(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2014/124878 A1

- (43) International Publication Date 21 August 2014 (21.08.2014)
- (21) International Application Number:

(51) International Patent Classification:

C07D 231/12 (2006.01)

PCT/EP2014/052455

(22) International Filing Date:

7 February 2014 (07.02.2014)

C07C 49/12 (2006.01)

(25) Filing Language:

English

(26) Publication Language:

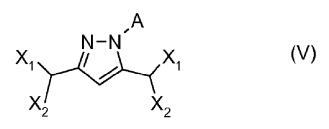
English

(30) Priority Data:

442/DEL/2013 15 February 2013 (15.02.2013)

- (71) Applicant: SYNGENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
- (72) Inventors: JAWALEKAR, Anup; Syngenta India Limited, Santa Monica Plant Corlim, Ilhas, Goa 403110 (IN). SMITS, Helmars; Syngenta Crop Protection, Muenchwilen AG, Schaffhauserstrasse, CH-4332 Stein (CH). QUARANTA, Laura; Syngenta Crop Protection, Muenchwilen AG, Schaffhauserstrasse, CH-4332 Stein (CH). PAL, Sitaram; Syngenta Biosciences Pvt. Limited, Santa Monica Works, Corlim, Ilhas, Goa 403110 (IN). JACKSON, David Anthony; Syngenta Crop Protection, Muenchwilen AG, Breitenloh 5, CH-4333 Muenchwilen (CH).
- (74) Agent: SYNGENTA INTERNATIONAL AG; Intellectual Property Department, Schwarzwaldallee 215, CH-4058 Basel (CH).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).


Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

(54) Title: PROCESS FOR THE PREPARATION OF BIS-DIHALOALKYL PYRAZOLES

(57) Abstract: The present invention relates to a process for the preparation of bisdihaloalkyl pyrazoles of formula (V) starting from diketones and acylhalides reacted with a Lewis acid, and a subsequent reaction with a substituted hydrazine.

Process for the preparation of bis-dihaloalkyl pyrazoles

The present invention relates to a process for the preparation of bis-dihaloalkyl pyrazoles starting from diketones and acyl halides reacted with a Lewis acid, and a subsequent reaction with a substituted hydrazine. The present invention also relates to novel bis-dihaloalkylpyrazoles useful for the synthesis of fungicides as described in WO2013/000941.

The present invention relates to a process comprising at least the following steps:

10 - reacting a compound of formula (I), with a compound of formula (II), in the presence of a Lewis acid to obtain a compound of formula (III):

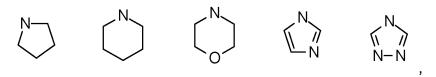
$$CI \xrightarrow{X_2} X_1 \qquad + \qquad X_1 \xrightarrow{X_2} X_2$$

$$(II) \qquad (III) \qquad (III)$$

wherein X₁ and X₂ each independently are halogen, then

-reacting the compound of formula (III) with a compound of formula (IV) to obtain a compound of formula (V):

$$X_1 \xrightarrow{V_2} X_1 + NH_2NHA$$


$$X_2 \xrightarrow{N-N} X_1 \times X_2 \times X_$$

wherein,

A is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alcoxycarbonyl C_1 - C_6 alkyl, hydroxycarbonyl C_1 - C_6 alkyl, C_1 - C_6 alkynyl, C_1 - C_6 alkynyl, C_1 - C_6 alkynyl,

20 and

 R^A is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alcoxy, C_1 - C_6 haloalkyl, NH_2 , C_1 - C_6 alkylamino, C_1 - C_6 dialkylamino or one of the following groups:

and X_1 and X_2 each independently are halogen.

WO 2014/124878 2 PCT/EP2014/052455

Where substituents are indicated as being optionally substituted, this means that they may or may not carry one or more identical or different substituents, e.g. one to five substituents, e.g. one to three substituents. Normally not more than three such optional substituents are present at the same time. Where a group is indicated as being substituted, e.g. alkyl, unless stated otherwise this includes those groups that are part of other groups, e.g. the alkyl in alkylthio.

The term "halogen" refers to fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine.

Alkyl substituents may be straight-chained or branched. Alkyl on its own or as part of another substituent is, depending upon the number of carbon atoms mentioned, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl and the isomers thereof, for example, iso-propyl, iso-butyl, sec-butyl, tert-butyl, iso-amyl or pivaloyl.

Alkenyl substituents can be in the form of straight or branched chains, and the alkenyl moieties, where appropriate, can be of either the (\underline{E})- or (\underline{Z})-configuration. Examples are vinyl and allyl. The alkenyl groups are preferably C_2 - C_6 , more preferably C_2 - C_4 and most preferably C_2 - C_3 alkenyl groups.

