

<ps_id$IrPsSIots Number ‘ 16 l yes ' null
706

FIG. 21

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

21/25

IVNLOY Maz L O0FIIMPaYT Mmq_lod HodZ1D0 | 10700700
IVNLOY MEZ100FIIMPaY mquod HodZ120 | 10700700
0dn3sd JuaLn)sddx3pay Jus.nd Aiddngiamog | 100000 [%52
0dn3sd JusLIN)Spay JusLng Alddngsemod | 10°00°00
0an3sd JuaLin)sdl| juaLno Alddnssemod | 10°00°00

adAy aweujood alweu aweuJo8lqo UoISJaA

Jje~sod pw
052

SUBSTITUTE SHEET (RULE 26)

WO 00/75784

COLUMN DEFINITIONS 800
FOR

ud_PowerSupply: \V
name

22/25

type l length

PCT/US00/12049

l null l default_val

version
owner
md_group
owner_access
812 < group_access
other_access
flags
unique_id
pid_name

current#lrPsCurrent
804< current#RedPsCurrent

current#RedExpPsCurrent

String 16

String 16
String 16

null
null
null

yes

, yes
yes

COLUMN DEFINITIONS
FOR

ud_0C12Port: \V
name

type l length

l null l default_val

version
owner
md_group
OWNer_access
810< group_access
other_access
flags
pkeyique_id
pid_name

806 port_bw#RedWic40C12Bw
port_bw#ERedWic40C12Bw

Number 16
Number 16

' yes , null
yes null

FIG. 23

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

23/25

¥Z OIA

ulejuod”pn ¥04

SNOILINIZ3A NWNI10D
- ou sah - aleq dwejsawiy—andxe — L16
- ou ou 125 bugg pidyTjuaied —— 916
- ou ou 125 bugs Keydyjuased — V16
- ou - oL | equiny prpiiyo — 316
. ou - 9] J9quInN kaydpyo — €16
. ou ou 125 buiyg aweuy jusied — clb
AHYONOOIS/AYVINI ou ou 9 Buns adfypy— 046
- ou ou s Buigg aweu~pi — 806
; ou ou 7e buing aweu anquye — 906
- ou ou 2€ Buins sweupjyo — ¥06
- ou ou 9l buigg uoissan — €06
9SYEZ | 68/9G¢EZL | Jusuodwod
$821040 xapul (nu yibugy adAy aweu
:SUWN|02

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

24/25

§C OIA

awinsuod pn YO

SNOILINI43Aa NWNI02

- ou sak - ajeQ dwe)sawn ~asdxe — 996

- ou ou 12§ buas feydyjuaied — V96

- ou - 9l Jaquiny joodpyyo — 596

: ou - 9 | Jequny koyd piyo —— €96

- ou ou VAS buigs aweu e jualed — ¢9%

] ou ou 76 buigg sweuyjussed — 096
0aN3SdrvNLOY ou ou 91 Buis adAy"jood — 656

. ou ou 7e Bugg sweu"jood — 856

} ou ou Z€ buing sweugnquye — 956

- ou ou 2€ Buins sweupjiys —— ¥56

- ou ou 9l Buigg uoision — €56
9SvET) 68/95vEz) | Iusuodwod

5321040 xapul [inu yibus adA alweu
:SULN|0D

SUBSTITUTE SHEET (RULE 26)

PCT/US00/12049

WO 00/75784

25/25

}08UL0DTPN YOS
SNOILINI43a NNNT02
- ou sok - sjeq dwejssun andxs — 340}
- ou = ©~. ._WDEDZ ._OULOIwm_u I\VPOF
- ou ou 12S mc_bw >mv_a_._lw®_u ||\N _‘O _‘
- ou - 9l Bung fayd~sep —EH0L
- ou - gl JaquinN >mxalo._m 1101
INJISNVYHLU/LININVYNSE3C ou ou 9l buys adA~ad 600}
- ou ou A buiag sweu™d 8001
- ou ou z€ Buins sweu~ajnquye — 300}
- ou ou ze buyg sweu~as — 001
- ou ou 9l mc_bm UOISIA 200}
9SYEZ | 68295vEZ) | Wueuodwod
S8010Y9 xapul [inu yibus) adh aweu
'SULN|0D

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/12049

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 12/00, 17/30, 17/50
US CL : 707/203; 717/11
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.ss. : 707/203; 717/11

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 4,558,413 A (SCHMIDT et al) 10 December 1985. NONE
A US 5,740,405 A (DEGRAAF) 14 April 1998. NONE
A US 5,555,418 A (NILSSON et al) 10 September 1996. NONE
AP US 6,003,039 A (BARRY et al) 14 December 1999. NONE

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: Tt later document published after the international filing date or priority
R L . date and not in conflict with the application but cited to understand
"A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
R - X" document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
“L" document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other e X . X X
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
“o" document referring to an oral disclosure, use. exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skitled in the art
"P* document published prior to the international filing date but later than =g » document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
05 JULY 2000 19 SEP ZGOO
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks .
Box PCT N .
Washington, D.C. 20231 UYEN LE
Facsimile No. (703) 305-3230 Telephone No. (703) 305-4134

Form PCT/ISA/210 (second sheet) (July 1998)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