Alkynyl substituents can be in the form of straight or branched chains.

20 Examples are ethynyl and propargyl. The alkynyl groups are preferably C₂-C₆, more preferably C₂-C₄ and most preferably C₂-C₃ alkynyl groups.

Haloalkyl groups may contain one or more identical or different halogen atoms and, for example, may stand for CH₂Cl, CHCl₂, CCl₃, CH₂F, CHF₂, CF₃CF₂, CF₃CF₂ or CCl₃CCl₂.

Haloalkenyl groups are alkenyl groups, respectively, which are substituted with one or more of the same or different halogen atoms and are, for example, 2,2-difluorovinyl or 1,2-dichloro-2-fluoro-vinyl.

Haloalkynyl groups are alkynyl groups, respectively, which are substituted with one or more of the same or different halogen atoms and are, for example, 1-chloro-30 prop-2-ynyl.

Alkoxy means a radical -OR, where R is alkyl, e.g. as defined above. Alkoxy groups include, but are not limited to, methoxy, ethoxy, 1-methylethoxy, propoxy, butoxy, 1-methylpropoxy and 2-methylpropoxy.

Cyano means a CN group.

35 Amino means an NH₂ group.

WO 2014/124878 3 PCT/EP2014/052455

Hydroxyl or hydroxy stands for a –OH group.

Aryl means a ring system which may be mono-, bi- or tricyclic. Examples of such rings include phenyl, naphthalenyl, anthracenyl, indenyl or phenanthrenyl. A preferred aryl group is phenyl.

5 Heteroaryl stands for aromatic ring systems comprising mono-, bi- or tricyclic systems wherein at least one oxygen, nitrogen or sulfur atom is present as a ring member. Monocyclic and bicyclic aromatic ring systems are preferred, monocyclic ring systems are more preferred. For example, monocyclic heteoraryl may be a 5- to 7-membered aromatic ring containing one to three heteroatoms selected from 10 oxygen, nitrogen and sulfur, more preferably selected from nitrogen and sulfur. Bicyclic heteroaryl may be a 9- to 11-membered bicyclic ring containing one to five heteroatoms, preferably one to three heteroatoms, selected from oxygen, nitrogen and sulfur. Examples are furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, 15 pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, tetrazinyl, indolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, imiazothiazoyl, quinolinyl, quinoxalinyl, isoquinolinyl, phthalazinyl, quinoxalinyl, quinazolinyl, cinnolinyl and naphthyridinyl, preferably pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, furanyl, thienyl thiazolyl or 20 thiadiazolyl. Heteroaryl rings do not contain adjacent oxygen ring atoms, adjacent sulfur ring atoms or adjacent oxygen and sulfur ring atoms. A link to a heteroaryl group can be via a carbon atom or via a nitrogen atom.

Carbocyclic ring system includes aryl and in addition their saturated or partially unsaturated analogues.

25 Heterocyclyl and heterocyclic ring system are used interchangeably and unless otherwise stated refer to include heteroaryl and in addition their saturated or partially unsaturated analogues. The different rings of bi- or tricyclic heterocyclic ring systems may be linked via one atom belonging to two different rings (spiro), via two adjacent ring atoms belonging to two different rings (annelated) or via two different, not adjacent ring atoms belonging to two different rings (bridged).

The presence of one or more possible asymmetric carbon atoms in compounds of formula III and V means that the compounds may occur in optically isomeric forms, i.e. enantiomeric or diastereomeric forms. Also atropisomers may occur as a result of restricted rotation about a single bond. Formulas (III), (V), (Va), (Vb) and (Vc) are intended to include all those possible isomeric forms and mixtures thereof. The

WO 2014/124878 4 PCT/EP2014/052455

present invention includes all those possible isomeric forms and mixtures thereof for compounds of formulas (III), (V), (Va), (Vb) and (Vc). Likewise, formulas (III), (V), (Va), (Vb) and (Vc) are intended to include all possible tautomers. The present invention includes all possible tautomeric forms for compounds of Formulas (III), (V), 5 (Va), (Vb) and (Vc).

In each case, the compounds disclosed in the process according to the invention are in free form, in oxidized form as a N-oxide or in salt form, e.g. an agronomically usable salt form.

N-oxides are oxidized forms of tertiary amines or oxidized forms of nitrogen containing heteroaromatic compounds. They are described for instance in the book "Heterocyclic N-oxides" by A. Albini and S. Pietra, CRC Press, Boca Raton 1991.

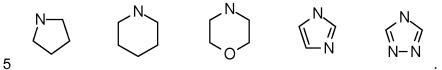
The following list provides definitions, including preferred definitions, for substituents X₁, X₂, X₃, X₄, X₅, X₆, X₇, A, R^A, B, and R^B with reference to compounds (I), (II), (IV), (V), (Va), (Vb), (Vc), (VI), and other compounds of the invention carrying the same substituents. For any one of these substituents, any of the definitions given below may be combined with any definition of any other substituent given below or elsewhere in this document.

 X_1 and X_2 each independently are halogen.

A is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alcoxycarbonyl C₁-C₆alkyl, C₁-C₆alkynyl, C₁-C₆alkynyl, -C(=O)R^A, C₁-C₆alkylaryl. R^A is hydrogen, C₁-C₆alkyl, C₁-C₆alcoxy, C₁-C₆haloalkyl, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino or one of the following groups:

As mentioned above X_1 and X_2 each independently are halogen.

Preferably, X_1 and X_2 each independently are bromo, chloro or fluoro, and more preferably chloro or fluoro.


Preferably, A is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alcoxycarbonyl C_1 - C_6 alkyl, hydroxycarbonyl C_1 - C_6 alkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, -C(=O) \mathbb{R}^A , C_1 - C_6 alkylaryl.

In one embodiment A is C_1 - C_6 alkylaryl, with aryl being phenyl optionally substituted with halo, C_1 - C_6 alcoxy, NO_2 , cyano, or C_1 - C_6 alkyl.

In an embodiment A is hydrogen.

In another embodiement A is -CH₂CO₂R, with R being hydrogen or C₁-C₄ alkyl, preferably methyl or ethyl.

B is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alcoxycarbonyl C_1 - C_6 alkyl, hydroxycarbonyl C_1 - C_6 alkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, -C(=O) R^B , C_1 - C_6 alkylaryl, and R^B is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alcoxy, C_1 - C_6 haloalkyl, NH_2 , C_1 - C_6 alkylamino, C_1 - C_6 dialkylamino or one of the following groups:

In one embodiment B is C_1 - C_6 alkylaryl, whith aryl being phenyl optionally substituted with halo, C_1 - C_6 alcoxy, NO_2 , cyano, or C_1 - C_6 alkyl.

In one embodiment B is H

In another embodiment B is $-CH_2CO_2R$, with R being hydrogen or C_1-C_4 alkyl, preferably methyl or ethyl

In a preferred embodiment, the process according to the invention comprises at least the following additional step:

- reacting a compound of formula (V) with a fluoride anion source, to obtain a compound of formula (Va):

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_5
 X_5
 X_7
 X_8
 X_9
 X_9

wherein A is as defined above,

15

 X_1 and X_2 , each independently are halogen, provided that at least one of X_1 and X_2 is not fluoro, and preferably X_1 and X_2 , each independently are bromo or chloro.

In one embodiment of the invention, the process according to the invention comprises at least the following additional step:

- reacting a compound of formula (V) with a fluoride anion source, to obtain one or several compounds of formula (Vb):

$$X_{1} \xrightarrow{N-N} A X_{1} + F \xrightarrow{X_{2}} X_{4} \xrightarrow{N-N} A X_{5}$$

$$(V) \qquad \qquad (Vb)$$

wherein A is as defined above,

WO 2014/124878 6 PCT/EP2014/052455

 X_1 and X_2 , each independently are halogen, provided that at least one of X_1 and X_2 is not fluoro, and preferably X_1 and X_2 , each independently are bromo or chloro,

- X_3 , X_4 , X_5 and X_6 each independently are halogen, provided that at least one of X_3 , X_4 , X_5 and X_6 is fluoro,
- 5 optionally reacting compounds of formula (Vb) one or several times, and preferably 1, 2, 3 or 4 times with a fluoride anion source to obtain a compound of formula (Va)

$$X_3$$
 X_4
 X_5
 X_6
 X_6

wherein A, X_3 , X_4 , X_5 and X_6 are as defined above.

In one embodiment, the process according to the invention comprises a least the following additional steps:

- reacting compound of formula (III) with a fluoride anion source to obtain a compound of formula (IIIa),

$$X_1 \xrightarrow{X_2} X_1 + F \xrightarrow{F} F$$
(III)

wherein X_1 and X_2 , each independently are halogen, provided that at least one of X_1 and X_2 is not fluoro, and preferably X_1 and X_2 , each independently are bromo or chloro.

- reacting compound of formula (IIIa) with a compound of formula (IV) to obtain a compound of formula (Va):

$$F + NH_2NHA \longrightarrow F + NH_2NHA$$

$$(IIIa) \qquad (IV) \qquad (Va)$$

20 wherein A is as defined above for the compound of formula (V).

Alternatively, in one embodiment, the process according to the invention, comprises the following additional steps:

WO 2014/124878 7 PCT/EP2014/052455

- reacting a compound of formula (III) with a fluoride anion source to obtain one or several compounds of formula (IIIb),

$$X_{1} \xrightarrow{X_{2}} X_{1} + F^{-} \xrightarrow{X_{3}} X_{4} \xrightarrow{X_{6}} X_{5}$$
(III)

wherein X_1 and X_2 , each independently are halogen, provided that at least one of X_1 and X_2 is not fluoro, and preferably X_1 and X_2 , each independently are bromo or chloro,

 X_3 , X_4 , X_5 and X_6 each independently are halogen, provided that at least one of X_3 , X_4 , X_5 and X_6 is fluoro,

- reacting compounds of formula (IIIb) one or several times, and preferably 1, 2, 3 or 10 4 times with a fluoride anion source to obtain a compound of formula (IIIa),

$$X_3$$
 X_4
 X_5
 X_6
 X_6

Wherein X_3 , X_4 , X_5 and X_6 are as defined above,

15

- reacting compound of formula (IIIa) with a compound of formula (IV) to obtain a compound of formula (Va):

$$F + NH_2NHA \longrightarrow F + NH_2NHA$$

$$(IIIa) \qquad (IV) \qquad (Va)$$

wherein A is as defined above for the compound of formula (V).

Alternatively, in one embodiment, the process according to the invention comprises the following additional step:

- reacting a compound of formula (III) with a fluoride anion source to obtain one or 20 several compounds of formula (IIIb),

$$X_{1} \xrightarrow{X_{2}} X_{1} + F^{-} \xrightarrow{X_{3}} X_{4} \xrightarrow{X_{6}} X_{5}$$
(III)

wherein X_1 and X_2 , each independently are halogen, provided that at least one of X_1 and X_2 is not fluoro, and preferably X_1 and X_2 , each independently are bromo or chloro,

- 5 X_3 , X_4 , X_5 and X_6 each independently are halogen, provided that at least one of X_3 , X_4 , X_5 and X_6 is fluoro,
 - reacting compound of formula (IIIb) with a compound of formula (IV) to obtain a compound of formula (Vb):

$$X_3$$
 X_4
 X_5
 X_6
 X_5
 X_4
 X_6
 X_6

wherein A, X₃, X₄, X₅ and X₆ are as defined above,

10

reacting compounds of formula (Vb) one or several times, and preferably 1, 2, 3 or
 4 times with a fluoride anion source to obtain a compound of formula (Va),

$$X_3$$
 X_4
 X_5
 X_6
 X_7
 X_8
 X_8

15 wherein A, X_3 , X_4 , X_5 and X_6 are as defined above.

A fluoride anion source is preferably a metal fluoride or HF and more preferably HF, NaF, KF, or CsF, most preferably KF or HF. Metal fluorides can be used alone or in combination with quaternary ammonium salts of formula $(R_1)_4N^+F^-$ where R_1 is C_1 - C_6 alkyl or quaternary phosphonium salts of formula $(R_2)_4P^+F^-$ where R_2 is substituted aryl and most preferably phenyl. HF can be used alone or as a complex with amines or pyridine.

WO 2014/124878 9 PCT/EP2014/052455

In one embodiment of the process according to the invention, the substituent "A" on compounds of formula (V), (Va) and (Vb) can be replaced by a substituent "B" by reacting compounds of formula (V), (Va) or (Vb) with a compound of formula (VI)

$$B-X_7$$

5 (VI)

Wherein B is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alcoxycarbonyl C_1 - C_6 alkyl, hydroxycarbonyl C_1 - C_6 alkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, C_1 - C_6 alkylaryl, and

 R^B is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alcoxy, C_1 - C_6 haloalkyl, NH_2 , C_1 - C_6 alkylamino, C_1 - C_6 dialkylamino or one of the following groups:

 X_7 is halogen and preferably chloro, bromo or iodo.

For example, when A is hydrogen, compound (V) is reacted with a compound of formula (VI) to obtain a compound of formula (Vc):

$$X_{1} \xrightarrow{N-N} A X_{1} + B-X_{7} \longrightarrow X_{1} \xrightarrow{N-N} X_{2}$$

$$(V) \qquad (VI) \qquad (Vc)$$

wherein A, B, X_1 , X_2 and X_7 are as defined above.

15

Preferably, the first step of the process according to the invention is carried out under an inert gas atmosphere in a solvent selected from a group consisting of haloalkanes, substituted aromatic solvents such as nitroarenes, haloarenes, alkoxyarenes, dialkyl ethers, tetrahydrofuran, dioxane. Most preferably haloalkanes or nitroarenes.

Compounds (Va) and (Vb) can similarly be reacted with a compound of formula (VI).

Preferably, the second step is carried out in a solvent selected from a group consisting of alcoholic solvents such as methanol or ethanol, haloalkanes, tetrahydrofuran or water using the reagent as a free base or as a salt in a combination with basic reagents such as pyridine, trialkylamines, alkali metal carbonates (Na₂CO₃, K₂CO₃) or hydroxides, for example LiOH, NaOH or KOH.

WO 2014/124878 10 PCT/EP2014/052455

Preferably, the Lewis acid is selected from a group consisting of AlCl₃, SnCl₄, TiCl₄, SbCl₅, BF₃.Et₂O.

The molar ratio of compound of formula II to compound of formula I is between 2:1 and 4 to 1, preferably from 2:1 to 3:1. It is advantageous to conduct the reaction at dilution between 0.1 M to 1 M, preferably 0.3 M to 0.5 M of compound of formula II.

The reaction temperature is preferably between 0 °C to 150 °C, more preferably between 40 and 100 °C and the reaction time is usually between 1 and 12 hours, preferably between 2 and 6 hours.

The process according to the invention can be carried out under standard pressure or under slightly elevated or reduced pressure. Typically, the reaction is run under standard pressure.

During the process according to the invention, and as shown above, one or several compounds of formula (III), (IIIa), (V) and (Vb) can be obtained. These intermediates compounds are part of this invention

The present invention also includes compounds of formula (III):

$$X_1$$
 X_2
 X_2
 X_3
 X_4
 X_2

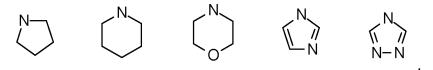
wherein X_1 and X_2 each independently are halogen, preferably bromo, chloro or 20 fluoro, and most preferably X_1 and X_2 are chloro.

The invention also relates to compound of formula (IIIb):

$$X_3$$
 X_4
 X_6
(IIIb)

wherein X_3 , X_4 , X_5 and X_6 each independently are halogen, and at least one of X_3 , X_4 , X_5 and X_6 is fluoro.

Non limiting examples of these intermediates are also part of this invention and disclosed below as compounds of formula (X), (Y) and (Z):


$$F \xrightarrow{C} F \qquad CI \xrightarrow{F} F \qquad CI \xrightarrow{C} F \qquad CI \xrightarrow{C} F \qquad (Z)$$

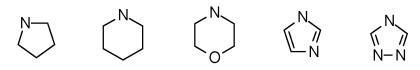
5 The invention also includes compounds of formula (V):

$$X_1$$
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_5

wherein A is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alcoxycarbonyl C_1 - C_6 alkyl, hydroxycarbonyl C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkylyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl

10 R^A is hydrogen, C₁-C₆alkyl, C₁-C₆alcoxy, C₁-C₆haloalkyl, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino or one of the following groups:

and X_1 and X_2 are chloro.


Preferably, for compounds of formula (V):

15 X_1 and X_2 are chloro and -A is -CH₂CO₂R, with R being hydrogen or C₁-C₄ alkyl, and preferably methyl or ethyl.

The present invention also includes compounds of formula (Vb):

$$X_3$$
 X_4
 X_4
 X_6
 X_6

wherein A is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alcoxycarbonyl C₁-C₆alkyl, hydroxycarbonyl C₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkynyl, -C(=O)R^A, C₁-C₆alkylaryl. R^A is hydrogen, C₁-C₆alkyl, C₁-C₆alcoxy, C₁-C₆haloalkyl, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino or one of the following groups:

 X_3 , X_4 , X_5 and X_6 each independently are halogen, provided that at least one and no more than three of X_3 , X_4 , X_5 and X_6 is fluoro.

Preferably, in compounds of formula (Vb),

A is $-CH_2CO_2R$, with R being hydrogen or C_1-C_4 alkyl,

 X_3 , X_4 , X_5 and X_6 each independently are halogen, provided that at least one and no more than three of X_3 , X_4 , X_5 and X_6 is fluoro.

Non limiting examples of these intermediates are also part of this invention and disclosed below as compounds of formula (X), (Y) and (Z):

Example 1: Preparation of 3,5-bis(dichloromethyl)-1H-pyrazole

15 Step 1. 1,1,5,5-tetrachloropentane-2,4-dione:

Aluminium chloride (5.8 g, 44 mmol) was placed in a two-necked RB flask equipped with a condenser and a drying tube. The flask was purged with N₂ followed by the addition of nitrobenzene (5.0 mL) and dichloroethane (10.0 mL). The mixture was stirred until all aluminium chloride was dissolved, leaving a brown solution. Pentane-2,4-dione (4.4 g, 44 mmol) was then added dropwise (5 min). The reaction mixture was cooled to 0 oC by placing the flask in an ice-bath and 2,2-dichloroacetyl chloride (19.0 g, 130 mmol) was added dropwise over 5 min. The reaction mixture was then removed from ice bath and heated to 65 °C for 5 h. The reaction mixture was cooled and slowly poured into a flask containing conc. HCl (15 mL) and ice (120 g), followed by stirring overnight. The contents of the flask were extracted with DCM (3 x 50 mL), washed with water, the organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by vacuum distillation (105 °C and 2 x 10⁻³ mbar) to give 1,1,5,5-tetrachloropentane-2,4-dione (9.5 g, 91%) as a pale yellow oil.

WO 2014/124878 13 PCT/EP2014/052455

1H NMR (400 MHz, CDCl₃) δ 6.42 (s, 1H), 6.0 (s, 2H)

Step 2. 3,5-bis(dichloromethyl)-1H-pyrazole:

5

To a solution of 1,1,5,5-tetrachloropentane-2,4-dione (1.0 g, 4.2 mmol) in ethanol (10 mL) was slowly added hydrazine monohydrate (1.03 eq., 4.3 mmol) at rt over a period of 5 min. The reaction mixture was stirred at rt for 16 h, poured onto ice (25 g) and extracted with DCM (3 x 50 mL). The combined organic layers were dried on Na₂SO₄ and concentrated to give 3,5-bis(dichloromethyl)-1H-pyrazole (0.80 g, 81% yield) as yellow semisolid mass.

1H NMR (400 MHz, CDCl₃) δ 7.50 (s, 2H), 6.64 (s, 1H)

15 Example 2: preparation of Ethyl 2-[3,5-bis(dichloromethyl)pyrazol-1-yl]acetate

To a solution of 1,1,5,5-tetrachloropentane-2,4-dione (500 mg, 2.1017 mmol) in ethanol (5 mL), ethyl hydrazinoacetate hydrochloride (336 mg, 2.1648 mmol) was added at 0°C. The reaction mixture was stirred at 0°C for 15 min, ice-bath removed and stirring continued at rt for 16 h. It was poured into ice water (30 mL), aqueous layer (pH = 1-2) was neutralized using solid NaHCO₃ and extracted with DCM (3 x 50 mL). The combined organic layers were dried on Na₂SO₄ and concentrated to give crude compound (630 mg) which was purified by silica gel chromatography (8% ethyl acetate in cyclohexane) to afford ethyl 2-[3,5-bis(dichloromethyl)pyrazol-1-yl]acetate as colorless oil (340 mg, 50%)

1H NMR (400 MHz, CDCl₃) δ 6.81 (s, 1H), 6.78 (s, 1H), 6.72 (s, 1H), 5.09 (s, 2H), 4.29 (dd, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H).

30

Example 3: preparation of 3,5-bis(difluromethyl)-1H-pyrazole

3,5-bis(dichloromethyl)-1H-pyrazole (233 mg, 1.00 mmol) was placed in a polytetrafluoroethylene flask and dissolved in triethylamine trihydrofluoride (2.0 ml, 12 mmol). The resulting solution was purged with dry argon and stirred at 150 C for 2 h.

WO 2014/124878 14 PCT/EP2014/052455

The reaction mixture was cooled to ambient temperature and poured into ice water. The mixture was extracted with ethyl acetate (2 x 10 ml), the organic phase was washed with aq saturated NaHCO₃ and combined organic layers were dried over anhydrous MgSO₄. Concentration of the solution provided 3,5-bis(difluoromethyl)-1H- pyrazole as a pale yellow oil (109 mg, 65%).

1H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 6.79 (t, J = 56 Hz, 2H), 6.78 (s, 1H)

Example 4: preparation of ethyl 2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetate

2-[3,5-bis(dichloromethyl)pyrazol-1-yl]acetate (500 mg, 1.56 mmol) was placed in a polytetrafluoroethylene coated reactor and dissolved in triethylamine trihydrofluoride (2.0 ml, 12 mmol). The resulting mixture was stirred at 150 C for 16 h. The reaction

mass was cooled to ambient temperature and poured into ice cold water (100 ml).

The mixture was neutralized by adding NaHCO₃ and extracted with DCM (3 x 80 ml). Combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by silica gel chromatography (5% EtOAc in cyclohexane) to provide 2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetate (115 mg, 29%) as a fluffy solid.

20

10

1H NMR (400 MHz, CDCl₃) δ 6.79 (t, J = 54.3 Hz, 1H), 6.76 (s, 1H), 6.67 (t, J = 54.7 Hz, 1H), 5.05 (s, 2H), 4.26 (q, J = 7.3 Hz, 2H), 1.29 (t, J = 7.3 Hz, 3H)

What is claimed is:

- A process comprising at least the following steps: 1.
- 5 reacting a compound of formula (I), with a compound of formula (II), in the presence of a Lewis acid to obtain a compound of formula (III):

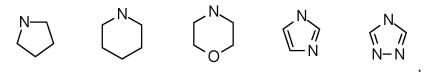
$$CI \xrightarrow{X_2} X_1 \qquad + \qquad X_1 \xrightarrow{X_2} X_2$$

$$(II) \qquad (III) \qquad (III)$$

wherein X₁ and X₂ each independently are halogen, then

-reacting the compound of formula (III) with a compound of formula (IV) to obtain a 10 compound of formula (V):

$$X_1 \xrightarrow{V_2} X_1 + NH_2NHA \longrightarrow X_1 \xrightarrow{N-N} X_1$$
(III) (IV) (V)


wherein,

A is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alcoxycarbonylC₁-C₆alkyl, hydroxycarbonylC₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkynyl, -C(=O)R^A, C₁-C₆alkylaryl,

15 and

20

R^A is hydrogen, C₁-C₆alkyl, C₁-C₆alcoxy, C₁-C₆haloalkyl, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino or one of the following groups:

and X₁ and X₂ each independently are halogen.

2. A process according to claim 1, wherein X_1 and X_2 each independently are bromo, chloro or fluoro.

3. A process according to claim 1, wherein X_1 and X_2 each independently are chloro or fluoro.

- 4. A process according to claim 1, wherein A is -CH₂CO₂R, with R being hydrogen or 5 C₁-C₄ alkyl.
 - 5. A process according to claim 1, comprising at least the following additional step:
 - reacting a compound of formula (V) with a fluoride anion source, to obtain a compound of formula (Va):

$$X_1$$
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

wherein A is as defined in claim 1,

10

 X_1 and X_2 , each independently are halogen, provided that at least one of X_1 and X_2 is not fluoro.

- 15 6. A process according to claim 1 comprising at least the following additional steps:
 - reacting compound of formula (III) with a fluoride anion source to obtain a compound of formula (IIIa),

$$X_{1} \xrightarrow{X_{2}} X_{1} + F$$

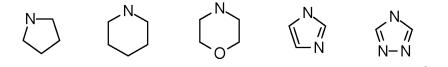
$$(III)$$

$$(IIIa)$$

- Wherein X_1 and X_2 , each independently are halogen, provided that at least one of X_1 and X_2 is not fluoro,
 - reacting compound of formula (IIIa) with a compound of formula (IV) to obtain a compound of formula (Va):

$$F + NH_2NHA \longrightarrow F + NH_2NHA$$
(IIIa) (IV) (Va)

wherein A is as defined in claim 1.


7. A process according to claim 1 wherein, when A is hydrogen, compound (V) is reacted with a compound of formula (VI) to obtain a compound of formula (Vc):

$$X_{1} \xrightarrow{N-N} A X_{1} + B-X_{7} \longrightarrow X_{1} \xrightarrow{N-N} X_{2}$$

$$(V) \qquad (VI) \qquad (Vc)$$

Wherein, A is as defined in claim 1,

B is C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alcoxycarbonyl C₁-C₆alkyl, hydroxycarbonyl C₁-10 C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkynyl, -C(=O)R^B, C₁-C₆alkylaryl, and R^B is hydrogen, C₁-C₆alkyl, C₁-C₆alcoxy, C₁-C₆haloalkyl, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino or one of the following groups:

 X_1 and X_2 are as defined in claim 1,

20

- 15 X_7 is halogen and preferably chloro, bromo or iodo.
 - 8. A process according to claim 1, wherein the first step is carried out under an inert gas atmosphere in a solvent selected from a group consisting of haloalkanes, substituted aromatic solvents, and preferably haloalkanes or nitroarenes.
 - 9. A process according to claim 1, wherein the second step is carried out in a solvent selected from a group consisting of alcoholic solvent, haloalkanes, tetrahydrofuran or water.

10. A compound of formula (III):

$$X_1 \xrightarrow{Q} Q \xrightarrow{Q} X_1$$

$$X_2 \xrightarrow{X_2} X_2$$
(III)

wherein X₁ and X₂ each independently are halogen.

5 11. A compound according to claim 10, wherein X_1 and X_2 each independently are bromo, chloro or fluoro.

18

- 12. A compound according to claim 10, wherein X_1 and X_2 are chloro.
- 10 13. A compound of formula (IIIb):

$$X_3$$
 X_4
 X_6
(IIIb)

wherein X_3 , X_4 , X_5 and X_6 each independently are halogen, and at least one of X_3 , X_4 , X_5 and X_6 is fluoro.

15

14. A compound of formula (V):

$$X_1$$
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_7
 X_9

wherein A is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alcoxycarbonyl C₁-C₆alkyl, 20 hydroxycarbonyl C₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkynyl, -C(=O)R^A, C₁-C₆alkylaryl. R^A is hydrogen, C₁-C₆alkyl, C₁-C₆alcoxy, C₁-C₆haloalkyl, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino or one of the following groups:

$$\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$$

and X_1 and X_2 are chloro.

15. A compound of formula (Vb):

$$X_3$$
 X_4
 X_5
 X_6
 X_6

5

wherein A is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alcoxycarbonyl C₁-C₆alkyl, hydroxycarbonyl C₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkynyl, -C(=O)R^A, C₁-C₆alkylaryl. R^A is hydrogen, C₁-C₆alkyl, C₁-C₆alcoxy, C₁-C₆haloalkyl, NH₂, C₁-C₆alkylamino, C₁-10 C₆dialkylamino or one of the following groups:

 X_3 , X_4 , X_5 and X_6 each independently are halogen, provided that at least one and no more than three of X_3 , X_4 , X_5 and X_6 is fluoro.

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2014/052455

A. CLASSIFICATION OF SUBJECT MATTER INV. C07D231/12 C07C49/12 ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $C07D \quad C07C$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
Y	PESHKEVICH ET AL: "Fluoroalkyl-containing mono- and bispyrazoles", VSESOYUZNOE KHIMICHESKOE OBSHCHESTVO IM. D.I. MEDEELEVA.ZHURNAL, MOSCOW, RU, vol. 26, no. 1, 1 January 1981 (1981-01-01), pages 105-107, XP009176643, ISSN: 0373-0247 Scheme on p. 105; table 1; compound V	10-15			

X Further documents are listed in the continuation of Box C.	X See patent family annex.	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family	
Date of the actual completion of the international search	Date of mailing of the international search report	
6 March 2014	13/03/2014	
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer	
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Johnson, Claire	

1

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2014/052455

C(Continua	ntion). DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/EP2014/032435
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	ALAN R. KATRITZKY ET AL: "Preparation of [beta] -Keto Esters and [beta] -Diketones by C-Acylation/Deacetylation of Acetoacetic Esters and Acetonyl Ketones with 1-Acylbenzotriazoles", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 69, no. 20, 1 October 2004 (2004-10-01), pages 6617-6622, XP55105577, ISSN: 0022-3263, DOI: 10.1021/jo0492741 paragraph [0001]	1-9
Υ	US 2006/276656 A1 (LANTZSCH REINHARD [DE] ET AL) 7 December 2006 (2006-12-07) paragraph [0005] - paragraph [0012]; examples 1-3	5
Υ	US 2004/097758 A1 (BRAUN MAX [DE] ET AL) 20 May 2004 (2004-05-20) paragraph [0014]	6
Y	EP 0 005 810 A1 (HOECHST AG [DE]) 12 December 1979 (1979-12-12) page 4a, line 15 - line 18; example 15	

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2014/052455

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2006276656 A	07-12-2006	BR PI0416112 A CN 1875006 A DE 10351088 A1 EP 1682515 A1 JP 4936895 B2 JP 2007509871 A KR 20060094534 A TW I359141 B US 2006276656 A1 WO 2005044804 A1	02-01-2007 06-12-2006 02-06-2005 26-07-2006 23-05-2012 19-04-2007 29-08-2006 01-03-2012 07-12-2006 19-05-2005
US 2004097758 A	L 20-05-2004	CN 1489560 A DE 10104663 A1 EP 1370506 A1 HK 1063179 A1 JP 2004537502 A RU 2285686 C2 US 2004097758 A1 WO 02060838 A1	14-04-2004 08-08-2002 17-12-2003 18-08-2006 16-12-2004 20-10-2006 20-05-2004 08-08-2002
EP 0005810 A	12-12-1979	DE 2823969 A1 EP 0005810 A1 JP S54157503 A	13-12-1979 12-12-1979 12-12-1979